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Abstra
t. In this paper we �nd asymptoti
 upper and lower bounds

for the spe
trum of random operators of the form

S

�

S =

�

r

X

i=1

a

i


 Y

(n)

i

�

�

�

r

X

i=1

a

i


 Y

(n)

i

�

;

where a

1

; : : : ; a

r

are elements of an exa
t C

�

-algebra and

Y

(n)

1

; : : : ; Y

(n)

r

are 
omplex Gaussian random n � n matri
es, with

independent entries. Our result 
an be 
onsidered as a generalization

of results of Geman (1981) and Silverstein (1985) on the asymptoti


behavior of the largest and smallest eigenvalue of a random matrix of

Wishart type. The result is used to give new proofs of:

(1) Every stably �nite exa
t unital C

�

-algebra A has a tra
ial state.

(2) If A is an exa
t unital C

�

-algebra, then every state on K

0

(A) is

given by a tra
ial state on A.

The new proofs do not rely on quasitra
es or on AW

�

-algebra te
h-

niques.
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Introdu
tion

Following the terminology in [HT℄, we let GRM(m;n; �

2

) denote the


lass of m � n random matri
es B = (b

ij

)

1�i�m; 1�j�n

, for whi
h

�

Re(b

ij

); Im(b

ij

)

�

1�i�m; 1�j�n

form a set of 2mn independent Gaussian

random variables, all with mean 0 and varian
e

1

2

�

2

. In other words, the
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entries of B are mn independent 
omplex random variables with distribution

measure on C given by

1

��

2

exp(�

jzj

2

�

2

) dRe(z) dIm(z):

The theory of exa
t C

�

-algebras has been developed by Kir
hberg (see [Ki1℄,

[Ki2℄, [Ki3℄, [Was℄ and referen
es given there). A C

�

-algebra A is exa
t, if for

all pairs (B;J ), of a C

�

-algebra B and a 
losed two-sided ideal J in B, the

sequen
e

0 �! A 


min

J �! A 


min

B �! A 


min

�

B=J

�

�! 0

is exa
t. Here, for any C

�

-algebras C and D, C 


min

D means the 
ompletion

of the algebrai
 tensor produ
t C � D in the minimal (=spatial) tensor norm.

Sub-algebras and quotients of exa
t C

�

-algebras are again exa
t (
f. e.g. [Was,

2.5.2 and Corollary 9.3℄), and the 
lass of exa
t C

�

-algebras 
ontains most of

the C

�

-algebras of 
urrent interest, su
h as all nu
lear C

�

-algebras, and the

non-nu
lear redu
ed group C

�

-algebras C

�

r

(F

n

), asso
iated with the free group

F

n

on n generators (2 � n � 1).

For any element T of a unital C

�

-algebra, we let sp(T ) denote the spe
trum of

T . The main result of this paper is

0.1 Main Theorem. Let H and K be Hilbert spa
es, and let a

1

; : : : ; a

r

be

elements of B(H;K), su
h that fa

�

i

a

j

j 1 � i; j � rg is 
ontained in an exa
t

C

�

-subalgebra A of B(H). Let (
;F ; P ) be a �xed probability spa
e, and let,

for ea
h n in N, Y

(n)

1

; : : : ; Y

(n)

r

be independent Gaussian random matri
es on


 in the 
lass GRM(n; n;

1

n

). Put

S

n

=

r

X

i=1

a

i


 Y

(n)

i

; (n 2 N);

and let 
; d be positive real numbers. We then have

(i) If k

P

r

i=1

a

�

i

a

i

k � 
 and k

P

r

i=1

a

i

a

�

i

k � d, then for almost all ! in 
,

lim sup

n!1

max

�

sp

�

S

�

n

(!)S

n

(!)

��

�

�

p


+

p

d

�

2

:

(ii) If

P

r

i=1

a

�

i

a

i

= 
1

1

1

B(H)

, k

P

r

i=1

a

i

a

�

i

k � d, and d � 
, then for almost all

! in 
,

lim inf

n!1

min

�

sp

�

S

�

n

(!)S

n

(!)

��

�

�

p


�

p

d

�

2

: �

The Main Theorem 
an be 
onsidered as a generalization of the results of

Geman (
f. [Gem℄) and Silverstein (
f. [Si℄), on the asymptoti
 behavior of the

largest and smallest eigenvalues of a random matrix of Wishart type (see also

[BY℄, [YBK℄ and [HT℄).

The Main Theorem has the following two immediate 
onsequen
es:
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0.2 Corollary. Let a

1

; : : : ; a

r

be elements of an exa
t C

�

-algebra A, and

for ea
h n in N, let Y

(1)

1

; : : : ; Y

(n)

r

be independent elements of GRM(n; n;

1

n

).

Then

lim sup

n!1










r

X

i=1

a

i


 Y

(n)

i

(!)










�










r

X

i=1

a

�

i

a

i










1

2

+










r

X

i=1

a

i

a

�

i










1

2

;

for almost all ! in 
. �

0.3 Corollary. Let a

1

; : : : ; a

r

and S

n

, n 2 N, be as in the Main Theorem,

and assume that

P

r

i=1

a

�

i

a

i

= 
1

1

1

B(H)

and k

P

r

i=1

a

�

i

a

i

k � d, for some positive

real numbers 
; d, su
h that d < 
. Then for almost all ! in 
,

0 =2 sp

�

S

�

n

(!)S

n

(!)

�

; eventually as n!1: �

In a subsequent paper [Th℄ by the se
ond named author, it is proved, that if

a

1

; : : : ; a

r

and S

n

, n 2 N, are as in the Main Theorem, and if furthermore

P

r

i=1

a

�

i

a

i

= 
1

1

1

B(H)

and

P

r

i=1

a

i

a

�

i

= d1

1

1

B(K)

, for some positive real numbers


; d, then

lim

n!1

max

�

sp(S

�

n

S

n

)

�

=

�

p


+

p

d

�

2

; almost surely;

and if 
 � d, then

lim

n!1

min

�

sp(S

�

n

S

n

)

�

=

�

p


�

p

d

�

2

; almost surely:

Hen
e the asymptoti
 upper and lower bounds in the Main Theorem 
annot,

in general, be improved.

Exa
tness is essential both for the Main Theorem and for the 
orollaries. An

example of violation of the upper bound in the Main Theorem is given in

Se
tion 4. The example is based on the non-exa
t full C

�

-algebra C

�

(F

r

)

asso
iated with the free group on r generators, for r � 6.

In [Haa℄, the �rst named author proved that bounded quasitra
es on exa
t

C

�

-algebras are tra
es. Together with results of Handelman (
f. [Han℄) and

Bla
kadar and R�rdam (
f. [BR℄), this result implies

(1) Every stably-�nite exa
t unital C

�

-algebra has a tra
ial state.

(2) If A is an exa
t unital C

�

-algebra, then every state on K

0

(A) is given by

a tra
ial state on A.

The proof in [Haa℄ of the above mentioned quasitra
e result, relies heavily

on ultra produ
t te
hniques for AW

�

-algebras, but the starting point of the

proof in [Haa℄ is the following fairly simple observation: Let a

1

; : : : ; a

r

be r

elements in a (not ne
essarily exa
t) C

�

-algebra A, su
h that

P

r

i=1

a

�

i

a

i

= 1

1

1

A

and k

P

r

i=1

a

i

a

�

i

k < 1. Let further x

1

; : : : ; x

r

be a semi-
ir
ular system (in the

sense of Voi
ules
u; 
f. [Vo2℄) in some C

�

-probability spa
e (B;  ). Then the

operator s =

P

r

i=1

a

i


 x

i

in A 
 C

�

(x

1

; : : : ; x

r

;1

1

1

B

), satis�es 0 =2 sp(s

�

s) but
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0 2 sp(ss

�

), and this implies that u = s(s

�

s)

�

1

2

is a non-unitary isometry in

the C

�

-algebra A
 C

�

(x

1

; : : : ; x

r

;1

1

1

B

).

Corollary 0.3 
an be viewed as a random matrix version of the result that

0 =2 sp(s

�

s). The 
orresponding random matrix version of the result that

0 2 sp(ss

�

), holds too, i.e., if a

1

; : : : ; a

r

and S

n

, n 2 N, are as in Corollary 0.3,

then with probability 1, 0 2 sp(S

n

S

�

n

), eventually as n ! 1 (
f. [Th℄). In

view of Voi
ules
u's random matrix model for a semi-
ir
ular system (
f. [Vo1,

Theorem 2.2℄), it would have been more natural to substitute Y

(n)

1

; : : : ; Y

(n)

r

from GRM(n; n;

1

n

), with a set of independent, selfadjoint Gaussian random

matri
es. However, we found it more tra
table to work with the non-selfadjoint

random matri
es Y

(n)

1

; : : : ; Y

(n)

r

.

In the last se
tion (Se
tion 9), we use Corollary 0.3 to give a new proof of the

statements (1) and (2) above. The new proof does not rely on quasitra
es or

AW

�

-algebra te
hniques. The main step in the new proof of (1) and (2) is to

prove, that Corollary 0.3 implies the following

0.4 Proposition. Let p; q be proje
tions in an exa
t C

�

-algebra A, and as-

sume that there exists an � in ℄0; 1[, su
h that

�(q) � (1� �)�(p);

for all lower semi-
ontinuous (possibly unbounded) tra
es � : A

+

! [0;1℄.

Then for some n in N, there exists a partial isometry u inM

n

(A) = A
M

n

(C ),

su
h that

u

�

u = q 
 1

1

1

M

n

(C)

and uu

�

� p
 1

1

1

M

n

(C)

: �

In the rest of this introdu
tion, we shall brie
y dis
uss the main steps of the

proof of the Main Theorem. Observe �rst, that by a simple s
aling argument,

it is enough to treat the 
ase d = 1. This normalization will be used throughout

the paper. The proof of the Main Theorem relies on the following

0.5 Key Estimates. Let a

1

; : : : ; a

r

be elements of B(H;K), let 
 be a positive


onstant, and put S

n

=

P

r

i=1

a

i


 Y

(n)

i

, n 2 N, as in the Main Theorem. We

then have

(a) If k

P

r

i=1

a

�

i

a

i

k � 
 and k

P

r

i=1

a

i

a

�

i

k � 1, then for 0 � t � minf

n

2


;

n

2

g,

E

�

exp(tS

�

n

S

n

)

�

� exp

�

(

p


+ 1)

2

t+ (
+ 1)

2
t

2

n

�

1

1

1

B(H

n

)

: (0.1)

(b) If

P

r

i=1

a

�

i

a

i

= 
1

1

1

B(H)

,

P

r

i=1

a

i

a

�

i

= 1

1

1

B(K)

and 
 � 1, then for 0 � t �

n

2


,

E

�

exp(�tS

�

n

S

n

)

�

� exp

�

� (

p


� 1)

2

t+ (
+ 1)

2
t

2

n

�

1

1

1

B(H

n

)

: (0.2)

�
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We emphasize that the key estimates (0.1) and (0.2) hold without the exa
t-

ness assumption of the Main Theorem. On
e these estimates are proved, a

fairly simple appli
ation of the Borel-Cantelli Lemma yields, that if H is �nite

dimensional, and �

max

and �

min

denote largest and smallest eigenvalues, then

one has

lim sup

n!1

�

max

(S

�

n

S

n

) �

�

p


+ 1

�

2

; almost surely;

in the situation of (a) above, and

lim inf

n!1

�

min

(S

�

n

S

n

) �

�

p


� 1

�

2

; almost surely;

in the situation of (b) above. (This is 
ompletely parallel to the proof of the


omplex version of the Geman-Silverstein result, given in [HT, Se
tion 7℄). To

pass from the 
ase dim(H) < 1 to the 
ase dim(H) = +1, we need the

assumption that the C

�

-algebra C

�

(fa

�

i

a

j

j 1 � i; j � rg) is exa
t, as well as

the following 
hara
terization of exa
t C

�

-algebras, due to Kir
hberg (
f. [Ki2℄

and [Was, Se
tion 7℄):

A unital C

�

-subalgebra A of B(H) is exa
t if and only if the in
lusion map

� : A ,! B(H) has an approximate fa
torization

A

'

�

�!M

n

�

(C )

 

�

�! B(H);

through a net of full matrix algebras M

n

�

(C ), � 2 �. Here, '

�

;  

�

are unital


ompletely positive maps, and

lim

�

k 

�

Æ '

�

(x)� xk = 0; for all x in A:

Finally, we use a dilation argument to pass from the 
ondition

P

r

i=1

a

i

a

�

i

= 1

1

1

K

of (b) above, to the less restri
tive one: k

P

r

i=1

a

i

a

�

i

k � 1, whi
h is assumed

in (ii) of the Main Theorem (when d = 1). The proof of the fa
t that the key

estimates (0.1) and (0.2) imply the Main Theorem, is given in Se
tion 4 for the

upper bound, and in Se
tion 8 for the lower bound. Se
tions 1-3 and 5-7 are

used to prove the key estimates (0.1) respe
tively (0.2).

In Se
tion 1, we asso
iate to any permutation � in the symmetri
 group S

p

, a

permutation �̂ in S

2p

, for whi
h �̂

2

= �̂ Æ �̂ = id and �̂(j) 6= j for all j, namely

the permutation given by

�̂(2j � 1) = 2�

�1

(j); (j 2 f1; 2; : : : ; pg)

�̂(2j) = 2�(j)� 1; (j 2 f1; 2; : : : ; pg):

Moreover, following [Vo1℄, we let �

�̂

denote the equivalen
e relation on

f1; 2; : : : ; 2pg, generated by the expression:

j �

�̂

�̂(j) + 1; (addition formed mod. 2p);

and we let d(�̂) denote the number of equivalen
e 
lasses for �

�̂

. We 
an write

d(�̂) = k(�̂) + l(�̂), where k(�̂) (resp. l(�̂)) denotes the number of equivalen
e
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lasses for �

�̂

, 
onsisting entirely of even numbers (resp. odd numbers) in

f1; 2; : : : ; 2pg. With this notation we prove, that for any random matrix B

from GRM(m;n; 1),

E ÆTr

n

�

(B

�

B)

p

�

=

X

�2S

p

m

k(�̂)

n

l(�̂)

: (0.3)

Consider next the quantity �(�̂) =

1

2

(p + 1� d(�̂)). It turns out, that �(�̂) is

always a non-negative integer, and that �(�̂) = 0 if and only if �̂ is non-
rossing

(
f. De�nition 1.14). In Se
tion 2 we show, that if a

1

; : : : ; a

r

are elements

of B(H;K) and S =

P

r

i=1

a

i


 Y

(n)

i

, where Y

(n)

1

; : : : ; Y

(n)

r

are independent

elements of GRM(n; n;

1

n

), then

E [(S

�

S)

p

℄ =

�

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�


 1

1

1

M

n

(C)

: (0.4)

In [HT, Se
tion 6℄, we found expli
it formulas for the quantities E Æ

Tr

n

[exp(tB

�

B)℄ and E Æ Tr

n

[B

�

B exp(tB

�

B)℄, where B is an element of

GRM(m;n; 1). In Se
tion 3, a 
areful 
omparison of the terms in (0.3)

and (0.4), 
ombined with these expli
it formulas, allows us to prove, that if

k

P

r

i=1

a

�

i

a

i

k � 
 and k

P

r

i=1

a

i

a

�

i

k � 1, then for 0 � t � minf

n

2


;

n

2

g,

kE [exp(tS

�

S)℄k � exp((
+ 1)

2

t

2

n

)

Z

1

0

exp(tx) d�




(x); (0.5)

where �




is the free (analog of the) Poisson distribution with parameter 
 (
f.

[VDN℄ and [HT, Se
tion 6℄). The measure �




is also 
alled the Mar
henko-

Pastur distribution (
f. [OP℄), and it is given by

�




= maxf1� 
; 0gÆ

0

+

p

(x � a)(b� x)

2�x

� 1

[a;b℄

(x) dx;

where a = (

p


 � 1)

2

, b = (

p


 + 1)

2

and Æ

0

is the Dira
 measure at 0. Sin
e

supp(�




) � [0; b℄, the �rst key estimate, (0.1), follows immediately from (0.5).

To prove the se
ond key estimate, (0.2), we show in Se
tions 5-6, that under

the 
ondition

r

X

i=1

a

�

i

a

i

= 
1

1

1

B(H)

; and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(K)

;

one has, for any q in N, the formula:

E

�

P




q

(S

�

S)

�

=

�

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

�


 1

1

1

M

n

(C)

:

(0.6)
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Here P




0

(x); P




1

(x); P




2

(x); : : : , is the sequen
e of moni
 polynomials obtained

from 1; x; x

2

; : : : , by the Gram-S
hmidt orthogonalization pro
ess, w.r.t. the

inner produ
t

hf; gi =

Z

1

0

fg d�




; (f; g 2 L

2

(R; �




)):

Moreover, S

irr

q

denotes the set of permutations � in S

q

, for whi
h

1 6= �(1) 6= 2 6= �(2) 6= � � � 6= q 6= �(q):

For �xed t in R, we expand in Se
tion 7 the exponential fun
tion x 7! exp(tx),

in terms of the polynomials P




q

(x), q 2 N

0

:

exp(tx) =

1

X

q=0

 




q

(t)P




q

(x); (x 2 [0;1[): (0.7)

We show that the 
oeÆ
ients  




q

(t) are non-negative for all t in [0;1[, and that

for any q in N

0

,

j 




q

(�t)j �

�

R

1

0

exp(�tx) d�




(x)

R

1

0

exp(tx) d�




(x)

�

�  




q

(t); (t 2 [0;1[): (0.8)

By 
ombining (0.6), (0.7) and (0.8) with the proof of (0.5), we obtain that for


 � 1 and 0 � t �

n

2


,

kE [exp(�tS

�

S)℄k � exp((
+ 1)

2

t

2

n

)

Z

1

0

exp(�tx) d�




(x);

and sin
e supp(�




) � [a;1[ = [(

p


�1)

2

;1[, when 
 � 1, we obtain the se
ond

key estimate (0.2).

The rest of the paper is organized in the following way:

1 A Combinatorial Expression for E ÆTr

n

[(B

�

B)

p

�

, for a Gaussian

Random Matrix B in GRM(m;n; 1) . . . . . . . . . . . . . . . . . . 348

2 A Combinatorial Expression for the Moments of S

�

S . . . . . . . . 360

3 An upper bound for E

�

exp(tS

�

S)

�

, t � 0 . . . . . . . . . . . . . . . 370

4 Asymptoti
 Upper Bound on the Spe
trum of S

�

n

S

n

in the Exa
t

Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

5 A New Combinatorial Expression for E

�

(S

�

S)

p

�

. . . . . . . . . . . 390

6 The Sequen
e of Orthogonal Polynomials for the Measure �




. . . . 405

7 An Upper Bound for E

�

exp(�tS

�

S)

�

; t � 0 . . . . . . . . . . . . . 415

8 Asymptoti
 Lower Bound on the Spe
trum of S

�

n

S

n

in the Exa
t

Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

9 Comparison of Proje
tions in Exa
t C

�

-algebras and states on

the K

0

-group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
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1 A Combinatorial Expression for E ÆTr

n

[(B

�

B)

p

�

, for a Gaussian

Random Matrix B in GRM(m;n; 1)

For � in R and �

2

in ℄0;1[, we let N(�; �

2

) denote the Gaussian (or normal)

distribution with mean � and varian
e �

2

. In [HT℄, we introdu
ed the following


lass of Gaussian random matri
es

1.1 Definition. (
f. [HT℄) Let (
;F ; P ) be a 
lassi
al probability spa
e, let

m;n be positive integers, and let

B = (b(i; j))

1�i�m

1�j�n

: 
!M

m;n

(C );

be a 
omplex, random m � n matrix de�ned on 
. We say then that B is a

(standard) Gaussian randomm�nmatrix with entries of varian
e �

2

, if the real

valued random variables Re(b(i; j)), Im(b(i; j)), 1 � i � m; 1 � j � n, form

a family of 2mn independent, identi
ally distributed random variables, with

distribution N(0;

�

2

2

). We denote by GRM(m;n; �

2

) the set of su
h random

matri
es de�ned on 
. Note that �

2

equals the se
ond absolute moment of the

entries of an element from GRM(m;n; �

2

). �

In the following we shall omit mentioning the underlying probability spa
e

(
;F ; P ), and it will be understood that all 
onsidered random matri-


es/variables are de�ned on this probability spa
e. As a matter of notation,

by 1

n

we denote the unit of M

n

(C ), and by tr

n

we denote the tra
e on M

n

(C )

satisfying that tr

n

(1

n

) = 1. Moreover, we put Tr

n

= n � tr

n

.

Let B be an element of GRM(m;n; �

2

). Then for any p in N, (B

�

B)

p

is a

positive de�nite n � n random matrix, and Tr

n

((B

�

B)

p

) is a positive valued,

integrable, random variable. The main aim of this se
tion is to derive a 
om-

binatorial expression for the moments E ÆTr

n

((B

�

B)

p

) of B

�

B w.r.t. E ÆTr

n

,

where E denotes expe
tation w.r.t. P .

1.2 Lemma. Let m;n; r; p be positive integers, let B

1

; B

2

; : : : ; B

r

be inde-

pendent elements of GRM(m;n; �

2

), and for ea
h s in f1; 2; : : : ; rg, let

b(u; v; s); 1 � u � m; 1 � v � n, denote the entries of B

s

. Then for any

i

1

; j

1

; i

2

; j

2

; : : : ; i

p

; j

p

in f1; 2; : : : ; rg, we have that

E ÆTr

n

(B

�

i

1

B

j

1

B

�

i

2

B

j

2

� � �B

�

i

p

B

j

p

)

=

X

1�u

2

;u

4

;::: ;u

2p

�m

1�u

1

;u

3

;::: ;u

2p�1

�n

E

�

b(u

2

; u

1

; i

1

)b(u

2

; u

3

; j

1

) � � � b(u

2p

; u

2p�1

; i

p

)b(u

2p

; u

1

; j

p

)

�

;

(1.1)

and moreover E Æ Tr

n

(B

�

i

1

B

j

1

B

�

i

2

B

j

2

� � �B

�

i

p

B

j

p

) = 0, unless there exists a

permutation � in the symmetri
 group S

p

, su
h that j

h

= i

�(h)

for all h in

f1; 2; : : : ; pg.
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Proof. Let f(u; v), 1 � u � m; 1 � v � n, denote the usual m � n matrix

units, and let g(u; v), 1 � u � n; 1 � v � m, denote the usual n �m matrix

units. We have then that

E ÆTr

n

(B

�

i

1

B

j

1

B

�

i

2

B

j

2

� � �B

�

i

p

B

j

p

)

=

X

1�v

1

;u

2

;v

3

;u

4

;::: ;v

2p�1

;u

2p

�m

1�u

1

;v

2

;u

3

;v

4

;::: ;u

2p�1

;v

2p

�n

E

�

b

�

(u

1

; v

1

; i

1

)b(u

2

; v

2

; j

1

) � � � b

�

(u

2p�1

; v

2p�1

; i

p

)b(u

2p

; v

2p

; j

p

)

�

� Tr

n

�

g(u

1

; v

1

)f(u

2

; v

2

) � � � g(u

2p�1

; v

2p�1

)f(u

2p

; v

2p

)

�

=

X

1�u

2

;u

4

;::: ;u

2p

�m

1�u

1

;u

3

;::: ;u

2p�1

�n

E

�

b(u

2

; u

1

; i

1

)b(u

2

; u

3

; j

1

) � � � b(u

2p

; u

2p�1

; i

p

)b(u

2p

; u

1

; j

p

)

�

:

Note here, that for any u

2

; u

4

; : : : ; u

2p

in f1; 2; : : : ;mg and u

1

; u

3

; : : : ; u

2p�1

in f1; 2; : : : ; ng, we have be
ause of the independen
e assumptions,

E

�

b(u

2

; u

1

; i

1

)b(u

2

; u

3

; j

1

) � � � b(u

2p

; u

2p�1

; i

p

)b(u

2p

; u

1

; j

p

)

�

=

r

Y

l=1

E

�

Y

h:i

h

=l

b(u

2h

; u

2h�1

; l)

Y

h:j

h

=l

b(u

2h

; u

2h+1

; l)

�

;

where 2h+ 1 is 
al
ulated mod. 2p.

Note here, that for any l in f1; 2; : : : ; rg, any u in f1; 2; : : : ;mg and any v in

f1; 2; : : : ; ng, the distribution of b(u; v; l) is invariant under multipli
ation by


omplex numbers of norm 1. Hen
e, for any s; t in N

0

, E

�

b(u; v; l)

s

�b(u; v; l)

t

�

=

0, unless s = t. Using this, and the independen
e assumptions, it follows

that for any l in f1; 2; : : : ; rg, any u

2

; u

4

; : : : ; u

2p

in f1; 2; : : : ;mg and any

u

1

; u

3

; : : : ; u

2p�1

in f1; 2; : : : ; ng, a ne
essary 
ondition for the mean

E

�

Y

h:i

h

=l

b(u

2h

; u

2h�1

; l) �

Y

h:j

h

=l

b(u

2h

; u

2h+1

; l)

�

to be distin
t from zero is that


ard

��

h 2 f1; 2; : : : ; pg

�

�

i

h

= l

	�

= 
ard

��

h 2 f1; 2; : : : ; pg

�

�

j

h

= l

	�

: (1.2)

It follows that E ÆTr

n

(B

�

i

1

B

j

1

B

�

i

2

B

j

2

� � �B

�

i

p

B

j

p

) = 0, unless (1.2) holds for all

l in f1; 2; : : : ; rg, and in this 
ase, it is not hard to 
onstru
t a permutation �

from S

p

, with the property des
ribed in the lemma. �

1.3 Definition. Let p be a positive integer, and let � be an element of S

p

. We

asso
iate to � a family �(�;m; n), m;n 2 N, of 
omplex numbers, as follows:

Let B

1

; B

2

; : : : ; B

p

be independent elements of GRM(m;n; 1), and then de�ne

�(�;m; n) = E ÆTr

n

(B

�

1

B

�(1)

B

�

2

B

�(2)

� � �B

�

p

B

�(p)

): �
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1.4 Remark. Let m;n; r; p be positive integers, and let B

1

; B

2

; : : : ; B

r

be

arbitrary elements of GRM(m;n; �

2

). Moreover, let i

1

; j

1

; : : : ; i

p

; j

p

be ar-

bitrary elements of f1; 2; : : : ; rg. We shall need the fa
t that the quan-

tity E Æ Tr

n

(B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

) is bounded numeri
ally by some 
onstant

K(m;n; p; �

2

) depending only on m;n; p; �

2

and not on r or the distribu-

tional relations between B

1

; B

2

; : : : ; B

r

. For this, adapt the notation from

Lemma 1.2, and note then that by (1.1) from that lemma,

jE ÆTr

n

(B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

)j

�

X

1�u

2

;u

4

;::: ;u

2p

�m

1�u

1

;u

3

;::: ;u

2p�1

�n

�

�

E

�

b(u

2

; u

1

; i

1

)b(u

2

; u

3

; j

1

) � � � b(u

2p

; u

2p�1

; i

p

)b(u

2p

; u

1

; j

p

)

�

�

�

:

Then let M(2p; �

2

) denote the 2p'th absolute moment of the entries of an

element from GRM(m;n; �

2

). A standard 
omputation yields thatM(2p; �

2

) =

�

2p

� p!, but we shall not need this expli
it formula. It follows now by the

generalized H�older inequality, that for any u

2

; u

4

; : : : ; u

2p

in f1; 2; : : : ;mg and

u

1

; u

3

; : : : ; u

2p�1

in f1; 2; : : : ; ng,

�

�

E

�

b(u

2

; u

1

; i

1

)b(u

2

; u

3

; j

1

) � � � b(u

2p

; u

2p�1

; i

p

)b(u

2p

; u

1

; j

p

)

�

�

�

�







b(u

2

; u

1

; i

1

)







2p







b(u

2

; u

3

; j

1

)







2p

� � �







b(u

2p

; u

2p�1

; i

p

)







2p







b(u

2p

; u

1

; j

p

)







2p

=

�

M(2p; �

2

)

1

2p

�

2p

=M(2p; �

2

):

Thus it follows that we may use K(m;n; p; �

2

) = m

p

n

p

M(2p; �

2

). �

1.5 Proposition. Let B be an element of GRM(m;n; 1), and let p be a pos-

itive integer. We then have

E ÆTr

n

[(B

�

B)

p

℄ =

X

�2S

p

�(�;m; n):

Proof. Let (B

i

)

i2N

be a sequen
e of independent elements of GRM(m;n; 1).

