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Abstract. We introduce the notions of symbolic matrix system and
λ-graph system that are presentations of subshifts. They are general-
ized notions of symbolic matrix and λ-graph for sofic subshifts to general
subshifts. We then formulate strong shift equivalence and shift equiva-
lence between symbolic matrix systems and show that two subshifts are
topologically conjugate if and only if the associated canonical symbolic
matrix systems are strong shift equivalent. We construct several kinds of
shift equivalence invariants for symbolic matrix systems. They are the di-
mension groups, the Bowen-Franks groups and the nonzero spectrum that
are generalizations of the corresponding notions for nonnegative matrices.
The K-groups for symbolic matrix systems are introduced. They are also
shift equivalence invariants and stronger than the Bowen-Franks groups
but weaker than the dimension triples. These kinds of shift equivalence
invariants naturally induce topological conjugacy invariants for subshifts.
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1.Introduction

The classification of symbolic dynamical systems has been a very important
and one of central problems in the theory of topological dynamical systems
and the ergodic theory. The classification problem has been first examined for
a class of symbolic dynamical systems called subshifts of finite type or topo-
logical Markov shifts. Each dynamical system of the class is determined by a
single square matrix with entries in nonnegative integers. Hence the behav-
ior of such a dynamical system depends on the underlying matrix. In [Wi],
R. F. Williams introduced the notions of strong shift equivalence and shift
equivalence between nonnegative matrices and showed that two topological
Markov shifts are topologically conjugate if and only if the associated matri-
ces are strong shift equivalent. He also showed that strong shift equivalence
implies shift equivalence. Although the converse implication had been a long
standing problem, Kim-Roush [KimR2] has recently solved negatively for even
irreducible matrices. There is a class of subshifts called sofic subshifts that are
generalized class of Markov shifts and that are determined by square matrices
with entries in alphabet (see [Kit], [Kr3], [LM], [We], etc.). A square matrix
with entries in alphabet is simply called a symbolic matrix. It is an equivalent
object to a labeled graph called a λ-graph. M. Nasu in [N], [N2] generalized the
notion of strong shift equivalence to symbolic matrices. He showed that two
sofic subshifts are topologically conjugate if and only if their canonical sym-
bolic matrices are strong shift equivalent ([N], [N2], see also [HN]). M. Boyle
and W. Krieger in [BK] introduced the notion of shift equivalence for symbolic
matrices and studied topologically conjugacy for sofic subshifts.
In this paper, we first introduce the notions of symbolic matrix system and
λ-graph system. They are generalized notions of symbolic matrix and λ-graph
for sofic subshifts. We will show that they are presentations of subshifts.
A symbolic matrix system consists of two sequences of rectangular matrices
(Ml,l+1, Il,l+1), l ∈ N. The matrices Ml,l+1 have entries in symbols and the
matrices Il,l+1 have entries in {0, 1}. They satisfy the following commutation
relations

Il,l+1Ml+1,l+2 =Ml,l+1Il+1,l+2, l ∈ N.

A λ-graph system is an inductive sequence of Bratteli diagrams, that come from
the theory of operator algebras, with labeled edges by symbols. We will know
that the symbolic matrix systems and the λ-graph systems are the same objects
and give rise to subshifts. There is a canonical method to construct a sym-
bolic matrix system from an arbitrary subshift (Theorem 3.7). The obtained
symbolic matrix system is said to be canonical for the subshift. If a subshift is
sofic, the canonical symbolic matrix system corresponds to the symbolic matrix
of its left Krieger cover graph.
As a generalization of the notion of strong shift equivalence for nonnegative
matrices and symbolic matrices, we will introduce the notion of strong shift
equivalence for our symbolic matrix systems. We will prove
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Theorem A (Theorem 4.2 and Theorem 4.15). Two subshifts are topologically
conjugate if and only if their canonical symbolic matrix systems are strong shift
equivalent.

Hence classification problem for subshifts are completely reduced to the classi-
fication of symbolic matrix systems up to strong shift equivalence in our sense.
In the proof of the only if part of Theorem A, we provide the notion of bi-
partite λ-graph system. We then essentially use Nasu’s factorization theorem
for topological conjugacy between subshifts into bipartite codes and symbolic
conjugacies.

We will next define shift equivalence between two symbolic matrix systems.
That is a generalization of the corresponding notion for symbolic matrices
defined by Boyle-Krieger in [BK]. We will see that strong shift equivalence
implies shift equivalence even in our setting (Theorem 6.2). Similarly to the
case of topological Markov shifts, we can prove that shift equivalence between
two canonical symbolic matrix systems gives rise to an eventual conjugacy for
the associated subshifts, that is, a topological conjugacy for their corresponding
higher power shifts (Proposition 6.3). This result was motivated by a question
raised by W. Krieger at a workshop at Kyushu University, Japan, March 1998.

For nonnegative matrices, there are two crucial shift equivalence invariants con-
sisting of abelian groups. One is the dimension groups defined by W. Krieger in
[Kr], [Kr2] and the other one is the Bowen-Franks groups in [BF]. They induce
topological conjugacy invariants for the associated topological Markov shifts.
We will generalize the two shift equivalence invariants to our symbolic matrix
systems. For a symbolic matrix system (M, I), let Ml,l+1 be the nonnegative
rectangular matrix obtained from Ml,l+1 by setting all the symbols equal to
1 for each l ∈ N. Then the resulting pair (M, I) still satisfies the following
relations.

Il,l+1Ml+1,l+2 = Ml,l+1Il+1,l+2, l ∈ N.

We call (M, I) the nonnegative matrix system for (M, I). We say (M, I) to be
canonical when (M, I) is canonical. More generally, for a sequenceMl,l+1, l ∈ N

of rectangular matrices with entries in nonnegative integers and a sequence
Il,l+1, l ∈ N of rectangular matrices with entries in {0, 1}, the pair (M, I) is
called a nonnegative matrix system if they satisfy the relations above. For a sin-
gle n×n nonnegative square matrix A, if we set Ml,l+1 = A and Il,l+1 = In : the
n×n identity matrix for all l ∈ N, the pair (M, I) is a nonnegative matrix sys-
tem. We will similarly formulate strong shift equivalence and shift equivalence
between nonnegative matrix systems. These equivalences are generalizations
of the corresponding equivalences for single nonnegative square matrices.

We will define the following three kinds of objects for a nonnegative matrix
system (M, I).

(i) The dimension triple: (∆(M,I),∆
+
(M,I), δ(M,I)).

(ii) The K-groups: K0(M, I), K1(M, I).
(iii) The Bowen-Franks groups: BF 0(M, I), BF 1(M, I).
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The dimension triple (∆(M,I),∆
+
(M,I), δ(M,I)) consist of an ordered abelian

group ∆(M,I) with positive cone ∆+
(M,I) and an ordered automorphism δ(M,I)

on it. The K-groups Ki(M, I), i = 0, 1 consist of a pair of abelian groups.
The Bowen-Franks groups BF i(M, I), i = 0, 1 also consist of a pair of abelian
groups. Let m(l) be the row size of the matrix Il,l+1 for each l ∈ N. Let ZIt

be the abelian group defined by the inductive limit ZIt = lim−→
l

{Itl,l+1 : Zm(l) →

Zm(l+1)}. The sequence M t
l,l+1, l ∈ N of the transposes of Ml,l+1 naturally

yields an endomorphism on ZIt that is denoted by λ(M,I). The dimension
group and the K-groups are defined as follows:

∆(M,I) = lim−→{λ(M,I) : ZIt → ZIt}

and

K0(M, I) = ZIt/(id− λ(M,I))ZIt , K1(M, I) = Ker(id− λ(M,I)) in ZIt .

The positive cone ∆+
(M,I) of ∆(M,I) is lim−→{λ(M,I) : Z+

It → Z+
It} where Z+

It

is the natural positive cone of ZIt and the automorphism δ(M,I) on ∆(M,I)

is induced one from λ(M,I). Set the projective limit of the abelian group as

ZI = lim←−
l

{Il,l+1 : Zm(l+1) → Zm(l)}. The sequence Ml,l+1, l ∈ N acts on ZI as

an endomorphism that we denote by M . The identity on ZI is denoted by I.
The Bowen-Franks groups for (M, I) are defined by

BF 0(M, I) = ZI/(I −M)ZI , BF 1(M, I) = Ker(I −M) in ZI .

The above notions of dimension triple and Bowen-Franks group of degree zero
for a nonnegative matrix system are generalizations of the corresponding no-
tions for a single nonnegative square matrix. We will prove that the following
Universal Coefficient Theorem holds (Theorem 9.6). It says that there exists a
short exact sequence

0 −→ Ext1
Z
(K0(M, I),Z)

δ−→ BF 0(M, I)
γ−→ HomZ(K1(M, I),Z) −→ 0

that splits unnaturally. We also see that

BF 1(M, I) ∼= HomZ(K0(M, I),Z).

The three kinds of objects above are proved to be invariant under shift equiv-
alence in nonnegative matrix systems. Hence they are naturally induce topo-
logical conjugacy invariants for subshifts by taking their canonical nonnegative
matrix systems.
We will describe relationships among the equivalences and the invariants for
the matrix systems as in the following way :
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Theorem B. For two symbolic matrix systems (M, I), (M′, I ′) and their non-
negative matrix systems (M, I), (M ′, I ′), consider the following situations:

(S1) (M, I) ≈ (M′, I) : strong shift equivalence,
(N1) (M, I) ≈ (M ′, I) : strong shift equivalence,
(S2) (M, I) ∼ (M′, I) : shift equivalence,
(N2) (M, I) ∼ (M ′, I) : shift equivalence,

(3) (∆(M,I),∆
+
(M,I), δ(M,I)) ∼= (∆(M ′,I′),∆

+
(M ′,I′), δ(M ′,I′)) : isomorphic di-

mension triples,
(4) (∆(M,I), δ(M,I)) ∼= (∆(M ′,I′), δ(M ′,I′)) : isomorphic dimension pairs,
(5) K∗(M, I) ∼= K∗(M

′, I) : isomorphic K-groups,
(6) BF ∗(M, I) ∼= BF ∗(M ′, I) : isomorphic Bowen-Franks groups.

Then we have the following implications:

(S1) =⇒ (S2)

⇓ ⇓
(N1) =⇒ (N2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6).

It is well-known that the set of all nonzero eigenvalues of a nonnegative matrix
A is also a shift equivalence invariant. The set for A is called the nonzero spec-
trum of A and plays an important rôle for studying dynamical properties of the
associated topological Markov shift (cf.[LM], [Kit]). We introduce eigenvalues
and eigenvectors of a nonnegative matrix system and then generalize the notion
of the nonzero spectrum of a single nonnegative matrix to a nonnegative matrix
system (M, I). We denote by Sp×(M, I) the set of all nonzero eigenvalues of
(M, I). A nonnegative matrix system (M, I) in general is an infinite sequence of
pairs of matrices Ml,l+1, Il,l+1, l ∈ N for which sizes of matrices are increasing.
Hence it seems to be natural to deal with eigenvalues having a certain bound-
edness condition on the corresponding eigenvectors. We denote by Sp×b (M, I)
the set of all nonzero eigenvalues of (M, I) with the boundedness condition on
the corresponding eigenvectors. We will prove, in Section 10, that the both of
the nonzero spectrums Sp×(M, I) and Sp×b (M, I) are not empty and invari-
ant under shift equivalence of (M, I). In particular, if (M, I) is the canonical
nonnegative matrix system for a subshift, the set Sp×b (M, I) is bounded by the
topological entropy of the subshift. We then define the nonzero spectrum and
the nonzero bounded spectrum for subshifts by the corresponding sets for the
canonical nonnegative matrix systems (Theorem 10.14).
In the final section, we present an example of the canonical symbolic matrix sys-
tem for a certain nonsofic subshift, called the context free shift in [LM;Example
1.2.9]. Its K-groups and Bowen-Franks groups are calculated. We see that the
types of the invariants can not appear in those of sofic shifts. The maximum of
the absolute values of the bounded spectrums of the canonical nonnegative ma-

trix system for the subshift is 1 +
√

1 +
√

3. The value is the maximum in the
bounded spectrum and coincides with the topological entropy of the subshift.

The author has recently constructed the C∗-algebraOΛ associated with subshift
Λ ([Ma]). The C∗-algebra OΛ has a canonical action of the one dimensional
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torus group, called gauge action and written as α. The fixed point algebra
FΛ of OΛ under α is an AF-algebra which is stably isomorphic to the crossed
product OΛ ×α T ([Ma2]). Let (M, I) be the canonical nonnegative matrix
system for the subshift Λ. The invariants mentioned above are described in
terms of the K-theory for the C∗-algebras as in the following way:

(∆(M,I),∆
+
(M,I), δ(M,I)) = (K0(FΛ),K0(FΛ)+, α̂∗),

Ki(M, I) = Ki(OΛ), i = 0, 1,

BF i(M, I) = Exti+1(OΛ), i = 0, 1

where α̂ denotes the dual action of α and Ext1(OΛ) = Ext(OΛ),Ext0(OΛ) =
Ext(OΛ ⊗ C0(R)). The normalized nonnegative eigenvectors of (M, I) exactly
correspond to the KMS-states for α on the C∗-algebra OΛ. Hence the set of
all bounded spectrums with nonnegative eigenvectors are the set of all inverse
temperatures for the admitted KMS states.

Acknowledgements: The author would like to thank Wolfgang Krieger for his
valuable advices and suggestions, in particular for his question on Proposi-
tion 6.3. The author also would like to thank Toshihiro Hamachi and Yasuo
Watatani for pointing out an error and an inaccuracy in an earlier version of
this paper. Finally, the author wishes to express his gratitude to Joachim Cuntz
and referees for advices and suggestions in the presentation of this paper.

2. symbolic matrix systems and λ-graph systems

We fix a finite set Σ and call it the alphabet. Each element of Σ is called a
symbol. We always write the empty symbol ∅ in Σ as 0. We denote by SΣ the
set of all finite formal sums of elements of Σ. A square matrix with entries in
SΣ is called a symbolic matrix over Σ.

Definition. Let (Ml,l+1, Il,l+1), l ∈ N be a pair of sequences of rectangular
matrices such that the following four conditions for each l ∈ N are satisfied:

(1) Ml,l+1 is an m(l)×m(l + 1) rectangular matrix with entries in SΣ.
(2) Il,l+1 is an m(l) × m(l + 1) rectangular matrix with entries in {0, 1}

satisfying the following two conditions:
(2-a) For i, there exists j such that Il,l+1(i, j) 6= 0.
(2-b) For j, there uniquely exists i such that Il,l+1(i, j) 6= 0.

(3) m(l) ≤ m(l + 1).
(4) Il,l+1Ml+1,l+2 =Ml,l+1Il+1,l+2.

The pair (M, I) is called a symbolic matrix system over Σ. For i =
1, . . . ,m(l), j = 1, . . . ,m(l+ 1), we denote byMl,l+1(i, j), Il,l+1(i, j) the (i, j)-
components ofMl,l+1, Il,l+1 respectively. A symbolic matrix system (M, I) is
said to be essential if it satisfies the following further conditions:

(5-i) For i, there exists j such thatMl,l+1(i, j) 6= 0.
(5-ii) For j, there exists i such thatMl,l+1(i, j) 6= 0.
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We henceforth study essential symbolic matrix systems and call them symbolic
matrix systems for simplicity.
The following notion of specified equivalence between symbolic matrices has
been introduced by M. Nasu in [N1], [N2].
For two symbolic matrices A over alphabet Σ and A′ over alphabet Σ′ and
bijection φ from a subset of Σ onto a subset of Σ′, we call A and A′ are
specified equivalence under specification φ if A′ can be obtained from A by

replacing every symbol a appearing in A by φ(a). We write it as A φ≃ A′. We
call φ a specification from Σ to Σ′.
Two symbolic matrix systems (M, I) over Σ and (M′, I ′) over Σ′ are said to
be isomorphic if there exists a specification φ from Σ to Σ′ and an m(l)×m(l)-
square permutation matrix Pl for each l ∈ N such that

PlMl,l+1
φ≃M′

l,l+1Pl+1, PlIl,l+1 = I ′l,l+1Pl+1 for l ∈ N.

The notion of symbolic matrix system is a generalized notion of symbolic ma-
trix. We say a symbolic matrix system (M, I) to be sofic if there exists a
number L ∈ N such that

Ml,l+1 =ML,L+1, Il,l+1 = IL,L+1

for all l ≥ L. Hence in this case, we see m(L) = m(l) for all l ≥ L.
A symbolic matrix corresponds to a labeled graph, called a λ-graph, that is
a presentation of a sofic subshift. We will next consider a generalization of
λ-graphs corresponding to symbolic matrix systems.
We first explain the notion of Bratteli diagram that appears in the theory
of operator algebras (see [Bra], [Ef], [El]). A Bratteli diagram consists of a
vertex set V and an edge set E satisfying the following conditions. We have a
decomposition of V as a disjoint union V = V1∪V2 ∪· · · where each Vl is finite
and nonempty. Similarly E decomposes as a disjoint union E = E1,2∪E2,3∪· · ·
where each El,l+1 is finite and nonempty. Moreover we have maps s, r : E → V
such that s(El,l+1) ⊂ Vl, r(El,l+1) ⊂ Vl+1. They are called a source map and
a range map respectively. A Bratteli diagram (V,E) is said to be essential if
it satisfies the condition that s−1(v) is nonempty for all v ∈ V and r−1(v) is
nonempty for all v ∈ V�V1. For u ∈ Vl, v ∈ Vl+1, put

El,l+1(u, v) = {e ∈ El,l+1|s(e) = u, r(e) = v}.

