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1 Introduction

Recently Dolbeault, Esteban, and S�er�e [4, 3, 2] have found a minimax principle

for Dirac operators with Coulomb potentials. Independently, Griesemer and

Siedentop [5] have found a minimax principle characterizing the eigenvalues of

self-adjoint operators in their spectral gaps, which is 
exible enough to adapt

to various situations. In particular it can also be applied to Dirac operators.

Such a minimax principle is of particular interest for applications, e.g., in solid

state physics and relativistic quantum chemistry where di�erential operators

having gaps in their spectra naturally arise. Apart from the computational

point of view (see, e.g., Kutzelnigg [7]) it can serve as a tool to obtain non-

asymptotic eigenvalue estimates, e.g., comparing the number of eigenvalues of
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276 Griesemer, Lewis, Siedentop

the Dirac operator in the gap with the number of negative eigenvalues of a

corresponding Schr�odinger operator (see [5]).

Comparing [3, 2] and [5] shows, that although the hypotheses for the validity of

the minimax principle overlap, the methods of proof are quite di�erent. On the

other hand, with these di�erent hypotheses di�erent classes of operators can

be treated: Dolbeault, Esteban, and S�er�e's result allows for Dirac operators

with singular potentials of Coulomb type. Griesemer and Siedentop's result

allows for a 
exible formulation of the minimax principle adaptable to various

situations, e.g., an earlier minimax principle for the �rst positive eigenvalue of

the Dirac operator considered by Talman [9] and Datta and Deviah [1] can be

proved.

This di�erence in hypotheses indicates that the optimal assumption for the

abstract minimax principle is yet to be found. The present paper is a step in

this direction.

In Section 2 we prove the abstract minimax principle under assumptions al-

ternative to those in [5]. In Section 3 we show that these hypotheses allow for

Dirac operators with Coulomb potentials. Applications to other self-adjoint

operators with eigenvalues in spectral gaps like perturbed periodic Schr�odinger

operators are also conceivable.

2 The Minimax Principle

In this section we formulate and prove the abstract minimax principle. Suppose

A and A

0

are self-adjoint operators in a Hilbert space H and assume that their

form domains are equal

Q(A) = Q(A

0

) = Q: (1)

Let D(A) and D(A

0

) denote the domains of A and A

0

respectively and let

P

I

(A) be the spectral projection of A corresponding to the interval I � R.

De�ne

�

+

= P

(0;1)

(A

0

); �

�

= 1� �

+

;

P

+

= P

(0;1)

(A); P

�

= 1� P

+

:

(2)

We set H

�

:= �

�

H and Q

�

:= �

�

Q. Then H = H

+

�H

�

and, by assumption

(1), Q

�

� Q. The minimax values in which we are interested are given by

�

n

(A) := inf

M

+

�Q

+

dim(M

+

)=n

sup

 2M

+

�Q

�

k k=1

( ;A ); (3)

and have been introduced in [5]. These minimax values are to be compared

with the standard (Courant) minimax values

�

n

(B) := inf

M�Q(B)

dim(M)=n

sup

 2M

k k=1

( ;B )
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for the eigenvalues of a self-adjoint operator B which is bounded from below.

The value �

n

(B) is the n-th eigenvalue of B counting from below (see, e.g.,

Reed and Simon [8]).

Theorem 1. Suppose A and A

0

are self-adjoint operators in H with the same

form domain Q and de�ne �

�

; P

�

; Q

�

; �

n

(A) and �

n

(�) as above. If

( ;A ) � 0 for all  2 Q

�

and if

k(jA

0

j+ 1)

1=2

�

+

P

�

(jA

0

j+ 1)

�1=2

k < 1 (4)

then �

n

(A) = �

n

(Aj�P

+

H) for all n � dimH

+

.

We remark that jA

0

j+1 can be replaced by jA

0

j in (4), if we assume that 0 is

in the resolvent set of A

0

. This will be obvious from the proof.

Proof. We prove the theorem in two steps. Although these are partly contained

in [5] we do not omit the similar parts in order to be self-contained: First, we

show that it su�ces to prove that �

+

: P

+

Q ! Q

+

is a bijection. Secondly,

we verify this property using assumption (4) and the negativity of ( ;A ) on

Q

�

.