Note then that for any s in N, the matrix

1

p

s

(B

1

+ � � �+B

s

) is again an element

of GRM(m;n; 1), and therefore

E ÆTr

n

[(B

�

B)

p

℄ = E ÆTr

n

h�

�

s

�

1

2

(B

1

+ � � �+B

s

)

�

�

�

s

�

1

2

(B

1

+ � � �+B

s

)

�

�

p

i

= s

�p

X

1�i

1

;j

1

;::: ;i

p

;j

p

�s

E ÆTr

n

h

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

i

:

(1.3)

For � in S

p

we de�ne

M(�; s) =

�

(i

1

; j

1

; : : : ; i

p

; j

p

) 2 f1; 2; : : : ; sg

2p

�

�

j

1

= i

�(1)

; : : : ; j

p

= i

�(p)

	

:

Do
umenta Mathemati
a 4 (1999) 341{450



Random Matri
es and K-Theory : : : 351

It follows then from Lemma 1.2, that in (1.3), we only have to sum over those

2p-tuples (i

1

; j

1

; : : : ; i

p

; j

p

) that belong to M(�; s) for some � in S

p

, and 
on-

sequently

E ÆTr

n

[(B

�

B)

p

℄ = s

�p

X

(i

1

;j

1

;::: ;i

p

;j

p

)2[

�2S

p

M(�;s)

E ÆTr

n

h

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

i

:

Note though, that the sets M(�; s); � 2 S

p

, are not disjoint. However, if we

put

D(s) =

�

(i

1

; j

1

; : : : ; i

p

; j

p

) 2 f1; 2; : : : ; sg

2p

�

�

i

1

; i

2

; : : : ; i

p

are distin
t

	

;

then the sets M(�; s) \ D(s); � 2 S

p

, are disjoint. Thus we have

E ÆTr

n

[(B

�

B)

p

℄

= s

�p

X

�2S

p

X

(i

1

;j

1

;::: ;i

p

;j

p

)2M(�;s)\D(s)

E ÆTr

n

h

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

i

+ s

�p

X

(i

1

;j

1

;::: ;i

p

;j

p

)2

(

[

�2S

p

M(�;s)

)

nD(s)

E ÆTr

n

h

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

i

:

(1.4)

Note here, that if (i

1

; j

1

; : : : ; i

p

; j

p

) 2 M(�; s) \ D(s), then B

i

1

; B

i

2

; : : : ; B

i

p

are independent elements of GRM(m;n; 1), and hen
e

E ÆTr

n

h

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

i

= �(�;m; n):

Thus, the �rst term on the right hand side of (1.4) equals

s

�p

X

�2S

p


ard(M(�; s) \ D(s)) � �(�;m; n):

Here 
ard(M(�; s) \ D(s)) = s(s� 1) � � � (s� p+ 1), so

s

�p

� 
ard(M(�; s) \ D(s))! 1 as s!1:

Hen
e, the �rst term on the right hand side of (1.4) tends to

P

�2S

p

�(�;m; n)

as s ! 1, and sin
e the left hand side of (1.4) does not depend on s, it remains

thus to show that the se
ond term on the right hand side of (1.4) tends to 0

as s ! 1. This follows by noting that a

ording to Remark 1.4, for any

(i

1

; j

1

; : : : ; i

p

; j

p

) in f1; 2; : : : ; sg

2p

, the quantity jE Æ Tr

n

�

B

�

i

1

B

j

1

� � �B

�

i

p

B

j

p

�

j

is bounded by some 
onstant K(m;n; p) depending only on m;n; p; not on s.

And moreover,

s

�p


ard

��

[

�2S

p

M(�; s)

�

n D(s)

�

�

X

�2S

p

s

�p


ard(M(�; s) n D(s))

=

X

�2S

p

�

s

�p


ard(M(�; s)) � s

�p


ard(M(�; s) \ D(s))

�

=

X

�2S

p

�

1� s

�p


ard(M(�; s) \ D(s))

�

! 0;
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as s!1. This 
on
ludes the proof of the proposition. �

It follows from Proposition 1.5, that in order to obtain a 
ombinatorial expres-

sion for the moments E ÆTr

n

((B

�

B)

p

) for a matrix B from GRM(m;n; 1), we

need to derive a 
ombinatorial expression for the quantities

�(�;m; n) = E ÆTr

n

(B

�

1

B

�(1)

B

�

2

B

�(2)

� � �B

�

p

B

�(p)

);

where � 2 S

p

and B

1

; : : : ; B

p

are independent elements of GRM(m;n; 1).

As it turns out, it shall be useful to have the relations between the fa
tors in

the produ
t B

�

1

B

�(1)

B

�

2

B

�(2)

� � �B

�

p

B

�(p)

determined in terms of a permutation

�̂ in S

2p

, rather than in terms of the permutation � from S

p

.

1.6 Definition. Let p be a positive integer, and let � be a permutation in S

p

.

Then the permutation �̂ in S

2p

is determined by the equations:

�̂(2i� 1) = 2�

�1

(i); (i 2 f1; 2; : : : ; pg);

�̂(2i) = 2�(i)� 1; (i 2 f1; 2; : : : ; pg): �

1.7 Remark. (a) Let p, � and �̂ be as in De�nition 1.6. Note then that

�̂

2

= �̂ Æ �̂ = id, the identity mapping on f1; 2; : : : ; 2pg, and that �̂ maps

odd numbers to even numbers, i.e., that �̂(j) � j = 1 (mod. 2), for all j in

f1; 2; : : : ; 2pg. In parti
ular, �̂ has no �xed points. It is easy to 
he
k that

f�̂ j � 2 S

p

g is exa
tly the set of permutations 
 in S

2p

, for whi
h 


2

= id and


(j)�j = 1 (mod. 2), for all j in f1; 2; : : : ; 2pg. Moreover, the mapping � 7! �̂

is inje
tive.

(b) If B

1

; B

2

; : : : ; B

p

are independent elements of GRM(m;n; 1) ,

then we may write the produ
t B

�

1

B

�(1)

B

�

2

B

�(2)

� � �B

�

p

B

�(p)

in the form

C

�

1

C

2

C

�

3

C

4

� � �C

�

2p�1

C

2p

, where C

2i�1

= B

i

and C

2i

= B

�(i)

for all i

in f1; 2; : : : ; pg. Then �̂ is 
onstru
ted exa
tly so that for any j; j

0

in

f1; 2; : : : ; 2pg, we have

C

j

= C

j

0

, j = j

0

or �̂(j) = j

0

: �

1.8 Definition. We asso
iate to �̂ an equivalen
e relation �

�̂

on Z

2p

. This

is the equivalen
e relation (introdu
ed by Voi
ules
u in [Vo1, Proof of Theo-

rem 2.2℄), generated by the expression:

j �

�̂

�̂(j) + 1; (j 2 f1; 2; : : : ; 2pg);

where addition is formed mod. 2p. �

1.9 Remark. For a permutation � in S

p

, the �

�̂

-equivalen
e 
lasses are pre-


isely the orbits in f1; 2; : : : ; 2pg for the 
y
li
 subgroup of S

2p

generated by

the permutation j 7! �̂(j) + 1 (addition formed mod. 2p). Sin
e this subgroup

is �nite, the equivalen
e 
lass [j℄

�̂

of an element j in f1; 2; : : : ; 2pg has the

following form:
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Let q be the number of elements in [j℄

�̂

. Then

[j℄

�̂

= fj

0

; j

1

; : : : ; j

q�1

g;

where j

0

= j; j

1

= �̂(j

0

) + 1; j

2

= �̂(j

1

) + 1; : : : ; j

q�1

= �̂(j

q�2

) + 1; j

0

=

�̂(j

q�1

) + 1, (addition formed mod. 2p). �

It follows immediately from the de�nition of �̂ and Remark 1.9 that ea
h �

�̂

-

equivalen
e 
lass 
onsists entirely of even numbers or entirely of odd numbers.

This is used in the following de�nition:

1.10 Definition. Let p be a positive integer, let � be a permutation in S

p

,

and 
onsider the 
orresponding permutation �̂ in S

2p

. By k(�̂) and l(�̂), we

denote then the number of �

�̂

-equivalen
e 
lasses 
onsisting of even numbers,

respe
tively the number of �

�̂

-equivalen
e 
lasses 
onsisting of odd numbers:

k(�̂) = 
ard

��

[j℄

�̂

�

�

j 2 f2; 4; : : : ; 2pg

	�

;

l(�̂) = 
ard

��

[j℄

�̂

�

�

j 2 f1; 3; : : : ; 2p� 1g

	�

:

Moreover, we de�ne the quantities d(�̂) and �(�̂) by the equations:

d(�̂) = k(�̂) + l(�̂) = 
ard

��

[j℄

�̂

�

�

j 2 f1; 2; : : : ; 2pg

	�

;

�(�̂) =

1

2

�

p+ 1� d(�̂)

�

: �

Regarding the de�nition of �(�̂), it will be shown later (
f. Theorem 1.13), that

�(�̂) is always a non-negative integer. The quantity d(�̂) was introdu
ed by

Voi
ules
u in [Vo1, Proof of Theorem 2.2℄.

1.11 Theorem. For any positive integers m;n and any � in S

p

, we have that

�(�;m; n) = m

k(�̂)

n

l(�̂)

:

Proof. Consider independent elements B

1

; B

2

; : : : ; B

p

of GRM(m;n; 1), and

for ea
h j in f1; 2; : : : ; pg, let b(u; v; j); 1 � u � m; 1 � v � n, denote the

entries of B

j

. It follows then by (1.1) in Lemma 1.2, that

�(�;m; n)

= E ÆTr

n

(B

�

1

B

�(1)

B

�

2

B

�(2)

� � �B

�

p

B

�(p)

)

=

X

1�u

1

;u

3

;:::;u

2p�1

�n

1�u

2

;u

4

;:::;u

2p

�m

E

�

b(u

2

; u

1

; 1)b(u

2

; u

3

; �(1)) � � � b(u

2p

; u

2p�1

; p)b(u

2p

; u

1

; �(p))

�

:

(1.5)

Arguing as in the proof of Lemma 1.2, it follows that the term in the above

sum 
orresponding to u

1

; u

2

; : : : ; u

2p

is zero, unless the 
orresponding matrix

entries are pairwise 
onjugate to ea
h other, i.e., unless we have that

b(u

2i

; u

2i+1

; �(i)) = b(u

2�(i)

; u

2�(i)�1

; �(i)); (i 2 f1; 2; : : : ; pg): (1.6)
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Note also, that if (1.6) is satis�ed, then the 
orresponding term in (1.5) equals

1, and 
onsequently

�(�;m; n)

= 
ard

��

(u

1

; u

2

; : : : ; u

2p

)

�

�

1 � u

2i�1

� n; 1 � u

2i

� m; and (1.6) holds

	�

:

To 
al
ulate this 
ardinality, we note �rst that (1.6) is equivalent to the 
ondi-

tion

u

2i

= u

2�(i)

and u

2i+1

= u

2�(i)�1

; (i 2 f1; 2; : : : ; pg); (1.7)

where addition and subtra
tion are formed mod. 2p. Repla
ing now i by �

�1

(i)

in the �rst equation in (1.7), we get the equivalent 
ondition:

u

2i

= u

2�

�1

(i)

and u

2i+1

= u

2�(i)�1

; (i 2 f1; 2; : : : ; pg):

Re
all then that by de�nition of �̂, �̂(2i�1) = 2�

�1

(i), and using this formula

with i repla
ed by �(i), we get that also 2�(i)� 1 = �̂

�

�̂(2�(i)� 1)

�

= �̂(2i).

Thus (1.6) is equivalent to the 
ondition

u

2i

= u

�̂(2i�1)

; and u

2i+1

= u

�̂(2i)

; (i 2 f1; 2; : : : ; pg);

i.e., the 
ondition

u

j

= u

�̂(j�1)

; (j 2 f1; 2; : : : ; 2pg):

Repla
ing �nally j by �̂(j) + 1, we 
on
lude that (1.6) is equivalent to the


ondition

u

j

= u

�̂(j)+1

; (j 2 f1; 2; : : : ; 2pg);

where �̂(j) + 1 is 
al
ulated mod. 2p. Having realized this, it follows immedi-

ately from Remark 1.9 and the de�nitions of k(�̂) and l(�̂), that the right hand

side of (1) equals m

k(�̂)

n

l(�̂)

, and hen
e we have the desired formula. �

1.12 Corollary. Let m;n be positive integers and let B be an element of

GRM(m;n; 1). Then for any positive integer p, we have that

E ÆTr

n

�

(B

�

B)

p

�

=

X

�2S

p

m

k(�̂)

n

l(�̂)

:

Proof. This follows immediately by 
ombining Proposition 1.5 and Theo-

rem 1.11. �

1.13 Theorem. Let p be a positive integer, and let � be a permutation in S

p

.

Then

(i) k(�̂) � 1 and l(�̂) � 1.

(ii) k(�̂) + l(�̂) � p+ 1.

(iii) �(�̂) =

1

2

�

p+ 1� k(�̂)� l(�̂)

�

is a non-negative integer.
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Proof. (i) This is 
lear from De�nition 1.10.

(ii) Sin
e d(�̂) = k(�̂) + l(�̂) is the number of equivalen
e 
lasses for �

�̂

, (ii)

follows from [Vo1, Proof of Theorem 2.2℄.

(iii) The proof of (iii) requires more work. For elements p of N and k; l of N

0

,

we de�ne

Æ(p; k; l) = 
ard(f� 2 S

p

j k(�̂) = k and l(�̂) = lg):

By (i) and (ii), Æ(p; k; l) = 0 unless k � 1, l � 1 and k + l � p + 1. By

Corollary 1.12, we have for an element B of GRM(m;n; 1), that

E ÆTr

n

�

(B

�

B)

p

�

=

X

k;l2N

k+l�p+1

Æ(p; k; l)m

k

n

l

:

On the other hand, by the re
ursion formula for the moments E Æ

Tr

n

�

(B

�

B)

p

�

; (p 2 N), found in [HT, Theorem 8.2℄, it follows that for p in

N, the moment E ÆTr

n

�

(B

�

B)

p

�


an be expressed as a polynomial in m and n

of the form:

E ÆTr

n

�

(B

�

B)

p

�

=

X

k;l2N

k+l�p+1

Æ

0

(p; k; l)m

k

n

l

;

for suitable 
oe�e
ients Æ

0

(p; k; l). By the remarks following the proof of

[HT, Theorem 8.2℄, only terms of homogeneous degree p + 1 � 2j, j 2

f0; 1; 2; : : : ; [

p�1

2

℄g, appear in this polynomial, i.e.,

Æ

0

(p; k; l) = 0; when k + l = p (mod: 2):

If polynomials of two variables 
oin
ide on N

2

, then they are equal. Therefore,

Æ(p; k; l) = Æ

0

(p; k; l) for all k; l, whi
h proves that


ard(f� 2 S

p

j k(�̂) = k and l(�̂) = lg) = 0; if k + l = p (mod: 2):

Hen
e, �(�̂) is an integer for all � in S

p

, and by (ii), �(�̂) � 0. This proves

(iii). �

In the rest of this se
tion, we shall introdu
e a method of \redu
tions of per-

mutations", whi
h will be needed to determine the asymptoti
 lower bound of

the spe
trum of S

�

n

S

n

(
f. Se
tions 5-8).

Let p be a positive integer, let � be a permutation in S

p

, and 
onsider the


orresponding permutation �̂ in S

2p

, introdu
ed in De�nition 1.6. Sin
e �̂

2

= id

and �̂ has no �xed points, the orbits under the a
tion of �̂ form a partition of

f1; 2; : : : ; 2pg into p sets, ea
h with two elements.

1.14 Definition. Let p be a positive integer, and let � be a permutation in

S

p

. Following the standard de�nition of 
rossings in partitions of f1; 2; : : : ; 2pg

into sets of 
ardinality 2 (see e.g. [Sp℄), we say that (a; b; 
; d) is a 
rossing for

�̂, if a; b; 
; d 2 f1; 2; : : : ; 2pg su
h that

a < b < 
 < d; and �̂(a) = 
; �̂(b) = d: (1.8)
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If �̂ has no su
h 
rossings, we say that �̂ is a non-
rossing permutation, and

we let S

n


p

denote the set of permutations � in S

p

for whi
h �̂ is non-
rossing.

�

1.15 Definition. Let p be a positive integer, let � be a permutation in S

p

,

and let e be an element of f1; 2; : : : ; 2p� 1g. We say then that (e; e + 1) is a

pair of neighbors for �̂, if �̂(e) = e+ 1. Note, that a pair of neighbors for �̂ is

either of the form

(2k � 1; 2k); where k 2 f1; : : : ; pg;

or of the form

(2k; 2k + 1); where k 2 f1; : : : ; p� 1g:

In the �rst 
ase k = �(k), and in the se
ond 
ase �(k) = k + 1. �

1.16 Definition. Let p be a positive integer, let � be a permutation in S

p

, and


onsider the permutation �̂ in S

2p

introdu
ed in De�nition 1.6. We say then

that �̂ is irredu
ible if �̂ has no pair of neighbors (in the sense of De�nition 1.15),

i.e., if �̂(j) 6= j + 1 for all j in f1; 2; : : : ; 2p� 1g. We denote by S

irr

p

the set of

permutations � in S

p

for whi
h �̂ is irredu
ible. Note that

� 2 S

irr

p

() 1 6= �(1) 6= 2 6= �(2) 6= � � � 6= p 6= �(p):

If � 2 S

p

n S

irr

p

, we say that �̂ is redu
ible. Note, that we do not require that

�̂(2p) 6= 1 in order for �̂ to be irredu
ible. Thus, irredu
ibility of �̂ is not

invariant under 
y
li
 permutations of f1; 2; : : : ; 2pg. �

1.17 Lemma. Let p be a positive integer, and let � be a permutation in S

n


p

.

Then �̂ has a pair of neighbors, i.e., �̂ is redu
ible in the sense of De�nition 1.16.

In other words, we have the in
lusion S

n


p

� S

p

n S

irr

p

or equivalently S

irr

p

�

S

p

n S

n


p

.

Proof. We prove the in
lusion: S

irr

p

� S

p

n S

n


p

. So let � from S

irr

p

be given,

and 
onsider the set M = fj 2 f1; 2; : : : ; 2pg j �̂(j) � jg. Note that M 6= ;,

sin
e 
learly 1 2M . De�ne now

� = minf�̂(j)� j j j 2Mg:

Sin
e �̂ has no �xed points and no pairs of neighbors (sin
e � 2 S

irr

p

), we must

have � � 2. Choose j in f1; 2; : : : ; 2pg su
h that �̂(j) � j = �. Sin
e � � 2,

�̂(j) 6= j + 1, or equivalently (sin
e �̂

2

= id), �̂(j + 1) 6= j. Combining this

with the de�nition of �, and the fa
t that �̂ has no �xed points, it follows that

�̂(j + 1) =2 fj; j + 1; : : : ; j + �g = fj; j + 1; : : : ; �̂(j)g;

i.e., either �̂(j+1) < j or �̂(j+1) > �̂(j). In the �rst 
ase (�̂(j+1); j; j+1; �̂(j))

is a 
rossing for �̂, and in the se
ond 
ase (j; j +1; �̂(j); �̂(j + 1)) is a 
rossing

for �̂. In all 
ases, � 2 S

p

n S

n


p

, as desired. �
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1.18 Definition. Let p be a positive integer, greater than or equal to 2, let �

be a permutation in S

p

, and assume that the permutation �̂ in S

2p

has a pair of

neighbors (e; e+1). Let ' be the order preserving bije
tion of f1; 2; : : : ; 2p�2g

onto f1; 2; : : : ; 2pg n fe; e+ 1g, i.e.,

'(i) =

(

i; if 1 � i � e� 1;

i+ 2; if e � i � 2p� 2:

(1.9)

By �

0

we denote then the unique permutation in S

p�1

, satisfying that

�̂

0

= '

�1

Æ �̂ Æ ':

We say that �̂

0

is obtained from �̂ by 
an
ellation of the pair (e; e+1). �

A few words are appropriate about the introdu
tion of �

0

in the de�ni-

tion above. Note �rst of all that '

�1

Æ �̂ Æ ' is a well-de�ned permu-

tation of f1; 2; : : : ; 2p � 2g, sin
e �̂

2

= id and �̂(e) = e + 1, so that

�̂(f1; 2; : : : ; 2pg n fe; e + 1g) = f1; 2; : : : ; 2pg n fe; e + 1g. To see that this

permutation is a
tually of the form �̂

0

for some (ne
essarily uniquely deter-

mined) permutation �

0

in S

p�1

, it suÆ
es, by Remark 1.7(a), to 
he
k that

('

�1

Æ �̂ Æ ')

2

= id, and that '

�1

Æ �̂ Æ '(j) � j = 1 (mod. 2), for all j in

f1; 2; : : : ; 2p� 2g. But these properties follow from the 
orresponding proper-

ties of �̂, and the fa
t that '(j) = j (mod. 2), for all j.

1.19 Remark. Let p be a positive integer, greater than or equal to 2, let � be

a permutation in S

p

, and assume that the permutation �̂ in S

2p

has a pair of

neighbors (e; e+ 1). Let �

0

be the permutation in S

p�1

obtained from � as in

De�nition 1.18.

(a) If (e; e+1) = (2k� 1; 2k) for some k in f1; : : : ; pg, then �

0

=  

�1

Æ � Æ ,

where  : f1; : : : ; p� 1g ! f1; : : : ; pg n fkg is the bije
tion given by

 (j) =

(

j; if 1 � j � k � 1;

j + 1; if k � j � p� 1:

(1.10)

(b) If (e; e+1) = (2k; 2k+1) for some k in f1; : : : ; p�1g, then �

0

= �

�1

Æ�Æ ,

where � : f1; : : : ; p� 1g ! f1; : : : ; pg n fk + 1g is the bije
tion given by

�(j) =

(

j; if 1 � j � k;

j + 1; if k + 1 � j � p� 1;

(1.11)

and where  is given by (1.10). �

1.20 Lemma. Let p be a positive integer, greater than or equal to 2, and let

� be a permutation in S

p

n S

irr

p

. Let (e; e+ 1) be a pair of neighbors for �̂ and

let �

0

be the permutation in S

p�1

, for whi
h �̂

0

is the permutation obtained

from �̂ by 
an
ellation of (e; e+ 1). Then �̂ is non-
rossing if and only if �̂

0

is

non-
rossing.
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Proof. Let ' : f1; 2; : : : ; 2p � 2g ! f1; 2; : : : ; 2pg n fe; e + 1g be the bije
tion

introdu
ed in (1.9). We show that �̂

0

has a 
rossing if and only if �̂ does.

Assume �rst that �̂

0

has a 
rossing (a; b; 
; d). Then sin
e ' is (stri
tly) mono-

tone and sin
e (by de�nition of �

0

) �̂('(a)) = '(
), �̂('(b)) = '(d), it follows

that ('(a); '(b); '(
); '(d)) is a 
rossing for �̂.

Assume 
onversely that �̂ has a 
rossing (a

0

; b

0

; 


0

; d

0

). Then 
learly

fa

0

; b

0

; 


0

; d

0

g \ fe; e+ 1g = ;;

so that the numbers '

�1

(a

0

); '

�1

(b

0

); '

�1

(


0

); '

�1

(d

0

) are well-de�ned. It fol-

lows then, as above, that ('

�1

(a

0

); '

�1

(b

0

); '

�1

(


0

); '

�1

(d

0

)) is a 
rossing for

�̂

0

. �

1.21 Lemma. Let m;n be positive integers, and let B be an element of

GRM(m;n; 1). Then

E(B

�

B) = m1

1

1

n

; and E(BB

�

) = n1

1

1

m

: (1.12)

Proof. Let (b

ij

)

1�i�m

1�j�n

be the entries of B. Then

E(b

ij

b

st

) =

(

1; if (i; j) = (s; t);

0; otherwise:

(1.13)

Sin
e (B

�

B)

ij

=

P

m

s=1

b

si

b

sj

and (BB

�

)

ij

=

P

n

s=1

b

is

b

js

, for all i; j, (1.12)

follows readily from (1.13). �

1.22 Proposition. Let p be a positive integer, greater than or equal to 2,

and let � be a permutation in S

p

n S

irr

p

. Let (e; e + 1) be a pair of neighbors

for �̂ and let �

0

be the permutation in S

p�1

, for whi
h �̂

0

is the permutation

obtained from �̂ by 
an
ellation of (e; e+1). Then with k(�); l(�); d(�) and �(�)

as introdu
ed in De�nition 1.10, we have that

(i) If e is odd, then k(�̂

0

) = k(�̂)� 1 and l(�̂

0

) = l(�̂).

(ii) If e is even, then k(�̂

0

) = k(�̂) and l(�̂

0

) = l(�̂)� 1.

In both 
ases, d(�̂

0

) = d(�̂)� 1 and �(�̂

0

) = �(�̂).

Proof. Letm;n be positive integers, and let B

1

; : : : ; B

p

be independent random

matri
es from GRM(m;n; 1). By Theorem 1.11, we have then that

E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

p

B

�(p)

�

= m

k(�̂)

n

l(�̂)

: (1.14)

(i) Assume that e is odd, i.e., that (e; e + 1) = (2q � 1; 2q) for some q in

f1; 2; : : : ; pg. Then �(q) = q, and hen
e the set of random matri
es

(B

�

1

; B

�(1)

; : : : ; B

�

q�1

; B

�(q�1)

; B

�

q+1

; B

�(q+1)

; : : : ; B

�

p

; B

�(p)

)
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is independent from the set (B

�

q

; B

�(q)

). Therefore,

E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

p

B

�(p)

�

= E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

q�1

B

�(q�1)

E(B

�

q

B

�(q)

)B

�

q+1

� � �B

�

p

B

�(p)

�

= m � E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

q�1

B

�(q�1)

B

�

q+1

� � �B

�

p

B

�(p)

�

;

(1.15)

where the last equality follows from Lemma 1.21. Note that only the random

matri
es B

1

; : : : ; B

q�1

; B

q+1

; : : : ; B

p

o

ur in the last expression in (1.15). De-

�ne now for i in f1; 2; : : : ; p� 1g;

B

0

i

=

(

B

i

; if 1 � i � q � 1;

B

i+1

; if q � i � p� 1:

Then by Remark 1.19(a), it follows that the last expression in (1.15) is equal

to

m � E ÆTr

n

�

(B

0

1

)

�

B

0

�

0

(1)

� � � (B

0

p�1

)

�

B

0

�

0

(p�1)

�

;

whi
h, by Theorem 1.11, is equal tom�m

k(�̂

0

)

n

l(�̂

0

)

. Altogether, we have shown

that

m

k(�̂)

n

l(�̂)

= m �m

k(�̂

0

)

n

l(�̂

0

)

;

and sin
e this holds for all positive integersm;n, it follows that k(�̂) = k(�̂

0

)+1

and l(�̂) = l(�̂

0

). This proves (i).