We next introduce the notion of labeled Bratteli diagram. A labeled Bratteli
diagram over alphabet Σ consists of a Bratteli diagram (V,E) and a map λ
from E to Σ.
Definition. A λ-graph system over alphabet Σ consists of a labeled Bratteli
diagram (V,E, λ) over Σ and a surjective map ι from V�V1 to V satisfying
the following two conditions:

(1) ι(Vl+1) = Vl for l ∈ N.
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(2) For u ∈ Vl, w ∈ Vl+2, there exists a bijective correspondence between
the edge sets

El,l+1(u, ι(w)) and
⋃

v∈Vl+1,ι(v)=u

El+1,l+2(v, w)

that is compatible with the labeling λ.

We denote by (V,E, λ, ι) the λ-graph system.
The following two conditions are implied from the above condition (2).

(2-i) For e ∈ El+1,l+2, there exists e′ ∈ El,l+1 such that

ι(s(e)) = s(e′), ι(r(e)) = r(e′) and λ(e) = λ(e′).

(2-ii) For f ∈ El,l+1, v ∈ Vl+2 with ι(v) = r(f), there exists e ∈ El+1,l+2

such that

ι(s(e)) = s(f), r(e) = v and λ(e) = λ(f).

A λ-graph system (V,E, λ, ι) is said to be essential if the Bratteli diagram
(V,E) is essential. We always treat an essential λ-graph system and call it a λ-
graph system for simplicity. We remark that by the condition (1) in Definition
of λ-graph system the cardinality of the set Vl+1 is greater than or equal to
that of the set Vl.
Two λ-graph systems (V,E, λ, ι) over alphabet Σ and (V ′, E′, λ′, ι′) over al-
phabet Σ′ are said to be isomorphic if there exist bijections ΦV : V → V ′,
ΦE : E → E′ and a specification φ : Σ→ Σ′ such that

(1) ΦV (Vl) = V ′
l and ΦE(El,l+1) = E′

l,l+1 for l ∈ N,

(2) ΦV (s(e)) = s(ΦE(e)) and ΦV (r(e)) = r(ΦE(e)) for e ∈ E,
(3) ι′(ΦV (v)) = ΦV (ι(v)) for v ∈ V,
(4) λ′(ΦE(e)) = φ(λ(e)) for e ∈ E.

Proposition 2.1. There exists a bijective correspondence between the set of all
isomorphism classes of symbolic matrix systems and the set of all isomorphism
classes of λ-graph systems.

Proof. 1. From symbolic matrix systems to λ-graph systems: Let (M, I) be
a symbolic matrix system over Σ. We are always assuming that it is essential.
For each l ∈ N, let Vl = {1, . . . ,m(l)} be the set of all rows of the matrix
Ml,l+1 and El,l+1 the disjoint union of elements appearing in the components
of Ml,l+1. For each e ∈ El,l+1 we put s(e) = i and r(e) = j if e appears
in Ml,l+1(i, j). The map ι : V�V1 → V is defined as ι(j) = i for j ∈ Vl+1

if Il,l+1(i, j) = 1. The map λ : E → Σ is defined by λ(e) = e. Then it is
straightforward to see that (V,E, λ, ι) is a λ-graph system.
2. From λ-graph systems to symbolic matrix systems : Let (V,E, ι, λ) be a
λ-graph system over Σ. We denote by m(l) the cardinality of the vertex set
Vl. We identify Vl with the set {1, . . . ,m(l)}. We define m(l) × m(l + 1)
matrices as follows: For i ∈ Vl, j ∈ Vl+1, set Il,l+1(i, j) = 1 if ι(j) = i otherwise
Il,l+1(i, j) = 0. For ek ∈ El,l+1, k = 1, . . . , n with s(ek) = i, r(ek) = j, we put
Ml,l+1(i, j) = λ(e1)+ · · ·+λ(en). It is straightforward to see that the relations
Il,l+1Ml+1,l+2 =Ml,l+1Il+1,l+2 for l ∈ N hold.
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3. Presentations of subshifts

As in the preceding section, symbolic matrix systems may be identified with λ-
graph systems. We will in this section construct subshifts, a class of topological
dynamical systems, from λ-graph systems. We will further show that any
subshift comes from a λ-graph system. This is a generalized observation of the
correspondences between the sofic subshits and the symbolic matrices. Hence
studies of subshifts are completely reduced to the studies of λ-graph systems
and hence symbolic matrix systems.

We will review on subshifts. Let Σ be an alphabet. Let ΣZ, ΣN be the infinite
product spaces

∏∞
i=−∞ Σi,

∏∞
i=1 Σi where Σi = Σ, endowed with the product

topology respectively. The transformation σ on ΣZ,ΣN given by (σ(xi)) =
(xi+1), i ∈ Z,N is called the (full) shift. Let Λ be a shift invariant closed subset
of ΣZ i.e. σ(Λ) = Λ. The topological dynamical system (Λ, σ|Λ) is called a
subshift. We denote σ|Λ by σ and write the subshift as Λ for short. We denote
by XΛ(⊂∏∞

i=1 Σi) the set of all right-infinite sequences that appear in Λ. The
dynamical system (XΛ, σ) is called the right one-sided subshift for Λ. We will
give examples of subshifts as follows (cf.[LM], [Kit]):
Let A be an n × n matrix with entries in nonnegative integers. Put VA =
{1, . . . , n}: the vertex set. Write A(i, j) edges from i ∈ VA to j ∈ VA. Hence
we have a directed graph from A. We denote it by GA. Let EA be the set of all
edges of the graph GA. Let sA, rA be the map from EA to VA that assigns the
source and the range of the edge. Let ΛA be the set of all biinfinite sequences
(ei)i∈Z of ei ∈ EA with rA(ei) = sA(ei+1), i ∈ Z. Then ΛA becomes a subshift,
called the topological Markov shift defined by A.
Let A be an n × n symbolic matrix over Σ. Each entry A(i, j), i, j = 1, . . . , n
consists of elements of SΣ. Similarly to the construction above, we have a
directed graph GA from the matrix A with labeled edges by the symbols in Σ.
We denote by λ(e) = α ∈ Σ the label α of edge e. Let ΛA be the set of all
biinfinite sequences λ(ei)i∈Z of labels of the sequence of edges ei ∈ EA with
rA(ei) = sA(ei+1), i ∈ Z. Then ΛA becomes a subshift, called the sofic subshift
defined by A. The labeled graph GA is called a λ-graph for A.
There are many nonsofic subshifts as seen in [LM]. We will see an example of
nonsofic subshift in the final section.
A finite sequence µ = (µ1, ..., µk) of elements µj ∈ Σ is called a block or a word.
We denote by |µ| the length k of µ. A block µ = (µ1, ..., µk) is said to occur or
appear in x = (xi) ∈ ΣZ if xm = µ1, ..., xm+k−1 = µk for some m ∈ Z.

We will first construct subshifts from symbolic matrix systems.
Let (M, I) be a symbolic matrix system over Σ and (V,E, λ, ι) its corresponding
λ-graph system. For k < l, let Pk,l be the set of all paths from Vk to Vl, that
is,

Pk,l={(ek, ek+1, . . . , el−1)|ei ∈ Ei,i+1, r(ei) = s(ei+1) for i = k, k+1, . . . , l−2}.
We define the maps s : Pk,l → Vk and r : Pk,l → Vl by

s(ek, ek+1, . . . , el−1) = s(ek), r(ek, ek+1, . . . , el−1) = r(el−1).

Documenta Mathematica 4 (1999) 285–340



294 Kengo Matsumoto

The labeling λ : Pk,l → Σl−k = Σ× · · · × Σ
︸ ︷︷ ︸

l−k times

is defined by

λ(ek, ek+1, . . . , el−1) = λ(ek)λ(ek+1) · · ·λ(el−1).

Set
Lk,l = {λ(w) ∈ Σl−k|w ∈ Pk,l}.

Put Ll = L1,l+1 and endow it with discrete topology. The map πl : Ll+1 → Ll
is defined by

πl(α1, . . . , αl+1) = (α1, . . . , αl).

We set
X(M,I) = lim←−{πl : Ll+1 → Ll}

the projective limit in the category of compact Hausdorff spaces. That is

X(M,I) = {(λ(e1), λ(e2), . . . ) ∈ ΣN|ei ∈ Ei,i+1, r(ei) = s(ei+1) for i ∈ N}
the set of all right infinite sequences consisting of labels along infinite paths.
The topology on X(M,I) is defined from open sets of the form

U(µ1,...,µk) = {(α1, α2, . . . ) ∈ X(M,I)|αi = µi for i = 1, . . . , k}
for (µ1, . . . , µk) ∈ Lk.
Lemma 3.1. If (α1, α2, . . . ) ∈ X(M,I), we have (α2, α3, . . . ) ∈ X(M,I).

Proof. The assertion is direct from the condition (2-i) of Definition of λ-graph
system.

Lemma 3.2. For l > k, if (αk, . . . , αl−1) ∈ Lk,l, we have (αk, . . . , αl−1) ∈
Lk+1,l+1.

Proof. For (αk, . . . , αl−1) ∈ Lk,l, take fi ∈ Ei,i+1 such as αi = λ(fi) for i =
k, k + 1, . . . , l − 1 and r(fi) = s(fi+1) for i = k, k + 1, . . . , l − 2. We find
vl+1 ∈ Vl+1 with ι(vl+1) = r(fl−1). By the condition (2-ii) of Definition of λ-
graph system, there exists el ∈ El,l+1 such that ι(s(el)) = s(fl−1), r(el) = vl+1

and λ(el) = λ(fl−1). Put vl = s(el) ∈ Vl. We continue theses procedures so
that we get ei ∈ Ei,i+1 for i = k + 1, k + 2, . . . , l satisfying ι(s(ei)) = s(fi−1),
r(ei) = s(ei+1) and λ(ei) = λ(fi−1) for i = k + 1, k + 2, . . . , l. Hence αi =
λ(ei+1) and (αk, . . . , αl−1) ∈ Lk+1,l+1.

As in [LM; Definition 1.3.1], a set L of words of alphabet Σ is called a language
if it satisfies the following conditions:

(a) Every subword of a word w in L belongs to L.
(b) For a word w in L, there are nonempty words u, v in L such that uwv

belongs to L.

Let L(M, I) be the set of all words appearing in X(M,I). That is

L(M, I) = ∪k≤lLk,l.
Then we have
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Proposition 3.3. L(M, I) is a language.

Proof. L(M, I) clearly satisfies the condition (a) above. For a word
w ∈ Lk,l, we know w ∈ Lk+1,l+1 by Lemma 3.2. We write w =
(λ(ek+1), λ(ek+2), . . . , λ(el)) for ei ∈ Ei,i+1 with r(ei) = s(ei+1), i = k +
1, . . . , l − 1. Since both the sets r−1(s(ek+1)) and s−1(s(el)) are not empty,
we may find words u, v ∈ L(M, I) such that uwv ∈ L(M, I). Thus L(M, I)
satisfies the condition (b).

By [LM;Proposition 1.3.4], we see

Theorem 3.4. There exists a subshift Λ over alphabet Σ whose language is
L(M, I). Namely the set of all admissible words of the subshift Λ is L(M, I).

We denote by Λ(M,I) the subshift Λ in the theorem above and call it the subshift
associated with symbolic matrix system (M, I).

It is also possible to construct the subshift Λ(M,I) by using projective limit
method as in the folloing way.

Lemma 3.5. For (α1, α2, . . . ) ∈ X(M,I), there exists a symbol α0 ∈ Σ such that
(α0, α1, α2, . . . ) ∈ X(M,I).

Proof. Put wk = (α1, α2, . . . , αk−1) ∈ L1,k. By Lemma 3.2 and Proposition
3.3, there exists a symbol βk ∈ Σ such that βkwk ∈ L1,k+1. Hence we may
find yk ∈ X(M,I) such that βkwkyk ∈ X(M,I). As the alphabet Σ is a finite
set, there exists a symbol α0 ∈ Σ and a subsequence of (βk)k∈N such that
βkn

= α0 for n = 1, 2, . . . and k1 < k2 < · · · . Put xkn
= α0wkn

ykn
, n ∈ N.

They converge to an element

x = (α0, α1, α2, . . . ) ∈ X(M,I).

By Lemma 3.1, the following map

S : (α1, α2, α3, . . . ) ∈ X(M,I) → (α2, α3, . . . ) ∈ X(M,I)

is well-defined, continuous and surjective. We set

Λ = lim←−{S : X(M,I) → X(M,I)}

the projective limit in the category of compact Hausdorff spaces. Thus Λ is
identified with the set of all biinfinite sequences arising from the sequences in
X(M,I). That is

Λ = {(. . . , α2, α1, α0, α1, α2, . . . )|(αn, αn+1, . . . ) ∈ X(M,I) for all n ∈ Z}.

The map S induces a homeomorphism on it. We denote it by σ that satisfies
σ((αi)i∈Z) = (αi+1)i∈Z. Therefore we have a subshift (Λ, σ) from symbolic
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matrix system (M, I). It is nothing but the subshift (Λ(M,I), σ) defined in the
preceding discussion.

We will next construct symbolic matrix systems from subshifts.

For a subshift (Λ, σ) over Σ and a number k ∈ N, let Λk be the set of all words
of length k in ΣZ occurring in some x ∈ Λ. Put Λ∗ = ∪∞k=0Λ

k where Λ0 denotes
the empty word ∅. Set

Λl(x) = {µ ∈ Λl|µx ∈ XΛ} for x ∈ XΛ, l ∈ N.

We define a nested sequence of equivalence relations in the space XΛ. Two
points x, y ∈ XΛ are said to be l-past equivalent if Λl(x) = Λl(y). We write
this equivalence as x ∼l y. We denote by Ωl = XΛ/ ∼l the quotient space by
l-past equivalence classes of XΛ ([Ma3]).

Lemma 3.6. For x, y ∈ XΛ and µ ∈ Λk,

(i) if x ∼l y, we have x ∼m y for m < l.
(ii) if x ∼l y and µx ∈ XΛ, we have µy ∈ XΛ and µx ∼l−k µy for l > k.

Hence we have the following sequence of surjections in a natural way:

Ω1 ← Ω2 ← · · · ← Ωl ← Ωl+1 ← · · · .

We easily see that (Λ, σ) is a sofic subshift if and only if Ωl = Ωl+1 for some
l ∈ N.

For a fixed l ∈ N, let F li , i = 1, 2, . . . ,m(l) be the set of all l-past equivalence
classes of XΛ. Hence XΛ is a disjoint union of the subsets F li , i = 1, 2, . . . ,m(l).
We define two rectangular m(l)×m(l+ 1) matrices IΛ

l,l+1,MΛ
l,l+1 with entries

in {0, 1} and entries in SΣ respectively as in the following way. For i =
1, 2, . . . ,m(l), j = 1, 2, . . . ,m(l + 1), the (i, j)-component IΛ

l,l+1(i, j) of IΛ
l,l+1

is one if F li contains F l+1
j otherwise zero. Let a1, . . . , an be the set of all

symbols in Σ for which akx ∈ F li for some x ∈ F l+1
j . We then define the (i, j)-

component of the matrixMΛ
l,l+1(i, j) asMΛ

l,l+1(i, j) = a1+ · · ·+an: the formal

sum of a1, . . . , an. We call IΛ
l,l+1 the inclusion matrices for Λ and MΛ

l,l+1 the
symbolic representation matrices for Λ respectively.

We next construct a labeled graph from subshift Λ for each l ∈ N. The vertices
of the graph consist of the sets F li , i = 1, . . . ,m(l) and F l+1

j , j = 1, . . . ,m(l+1)
which we denote by Vl and Vl+1 respectively. We write an arrow with label a,
denoted by λΛ(a), from the vertex F li to F l+1

j if ax ∈ F li for some x ∈ F l+1
j .

We denote by El,l+1 the set of all arrows from Vl to Vl+1. Since for each j =
1, . . . ,m(l+1) there uniquely exists i = 1, . . . ,m(l) such that Il,l+1(i, j) = 1, we
have a natural map ιΛl from Vl+1 to Vl. Set V Λ = ∪∞l=1Vl and EΛ = ∪∞l=1El,l+1.
We then see
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Theorem 3.7. For a subshift (Λ, σ), the pair (MΛ, IΛ) is a symbolic ma-
trix system for which its λ-graph is (V Λ, EΛ, λΛ, ιΛ). Moreover the subshift
Λ(MΛ,IΛ) associated with (MΛ, IΛ) coincides with the original subshift Λ.

Proof. For each l ∈ N, it is straightforward to check that the relation

IΛ
l,l+1MΛ

l+1,l+2 =MΛ
l,l+1I

Λ
l+1,l+2

holds. It then follows that the pair (MΛ, IΛ) is a symbolic matrix system
whose associated λ-graph system is (V Λ, EΛ, λΛ, ιΛ). It is also easy to see that
the subshift associated with (MΛ, IΛ) coincides with the original subshift Λ
because their forbidden words coincide.

Therefore we have a symbolic matrix system (MΛ, IΛ) and a λ-graph system
(V Λ, EΛ, λΛ, ιΛ) from subshift (Λ, σ). We call them the canonical symbolic
matrix system for Λ and the canonical λ-graph system for Λ respectively.
It is now clear that sofic symbolic matrix systems exactly correspond to sofic
subshifts.
For a symbolic matrix system (M, I), let Λ(M,I) be the associated subshift

constructed from (M, I). Then its canonical symbolic matrix system (MΛ, IΛ)
does not necessarily coincide with the original symbolic matrix system (M, I).
We indeed see the following proposition. Its proof is direct.