Step 1. If �

+

P

+

Q = Q

+

, then we have

�

n

(A) = inf

M

+

��

+

P

+

Q

dim(M

+

)=n

sup

 2M

+

�Q

�

k k=1

( ;A ) (5)

using the de�ning Equation (3). Since for each M

+

� �

+

P

+

Q with

dim(M

+

) = n, we can �nd a subspace M � P

+

Q with dim(M) = n such

that M

+

= �

+

M and since �

+

M�Q

�

�M, we get from (5)

�

n

(A) = inf

M

+

��

+

P

+

Q

dim(M

+

)=n

sup

 2M

+

�Q

�

k k=1

( ;A )

� inf

M�P

+

Q

dim(M)=n

sup

 2M

k k=1

( ;A ) = �

n

(Aj�P

+

H):

To prove the converse inequality we proceed as in [5]: pick � > 0 and let

M := P

(0;�

n

+�)

(A)Q. Then dim(M) � n and hence dim(�

+

M) � n by the

remark above. Therefore

�

n

� sup

 2�

+

M�Q

�

k k=1

( ;A ) = sup

 2M+Q

�

k k=1

( ;A );

where �

+

M � Q

�

= M + Q

�

was used. To estimate this from above we

�rst decompose  2 M + Q

�

as  =  

1

+  

2

, where  

1

2 M and  

2

2

M

?

\ (M+Q

�

), and then  

2

as  

2

=  

3

+  

�

where  

3

2M and  

�

2 Q

�

.
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Since A 

3

2 M and  

3

+  

�

2 M

?

we have (A 

3

;  

�

) = �(A 

3

;  

3

). Using

this, (A 

3

;  

3

) � 0, and ( 

�

; A 

�

) � 0 we �nd

( ;A ) = ( 

1

; A 

1

) + ( 

2

; A 

2

)

= ( 

1

; A 

1

)� ( 

3

; A 

3

) + ( 

�

; A 

�

) � ( 

1

; A 

1

) � (�

n

+ �)( ;  )

which implies �

n

� �

n

.

Step 2. Surjectivity: Since �

+

P

+

Q � Q

+

it su�ces that �

+

P

+

Q

+

= Q

+

,

which is equivalent to (jA

0

j+1)

1=2

�

+

P

+

(jA

0

j+1)

�1=2

H

+

= H

+

. Now �

+

P

+

=

1� �

+

P

�

on H

+

so that

(jA

0

j+ 1)

1=2

�

+

P

+

(jA

0

j+ 1)

�1=2

= 1� (jA

0

j+ 1)

1=2

�

+

P

�

(jA

0

j+ 1)

�1=2

on H

+

. By assumption (4) the latter is an isomorphism from H

+

to H

+

.

Injectivity: Suppose �

+

: P

+

Q ! Q

+

would not be one-to-one. Then there

would exist a non-zero  2 H

�

\ P

+

Q such that

0 � ( ;A ) = (P

+

 ;AP

+

 ) > 0:

3 Application to the Dirac Operator

The hypothesis (4) of Theorem 1 contains the a priori unknown operator P

�

,

i.e., it is not straightforward to check. In this section we will show how to

verify it for given operators nevertheless. To be speci�c we restrict ourselves to

the Dirac operator D




with a screened Coulomb potential, i.e., D




:= (1=i)r �

� + m� � 
' in H := L

2

(R

3

)

4

, where '(x) = y(x)=jxj with measurable y

and y(R

3

) � [0; 1]. By Hardy's inequality we have that D




is an operator

perturbation of D

0

for 
 2 (�1=2; 1=2). We will assume this restriction on 


henceforth. In particular, perturbation theory for jD

0

j = (��+m

2

)

1=2

implies

by Hardy's and Kato's inequality

8


2[0;1=2)

D(D




) = H

1

(R

3

)
 C

4

=: D; (6)

8


2[0;2=�)

Q(D




) = H

1=2

(R

3

)
 C

4

=: Q (7)

for the operator and form domain of D




, respectively. To make connections

with Section 2 we pick A

0

:= D

0

and A := D




. The notation (2) is used

correspondingly here.

By 


0

we denote the real solution of 2


3

0

� 3


2

0

+ 4


0

= 1. Note that 0:305 <




0

< 0:306 holds.