(ii) Assume that e is even, i.e., that (e; e + 1) = (2q; 2q + 1), for some q in

f1; 2; : : : ; p� 1g. Then �(q) = q+1, and arguing now as in the proof of (i), we

�nd that

m

k(�̂)

n

l(�̂)

= E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

p

B

�(p)

�

= E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

q

E(B

�(q)

B

�

q+1

)B

�(q+1)

� � �B

�

p

B

�(p)

�

= n � E ÆTr

n

�

B

�

1

B

�(1)

� � �B

�

q

B

�(q+1)

� � �B

�

p

B

�(p)

�

;

(1.16)

where the last equality follows from Lemma 1.21. De�ning, this time, for ea
h

i in f1; 2; : : : ; p� 1g,

B

0

i

=

(

B

i

; if 1 � i � q;

B

i+1

; if q + 1 � i � p� 1;

we get by appli
ation of Remark 1.19(b), that the last expression in (1.16) is

equal to

n � E ÆTr

n

�

(B

0

1

)

�

B

0

�

0

(1)

� � � (B

0

p�1

)

�

B

0

�

0

(p�1)

�

;

whi
h, by Theorem 1.11, equals n �m

k(�̂

0

)

n

l(�̂

0

)

. Arguing then as in the proof

of (i), it follows that k(�̂) = k(�̂

0

) and l(�̂) = l(�̂

0

) + 1. This proves (ii).

The last statements of Proposition 1.22 follow immediately from (i), (ii) and

De�nition 1.10. �
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1.23 Proposition. Let p be a positive integer, and let � be a permutation in

S

p

. By �nitely many (or possibly none) su

essive 
an
ellations of pairs, �̂ 
an

be redu
ed to either

(i) ê

1

, where e

1

is the trivial permutation in S

1

,

or

(ii) �̂, where � is a permutation in S

irr

q

for some q in f2; : : : ; pg.

Case (i) appears if and only if � 2 S

n


p

.

Proof. It is 
lear, that by �nitely many (or possibly none) su

essive 
an
el-

lations of pairs, �̂ 
an be redu
ed to a permutation �̂, where either � 2 S

1

or

� 2 S

irr

q

for some q in f2; 3; : : : ; pg. By Lemma 1.20, �̂ is non-
rossing if and

only if �̂ is. Sin
e S

1

= S

n


1

= fe

1

g, and S

irr

q

\S

n


q

= ; for all q in f2; 3; : : : ; pg,

by Lemma 1.17, it follows thus, that either 
ase (i) or 
ase (ii) o

urs, and that


ase (i) o

urs if and only if �̂ is non-
rossing. �

The following 
orollary is a spe
ial 
ase of [Sh, Lemma 2.3℄. For the 
onvenien
e

of the reader, we in
lude a proof based on Propositions 1.22 and 1.23.

1.24 Corollary. Let p be a positive integer and let � be a permutation in

S

p

. Then �̂ is non-
rossing if and only if k(�̂) + l(�̂) = p+ 1, or, equivalently,

if and only if �(�̂) = 0.

Proof. Assume �rst that �̂ is non-
rossing. It follows then from Proposi-

tion 1.23, that by su

essive 
an
ellations of pairs, �̂ may be redu
ed to ê

1

,

where e

1

is the unique permutation in S

1

. Sin
e �(�) is invariant under 
an-


ellations of pairs, (
f. Lemma 1.22), it follows that �(�̂) = �(ê

1

), and it is

straightforward to 
he
k that �(ê

1

) = 0.

Assume next that �̂ has a 
rossing. Then, by Proposition 1.23, there exist

q in f2; : : : ; pg and a permutation � in S

irr

q

, su
h that �̂ may be redu
ed to

�̂ by �nitely many (or possibly none) su

essive 
an
ellations of pairs. By

Proposition 1.22, �(�̂) = �(�̂), and hen
e it suÆ
es to show that �(�̂) > 0, i.e.,

that d(�̂) < q + 1. Note for this, that sin
e �̂ is irredu
ible, �̂(j) 6= j + 1, for

all j in f1; 2; : : : ; 2q � 1g. Sin
e �̂

2

= id, this is equivalent to the 
ondition

that �̂(j) 6= j � 1, for all j in f2; 3; : : : ; 2qg, and by Remark 1.9, this implies

that 
ard([j℄

�̂

) � 2, for all j in f2; 3; : : : ; 2qg. Letting r denote the number of

�

�̂

-equivalen
e 
lasses, that are distin
t from [1℄

�̂

, we have thus the inequality

2r + 
ard([1℄

�̂

) � 2q:

Sin
e r = d(�̂)�1, and sin
e 
ard([1℄

�̂

) � 1, this implies that 2(d(�̂)�1)+1 � 2q,

and hen
e that d(�̂) � q, as desired. �

2 A Combinatorial Expression for the Moments of S

�

S

Let H and K be Hilbert spa
es, let r be a positive integer, and let a

1

; : : : ; a

r

be elements of B(H;K). Moreover, let n be a �xed positive integer, and let
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Y

1

; : : : ; Y

r

be independent elements of GRM(n; n;

1

n

). We then de�ne

S =

r

X

i=1

a

i


 Y

i

:

Note that S is a random variable taking values in B(H;K)
M

n

(C ). The aim

of this se
tion is to derive 
ombinatorial expressions for the moments

(id

B(H)


 (E Æ tr

n

))[(S

�

S)

p

℄ and (id

B(H)


 E)[(S

�

S)

p

℄; (p 2 N);

where id

B(H)

denotes the identity mapping on B(H). Moreover, we shall obtain

another 
ombinatorial expression, whi
h is an upper estimate for the norm of

(id

B(H)


 E)[(S

�

S)

p

℄. For the sake of short notation, in the following we shall

just write E Æ tr

n

and E instead of id

B(H)


 (E Æ tr

n

) and id

B(H)


 E .

We start with the following generalization of Proposition 1.5.

2.1 Proposition. Let H;K be Hilbert spa
es, let r be a positive integer, and

let a

1

; : : : ; a

r

be elements of B(H;K). Moreover, let m;n be �xed positive

integers, and let B

1

; : : : ; B

r

be independent elements of GRM(m;n; 1). Then

with T =

P

r

i=1

a

i


B

i

; we have for any positive integer p, that

E ÆTr

n

[(T

�

T )

p

℄ =

X

�2S

p

m

k(�̂)

n

l(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

:

Proof. Let (B(1; h))

h2N

; : : : ; (B(r; h))

h2N

be sequen
es of elements from

GRM(m;n; 1), su
h that (the entries of) the random matri
es B(i; h); 1 �

i � r; h 2 N, are jointly independent. Then for h in N, we de�ne

T

h

=

r

X

i=1

a

i


B(i; h):

Note then, that for ea
h s in N,

s

�

1

2

s

X

h=1

T

h

= s

�

1

2

s

X

h=1

r

X

i=1

a

i


B(i; h) =

r

X

i=1

a

i




�

s

�

1

2

s

X

h=1

B(i; h)

�

;

where the random matri
es s

�

1

2

P

s

h=1

B(1; h); : : : ; s

�

1

2

P

s

h=1

B(r; h) are in-

dependent elements of GRM(m;n; 1). It follows thus, that the moments of

s

�1

(

P

s

h=1

T

h

)

�

P

s

h=1

T

h

w.r.t. E ÆTr

n

are equal to those of T

�

T . Thus for any

p; s in N, we have

E ÆTr

n

[(T

�

T )

p

℄ = E ÆTr

n

"

s

�p

��

s

X

h=1

T

h

�

�

s

X

h=1

T

h

�

p

#

= s

�p

�

X

1�h

1

;h

2

;::: ;h

p

�s

1�g

1

;g

2

;::: ;g

p

�s

E ÆTr

n

h

T

�

h

1

T

g

1

T

�

h

2

T

g

2

� � �T

�

h

p

T

g

p

i

:

(2.1)
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Consider here an arbitrary 2p{tuple (h

1

; g

1

; : : : ; h

p

; g

p

) in f1; 2; : : : ; sg

2p

. Re-


alling then the de�nition of T

h

, we �nd that

E ÆTr

n

h

T

�

h

1

T

g

1

T

�

h

2

T

g

2

� � �T

�

h

p

T

g

p

i

=

X

1�i

1

;::: ;i

p

�r

1�j

1

;::: ;j

p

�r

(a

�

i

1

a

j

1

� � �a

�

i

p

a

j

p

) � E

�

Tr

n

(B(i

1

; h

1

)

�

B(j

1

; g

1

) � � �B(i

p

; h

p

)

�

B(j

p

; g

p

))

�

:

Sin
e B(i; h) is independent of B(j; g) unless i = j and h = g, it follows here

from Lemma 1.2 in Se
tion 1, that

E ÆTr

n

[B(i

1

; h

1

)

�

B(j

1

; g

1

) � � �B(i

p

; h

p

)

�

B(j

p

; g

p

)℄ 6= 0

=) 9� 2 S

p

: (j

1

; g

1

) = (i

�(1)

; h

�(1)

); : : : ; (j

p

; g

p

) = (i

�(p)

; h

�(p)

):

(2.2)

In parti
ular it follows that in (2.1), we only have to sum over

(h

1

; g

1

; : : : ; h

p

; g

p

) in [

�2S

p

M(�; s), where, as in the proof of Proposition 1.5

in Se
tion 1 ,

M(�; s) =

�

(h

1

; g

1

; : : : ; h

p

; g

p

) 2 f1; 2; : : : ; sg

2p

�

�

g

1

= h

�(1)

; : : : ; g

p

= h

�(p)

	

;

for any � in S

p

. Following still the proof of Proposition 1.5 in Se
tion 1, we

de�ne,

D(s) =

�

(h

1

; g

1

; : : : ; h

p

; g

p

) 2 f1; 2; : : : ; sg

2p

�

�

h

1

; : : : ; h

p

are distin
t

	

;

and then the sets M(�; s) \ D(s); � 2 S

p

, are disjoint and

E ÆTr

n

[(T

�

T )

p

℄

= s

�p

X

�2S

p

X

(h

1

;g

1

;::: ;h

p

;g

p

)2M(�;s)\D(s)

E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄

+ s

�p

X

(h

1

;g

1

;::: ;h

p

;g

p

)2

(

[

�2S

p

M(�;s)

)

nD(s)

E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄:

(2.3)

As was noted in the proof of Proposition 1.5, we have here that

s

�p

� 
ard(M(�; s) \ D(s))! 1; as s!1; (� 2 S

p

); (2.4)

and that

s

�p

� 
ard(

�

[

�2S

p

M(�; s)

�

n D(s))! 0; as s!1: (2.5)
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Moreover, for any h

1

; g

1

; : : : ; h

p

; g

p

in N, we have that







E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄







�

X

1�i

1

;::: ;i

p

�r

1�j

1

;::: ;j

p

�r

ka

�

i

1

a

j

1

� � � a

�

i

p

a

j

p

k �

�

�

E

�

Tr

n

(B(i

1

; h

1

)

�

B(j

1

; g

1

) � � �B(i

p

; h

p

)

�

B(j

p

; g

p

))

�

�

�

� K(m;n; p; 1) �

X

1�i

1

;::: ;i

p

�r

1�j

1

;::: ;j

p

�r

ka

�

i

1

a

j

1

� � � a

�

i

p

a

j

p

k;

whereK(m;n; p; 1) is the 
onstant introdu
ed in Remark 1.4 in Se
tion 1. Sin
e

this 
onstant does not depend on s, it follows thus, by (2.5), that the se
ond

term on the right hand side of (2.3) tends to 0 as s!1.

Regarding the �rst term on the right hand side of (2.3), for any � in S

p

and

any 2p{tuple (h

1

; g

1

; : : : ; h

p

; g

p

) in M(�; s) \ D(s), we have that

E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄ = E ÆTr

n

[T

�

h

1

T

h

�(1)

� � �T

�

h

p

T

h

�(p)

℄

=

X

1�i

1

;::: ;i

p

�r

1�j

1

;::: ;j

p

�r

(a

�

i

1

a

j

1

� � � a

�

i

p

a

j

p

)

� E

�

Tr

n

(B(i

1

; h

1

)

�

B(j

1

; h

�(1)

) � � �B(i

p

; h

p

)

�

B(j

p

; h

�(p)

))

�

:

Re
alling here the statement (2.2) and that h

1

; : : : ; h

p

are distin
t, it follows

that the term in the above sum 
orresponding to (i

1

; j

1

; : : : ; i

p

; j

p

) is 0, unless

j

1

= i

�(1)

; : : : ; j

p

= i

�(p)

. Thus we have that

E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄

=

X

1�i

1

;::: ;i

p

�r

(a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

)

� E

�

Tr

n

(B(i

1

; h

1

)

�

B(i

�(1)

; h

�(1)

) � � �B(i

p

; h

p

)

�

B(i

�(p)

; h

�(p)

))

�

:

Note here, that sin
e h

1

; : : : ; h

p

are distin
t, B(i

1

; h

1

); : : : ; B(i

p

; h

p

) are inde-

pendent for any 
hoi
e of i

1

; : : : ; i

p

in f1; 2; : : : ; rg, and 
onsequently

E

�

Tr

n

(B(i

1

; h

1

)

�

B(i

�(1)

; h

�(1)

) � � �B(i

p

; h

p

)

�

B(i

�(p)

; h

�(p)

))

�

= �(�;m; n);

for any i

1

; : : : ; i

p

in f1; 2; : : : ; rg. Thus, we may 
on
lude that

E ÆTr

n

[T

�

h

1

T

g

1

� � �T

�

h

p

T

g

p

℄ = �(�;m; n) �

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

;

and this holds for any (h

1

; g

1

; : : : ; h

p

; g

p

) in M(�; s)\D(s). Therefore the �rst

term on the right hand side of (2.3) equals

X

�2S

p

s

�p

� 
ard(M(�; s) \ D(s)) � �(�;m; n) �

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

;
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and by (2.4), this tends to

X

�2S

p

�(�;m; n) �

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

;

as s!1. Sin
e the left hand side of (2.3) does not depend on s, we get thus

by letting s!1 in (2.3), that

E ÆTr

n

[(T

�

T )

p

℄ =

X

�2S

p

�(�;m; n) �

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

:

Combining �nally with Theorem 1.11, we obtain the desired formula. �

2.2 Corollary. Let H;K be Hilbert spa
es, let r be a positive integer, and

let a

1

; : : : ; a

r

be elements of B(H;K). Moreover, let n be a �xed positive

integer, and let Y

1

; : : : ; Y

r

be independent elements of GRM(n; n;

1

n

). Then

with S =

P

r

i=1

a

i


 Y

i

; we have for any positive integer p, that

E Æ tr

n

[(S

�

S)

p

℄ =

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

; (2.6)

where �(�̂) is the quantity introdu
ed in De�nition 1.10 in Se
tion 1.

Proof. With B

i

=

p

n � Y

i

; i 2 f1; 2; : : : ; rg, we have that B

1

; : : : ; B

r

are

independent elements of GRM(n; n; 1). It follows thus from Proposition 2.1,

that for any p in N,

n

p

� E ÆTr

n

[(S

�

S)

p

℄ =

X

�2S

p

n

k(�̂)+l(�̂)

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

;

and 
onsequently

E Æ tr

n

[(S

�

S)

p

℄ =

X

�2S

p

n

�p�1+k(�̂)+l(�̂)

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

:

Formula (2.6) now follows by noting that,

p+ 1� k(�̂)� l(�̂) = p+ 1� d(�̂) = 2�(�̂);

for any � in S

p

. �

Our next obje
tive is to derive a matrix version of formula (2.6). In other

words, we shall obtain a 
ombinatorial expression for E [(S

�

S)

p

℄.

2.3 Lemma. Let n; r be positive integers and let Y

1

; : : : ; Y

r

be independent

elements of GRM(n; n; �

2

). Then for any (non{random) unitary n�n matri
es

u

1

; : : : ; u

r

, the random matri
es u

1

Y

1

u

�

1

; : : : ; u

r

Y

r

u

�

r

are again independent

elements of GRM(n; n; �

2

).
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Proof. Note �rst that for ea
h i in f1; 2; : : : ; rg, the entries of u

i

Y

i

u

�

i

are all

measurable w.r.t. the �{algebra generated by the entries of Y

i

. It follows there-

fore immediately that u

1

Y

1

u

�

1

; : : : ; u

r

Y

r

u

�

r

are independent random matri
es.

We note next, that it follows easily from De�nition 1.1, that the joint distribu-

tion of the entries of an element from GRM(n; n; �

2

) has the following density

w.r.t. Lebesgue measure on M

n

(C ) ' R

2n

2

:

y 7!

�

1

��

2

�

n

2

exp

�

�

1

�

2

�Tr

n

(y

�

y)

�

; (y 2M

n

(C )): (2.7)

(Here the identi�
ation of M

n

(C ) with R

2n

2

is given by

y 7! (Re(y

jk

); Im(y

jk

))

1�j;k�n

:)

Now let u be a unitary n� n matrix, and 
onsider then the linear mapping

Adu : y 7! uyu

�

: M

n

(C ) !M

n

(C ):

Under the identi�
ation of M

n

(C ) with R

2n

2

, the Eu
lidean stru
ture on R

2n

2

is given by the inner produ
t:

hy; zi = Re(Tr

n

(z

�

y)); (y; z 2M

n

(C )):

Thus Adu : R

2n

2

! R

2n

2

is a linear isometry, and hen
e the Ja
obi determi-

nant of this mapping equals 1. Combining this fa
t with (2.7) and the usual

transformation theorem for Lebesgue measure, it follows that for any Y in

GRM(n; n; �

2

), the joint distribution of the entries of uY u

�

equals that of the

entries of Y . �

2.4 Lemma. Let B be a C

�

{algebra with unit 1

1

1, let n be a positive integer,

and 
onsider the tensor produ
t B 
M

n

(C ). If x 2 B 
M

n

(C ), su
h that

(1

1

1
 u)x(1

1

1
 u)

�

= x for any unitary n� n matrix u, then x 2 B 
 1

1

1

n

.

Proof. Assume that x 2 B 
M

n

(C ), and that (1

1

1 
 u)x(1

1

1 
 u)

�

= x for any

unitary n � n matrix u. Sin
e M

n

(C ) is the linear span of its unitaries, it

follows that

x 2

�

y 2 B 
M

n

(C )

�

�

yT = Ty for all T in 1

1

1
M

n

(C )

	

= B 
 1

1

1

n

;

where the last equality follows by standard matrix 
onsiderations; thinking of

B 
M

n

(C ) as the set of n� n matri
es with entries from B. �

2.5 Proposition. Let S be as in Corollary 2.2. Then for any positive integer

p, we have that:

E [(S

�

S)

p

℄ =

�

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

�


 1

1

1

n

:
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Proof. Let u be an arbitrary unitary n�n matrix, and de�ne: S

u

=

P

r

i=1

a

i




(uY

i

u

�

). Note then that S

�

u

S

u

= (1

1

1

H


 u)S

�

S(1

1

1

H


u)

�

, where 1

1

1

H

denotes the

unit of B(H). It follows now by Lemma 2.3, that

E [(S

�

S)

p

℄ = E [(S

�

u

S

u

)

p

℄

= E [(1

1

1

H


 u)(S

�

S)

p

(1

1

1

H


 u)

�

℄ = (1

1

1

H


 u)E [(S

�

S)

p

℄(1

1

1

H


 u)

�

:

Sin
e this holds for any unitary u, it follows from Lemma 2.4, that E [(S

�

S)

p

℄ 2

B(H)
 1

1

1

n

, and 
onsequently

E [(S

�

S)

p

℄ =

�

tr

n

(E [(S

�

S)

p

℄)

�


 1

1

1

n

=

�

E Æ tr

n

[(S

�

S)

p

℄

�


 1

1

1

n

:

The proposition now follows by appli
ation of Corollary 2.2. �

In the next se
tion, we shall obtain 
ombinatorial expressions that are upper

estimates for the moments E [(S

�

S)

p

℄. It follows from Proposition 2.5, that in

order to obtain su
h 
ombinatorial estimates, we should 
on
entrate on deriving


ombinatorial estimates for the quantities







X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)







;

where � 2 S

p

, and a

1

; : : : ; a

r

are arbitrary bounded operators from a Hilbert

spa
e H to a Hilbert spa
e K.

2.6 Definition. Let p be a positive integer, let � be a permutation in S

p

and


onsider the permutation �̂ in S

2p

. We then put

�(�̂) = 
ard(

�

j 2 f1; 3; : : : ; 2p� 1g

�

�

�̂(j) > j

	

);

�(�̂) = 
ard(

�

j 2 f1; 3; : : : ; 2p� 1g

�

�

�̂(j) < j

	

) + 1: �

We note, that sin
e �̂ has no �xed points, it follows that

�(�̂) + �(�̂) = p+ 1; (p 2 N; � 2 S

p

): (2.8)

Re
alling that by de�nition of �̂, �̂(2h�1) = 2�

�1

(h) for all h in f1; 2; : : : ; pg,

it follows furthermore that

�(�̂) = 
ard(

�

h 2 f1; 2; : : : ; pg

�

�

2�

�1

(h) > 2h� 1

	

)

= 
ard(

�

h 2 f1; 2; : : : ; pg

�

�

�

�1

(h) � h

	

)

= 
ard(

�

h 2 f1; 2; : : : ; pg

�

�

h � �(h)

	

);

(2.9)

where the last equality follows by repla
ing h by �

�1

(h). Similarly we have

that

�(�̂) = p+ 1� �(�̂)

= 
ard(

�

h 2 f1; 2; : : : ; pg

�

�

�

�1

(h) < h

	

) + 1

= 
ard(

�

h 2 f1; 2; : : : ; pg

�

�

h < �(h)

	

) + 1:

(2.10)
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We note also, that sin
e �̂(j) = j+1 mod. 2 and �̂(�̂(j)) = j for all j, we have

that

�(�̂) = 
ard(�̂

��

j 2 f1; 3; : : : ; 2p� 1g

�

�

�̂(j) > j

	�

)

= 
ard(

�

j 2 f2; 4; : : : ; 2pg

�

�

�̂(j) < j

	

);

(2.11)

and similarly

�(�̂) = 
ard(

�

j 2 f2; 4; : : : ; 2pg

�

�

�̂(j) > j

	

) + 1: (2.12)

In 
onne
tion with produ
ts of the form a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

, note that �(�̂)

denotes the number of h's in f1; 2; : : : ; pg for whi
h the fa
tor a

�

i

h

appears

before the fa
tor a

i

h

in this produ
t. Similarly �(�̂)� 1 denotes the number of

h's in f1; 2; : : : ; pg for whi
h the fa
tor a

i

h

appears before the fa
tor a

�

i

h

.

2.7 Proposition. Let H;K be Hilbert spa
es, let r be a positive integer, and

let a

1

; : : : ; a

r

be elements of B(H;K). Let further 
 and d be positive real

numbers, su
h that










r

X

i=1

a

�

i

a

i










� 
 and










r

X

i=1

a

i

a

�

i










� d: (2.13)

Then for any positive integer p and any permutation � in S

p

, we have that










X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)










� 


�(�̂)

d

�(�̂)�1

:

Proof. Let V be an in�nite dimensional Hilbert spa
e, and 
hoose r isometries

s

1

; : : : ; s

r

in B(V), with orthogonal ranges, i.e.,

s

�

i

s

j

= Æ

i;j

1

1

1

B(V)

; (i; j 2 f1; 2; : : : ; rg): (2.14)

Consider then the Hilbert spa
e

~

V = V 
 � � � 
 V (p fa
tors), and for ea
h i in

f1; 2; : : : ; rg and h in f1; 2; : : : ; pg, de�ne the operator s(i; h) in B(

~

V) by the

equation

s(i; h) = 1

1

1

B(V)


 � � � 
 1

1

1

B(V)


 S

i


 1

1

1

B(V)


 � � � 
 1

1

1

B(V)

"

h'th position

: (2.15)

Next, put

t(i; h) =

(

s(i; h); if h � �

�1

(h);

s(i; h)

�

; if h > �

�1

(h);

(i 2 f1; 2; : : : ; rg; h 2 f1; 2; : : : ; pg);

(2.16)
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and

A

h

=

r

X

i=1

a

i


 t(i; h); (h 2 f1; 2; : : : ; pg): (2.17)

We 
onsider A

h

as an element of B(H


~

V ;K


~

V) in the usual way. We 
laim

then that

A

�

1

A

�(1)

A

�

2

A

�(2)

� � �A

�

p

A

�(p)

=

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

�


 1

1

1

B(

~

V)

:

(2.18)

To prove (2.18), observe �rst that

A

�

1

A

�(1)

� � �A

�

p

A

�(p)

=

X

1�i

1

;i

2

;::: ;i

p

�r

1�j

1

;j

2

;::: ;j

p

�r

(a

�

i

1

a

j

1

a

�

i

2

a

j

2

� � � a

�

i

p

a

j

p

)
�(i

1

; j

1

; i

2

; j

2

; : : : ; i

p

; j

p

);

(2.19)

where

�(i

1

; j

1

; : : : ; i

p

; j

p

)

= t(i

1

; 1)

�

t(j

1

; �(1))t(i

2

; 2)

�

t(j

2

; �(2)) � � � t(i

p

; p)

�

t(j

p

; �(p));

(2.20)

for all i

1

; j

1

; : : : ; i

p

; j

p

in f1; 2; : : : ; rg. By (2.15) and (2.16), t(i; h) and t(i; h)

�

both 
ommute with t(j; k) and t(j; k)

�

, as long as h 6= k. Hen
e, we 
an reorder

the fa
tors in the produ
t on the right hand side of (2.20), a

ording to the

se
ond index in t(�; �) and t(�; �)

�

, in the following way

�(i

1

; j

1

; : : : ; i

p

; j

p

) = T (1)T (2) � � �T (p);

where

T (h) =

(

t(i

h

; h)

�

t(j

�

�1

(h)

; h); if h � �

�1

(h);

t(j

�

�1

(h)

; h)t(i

h

; h)

�

; if h > �

�1

(h);

for ea
h h in f1; 2; : : : ; pg. By (2.16), it follows that

T (h) =

(

s(i

h

; h)

�

s(j

�

�1

(h)

; h); if h � �

�1

(h);

s(j

�

�1

(h)

; h)

�

s(i

h

; h); if h > �

�1

(h);

and thus by (2.14)-(2.15), we get that for all i

1

; j

1

; : : : ; i

p

; j

p

in f1; 2; : : : ; rg

and all h in f1; 2; : : : ; pg,

T (h) =

(

1

1

1

B(

~

V)

; if i

h

= j

�

�1

(h)

;

0; if i

h

6= j

�

�1

(h)

:

Therefore, �(i

1

; j

1

; : : : ; i

p

; j

p

) = 0, unless i

h

= j

�

�1

(h)

, for all h in f1; 2; : : : ; pg,

or equivalently, unless i

�(h)

= j

h

, for all h in f1; 2; : : : ; pg, in whi
h 
ase

�(i

1

; j

1

; : : : ; i

p

; j

p

) = 1

1

1

B(

~

V)

. Combining this with (2.19), we obtain (2.18).
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Using again that s(i; h)

�

s(j; h) = Æ

i;j

1

1

1

B(

~

V)

, for all i; j in f1; 2; : : : ; rg, we get

that if h � �

�1

(h),

A

�

h

A

h

=

r

X

i;j=1

a

�

i

a

j


 s(i; h)

�

s(j; h) =

r

X

i=1

a

�

i

a

i


 1

1

1

B(

~

V)

;

and if h > �

�1

(h),

A

h

A

�

h

=

r

X

i=1

a

i

a

�

i


 1

1

1

B(

~

V)

:

By (2.13), it follows thus, that

kA

h

k

2

= kA

�

h

A

h

k � 
; if h � �

�1

(h);

kA

h

k

2

= kA

h

A

�

h

k � d; if h > �

�1

(h);

so by (2.9) and (2.10),

kA

�

1

A

�(1)

� � �A

�

p

A

�(p)

k �

p

Y

h=1

kA

h

k

2

� 


�(�̂)

d

�(�̂)�1

:

Together with (2.18), this proves the proposition. �

2.8 Corollary. Let H;K be Hilbert spa
es, let r be a positive integer, and

let a

1

; : : : ; a

r

be elements of B(H;K). Moreover, let n be a �xed positive

integer, and let Y

1

; : : : ; Y

r

be independent elements of GRM(n; n;

1

n

). Then

with S =

P

r

i=1

a

i


 Y

i

, 
 = k

P

r

i=1

a

�

i

a

i

k and d = k

P

r

i=1

a

i

a

�

i

k, we have for

any positive integer p, that

kE [(S

�

S)

p

℄k �

X

�2S

p

n

�2�(�̂)




�(�̂)

d

�(�̂)�1

:

Proof. This follows immediately by 
ombining Propositions 2.5 and 2.7. �

In Se
tion 3 we shall estimate further the quantity kE [(S

�

S)

p

℄k. As preparation

for this, we will in Proposition 2.10 below, 
ompare the numbers �(�̂) and �(�̂)

with the numbers k(�̂) and l(�̂), de�ned in Se
tion 1.