Proposition 3.8. For a subshift Λ, we have

(i) the representation matrices MΛ
l,l+1 are left resolving, i.e. the incoming

edges to each vertex carry different labels.
(ii) the labeled Bratteli diagram (V Λ, EΛ, λΛ) is predecessor-separated, i.e.

distinct vertices at each level have distinct predecessor sets of labels.

For example set, for each l ∈ N, Ml,l+1 =

[
a b
b 0

]

and Il,l+1 =

[
1 0
0 1

]

. The

symbolic matrix system gives rise to the even shift that is denoted by Y . Its
canonical symbolic matrix system is given by the following matrices:

MY
1,2 =

[
a a+ b b
b 0 0

]

, IY1,2 =

[
1 1 0
0 0 1

]

and

MY
l,l+1 =





a a b
0 b 0
b 0 0



 , IYl,l+1 =





1 0 0
0 1 0
0 0 1



 for l ≥ 2.

We indeed have

Proposition 3.9. If Λ is a sofic subshift, its canonical λ-graph system is
eventually realized as the left Krieger cover graph for Λ. Hence the canonical
symbolic matrix system for Λ is eventually realized as the symbolic representa-
tion matrix for the left Krieger cover graph.
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4. Strong shift equivalence.

In this section, we will define two kinds of strong shift equivalences between two
symbolic matrix systems. One is called the properly strong shift equivalence
that exactly reflects a bipartite decomposition of the associated λ-graph sys-
tems. The other one is called the strong shift equivalence that is weaker than
the former strong shift equivalence. They coincide at least between canonical
symbolic matrix systems and between sofic symbolic matrix systems. The latter
is easier defined and treated than the former. We will see, in the next section,
that the latter strong shift equivalence directly leads to the shift equivalence
between symbolic matrix systems. The main result in this section is that topo-
logical conjugacy between two subshifts are completely characterized by strong
shift equivalence between their canonical symbolic matrix systems. We first
define properly strong shift equivalence in 1-step between two symbolic matrix
systems as a generalization of strong shift equivalence in 1-step between two
nonnegative matrices defined by R. Williams in [Wi] and between two symbolic
matrices defined by M. Nasu in [N](see also [BK]).
For alphabets C,D, put C ·D = {cd|c ∈ C, d ∈ D}. For x =

∑

j cj ∈ SC and

y =
∑

k dk ∈ SD, define xy =
∑

j,k cjdk ∈ SC·D.

Let (M, I) and (M′, I ′) be symbolic matrix systems over alphabets Σ,Σ′ re-
spectively, whereMl,l+1, Il,l+1 are m(l)×m(l+ 1) matrices andM′

l,l+1, I
′
l,l+1

are m′(l)×m′(l + 1) matrices.
Definition. Two symbolic matrix systems (M, I) and (M′, I ′) are said to
be properly strong shift equivalent in 1-step if there exist alphabets C,D and
specifications

ϕ : Σ→ C ·D, φ : Σ′ → D · C
and increasing sequences n(l), n′(l) on l ∈ N such that for each l ∈ N, there
exist an n(l) × n′(l + 1) matrix Pl over C, an n′(l) × n(l + 1) matrix Ql over
D, an n(l)× n(l + 1) matrix Xl over {0, 1} and an n′(l)× n′(l + 1) matrix X ′

l

over {0, 1} satisfying the following equations:

(4.1) Ml,l+1
ϕ≃ P2lQ2l+1, M′

l,l+1
φ≃ Q2lP2l+1,

(4.2) Il,l+1 = X2lX2l+1, I ′l,l+1 = X ′
2lX

′
2l+1

and

(4.3) XlPl+1 = PlX ′
l+1, X ′

lQl+1 = QlXl+1.

We write this situation as

(M, I) ≈
1−pr

(M′, I ′).

It follows by (4.1) that n(2l) = m(l) and n′(2l) = m(l) for l ∈ N.

Documenta Mathematica 4 (1999) 285–340



Presentations of Subshifts 299

Two symbolic matrix systems (M, I) and (M′, I ′) are said to be properly strong
shift equivalent in N-step if there exists a sequence of symbolic matrix systems
(M(i), I(i)), i = 1, 2, . . . , N − 1 such that

(M, I) ≈
1−pr

(M(1), I(1)) ≈
1−pr

(M(2), I(2))

≈
1−pr

· · · ≈
1−pr

(M(N−1), I(N−1)) ≈
1−pr

(M′, I ′)

We denote this situation by

(M, I) ≈
N−pr

(M′, I ′)

and simply call it a properly strong shift equivalence.

Proposition 4.1. Properly strong shift equivalence is an equivalence relation
on symbolic matrix systems.

Proof. It is clear that properly strong shift equivalence is symmetric and tran-
sitive. It suffices to show that (M, I) ≈

1−pr
(M, I). Put C = Σ, D = {0, 1}.

Define ϕ : a ∈ Σ→ a · 1 ∈ C ·D and φ : a ∈ Σ→ 1 · a ∈ D · C. Let Ek be the
k × k identity matrix. Set

P2l = P2l+1 =Ml,l+1, Q2l = Em(l), Q2l+1 = Em(l+1),

X2l = Em(l), X2l+1 =Il,l+1, X ′
2l = Il,l+1, X ′

2l+1 = Em(l+1).

It is straightforward to see that they give a properly strong shift equivalence
in 1-step between (M, I) and (M, I).

We will prove the following theorem.

Theorem 4.2. Two subshifts Λ and Λ′ are topologically conjugate if and only if
their canonical symbolic matrix systems (MΛ, IΛ) and (MΛ′

, IΛ′

) are properly
strong shift equivalent.

We will first show the only if part of the theorem above. In our proof, we will
use Nasu’s factorization theorem for topological conjugacy between subshifts
into bipartite codes ([N]).
We now introduce the notion of bipartite symbolic matrix system.
Definition. A symbolic matrix system (M, I) over alphabet Σ is said to
be bipartite if there exist disjoint subsets C,D ⊂ Σ and increasing sequences
n(l), n′(l) on l ∈ N with m(l) = n(l)+n′(l) such that for each l ∈ N, there exist
an n(l)× n′(l+ 1) matrix Pl,l+1 over C, an n′(l)× n(l+ 1) matrix Ql,l+1 over
D, an n(l)× n(l + 1) matrix Xl,l+1 over {0, 1} and an n′(l)× n′(l + 1) matrix
X ′
l,l+1 over {0, 1} satisfying the following equations:

Ml,l+1 =

[
0 Pl,l+1

Ql,l+1 0

]

, Il,l+1 =

[
Xl,l+1 0

0 X ′
l,l+1

]

.

We thus see
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Lemma 4.3. For a bipartite symbolic matrix system (M, I) as above, set

Pl = Pl,l+1, Ql = Ql,l+1, Xl = Xl,l+1, X ′
l = X ′

l,l+1

and
MCD

l,l+1 = P2lQ2l+1, MDC
l,l+1 = Q2lP2l+1,

ICDl,l+1 = X2lX2l+1, IDCl,l+1 = X ′
2lX

′
2l+1.

Then the both pairs (MCD, ICD) and (MDC , IDC) are symbolic matrix systems
over alphabets C · D and D · C respectively and they are properly strong shift
equivalent in 1-step.

Proof. The relations Il,l+1Ml+1,l+2 =Ml,l+1Il+1,l+2 and

I2l,2l+1I2l+1,2l+2M2l+2,2l+3M2l+3,2l+4

=M2l,2l+1M2l+1,2l+2I2l+2,2l+3I2l+3,2l+4

shows that the both pairs (MCD, ICD) and (MDC , IDC) are symbolic matrix
systems and they are properly strong shift equivalent in 1-step because we see

Xl−1,lPl,l+1 = Pl−1,lX
′
l,l+1, X ′

l−1,lQl,l+1 = Ql−1,lXl,l+1.

Definition. A λ-graph system (V,E, λ, ι) over alphabet Σ is said to be bipar-
tite if there exist disjoint subsets C,D ⊂ Σ such that Σ = C ∪D and disjoint
subsets V Cl , V

D
l ⊂ Vl for each l ∈ N such that V Cl ∪ V Dl = Vl and

(1) for each e ∈ El,l+1

s(e) ∈V Dl , r(e) ∈ V Cl+1 if and only if λ(e) ∈ C,
s(e) ∈V Cl , r(e) ∈ V Dl+1 if and only if λ(e) ∈ D.

(2)
ι(V Dl+1) = V Dl , ι(V Cl+1) = V Cl .

Proposition 4.4. A symbolic matrix system is bipartite if and only if its
corresponding λ-graph system is bipartite.

Proof. It is clear that a bipartite symbolic matrix system gives rise to a bipartite
λ-graph system. Conversely, suppose that a λ-graph system (V,E, λ, ι) is bipar-
tite. Let n(l) and n′(l) be the cardinalities of the sets V Dl and V Cl respectively.
We may identify V Dl and V Cl with the sets {1, . . . , n(l)} and {1, . . . , n′(l)}
respectively. For i ∈ V Dl , j ∈ V Cl+1, put Pl,l+1(i, j) = λ(e1) + · · · + λ(ep)
where ek ∈ El,l+1, k = 1, . . . , p are the set of all edges in El,l+1 satisfy-
ing s(ek) = i, r(ek) = j. Similarly we define for i ∈ V Cl , j ∈ V Dl+1, put
Ql,l+1(i, j) = λ(f1) + · · · + λ(fq) where fk ∈ El,l+1, k = 1, . . . , q are the set
of all edges in El,l+1 satisfying s(fk) = i, r(fk) = j. For i ∈ V Dl , j ∈ V Dl+1,
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put Xl,l+1(i, j) = 1 if ι(j) = i and Xl,l+1(i, j) = 0 otherwise. Similarly for
i ∈ V Cl , j ∈ V Cl+1, put X ′

l,l+1(i, j) = 1 if ι(j) = i and X ′
l,l+1(i, j) = 0 other-

wise. Then by these matrices, we know that the corresponding symbolic matrix
system (M, I) for (V,E, λ, ι) is bipartite.

M. Nasu introduced the notion of bipartite subshift in [N] and [N2]. A subshift
Λ over alphabet Σ is said to be bipartite if there exist disjoint subsets C,D ⊂ Σ
such that any (xi)i∈Z ∈ Λ is either

xi ∈ C and xi+1 ∈ D for all i ∈ Z or xi ∈ D and xi+1 ∈ C for all i ∈ Z.

Let Λ(2) be the 2-higher power shift for Λ. Put

ΛCD = {(cidi)i∈Z ∈ Λ(2)|ci ∈ C, di ∈ D},
ΛDC = {(dici)i∈Z ∈ Λ(2)|ci ∈ C, di ∈ D}.

They are subshifts over alphabets C ·D and D · C respectively. Hence Λ(2) is
partitioned into the two subshifts ΛCD and ΛDC .

Proposition 4.5. A subshift Λ is bipartite if and only if its canonical symbolic
matrix system (MΛ, IΛ) is bipartite.

Proof. It is clear that a bipartite canonical symbolic matrix system gives rise
to a bipartite subshift from the preceding proposition. Suppose that Λ is bi-
partite with respect to alphabets C,D. It suffices to show that its canonical
λ-graph system (V,E, λ, ι) is bipartite. As in the construction of the canonical
λ-graph system, the vertex set Vl is the set of all l-past equivalence classes
{F li }i=1,...,m(l). Put

V Cl ={F li |x1 ∈ D for all (x1, x2, . . . , ) ∈ F li },
V Dl ={F li |x1 ∈ C for all (x1, x2, . . . , ) ∈ F li }

so that we have a disjoint union V Cl ∪ V Dl = Vl. It is easy to see that this
decomposition of Vl, l ∈ N yields a bipartite decomposition of the λ-graph
system (V,E, λ, ι).

Let Λ be a bipartite subshift over Σ with respect to alphabets C,D. As
in Lemma 4.3, we have two symbolic matrix systems (MCD, ICD) and
(MDC , IDC) over alphabets C ·D and D ·C from the bipartite canonical sym-
bolic matrix system (MΛ, IΛ) for Λ respectively. They are naturally identified
with the canonical symbolic matrix systems for the subshifts ΛCD and ΛDC
respectively.
We thus see by Lemma 4.3.

Corollary 4.6. For a bipartite subshift Λ with respect to alphabets C,D, we
have

(MCD, ICD) ≈
1−pr

(MDC , IDC)
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a properly strong shift equivalence in 1-step.

The following notion of bipartite conjugacy has been introduced by Nasu in [N],
[N2]. The conjugacy from ΛCD onto ΛDC that maps (cidi)i∈Z to (dici+1)i∈Z

is called the forward bipartite conjugacy. The conjugacy from ΛCD onto ΛDC
that maps (cidi)i∈Z to (di−1ci)i∈Z is called the backward bipartite conjugacy.
A topological conjugacy between subshifts is called a symbolic conjugacy if it
is a 1-block map given by a bijection between the underlying alphabets of the
subshifts. M. Nasu proved the following factorization theorem.

Lemma 4.7(M.Nasu [N]). Any topological conjugacy ψ between subshifts is
factorized into a composition of the form

ψ = κnζnκn−1ζn−1 · · ·κ1ζ1κ0

where κ0, . . . , κn are symbolic conjugacies and ζ1, . . . , ζn are either forward or
backward bipartite conjugacies.

Thanks to the Nasu’s result above, we reach the following theorem

Theorem 4.8. For two subshifts Λ,Λ′, let (M, I), (M′, I ′) be their canonical
symbolic matrix systems for Λ,Λ′ respectively. If Λ and Λ′ are topologically
conjugate, the symbolic matrix systems (M, I), (M′, I ′) are properly strong shift
equivalent.

We will prove the converse implication of the theorem above. We will indeed
prove the following proposition.

Proposition 4.9. If two symbolic matrix systems are properly strong shift
equivalent in 1-step, their associated subshifts are topologically conjugate.

To prove the proposition, we provide a notation and a lemma.

Set the m(l)×m(l + k) matrices:

Il,l+k = Il,l+1 · Il+1,l+2 · · · Il+k−1,l+k,

Ml,l+k =Ml,l+1 ·Ml+1,l+2 · · ·Ml+k−1,l+k

for each l, k ∈ N.

Lemma 4.10. Assume that two symbolic matrix systems (M, I) over Σ and
(M′, I ′) over Σ′ are properly strong shift equivalent in 1-step. Let ϕ : Σ→ C ·D
and φ : Σ′ → D ·C be specifications that give a properly strong shift equivalence
in 1-step between them. For any word x1x2 ∈ (Λ(M,I))

2 of length two in the
associated subshift Λ(M,I), put ϕ(xi) = cidi, i = 1, 2 where ci ∈ C, di ∈ D.
Then there uniquely exists a symbol y0 ∈ Σ′ such that φ(y0) = d1c2.

Proof. Note that by definition the specification φ is not necessarily defined
on all the elements of Σ′. It suffices to show the existence of y0. Since
x1x2 ∈ (Λ(M,I))

∗, for any fixed l ≥ 3, we find j = 1, 2, . . . ,m(l + 2) and k =
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1, 2, . . . ,m(l) such that x1x2 appears inMl,l+2(k, j). Take i = 1, 2, . . . ,m(l−2)
with Il−2,l(i, k) = 1. Hence x1x2 appears in Il−2,lMl,l+2(i, j). As we know the
equality:

Il−2,lMl,l+2
ϕ≃ Il−2,l−1X2l−1P2l−1Q2lP2l+1Q2l+2X2l+3,

the word ϕ(x1x2) = c1d1c2d2 appears in a component of the right hand sym-
bolic matrix above. Thus the word d1c2 appears in a component of Q2lP2l+1.

By the equalityM′
l,l+1

φ≃ Q2lP2l+1, we can find a symbol y0 in the correspond-

ing component of the matrixM′
l,l+1 so that φ(y0) = d1c2.

Proof of Proposition 4.9. Suppose that (M, I) and (M′, I ′) are properly strong
shift equivalent in 1-step. We use the same notation as in Definition of properly
strong shift equivalence. Set Λ = Λ(M,I) and Λ′ = Λ(M′,I′). By the preceding

lemma, we have a 2-block map Φ from Λ2 to Σ′ defined by Φ(x1x2) = y0 where
φ(y0) = d1c2 and ϕ(xi) = cidi, i = 1, 2. Let Φ∞ be the sliding block code

induced by Φ so that Φ∞ is a map from Λ to Σ′Z. We also write as Φ the map
from Λ∗ to the set of all words of Σ′ defined by

Φ(x1x2 · · ·xn) = Φ(x1x2)Φ(x2x3) · · ·Φ(xn−1xn).

We will prove that Φ∞(Λ) ⊂ Λ′. To prove this, it suffices to show that for any
word w in Λ, Φ(w) is an admissible word in Λ′. For w = w1w2 · · ·wn ∈ Λn and
any fixed l ≥ n + 1, we find j = 1, 2, . . . ,m(l + n) and k = 1, 2, . . . ,m(l) such
that w appears inMl,l+n(k, j). Take i = 1, 2, . . . ,m(l−n) with Il−n,l(i, k) = 1.
Hence w appears in Il−n,lMl,l+n(i, j). Put ϕ(wi) = cidi, i = 1, 2, . . . , n. By
the equality

Il−1,lMl,l+n
ϕ≃ X2l−2P2l−1Q2lP2l+1Q2l+2 · · · P2l+2n−3Q2l+2n−2X2l+2n−1,

the word d1c2d2c3 · · ·dn−1cn appears in a component of Q2lP2l+1Q2l+2 · · ·
P2l+2n−3. Hence the word φ−1(d1c2)φ

−1(d2c3) · · ·φ−1(dn−1cn) appears in a
component of M′

l,l+1 · M′
l+1,l+2 · · ·M′

l+n−2,l+n−1. Thus we see that Φ(w) is

an admissible word in Λ′ and that the sliding block code Φ∞ maps Λ to Λ′.
Similarly, we can construct a sliding block code Ψ∞ from Λ′ to Λ that is an
inverse of Φ∞. Thus two subshifts Λ′ and Λ are topologically conjugate.