Theorem 2. For 
 2 [0; 


0

)

inf

M

+

�Q

+

dimM

+

=n

sup

 2M

+

�Q

�

k k=1

( ;D




 ) (8)

is equal to the n-th positive eigenvalue { counting multiplicity { of the Dirac

operator D




or equals the mass m.
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Our strategy is to roll the proof back to a veri�cation of the hypotheses of

Theorem 1. The main step is the veri�cation of (4) which we break up into

several steps:

Lemma 1. For all f 2 H

�

+

P

�

f = �




2�

�

+

R

1

�1

(D

0

� iz)

�1

'(D




� iz)

�1

dzf

= �




�

�

+

R

1

0

�

(D

2

0

+ z

2

)

�1

(D

0

'D




� z

2

')(D

2




+ z

2

)

�1

�

dzf:

(9)

Proof. Since for 
 2 [0; 2=�), zero is in the resolvent set of D




, we have that

P

�

=

1

2

�

1

2�

Z

1

�1

(D




� iz)

�1

dz =

1

2

�

1

�

Z

1

0

D




(D

2




+ z

2

)

�1

dz (10)

(Kato [6], Chapter VI.5, Lemma 5.6); �

�

is obtained from (10) by setting


 = 0. Therefore, by (10), and the second resolvent identity

P

�

= �

�

�




2�

Z

1

�1

(D

0

� iz)

�1

'(D




� iz)

�1

dz

from which we may conclude that the �rst part of (9) holds.

We can simplify

Z

1

�1

(D

0

� iz)

�1

'(D




� iz)

�1

dzf

=

Z

1

0

�

(D

0

� iz)

�1

'(D




� iz)

�1

+ (D

0

+ iz)

�1

'(D




+ iz)

�1

�

dzf

=

Z

1

0

�

D

0

+ iz

D

2

0

+ z

2

'

D




+ iz

D

2




+ z

2

+

D

0

� iz

D

2

0

+ z

2

'

D




� iz

D

2




+ z

2

�

dzf

= 2

Z

1

0

�

(D

2

0

+ z

2

)

�1

(D

0

'D




� z

2

')(D

2




+ z

2

)

�1

�

dzf

which implies that the second part of (9) holds.

Lemma 2. For 
 2 R

+

we have (1=2� 
)

2

'

2

� jD




j

2

� (1 + 2
)

2

jD

0

j

2

.

Proof. For all  2 D(D

0

) we have kD




 k � kD

0

 k�
k' k � (1=2�
)k' k,

where we �rst use the triangle inequality and then Hardy's inequality. This

implies the �rst stated operator inequality. The second one follows from

kD




 k � kD

0

 k+ 
k' k � (1 + 2
)kD

0

 k.

Lemma 3. For all 
 2 (0;

1

2

) and f 2 H we have

kjD

0

j

1=2

Z

1

0

(D

2

0

+ z

2

)

�1

(D

0

'D




� z

2

')(D

2




+ z

2

)

�1

dzjD

0

j

�1=2

fk

� �

p

1 + 2


1� 2


kfk: (11)
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Proof. Using the fact that

khk = sup

kgk=1

j(g; h)j; h 2 H

and setting f

0

:= jD

0

j

�1=2

f we see that the norm on the left hand side of (11)

can be approximated by �nding an upper bound for

j(g; jD

0

j

1=2

Z

1

0

�

(D

2

0

+ z

2

)

�1

(D

0

'D




� z

2

')(D

2




+ z

2

)

�1

�

dzf

0

)j; kgk = 1:

(12)

First, consider the term

j(g; jD

0

j

1=2

Z

1

0

�

(D

2

0

+ z

2

)

�1

(D

0

'D




)(D

2




+ z

2

)

�1

�

dzf

0

)j

�

�

Z

1

0

kD

0

(D

2

0

+ z

2

)

�1

jD

0

j

1=2

gk

2

dz

�

1

2

�

Z

1

0

k'D




(D

2




+ z

2

)

�1

f

0

k

2

dz

�

1

2

:

(13)

Note that

Z

1

0

dz

(1 + z

2

)

2

=

Z

1

0

z

2

dz

(1 + z

2

)

2

=

�

4

: (14)

Thus, the �rst factor yields

Z

1

0

kD

0

(D

2

0

+ z

2

)

�1

jD

0

j

1=2

gk

2

dz =

Z

1

0

(g;

jD

0

j

3

(D

2

0

+ z

2

)

2

g)dz =

�

4

(g; g): (15)

In a similar manner we show for 
 2 (0; 1=2)

Z

1

0

k'D




(D

2




+ z

2

)