2.9 Lemma. Let p be a positive integer, let � be a permutation in S

p

, and 
on-

sider the permutation �̂ in S

2p

and the 
orresponding equivalen
e relation �

�̂

.

Then any equivalen
e 
lass for �

�̂

, ex
ept possibly [1℄

�̂

, 
ontains an element j

with the property that �̂(j) < j.

Proof. Let j

0

be an element of f1; 2; : : : ; 2pg, su
h that 1 =2 [j

0

℄

�̂

. We show

that [j

0

℄

�̂


ontains an element j su
h that �̂(j) < j. For this, note �rst, that

we may assume that j

0

is the smallest element of [j

0

℄

�̂

. Then, by assumption,

j

0

� 2. Now write in the usual manner (
f. Remark 1.9)

[j

0

℄

�̂

= fj

0

; j

1

; : : : ; j

q

g:
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In parti
ular, �̂(j

q

) + 1 = j

0

= j

0

(addition formed mod. 2p). Now, sin
e

j

0

� 2, we have that j

0

� 1 < j

0

, even when the subtra
tion is formed mod. 2p.

Therefore, sin
e j

0

is the smallest element of [j

0

℄

�̂

, �̂(j

q

) = j

0

� 1 < j

0

� j

q

.

Thus we may 
hoose j = j

q

. �

2.10 Proposition. Let p be a positive integer, let � be a permutation in S

p

,

and 
onsider the permutation �̂ in S

2p

. We then have

(i) �(�̂) � k(�̂) and �(�̂) � l(�̂).

(ii) (�(�̂)� k(�̂)) + (�(�̂)� l(�̂)) = 2�(�̂).

(iii) �(�̂) = k(�̂) and �(�̂) = l(�̂) if and only if �̂ is non{
rossing.

Proof. (i) By Lemma 2.9 and the de�nition of l(�̂), it follows that

l(�̂)� 1 � 
ard(

�

j 2 f1; 3; : : : ; 2p� 1g

�

�

�̂(j) < j

	

) = �(�̂)� 1:

Similarly we �nd by appli
ation of (2.11), that

k(�̂) � 
ard(

�

j 2 f2; 4; : : : ; 2pg

�

�

�̂(j) < j

	

) = �(�̂):

(ii) We �nd by appli
ation of (2.8), that

(�(�̂)� k(�̂)) + (�(�̂)� l(�̂)) = (�(�̂) + �(�̂))� d(�̂) = p+ 1� d(�̂) = 2�(�̂):

(iii) This follows immediately by 
ombining (i), (ii) and Corollary 1.24. �

3 An upper bound for E

�

exp(tS

�

S)

�

, t � 0

In the previous se
tion, we 
omputed E [(S

�

S)

p

℄, for p in N and S =

P

r

i=1

a

i




Y

i

, where a

1

; : : : ; a

r

2 B(H;K), for Hilbert spa
es H and K, and where

Y

1

; : : : ; Y

r

are independent random matri
es in GRM(n; n;

1

n

). For �xed p

in N, the fun
tion ! 7!

�

S

�

(!)S(!)

�

p

only takes values in a �nite dimen-

sional subspa
e of B(H) 
 M

n

(C ). This is not the 
ase for the fun
tion

! 7! exp

�

tS

�

(!)S(!)

�

, so in order to give pre
ise meaning to the mean

E

�

exp(tS

�

S)

�

, we will need the following de�nition (
f. [Ru, De�nition 3.26℄).

3.1 Definition. Let X be a Bana
h spa
e, let (
;F ; P ) be a probability spa
e,

and let f : 
! X be a mapping, that satis�es the following two 
onditions

(a) 8' 2 X

�

: ' Æ f 2 L

1

(
;F ; P )

(b) 9x

0

2 X 8' 2 X

�

:

R




' Æ f(!) dP (!) = '(x

0

).

We say then that f is integrable in X , and we 
all x

0

the integral of f , and

write

E(f) =

Z




f dP = x

0

: �

Note that in the above de�nition, x

0

is uniquely determined by (b). Note also,

that we do not require that

R




kfk dP < 1, in order for f to be integrable.

However, if X is �nite dimensional, then this follows automati
ally from (a).
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3.2 Proposition. Let H and K be Hilbert spa
es, let a

1

; : : : ; a

r

be elements

of B(H;K), and let 
 be a stri
tly positive number, su
h that

max

�

k

P

r

i=1

a

�

i

a

i

k; k

P

r

i=1

a

i

a

�

i

k

	

� 
:

Furthermore, let n be a positive integer, let Y

1

; : : : ; Y

r

be independent random

matri
es in GRM(n; n;

1

n

), and put S =

P

r

i=1

a

i


 Y

i

.

Then for any 
omplex number t, su
h that jtj <

n




, the fun
tion

! 7! exp

�

tS

�

(!)S(!)

�

; (! 2 
);

is integrable in B(H

n

), in the sense of De�nition 3.1, and

E

�

exp(tS

�

S)

�

=

1

X

p=0

t

p

p!

E

�

(S

�

S)

p

�

; (3.1)

where the series on the right hand side is absolutely 
onvergent in B(H

n

).

Proof. By Proposition 2.5, we have for any p in N,

E

�

(S

�

S)

p

�

=

�

X

�2S

p

n

�2�(�̂)

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�


 1

1

1

n

;

and by Proposition 2.7 and formula (2.8), we have here for all � in S

p

, that







X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)







� 


p

: (3.2)

Hen
e the absolute 
onvergen
e of the right hand side of (3.1) will follow, if we


an prove that

1 +

1

X

p=1

(
jtj)

p

p!

�

X

�2S

p

n

�2�(�̂)

�

<1; (3.3)

whenever jtj <

n




. For this, 
onsider an element B of GRM(n; n; 1), and re
all

then from Corollary 1.12, that

E ÆTr

n

�

(B

�

B)

p

�

=

X

�2S

p

n

k(�̂)+l(�̂)

= n

p+1

X

�2S

p

n

�2�(�̂)

:

Hen
e for positive numbers s, we have

E ÆTr

n

�

exp(sB

�

B)

�

= n

�

1 +

1

X

p=1

(ns)

p

p!

X

�2S

p

n

�2�(�̂)

�

: (3.4)

From [HT, Theorem 6.4℄, we know that

E ÆTr

n

�

exp(sB

�

B)

�

<1; when 0 � s < 1:
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Hen
e the sum in (3.4) is �nite, whenever 0 � s < 1, and this implies that (3.3)

holds whenever jtj <

n




.

Consider now the state spa
e S(B(H

n

)) of B(H

n

) and an element ' of

S(B(H

n

)). For any ! in 
, we have then that

'

�

exp

�

tS

�

(!)S(!)

��

=

1

X

p=0

t

p

p!

'

�

(S

�

(!)S(!))

p

�

;

whi
h is 
learly a positive measurable fun
tion of ! (sin
e ' is a state). More-

over, by Lebesgue's Monotone Convergen
e Theorem,

E

�

'

�

exp(tS

�

S)

��

=

1

X

p=0

t

p

p!

E

�

'

�

(S

�

S)

p

��

=

1

X

p=0

t

p

p!

'

�

E

�

(S

�

S)

p

��

= 1 +

1

X

p=0

t

p

p!

'

�

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�


 1

1

1

n

�

� 1 +

1

X

p=0

t

p

p!

X

�2S

p

n

�2�(�̂)







X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)







;

(3.5)

and by (3.2) and (3.3), the latter sum is �nite, when jtj <

n




. Sin
e

B(H

n

)

�

= span

�

S(B(H

n

)

�

, it follows that the fun
tion ! 7! exp(tS

�

(!)S(!)),

is integrable, and (by the �rst two equalities in (3.5)) that E

�

exp(tS

�

S)

�

is

given by (3.1). �

The main result of this se
tion is the following

3.3 Theorem. Let H;K be Hilbert spa
es, and let a

1

; : : : ; a

r

be elements of

B(H;K), satisfying that

r

X

i=1

a

�

i

a

i

� 
1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

� 1

1

1

B(K)

;

for some 
onstant 
 in ℄0;1[. Consider furthermore independent elements

Y

1

; : : : ; Y

r

of GRM(n; n;

1

n

), and put S =

P

r

i=1

a

i


 Y

i

. Then for any t in

[0;

n

2


℄ \ [0;

n

2

℄, we have that

E

�

exp(tS

�

S)

�

� exp

�

(

p


+ 1)

2

t+ (
+ 1)

2

�

t

2

n

�

� 1

1

1

B(H

n

)

:

For the proof of Theorem 3.3, we need three lemmas. Before stating these

lemmas, we introdu
e some notation:
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For any p; k; l in N, we put

Æ(p; k; l) = 
ard(f� 2 S

p

j k(�̂) = k and l(�̂) = lg): (3.6)

Note that for any p; k; l in N, Æ(p; k; l) = 0, unless k + l � p + 1 (
f. Theo-

rem 1.13).

For any 
omplex number w and any n in N

0

, we put

(w)

n

=

(

1; if n = 0;

w(w + 1)(w + 2) � � � (w + n� 1); if n 2 N:

We re
all then, that the hyper-geometri
 fun
tion F , is de�ned by the formula

F (a; b; 
;x) =

1

X

k=0

(a)

k

(b)

k

(
)

k

k!

x

k

;

for a; b; 
; x in C , su
h that 
 =2 Zn N, and jxj < 1.

3.4 Lemma. For all positive real numbers �; �, we have that

1

X

p=1

t

p�1

(p� 1)!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k�1

�

l�1

=

F (1� �; 1� �; 2; t

2

)

(1� t)

�+�

; (t 2 C ; jtj < 1):

(3.7)

Proof. Assume �rst that � = n and � = m, where m;n 2 N, and 
onsider an

element B of GRM(m;n; 1). Then by [HT, Theorem 6.4℄,

F (1� n; 1�m; 2; t

2

)

(1� t)

m+n

=

1

mn

E ÆTr

n

�

B

�

B exp(tB

�

B)

�

=

1

mn

1

X

p=1

t

p�1

(p� 1)!

E ÆTr

n

�

(B

�

B)

p

�

:

But from Se
tion 1 of this paper, we know that for any p in N

E ÆTr

n

�

(B

�

B)

p

�

=

X

�2S

p

m

k(�̂)

n

l(�̂)

=

X

k;l2N

k+l�p+1

Æ(p; k; l)m

k

n

l

;

and thus (3.7) holds for all �; � in N. In parti
ular, the left hand side (3.7) is

�nite for all �; � in N. Sin
e the left hand side of (3.7) is an in
reasing fun
tion

of both � and �, it is therefore �nite for all �; � in ℄0;1[.

To prove (3.7) for general positive real numbers, �; �, we get �rst, as in [HT,

Proof of Proposition 8.1℄, by multiplying the power series

F (1� �; 1� �; 2; t

2

) =

1

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

�

t

2j

; (jtj < 1);
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and

(1� t)

�(�+�)

=

1

X

k=0

�

�+ � + k � 1

k

�

t

k

; (jtj < 1);

that the power series expansion for

F (1��;1��;2;t

2

)

(1�t)

�+�

is given by

F (1� �; 1� �; 2; t

2

)

(1� t)

�+�

=

1

X

p=1

 (p; �; �)t

p�1

; (jtj < 1); (3.8)

where for all p in N,

 (p; �; �) =

[

p�1

2

℄

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

��

�+ � + p� 2j � 2

p� 2j � 1

�

: (3.9)

Sin
e we know that (3.7) holds for all �; � in N, we have, on the other hand,

that

 (p; �; �) =

1

(p� 1)!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k�1

�

l�1

; (3.10)

for all �; � in N. Thus, for �xed p, the right hand sides of (3.9) and (3.10)


oin
ide whenever �; � 2 N, and sin
e these two right hand sides are both

polynomials in � and �, they must therefore 
oin
ide for all �; � in ℄0;1[. In

other words, (3.10) holds for all �; � in ℄0;1[, and inserting this in (3.8), we

get the desired formula. �

3.5 Lemma. Let �; � be positive numbers, and assume that either � or � is

an integer. Then

F (1� �; 1� �; 2; t

2

) �

1

X

j=0

(��)

j

t

2j

j!(j + 1)!

; whenever 0 � t < 1: (3.11)

Proof. We re
all �rst, that

F (1� �; 1� �; 2; t

2

) =

1

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

�

t

2j

; (t 2 [0; 1[):

If both � and � are integers, then

0 �

�

�� 1

j

�

�

�

j

j!

and 0 �

�

� � 1

j

�

�

�

j

j!

;

for all j in N

0

, and (3.11) follows immediately. By symmetry of (3.11) in �

and �, it is therefore suÆ
ient to treat the 
ase where � is an integer and � is

not. In this 
ase, we have

F (1� �; 1� �; 2; t

2

) =

��1

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

�

t

2j

:
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If � � �, we have for any j in f0; 1; : : : ; � � 1g, that 0 <

�

��1

j

�

�

�

j

j!

and

0 <

�

��1

j

�

�

�

j

j!

, and again (3.11) follows immediately.

Assume then that � < �, and let n be the integer for whi
h n � 1 < � < n.

Sin
e � is an integer, and � > �, we have that � � n. Forming now Taylor

expansion on the fun
tion f(s) = F (1� �; 1� �; 2; s); (s > 0), it follows that

F (1� �; 1� �; 2; s) =

n�1

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

�

s

j

+ r

n

(s); (s > 0);

(3.12)

where r

n

(s) =

f

(n)

(�(s))

n!

s

n

, for some �(s) in ℄0; s[. It suÆ
es thus to show that

f

(n)

(�) � 0, for all � in [0; 1[, sin
e this will imply that for all s in [0; 1[,

F (1� �; 1� �; 2; s) �

n�1

X

j=0

1

j + 1

�

�� 1

j

��

� � 1

j

�

s

j

;

where, as above, 0 <

�

��1

j

�

�

�

j

j!

and 0 <

�

��1

j

�

�

�

j

j!

, for all j in f0; 1; : : : ; n�

1g.

To show that f

(n)

(�) � 0 for all � in [0; 1[, we note that by [HTF, Vol. 1, p. 58,

formula (7)℄,

f

(n)

(�) =

d

n

d�

n

F (1� �; 1� �; 2; �)

=

(1� �)

n

(1� �)

n

(n+ 1)!

F (n+ 1� �; n+ 1� �; n+ 2; �);

for all � in [0; 1[. Note here that

(1� �)

n

(1� �)

n

= (�� 1)(�� 2) � � � (�� n)(� � 1)(� � 2) � � � (� � n) � 0;

be
ause � � n and n� 1 < � < n. Moreover, by [HTF, Vol. 1, p. 105, formula

(2)℄, we have for all � in [0; 1[

F (n+ 1� �; n+ 1� �; n+ 2; �) = (1� �)

�+��n

F (�+ 1; � + 1; n+ 2; �)

= (1� �)

�+��n

1

X

j=0

(� + 1)

j

(� + 1)

j

j!(n+ 2)

j

�

j

;

and therefore F (n + 1 � �; n + 1 � �; n + 2; �) > 0 for all � in [0; 1[. Taken

together, it follows that f

(n)

(�) � 0 for all � in [0; 1[, as desired. �

For any 
 in ℄0;1[, we let �




denote the free Poisson distribution with parameter


, i.e., the probability measure on R, given by

�




= maxf1� 
; 0gÆ

0

+

p

(x � a)(b� x)

2�x

� 1

[a;b℄

(x) � dx; (3.13)
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where a = (

p


� 1)

2

, b = (

p


+ 1)

2

and Æ

0

is the Dira
 measure at 0 (
f. [HT,

De�nition 6.5℄).

3.6 Lemma. Let �; � be stri
tly positive real numbers, and assume that either

� or � is an integer. Then for any t in [0;

1

2

℄,

1 +

1

X

p=1

t

p

p!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k

�

l�1

� exp((�+ �)t

2

)

Z

1

0

exp(�tx) d�

�

�

(x);

Proof. Using that � log(1 � t) =

P

1

n=1

t

n

n

� t + t

2

, whenever 0 � t �

1

2

, we

note �rst that

(1� t)

�(�+�)

� exp((� + �)t) exp((� + �)t

2

); (t 2 [0;

1

2

℄):

Hen
e by Lemma 3.4 and Lemma 3.5,

1

X

p=1

t

p�1

(p� 1)!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k�1

�

l�1

� exp((� + �)t) exp((� + �)t

2

)

1

X

j=0

(��)

j

t

2j

j!(j + 1)!

(3.14)

Put 
 =

�

�

and s = �t. From [HT, Formula (6.27)℄, it follows then that

Z

1

0

x exp(sx) d�




(x) = 
 exp((
+ 1)s)

1

X

j=0




j

s

2j

j!(j + 1)!

= 
 exp((�+ �)t)

1

X

j=0

(��)

j

t

2j

j!(j + 1)!

:

Hen
e (3.14) 
an be rewritten as

1

X

p=1

t

p�1

(p� 1)!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k�1

�

l�1

�

�

�

exp((� + �)t

2

)

Z

1

0

x exp(�tx) d�

�

�

(x):

(3.15)

Using then that

t

p

p!

=

R

t

0

u

p�1

(p�1)!

du, for all p in N, and that exp((� + �)u

2

) �

exp((� + �)t

2

), whenever 0 � u � t, we get by termwise integration of (3.15)
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(after repla
ing t by u), that

1

X

p=1

t

p

p!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k�1

�

l�1

�

�

�

exp((�+ �)t

2

)

Z

t

0

�

Z

1

0

x exp(�ux) d�

�

�

(x)

�

du

=

�

�

exp((�+ �)t

2

)

Z

1

0

x

exp(�tx) � 1

�x

d�

�

�

(x)

=

1

�

exp((�+ �)t

2

)

Z

1

0

(exp(�tx) � 1) d�

�

�

(x):

Hen
e, using that �

�

�

is a probability measure, it follows that

1 +

1

X

p=1

t

p

p!

X

k;l2N

k+l�p+1

Æ(p; k; l)�

k

�

l�1

� 1 + exp((�+ �)t

2

)

�

Z

1

0

exp(�tx) d�

�

�

(x) � 1

�

� exp((�+ �)t

2

)

Z

1

0

exp(�tx) d�

�

�

(x):

This 
on
ludes the proof. �

Proof of Theorem 3.3. Let a

1

; : : : ; a

r

, Y

1

; : : : ; Y

r

and S be as set out in Theo-

rem 3.3. By Proposition 2.5 and Proposition 2.7, we have then that

E

�

(S

�

S)

p

�

=

�

X

�2S

p

n

�2�(�̂)

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

�


 1

1

1

n

�

�

X

�2S

p

n

�2�(�̂)




�(�̂)

�

� 1

1

1

B(H

n

)

;

(3.16)

where �(�̂) was introdu
ed in De�nition 2.6.

We assume �rst that 
 � 1. By Proposition 2.10(i) and (ii), we have that

�(�̂) � k(�̂) + 2�(�̂); (� 2 S

p

):

Hen
e,

E

�

(S

�

S)

p

�

�

�

X

�2S

p

�

n




�

�2�(�̂)




k(�̂)

�

� 1

1

1

B(H

n

)

:

Using now that 2�(�̂) = p+ 1� d(�̂) = p+ 1� k(�̂)� l(�̂), we �nd that

E

�

(S

�

S)

p

�

�

�

�




n

�

p+1

X

�2S

p

n

k(�̂)

�

n




�

l(�̂)

�

� 1

1

1

B(H

n

)

=

�

�




n

�

p

X

k;l2N

k+l�p+1

Æ(p; k; l)n

k

�

n




�

l�1

�

� 1

1

1

B(H

n

)

;
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and therefore, for 0 � t �

n

maxf
;1g

=

n




, it follows by appli
ation of Proposi-

tion 3.2, that

E

�

exp(tS

�

S)

�

= 1

1

1

B(H

n

)

+

1

X

p=1

t

p

p!

E

�

(S

�

S)

p

�

�

�

1 +

1

X

p=1

1

p!

�


t

n

�

p

X

k;l2N

k+l�p+1

Æ(p; k; l)n

k

�

n




�

l�1

�

� 1

1

1

B(H

n

)

:

Using now Lemma 3.6, we get for 0 �


t

n

�

1

2

, that

E

�

exp(tS

�

S)

�

�

�

exp

�

(n+

n




)(


t

n

)

2

�

Z

1

0

exp

�

n




(


t

n

)x

�

d�




(x)

�

� 1

1

1

B(H

n

)

=

�

exp

�


(
+ 1)

t

2

n

�

Z

1

0

exp(tx) d�




(x)

�

� 1

1

1

B(H

n

)

�

�

exp

�

(
+ 1)

2

�

t

2

n

�

Z

1

0

exp(tx) d�




(x)

�

� 1

1

1

B(H

n

)

:

Sin
e supp(�




) �

�

0; (

p


+ 1)

2

�

, it follows that

E

�

exp(tS

�

S)

�

� exp

�

(
+ 1)

2

�

t

2

n

�

exp

�

(

p


+ 1)

2

t

�

� 1

1

1

B(H

n

)

;

and this proves the theorem in the 
ase where 
 � 1.

Assume then that 
 < 1. In this 
ase we use (3.16) together with the fa
t that

�(�̂) � k(�̂) for all � in S

p

, (Proposition 2.10(ii)) to obtain

E

�

(S

�

S)

p

�

�

�

X

�2S

p

n

�2�(�̂)




k(�̂)

�

� 1

1

1

B(H

n

)

�

�

1

n

p+1

X

�2S

p

(n
)

k(�̂)

n

l(�̂)

�

� 1

1

1

B(H

n

)

=

�

1

n

p

X

k;l2N

k+l�p+1

Æ(p; k; l)(n
)

k

n

l�1

�

� 1

1

1

B(H

n

)

:

Hen
e for 0 � t <

n

maxf
;1g

= n, we get by appli
ation of Proposition 3.2,

E

�

exp(tS

�

S)

�

� 1

1

1

B(H

n

)

+

1

X

p=1

t

p

p!

E

�

(S

�

S)

p

�

�

�

1 +

1

X

p=1

1

p!

�

t

n

�

p

X

k;l2N

k+l�p+1

Æ(p; k; l)(n
)

k

n

l�1

�

� 1

1

1

B(H

n

)

:
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Hen
e by Lemma 3.6, we have for 0 �

t

n

�

1

2

,

E

�

exp(tS

�

S)

�

�

�

exp

�

(n
+ n)(

t

n

)

2

�

Z

1

0

exp

�

n(

t

n

)x

�

d�




(x)

�

� 1

1

1

B(H

n

)

=

�

exp

�

(
+ 1)

t

2

n

�

Z

1

0

exp(tx) d�




(x)

�

� 1

1

1

B(H

n

)

� exp

�

(
+ 1)

2

�

t

2

n

)

�

exp

�

(

p


+ 1)

2

t

�

� 1

1

1

B(H

n

)

;

and this 
ompletes the proof. �

3.7 Remark. Assume that a

1

; : : : ; a

r

2 B(H;K), satisfying that

P

r

i=1

a

�

i

a

i

�


1

1

1

B(H)

and

P

r

i=1

a

i

a

�

i

� d1

1

1

B(H)

, for some positive 
onstants 
 and d. Consider

furthermore independent elements Y

1

; : : : ; Y

r

of GRM(n; n;

1

n

), and put S =

P

r

i=1

a

i


Y

i

. Applying then Theorem 3.3 to a

0

i

=

1

p

d

a

i

and 


0

=




d

, we get the

following extension of Theorem 3.3:

For any t in [0;

n

2


℄ \ [0;

n

2d

℄,

E

�

exp(tS

�

S)

�

� exp

�

(

p


+

p

d)

2

t+ (
+ d)

2

�

t

2

n

�

� 1

1

1

B(H

n

)

: �

4 Asymptoti
 Upper Bound on the Spe
trum of S

�

n

S

n

in the Exa
t

Case

Throughout this se
tion, we 
onsider elements a

1

; : : : ; a

r

of B(H;K) (for

Hilbert spa
es H and K), satisfying that







r

X

i=1

a

�

i

a

i







� 
; and







r

X

i=1

a

i

a

�

i







� 1; (4.1)

for some 
onstant 
 in ℄0;1[. Let A denote the unital C

�

-subalgebra of B(H)

generated by the family

�

a

�

i

a

j

�

�

i; j 2 f1; : : : ; rg

	

[ f1

1

1

B(H)

g. Furthermore, for

ea
h n in N, we 
onsider independent elements Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

),

and we de�ne

S

n

=

r

X

i=1

a

i


 Y

(n)

i

: (4.2)

In this se
tion, we shall determine (almost surely) the asymptoti
 behavior (as

n!1) of the largest element of the spe
trum of S

�

n

S

n

(i.e., the norm of S

�

n

S

n

),

under the assumption that A is an exa
t C

�

-algebra. We start by studying the


orresponding asymptoti
 behavior for the image of S

�

n

S

n

under 
ertain matrix

valued 
ompletely positive mappings. More pre
isely, let d be a �xed positive

integer, and let �: A ! M

d

(C ) be a unital 
ompletely positive mapping. For
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ea
h n in N, let id

n

: M

n

(C ) !M

n

(C ) denote the identity mapping onM

n

(C ).

We then de�ne

V

n

=

�

�
 id

n

�

(S

�

n

S

n

) =

r

X

i;j=1

�(a

�

i

a

j

)


�

Y

(n)

i

�

�

Y

(n)

j

; (n 2 N): (4.3)

Note that V

n

is a random variable taking values inM

d

(C )
M

n

(C ) 'M

dn

(C ).

As indi
ated above, our �rst obje
tive is to determine the asymptoti
 behavior

of the largest eigenvalue of V

n

. We emphasize, that this step does not require

that A be exa
t.

The following lemma is a version of Jensen's Inequality, whi
h we shall need

signi�
antly in this se
tion and in Se
tion 8. The lemma has been proved in

mu
h more general settings by Brown and Kosaki (
f. [BK℄) and by Petz (
f.

[Pe℄). For the reader's 
onvenien
e, we in
lude a short proof, handling the

spe
ial 
ase needed here.