Therefore we conclude the following theorem

Theorem 4.11. If two symbolic matrix systems are properly strong shift equiv-
alent, their associated subshifts are topologically conjugate.

By Theorem 4.8 and Theorem 4.11, we conclude Theorem 4.2.

Remark. If there exist the matrices Pl,Ql for all sufficiently large number l
in Definition of properly strong shift equivalence in 1-step, we may show that
the associated subshifts are topologically conjugate because of the proof of
Proposition 4.9.
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Properly strong shift equivalence exactly corresponds to a finite sequence of
bipartite decompositions of symbolic matrix systems and λ-graph systems.
The definition of properly strong shift equivalence for symbolic matrix sys-
tems however needs rather complicated formulations than that of strong shift
equivalence for nonnegative matrices. We will next introduce the notion of
strong shift equivalence between two symbolic matrix systems that is simpler
and weaker condition than properly strong shift equivalence. It is also a gen-
eralization of the notion of strong shift equivalence between nonnegative ma-
trices defined by Williams in [Wi] and between symbolic matrices defined by
Nasu in [N]. Let (M, I), (M′, I) be two symbolic matrix systems over alphabet
Σ,Σ′ respectively. Let m(l),m′(l) be the sequences for which Ml,l+1, Il,l+1

are m(l)×m(l + 1) matrices and M′
l,l+1, I

′
l,l+1 are m′(l)×m′(l + 1) matrices

respectively.
Definition. Two symbolic matrix systems (M, I), (M′, I) are said to be
strong shift equivalent in 1-step if there exist alphabets C,D and specifications

ϕ : Σ→ C ·D, φ : Σ′ → D · C

such that for each l ∈ N, there exist an m(l− 1)×m′(l) matrix Hl over C and
an m′(l − 1)×m(l) matrix Kl over D satisfying the following equations:

Il−1,lMl,l+1
ϕ≃ HlKl+1, I ′l−1,lM′

l,l+1

φ≃ KlHl+1

and
HlI ′l,l+1 = Il−1,lHl+1, KlIl,l+1 = I ′l−1,lKl+1.

We write this situation as

(M, I) ≈
1−st

(M′, I ′).

Two symbolic matrix systems (M, I) and (M′, I ′) are said to be strong shift
equivalent in N-step if there exist symbolic matrix systems (M(i), I(i)), i =
1, 2, . . . , N − 1 such that

(M, I) ≈
1−st

(M(1), I(1)) ≈
1−st

(M(2), I(2))

≈
1−st
· · · ≈

1−st
(M(N−1), I(N−1)) ≈

1−st
(M′, I ′).

We denote this situation by

(M, I) ≈
N−st

(M′, I ′)

and simply call it a strong shift equivalence.

Similarly to the case of properly strong shift equivalence, we see that strong
shift equivalence on symbolic matrix systems is an equivalence relation.
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Proposition 4.12. Properly strong shift equivalence in 1-step implies strong
shift equivalence in 1-step.

Proof. Let Pl,Ql, Xl and X ′
l be the matrices in Definition of properly strong

shift equivalence in 1-step between (M, I) and (M′, I ′). We set

Hl = X2l−1P2l−1, Kl = X ′
2l−1Q2l−1.

They give rise to a strong shift equivalence in 1-step between (M, I) and
(M′, I ′).

Conversely we have

Proposition 4.13. Suppose that both (M, I) and (M′, I ′) are canonical. If
they are strong shift equivalent in 1-step, they are properly strong shift equiv-
alent in 1-step. Hence strong shift equivalence on canonical symbolic matrix
systems is completely the same as properly strong shift equivalence.

Proof. Let Λ,Λ′ be the associated subshifts for (M, I), (M′, I ′) respectively.
Suppose that (M, I) ≈

1−st
(M′, I ′). We use the same notation as in Definition

of strong shift equivalence. Set

Λϕ = {(. . . , c−1, d−1, ċ0, d0, c1, d1, . . . )|
there exists (xi)i∈Z ∈ Λ;ϕ(xi) = cidi for all i ∈ Z},

Λ′
φ = {(. . . , d−1, c0, ḋ0, c1, d1, c2, . . . )|

there exists (yi)i∈Z ∈ Λ′;φ(yi) = dici for all i ∈ Z}

where ċ0, ḋ0 locate at the position of the 0-th coordinate in the sequences. Put

Λo = Λϕ ∪ Λ′
φ

that becomes a subshift over C∪D because of strong shift equivalence between
(M, I) and (M′, I ′). It is clear that Λo is a bipartite subshift with respect

to the alphabets C,D. Hence the 2-higher power shift Λ
(2)
o is decomposed as

Λ
(2)
o = Λ

(2)
ϕ ∪ Λ

(2)
φ . As there exist symbolic conjugacies:

Λ
ϕ≃ Λ(2)

ϕ , Λ′ φ≃ Λ
(2)
φ ,

the canonical symbolic matrix systems for the subshifts Λ and Λ′ are properly
strong shift equivalence in 1-step by the previous discussions.

By a similar argument to the proof of Proposition 4.9, we obtain

Proposition 4.14. If two symbolic matrix systems ( not necessarily canonical
) are strong shift equivalent in 1-step, their associated subshifts are topologically
conjugate.

Thus we conclude

Theorem 4.15. If two symbolic matrix systems (not necessarily canonical) are
strong shift equivalent, their associated subshifts are topologically conjugate.
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5. Higher λ-graph systems

In studies of symbolic dynamics, the operation of taking higher block presen-
tation plays important rôles (cf.[Kit], [LM]). In topological Markov shifts, the
operation of taking 2-higher block presentation is a typical example of giving
strong shift equivalence in 1-step. The N -higher block presentation of an edge
shift corresponds to the edge shift of the N -higher edge graph. We in this
section introduce higher λ-graph systems and correspondingly higher symbolic
matrix systems. It follows that the subshift associated with the N -higher λ-
graph system is the N -higher block presentation of the subshift associated with
the original λ-graph system. We see that a symbolic matrix system is properly
strong shift equivalent in N-step to its N-higher symbolic matrix system. We
treat a left resolving λ-graph system, that is, the incoming edges to each vertex
carry different labels. General case and also general state splitting procedure
of λ-graph systems will be treated in a forthcoming paper.
For a left resolving λ-graph system (V,E, λ, ι) over alphabet Σ and a natural
number N ∈ N, we will define a λ-graph system (V [N ], E[N ], λ[N ], ι[N ]) over
Σ[N ] = Σ · · ·Σ

︸ ︷︷ ︸

N-times

as follows:

V
[N ]
l = {(e1, e2, . . . , eN−1) ∈ El,l+1 × El+1,l+2 × · · · ×El+N−2,l+N−1|

r(ei) = s(ei+1) for i = 1, 2, . . . , N − 2},
E

[N ]
l,l+1 = {((e1, . . . , eN−1),(f1, . . . , fN−1)) ∈ V [N ]

l × V [N ]
l+1 |

ei+1 = fi for i = 1, 2, . . . , N − 2}.

The maps

s[N ] : E
[N ]
l,l+1 → V

[N ]
l , r[N ] : E

[N ]
l,l+1 → V

[N ]
l+1

are defined by

s[N ]((e1, . . . , eN−1), (f1, . . . , fN−1)) = (e1, . . . , eN−1),

r[N ]((e1, . . . , eN−1), (f1, . . . , fN−1)) = (f1, . . . , fN−1).

Set V [N ] = ∪l∈NV
[N ]
l and E[N ] = ∪l∈NE

[N ]
l,l+1. Hence (V [N ], E[N ], s[N ], r[N ]) is a

Bratteli diagram. A labeling λ[N ] on (V [N ], E[N ]) is defined by

λ[N ]((e1, . . . , eN−1), (f1, . . . , fN−1)) = λ(e1)λ(e2) . . . λ(eN−1)λ(fN−1) ∈ Σ[N ]

for ((e1, . . . , eN−1), (f1, . . . , fN−1)) ∈ E[N ]. A sequence of surjections ι[N ] :

V
[N ]
l+1 → V

[N ]
l , l ∈ N is defined as follows. For (e1, . . . , eN−1) ∈ V [N ]

l+1 , since the
λ-graph system (V,E, λ, ι) is left resolving, there uniquely exist e′i ∈ El+i−1,l+i

for i = 1, 2, . . . , N − 2 such that

ι(s(ei)) = s(e′i), ι(r(ei)) = r(e′i), λ(ei) = λ(e′i).
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As we know (e′1, . . . , e
′
N−1) ∈ V

[N ]
l , by setting ι[N ](e1, . . . , eN−1) =

(e′1, . . . , e
′
N−1). We get a λ-graph system (V [N ], E[N ], λ[N ], ι[N ]) over Σ[N ].

Definition. We call the λ-graph system (V [N ], E[N ], λ[N ], ι[N ]) the N -higher
λ-graph system for (V,E, λ, ι). For a symbolic matrix system (M, I), the N -
higher symbolic matrix system (M[N ], I [N ]) is defined to be the symbolic matrix
system associated with the N -higher λ-graph system for the λ-graph system of
(M, I).
It is routine to show the following proposition.

Proposition 5.1. Λ(M[N ],I[N ]) = (Λ(M,I))
[N ].

As seen in the case of nonnegative matrices, we see

Proposition 5.2. (M, I) ≈
1−pr

(M[2], I [2]) : a properly strong shift equivalence

in 1-step.

Proof. Let (V,E, λ, ι) and (V [2], E[2], λ[2], ι[2]) be the associated λ-graph sys-
tems for (M, I), (M[2], I [2]) over alphabets Σ and Σ[2] respectively. We will

construct a bipartite λ-graph system (V̂ , Ê, λ̂, ι̂) that gives rise to a properly
strong shift equivalence in 1-step between the λ-graph systems. We set for
l ∈ N

V̂2l−1 = El,l+1 ∪ Vl, V̂2l = Vl+1 ∪El,l+1

and

Ê2l−1,2l={(f, u) ∈ El,l+1 × Vl+1|u = r(f)} ∪ {(v, e) ∈ Vl × El,l+1|v = s(e)},
Ê2l,2l+1={(v, e) ∈ Vl+1 × El+1,l+2|v = s(e)} ∪{(f, u)∈El,l+1×Vl+1|u = r(f)}.

The source maps ŝ2l−1,2l : Ê2l−1,2l → V̂2l−1 and ŝ2l,2l+1 : Ê2l,2l+1 → V̂2l are
defined as follows:

ŝ2l−1,2l(f, u) = f ∈ El,l+1, ŝ2l−1,2l(v, e) = v ∈ Vl,
ŝ2l,2l+1(v, e) = v ∈ Vl+1, ŝ2l,2l+1(f, u) = f ∈ El,l+1.

The range maps r̂2l−1,2l : Ê2l−1,2l → V̂2l and r̂2l,2l+1 : Ê2l,2l+1 → V̂2l+1 are
defined as follows:

r̂2l−1,2l(f, u) = u ∈ Vl+1, r̂2l−1,2l(v, e) = e ∈ El,l+1,

r̂2l,2l+1(v, e) = e ∈ El+1,l+2, r̂2l,2l+1(f, u) = u ∈ Vl+1.

The maps ι̂2l,2l−1 : V̂2l → V̂2l−1 and ι̂2l+1,2l : V̂2l+1 → V̂2l are defined as follows:

ι̂2l,2l−1(u) = ι(u) for u ∈ Vl+1, ι̂2l,2l−1(f) = f for f ∈ El,l+1,

ι̂2l+1,2l(e) = ι(e) for e ∈ El+1,l+2, ι̂2l+1,2l(v) = v for v ∈ Vl+1
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where ι(e) ∈ El,l+1 is naturally defined for e ∈ El+1,l+2. Put DΣ = {Dα|α ∈
Σ}, CΣ = {Cα|α ∈ Σ} and Σ̂ = DΣ ∪ CΣ. The labeling λ̂ is defined as a map

from Ê to the alphabet Σ̂ as follows: For (f, u), (v, e) in Ê2l−1,2l = {(f, u) ∈
El,l+1 × Vl+1|u = r(f)} ∪ {(v, e) ∈ Vl × El,l+1|v = s(e)}, we set

λ̂(f, u) = Cλ(f), λ̂(v, e) = Dλ(e).

For (v, e), (f, u) in Ê2l,2l+1 = {(v, e) ∈ Vl+1 × El+1,l+2|v = s(e)} ∪ {(f, u) ∈
El,l+1 × Vl+1|u = r(f)}, we set

λ̂(v, e) = Dλ(e), λ̂(f, u) = Cλ(f).

Then it is routine to check that (V̂ , Ê, λ̂, ι̂) is a bipartite λ-graph system over

alphabet Σ̂. Through the specifications ϕ : Σ→ DΣ ·CΣ and φ : Σ[2] → CΣ ·DΣ

defined by
ϕ(α) = Dα · Cα and φ(α, β) = Dα · Cβ ,

we know that the symbolic matrix system for (V̂ , Ê, λ̂, ι̂) gives rise to a properly
strong shift equivalence in 1-step between (M, I) and (M[2], I [2]).

Since (M[N+1], I [N+1]) is isomorphic to ((M[N ])[2], (I [N ])[2]), we have

Corollary 5.3. For any symbolic matrix system (M, I), we have

(M[N ], I [N ]) ≈
N−st

(M, I)

a properly strong shift equivalence in N -step.

6. Shift equivalence

By the discussions of Section 4, the topological conjugacy classes of subshifts are
completely characterized by the strong shift equivalence classes of the associ-
ated canonical symbolic matrix systems. However, even for topological Markov
shifts, there is no general algorithm known for deciding whether two nonnega-
tive matrices are strong shift equivalent. R. F. Williams introduced the notion
of shift equivalence between two nonnegative matrices that is weaker but easier
to treat than the notion of strong shift equivalence ([Wi]). The formulation
of shift equivalence between nonnegative matrices is described by certain alge-
braic relations between the matrices that determine a crucial invariant called
the dimension group ([Kr], [Kr2]). The notion of shift equivalence has been
generalized to symbolic matrices by Boyle-Krieger and studied as a topological
conjugacy invariant for sofic subshifts in [BK].
We in this section introduce the notion of shift equivalence between two sym-
bolic matrix systems as a generalization of Williams’s notion for nonnegative
matrices and Boyle-Krieger’s notion for symbolic matrices. Let (M, I), (M′, I ′)
be two symbolic matrix systems over alphabets Σ,Σ′ respectively. For N ∈ N,
we put (Σ)N = Σ · · ·Σ, (Σ′)N = Σ′ · · ·Σ′ : the N -times products.
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Definition. ForN ∈ N, two symbolic matrix systems (M, I), (M′, I ′) are said
to be shift equivalent of lag N if there exist alphabets CN , DN and specifications

ϕ1 : Σ · CN → CN ·Σ′, ϕ2 : Σ′ ·DN → DN ·Σ

and
ψ1 : (Σ)N → CN ·DN , ψ2 : (Σ′)N → DN · CN

such that for each l ∈ N, there exist an m(l) ×m′(l + N) matrix Hl over CN
and an m′(l)×m(l+N) matrix Kl over DN satisfying the following equations:

Ml,l+1Hl+1
ϕ1≃ HlM′

l+N,l+N+1, M′
l,l+1Kl+1

ϕ2≃ KlMl+N,l+N+1,

Il,l+NMl+N,l+2N
ψ1≃ HlKl+N , I ′l,l+NM′

l+N,l+2N

ψ2≃ KlHl+N
and

Il,l+1Hl+1 = HlI ′l+N,l+N+1, I ′l,l+1Kl+1 = KlIl+N,l+N+1.

We denote this situation by

(M, I) ∼
lagN

(M′, I ′) or (H,K) : (M, I) ∼
lagN

(M′, I ′)

and simply call it a shift equivalence.

Similarly to the case of nonnegative matrices and symbolic matrices, we can
see the following lemma.

Lemma 6.1.

(i) (M, I) ∼
lagN

(M′, I ′) implies (M, I) ∼
lagL

(M′, I ′) for all L ≥ N .

(ii) (M, I) ∼
lagN

(M′, I ′) and (M′, I ′) ∼
lagN ′

(M′′, I ′′) implies

(M, I) ∼
lagN+N ′

(M′′, I ′′). Hence shift equivalence is an equivalence

relation on symbolic matrix systems.

Proof. (i) Suppose that (M, I) and (M′, I ′) are shift equivalent of lag N . It
suffices to show that they are shift equivalent of lag N + 1. We use the same
notation as above. Set the alphabets

CN+1 = CN , DN+1 = DN ·Σ.

Put the specification ϕ′
1 = ϕ1 : Σ·CN+1 → CN+1 ·Σ′. Through the specification

ϕ2, we have a natural specification ϕ′
2 : Σ′ · DN+1 → DN+1 · Σ. Similarly,

through the specifications ψ1, ψ2, ϕ1, we have natural specifications

ψ′
1 : (Σ)N+1 → CN+1 ·DN+1, ψ′

2 : (Σ′)N+1 → DN+1 · CN+1.
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Put the matrices

H′
l = HlI ′l+N,l+N+1, K′

l = KlMl+N,l+N+1.