�1

f

0

k

2

dz (16)

=

Z

1

0

(f

0

; (D

2




+ z

2

)

�1

D




'

2

D




(D

2




+ z

2

)

�1

f

0

)dz (17)

�

1

(1=2� 
)

2

Z

1

0

(f

0

; (D

2




+ z

2

)

�1

jD




j

4

(D

2




+ z

2

)

�1

f

0

)dz (18)

=

�

(1� 2
)

2

(f

0

; jD




jf

0

) �

�(1 + 2
)

(1� 2
)

2

(f

0

; jD

0

jf

0

) �

�(1 + 2
)

(1� 2
)

2

(f; f)(19)

where we have used the �rst inequality of Lemma 2 to go from (17) to (18) and

the second inequality of that Lemma in (19).

Thus we have for the product

j(g; jD

0

j

1=2

Z

1

0

�

(D

2

0

+ z

2

)

�1

(D

0

'D




)(D

2




+ z

2

)

�1

�

dzf

0

)j �

�

2

p

1 + 2


1� 2


kfk:
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Likewise, we estimate the second term in (12)

j(g; jD

0

j

1=2

Z

1

0

(D

2

0

+ z

2

)

�1

z

2

'(D

2




+ z

2

)

�1

dzjD

0

j

�1=2

f)j

= j

Z

1

0

(z(D

2

0

+ z

2

)

�1

jD

0

j

1=2

g; z'(D

2




+ z

2

)

�1

f

0

)dzj

�

�

Z

1

0

kz(D

2

0

+ z

2

)

�1

jD

0

j

1=2

gk

2

dz

�

1

2

�

Z

1

0

kz'(D

2




+ z

2

)

�1

f

0

k

2

dz

�

1

2

: (20)

By scaling and (14) we get for the �rst factor

Z

1

0

kzjD

0

j

1=2

(D

2

0

+ z

2

)

�1

gk

2

dz =

�

4

: (21)

The second factor yields using Lemma 2 twice

Z

1

0

kz'(D

2




+ z

2

)

�1

f

0

k

2

dz = (f

0

;

Z

1

0

(D

2




+ z

2

)

�1

'

2

z

2

(D

2




+ z

2

)

�1

dzf

0

)

�

1

(1=2� 
)

2

(f

0

;

Z

1

0

(D

2




+ z

2

)

�1

jD




j

2

z

2

(D

2




+ z

2

)

�1

dzf

0

)

=

�

4(1=2� 
)

2

(f

0

; D




f

0

) � �

1 + 2


(1� 2
)

2

(f

0

; D

0

f

0

):

Thus we get

j(g; jD

0

j

1=2

Z

1

0

(D

2

0

+ z

2

)

�1

z

2

'(D

2




+ z

2

)

�1

dzf

0

)j �

�

2

p

1 + 2


1� 2


kfk; (22)

i.e., the same upper bound as for the �rst term. By (11), (12), and the calcu-

lations above, we have the upper bound

kjD

0

j

1=2

Z

1

0

�

(D

2

0

+ z

2

)

�1

(D

0

'D




� z

2

')(D

2




+ z

2

)

�1

�

dzjD

0

j

�1=2

fk

� �

p

1 + 2


1� 2


kfk

for 
 2 [0; 1=2) which we claimed.

From Lemmata 1 and 3 we have the immediate

Corollary 1. For all 
 2 (0;

1

2

)

kjD

0

j

1=2

�

+

P

�

jD

0

j

�1=2

k � 


p

1 + 2


1� 2


:

We remark that an argument similar to the proofs of Lemmata 1 and 3 shows

that k�

+

P

�

k = O(
) as 
 ! 0 which implies that �

+

P

+

H = H

+

and H

+

\

P

�

H = f0g for small enough positive 
.

We turn now to the proof of Theorem 2.
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Proof. First, we reiterate our remark (7) that for 
 2 [0; 2=�) the form domain

of Q := Q(D




) = H

1=2

(R

3

) 
 C

4

. In particular, it is independent of 
. This

also means that P

�

and �

�

leave Q invariant. Moreover, �

�

D




�

�

is certainly

non-positive. Finally, Corollary 1 implies that (4) holds true for 
 2 [0; 


0

)

which completes the proof.

Finally, we remark, that the construction of this Section is easily generalized

to other types of potentials, as long as one can prove an analogue of Lemma 3.
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