4.1 Lemma. (i) Let L be a Hilbert spa
e, and let P be a �nite dimensional

proje
tion in B(L). Let tr denote the normalized tra
e on B(P (L)). Then for

any selfadjoint element a of B(L), and any 
onvex fun
tion g : R ! R, we have

that

tr

�

g(PaP )

�

� tr

�

Pg(a)P

�

: (4.4)

(ii) Let B be a C

�

-algebra, let m be a positive integer and let 	: B !M

m

(C )

be a unital 
ompletely positive mapping. Then for any selfadjoint element a of

B and any 
onvex fun
tion g : R ! R, we have that

tr

m

�

g(	(a))

�

� tr

m

�

	(g(a))

�

:

Proof. (i) Note �rst that g is 
ontinuous (being 
onvex on the whole real

line). Let m denote the dimension of P (L), and 
hoose an orthonormal basis

(e

1

; : : : ; e

m

) for P (L) 
onsisting of eigenve
tors for PaP . Let �

1

; : : : ; �

m

be

the 
orresponding eigenvalues for PaP , i.e.,

�

i

= hPaPe

i

; e

i

i = hae

i

; e

i

i; (i 2 f1; 2; : : : ;mg):

Then g(�

1

); : : : ; g(�

m

) are the eigenvalues of g(PaP ), and hen
e

tr

�

g(PaP )

�

=

m

X

i=1

g(�

i

) =

m

X

i=1

g(hae

i

; e

i

i): (4.5)

Sin
e the tra
e on B(P (L)) is independent of the 
hoi
e of orthonormal basis

for P (L), we have at the same time, that

tr

�

Pg(a)P ℄ =

m

X

i=1

hPg(a)Pe

i

; e

i

i =

m

X

i=1

hg(a)e

i

; e

i

i: (4.6)
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Comparing (4.5) and (4.6), we see that it suÆ
es to show that hg(a)e

i

; e

i

i �

g(hae

i

; e

i

i), for all i in f1; 2; : : : ;mg. But for ea
h i, this follows from the


lassi
al Jensen Inequality, applied to the distribution of a w.r.t. the state

h � e

i

; e

i

i, i.e., the probability measure �

i

supported on sp(a), and satisfying

that hf(a)e

i

; e

i

i =

R

sp(a)

f(t) d�

i

(t), for all fun
tions f in C(sp(a)). This


on
ludes the proof of (i).

(ii) By Stinespring's Theorem, we may 
hoose a Hilbert spa
e L, a �-

representation � : B ! B(L) of B on L, and an embedding � : C

m

! L of

C

m

into L, su
h that

	(b) = P

K

�(b)P

K

; (b 2 B); (4.7)

whereK = �(C

m

), and P

K

is the orthogonal proje
tion of L ontoK. Moreover,

the equality (4.7) is modulo the natural identi�
ations asso
iated with �. Let

tr

K

denote the normalized tra
e on B(K). By appli
ation of (i), it follows then

that

tr

m

�

g(	(a))

�

= tr

K

�

g(P

K

�(a)P

K

)

�

� tr

K

�

P

K

g(�(a))P

K

�

= tr

K

�

P

K

�(g(a))P

K

�

= tr

m

�

	(g(a))

�

;

and this proves (ii). �

4.2 Lemma. Let V

n

, n 2 N, be as in (4.3), and let �

max

(V

n

) denote the largest

eigenvalue of V

n

(
onsidered as an element of M

dn

(C )). Then for any � in

℄0;1[, we have that

1

X

n=1

P

�

�

max

(V

n

) � (

p


+ 1)

2

+ �

�

<1: (4.8)

Proof. The proof pro
eeds along the same lines as the proof of [HT, Lemma 7.3℄;

the main di�eren
e being that in the present situation, we have to rely on the

estimate obtained in Theorem 3.3. Consider �rst a �xed n in N. We �nd then

for any t in ℄0;1[, that

P

�

�

max

(V

n

) � (

p


+ 1)

2

+ �

�

= P

�

exp

�

t�

max

(V

n

)� t(

p


+ 1)

2

� t�

�

� 1

�

� E

�

exp

�

t�

max

(V

n

)� t(

p


+ 1)

2

� t�

��

= exp(�t(

p


+ 1)

2

� t�) � E

�

�

max

�

exp(tV

n

)

��

� exp(�t(

p


+ 1)

2

� t�) � E

�

Tr

dn

�

exp(tV

n

)

��

;

(4.9)

where the last inequality follows by noting, that sin
e exp(tV

n

) is a positive

dn � dn matrix, �

max

(exp(tV

n

)) � Tr

dn

(exp(tV

n

)). Note now, that sin
e the

mapping � 
 id

n

is unital, 
ompletely positive, and sin
e the fun
tion x 7!
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e

tx

: R ! R is 
onvex, it follows from Lemma 4.1(ii), that

tr

dn

�

exp(tV

n

)

�

= tr

dn

�

exp

�

t(�
 id

n

)(S

�

n

S

n

)

��

� tr

dn

��

�
 id

n

�

(exp(tS

�

n

S

n

))

�

= tr

d


 tr

n

��

�
 id

n

�

(exp(tS

�

n

S

n

))

�

= �
 tr

n

�

exp(tS

�

n

S

n

)

�

;

(4.10)

where � is the state tr

d

Æ � on A. Note here, that by De�nition 3.1 and

Theorem 3.3,

E

�

�
 tr

n

�

exp(tS

�

n

S

n

)

��

= �
 tr

n

�

E

�

exp(tS

�

n

S

n

)

��

� exp

�

t(

p


+ 1)

2

+

t

2

n

(
+ 1)

2

�

;

(4.11)

for all t in ℄0;

n

2


℄.

Combining now (4.9)-(4.11), we get that for all t in ℄0;

n

2


℄,

P

�

�

max

(V

n

) �(

p


+ 1)

2

+ �

�

� dn � exp(�t(

p


+ 1)

2

� t�) � exp

�

t(

p


+ 1)

2

+

t

2

n

(
+ 1)

2

�

= dn � exp

�

t(

t

n

(
+ 1)

2

� �)

�

;

Now 
hoose t = t

n

=

n�

2(
+1)

2

, and note that t

n

2 ℄0;

n

2


℄, as long as � � 1.

Clearly it suÆ
es to prove the lemma for su
h �, so we assume that � � 1. It

follows then that

P

�

�

max

(V

n

) � (

p


+1)

2

+�

�

� dn �exp

�

t

n

(

t

n

n

(
+1)

2

��)

�

= dn �exp

�

�n�

2

4(
+1)

2

�

:

Sin
e this estimate holds for all n in N, it follows immediately that (4.8) holds.

�

4.3 Proposition. Let V

n

, n 2 N, be as in (4.3). We then have

lim sup

n!1

�

max

(V

n

) �

�

p


+ 1

�

2

; almost surely:

Proof. It suÆ
es to show, that for any � from ℄0;1[,

P

�

lim sup

n!1

�

max

(V

n

) � (

p


+ 1)

2

+ �

�

= 1;

and this will follow, if we show that

P

�

�

max

(V

n

) � (

p


+ 1)

2

+ �; for all but �nitely many n

�

= 1;

for all � in ℄0;1[. But this follows from the Borel-Cantelli Lemma (
f. [Bre,

Lemma 3.14℄) together with Lemma 4.2. �
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The next step is to repla
e V

n

in Proposition 4.3 by S

�

n

S

n

itself. This is where we

need to assume that A is an exa
t C

�

-algebra. The key point in this step is the

important result of E. Kir
hberg that exa
tness implies nu
lear embeddability

(
f. [Ki2, Theorem 4.1℄ and [Was, Theorem 7.3℄).

Let B be a unital C

�

-algebra. Re
all then that an operator system in B is a

subspa
e E of B, su
h that 1

1

1

B

2 E and x

�

2 E for all x in E.

4.4 Proposition. Let B be a unital exa
t C

�

-algebra, and let E be a �nite

dimensional operator system in B. Then for any � in ℄0;1[, there exist d in N

and a unital 
ompletely positive mapping �: B !M

d

(C ), su
h that







�

�
 id

n

�

(x)







� (1� �)kxk;

for all n in N and all x in M

n

(E).

Proof. Clearly we may assume that B is a unital C

�

-subalgebra of B(L) for

some Hilbert spa
e L. Let N denote the dimension of E. Then by Auerba
h's

Lemma (
f. [LT, Proposition 1.
.3℄), we may 
hoose linear bases e

1

; : : : ; e

N

of

E and e

�

1

; : : : ; e

�

N

of the dual spa
e E

�

, su
h that

ke

i

k = ke

�

i

k = 1; and e

�

i

(e

j

) = Æ

i;j

; (i; j 2 f1; 2; : : : ; Ng): (4.12)

Now sin
e B is exa
t, and hen
e nu
lear embeddable, there exist d in N, and

unital 
ompletely positive mappings �: B ! M

d

(C ) and 	: M

d

(C ) ! B(L),

su
h that

k	(�(e

i

))� e

i

k �

�

N

; (i 2 f1; 2; : : : ; Ng); (4.13)

(
f. [Was, p. 60℄). We show that this � has the property set out in the propo-

sition. For this, it suÆ
es to show that







(	 Æ�� �

B

)

jE








b

� �; (4.14)

where �

B

: B ! B(L) is the embedding of B into B(L). Indeed, knowing the

validity of (4.14), we have for n in N and x in M

n

(E), that

kxk �







�

(	 Æ�)
 id

n

�

(x)� x







+







�

(	 Æ�)
 id

n

�

(x)







� �kxk+







�

(	 Æ�)
 id

n

�

(x)







;

and hen
e that

(1� �)kxk �







�

(	 Æ�)
 id

n

�

(x)







� k(�
 id

n

)(x)k;

where the last inequality is due to the fa
t that 	, being unital 
ompletely

positive, is a 
omplete 
ontra
tion.

To verify (4.14) note �rst, that for x in E, we have by (4.12),

x =

N

X

i=1

e

�

i

(x)e

i

;
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and hen
e

	 Æ�(x)� x =

N

X

i=1

e

�

i

(x)

�

	 Æ�(e

i

)� e

i

�

=

N

X

i=1

e

�

i

(x)f

i

;

where f

i

= 	 Æ �(e

i

) � e

i

. Note that by (4.13), kf

i

k �

�

N

, for all i in

f1; 2; : : : ; Ng.

Consider now n in N and x = (x

rs

)

1�r;s�n

in M

n

(E). We then have

�

(	 Æ�)
 id

n

�

(x)� x =

�

(	 Æ�)(x

rs

)� x

rs

�

1�r;s�n

=

h

P

N

i=1

e

�

i

(x

rs

)f

i

i

1�r;s�n

=

N

X

i=1

�

[e

�

i

(x

rs

)℄

1�r;s�n

� diag

n

(f

i

; : : : ; f

i

)

�

;

(4.15)

where diag

n

(f

i

; : : : ; f

i

) is the n�n diagonal matrix with f

i

in all the diagonal

positions. Note here that by (4.12), ke

�

i

k


b

= ke

�

i

k = 1, for all i (
f. [Pa,

Proposition 3.7℄). Consequently,







[e

�

i

(x

rs

)℄

1�r;s�n







� ke

�

i

k


b

� kxk = kxk; (i 2 f1; 2; : : : ; Ng);

and using this in (4.15), we get that







�

(	 Æ�)
 id

n

�

(x)� x







�

N

X

i=1

kxk � kf

i

k �

N

X

i=1

kxk

�

N

= �kxk;

whi
h proves (4.14). �

4.5 Theorem. Let a

1

; : : : ; a

r

be elements of B(H;K), su
h that

k

P

r

i=1

a

�

i

a

i

k � 
, and k

P

r

i=1

a

i

a

�

i

k � 1, for some 
onstant 
 in ℄0;1[.

Assume, in addition, that the C

�

-subalgebra A of B(H), generated by

fa

�

i

a

j

j i; j 2 f1; 2; : : : ; rgg [ f1

1

1

B(H)

g, is exa
t. Consider furthermore, for

ea
h n in N, independent elements Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

), and put

S

n

=

P

r

i=1

a

i


 Y

(n)

i

. We then have

lim sup

n!1

max

�

sp(S

�

n

S

n

)

�

�

�

p


+ 1

�

2

; almost surely:

Proof. It suÆ
es to show, that for any � from ℄0;1[, the set

T

�

=

n

! 2 


�

�

�

lim sup

n!1

max

�

sp(S

n

(!)

�

S

n

(!))

�

�

1

1��

(

p


+ 1)

2

o

;

has probability 1. So let � from ℄0;1[ be given, and put

E = span

�

f1

1

1

A

g [

�

a

�

i

a

j

�

�

i; j 2 f1; 2; : : : ; rg

	�

:
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Note that x

�

2 E for all x in E, and that 1

1

1

A

2 E. Hen
e E is a �nite di-

mensional operator system in A. Sin
e A is exa
t, it follows thus from Propo-

sition 4.4, that we may 
hoose d in N and a 
ompletely positive mapping

�: A !M

d

(C ), su
h that







�

�
 id

n

�

(x)







� (1� �)kxk; (n 2 N; x 2M

n

(E)): (4.16)

Now put

V

n

=

�

�
 id

n

�

(S

�

n

S

n

); (n 2 N);

and de�ne furthermore

V =

n

! 2 


�

�

�

lim sup

n!1

kV

n

(!)k � (

p


+ 1)

2

o

:

By Proposition 4.3, P (V) = 1, and hen
e it suÆ
es to show that T

�

� V . But

if ! 2 V , it follows from (4.16) that

lim sup

n!1

kS

n

(!)

�

S

n

(!)k � (1� �)

�1

lim sup

n!1

kV

n

(!)k � (1� �)

�1

(

p


+ 1)

2

;

whi
h shows that ! 2 T

�

. This 
on
ludes the proof. �

4.6 Corollary. Let a

1

; : : : ; a

r

be elements of an exa
t C

�

-algebra A, and

let, for ea
h n in N, Y

(n)

1

; : : : ; Y

(n)

r

be independent elements of GRM(n; n;

1

n

).

Then

lim sup

n!1







r

X

i=1

a

i


 Y

(n)

i







�







r

X

i=1

a

�

i

a

i







1

2

+







r

X

i=1

a

i

a

�

i







1

2

; almost surely:

Proof. We may assume that not all a

i

are zero. Put 
 = k

P

r

i=1

a

�

i

a

i

k > 0 and

Æ = k

P

r

i=1

a

i

a

�

i

k > 0. We may assume that A � B(H) for some Hilbert spa
e

H. Then the unital C

�

-algebra

~

A = C

�

(A;1

1

1

B(H)

) is also exa
t, and hen
e so is

every C

�

-subalgebra of

~

A (
f. [Ki1℄ and [Was, 2.5.2℄). Therefore Corollary 4.6

follows by applying Theorem 4.5 to a

0

i

=

1

p

Æ

a

i

, i = 1; : : : ; r, and 
 =




Æ

. �

Regarding the 
orollary above, 
onsider arbitrary elements a

1

; : : : ; a

r

of an

arbitrary C

�

-algebra A, and let fy

1

; : : : ; y

r

g be a 
ir
ular (or semi-
ir
ular)

system in some C

�

-probability spa
e (B;  ) (
f. [Vo2℄), and normalized so that

 (y

�

i

y

i

) = 1, i = 1; 2; : : : ; r. In [HP, Proof of Proposition 4.8℄, G. Pisier and

the �rst named author showed, that in this setting, the following inequality

holds:







r

X

i=1

a

i


 y

i







� 2max

n







r

X

i=1

a

�

i

a

i







1

2

;







r

X

i=1

a

i

a

�

i







1

2

o

: (4.17)

In [HP, Proof of Proposition 4.8℄, the fa
tor 2 on the right hand side of (4.17)

is missing, but this is due to a di�erent 
hoi
e of normalization of semi-
ir
ular
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and 
ir
ular families. By appli
ation of [Haa, Se
tion 1℄, it is not hard to

strengthen (4.17) to the inequality







r

X

i=1

a

i


 y

i







�







r

X

i=1

a

�

i

a

i







1

2

+







r

X

i=1

a

i

a

�

i







1

2

; (4.18)

both for semi-
ir
ular and 
ir
ular systems. Sin
e independent elements

Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

) 
an be 
onsidered as a random matrix model

for the 
ir
ular system fy

1

; : : : ; y

r

g, in the sense of [Vo1, Theorem 2.2℄, we

should thus 
onsider Corollary 4.6 as a random matrix version of (4.18). How-

ever, the random matrix version holds only under the assumption that the

C

�

-algebra A be exa
t. In fa
t, we shall spend the remaining part of this se
-

tion, showing that the assumption in Theorem 4.5 that the C

�

-algebra A be

exa
t, 
an not be omitted. We start with two lemmas, the �rst of whi
h is a

slightly strengthened version of [HT, Theorem 7.4℄ (whi
h, in turn, is a spe
ial


ase of a theorem of Wa
hter (
f. [Wa
℄)).

4.7 Lemma. Let 
 be a positive number, and let (m

n

) be a sequen
e of positive

integers, su
h that

m

n

n

! 
 as n!1. Let furthermore (Y

n

) be a sequen
e of

random matri
es, su
h that for ea
h n in N, Y

n

2 GRM(m

n

; n;

1

n

). Then for

any 
ontinuous fun
tion f : [0;1[! C , we have that

lim

n!1

tr

n

�

f(Y

�

n

Y

n

)

�

=

Z

b

0

f(x) d�




(x); almost surely; (4.19)

where b = (

p


+ 1)

2

and � is the measure introdu
ed in (3.13).

Proof. By splitting f in its real and imaginary parts, it is 
lear, that we may

assume that f is a real valued 
ontinuous fun
tion on [0;1[. We note next,

that it follows from [HT, Theorem 7.4℄ and the de�nition of weak 
onvergen
e

(
f. [HT, De�nition 2.2℄), that (4.19) holds for all 
ontinuous bounded fun
tions

f : [0;1[ ! R. Thus, our obje
tive is to pass from bounded to unbounded


ontinuous fun
tions, and the key to this, is the fa
t (
f. [HT, Theorem 7.1℄),

that

lim

n!1

kY

�

n

Y

n

k =

�

p


+ 1

�

2

; almost surely: (4.20)

Indeed, it follows from (4.20), that (for example)

P

�

kY

�

n

Y

n

k � (

p


+ 1)

2

+ 1; for all but �nitely many n

�

= 1;

and hen
e, given any � in ℄0;1[, we may 
hoose N in N, su
h that

P (F

N

) � 1� �;

where

F

N

=

�

! 2 


�

�

kY

n

(!)

�

Y

n

(!)k � (

p


+ 1)

2

+ 1; whenever n � N

	

:
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Now, given a 
ontinuous fun
tion f : [0;1[ ! R, let f

1

: [0;1[ ! R be an

arbitrary 
ontinuous fun
tion, satisfying that f

1

= f on [0; (

p


+1)

2

+1℄, and

that supp(f) is 
ompa
t. Then for any ! in F

N

, we have that

f

1

(Y

n

(!)

�

Y

n

(!)) = f(Y

n

(!)

�

Y

n

(!)); whenever n � N;

and hen
e, sin
e f

1

is bounded,

lim

n!1

tr

n

�

f(Y

n

(!)

�

Y

n

(!))

�

= lim

n!1

tr

n

�

f

1

(Y

n

(!)

�

Y

n

(!))

�

=

Z

b

a

f

1

(x) d�




(x)

=

Z

b

a

f(x) d�




(x):

It follows thus, that

P

�

lim

n!1

tr

n

�

f(Y

�

n

Y

n

)

�

=

R

b

a

f(x) d�




(x)

�

� P (F

N

) � 1� �;

and sin
e this holds for any � in ℄0;1[, we obtain the desired 
on
lusion. �

Next, we shall study the polar de
omposition of Gaussian random matri
es.

Let n be a positive integer and let Y be an element of GRM(n; n;

1

n

), de�ned

on (
;F ; P ). Furthermore, let U

n

denote the unitary group of M

n

(C ).

By a measurable unitary sign for Y , we mean a random matrix U : 
 ! U

n

,

su
h that for almost all ! in 
, the polar-de
omposition of Y (!) is given by:

Y (!) = U(!)jY (!)j;

where, as usual, jY (!)j = [Y (!)

�

Y (!)℄

1

2

. To see that su
h measurable unitary

signs do exist, we note �rst that by [HT, Theorem 5.2℄, Y (!) is invertible for

almost all !. Thus, for example the random matrix U : 
! U

n

given by

U(!) =

(

Y (!)

�

Y (!)

�

Y (!)

�

�

1

2

; if Y (!) is invertible;

1

1

1

n

; otherwise;

is a measurable unitary sign for Y .

4.8 Lemma. For ea
h n in N, let Y

(n)

1

; : : : ; Y

(n)

r

be (not ne
essarily indepen-

dent) random matri
es in GRM(n; n;

1

n

), and let U

(n)

1

; : : : ; U

(n)

r

be measurable

unitary signs for Y

(n)

1

; : : : ; Y

(n)

r

, respe
tively. Furthermore, let U

(n)

1

; : : : ; U

(n)

r

,

denote the 
omplex 
onjugated matri
es of U

(n)

1

; : : : ; U

(n)

r

. We then have

lim inf

n!1







r

X

i=1

U

(n)

i


 Y

(n)

i







�

8

3�

� r; almost surely:
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Proof. Let (e

1

; : : : ; e

n

) be the usual orthonormal basis for C

n

, and 
onsider

then the unit ve
tor � =

1

p

n

P

n

i=1

e

i


 e

i

in C

n


 C

n

. Note then that for any

A = (a

jk

) and B = (b

jk

) in M

n

(C ), we have that




(A
B)�; �

�

=

1

n

n

X

j;k=1




(A
B)(e

j


 e

j

); e

k


 e

k

�

=

1

n

n

X

j;k=1

hAe

j

; e

k

i � hBe

j

; e

k

i

=

1

n

n

X

j;k=1

a

kj

b

kj

= tr

n

(AB

t

) = tr

n

(A

t

B):

It follows thus, that







r

X

i=1

U

(n)

i


 Y

(n)

i







�

�

�

�

D�

r

X

i=1

U

(n)

i


 Y

(n)

i

�

�; �

E

�

�

�

=

�

�

�

r

X

i=1

tr

n

��

U

(n)

i

�

�

Y

(n)

i

�

�

�

�

=

r

X

i=1

tr

n

�

jY

(n)

i

j

�

;

(4.21)

where the last equation holds almost surely. By Lemma 4.7, we have for all i

in f1; : : : ; rg, that

lim

n!1

tr

n

�

jY

(n)

i

j

�

=

Z

4

0

p

x d�

1

(x); almost surely;

and 
ombining this with (4.21), it follows that

lim inf

n!1







r

X

i=1

U

(n)

i


 Y

(n)

i







� r

Z

4

0

p

x d�

1

(x); almost surely:

We note �nally that

Z

4

0

p

x d�

1

(x) =

Z

4

0

p

x �

p

x(4�x)

2�x

dx =

1

2�

Z

4

0

p

4� x dx =

8

3�

;

and this 
on
ludes the proof. �

We are now ready to give an example where the 
on
lusion of Theorem 4.5 fails,

due to la
k of exa
tness of the C

�

-algebra A. Consider a �xed positive integer

r, greater than or equal to 2, and let F

r

denote the free group on r generators.

Let g

1

; : : : ; g

r

denote the generators of F

r

, and let C

�

(F

r

) denote the full C

�

-

algebra asso
iated to F

r

. Re
all that there is a 
anoni
al unitary representation

u

F

r

: F

r

! C

�

(F

r

), and that the pair (C

�

(F

r

); u

F

r

) is 
hara
terized (up to �-

isomorphism) by the universal property, that given any unital C

�

-algebra B
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and any unitary representation u : F

r

! B, there exists a unique unital �-

homomorphism �

u

: C

�

(F

r

)! B, su
h that the following diagram 
ommutes:

F

r

u

F

r

//

u

��

C

�

(F

r

)

�

u

{{ww
w
w
w
w
w
w
w

B

It is well-known (
f. [Was, Corollary 3.7℄) that C

�

(F

r

) is not exa
t. We let

u

1

; : : : ; u

r

be the 
anoni
al unitaries in C

�

(F

r

) asso
iated to g

1

; : : : ; g

r

respe
-

tively, i.e., u

i

= u

F

r

(g

i

), i = 1; : : : ; r. We then de�ne

a

i

=

1

p

r

u

i

; (i 2 f1; : : : ; rg): (4.22)

Then 
learly,

r

X

i=1

a

�

i

a

i

=

r

X

i=1

a

i

a

�

i

= 1

1

1

C

�

(F

r

)

: (4.23)

Consider now, in addition, for ea
h n in N, independent elements Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

), and de�ne

S

n

=

r

X

i=1

a

i


 Y

(n)

i

; (n 2 N): (4.24)

We then have the following

4.9 Proposition. With a

1

; : : : ; a

r

and S

n

, n 2 N, as introdu
ed in (4.22) and

(4.24), we have that

(i) lim inf

n!1

kS

�

n

S

n

k �

�

8

3�

�

2

� r, almost surely.

(ii) The 
on
lusion of Theorem 4.5 does not hold for these a

1

; : : : ; a

r

, whenever

r � 6.

In parti
ular, the assumption in Theorem 4.5, that A be exa
t, 
an not, in

general, be omitted.

Proof. (i) For ea
h positive integer n, 
hoose measurable unitary signs

U

(n)

1

; : : : ; U

(n)

r

for Y

(n)

1

; : : : ; Y

(n)

r

respe
tively, and let U

(n)

1

; : : : ; U

(n)

r

denote

the 
omplex 
onjugated matri
es of U

(n)

1

; : : : ; U

(n)

r

. Sin
e F

r

is the group free

produ
t of r 
opies of Z, it follows that for ea
h ! in 
 and ea
h n in N, there

exists a unitary representation u

(n)

!

: F

r

!M

n

(C ), su
h that

u

(n)

!

(g

i

) = U

(n)

i

(!); (i 2 f1; : : : ; rg):

By the universial property of C

�

(F

r

) it follows then, that for ea
h ! in 
 and

ea
h n in N, we may 
hoose a �-homomorphism �

(n)

!

: C

�

(F

r

) !M

n

(C ), su
h

that

�

(n)

!

(u

i

) = U

(n)

i

(!); (i 2 f1; : : : ; rg):
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For ea
h ! in 
 and ea
h n in N, note now that







r

X

i=1

u

i


 Y

(n)

i

(!)







�







�

�

(n)

!


 id

n

�

�

r

X

i=1

u

i


 Y

(n)

i

(!)

�







=







r

X

i=1

U

(n)

i

(!)
 Y

(n)

i

(!)







:

Applying then Lemma 4.8, it follows that

lim inf

n!1







r

X

i=1

u

i


 Y

(n)

i







�

8

3�

� r; almost surely;

and hen
e that

lim inf

n!1







r

X

i=1

a

i


 Y

(n)

i







�

8

3�

�

p

r; almost surely:

Sin
e kS

�

n

S

n

k = kS

n

k

2

, we get the desired formula.