Then it is straightforward to see that they give a shift equivalence of lag N +1
between (M, I) and (M′, I ′).
(ii) Assume that

(H,K) : (M, I) ∼
lagN

(M′, I ′), (H′,K′) : (M′, I ′) ∼
lagN ′

(M′′, I ′′).

Then it is routine to check that

(HH′,K′K) : (M, I) ∼
lagN+N ′

(M′′, I ′′).

Similarly to the case of matrices, we have

Theorem 6.2. Strong shift equivalence in N -step implies shift equivalence of
lag N .

Proof. Suppose that (M, I) ≈
N−st

(M′, I ′) a strong shift equivalence in N -step.

There exist symbolic matrix systems (M(i), I(i)) for i = 1, . . . , N − 1 such that

(M, I) = (M(0), I(0)) ≈
1−st

(M(1), I(1)) ≈
1−st

(M(2), I(2)) ≈
1−st

· · · ≈
1−st

(M(N−1), I(N−1)) ≈
1−st

(M(N), I(N)) = (M′, I ′).

Let H(i)
l ,K(i)

l be rectangular symbolic matrices that give a strong shift equiva-

lence between (M(i−1), I(i−1)) and (M(i), I(i)) where H(i)
l is an m(i−1)(l−1)×

m(i)(l) matrix over alphabet C(i) and K(i)
l is an m(i)(l− 1)×m(i−1)(l) matrix

over alphabet D(i) for each l ∈ N and i = 1, . . . , N . Set the alphabets

CN = C(1) · · ·C(N), DN = D(1) · · ·D(N).

Put the matrices

Pl = H(1)
l+2H

(2)
l+3 · · ·H

(N)
l+N+1, Ql = K(1)

l+2K
(2)
l+3 · · ·K

(N)
l+N+1

an m(l) × m′(l + N) matrix over CN , an m′(l) × m(l + N) matrix over DN

respectively. We then have the following natural specifications

ϕ1 : Σ · CN → CN ·Σ′, ϕ2 : Σ′ ·DN → DN ·Σ

and
ψ1 : (Σ)N → CN ·DN , ψ2 : (Σ′)N → DN · CN
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that yield a shift equivalence of lag N between (M, I) and (M′, I ′).

For a subshift (Λ, σ) over Σ, its n-higher power shift (Λ(n), σ) is defined to
be the subshift (Λ, σn) over (Σ)n (cf.[LM]). Two subshifts is called eventually
conjugate if their n-higher power shifts are conjugate for all large enough n
([Wi], [KimR]). Williams and Kim-Roush showed that two square nonnegative
matrices are shift equivalent if and only if the associated topological Markov
shifts are eventually conjugate. Boyle-Krieger generalized their result to sym-
bolic matrices and sofic subshifts ([BK]). W. Krieger kindly asked the author
whether or not these results can be generalized to general subshifts. The author
sincerely thanks him for his question.

Proposition 6.3. If symbolic matrix systems (M, I) and (M′, I ′) are shift
equivalent, their associated subshifts Λ(M,I) and Λ(M′,I′) are eventually conju-
gate.

To show the proposition, we provide a lemma that is proved by a straightfor-
ward calculation.

Lemma 6.4. For a symbolic matrix system (M, I), let Λ the associated subshift.
We set for n, l ∈ N,

Inl,l+1 = Inl,nl+1Inl+1,nl+2 · · · Inl+n−1,nl+n,

Mn
l,l+1 =Mnl,nl+1Mnl+1,nl+2 · · ·Mnl+n−1,nl+n.

Then (Mn, In) becomes a symbolic matrix system whose associated subshift is
the n-higher power shift Λ(n) of Λ.

Proof of Proposition 6.3. Put Λ = Λ(M,I), Λ′ = Λ(M′,I′) over Σ,Σ′ respectively.
Assume that

(H,K) : (M, I) ∼
lagN

(M′, I ′).

For a number K ∈ N, put n = K + N . We will see that Λ(n) ≈
1−st

Λ′(n)
. Let

CN , DN be alphabets as in Definition of shift equivalence. Set C = CN , D =
DN · (Σ)K . There are natural specifications

(Σ)
n → C ·D, (Σ′)

n → D · C

by using the specifications in the shift equivalence between Λ and Λ′. Put the
matrices

Pl = Hnl−nI ′nl−K,nl−K+1I
′
nl−K+1,nl−K+2 · · · I ′nl−1,nl,

Ql = Knl−nMnl−K,nl−K+1Mnl−K+1,nl−K+2 · · ·Mnl−1,nl.

They are an m(nl − n) × m′(nl) matrix over C and an m′(nl − n) × m(nl)
matrix over D respectively. We see that they yield a strong shift equivalence
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in 1-step between (Mn, In) and (M′n, I ′
n
) so that their associated subshifts

are topologically conjugate by Theorem 4.15.

We will comment on the notion of properly shift equivalence between symbolic
matrix systems. The following is the definition of properly shift equivalence
that is a slightly stronger than shift equivalence and weaker than properly
strong shift equivalence.
Let (M, I) and (M′, I ′) be symbolic matrix systems over alphabets Σ,Σ′ re-
spectively. HenceMl,l+1, Il,l+1 are m(l)×m(l+ 1) matrices andM′

l,l+1, I
′
l,l+1

are m′(l)×m′(l + 1) matrices.
Definition. (M, I) and (M′, I ′) are said to be properly shift equivalent of lag
N if there exist alphabets CN , DN and specifications

ϕ1 :Σ · CN → CN ·Σ′, ϕ2 : Σ′ ·DN → DN · Σ,
ψ1 :(Σ)N → CN ·DN , ψ2 : (Σ′)

N → DN · CN

and increasing sequences n(l), n′(l) on l ∈ N such that for each l ∈ N, there
exist an n(k) × n′(k + 2N − 1) matrix Pk over CN , an n′(k) × n(k + 2N − 1)
matrix Qk over DN for k = 2l, 2l+ 2N − 1, an n(l)× n(l + 1) matrix Xl over
{0, 1} and an n′(l) × n′(l + 1) matrix X ′

l over {0, 1} satisfying the following
equations:
(6.1)

Ml,l+NIl+N,l+2N−1
ψ1≃ P2lQ2l+2N−1, M′

l,l+N I
′
l+N,l+2N−1

ψ2≃ Q2lP2l+2N−1,

Ml,l+1P2(l+1)X
′
2l+2N+1

ϕ1≃P2lX
′
2l+2N−1M′

l+N,l+N+1,

M′
l,l+1Q2(l+1)X2l+2N+1

ϕ2≃Q2lX2l+2N−1Ml+N,l+N+1,

Il,l+1 = X2lX2l+1, I ′l,l+1 = X ′
2lX

′
2l+1

and
XlPl+1 = PlX ′

l+2N−1, X ′
lQl+1 = QlXl+2N−1.

We denote this situation by

(M, I) ∼
N−pr

(M′, I ′).

It follows that by (6.1), n(2l) = m(l) and n′(2l) = m′(l) for l ∈ N.
For N = 1, if we understand that the matrices Il+1,l+1 and I ′l+1,l+1 are the

m(l+1)×m(l+1) identity matrix and the m′(l+1)×m′(l+1) identity matrix
respectively, the properly shift equivalence of lag 1 is exactly the same as the
properly strong shift equivalence in 1-step.

This definition is also a generalization of Boyle-Krieger ’s shift equivalence
between symbolic matrices ([BK] see also [N2]).
The following proposition is routine.
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Proposition 6.5.

(i) (M, I) ∼
N−pr

(M′, I ′) implies (M, I) ∼
lagN

(M′, I ′). That is, properly

shift equivalence implies shift equivalence.
(ii) (M, I) ≈

N−pr
(M′, I ′) implies (M, I) ∼

N−pr
(M′, I ′). That is, properly

strong shift equivalence implies properly shift equivalence.

We thus summarize as in the following way:

(M, I) ≈
N−pr

(M′, I ′) =⇒ (M, I) ∼
N−pr

(M′, I ′))

⇓ ⇓
(M, I) ≈

N−st
(M′, I ′) =⇒ (M, I) ∼

lagN
(M′, I ′).

We may define strong shift equivalence and shift equivalence between subshifts
as their corresponding properties for their canonical symbolic matrix systems.
Hence we can say that two subshifts are topologically conjugate if and only
if they are strong shift equivalence. The strong shift equivalence for subshifts
imply the shift equivalence.

7. Nonnegative matrix systems

In this section, we will introduce the notion of nonnegative matrix system
that is also a generalization of nonnegative matrices. We will then generalize
strong shift equivalence and shift equivalence between nonnegative matrices to
between nonnegative matrix systems. Let (Al,l+1, Il,l+1), l ∈ N be a pair of
sequences of rectangular matrices such that the following four conditions for
each l ∈ N are satisfied:

(1) Al,l+1 is an m(l)×m(l+ 1) rectangular matrix with entries in nonneg-
ative integers.

(2) Il,l+1 is an m(l) × m(l + 1) rectangular matrix with entries in {0, 1}
satisfying the following two conditions:

(2-a) For i, there exists j such that Il,l+1(i, j) 6= 0.
(2-b) For j, there uniquely exists i such that Il,l+1(i, j) 6= 0.

(3) m(l) ≤ m(l + 1).
(4) Il,l+1Al+1,l+2 = Al,l+1Il+1,l+2.

The pair (A, I) is called a nonnegative matrix system. For i = 1, . . . ,m(l), j =
1, . . . ,m(l + 1), we denote by Al,l+1(i, j), Il,l+1(i, j) the (i, j)-components of
Al,l+1, Il,l+1 respectively. A nonnegative matrix system (A, I) is said to be
essential if it satisfies the following further conditions

(5-i) For i, there exists j such that Al,l+1(i, j) 6= 0.
(5-ii) For j, there exists i such that Al,l+1(i, j) 6= 0.

We henceforth study essential nonnegative matrix systems and call them non-
negative matrix systems for simplicity.
The property “sofic ”for nonnegative matrix systems are similarly defined to
the cases of symbolic matrix systems. The following is basic.
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Lemma 7.1. For a symbolic matrix system (M, I), let Ml,l+1 be the m(l) ×
m(l+1) rectangular matrix obtained fromMl,l+1 by setting all the symbols equal
to 1. Then the resulting pair (M, I) becomes a nonnegative matrix system.

We write the matrices above as supp(Ml,l+1) = Ml,l+1 and call Ml,l+1 the
support of Ml,l+1. The pair (M, I) is called the nonnegative matrix system
associated with (M, I). Conversely we see

Proposition 7.2. For a nonnegative matrix system (A, I) and a symbolic ma-
trixM1,2 over alphabet Σ such that supp(M1,2) = A1,2, there exists a sequence
Ml,l+1, l ∈ N of symbolic matrices over Σ such that the pair (M, I) is a sym-
bolic matrix system and supp(Ml,l+1) = Al,l+1 for all l ∈ N.

Proof. We will prove the assertion by induction. Assume that a symbolic
matrix Mk,k+1 is determined. For j = 1, . . . ,m(k + 2), take a unique in-
dex j′ = 1, . . . ,m(k + 1) such that Ik+1,k+2(j

′, j) = 1. For i = 1, . . . ,m(k),
suppose that Mk,k+1(i, j

′) = α1 + · · · + αn. Let l1, . . . , lp be the set of
all numbers l = 1, . . . ,m(k + 1) satisfying Ik,k+1(i, l) = 1. Hence we have
n =

∑p
r=1Ak+1,k+2(lr, j). Put ξr = Ak+1,k+2(lr, j). Now we define

Mk+1,k+2(l1, j) = α1 + · · ·+ αξ1 ,

Mk+1,k+2(l2, j) = αξ1+1 + · · ·+ αξ1+ξ2 ,

Mk+1,k+2(l3, j) = αξ1+ξ2+1 + · · ·+ αξ1+ξ2+ξ3 ,

· · · · · ·
Mk+1,k+2(lp, j) = αξ1+···+ξp−1+1 + · · ·+ αn.

Since for any l = 1, . . . ,m(k + 1), there uniquely exists i = 1, . . . ,m(k) such
that Ik,k+1(i, l) = 1 we may defineMk+1,k+2(l, j) for all l = 1, . . . ,m(k+1) by
the above way. The matrices satisfy Ik,k+1Mk+1,k+2 = Mk,k+1Ik+1,k+2 and
supp(Mk+1,k+2)(l, j) = Ak+1,k+2(l, j).

For nonnegative matrix systems we will formulate strong shift equivalence as
follows.
Definition. Two nonnegative matrix systems (A, I), (A′, I ′) are said to be
strong shift equivalent in 1-step if for each l ∈ N, there exist an m(l−1)×m′(l)
matrix Hl with entries in nonnegative integers and an m′(l− 1)×m(l) matrix
Kl with entries in nonnegative integers satisfying the following equations:

Il−1,lAl,l+1 = HlKl+1, I ′l−1,lA
′
l,l+1 = KlHl+1

and
HlI

′
l,l+1 = Il−1,lHl+1, KlIl,l+1 = I ′l−1,lKl+1.

We write this situation as

(A, I) ≈
1−st

(A′, I ′).
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Two nonnegative matrix systems (A, I) and (A′, I ′) are said to be strong shift
equivalent in N-step if there exist nonnegative matrix systems (A(i), I(i)), i =
1, 2, . . . , N − 1 such that

(A, I) ≈
1−st

(A(1), I(1)) ≈
1−st

(A(2), I(2))

≈
1−st
· · · ≈

1−st
(A(N−1), I(N−1)) ≈

1−st
(A′, I ′).

We denote this situation by

(A, I) ≈
N−st

(A′, I ′)

and simply call it a strong shift equivalence.

This formulation is also a generalization of Williams’s strong shift equivalence
between nonnegative matrices ([Wi]). Similarly to symbolic matrix systems,
strong shift equivalence is an equivalence relation on nonnegative matrix sys-
tems.
We directly have

Proposition 7.3. If two symbolic matrix systems are strong shift equivalence
(in N -step), then the associated nonnegative matrix systems are strong shift
equivalent (in N -step).

We will describe the matrix relations appearing in the formulation of strong
shift equivalence between nonnegative matrix systems in terms of certain single
homomorphisms between inductive limits of abelian groups. For a nonnegative
matrix system (A, I), the transpose Itl,l+1 of the matrix Il,l+1 naturally induces

an ordered homomorphism from Zm(l) to Zm(l+1), where the positive cone Z
m(l)
+

of the group Zm(l) is defined by

Z
m(l)
+ = {(n1, n2, . . . , nm(l)) ∈ Zm(l)|ni ≥ 0, i = 1, 2 . . .m(l)}.

We put the inductive limits:

ZIt = lim−→{Itl,l+1 : Zm(l) → Zm(l+1)},
Z+
It = lim−→{I

t
l,l+1 : Z

m(l)
+ → Z

m(l+1)
+ }.

The condition (2-a) for the matrix Il,l+1 says the following lemma.

Lemma 7.4. For each l ∈ N, the homomorphism Itl,l+1 : Zm(l) → Zm(l+1) is

injective. Hence the canonical homomorphism ιl : Zm(l) → ZIt is injective.

By the relation: Il,l+1Al+1,l+2 = Al,l+1Il+1,l+2, the sequence of the transposed
matrices Atl,l+1, l ∈ N of the matrices Al,l+1, l ∈ N yields an endomorphism of
the ordered group ZIt . We write it as λ(A,I).
Definition. For nonnegative matrix systems (A, I), (A′, I ′) and L ∈ N, a
homomorphism ξ from the group ZIt to the group ZI′t is said to be finite
homomorphism of lag L if it satisfies the condition

ξ(Zm(l)) ⊂ Zm
′(l+L) for all l ∈ N

where Zm(l) and Zm
′(l) are naturally imbedded into ZIt and ZI′t respectively.

We then have

Documenta Mathematica 4 (1999) 285–340



316 Kengo Matsumoto

Proposition 7.5. Two nonnegative matrix systems (A, I) and (A′, I ′) are
strong shift equivalence in 1-step if and only if there exist order preserving
finite homomorphisms of lag 1: ξ : ZIt → ZI′t and η : ZI′t → ZIt such that

η ◦ ξ = λ(A,I), ξ ◦ η = λ(A′,I′).

Proof. Suppose that (A, I) and (A′, I ′) are strong shift equivalent in 1-step.
Let Hl,Kl be sequences of matrices that give rise to a strong shift equivalence
between them. Then by the condition I ′tl,l+1H

t
l = Ht

l+1I
t
l−1,l, the family Ht

l , l ∈
N yields a homomorphism from ZIt to ZI′t which we denote by ξ. Similarly
we define a homomorphism η from ZI′t to ZIt induced by the family Kl, l ∈ N.
It is easy to see that the homomorphisms ξ, η are order preserving and finite
homomorphisms of lag 1. By the condition A′t

l,l+1I
t
l−1,l = Kt

l+1H
t
l , we see

η ◦ ξ = λ(A,I). Similarly, we have ξ ◦ η = λ(A′,I′).
The converse implication is also easy by using Lemma 7.4. We in fact see that
the matrices Hl,Kl are given by the transposed matrices of the restrictions of
the homomorphisms ξ to Zm(l)(→֒ ZIt) and η to Zm

′(l)(→֒ ZI′t) respectively.
They satisfy the required conditions of strong shift equivalence between (A, I)
and (A′, I ′).

We will next formulate shift equivalence between two nonnegative matrix sys-
tems. For a nonnegative matrix system (A, I), we set the m(l) × m(l + k)
matrices:

Il,l+k = Il,l+1 · Il+1,l+2 · · · Il+k−1,l+k,

Al,l+k = Al,l+1 ·Al+1,l+2 · · ·Al+k−1,l+k

for each l, k ∈ N.
Definition. Two nonnegative matrix systems (A, I), (A′, I ′) are said to be
shift equivalent of lag N if for each l ∈ N, there exist an m(l) × m′(l + N)
matrix Hl with entries in nonnegative integers and an m′(l)×m(l+N) matrix
Kl with entries in nonnegative integers satisfying the following equations:

Al,l+1Hl+1 = HlA
′
l+N,l+N+1, A′

l,l+1Kl+1 = KlAl+N,l+N+1,

HlKl+N = Il,l+NAl+N,l+2N , KlHl+N = I ′l,l+NA
′
l+N,l+2N

and
Il,l+1Hl+1 = HlI

′
l+N,l+N+1, I ′l,l+1Kl+1 = KlIl+N,l+N+1.

We write this situation as

(A, I) ∼
lagN

(A′, I ′) or (H,K) : (A, I) ∼
lagN

(A′, I ′)

and simply call it a shift equivalence.

This formulation is a generalization of Williams’s shift equivalence between
square matrices with entries in nonnegative integers ([Wi] see also [BK]).
Similarly to the case of shift equivalence for nonnegative matrices and symbolic
matrix systems, we have.
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Lemma 7.6.

(i) (A, I) ∼
lagN

(A′, I ′) implies (A, I) ∼
lagL

(A′, I ′) for all L ≥ N .

(ii) (A, I) ∼
lagN

(A′, I ′) and (A′, I ′) ∼
lagN ′

(A′′, I ′′) implies (A, I) ∼
lagN+N ′

(A′′, I ′′). Hence shift equivalence is an equivalence relation on nonneg-
ative matrix systems.

Similarly to Theorem 6.2, we have

Proposition 7.7. For nonnegative matrix systems, strong shift equivalence in
N -step implies shift equivalence of lag N .

As in the case of strong shift equivalence, we may describe the matrix relations
appearing in the formulation of shift equivalence in terms of single homomor-
phisms between inductive limits of abelian groups.

Proposition 7.8. Two nonnegative matrix systems (A, I) and (A′I ′) are shift
equivalent of lag N if and only if there exist order preserving finite homomor-
phisms of lag N : ξ : ZIt → ZI′t and η : ZI′t → ZIt such that

λ(A′,I′) ◦ ξ = ξ ◦ λ(A,I), λ(A,I) ◦ η = η ◦ λ(A′,I′)

and
η ◦ ξ = λN(A,I), ξ ◦ η = λN(A′,I′).

Let (M, I), (M′, I ′) be symbolic matrix systems and (M, I), (M ′, I ′) be their
supports respectively. The following proposition is direct.

Proposition 7.9.

(i) (M, I) ≈
n−st

(M′, I ′) implies (M, I) ≈
n−st

(M ′, I ′).

(ii) (M, I) ∼
lagN

(M′, I ′) implies (M, I) ∼
lagN

(M ′, I ′).

8. Dimension groups

In this section, we will introduce the notions of dimension group and dimension
triple for nonnegative matrix systems that is shown to be a shift equivalence
invariant. It is a generalization of the notions of dimension group and dimension
triple for nonnegative matrices defined by W. Krieger in [Kr], [Kr2]. The
Krieger’s idea to define dimension groups for nonnegative matrices is based on
the K-theory for C∗-algebras (cf.[Ef]). The author considered the dimension
groups for subshifts by using K0-groups for certain C∗-algebras associated with
subshifts as in [Ma2],[Ma3]. It is a generalization of the original idea of Krieger.
We will in this section formulate the dimension groups and the dimension triples
for nonnegative matrix systems.
Let (A, I) be a nonnegative matrix system. Recall that ZIt denotes the ordered
group of the inductive limit of the sequence of the ordered abelian groups
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Zm(l), l ∈ N through the transposed matrices Itl,l+1, l ∈ N. As seen in the

previous discussion, the sequence of the transposed matrices Atl,l+1 naturally
induces an order preserving endomorphism on the ordered group ZIt that is
denoted by λ(A,I). We set ZIt(k) = ZIt and Z+

It(k) = Z+
It for k ∈ N. We define

an abelian group and its positive cone by the following inductive limits:

∆(A,I) = lim−→
k

{λ(A,I) : ZIt(k)→ ZIt(k + 1)},

∆+
(A,I) = lim−→

k

{λ(A,I) : Z+
It(k)→ Z+

It(k + 1)}.

We call the ordered group (∆(A,I),∆
+
(A,I)) the dimension group for (A, I).

Since the map δ(A,I) : ZIt(k)→ ZIt(k+1) defined by δ(A,I)([X, k]) = ([X, k+1])
for X ∈ ZIt yields an automorphism on ∆(A,I) that preserves the positive cone

∆+
(A,I). We also denote it by δ(A,I) and call it the dimension automorphism.

We call the triple (∆(A,I),∆
+
(A,I), δ(A,I)) the dimension triple for (A, I) and

the pair (∆(A,I), δ(A,I)) the dimension pair for (A, I).

Proposition 8.1. If two nonnegative matrix systems are shift equivalent, their
dimension triples are isomorphic.

Proof. Suppose that two nonnegative matrix systems (A, I) and (A′, I ′) are
shift equivalent of lag N . By Proposition 7.8, there exist order preserving
finite homomorphisms ξ : ZIt → ZI′t and η : ZI′t → ZIt of lag N such that

λ(A′,I′) ◦ ξ = ξ ◦ λ(A,I), λ(A,I) ◦ η = η ◦ λ(A′,I′)

and

η ◦ ξ = λN(A,I), ξ ◦ η = λN(A′,I′).

Define the maps Φξ : ZIt(k) → ZI′t(k) and Φη : ZI′t(k) → ZIt(k) as
Φξ([X, k]) = ([ξ(X), k]) and Φη([Y, k]) = ([η(Y ), k]) for X ∈ ZIt , Y ∈ ZI′t .
It is easy to see that they induce homomorphisms from ∆(A,I) to ∆(A′,I′) and
∆(A′,I′) to ∆(A,I) respectively. We still denote them by Φξ and Φη respec-
tively. Since the homomorphisms ξ, η are order preserving, the maps Φξ, Φη
also preserve order structures of the dimension groups. It then follows that

δ(A,I) ◦ Φη = Φη ◦ δ(A′I′), δ(A′,I′) ◦ Φξ = Φξ ◦ δ(A,I)

and

Φη ◦ Φξ = δ−N(A,I), Φξ ◦ Φη = δ−N(A′,I′).

Therefore we see that the both maps Φξ and Φη are isomorphisms and the
corresponding dimension triples are isomorphic.

In particular we have (cf.[BK])
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Proposition 8.2. Two sofic nonnegative matrix systems are shift equivalent
if and only if their dimension triples are isomorphic. Thus the dimension
triple are complete invariants for shift equivalence of sofic nonnegative matrix
systems.

Proof. The only if part is from the preceding proposition. By a similar discus-
sion to [Kr],[Kr2], we obtain the if part of the assertion.

We will define the dimension triples for symbolic matrix systems as the dimen-
sion triples for their supports. Namely let (M, I) be a symbolic matrix system
and (M, I) its support. Then the dimension triple (∆(M,I),∆

+
(M,I), δ(M,I)) is

defined to be the dimension triple (∆(M,I),∆
+
(M,I), δ(M,I)). We may also de-

fine dimension triples for subshifts as the dimension triple for their canonical
symbolic matrix systems. Let Λ be a subshift and (M, I) its canonical sym-
bolic matrix system for Λ. Then the future dimension triple (∆Λ,∆

+
Λ , δΛ) for

subshift Λ is defined to be the dimension triple (∆(M,I),∆
+
(M,I), δ(M,I)). The

past dimension triple for Λ is defined as the future dimension triple for the
transposed subshift ΛT for Λ.
Thus we have

Proposition 8.3. The future dimension triples for subshifts are shift equiva-
lence invariants and in particular topological conjugacy invariants.

The notion of dimension pair (∆Λ, δΛ) for subshifts has been also seen in [Le].

9. K-groups and Bowen-Franks groups

The Bowen-Franks groups for nonnegative matrices and hence for topological
Markov shifts have been introduced by R. Bowen and J. Franks in [BF]. For an
n× n nonnegative square matrix A, its Bowen-Franks group BF (A) is defined
by the group Zn/(1−A)Zn. This group has discovered in a study of suspension
flows of topological Markov shifts by Bowen and Franks (cf. [PS]). They showed
that the groups are not only invariants under shift equivalence but also almost
complete invariants under flow equivalence between nonnegative matrices.
We will in this section introduce and study the notion of Bowen-Franks groups
for nonnegative matrix systems as a generalization of the original Bowen-Franks
groups for nonnegative matrices. Our Bowen-Franks groups for a nonnegative
matrix system consist of a pair of abelian groups. One corresponds to a gener-
alization of the original Bowen-Franks group, called the Bowen-Franks group of
degree zero, and the other one corresponds to its suspension, called the Bowen-
Franks group of degree one. For matrices, the latter group is the torsion-free
part of the original Bowen-Franks group. But in general nonnegative matrix
systems the group of degree one is not necessarily the torsion-free part of the
group of degree zero (see Section 10).
Before going to definition of the Bowen-Franks groups for nonnegative ma-
trix systems, we introduce two abelian groups for nonnegative matrix systems,
called K-groups, that will be proved to be invariant under shift equivalence.
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Let (A, I) be a nonnegative matrix system. For l ∈ N, we set the abelian groups

K l
0(A, I) = Zm(l+1)/(Itl,l+1 −Atl,l+1)Z

m(l),

K l
1(A, I) = Ker(Itl,l+1 −Atl,l+1) in Zm(l).

Lemma 9.1. The map Itl,l+1 : Zm(l) → Zm(l+1) naturally induces homomor-
phisms between the following groups:

il∗ : K l
∗(A, I)→ K l+1

∗ (A, I) for ∗ = 0, 1.

The proof is straightforward by using the relations

Il,l+1Al+1,l+2 = Al,l+1Il+1,l+2.

We now define the K-groups for nonnegative matrix system (A, I).

Definition. The K-groups for (A, I) are defined as the following inductive
limits of the abelian groups:

K0(A, I) = lim−→
l

{il0 : K l
0(A, I)→ K l+1

0 (A, I)},

K1(A, I) = lim−→
l

{il1 : K l
1(A, I)→ K l+1

1 (A, I)}.

For a symbolic matrix system (M, I), its K-groups K0(M, I),K1(M, I) are
defined to be the K-groups for the associated nonnegative matrix systems. It
is easy to see that the groups K∗(A, I) are also represented as in the following
way

Proposition 9.2.

(i) K0(A, I) = ZIt/(id− λ(A,I))ZIt ,
(ii) K1(A, I) = Ker(id− λ(A,I)) in ZIt .

We will see that the groups K∗(A, I) are invariant under shift equivalence.

Lemma 9.3.

(i) K0(A, I) = ∆(A,I)/(id− δ(A,I))∆(A,I),
(ii) K1(A, I) = Ker(id− δ(A,I)) in ∆(A,I).

Proof. As the automorphism δ(A,I) is given by λ(A,I) = {Atl,l+1} on ∆(A,I), the
assertions are easily proved.

Since the dimension triple (∆(A,I),∆
+
(A,I), δ(A,I)) is invariant under shift equiv-

alence of nonnegative matrix systems, we thus have
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Proposition 9.4. The groups Ki(A, I), i = 0, 1 are invariant under shift
equivalence of nonnegative matrix systems.

Set the abelian group

ZI = lim←−
l

{Il,l+1 : Zm(l+1) → Zm(l)}

the projective limit of the system: Il,l+1 : Zm(l+1) → Zm(l), l ∈ N. The sequence
Al,l+1, l ∈ N naturally acts on ZI as an endomorphism that we denote by A.
The identity on ZI is denoted by I. We now define the Bowen-Franks groups
for (A, I) as follows:
Definition. For a nonnegative matrix system (A, I),

BF 0(A, I) = ZI/(I −A)ZI , BF 1(A, I) = Ker(I −A) in ZI .

We call BF 0(A, I) the Bowen-Franks group for (A, I) of degree zero and
BF 1(A, I) the Bowen-Franks group for (A, I) of degree one. We see

Theorem 9.5. The Bowen-Franks groups BF i(A, I), i = 0, 1 are invariant
under shift equivalence of nonnegative matrix systems.

Proof. (i) Suppose that two nonnegative matrix systems (A, I) and (A′, I ′) are
shift equivalent of lag N . Let Hl,Kl be sequences of nonnegative matrices
such that (H,K) : (A, I) ∼

lagN
(A′, I ′). For (xi)i∈N ∈ ZI , put ΦK((xi)i∈N) =

(Ki(xN+i)i∈N). It is easy to see that the ΦK gives rise to a homomorphism
from ZI to ZI′ . As we see the equality: Ki ◦ (IN+i,N+i+1 − AN+i,N+i+1) =
(I ′i,i+1 − A′

i,i+1) ◦ Ki+1, the homomorphism induces a homomorphism from

ZI/(I − A)ZI to ZI′/(I
′ − A′)ZI′ . We denote it by Φ̄K . We similarly have

a homomorphism Φ̄H from ZI′/(I
′ − A′)ZI′ to ZI/(I − A)ZI . Since we have

ΦH ◦ ΦK = AN on ZI and ΦK ◦ ΦH = A′N on ZI′ , the homomorphisms Φ̄H
and Φ̄K are inverses each other.
(ii) It is direct to see that the homomorphisms ΦH and ΦK induce isomorphisms
between Ker(I −A) in ZI and Ker(I ′ −A′) in ZI′ .

We will prove the following Universal Coefficient Theorem. It says that the
Bowen-Franks groups are determined by the K-groups.

Theorem 9.6.

(i) There exists a short exact sequence

0 −→ Ext1Z(K0(A, I),Z)
δ−→ BF 0(A, I)

γ−→ HomZ(K1(A, I),Z) −→ 0

that splits unnaturally.
(ii)

BF 1(A, I) ∼= HomZ(K0(A, I),Z).
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In the theorem above, Ext1Z is the derived functor of the Hom-functor in homo-
logical algebra. The formulations above come from the Universal Coefficient
Theorem for K-theory of the C∗-algebraOΛ associated with subshift Λ ([Ma4]).
General framework of the Universal Coefficient Theorem for K-theory of C∗-
algebras have been proved in [Bro], [RS]. If an abelian group G is finitely
generated, it is well known that

HomZ(G,Z) = The torsion-free part of G,

Ext1Z(G,Z) = The torsion part of G.

We provide some lemmas to prove Theorem 9.6.

Lemma 9.7. Ext1Z(ZIt ,Z) = 0.

Proof. It suffices to show that an extension

0 −→ Z −→ G
ρ−→ ZIt −→ 0

of abelian groups splits. For each l ∈ N, let ιl be the canonical inclusion of
Zm(l) into ZIt . We will choose homomorphisms ϕl : Zm(l) → G such that

ρ ◦ ϕl = ιl, ϕl+1 ◦ Itl,l+1 = ϕl

as follows: Let eli, i = 1, . . . ,m(l) be the standard basis of Zm(l). We first

take homomorphisms φl : Zm(l) → G such that ρ ◦ φl = ιl for l ∈ N. Put
ϕ1 = φ1. Since we see ρ((φ2 ◦ It1,2 − ϕ1)(e

1
i )) = 0, we may regard the element

φ2 ◦ It1,2(e1i ) − ϕ1(e
1
i ) as an integer m1

i . For each i = 1, . . . ,m(1), take ri =
1, . . . ,m(2) such that I1,2(i, ri) = 1. We set

ϕ2(e
2
j) =

{
φ2(e

2
j )−m1

i if j = ri

φ2(e
2
j ) otherwise.

Then it is easy to see that

ρ ◦ ϕ2 = ι2, ϕ2 ◦ It1,2 = ϕ1.

By continuing these procedures, we can find a sequence of homomorphisms
ϕl, l ∈ N that have the desired property. They give rise to a homomorphism
ϕ : ZIt → G such that ρ ◦ ϕ = id.

Lemma 9.8.

(i) Ext1Z((id− λ(A,I))ZIt ,Z) = 0.

(ii) Ext1
Z
(Ker(id− λ(A,I)) in ZIt ,Z) = 0.
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Proof. Regard (id−λ(A,I))ZIt and Ker(id−λ(A,I)) in ZIt as subgroups of ZIt .
Consider the following short exact sequences:

0 −→(id− λ(A,I))ZIt
ι−→ ZIt

q−→ ZIt/(id− λ(A,I))ZIt −→ 0,

(9.1)

0 −→Ker(id− λ(A,I))
j−→ ZIt

id−λ(A,I)−→ (id− λ(A,I))ZIt −→ 0

(9.2)

of abelian groups. They yield the following exact sequences respectively:

· · · −→Ext1Z(ZIt ,Z) −→ Ext1Z((id− λ(A,I))ZIt ,Z)

−→ Ext2Z(ZIt/(id− λ(A,I))ZIt ,Z) −→ · · ·

and

· · · −→Ext1
Z
(ZIt ,Z) −→ Ext1

Z
(Ker(id− λ(A,I)),Z)

−→ Ext2Z((id− λ(A,I))ZIt ,Z) −→ · · ·

As Ext2Z = 0, we have

Ext1
Z
((id− λ(A,I))ZIt ,Z) = Ext1

Z
(Ker(id− λ(A,I)),Z) = 0

by the preceding lemma.