(ii) By (4.23), a

1

; : : : ; a

r

introdu
ed in (4.22) satisfy 
ondition (4.1) in the 
ase


 = 1. Thus, if the 
on
lusion of Theorem 4.5 were to hold for these a

1

; : : : ; a

r

,

it would mean that

lim sup

n!1







r

X

i=1

a

i


 Y

(n)

i







� 2; almost surely:

However, Proposition 4.9 shows that

lim inf

n!1







r

X

i=1

a

i


 Y

(n)

i







�

�

8

3�

�

�

p

r; almost surely;

and thus the 
on
lusion of Theorem 4.5 breaks down, for 
 = 1, whenever

r > (

3�

4

)

2

� 5:55, i.e., for r � 6. �

5 A New Combinatorial Expression for E

�

(S

�

S)

p

�

Throughout this se
tion, we 
onsider elements a

1

; : : : ; a

r

of B(H;K), where

H and K are Hilbert spa
es. In Se
tion 2 we proved that if Y

1

; : : : ; Y

r

are

independent random matri
es in GRM(n; n;

1

n

), and we put S =

P

r

i=1

a

i


 Y

i

,

then

E

�

(S

�

S)

p

�

=

�

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�


 1

1

1

n

: (5.1)

In this se
tion, we shall assume that a

1

; : : : ; a

r

satisfy the 
ondition

r

X

i=1

a

�

i

a

i

= 
1

1

1

B(H)

; and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(K)

; (5.2)
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for some number 
 in ℄0;1[. Under this assumption, and by appli
ation of

the method of \redu
tions of permutations", introdu
ed in Se
tion 1, we show

that E

�

(S

�

S)

p

�


an be expressed as a 
onstant plus a linear 
ombination of the

sums:

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

; (q = 2; : : : ; p);

where S

irr

q

, as in Se
tion 1, denotes the set of permutations � in S

q

for whi
h

�̂ is irredu
ible in the sense of De�nition 1.16.

5.1 Lemma. Let a

1

; : : : ; a

r

be elements of B(H;K), and assume that (5.2)

holds. Let p be a positive integer, greater than or equal to 2, let � be a

permutation in S

p

n S

irr

p

, and let �

0

be the permutation in S

p�1

obtained by


an
ellation of a pair (e; e+ 1) for �̂ (
f. De�nition 1.18). We then have

(i) If e is odd, then k(�̂

0

) = k(�̂)� 1, and

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

= 
 �

�

X

1�i

1

;::: ;i

p�1

�r

a

�

i

1

a

i

�

0

(1)

� � � a

�

i

p�1

a

i

�

0

(p�1)

�

:

(5.3)

(ii) If e is even, then k(�̂

0

) = k(�̂), and

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

=

X

1�i

1

;::: ;i

p�1

�r

a

�

i

1

a

i

�

0

(1)

� � � a

�

i

p�1

a

i

�

0

(p�1)

:

(5.4)

Proof. (i) Assume that e is odd. Then k(�̂

0

) = k(�̂)� 1 by Proposition 1.22.

Moreover, (e; e+ 1) is of the form (2j � 1; 2j) for some j in f1; 2; : : : ; pg, and

therefore �(j) = j (
f. De�nition 1.15). Hen
e, the index i

j

o

ur only at the

2j�1'th and the 2j'th fa
tor in the produ
t a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

, and therefore

the sum on the left hand side of (5.3) is equal to

X

1�i

1

;::: ;i

j�1

;i

j+1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

i

�(j�1)

�

r

X

i

j

=1

a

�

i

j

a

i

j

�

a

�

i

j+1

� � � a

�

i

p

a

i

�(p)

;

whi
h by (5.2) is equal to


 �

�

X

1�i

1

;::: ;i

j�1

;i

j+1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

i

�(j�1)

a

�

i

j+1

� � � a

�

i

p

a

i

�(p)

�

: (5.5)

Note here, that if we relabel the indi
es i

j+1

; : : : ; i

p

by i

j

; : : : ; i

p�1

, then it

follows from Remark 1.19(a), that (5.5) is equal to


 �

�

X

1�i

1

;::: ;i

p�1

�r

a

�

i

1

a

i

�

0

(1)

� � � a

�

i

p�1

a

i

�

0

(p�1)

�

;
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and this proves (5.3).

(ii) Assume that e is even. Then k(�̂

0

) = k(�̂) by Proposition 1.22, and

(e; e + 1) = (2j; 2j + 1), for some j in f1; 2; : : : ; p � 1g, so that �(j) = j + 1

(
.f. De�nition 1.15). Hen
e, the left hand side of (5.4) is equal to

X

1�i

1

;::: ;i

j

;i

j+2

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

j

�

r

X

i

j+1

=1

a

i

j+1

a

�

i

j+1

�

a

i

�(j+1)

� � � a

�

i

p

a

i

�(p)

:

(5.6)

Here,

P

r

i

j+1

=1

a

i

j+1

a

�

i

j+1

= 1

1

1

B(K)

, by (5.2), and pro
eeding then as in the

proof of (i), we obtain by Remark 1.19(b) (after relabeling i

j+2

; : : : ; i

p

by

i

j+1

; : : : ; i

p�1

), that (5.6) is equal to

X

1�i

1

;::: ;i

p�1

�r

a

�

i

1

a

i

�

0

(1)

� � � a

�

i

p�1

a

i

�

0

(p�1)

:

This proves (5.4) �

Re
all that for p in N, S

n


p

denotes the set of permutations � in S

p

, for whi
h

the permutation �̂ is non-
rossing in the sense of De�nition 1.14.

5.2 Lemma. Let a

1

; : : : ; a

r

be elements of B(H;K), su
h that (5.2) holds, let

p be a positive integer, and let � be a permutation in S

n


p

. Then

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

= 


k(�̂)

1

1

1

B(H)

; (5.7)

and

X

1�i

1

;::: ;i

p

�r

a

i

1

a

�

i

�(1)

� � � a

i

p

a

�

i

�(p)

= 


l(�̂)�1

1

1

1

B(K)

: (5.8)

Proof. We start by proving (5.7); pro
eeding by indu
tion on p. The 
ase

p = 1 is 
lear from (5.2). Assume now that p � 2, and that (5.7) holds for p�1

instead of p, and all permutations in S

n


p�1

. Consider then a permutation �

from S

n


p

, and re
all from Lemma 1.17 that �̂ has a pair of neighbors (e; e+1).

Let �

0

be the permutation in S

p�1

obtained by 
an
ellation of this pair. Then

by Lemma 1.20, �

0

2 S

n


p�1

, and hen
e by the indu
tion hypothesis,

X

1�i

1

;::: ;i

p�1

�r

a

�

i

1

a

i

�

0

(1)

� � � a

�

i

p�1

a

i

�

0

(p�1)

= 


k(�̂

0

)

1

1

1

B(H)

: (5.9)

But by Lemma 5.1, (5.9) implies (5.7), both when e is odd, and when e is even.

This 
ompletes the proof of (5.7).

To prove (5.8), we put b

i

=

1

p




a

�

i

, i = 1; 2; � � � ; r. Then

r

X

i=1

b

�

i

b

i

= 


�1

1

1

1

B(K)

; and

r

X

i=1

b

i

b

�

i

= 1

1

1

B(H)

:
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Applying then (5.7), with 
 repla
ed by 


�1

, it follows that

X

1�i

1

;::: ;i

p

�r

b

�

i

1

b

i

�(1)

� � � b

�

i

p

b

i

�(p)

= 


�k(�̂)

1

1

1

B(K)

;

i.e., that

X

1�i

1

;::: ;i

p

�r

a

i

1

a

�

i

�(1)

� � � a

i

p

a

�

i

�(p)

= 


p�k(�̂)

1

1

1

B(K)

:

Re
all �nally, that sin
e �̂ is non-
rossing, k(�̂) + l(�̂) = p + 1 (
f. Corol-

lary 1.24), and hen
e it follows that (5.8) holds. �

As in Se
tion 3, for any 
 in ℄0;1[, �




denotes the probability measure on

[0;1[, given by

�




= maxf1� 
; 0gÆ

0

+

p

(x � a)(b� x)

2�x

� 1

[a;b℄

(x) � dx;

where a = (

p


 � 1)

2

, b = (

p


 + 1)

2

and Æ

0

is the Dira
 measure at 0. Re
all

from [OP℄ or [HT, Remark 6.8℄, that the moments of �




are given by

Z

1

0

x

p

d�




(x) =

1

p

p

X

j=1

�

p

j

��

p

j�1

�




j

; (p 2 N): (5.10)

5.3 Lemma. For any positive integer p, we have

X

�2S

n


p




k(�̂)

=

1

p

p

X

j=1

�

p

j

��

p

j�1

�




j

; (5.11)

and

X

�2S

n


p




l(�̂)�1

=

1

p

p

X

j=1

�

p

j

��

p

j�1

�




j�1

: (5.12)

Proof. To prove (5.11), re
all from Corollary 1.12, that for B in GRM(m;n; 1),

we have that

E ÆTr

n

�

(B

�

B)

p

�

=

X

�2S

p

m

k(�̂)

n

l(�̂)

:

Hen
e, for Y in GRM(m;n;

1

n

),

E Æ tr

n

�

(Y

�

Y )

p

�

= n

�p�1

X

�2S

p

m

k(�̂)

n

l(�̂)

=

X

�2S

p

n

�2�(�̂)

�

m

n

�

k(�̂)

; (5.13)

where we have used that �(�̂) =

1

2

(p+1�k(�̂)�l(�̂)). Consider now a sequen
e

(m

n

) of positive integers, su
h that

m

n

n

! 
 as n ! 1, and for ea
h n in N,

let Y

n

be an element of GRM(m

n

; n;

1

n

). It follows then from (5.13), that

lim

n!1

E Æ tr

n

�

(Y

�

Y )

p

�

=

X

�2S

p

�(�̂)=0




k(�̂)

=

X

�2S

n


p




k(�̂)

; (5.14)
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where the last equality follows from Corollary 1.24. On the other hand, it

follows from [HT, Theorem 6.7(ii)℄ and (5.10), that

lim

n!1

E Æ tr

n

�

(Y

�

Y )

p

�

=

Z

1

0

x

p

d�




(x) =

1

p

p

X

j=1

�

p

j

��

p

j�1

�




j

: (5.15)

Combining (5.14) and (5.15), we obtain (5.11).

To prove (5.12), we use, again, that k(�̂) + l(�̂) = p + 1 for all � in S

n


p

. It

follows thus, that

X

�2S

n


p




l(�̂)�1

= 


p

X

�2S

n


p




�k(�̂)

: (5.16)

But by (5.11) (with 
 repla
ed by 


�1

), the right hand side of (5.16) is equal

to

1

p

p

X

j=1

�

p

j

��

p

j�1

�




p�j

: (5.17)

Substituting �nally j with p+ 1� j in (5.17), we obtain (5.12). �

5.4 Corollary. Let a

1

; : : : ; a

r

be elements of B(H;K), su
h that (5.2) holds.

Then for any p in N, we have that

(i)

X

�2S

n


p

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�

=

h

1

p

p

X

j=1

�

p

j

��

p

j�1

�




j

i

� 1

1

1

B(H)

;

and

(ii)

X

�2S

n


p

�

X

1�i

1

;::: ;i

p

�r

a

i

1

a

�

i

�(1)

� � �a

i

p

a

�

i

�(p)

�

=

h

1

p

p

X

j=1

�

p

j

��

p

j�1

�




j�1

i

� 1

1

1

B(K)

:

Proof. Combine Lemma 5.2 and Lemma 5.3. �

5.5 Definition. (a) A subset I of Z is 
alled an interval of integers, if it is

the form

I = f�; �+ 1; : : : ; �g;

for some �; � in Z, su
h that � � �.

(b) Let p be a positive integer, let � be a permutation in S

p

, and let I be

an interval of integers, su
h that I � f1; 2; : : : ; 2pg. We say then that the

restri
tion �̂

jI

of �̂ to I is non-
rossing, if �̂(I) = I , and �̂ has no 
rossing

(a; b; 
; d) where a; b; 
; d 2 I . In this 
ase, we refer to I as a non-
rossing

interval of integers for �̂. �
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5.6 Remark. Let p be a positive integer, let � be a permutation in S

p

and let

I be an interval of integers, su
h that I � f1; 2; : : : ; 2pg and �̂(I) = I . Sin
e

�̂

2

= id and �̂ has no �xed points, it follows then, that 
ard(I) is an even

number. Put t =

1

2


ard(I), and 
onsider the unique order preserving bije
tion

' : f1; 2; : : : ; 2tg ! I of f1; 2; : : : ; 2tg onto I (i.e., '(j) = min(I) � 1 + j, for

all j in f1; 2; : : : ; 2tg). It is 
lear then, that the mapping '

�1

Æ (�̂

jI

) Æ ' is a

permutation of f1; 2; : : : ; 2tg, and that we may 
hoose a (unique) permutation

�

1

in S

t

, su
h that

�̂

1

= '

�1

Æ (�̂

jI

) Æ '; (5.18)

(
f. Remark 1.7(a)). It is 
lear too, that the restri
tion �̂

jI

of �̂ to I is non-


rossing in the sense of De�nition 5.5, if and only if �̂

1

is a non-
rossing per-

mutation in the usual sense (
f. De�nition 1.14). �

5.7 Lemma. Let p be a positive integer, and let � be a permutation in S

p

.

(i) If I is an interval of integers su
h that I � f1; 2; : : : ; 2pg and �̂

jI

is non-


rossing, then there exists e in I , su
h that e+ 1 2 I and �̂(e) = e+ 1.

(ii) If � 2 S

irr

p

, then �̂ has no non-
rossing interval of integers.

Proof. (i) Assume that I � f1; 2; : : : ; 2pg and that �̂

jI

is non-
rossing. Put

t =

1

2


ard(I), let ' be the order preserving bije
tion of f1; 2; : : : ; 2tg onto I ,

and let �

1

be the permutation in S

t

given by (5.18). Then �

1

2 S

n


t

, and hen
e

�̂

1

has a pair of neighbors (e

0

; e

0

+ 1) by Lemma 1.17. Putting e = '(e

0

), it

follows that e+ 1 = �̂(e) 2 I , and this proves (i).

(ii) This follows immediately from (i). �

5.8 Lemma. Let p be a positive integer, and let � be a permutation in S

p

,

su
h that �̂ is redu
ible. Consider furthermore a family (I

�

)

�2�

of intervals

of integers, su
h that I

�

� f1; 2; : : : ; 2pg for all �, and su
h that the union

I = [

�2�

I

�

is again an interval of integers. If ea
h I

�

is a non-
rossing interval

of integers for �̂, then so is I .

Proof. Assume that ea
h I

�

is a non-
rossing interval of integers for �̂. Then

�̂(I

�

) = I

�

for all �, and hen
e also �̂(I) = I . Assume then that I 
ontains a


rossing for �̂, i.e., that there exist a; b; 
; d in I , su
h that a < b < 
 < d and

�̂(a) = 
, �̂(b) = d. Choose � in � su
h that a 2 I

�

. Then 
 = �̂(a) 2 I

�

, and

sin
e I

�

is an interval of integers, also b 2 I

�

. But then d = �̂(b) 2 I

�

too, and

hen
e (a; b; 
; d) is a 
rossing for �̂ 
ontained in I

�

; a 
ontradi
tion. Therefore

I too is a non-
rossing interval of integers for �̂. �

5.9 Definition. Let p be a positive integer and let � be a permutation in S

p

.

By J (�̂) we denote then the family of all non-
rossing intervals of integers for
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�̂. Moreover, we put

NC(�̂) =

[

I2J (�̂)

I; (5.19)

IRR(�̂) = f1; 2; : : : ; 2pg nNC(�̂): (5.20)

We refer to NC(�̂) (respe
tively IRR(�̂)) as the non-
rossing set (respe
tively

irredu
ible set) for �̂. �

5.10 Lemma. Let p be a positive integer and let � be a permutation in S

p

.

We then have

(i) NC(�̂) = f1; 2; : : : ; 2pg if and only if �̂ is non-
rossing.

(ii) NC(�̂) = ; if and only if �̂ is irredu
ible.

Proof. (i) If NC(�̂) = f1; 2; : : : ; 2pg, then is follows from Lemma 5.8, that �̂ is

non-
rossing. If, 
onversely, �̂ is non-
rossing, then f1; 2; : : : ; 2pg 2 J (�̂), and

hen
e NC(�̂) = f1; 2; : : : ; 2pg.

(ii) If NC(�̂) = ;, then for any j in f1; 2; : : : ; 2p � 1g, fj; j + 1g 
an not

be a non-
rossing interval of integers for �̂. Hen
e �̂(j) 6= j + 1 for all j

in f1; 2; : : : ; 2p � 1g, whi
h means that �̂ is irredu
ible. If, 
onversely, �̂ is

irredu
ible, then J (�̂) = ; by Lemma 5.7(ii), and hen
e also NC(�̂) = ;. �

5.11 Proposition. Let p be a positive integer, let � be a permutation in S

p

,

and assume that �̂ has a 
rossing. Then the set IRR(�̂) is of the form

IRR(�̂) = fs

1

; s

2

; : : : ; s

2q

g;

where q 2 f1; : : : ; pg, and 1 � s

1

< s

2

< � � � < s

2q

� 2p. Moreover,

s

1

; s

2

; : : : ; s

2q

have the following properties:

(i) The set fs

1

; s

2

; : : : ; s

2q

g is �̂-invariant and �̂(s

i

) 6= s

i+1

, for all i in

f1; 2; : : : ; 2q � 1g.

(ii) If we put s

0

= 0 and s

2q+1

= 2p+ 1, then for ea
h i in f0; 1; : : : ; 2qg, the

set

I

i

= ℄s

i

; s

i+1

[ \Z

is either the empty set or a non-
rossing interval of integers for �̂.

Proof. By De�nition 5.5(b), ea
h I in J (�̂) is �̂-invariant. Therefore NC(�̂)

is �̂-invariant too, and hen
e so is IRR(�̂). Sin
e �̂

2

= id and �̂ has no �xed

points, it follows that 
ard(IRR(�̂)) = 2q for some q in f0; 1; : : : ; pg, and sin
e

�̂ has a 
rossing, Lemma 5.10(i) shows that q � 1. Thus, we may write IRR(�̂)

in the form fs

1

; s

2

; : : : ; s

2q

g, where s

1

< s

2

< � � � < s

2q

, and it remains to show

that these s

1

; s

2

; : : : ; s

2q

satisfy (i) and (ii).

We start by proving (ii). For all I from J (�̂), I \ fs

1

; s

2

; : : : ; s

2q

g = ;,

and hen
e ea
h su
h I is 
ontained in one of the sets I

i

= ℄s

i

; s

i+1

[ \ Z,
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i = 0; 1; : : : ; 2q. Therefore

J (�̂) =

2q

[

i=0

J

i

(�̂); (5.21)

where J

i

(�̂) = fI 2 J (�̂) j I � I

i

g, for all i in f0; 1; : : : ; 2qg. Note here that

[

I2J

i

(�̂)

I � I

i

; (i 2 f0; 1; : : : ; 2qg); (5.22)

and that

[

I2J (�̂)

I = NC(�̂) = f1; 2; : : : ; 2pg n IRR(�̂) =

2q

[

i=0

I

i

: (5.23)

Combining (5.21)-(5.23), it follows that we a
tually have equality in (5.22), i.e.,

[

I2J

i

(�̂)

I = I

i

; (i 2 f0; 1; : : : ; 2qg): (5.24)

Sin
e ea
h I

i

is either empty or an interval of integers, (ii) follows now by


ombining (5.24) with Lemma 5.8.

It remains to prove (i). We already noted (and used) that IRR(�̂) is �̂-invariant.

Assume then that �̂(s

i

) = s

i+1

for some i in f1; : : : ; 2q� 1g. Then, by (ii), the

set

~

I

i

= fs

i

g [ I

i

[ fs

i+1

g;

is a non-
rossing interval of integers for �̂. But this 
ontradi
ts that s

i

=2 NC(�̂),

and hen
e we have proved (i). �

We prove next the following 
onverse of Proposition 5.11.

5.12 Proposition. Let p be a positive integer, let � be a permutation in

S

p

, and assume that there exist q in f1; : : : ; pg and s

1

< s

2

< � � � < s

2q

in

f1; 2; : : : ; 2pg, su
h that

(i) The set fs

1

; s

2

; : : : ; s

2q

g is �̂-invariant and �̂(s

i

) 6= s

i+1

, for all i in

f1; 2; : : : ; 2q � 1g.

(ii) If we put s

0

= 0 and s

2q+1

= 2p + 1, then for ea
h i in f0; 1; : : : ; 2qg,

the set I

i

= ℄s

i

; s

i+1

[ \ Z is either the empty set or a non-
rossing interval of

integers for �̂.

Then fs

1

; s

2

; : : : ; s

2q

g = IRR(�̂).

Proof. It follows from (i), that there exists a (unique) permutation 
 in S

2q

,

su
h that

�̂(s

i

) = s


(i)

; (i 2 f1; 2; : : : ; 2qg);
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and moreover


(i) 6= i+ 1; (i 2 f1; 2; : : : ; 2q � 1g): (5.25)

Our �rst obje
tive is to prove that 
 is of the form �̂ for some (unique) per-

mutation � in S

irr

q

. For this, note �rst that by (ii), 
ard(I

i

) is an even number

for all i in f0; 1; : : : ; 2qg. Hen
e s

i+1

� s

i

is odd for all i in f0; 1; : : : ; 2qg, and

this implies that

s

1

; s

3

; : : : ; s

2q�1

are odd numbers

s

2

; s

4

; : : : ; s

2q

are even numbers

Sin
e �̂

2

= id and �̂(j) � j is odd for all j in f1; 2; : : : ; 2pg, it follows now

that 


2

= id and that 
(i) � i is odd for all i in f1; 2; : : : ; 2qg. Therefore, by

Remark 1.7(a), 
 = �̂ for some (unique) � in S

q

, and (5.25) shows that in fa
t

� 2 S

irr

q

.

Returning now to the proof of the equation fs

1

; s

2

; : : : ; s

2q

g = IRR(�̂), note

�rst that [

2q

i=0

I

i

� NC(�̂), and therefore

fs

1

; s

2

; : : : ; s

2q

g = f1; 2; : : : ; 2pg n [

2q

i=0

I

i

� IRR(�̂):

Suppose then that IRR(�̂) is a proper subset of fs

1

; s

2

; : : : ; s

2q

g. Then there

exists j

0

in f1; 2; : : : ; 2qg, su
h that s

j

0

2 NC(�̂), i.e., s

j

0

2 I , for some non-


rossing interval of integers for �̂. For this I , de�ne

J =

�

j 2 f1; 2; : : : ; 2qg

�

�

s

j

2 I

	

:

Then J 6= ;, and sin
e s

1

< s

2

< � � � < s

2q

, J is an interval of integers. Consider

now the permutation � in S

irr

q

, introdu
ed above. Then, sin
e �̂(I) = I , we

have also that �̂(J) = J . Moreover, J is a non-
rossing interval of integers

for �̂. Indeed, if (a; b; 
; d) were a 
rossing for �̂ 
ontained in J , then 
learly

(s

a

; s

b

; s




; s

d

) would be a 
rossing for �̂ 
ontained in I , whi
h is impossible.

Altogether, � is both irredu
ible and has a non-
rossing interval of integers, and

by Lemma 5.10(ii), this is impossible. Thus, we have rea
hed a 
ontradi
tion,

whi
h means that we must also have the in
lusion fs

1

; s

2

; : : : ; s

2q

g � IRR(�̂).

�

5.13 Lemma. Let p be a positive integer, and let � be a permutation in S

p

nS

n


p

.

Write then, as in Proposition 5.11, IRR(�̂) in the form

IRR(�̂) = fs

1

; s

2

; : : : ; s

2q

g;

where q 2 f1; : : : ; pg and 1 � s

1

< s

2

< � � � < s

2q

� 2p. Then s

1

; s

2

; : : : ; s

2q

satisfy, in addition, that

(i) s

1

; s

3

; : : : ; s

2q�1

are odd numbers.

(ii) s

2

; s

4

; : : : ; s

2q

are even numbers.

(iii) There is one and only one permutation � in S

irr

q

, su
h that �̂(s

j

) = s

�̂(j)

for all j in f1; 2; : : : ; 2qg.
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Proof. This follows immediately from Proposition 5.11 and the �rst part of the

proof of Proposition 5.12. �

5.14 Definition. Let p be a positive integer, let � be a permutation in S

p

nS

n


p

,

and let q, s

1

; s

2

; : : : ; s

2q

and I

0

; I

1

; : : : ; I

2q

, be as in Proposition 5.11. Then

put

t

i

=

1

2


ard(I

i

); (i 2 f0; 1; : : : ; 2qg);

and note that sin
e I

i

is either empty or a non-
rossing interval of integers

for �̂, t

i

2 N

0

for all i. If t

i

> 0, then as in Remark 5.6, we 
onsider the

order-preserving bije
tion '

i

of f1; 2; : : : ; 2t

i

g onto I

i

, and we let �

i

denote

the (unique) permutation in S

t

i

, satisfying that �̂

i

= '

�1

i

Æ (�̂

jI

i

) Æ '. Clearly

�

i

2 S

n


p

.

It is 
onvenient to 
onsider the permutation group S

0

of the empty set, as a

group with one element �

;

. Then, in the setting 
onsidered above, we put

�

i

= �

;

, for all i in f0; 1; : : : ; 2qg, for whi
h t

i

= 0. By 
onvention, we put

k(�̂

;

) = 0; and l(�̂

;

) = 1: (5.26)

�

5.15 Lemma. Let p be a positive integer, let � be a permutation in S

p

n S

n


p

,

and let � be the irredu
ible permutation introdu
ed in Lemma 5.13(iii). Then

�(�̂) = �(�̂).

Proof. Let q, s

1

; s

2

; : : : ; s

2q

and I

0

; I

1

; : : : ; I

2q

, be as in Proposition 5.11, and

for ea
h i in f0; 1; : : : ; 2qg, let t

i

and �

i

be as in De�nition 5.14. If t

i

> 0, then

�̂

i

is non-
rossing, and hen
e, by Proposition 1.23, �̂

i

may be redu
ed to ê

1

(where e

1

is the permutation in S

1

), by a series of su

essive 
an
ellations of

pairs. Here ê

1


onsists exa
tly of one pair of neighbors, so, formally speaking, ê

1


an be redu
ed �̂

;

, by 
an
ellation of this pair. Thus, �̂

i


an be redu
ed to �̂

;

,

by a series of su

essive 
an
ellations of pairs, and forming the 
orresponding

series of 
an
ellations of pairs to �̂

jI

i

, it follows that �̂ 
an be redu
ed to a

permutation, whi
h is, loosely speaking, obtained by \
utting out" �̂

jI

i

from �̂.