Lemma 9.9.

(i)
Ext1

Z
(ZIt/(id− λ(A,I))ZIt ,Z)

∼= HomZ((id− λ(A,I))ZIt ,Z)/ι∗HomZ(ZIt ,Z).

(ii)

HomZ(Ker(id− λ(A,I)),Z)

∼= HomZ(ZIt ,Z)/(id− λ(A,I))
∗HomZ((id− λ(A,I))ZIt ,Z).

Proof. The short exact sequences (9.1) and (9.2) make the following sequences
exact:

0 −→HomZ(ZIt/(id− λ(A,I))ZIt ,Z)

(9.3)

q∗−→ HomZ(ZIt ,Z)
ι∗−→ HomZ((id− λ(A,I))ZIt ,Z)

−→ Ext1Z(ZIt/(id− λ(A,I))ZIt ,Z) −→ Ext1Z(ZIt ,Z) −→ · · · ,

0 −→HomZ((id− λ(A,I))ZIt ,Z)
(id−λ(A,I))

∗

−→ HomZ(ZIt ,Z)

(9.4)

j∗−→ HomZ(Ker(id− λ(A,I)),Z) −→ Ext1
Z
((id− λ(A,I))ZIt ,Z) −→ · · · .
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Hence we get the desired isomorphisms.

Proof of Theorem 9.6. (i) By Proposition 9.2 and the previous lemmas, we
have

HomZ(K1(A, I),Z) ∼=HomZ(ZIt ,Z)/(id− λ(A,I))
∗HomZ((id− λ(A,I))ZIt ,Z),

Ext1
Z
(K0(A, I),Z) ∼=HomZ((id− λ(A,I))ZIt ,Z)/ι∗HomZ(ZIt ,Z).

The exact sequence (9.4) says the map

(id− λ(A,I))
∗ : HomZ((id− λ(A,I))ZIt ,Z) −→ HomZ(ZIt ,Z)

is injective. Hence we know that the group

HomZ((id− λ(A,I))ZIt ,Z)/ι∗HomZ(ZIt ,Z)

is isomorphic to the group

(id− λ(A,I))
∗HomZ(id− λ(A,I))ZIt ,Z)/(id− λ(A,I))

∗ι∗HomZ(ZIt ,Z).

The map
(id− λ(A,I))

∗ι∗ : HomZ(ZIt ,Z) −→ HomZ(ZIt ,Z)

is naturally regarded as the endomorphism

I −A : ZI → ZI

through a natural identification between HomZ(ZIt ,Z) and ZI . As there exists
an short exact sequence

0 −→(id− λ(A,I))
∗HomZ(id− λ(A,I))ZIt ,Z)/(id− λ(A,I))

∗ι∗HomZ(ZIt ,Z)

−→HomZ(ZIt ,Z)/(id− λ(A,I))
∗ι∗HomZ((id− λ(A,I))ZIt ,Z)

−→HomZ(ZIt ,Z)/(id− λ(A,I))
∗HomZ((id− λ(A,I))ZIt ,Z)

−→0,

we obtain a short exact sequence:

0 −→ Ext1
Z
(K0(A, I),Z)

δ−→ ZI/(I −A)ZI
γ−→ HomZ(K1(A, I),Z) −→ 0.

The short exact sequence above splits unnaturally, since the group Ext1Z(G,Z) is
algebraically compact and the group HomZ(H,Z) is torsion-free for any abelian
groups G,H (cf. [KKS]).
(ii) By the exact sequence (9.3), we see

HomZ(K0(A, I),Z) ∼=HomZ(ZIt/(id− λ(A,I))ZIt , ),Z)

∼=Ker ι∗ : HomZ(ZIt ,Z) −→ HomZ((id− λ(A,I))ZIt ,Z)
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By a natural identification between HomZ(ZIt ,Z) and ZI , we obtain Ker ι∗ :
HomZ(ZIt ,Z) −→ HomZ((id − λ(A,I))ZIt ,Z) is regarded as Ker(I − A) in ZI .
Thus we end the proof of the theorem.

Remark. Lemma 9.8 (ii) means Ext1
Z
(K1(A, I),Z) = 0. Hence the following

short exact sequence clearly holds by Theorem 9.6 (ii):

0 −→ Ext1
Z
(K1(A, I),Z)

δ−→ BF 1(A, I)
γ−→ HomZ(K0(A, I),Z) −→ 0.

Example. Let M be an n× n nonnegative matrix . Put for each l ∈ N

Al,l+1 = M, Il,l+1 = the n× n identity matrix.

Then (A, I) is a nonnegative matrix system. The K-groups are

K0(A, I) = Zn/(1−M t)Zn, K1((A, I) = Ker(1−M t) in Zn.

The Bowen-Franks groups are

BF 0(A, I) = Zn/(1−M)Zn, BF 1((A, I) = Ker(1−M) in Zn.

Hence we have

K0(A, I) ∼= BF 0(A, I) = BF (M) : the original Bowen-Franks group for M,

K1(A, I) ∼= BF 1(A, I) = the torsion-free part of BF (M)

We will next define K-groups and Bowen-Franks groups for subshifts.
Definition. For a subshift Λ, let (AΛ, IΛ) be the canonical nonnegative matrix
system associated with Λ. We define

Ki(Λ) = Ki(AΛ, IΛ), i = 0, 1 : the K-groups for Λ

BF i(Λ) = BF i(AΛ, IΛ), i = 0, 1 : the Bowen-Franks groups for Λ

We thus have

Theorem 9.10. The K-groups Ki(Λ) and the Bowen-Franks groups BF i(Λ)
for subshift Λ are abelian groups that are invariant under shift equivalence of
subshifts. In particular, they are topological conjugacy invariants of subshifts.

Proposition 9.11. Let Λ be a sofic subshift. We denote by m(Λ) the cardi-
nality of the vertices of the left Krieger cover graph for Λ and AΛ its adjacency
matrix. Then we have

BF 0(Λ) = Zm(Λ)/(1−AΛ)Zm(Λ), BF 1(Λ) = Ker(1 −AΛ) in Zm(Λ).
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Proof. As we see

K0(Λ) = Zm(Λ)/(1−AΛ)Zm(Λ), K1(Λ) = Ker(1 −AΛ) in Zm(Λ),

the assertion is clear.

In the final section, we will see an example of a nonsofic subshift Λ for which
BF 1(Λ) is no longer the torsion-free part of the group BF 0(Λ).
Remark. In [Ma], the author introduced the C∗-algebra OΛ associated with
subshift Λ as a generalization of the construction of the Cuntz-Krieger algebra
OA associated with the topological Markov shift ΛA determined by a matrix
A with entries in {0, 1}. Cuntz-Krieger proved in [CK] that the Ext-group
Ext(OA) of the C∗-algebra OA is Zn/(1 − A)Zn : the Bowen-Franks group of
the matrix A. The author in [Ma4] generalized the notion of the Bowen-Franks
group to the subshifts as:

BF (Λ) := Ext(OΛ).

From the view point of the K-theory for C∗-algebras, the invariants
Ki, BF

i, i = 0, 1 introduced in this section appear as

K0(Λ) = K0(OΛ), K1(Λ) = K1(OΛ)

and
BF 0(Λ) = Ext(OΛ), BF 1(Λ) = Ext(OΛ ⊗ C0(R)).

The formulations in Theorem 9.6 come from the Universal Coefficients Theorem
for C∗-algebras ([Bro], [RS] ).
As the K-groups and the Ext-groups for C∗-algebras are stably isomorphic
invariant and the stable isomorphism class of the C∗-algebra OΛ with gauge
action is invariant under topological conjugacy class of subshifts ([Ma5]), we
know that the dimension triple, the K-groups and the Bowen-Franks groups
for subshifts are topological conjugacy invariants without using discussions of
this paper under some mild conditions for subshifts.
The Bowen-Franks group for nonnegative matrix was first invented for use
as an invariant of flow equivalence of the associated topological Markov shift
rather than topological conjugacy ([BF],[Fr],[PS]). We can prove that the K-
groupsK∗(Λ) and hence the Bowen-Franks groups BF ∗(Λ) for subshift are also
invariant under flow equivalence of subshift by using a result of Parry-Sullivan
[PS]. The proof, that we do not give in this paper, will appear in a forthcoming
paper (cf.[Ma4],[Ma5]).

We will finally present another candidate of Bowen-Franks groups for subshifts.
For a topological Markov shift ΛA determined by an n×nmatrix A with entries
in {0, 1}, the group BF (ΛA) is isomorphic to the K0-group for the subshift ΛAt

determined by the transpose of the matrix A. The subshift ΛAt is the transpose
ΛTA of ΛA as a subshift. From this point of view, it seems to be one way to
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define the Bowen-Franks group for canonical symbolic matrix systems as the
K-groups for their transpose.
Let (M, I) be a canonical symbolic matrix system and Λ(M,I) the associated

subshift. We define the transpose (MT , IT ) of (M, I) as the canonical symbolic
matrix system for the transpose ΛT(M,I) of the subshift Λ(M,I). We will define

another pair of Bowen-Franks groups as in the following way.
Definition. For a canonical symbolic matrix system (M, I), we define

BF iK(M, I) = Ki(MT , IT ), i = 0, 1

where Ki(MT , IT ) is defined as the Ki-groups for the nonnegative matrix
system associated with (MT , IT ). We call them the Bowen-Franks groups
from K for (M, I). For a subshift Λ, let (M, I) be its canonical symbolic
matrix system. We will then define Bowen-Franks groups (from K) for subshift
as follows:

BF iK(Λ) = BF iK(M, I), i = 0, 1.

We thus have

Proposition 9.12. The Bowen-Franks groups BF iK(Λ), i = 0, 1 from K for
subshift Λ are topological conjugacy invariants of subshifts.

Proof. Suppose that two subshifts Λ,Λ′ are topologically conjugate. We
denote by (M, I), (M′, I ′) their canonical symbolic matrix systems respec-

tively. Hence their transposed subshifts ΛT ,Λ′T are topologically conjugate

so that their canonical symbolic matrix systems (MT , IT ), (M′T , I ′
T
) are

strong shift equivalent and hence shift equivalent. As their corresponding non-

negative matrix systems (MT , IT ), (M ′T , I ′
T
) are shift equivalent, we have

Ki(M
T , IT ) = Ki(M

′T , I ′
T
) for i = 0, 1.

Proposition 9.13. For a topological Markov shift ΛA determined by an n×n
square matrix A with entries in {0, 1}, we have

BF 0
K(ΛA) = Zn/(1−A)Zn = BF (ΛA), BF 1

K(ΛA) = Ker(1−A) in Zn.

Hence the group BF 1
K(Λ) is the torsion-free part of the group BF 0

K(Λ).

We will finally present the calculation formulae for the Bowen-Franks groups
from K. For a subshift Λ, let X−

Λ be the set of all left-infinite sequences ap-
pearing in Λ. That is

X−
Λ = {(..., z−2, z−1, z0) ∈

0∏

i=−∞

Σi|(zi)i∈Z ∈ Λ}.

We will define l-future equivalence in the space X−
Λ in a symmetric way to the

previous l-past equivalence. Namely, for z ∈ X−
Λ and l ∈ N, put

Λ−l(z) = {µ ∈ Λl|zµ ∈ X−
Λ }.
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Two points z, w ∈ X−
Λ are said to be l-future equivalent if Λ−l(z) = Λ−l(w).

We write this equivalence as x ∼−l y. For a fixed l ∈ N, let P li , i = 1, 2, . . . , n(l)
be the set of all l-future equivalence classes of X−

Λ . We define two rectangu-
lar n(l) × n(l + 1) matrices Jl,l+1, Bl,l+1 with entries in {0, 1} and entries in
nonnegative integers similarly to the matrix Il,l+1, Al,l+1. Namely, we define

Jl,l+1 for Λ = Il,l+1 for ΛT , Bl,l+1 for Λ = Al,l+1 for ΛT .

By [Ma2;Theorem 4.9], we have

Theorem 9.14.

(i) BF 0
K(Λ) = lim−→

l

{J tl,l+1 : Zn(l)/(J tl,l+1 −Btl,l+1)Z
n(l)}.

(ii) BF 1
K(Λ) = lim−→

l

{J tl,l+1 : Ker(J tl,l+1 −Btl,l+1) in Zn(l)}.

We similarly obtain by Lemma 9.2,

Theorem 9.15. The past dimension pair (∆ΛT , δΛT ) for subshift Λ determines
the Bowen-Franks group BF iK(Λ), i = 0, 1 from K for Λ,

10. Spectrum

It is well-known that the set of all nonzero eigenvalues of a nonnegative matrix
M is a shift equivalence invariant. The set of M is called the nonzero spectrum
of M and plays an important rôle for studying dynamical properties of the as-
sociated topological Markov shift (cf.[LM],[Ki]). In this section, we introduce
the notion of spectrum of nonnegative matrix system (A, I). It is an eigenvalue
of (A, I) in the sense stated bellow. We denote by Sp(A, I) the set of all eigen-
values of (A, I). As the sequence of the sizes of matrices Al,l+1, Il,l+1, l ∈ N are
increasing, it seems to be natural to deal with eigenvalues of (A, I) with a cer-
tain boundedness condition defined bellow on the corresponding eigenvectors.
We denote by Spb(A, I) the set of all eigenvalues of (A, I) with the bounded-
ness condition on the corresponding eigenvectors. We will prove that the both
of the sets of nonzero spectrum of Sp(A, I) and Spb(A, I) are invariant under
shift equivalence of (A, I).
We fix a nonnegative matrix system (A, I) throughout this section.
Definition. A sequence {vl}l∈N of vectors vl = (vl1, . . . , v

l
m(l)) ∈ Cm(l), l ∈ N

is called an I-compatible vector if it satisfies the conditions:

(10.1) vl = Il,l+1v
l+1 for all l ∈ N.

An I-compatible vector {vl}l∈N is said to be nonzero if vl is a nonzero vector
for some l. If vli ≥ 0 (resp. vli > 0 ) for all i = 1, . . . ,m(l) and l ∈ N, {vl}l∈N is
said to be nonnegative (resp. positive). If there exists a number M such that
∑m(l)

i=1 |vli| ≤ M for all l ∈ N, {vl}l∈N is said to be bounded. We remark that,
for an I-compatible vector {vl}l∈N, vN 6= 0 for some N implies vl 6= 0 for all
l ≥ N .
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Definition. For a complex number β, a nonzero I-compatible vector {vl} is
called an eigenvector of (A, I) for eigenvalue β if it satisfies the conditions:

(10.2) Al,l+1v
l+1 = βvl for all l ∈ N.

An eigenvalue β is said to be bounded if it is an eigenvalue for a bounded
eigenvector.
Remark. If a sequence vl of vectors satisfies the above conditions (10.1),(10.2)
for l = N,N + 1, . . . for some N , we may extendedly define vectors vl for
l = 1, . . . , N − 1 for which {vl}l∈N satisfy the conditions (10.1),(10.2) for all
l ∈ N by using the condition (10.1).
Definition. Let Sp×(A, I) be the set of all nonzero eigenvalues of (A, I) and
Sp×b (A, I) the set of all nonzero bounded eigenvalues of (A, I). We call them
the nonzero spectrum of (A, I) and the nonzero bounded spectrum of (A, I)
respectively.
We will prove

Theorem 10.1. If two nonnegative matrix systems are shift equivalent, their
nonzero spectrum coincide.

Proof. Suppose that two nonnegative matrix systems (A, I) and (A′, I ′) are
shift equivalent of lag N . Let Hl,Kl be sequences of nonnegative matrices
such that (H,K) : (A, I) ∼

lagN
(A′, I ′). We will show Sp×(A, I) ⊂ Sp×(A′, I ′).

For β ∈ Sp×(A, I) with nonzero eigenvector vl, we set ul = Klv
l+N for l ∈ N.

It is direct to see that

ul = I ′l,l+1u
l+1, A′

l,l+1u
l+1 = βul.

Now if the vectors ul are zero for all l ≥ l0 for some l0, by the equality
HlKl+Nv

l+2N = Il,l+NAl+N,l+2Nv
l+2N , it follows that

0 = Al,l+NIl+N,l+2Nv
l+2N = Al,l+Nv

l+N = βvl.

Thus vl = 0 for all l ≥ l0 and hence for all l ∈ N, a contradiction. Therefore β
is a nonzero eigenvalue of (A′, I ′).

We will next show that the nonzero bounded spectrum of (A, I) is also invariant
under shift equivalence. We must provide some lemmas.

Lemma 10.2. Put N l
A = maxj

∑m(l)
i=1 Al,l+1(i, j) for l ∈ N. We have N l

A =

N l+1
A . That is, the value N l

A does not depend on the choice of l ∈ N.

Proof. We note that
∑m(l)
i=1 Il,l+1(i, j) = 1 for each j. It follows that

m(l+1)
∑

j=1

Al+1,l+2(j, k) =

m(l)
∑

i=1

m(l+1)
∑

j=1

Il,l+1(i, j)Al+1,l+2(j, k)

=

m(l)
∑

i=1

m(l+1)
∑

p=1

Al,l+1(i, p)Il+1,l+2(p, k).
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Hence for k = 1, . . . ,m(l + 2), there uniquely exists pk = 1, . . . ,m(l + 1) such
that

m(l+1)
∑

j=1

Al+1,l+2(j, k) =

m(l)
∑

i=1

Al,l+1(i, pk).