Forming these redu
tions for ea
h i in f0; 1; : : : ; 2qg, for whi
h t

i

> 0, it follows

that �̂ 
an be redu
ed to �̂ by a series of su

essive 
an
ellations of pairs. By

Proposition 1.22, this implies that �(�̂) = �(�̂). �

5.16 Proposition. Let p be a positive integer, let � be a permutation in

S

p

n S

n


p

, and let q, s

1

; s

2

; : : : ; s

2q

be as in Proposition 5.11. Let further � be

the permutation in S

irr

q

introdu
ed in Lemma 5.13(iii), and let �

0

; �

1

; : : : ; �

2q

be as in De�nition 5.14. Then for any elements a

1

; : : : ; a

r

of B(H;K) for whi
h

(5.2) holds, we have

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

= 


h(�̂)

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

;

(5.27)
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where

h(�̂) = k(�̂

0

) + (l(�̂

1

)� 1) + k(�̂

2

) + � � �+ (l(�̂

2q�1

)� 1) + k(�̂

2q

): (5.28)

Proof. We start by introdu
ing some notation. Let t be a positive integer, and

let � be a permutation in S

t

. We then put

�(�̂) =

X

1�i

1

;::: ;i

t

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

t

a

i

�(t)

; (5.29)

and moreover, we put

�(�̂

;

) = 1

1

1

B(H)

: (5.30)

Note that �(�̂) 
an be expressed in terms of �̂ only, namely as

�(�̂) =

X

(i

1

;i

2

;i

3

;i

4

;::: ;i

2t

)2N(�̂)

a

�

i

1

a

i

2

a

�

i

3

a

i

4

� � � a

�

i

2t�1

a

i

2t

; (5.31)

where

N(�̂)

=

�

(i

1

; i

2

; : : : ; i

2t

) 2 f1; 2; : : : ; rg

2t

�

�

i

j

= i

�̂(j)

; for all j in f1; 2; : : : ; 2tg

	

;

(5.32)

(
f. Remark 1.7(b)). Consider next an interval of integers I , su
h that I �

f1; 2; : : : ; 2tg and �̂(I) = I . Write I in the form f�; � + 1; : : : ; �g, and note

that � � �+ 1 = 
ard(I) is an even number. We then put

N(�̂; I) =

�

(i

�

; : : : ; i

�

) 2 f1; 2; : : : ; rg

���+1

�

�

i

j

= i

�̂(j)

; j = �; �+ 1; : : : ; �

	

(5.33)

and

�(�̂; I) =

8

>

>

<

>

>

:

X

(i

�

;::: ;i

�

)2N(�̂;I)

a

�

i

�

a

i

�+1

� � � a

�

i

��1

a

i

�

; if � is odd;

X

(i

�

;::: ;i

�

)2N(�̂;I)

a

i

�

a

�

i

�+1

� � � a

i

��1

a

�

i

�

; if � is even:

(5.34)

Now, to prove (5.27), 
onsider p in N and � in S

p

nS

n


p

, and let q, s

1

; s

2

; : : : ; s

2q

and I

0

; I

1

; : : : ; I

2q

, t

0

; t

1

; : : : ; t

2q

be as in Proposition 5.11. Note then, that we

may write N(�̂) as

N(�̂) =

[

(i

s

1

;::: ;i

s

2q

)2N

1

(�̂)

N(�̂; I

0

)� fi

s

1

g �N(�̂; I

1

)� fi

s

2

g � � � � � fi

s

2q

g �N(�̂; I

2p

);

(5.35)
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with the 
onvention that N(�̂; I

i

) is omitted in the produ
t sets when 2t

i

=


ard(I

i

) = 0, and where

N

1

(�̂) =

�

(i

s

1

; : : : ; i

s

2q

) 2 f1; 2; : : : ; rg

2q

�

�

i

s

j

= i

�̂(s

j

)

; j = 1; 2; : : : ; 2q

	

:

(5.36)

It follows thus, by (5.31), that

�(�̂) =

X

(i

s

1

;::: ;i

s

2q

)2N

1

(�̂)

�(�̂; I

0

)a

�

i

s

1

�(�̂; I

1

)a

i

s

2

� � �a

i

s

2q

�(�̂; I

2q

); (5.37)

with the 
onvention that if 
ard(I

i

) = 0,

�(�̂; I

i

) =

(

1

1

1

B(H)

; if s

i

is even;

1

1

1

B(K)

; if s

i

is odd:

(5.38)

To 
al
ulate �(�̂; I

0

); : : : ;�(�̂; I

2q

), 
onsider the non-
rossing permutations

�

0

; �

1

; : : : ; �

2q

introdu
ed in De�nition 5.14. Note then, that for ea
h v in

f0; 1; : : : ; 2qg, su
h that t

v

> 0, we have by a suitable relabeling of indi
es,

N(�̂; I

v

) =

�

(i

1

; i

2

; : : : ; i

2t

v

) 2 f1; 2; : : : ; rg

2t

v

�

�

i

j

= i

�̂

v

(j)

; j = 1; 2; : : : ; 2t

v

	

= N(�̂

v

):

It follows thus, that if t

v

> 0,

�(�̂; I

v

) =

8

>

>

<

>

>

:

X

1�i

1

;::: ;i

t

v

�r

a

�

i

1

a

i

�

v

(1)

� � � a

�

i

t

v

a

i

�

v

(t

v

)

; if v is even;

X

1�i

1

;::: ;i

t

v

�r

a

i

1

a

�

i

�

v

(1)

� � � a

i

t

v

a

�

i

�

v

(t

v

)

; if v is odd;

and hen
e by Lemma 5.2 (sin
e �̂

v

is non-
rossing),

�(�̂; I

v

) =

(




k(�̂

v

)

1

1

1

B(H)

; if v is even;




l(�̂

v

)�1

1

1

1

B(K)

; if v is odd:

(5.39)

If t

v

= 0, then by de�nition,

�(�̂; I

v

) =

(

1

1

1

B(H)

; if v is even;

1

1

1

B(K)

; if v is odd;

=

(




k(�̂

v

)

1

1

1

B(H)

; if v is even;




l(�̂

v

)�1

1

1

1

B(K)

; if v is odd;

(5.40)

with k(�̂

;

); l(�̂

;

) as de�ned in (5.26). Combining (5.37),(5.39) and (5.40), it

follows that with h(�̂) given in (5.28), we have

�(�̂) = 


h(�̂)

X

(i

s

1

;::: ;i

s

2q

)2N

1

(�̂)

a

�

i

s

1

a

i

s

2

� � � a

�

i

2q�1

a

i

s

2q

: (5.41)
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Note �nally, that with � the permutation introdu
ed in Lemma 5.13(iii), we

have that

N

1

(�̂) =

�

(i

1

; i

2

; : : : ; i

2q

) 2 f1; 2; : : : ; rg

2q

�

�

i

j

= i

�̂(j)

; j = 1; 2; : : : ; 2q

	

= N(�̂);

and therefore

X

(i

s

1

;::: ;i

s

2q

)2N

1

(�̂)

a

�

i

s

1

a

i

s

2

� � � a

�

i

2q�1

a

i

s

2q

=

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

:

Inserting this in (5.41), we obtain (5.27). �

5.17 Definition. Let 
 be a positive number. Then for any p in N

0

, we de�ne

g




(p) =

(

1

p

P

p

j=1

�

p

j

��

p

j�1

�




j

; if p 2 N;

1; if p = 0;

(5.42)

and

h




(p) =

(

1

p

P

p

j=1

�

p

j

��

p

j�1

�




j�1

; if p 2 N;

1; if p = 0:

(5.43)

Moreover, for p; q in N

0

, su
h that p � q, we put

�

0

(
; p; q) =

X

r

0

;r

1

;::: ;r

2q

�0

r

0

+r

1

+���+r

2q

=p�q

g




(r

0

)h




(r

1

)g




(r

2

)h




(r

3

) � � � g




(r

2q

): (5.44)

�

We are now ready to prove the main result of this se
tion.

5.18 Theorem. Let a

1

; : : : ; a

r

be elements of B(H;K), let 
 be a positive

number, and assume that

P

r

i=1

a

�

i

a

i

= 
1

1

1

B(H)

, and

P

r

i=1

a

i

a

�

i

= 1

1

1

B(K)

. Con-

sider furthermore independent elements Y

1

; : : : ; Y

r

of GRM(n; n;

1

n

), and put

S =

P

r

i=1

a

i


 Y

i

. Then for any positive integer p,

E

�

(S

�

S)

p

�

=

�

�

0

(
; p; 0)1

1

1

B(H)

+

p

X

q=1

�

0

(
; p; q)

�

X

�2S

irr

q

n

�2�(�̂)

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

�


 1

1

1

n

:

(5.45)
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Proof. Let p from N be given. Then for ea
h q in f1; 2; : : : ; pg, we de�ne

S

p;q

=

�

� 2 S

p

�

�


ard(IRR(�̂)) = 2q

	

; (5.46)

and

M

q

=

X

�2S

p;q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�

(5.47)

It follows then by (5.1), that

E

�

(S

�

S)

p

�

=

�

X

�2S

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

p

a

i

�(p)

�

�


 1

1

1

n

=

p

X

q=0

M

q


 1

1

1

n

:

(5.48)

By Lemma 5.10, S

p;0

= S

n


p

and S

p;p

= S

irr

p

. Hen
e

M

p

=

X

�2S

irr

p

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�

; (5.49)

and by Corollary 5.4(i) and Corollary 1.24,

M

0

= g




(p)1

1

1

B(H)

= �

0

(
; p; 0)1

1

1

B(H)

: (5.50)

To 
al
ulate M

1

;M

2

: : : ;M

p�1

, we let, for ea
h � in S

p

, �(�) denote the irre-

du
ible permutation � asso
iated to � in Lemma 5.13(iii). Then for any q in

f1; 2; : : : ; p� 1g and any � in S

irr

q

, we de�ne

R(p; �) = f� 2 S

p;q

j �(�) = �g:

Then we have the following disjoint union

S

p;q

=

�

[

�2S

irr

q

R(p; �);

and therefore

M

q

=

X

�2S

irr

q

X

�2R(p;�)

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�

: (5.51)

Note here, that for any � in S

irr

q

, we have by Proposition 5.16 and Lemma 5.15,

X

�2R(p;�)

n

�2�(�̂)

�

X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)

�

=

�

X

�2R(p;�)




h(�̂)

�

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

;

(5.52)
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where for ea
h � in R(p; �),

h(�̂) = k(�̂

0

) + (l(�̂

1

)� 1) + k(�̂

2

) + � � �+ (l(�̂

2q�1

)� 1) + k(�̂

2q

);

and where �

0

; �

1

; : : : ; �

2q

are the permutations introdu
ed in De�nition 5.14.

For any � in S

irr

q

and any � in R(p; �), it follows from Proposition 5.11 and

Lemma 5.13, that �̂ 
an be obtained from �̂ in a unique way, by \stuÆng

in" the intervals (or empty sets) I

0

; I

1

; : : : ; I

2q

, and the 
orresponding non-


rossing permutations �̂

0

; �̂

1

; : : : ; �̂

2q

. Conversely, if � 2 S

p

su
h that �̂ 
an

be obtained from �̂ by \stuÆng in" intervals (or empty sets) J

0

; J

1

; : : : ; J

2q

and 
orresponding non-
rossing permutations �̂

0

; �̂

1

; : : : ; �̂

2q

, then, by Propo-

sition 5.12, � 2 R(p; �) and J

j

= I

j

, �

j

= �

j

, for all j in f0; 1; : : : ; 2qg. It

follows thus, that the mapping

� 7! (�

0

; �

1

; : : : ; �

2q

)

is a bije
tion of R(p; �) onto the set of (2q + 1)-tuples (�

0

; �

1

; : : : ; �

2q

) of per-

mutations for whi
h there exist t

0

; t

1

; : : : ; t

2q

in N

0

, su
h that �

i

2 S

n


t

i

for all i,

and

P

2q

i=0

t

i

= p� q (here we have used the 
onvention that S

n


0

= S

0

= f�

;

g).

Using this des
ription of R(p; �), it follows that

X

�2R(p;�)




h(�̂)

=

X

t

0

;::: ;t

2q

�0

t

0

+���+t

2q

=p�q

X

�

0

2S

n


t

0

;::: ;�

2q

2S

n


t

2q




k(�̂

0

)




(l(�̂

1

)�1)




k(�̂

2

)

� � � 


k(�̂

2q

)

:

(5.53)

Re
all here from De�nition 5.17 and Lemma 5.3, that for any t in N,

X

�2S

n


t




k(�̂)

= g




(t); and

X

�2S

n


t




l(�̂)�1

= h




(t);

and by (5.26) this formula holds for t = 0 too. Using this in (5.53), it follows

that

X

�2R(p;�)




h(�̂)

=

X

t

0

;t

1

;::: ;t

2q

�0

t

0

+t

1

+���+t

2q

=p�q

g




(t

0

)h




(t

1

)g




(t

2

)h




(t

3

) � � � g




(t

2q

)

= �

0

(
; p; q):

(5.54)

Note, in parti
ular, that the right hand side depends only on p and q, and not

on � itself. Combining (5.51),(5.52) and (5.54), it follows that for any q in

f1; 2; : : : ; p� 1g,

M

q

= �

0

(
; p; q)

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � �a

�

i

q

a

i

�(q)

�

: (5.55)

Sin
e �

0

(
; p; p) = 1, (5.55) holds for q = p too, by (5.49), and 
ombining this

with (5.48) and (5.50), we obtain, �nally, (5.45). �
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5.19 Proposition. Let a

1

; : : : ; a

r

in B(H;K), 
 in ℄0;1[ and S =

P

r

i=1

a

i




Y

i

, be as in Theorem 5.18. Then for any p in N, we have that

X

�2S

p

n

�2�(�̂)










X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)










= �

0

(
; p; 0) +

p

X

q=1

�

0

(
; p; q)

X

�2S

irr

q

n

�2�(�̂)










X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)










:

Proof. This follows by exa
tly the same proof as for Theorem 5.18. �

5.20 Example. Let a

1

; : : : ; a

r

in B(H;K) and 
 from ℄0;1[ be as in Theo-

rem 5.18.

(a) For p = 1 or p = 2, we have S

p

= S

n


p

. Hen
e by (5.1), Corollary 1.24 and

Corollary 5.4(i), we get that

E

�

S

�

S

�

= 
1

1

1

B(H)
M

n

(C)

; and E

�

(S

�

S)

2

�

= (


2

+ 
)1

1

1

B(H)
M

n

(C)

:

This 
an also easily be obtained dire
tly from (5.1) and (5.2).

(b) For p = 3, 
ard(S

3

) = 6 and 
ard(S

n


3

) = 5. The only element of S

3

n S

n


3

is the irredu
ible permutation � given by

�(1) = 3; �(2) = 1; �(3) = 2:

For this �, �(�̂) = 1, and it follows then by (5.1) and Corollary 5.4(i), that

E

�

(S

�

S)

3

�

= (


3

+ 3


2

+ 
)1

1

1

B(H)
M

n

(C)

+

�

n

�2

r

X

i;j;k=1

a

�

i

a

k

a

�

j

a

i

a

�

k

a

j

�


 1

1

1

n

:

This follows also from Theorem 5.18, be
ause S

irr

1

= S

irr

2

= ; and S

irr

3

= f�g.

�

6 The Sequen
e of Orthogonal Polynomials for the Measure �




Throughout this se
tion we 
onsider a �xed positive 
onstant 
, and elements

a

1

; : : : ; a

r

of B(H;K), satisfying that

r

X

i=1

a

�

i

a

i

= 
1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(H)

:

Moreover, we put

S =

r

X

i=1

a

i


 Y

i

;

where Y

1

; : : : ; Y

r

are independent elements of GRM(n; n;

1

n

).

Do
umenta Mathemati
a 4 (1999) 341{450



406 U. Haagerup and S. Thorbj�rnsen

As in Se
tion 3, we let �




denote the probability measure on R, given by

�




= maxf1� 
; 0gÆ

0

+

p

(x � a)(b� x)

2�x

� 1

[a;b℄

(x) � dx;

where a = (

p


� 1)

2

, b = (

p


+ 1)

2

.

The asymptoti
 upper bound for the spe
trum of S

�

S obtained in Se
tion 4

(in the exa
t 
ase), was obtained by making 
areful estimates of the moments

E

�

(S

�

S)

p

�

, p 2 N. However, these estimates 
annot be used to give good

asymptoti
 lower bounds for the spe
trum of S

�

S in the 
ase 
 > 1. To obtain

su
h lower bounds, we shall instead 
onsider the operators E

�

P




q

(S

�

S)

�

, where

(P




q

)

q2N

0

is the sequen
e of moni
 polynomials, obtained by Gram-S
hmidt

orthogonalization of the polynomials 1; x; x

2

; : : : , w.r.t. the inner produ
t

hf; gi =

Z

1

0

f(x)g(x) d�




(x); (f; g 2 L

2

(R; �




)):

The main result of this se
tion is the equation

E

�

P




q

(S

�

S)

�

=

�

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

�


1

1

1

n

; (q 2 N);

where S

irr

q

is the set of permutations � in S

q

, satisfying that

1 6= �(1) 6= 2 6= �(2) 6= � � � 6= �(q)

(
f. De�nition 1.16).

6.1 Proposition. Let (P




q

)

q2N

0

be the sequen
e of polynomials on R, de�ned

by the re
ursion formulas:

P




0

(x) = 1; (6.1)

P




1

(x) = x� 
; (6.2)

P




q+1

(x) = (x� 
� 1)P




q

(x)� 
P




q�1

(x); (q � 1): (6.3)

We then have

(i) For ea
h q in N

0

, P




q

(x) is a moni
 polynomial of degree q, and P




q

(x) 2 R

for all real numbers x.

(ii) P




q

(
+ 1 + 2

p


 
os �) =




q

2

sin((q + 1)�) + 


q�1

2

sin(q�)

sin �

; (� 2 ℄0; �[ ):

(iii)

Z

b

a

P




q

(x)P




q

0

(x) d�




(x) =

(




q

; if q = q

0

;

0; if q 6= q

0

;

(q; q

0

2 N

0

):

In parti
ular, (P




q

)

q2N

0

is the sequen
e of moni
 orthogonal polynomials ob-

tained by Gram-S
hmidt orthogonalization of 1; x; x

2

; : : : , in the Hilbert spa
e

L

2

(R; �




).
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Proof. (i) This is 
lear from (6.1)-(6.3).

(ii) Consider the sequen
es (R




q

)

q2N

0

and (T




q

)

q2N

0

of polynomials, given by

the re
ursion formulas

R




0

(x) = 1; (6.4)

R




1

(x) = x� 
� 1; (6.5)

R




q+1

(x) = (x� 
� 1)R




q

(x) � 
R




q�1

(x); (q � 1); (6.6)

respe
tively

T




0

(x) = 0; (6.7)

T




1

(x) = 1; (6.8)

T




q+1

(x) = (x� 
� 1)T




q

(x) � 
T




q�1

(x); (q � 1): (6.9)

Note here, that the 
onditions (6.6) and (6.9) are the same, and therefore, the

sequen
e (R

q

+ T

q

)

q2N

0

satis�es this 
ondition too. Moreover, the sequen
e

(R

q

+ T

q

)

q2N

0

also satis�es (6.1) and (6.2), and it follows thus, that

P




q

(x) = R




q

(x) + T




q

(x); (q 2 N

0

):

Note also, that T




2

(x) = x � 
 � 1, so that the sequen
e (T




q+1

)

q2N

0

satis�es

(6.4)-(6.6), and hen
e

T




q

(x) = R




q�1

(x); (q 2 N):

Altogether, it follows that

P




q

(x) = R




q

(x) +R




q�1

(x); (q � 1); (6.10)

P




0

(x) = R




0

(x): (6.11)

To prove (ii), it suÆ
es therefore to show, that with x = 
 + 1 + 2

p


 
os �,

� 2 ℄0; �[, one has

R




q

(x) =




q

2

sin((q + 1)�)

sin �

; (q 2 N

0

): (6.12)

For q = 0, this is 
lear from (6.4), and for q = 1, it follows easily from (6.5),

using that sin 2� = 2 sin � 
os �. Pro
eeding by indu
tion, assume now that

p � 1 and that (6.12) has been proved for all q in f0; 1; : : : ; pg. Then by (6.6),

R




p+1

(x) =

2

p


 
os � � 


p

2

sin((p+ 1)�)

sin �

�




p+1

2

sin(p�)

sin �

;

when x = 
+1+2

p


 
os �, � 2 ℄0; �[. But 2 
os � sin((p+1)�) = sin((p+2)�)+

sin(p�), and therefore

R




p+1

(x) =




p+1

2

sin((p+ 2)�)

sin �

;
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whi
h means that (6.12) holds for q = p+ 1. Thus, by indu
tion, (6.12) holds

for all q in N

0

, and this 
on
ludes the proof of (ii).

(iii) We show �rst, that for any m;n in N

0

,

Z

1

0

xR




m

(x)R




n

(x) d�




(x) =

(

0; if n 6= m;




m+1

; if n = m;

(6.13)

where R




0

; R




1

; R




2

; : : : , are the polynomials determined by (6.4)-(6.6). Note for

this, that if 
 < 1, then the atom for �




at 0, does not 
ontribute to the integral

on the left hand side of (6.13). Hen
e, for all values of 
 in ℄0;1[, we have

Z

1

0

xR




m

(x)R




n

(x) d�




(x) =

1

2�

Z

b

a

R




m

(x)R




n

(x)

p

(x� a)(b� x) dx: (6.14)

By the substitution x = 
+1+2

p


 
os �, � 2 ℄0; �[, and by (6.12), the integral

on the right hand side of (6.14) 
an be redu
ed to

2


�

Z

�

0




m+n

2

sin((m+ 1)�) sin((n+ 1)�) d�;

whi
h is equal to 


m+1

Æ

m;n

. This proves (6.13).

We show next that

xR




m

(x) = P




m+1

(x) + 
P




m

(x); (m 2 N

0

): (6.15)

For m = 0, this is 
lear from (6.1),(6.2) and (6.4), and for m � 1, we get from

(6.6) and (6.10), that

xR




m

(x) = R




m+1

(x) + (
+ 1)R




m

(x) + 
R




m�1

(x) = P




m+1

(x) + 
P




m

(x):

This proves (6.15). De�ne now




m;n

=

Z

1

0

P




m

(x)P




n

(x) d�




(x); (m;n 2 N

0

):

It follows then from (6.15), that




m+1;n

+ 



m;n

=

Z

1

0

xR




m

(x)P




n

(x) d�




(x); (m;n 2 N

0

);

and applying then (6.10),(6.11) and (6.13), we get that




m+1;n

+ 



m;n

= 


m+1

(Æ

m;n

+ Æ

m;n�1

); (m 2 N

0

; n 2 N); (6.16)

and




m+1;0

+ 



m;0

= 


m+1

Æ

m;0

; (m 2 N

0

): (6.17)
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Sin
e �




is a probability measure, 


0;0

= 1, and using this and indu
tion on

(6.17), it follows that 


m;0

= 0 for all m in N. Thus




0;n

= 


n;0

=

(

1; if n = 0;

0; if n � 1:

(6.18)

Consider now a �xed n in N. By (6.16), we have then that




m+1;n

+ 



m;n

=

(

0; if m 2 f0; 1; : : : ; n� 2g;




n

; if m = n� 1:

By indu
tion in m (0 � m � n), we get then, by appli
ation of (6.18), that




m;n

=

(

0; if m < n;




n

; if m = n;

and this 
ompletes the proof of (iii). �

6.2 Lemma. For any non-negative integers p; q, put

�(
; p; q) = 


�q

Z

b

a

x

p

P




q

(x) d�




(x): (6.19)

We then have

(i) For any p in N

0

, x

p

=

P

p

q=0

�(
; p; q)P




q

(x).

(ii) For any p; q in N

0

,

�(
; p; q) � 0; if q � p; (6.20)

�(
; p; p) = 1; (6.21)

�(
; p; q) = 0; if q > p: (6.22)

Proof. (i) Consider a �xed p from N

0

. By Proposition 6.1,

spanfP




0

; P




1

; : : : ; P




p

g is equal to the set of all polynomials of degree less

than or equal to p. In parti
ular we have that x

p

=

P

p

q=0




q

P




q

(x), for suitable


omplex numbers 


0

; : : : ; 


p

(depending on 
 and p). Applying then the

orthogonality relation in Proposition 6.1(iii), it follows that 


q

= �(
; p; q) for

all q in f0; 1; : : : ; pg, and this proves (i).

(ii) By (6.1)-(6.3), it follows that

xP




0

(x) = P




1

(x) + 
P




0

(x); (6.23)

xP




q

(x) = P




q+1

(x) + (
+ 1)P




q

(x) + 
P




q�1

(x); (q � 1); (6.24)

so by indu
tion in p, we get that x

p

(= x

p

P




0

(x)), 
an be expressed as a lin-

ear 
ombination of P




0

(x); P




1

(x); : : : ; P




p

(x), in whi
h all 
oeÆ
ients are non-

negative. By (i) and the linear independen
e of P




0

(x); P




1

(x); : : : ; P




p

(x), these
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oeÆ
ients are exa
tly �(
; p; 0); �(
; p; 1); : : : ; �(
; p; p), and hen
e (6.20) fol-

lows.

Note next that (6.21) follows from (i) and the fa
ts that P




p

(x) is a moni


polynomial of degree p, whereas P




0

(x); : : : ; P




p�1

(x) are all of degree at most

p� 1.

Finally, (6.22) follows from (i) and the orthogonality relation in Proposi-

tion 6.1(iii). �

6.3 Lemma. Let �(
; p; q), p; q 2 N

0

, be as in Lemma 6.2. Then for any �xed

q in N

0

, the power series

1

X

p=0

�(
; p; q)t

p

; (6.25)


onverges for all t in the open 
omplex ball B(0;

1

b

), where b = (

p


 + 1)

2

.

Moreover, the fun
tion

J




q

(t) =

1

X

p=0

�(
; p; q)t

p

; (t 2 B(0;

1

b

));

is for all t in B(0;

1

b

) n f0g, given by

J




q

(t) =

1� (
� 1)t�

p

(1� at)(1� bt)

2t

 

1� (
+ 1)t�

p

(1� at)(1� bt)

2
t

!

q

;

(6.26)

where

p

� is the prin
ipal bran
h of the 
omplex square-root.

Proof. Consider the Hilbert spa
e L

2

(R; �




), and let A be the bounded operator

on L

2

(R; �




), given by

[A(f)℄(x) = xf(x); (f 2 L

2

(R; �




); x 2 R):

Note that A

�

= A and that sp(A) = supp(�




) � [0; b℄. Thus, letting 1

1

1 denote

the identity operator on L

2

(R; �




), 1

1

1� tA is invertible for all 
omplex numbers

t su
h that jtj <

1

b

, and moreover, for su
h t,

(1

1

1� tA)

�1

=

1

X

p=0

t

p

A

p

; (norm 
onvergen
e):

For any t in B(0;

1

b

), we have thus that

1

X

p=0

�(
; p; q)t

p

= 


�q

1

X

p=0

hx

p

; P




q

it

p

= 


�q

1

X

p=0

hA

p

P




0

; P




q

it

p

= 


�q

h(1� tA)

�1

P




0

; P




q

i:
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This shows that the series in (6.25) 
onverges for all t in B(0;

1

b

), and moreover,

that

J




q

(t) = 


�q

h(1� tA)

�1

P




0

; P




q

i; (t 2 B(0;

1

b

)): (6.27)

To prove (6.26), we shall 
al
ulate the right hand side of (6.27). For this,


onsider for ea
h z in B(0;

1

p




) the series

P

1

q=0

z

q

P




q

, and note that by

Lemma 6.1(iii), this series 
onverges in k � k

2

-norm in L

2

(R; �




). We may

thus de�ne

!

z

=

1

X

q=0

z

q

P




q

2 L

2

(R; �




); (z 2 B(0;

1

p




)): (6.28)

With A as above, it follows now by (6.23) and (6.24), that for any z in

B(0;

1

p




) n f0g,

A!

z

=

1

X

n=0

z

n

AP




n

= 
P




0

+ P




1

+

1

X

n=1

z

n

(
P




n�1

+ (
+ 1)P




n

+ P




n+1

)

= (
+ 
z)P




0

+

1

X

n=1

(z

n�1

+ (
+ 1)z

n

+ 
z

n+1

)P




n

= (
+ 
z)P




0

+ z

�1

(1 + (
+ 1)z + 
z

2

)

1

X

n=1

z

n

P




n

=

�


+ 
z � z

�1

(1 + (
+ 1)z + 
z

2

)

�

P




0

+ z

�1

(1 + (
+ 1)z + 
z

2

)!

z

= �z

�1

(1 + z)P




0

+ z

�1

(1 + z)(1 + 
z)!

z

;

where the in�nite sums 
onverge in k � k

2

-norm. From this it follows that

(z

�1

(1 + z)(1 + 
z)1

1

1�A)!

z

= z

�1

(1 + z)P




0

; (z 2 B(0;

1

p




) n f0g);

and hen
e that

�

1

1

1�

z

(1+z)(1+
z)

A

�

!

z

=

1

1+
z

P




0

; (z 2 B(0;

1

p




) n f�1;�

1




g): (6.29)

De�ne now

'(z) =

z

(1 + z)(1 + 
z)

; (z 2 C n f�1;

1




g):

Sin
e sp(A) � [0; b℄, it follows that (1

1

1 � '(z)A) is invertible whenever '(z) =2

[

1

b

;1[, and in parti
ular, as long as j'(z)j <

1

b

. Note then, that ' is analyti


on C n f�1;�

1




g, and that '(0) = 0, '

0

(0) = 1. It follows thus, that we may


hoose neighborhoods U and V of 0 in C , su
h that ' is a bije
tion of U onto

V . We may assume, in addition, that

U � B(0;

1

p




) n f�1;�

1




g; and V � B(0;

1

b

):
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For z in U , it follows now from (6.29), that

!

z

=

1

1+
z

�

1� '(z)A

�

�1

P




0

;

and hen
e, by (6.27) and Lemma 6.1(iii),

J




q

�

'(z)

�

= (1 + 
z) � 


�q

h!

z

; P




q

i = (1 + 
z)z

q

; (z 2 U): (6.30)

It remains to invert '. By solving the equation

t =

z

(1 + z)(1 + 
z)

;

w.r.t. z, we �nd that

'

�1

(t) =

1� (
+ 1)t�

p

(1� at)(1� bt)

2
t

; (t 2 V n f0g);

where, as usual, a = (

p


�1)

2

and b = (

p


+1)

2

. Sin
e '

�1

(t)! 0 as t! 0, it

follows that for some neighbourhood V

0

of 0, su
h that V

0

� V , we must have

'

�1

(t) =

1� (
+ 1)t�

p

(1� at)(1� bt)

2
t

; (t 2 V

0

n f0g); (6.31)

where

p

� is the prin
ipal part of the square root. Hen
e, we have also that

1 + 
'

�1

(t) =

1� (
� 1)t�

p

(1� at)(1� bt)

2t

; (t 2 V

0

n f0g): (6.32)

Inserting (6.31) and (6.32) in (6.30), we obtain that (6.26) holds for all t in

V

0

n f0g.