This implies the inequality N l+1
A ≤ N l

A. For p = 1, . . . ,m(l + 1), take kp =
1, . . . ,m(l + 2) with Il+1,l+2(p, kp) = 1. It follows that

m(l)
∑

i=1

Al,l+1(i, p) =

m(l)
∑

i=1

Al,l+1(i, p)Il+1,l+2(p, kp)

=

m(l)
∑

i=1

m(l+1)
∑

q=1

Al,l+1(i, q)Il+1,l+2(q, kp)

=

m(l)
∑

i=1

m(l+1)
∑

j=1

Il,l+1(i, j)Al+1,l+2(j, kp)

=

m(l+1)
∑

j=1

Al+1,l+2(j, kp).

This implies the inequality N l
A ≤ N l+1

A .

Set NA = maxj
∑m(l)

i=1 Al,l+1(i, j) that is independent of the choice of l ∈ N.

For an I-compatible vector {vl}l∈N, we put ‖vl‖ =
∑m(l)

i=1 |vli|.
Lemma 10.3. The sequence {‖vl‖}l∈N is increasing. If {vl}l∈N is nonnegative,
{‖vl‖}l∈N is constant and hence {vl}l∈N is bounded.

Proof. We know
∑m(l)

i=1 |Il,l+1(i, j)v
l+1
j | = |vl+1

j | and

‖vl‖ ≤
m(l)
∑

i=1

m(l+1)
∑

j=1

|Il,l+1(i, j)v
l+1
j | ≤

m(l+1)
∑

j=1

|vl+1
j | = ‖vl+1‖.

If {vl}l∈N is nonnegative, both of the inequalities above go to equalities.

For a bounded I-compatible vector v = {vl}l∈N, we put

‖v‖1 = sup
l→∞

‖vl‖.

Proposition 10.4. Sp×b (A, I) ⊂ {z ∈ C||z| ≤ NA}.
Proof. For β ∈ Sp(A, I) with a bounded eigenvector {vl}l∈N, we have

β

m(l)
∑

i=1

|vli| ≤
m(l+1)
∑

j=1

(max
j

m(l)
∑

i=1

Al,l+1(i, j))|vl+1
j |.
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Hence we obtain the inequality

β‖vl‖ ≤ NA‖vl+1‖.
As {vl} is bounded, the limit liml→∞ ‖vl‖ = ‖v‖1 exists so that we have a
desired assertion.

We denote by BI the set of all bounded I-compatible vectors. It is a complex
Banach space with norm ‖ ·‖1. A nonnegative I-compatible vector v = {vl}l∈N

is called a state for I if ‖v‖1 = 1. Let SI be the set of all states for I. It is a
convex subset of BI .

Lemma 10.5. For v = {vl}l∈N ∈ BI , put

|v|li = sup
N≥l

m(N)
∑

j=1

Il,N (i, j)|vNj | for i = 1, . . . ,m(l), l ∈ N.

We then have

(i) |v|li <∞.
(ii) The vectors defined by |v|l = (|v|l1, |v|l2, . . . , |v|lm(l)) for l ∈ N give rise

to a nonnegative I-compatible vector.

Proof. (i) By the inequality
∑m(N)

j=1 Il,N (i, j)|vNj | ≤
∑m(N)
j=1 |vNj | = ‖vN‖, we

get |v|li ≤ ‖v‖1.
(ii) As we easily see

m(N)
∑

k=1

Il,N (i, k)|vNk | ≤
m(N+1)

∑

j=1

Il,N+1(i, j)|vN+1
j |,

the sequence of sums
∑m(N)

j=1 Il,N (i, j)|vNj | is increasing on N so that we have

|v|li = lim
N→∞

m(N)
∑

j=1

Il,N (i, j)|vNj |.

Hence the following equalities hold

m(l+1)
∑

j=1

Il,l+1(i, j)|v|l+1
j =

m(l+1)
∑

j=1

lim
N→∞

(

m(N)
∑

k=1

Il,l+1(i, j)Il+1,N (j, k)|vNk |)

= lim
N→∞

m(N)
∑

k=1

m(l+1)
∑

j=1

Il,l+1(i, j)Il+1,N (j, k)|vNk |

= lim
N→∞

m(N)
∑

k=1

Il,N (i, k)|vNk | = |v|li

so that the vectors {|v|l}l∈N yield an I-compatible vector.

The I-compatible vector |v| for v ∈ BI is called the total variation of v. A
bounded I-compatible vector v ∈ BI is said to be real if all elements vli of the
vectors vl, l ∈ N are real numbers. Thus we obtain
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Corollary 10.6. For a real bounded I-compatible vector v ∈ BI , there exist
nonnegative bounded I-compatible vectors v+, v− ∈ BI such that

v = v+ − v−, |v| = v+ + v−.

This decomposition is called the Jordan decomposition of v.

Proof. As |v|li ≥ |vli| for each i, l, by putting

v+ =
1

2
(|v|+ v), v− =

1

2
(|v| − v)

we get the desired assertions.

Corollary 10.7. For a bounded I-compatible vector v ∈ BI , there exist states
vj ∈ SI and nonnegative real numbers cj ∈ R such that

v = c1v1 − c2v2 + i(c3v3 − c4v4).

Proposition 10.8. For a bounded I-compatible vector v ∈ BI , we put

(LAv)
l
i =

m(l+1)
∑

j=1

Al,l+1(i, j)v
l+1
j for i = 1, . . . ,m(l), l ∈ N.

Then LA gives rise to a bounded linear operator on the Banach space BI that

satisfies ‖LA‖ = NA, where the norm of LA is given by ‖LA‖ = supv 6=0
‖LAv‖1

‖v‖1
.

To prove the proposition above, we note the following lemma.

Lemma 10.9. For an arbitrary fixed l ∈ N and nonnegative real numbers ci
for i = 1, . . . ,m(l), there exists a nonnegative I-compatible vector v ∈ BI such
that vli = ci for i = 1, . . . ,m(l).

Proof. Put vli = cli for i = 1, . . . ,m(l). For k ≤ l, we put vk = Ik,lv
l. For

k = l + 1, we can choose nonnegative real numbers vl+1
j , j = 1, . . . ,m(l + 1)

such that vli =
∑m(l+1)

j=1 vl+1
j because for each j there uniquely exists i satisfying

Il,l+1(i, j) = 1 and Il,l+1(i
′, j) = 0 for other i′. Hence we may get a nonnegative

I-compatible vector v by induction such that vli = ci, i = 1, . . . ,m(l).

Proof of Proposition 10.8. We first show that LAv is a bounded I-compatible
vector. By the relation Il,l+1Al+1,l+2 = Al,l+1Il+1,l+2, it is direct to see
that LAv is an I-compatible vector. We have ‖(LAv)l‖ ≤ NA‖vl+1‖ so that
‖LAv‖1 ≤ NA‖v‖1. Hence LAv is bounded and ‖LA‖ ≤ NA. Fix l ∈ N. Take

i0 such that maxi
∑m(l−1)

h=1 Al−1,l(h, i) =
∑m(l−1)

h=1 Al−1,l(h, i0). By the previ-
ous lemma, there exists a nonnegative I-compatible vector v ∈ BI such that
vli0 = 1 and vli 6= 0 for i 6= i0. It then follows that

‖(LAv)l−1‖ =

m(l−1)
∑

h=1

Al−1,l(h, i0) = NA.

Thus we get ‖(LAv)‖1 = NA. As ‖v‖1 = ‖vl‖ = 1, we conclude ‖LA‖ ≥ NA so
that ‖LA‖ = NA.

Therefore we have
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Corollary 10.10. For a complex number β, it belongs to Spb(A, I) if and
only if it satisfies LAv = βv for some v ∈ BI . That is, the bounded spectrum
of (A, I) are nothing but the eigenvalues of the bounded positive operator LA
on the Banach space BI .

Corresponding to Theorem 10.1, we have

Theorem 10.11. If two nonnegative matrix systems are shift equivalent, their
nonzero bounded spectrum coincide.

Proof. Suppose that two nonnegative matrix systems (A, I) and (A′, I ′) are
shift equivalent of lag N . Let Hl,Kl be sequences of nonnegative matrices
such that (H,K) : (A, I) ∼

lagN
(A′, I ′). Following the proof of Theorem 10.1,

it suffices to show that for a bounded vector v ∈ BI , the vectors defined by
ul = Klv

l+N , l ∈ N give rise to a bounded vector. As the equalities I ′l,l+1Kl+1 =

KlIl+N,l+N+1 hold, the boundedness of the vector {ul}l∈N is shown by a similar
manner to the proof of the boundedness of the vector LAv as in the proof of
Proposition 10.8. Hence we know Sp×b (A, I) = Sp×b (A′, I ′).

We will next see that the set Sp×b (A, I) is not empty. We will consider another
topology on BI . The topology is defined from the subbases of open sets of the
form:

Ul(v, i, ǫ) = {u ∈ BI ||vli−uli| < ǫ} for v ∈ BI , i = 1, . . . ,m(l), ǫ > 0, l ∈ N.

We call it the weak topology on BI . It is straightforward to see that the state
space SI is compact in the topology. Let σ(LA) be the set of all spectrum of
LA as a bounded linear operator on the Banach space BI . General theory of
bounded linear operators tells us that the set σ(LA) is not empty. Let rA be the
spectral radius of the operator LA on BI , that is, rA = sup{|r| : r ∈ σ(LA)}.
Proposition 10.12. There exists a state v ∈ SI such that LAv = rAv. Hence
we have rA ∈ Sp×b (A, I).

Our proof is completely similar to the proof of [MWY;Lemma 4.1]. We will
give a proof for the sake of completeness.

Proof. Let RA(z) be the resolvent of LA that is defined by RA(z)v = (z −
LA)−1v for z ∈ C with |z| > rA and v ∈ BI . For z ∈ C with |z| > rA, we see
RA(z)v =

∑∞
k=0

1
zk+1L

k
A(v) and

|(LkA(v)li| ≤
m(l+k)
∑

j=1

Al,l+k(i, j)|vl+kj |.

As |vl+kj | ≤ |v|l+kj , it follows that |(RA(z)v)li| ≤ (RA(|z|)|v|)li and hence

(10.3) ‖RA(z)v‖1 ≤ ‖RA(|z|)|v|‖1.
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Since {RA(z)}|z|>rA
can not be uniformly bounded in the set L(BI) of all

bounded linear operators on BI , by the inequality (10.3) we may find v0 ∈ SI

so that ‖RA(t)v0‖1 is unbounded for t ↓ rA. Put

vn =
RA(rA + 1

n
)v0

‖RA(rA + 1
n
)v0‖

for n = 1, 2, . . . .

As LA is a positive operator on BI , the operator RA(t) is also positive so that
the vectors vn, n = 1, 2, . . . are states. Hence there exists a limit point v∞ of
the sequence {vn} in SI in the weak topology of SI . The following identity

(rA − LA)vn = − 1

n
vn +

v0

‖RA(rA + 1
n
)v0‖

implies rAv∞ = LAv∞. As (A, I) is essential, the vector LAv∞ can not be zero.
Hence we have rA > 0 and rA ∈ Sp×b (A, I).

The author would like to thank Yasuo Watatani for pointing out an inaccuracy
of a proof of the proposition above given in an earlier version of this paper.

We finally show that the spectrum are majorizied by topological entropy of
the associated subshift. It is well-known that topological entropy htop(Λ) for
subshift Λ is given by

htop(Λ) = lim
k→∞

1

k
log ♯|Λk|

where ♯|Λk| denotes the cardinality of the set of all admissible words of length
k in the subshift Λ (cf.[LM],[Ki]).
We say a symbolic matrix system (M, I) to be left resolving if a symbol ap-
pearing in M(i, j) can not appear in M(i′, j) for other i′ 6= i, equivalently, its
λ-graph system is left resolving. As in Proposition 3.8, a canonical symbolic
matrix system is left resolving.

Proposition 10.13. Let (M, I) be a left resolving symbolic matrix system and
(M, I) its associated nonnegative matrix system. For any β ∈ Spb(M, I), we
have the inequalities:

log |β| ≤ log rM ≤ htop(Λ(M,I))

where rM is the spectral radius of the operator LM on BI and Λ(M,I) is the
associated subshift with (M, I).

Proof. The inequality log |β| ≤ log rM is clear. By the previous lemma, take
v ∈ SI such that LMv = rMv. We have for k ∈ N,

rkMv
1
i =

m(k+1)
∑

j=1

M1,k+1(i, j)v
k+1
j .
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As
∑m(1)

i=1 v1
i = 1, it follows that

rkM ≤ (max
j

m(1)
∑

i=1

M1,k+1(i, j))

m(k+1)
∑

j=1

vk+1
j = ‖LkM‖.

We may find j0 such that ‖LkM‖ =
∑m(1)
i=1 M1,k+1(i, j0). Since (M, I) is

left resolving, the number
∑m(1)

i=1 M1,k+1(i, j0) is majorized by the cardinality

♯|Λk(M,I)| of the set of all admissible words of length k in the subshift Λ(M,I).

Thus we obtain the inequalities

rkM ≤ ‖LkM‖ ≤ ♯|Λk(M,I)|.

As ‖LkM‖
1
k → rM for k →∞, we have desired inequalities.

For subshift (Λ, σ), let (M, I) be its canonical nonnegative matrix system.
We define the nonzero spectrum Sp×(Λ) and the nonzero bounded spectrum
Sp×b (Λ) of Λ by the nonzero spectrum and the nonzero bounded spectrum of
(M, I) respectively. We have thus proved

Theorem 10.14. Both the sets Sp×(Λ) and Sp×b (Λ) are not empty and topo-

logical conjugacy invariants of subshifts. In particular, Sp×b (Λ) is bounded by
the topological entropy of the subshift (Λ, σ).

11. Example

We will give an example of the canonical symbolic matrix system, the K-groups
and the Bowen-Franks groups for a certain nonsofic subshift, that is called the
context free shift in [LM]. Let Σ be the set of symbols {a, b, c}. The nonsofic
subshift is defined to be the subshift Z over Σ whose forbidden words are

FZ = {abmcka|m 6= k}
where the word abmcka means a b · · · b

︸ ︷︷ ︸

m times

c · · · c
︸ ︷︷ ︸

k times

a (cf.[LM]). In [Ma6], the C∗-

algebraOZ associated with the subshift Z has been studied so that its K-groups
has been calculated. By using discussions of the computation of the K-groups,
we may write the canonical symbolic matrix system for Z. Let XZ be the
corresponding one-sided subshift for Z. Define sequences of subsets of XZ in
the following way.

P0 = {ckb∞|k ≥ 0} ∪ {bkcmby ∈ XZ |k ≥ 0,m ≥ 1, y ∈ XZ}
and for n, j = 0, 1, . . . ,

Ej ={cjay ∈ XZ |y ∈ XZ},
Qn = ∪j>n Ej ,
Fj ={bmcm+jay ∈ XZ |m ≥ 1, y ∈ XZ},
Rn ={bmckay ∈ XZ |m ≥ 1, k ≥ 0,m+ j 6= k for j = 0, 1, . . . , n}.
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Lemma 11.1([Ma6;Lemma 4.3]). For each l ∈ N, the space XZ is decomposed
into the disjoint union:

XZ = P0 ∪l−1
j=0 Ej ∪Ql−1 ∪l−1

j=0 Fj ∪Rl−1.

This decomposition of XZ into 2l + 3-components corresponds to the l-past
equivalence classes of XZ .

The canonical symbolic matrix systems Ml,l+1, Il,l+1 for Z are m(l)(= 2l +
3)×m(l + 1)(= 2l + 5) matrices that are written as follows:

Ml,l+1 =































b+ c c c c c c · · · · · · c
a a a

b b
c

b b
c

b b
c

. . .
. . .

. . .
. . .

. . .
. . .

b b
c c c

b b b b































,

Il,l+1 =






























1
1

1
1

1
1

1
1

1
1

1
. . .

. . .

1 1
1 1





























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along the following ordered basis

P0, E0, F0, E1, F1, . . . , El−1, Fl−1, Ql−1, Rl−1

where in the matrices above, blanks denote zeros. The transposed matrices of
its nonnegative matrix systems are written as:

Atl,l+1 =




































2 1
1 1 1

1 1 1
1 1

1 1
1 1

1 1

1
. . .

1 1

1
. . .

1 1
. . . 1

...
. . .

1 1
... 1

1 1
1 1




































,

Itl,l+1 =


































1
1

1
1

1
1

1
1

1
1

1
. . .

. . .

1
1

1
1


































.

Hence we have
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Proposition 11.2.

K0(Z) = Z, K1(Z) = 0 and BF 0(Z) = 0, BF 1(Z) = Z.

Since the subshift Z is conjugate to its transpose ZT and by the formula for
the Bowen-Franks groups from K for subshifts, we obtain

Proposition 11.3.

BF 0
K(Z) = Z, BF 1

K(Z) = 0.

Hence these types of the Bowen-Franks groups can not be realized in sofic sub-
shifts because BF 1(Z) (resp. BF 1

K(Z)) is not the torsion-free part of BF 0(Z)
(resp. BF 0

∗ (Z)). We finally see

Proposition 11.4([Ma6:Theorem 6.9]). The spectral radius of the operator

LA is 1+
√

1 +
√

3 = 2.65289 · · · that is the topological entropy for the subshift

Z. Hence the maximum value of Sp×b (A, I) is 1 +
√

1 +
√

3.

In [KMW], the K-groups and the dimension groups for β-shifts have been cal-
culated. The K-groups and the Bowen-Franks groups for the Dyck shifts are
also calculated in [Ma7].
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