To show that (6.26) a
tually holds for all t in B(0;

1

b

) n f0g, note that for all

su
h t, Re(1�at) > 0 and Re(1�bt) > 0, so that (1�at)(1�bt) 2 C n ℄�1; 0℄.

Hen
e, with

p

� the prin
ipal bran
h of the square root, t 7!

p

(1� at)(1� bt)

is an analyti
 fun
tion of t 2 B(0;

1

b

). By uniqueness of analyti
 
ontinuation,

it follows thus, that (6.26) holds for all t in B(0;

1

b

) n f0g. �

6.4 Lemma. Let g




(p) and h




(p), p 2 N

0

, be as in De�nition 5.17. Then the

power series

G




(t) =

1

X

p=0

g




(p)t

p

; (6.33)

and

H




(t) =

1

X

p=0

h




(p)t

p

; (6.34)

are 
onvergent for all t in B(0;

1

b

), and

J




q

(t) = t

q

G




(t)

q+1

H




(t)

q

; (t 2 B(0;

1

b

)): (6.35)
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Proof. By (5.10), we have

g




(p) =

Z

1

0

x

p

d�




(x); (p 2 N);

and sin
e g




(0) = 1, the same formula holds for p = 0. Hen
e g




(p) = �(
; p; 0),

for all p in N

0

, so by Lemma 6.3, the series in (6.33) 
onverges for all t in

B(0;

1

b

), and

G




(t) = J




0

(t) =

1� (
� 1)t�

p

(1� at)(1� bt)

2t

; (t 2 B(0;

1

b

) n f0g):

(6.36)

Sin
e h




(0) = 1 and sin
e h




(p) =

1




g




(p), for all p in N, the series in (6.34) is

also 
onvergent for all t in B(0;

1

b

), and

H




(t) = 1 +

1




(G




(t)� 1); (t 2 B(0;

1




)):

Hen
e by (6.34)

H




(t) =

1 + (
� 1)t�

p

(1� at)(1� bt)

2
t

; (t 2 B(0;

1

b

) n f0g): (6.37)

By (6.36) and (6.37), we get now for all t in B(0;

1

b

) n f0g,

G




(t)H




(t)

=

�

1�

p

(1� at)(1� bt)

�

2

� (
� 1)

2

t

2

4
t

2

=

1 + (1� at)(1� bt)� 2

p

(1� at)(1� bt)� (
� 1)

2

t

2

4
t

2

=

1 + (1� 2(
+ 1)t+ (
� 1)

2

t

2

)� 2

p

(1� at)(1� bt)� (
� 1)

2

t

2

4
t

2

=

1� (
+ 1)t�

p

(1� at)(1� bt)

2
t

2

:

Combining this with (6.36) and (6.26), it follows that

J

q




(t) = G




(t)

�

tG




(t)H




(t)

�

q

; (t 2 B(0;

1

b

));

and the same formula holds trivially for t = 0, by (6.22). This proves (6.35).

�

6.5 Lemma. For all p; q in N

0

su
h that p � q, let �(
; p; q) be as introdu
ed

in De�nition 5.17. Then

�

0

(
; p; q) = �(
; p; q); (p; q 2 N

0

; q � p):
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Proof. Re
all from De�nition 5.17, that for p; q in N

0

, su
h that p � q, we have

�

0

(
; p; q) =

X

r

0

;r

1

;::: ;r

2q

�0

r

0

+r

1

+���+r

2q

=p�q

g




(r

0

)h




(r

1

)g




(r

2

)h




(r

3

) � � � g




(r

2q

):

Hen
e �

0

(
; p; q) is the 
oeÆ
ient to t

p�q

in the power series for

G




(t)H




(t)G




(t)H




(t) � � �G




(t); (2q + 1 fa
tors);

and therefore �

0

(
; p; q) is the 
oeÆ
ient to t

p

in the power series for

t

q

G




(t)

q+1

H




(t)

q

. Thus, by Lemma 6.3 and Lemma 6.4, it follows that

�

0

(
; p; q) = �(
; p; q); for all p; q in N

0

; su
h that p � q: �

6.6 Theorem. Let H, K be Hilbert spa
es, and let a

1

; : : : ; a

r

be elements of

B(H;K), satisfying that

P

r

i=1

a

�

i

a

i

= 
1

1

1

B(H)

and

P

r

i=1

a

i

a

�

i

= 1

1

1

B(K)

, for some

positive real number 
. Furthermore, let Y

1

; : : : ; Y

r

be independent elements

of GRM(n; n;

1

n

), and put S =

P

r

i=1

a

i


 Y

i

. Then for any q in N,

E

�

P




q

(S

�

S)

�

=

�

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

�


 1

1

1

n

:

Proof. For ea
h q in N, put

T

q

=

X

�2S

irr

q

n

�2�(�̂)

�

X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)

�

;

and put T

0

= 1

1

1

B(H)

. By Theorem 5.18 and Lemma 6.5, it follows then that

E

�

(S

�

S)

p

�

=

p

X

q=0

�(
; p; q) � T

q


 1

1

1

n

; (p 2 N

0

): (6.38)

On the other hand, it follows from Lemma 6.2(i), that

E

�

(S

�

S)

p

�

=

p

X

q=0

�(
; p; q)E

�

P




q

(S

�

S)

�

; (p 2 N

0

): (6.39)

We prove that

E

�

P




q

(S

�

S)

�

= T

q


 1

1

1

n

; (q 2 N

0

); (6.40)

by indu
tion in q. Note that (6.40) is trivial for q = 0. Consider then p

from N, and assume that (6.40) has been proved for q = 0; 1; : : : ; p� 1. Sin
e
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�(
; p; p) = 1, by Lemma 6.2(ii), it follows then from (6.39) and (6.38), that

E

�

P




p

(S

�

S)

�

= E

�

(S

�

S)

p

�

�

p�1

X

q=0

�(
; p; q)E

�

P




q

(S

�

S)

�

= E

�

(S

�

S)

p

�

�

p�1

X

q=0

�(
; p; q) � T

q


 1

1

1

n

= T

p


 1

1

1

n

:

Thus, (6.40) holds for q = p, and this 
ompletes the proof. �

6.7 Example. By (6.1)-(6.3), it follows that

P




1

(x) = x� 
; (6.41)

P




2

(x) = x

2

� (2
+ 1)x+ 


2

; (6.42)

P




3

(x) = x

3

� (3
+ 2)x

2

+ (3


2

+ 2
+ 1)x� 


3

: (6.43)

By Example 5.20, S

irr

p

= ; if p 2 f1; 2g, and S

irr

3

= f�g, where � is the

permutation given by �(1) = 3; �(2) = 1; �(3) = 2, so that �(�̂) = 1. It follows

thus by Theorem 6.6, that

E

�

P




1

(S

�

S)

�

= 0;

E

�

P




2

(S

�

S)

�

= 0;

E

�

P




3

(S

�

S)

�

= n

�2

r

X

i;j;k=1

a

�

i

a

k

a

�

j

a

i

a

�

k

a

j

:

These three formulas 
an also easily be derived dire
tly from Example 5.20,

using the formulas (6.41)-(6.43). �

7 An Upper Bound for E

�

exp(�tS

�

S)

�

; t � 0

Throughout this se
tion, we 
onsider elements a

1

; : : : ; a

r

of B(H;K) (for given

Hilbert spa
es H and K), satisfying that

r

X

i=1

a

�

i

a

i

= 
1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(K)

;

for some 
onstant 
 in [1;1[. Moreover, we 
onsider independent elements

Y

1

; : : : ; Y

r

of GRM(n; n;

1

n

), and put

S =

r

X

i=1

a

i


 Y

i

:
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As in Se
tion 3, we let �




denote the probability measure on R, given by

�




=

p

(x� a)(b� x)

2�x

� 1

[a;b℄

(x) � dx;

where a = (

p


� 1)

2

and b = (

p


+ 1)

2

. Furthermore, we let (P




q

)

q2N

0

be the

sequen
e of moni
 orthogonal polynomials w.r.t. �




as de�ned in Se
tion 6. In

parti
ular P




0

� 1.

7.1 Lemma. Let, as above, a = (

p


� 1)

2

and b = (

p


+ 1)

2

. Then for any q

in N

0

,

(i) P




q

(x) � P




q

(b) > 0, for all x in ℄b;1[.

(ii) jP




q

(x)j � P




q

(b), for all x in [a; b℄.

(iii) jP




q

(x)j � P




q

(2
+ 2� x), for all x in ℄�1; a[.

Proof. We start by proving (ii). If x 2 [a; b℄, then x = 
 + 1 + 2

p


 
os �, for

some � in [0; �℄. For � in ℄0; �[, we have from Proposition 6.1(ii), that

P




q

(
+ 1 + 2

p


 
os �) =




q

2

sin((q + 1)�) + 


q�1

2

sin(q�)

sin �

: (7.1)

Note here that for any k in N

0

,

sin((k + 1)�)

sin �

= e

�k�

�

1 + e

2i�

+ e

4i�

+ � � �+ e

2ki�

�

; (7.2)

so that

�

�

sin((k+1)�)

sin �

�

�

� k + 1. It follows thus that

jP




q

(x)j � 


q

2

(q + 1) + 


q�1

2

q; (x 2℄a; b[); (7.3)

and by 
ontinuity, (7.3) holds also for x = a and x = b. By (7.2),

lim

�!0

sin((k+1)�)

sin �

= k + 1, for any k in N

0

, and hen
e the right hand side

of (7.3) is equal to P




q

(b). This proves (ii).

To prove (i), we note �rst, that by uniqueness of analyti
 
ontinuation, (7.1)

a
tually holds for all � in C n �Z. If we put � = i�, � > 0, we get the equation:

P




q

(
+ 1 + 2

p


 
osh �) =




q

2

sinh((q + 1)�) + 


q�1

2

sinh(q�)

sinh �

; (� 2℄0;1[);

(7.4)

whi
h 
overs the values of P

q

(x) for all x in ℄b;1[. Note here that for any k in

N

0

,

sinh((k + 1)�)

sinh �

= e

�k�

�

1 + e

2�

+ e

4�

+ � � �+ e

2k�

�

;

and hen
e, if k is even,

sinh((k + 1)�)

sinh �

= 1 + 2 
osh(2�) + 2 
osh(4�) + � � �+ 2 
osh(k�);
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whereas, if k is odd,

sinh((k + 1)�)

sinh �

= 2 
osh(�) + 2 
osh(3�) + � � �+ 2 
osh(k�);

so in both 
ases

sinh((k+1)�)

sin �

is an in
reasing fun
tion of � > 0. It follows thus

from (7.4), that P




q

(x) � P




q

(b) for all x in ℄b;1[. Moreover, as we saw in the

proof of (ii), P




q

(b) > 0. This 
on
ludes the proof of (i).

Finally, to prove (iii), we put � = � + i� in (7.1), and get for � in ℄0;1[, that

�

�

P




q

(
+ 1� 2

p


 
osh �)

�

�

=

�

�

�

(�1)

q




q

2

sinh((q + 1)�) + (�1)

q�1




q�1

2

sinh(q�)

sinh �

�

�

�

�




q

2

sinh((q + 1)�) + 


q�1

2

sinh(q�)

sinh �

= P




q

(
+ 1 + 2

p


 
osh �):

This proves (iii). �

7.2 Definition. For ea
h q in N

0

, we de�ne the fun
tion  




q

: R ! R, by the

equation

 




q

(t) = 


�q

Z

b

a

exp(tx)P




q

(x) d�




(x); (t 2 R): �

7.3 Lemma. Consider the sequen
e ( 




q

)

q2N

0

of fun
tions, introdu
ed in De�-

nition 7.2, and for ea
h p in N

0

, let, as in Se
tion 6,

�(
; p; q) = 


�q

Z

b

a

x

p

P




q

(x) d�




(x); (p; q 2 N

0

):

We then have

(i)  




q

(t) =

P

1

p=q

t

p

p!

�(
; p; q), for all t in R.

(ii)

P

1

q=0

j 




q

(t)j � jP




q

(x)j � exp(jtjx) + exp(jtj(2
+2)), for all t in R and all

x in [0;1[.

(iii) exp(tx) =

P

1

q=0

 




q

(t) �P




q

(x), for all t in R and x in [0;1[, and for �xed

t in R, the series 
onverges uniformly in x on 
ompa
t subsets of [0;1[.

Proof. (i) By Lemma 6.2(ii), �(
; p; q) = 0 whenever q > p. Hen
e (i) follows

from the power series expansion of exp(tx).

(ii) Let � : R ! [b;1[ be the 
ontinuous fun
tion de�ned by:

�(x) =

8

>

<

>

:

x; if x > b;

b; if a � x � b;

2
+ 2� x; if x < a;
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It follows then from Lemma 7.1, that

jP




q

(x)j � P




q

(�(x)); (x 2 R; q 2 N

0

): (7.5)

Re
all that x

p

=

P

p

q=0

�(
; p; q)P




q

(x), for all p in N (
.f. Lemma 6.2(i)). Hen
e,

for x; t in R, we have that

exp(tx) =

1

X

p=0

t

p

p!

x

p

=

1

X

p=0

t

p

p!

�

p

X

q=0

�(
; p; q)P




q

(x)

�

: (7.6)

Substituting x with �(x) and t with jtj in this formula, and re
alling from

Lemma 6.2(ii), that �(
; p; q) � 0, for 0 � q � p, we get by appli
ation of (7.5),

1

X

p=0

jtj

p

p!

�

p

X

q=0

�(
; p; q)jP




q

(x)j

�

�

1

X

p=0

jtj

p

p!

�

p

X

q=0

�(
; p; q)P




q

(�(x))

�

= exp(jtj�(x)) <1:

Hen
e, we 
an apply Fubini's theorem to the double sum in (7.6), and obtain

that

exp(tx) =

1

X

q=0

�

1

X

p=q

t

p

p!

�(
; p; q)

�

P




q

(x); (x; t 2 R): (7.7)

Similarly we have that

exp(jtj�(x)) =

1

X

q=0

�

1

X

p=q

jtj

p

p!

�(
; p; q)

�

P




q

(�(x)); (x; t 2 R): (7.8)

Note here that by (i) proved above, we have that,

j 




q

(t)j �

1

X

p=q

jtj

p

p!

�(
; p; q): (7.9)

Sin
e �(x) � maxf2
+2; xg for all x in [0;1[, (7.5) and (7.7)-(7.9) imply that

for all t in R and x in [0;1[,

1

X

q=0

j 




q

(t)j � jP




q

(x)j � exp(jtj�(x)) � exp(jtj(2
+ 2)) + exp(jtjx);

and this proves (ii).

(iii) The summation formula in (iii) follows from (i) and (7.7). To prove that

the 
onvergen
e is uniform in x on 
ompa
t subsets, we observe that for any
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Q in N,

�

�

�

exp(tx) �

Q

X

q=0

 




q

(t)P




q

(x)

�

�

�

�

1

X

q=Q+1

j 




q

(t)j � jP




q

(x)j

�

1

X

q=Q+1

�

1

X

p=q

jtj

p

p!

�(
; p; q)P




q

(�(x))

�

�

1

X

p=Q+1

jtj

p

p!

�

p

X

q=0

�(
; p; q)P




q

(�(x))

�

=

1

X

p=Q+1

(jtj�(x))

p

p!

:

(7.10)

Sin
e � is 
ontinuous, and hen
e bounded on 
ompa
t sets, it follows readily

from (7.10) that for �xed t in R, the series in (iii) 
onverges uniformly in x on


ompa
t subsets of [0;1[. �

7.4 Proposition. Consider the sequen
e ( 




q

)

q2N

0

of fun
tions, introdu
ed in

De�nition 7.2. Then for any t in R su
h that jtj <

n




, the fun
tion ! 7!

exp(tS

�

(!)S(!)) is integrable in the sense of De�nition 3.1, and

E

�

exp(tS

�

S)

�

=

1

X

q=0

 




q

(t)E

�

P




q

(S

�

S)

�

; (7.11)

where the sum on the right hand side is absolutely 
onvergent in B(H

n

).

Proof. We start by proving that the right hand side of (7.11) is absolutely


onvergent in B(H

n

). Sin
e j 




q

(t)j �  




q

(jtj) by Lemma 7.3(i) and (7.9), it

suÆ
es to 
onsider the 
ase where t � 0.

By Lemma 7.3(i), we have for any t in [0;1[,

1

X

q=0

 




q

(t)







E

�

P




q

(S

�

S)

�







=

1

X

p=0

t

p

p!

�

p

X

q=0

�(
; p; q)







E

�

P




q

(S

�

S)

�







�

: (7.12)

Note here, that by Theorem 6.6,







E

�

P




q

(S

�

S)

�







�

X

�2S

irr

q

n

�2�(�̂)










X

1�i

1

;::: ;i

q

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

q

a

i

�(q)










;

for any q in N, whereas







E

�

P




0

(S

�

S)

�







= kE(1

1

1

B(H

n

)

)k = 1:
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Hen
e, by Proposition 5.19, Lemma 6.5 and Proposition 2.7, we have for any

p in N,

p

X

q=0

�(
; p; q)







E

�

P




q

(S

�

S)

�







�

X

�2S

p

n

�2�(�̂)










X

1�i

1

;::: ;i

p

�r

a

�

i

1

a

i

�(1)

� � � a

�

i

p

a

i

�(p)










�

X

�2S

p

n

�2�(�̂)




�(�̂)

:

(7.13)

Using now that 
 � 1, and that �(�̂) � k(�̂) + 2�(�̂) (
.f. Proposition 2.10), it

follows that for any p in N,

X

�2S

p

n

�2�(�̂)




�(�̂)

�

X

�2S

p

�

n




�

�2�(�̂)




k(�̂)

: (7.14)

For p = 0, we note that

p

X

q=0

�(
; p; q)







E

�

P




q

(S

�

S)

�







= 1: (7.15)

Combining now (7.12)-(7.15), we get that

1

X

q=0

 




q

(t)







E

�

P




q

(S

�

S)

�







� 1 +

1

X

p=1

t

p

p!

�

X

�2S

p

�

n




�

�2�(�̂)




k(�̂)

�

: (7.16)

Using then that �2�(�̂) = k(�̂) + l(�̂)� p� 1, it follows that

1

X

q=0

 




q

(t)







E

�

P




q

(S

�

S)

�







� 1 +

1

X

p=1

1

p!

�


t

n

�

p

X

�2S

p

n

k(�̂)

�

n




�

l(�̂)�1

� 1 + 
t

1

X

p=1

1

(p�1)!

�


t

n

�

p�1

X

�2S

p

n

k(�̂)�1

�

n




�

l(�̂)�1

;

(7.17)

where the last equality follows by noting that

1

p!

�

1

(p�1)!

for all p in N. By

Lemma 3.4, the last quantity in (7.17) is �nite whenever 0 �


t

n

< 1, and this

shows that the right hand side of (7.11) is absolutely 
onvergent for all t in

℄�

n




;

n




[, as desired.

It remains now (
f. De�nition 3.1) to show, that for any state ' on B(H

n

),

E

�

'(exp(tS

�

S))

�

=

1

X

q=0

 




q

(t)'

�

E

�

P




q

(S

�

S)

��

; (t 2℄�

n




;

n




[): (7.18)
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So 
onsider a �xed t from ℄ �

n




;

n




[ and a �xed state ' on B(H

n

). Sin
e

the spe
trum of S

�

(!)S(!) is 
ompa
t for ea
h ! in 
, it follows then by

Lemma 7.3, that

'

�

exp(tS

�

(!)S(!))

�

=

1

X

p=0

 




q

(t)'

�

P




q

(S

n

(!)

�

S

n

(!))

�

; (7.19)

so we need to show that we 
an integrate termwise in the sum on the right

hand side. Note for this, that by Lemma 7.3(ii), and the fun
tion 
al
ulus for

selfadjoint operators on Hilbert spa
es,

1

X

p=0

j 




q

(t)j � jP




q

(S(!)

�

S(!))j � exp(2(
+ 1)jtj)1

1

1

B(H

n

)

+ exp(jtjS(!)

�

S(!));

(7.20)

where jT j = (T

2

)

1

2

, for any selfadjoint T in B(H

n

). For su
h T , we have also

that j'(T )j � '(jT j), and hen
e it follows from (7.20), that

1

X

p=0

j 




q

(t)j �

�

�

'

�

P




q

(S(!)

�

S(!))

�

�

�

� exp(2(
+ 1)jtj) + '

�

exp(jtjS(!)

�

S(!))

�

:

(7.21)

Sin
e E

�

'(exp(jtjS

�

S))

�

< 1, by Proposition 3.2, it follows from (7.21) and

Lebesgue's theorem on dominated 
onvergen
e, that we may integrate termwise

in (7.19), and hen
e obtain (7.18). This 
on
ludes the proof. �

In order to obtain the upper bound for E

�

exp(�tS

�

S)

�

in Theorem 7.8 below,

we need more pre
ise information about the behavior of the fun
tion  




q

(t) for

t < 0.

7.5 Proposition. Consider the sequen
e ( 




q

)

q2N

0

of fun
tions, de�ned in Def-

inition 7.2. Then for any q in N

0

, and any t in ℄0;1[, we have that

(i)  




q

(t) > 0.

(ii) (�1)

q

 




q

(�t) > 0.

(iii) j 




q

(�t)j �

 




0

(�t)

 




0

(t)

 




q

(t).

Proof. (i) This follows from Lemma 7.3(i), but for 
ompleteness we in
lude a

di�erent proof, whi
h will also be needed in the proof of (ii) and (iii). For ea
h

q in N

0

, we put

�




q

(x) = 


�

q

2

P




q

(x); (x 2 R):

Then by Proposition 6.1, (�




q

)

q2N

0

is an orthonormal basis for L

2

([a; b℄; �




). Let

A be the (bounded) operator for multipli
ation by x in L

2

([a; b℄; �




). Then by
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(6.23) and (6.24), the matrix M(A) of A w.r.t. (�




q

)

q2N

0

, is given by

M(A) =

0

B

B

B

B

B

B

B

�




p


 0

p


 
+ 1

p




p


 
+ 1

p




.

.

.

.

.

.

.

.

.

0

1

C

C

C

C

C

C

C

A

(7.22)

From this, it follows, that for any p in N,

M(A

p

)

jk

> 0; when jj � kj � p;

M(A

p

)

jk

= 0; when jj � kj > p:

Hen
e, for any t in [0;1[,

M(exp(tA))

jk

= Æ

j;k

+

1

X

p=1

t

p

p!

M(A

p

)

jk

> 0; (j; k 2 N

0

):

Sin
e exp(tA) is the operator for multipli
ation by exp(tx) in L

2

([a; b℄; �




), and

sin
e P




0

(x) � 1, we get that

 




q

(t) = 


�q

Z

b

a

exp(tx)P




q

(x)P




0

(x) d�




(x) = 


�

q

2

hexp(tA)�




q

; �




0

i

= 


�

q

2

M(exp(tA))

0;q

> 0;

(7.23)

and this proves (i).

(ii) To prove (ii), we 
onsider the operator

B = A+ 2P

0

;

where P

0

is the proje
tion onto C �




0

in B

�

L

2

([a; b℄; �




)

�

. Then

M(B) =

0

B

B

B

B

B

B

B

�


+ 2

p


 0

p


 
+ 1

p




p


 
+ 1

p




.

.

.

.

.

.

.

.

.

0

1

C

C

C

C

C

C

C

A

; (7.24)

so as above, we get that

M(exp(tB))

jk

> 0; for all j; k in N

0

: (7.25)

Let U be the unitary operator on L

2

([a; b℄; �




), de�ned by the equation:

U�




q

= (�1)

q

�




q

; (q 2 N

0

):
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Then

M(UBU

�

) =

0

B

B

B

B

B

B

B

�


+ 2 �

p


 0

�

p


 
+ 1 �

p




�

p


 
+ 1 �

p




.

.

.

.

.

.

.

.

.

0

1

C

C

C

C

C

C

C

A

=M(2(
+ 1)1

1

1�A):

Hen
e A = 2(
+ 1)1

1

1� UBU

�

, and for t in [0;1[, we have thus that

exp(�tA) = exp(�2(
+ 1)t) exp(tUBU

�

) = exp(�2(
+ 1)t)U exp(tB)U

�

:

Therefore,

M(exp(�tA))

jk

= (�1)

j+k

exp(�2(
+ 1)t)M(exp(tB))

jk

; (j; k 2 N

0

);

(7.26)

so in parti
ular, by (7.25),

(�1)

j+k

M(exp(�tA))

jk

> 0; (j; k 2 N

0

):

For t in [0;1[, we note here that

 




q

(�t) = 


�q

Z

b

a

exp(�tx)P




q

(x)P




0

(x) d�




(x) = 


�

q

2

M(exp(�tA))

q0

; (7.27)

and hen
e it follows that (�1)

q

 

q

(�t) > 0, whi
h proves (ii).

To prove (iii), we need the following te
hni
al lemma:

7.6 Lemma. Let C and D be bounded positive selfadjoint operators on `

2

(N

0

),

and assume that the 
orresponding matri
es (


jk

)

j;k2N

0

and (d

jk

)

j;k2N

0

satisfy

the following 
onditions:

(a) 


jk

� 0 for all j; k in N

0

.

(b) 


jk

= 0 when jj � kj � 2.

(
) d

jk

= 


jk

, when (j; k) 6= (0; 0).

(d) d

00

� 


00

.

For ';  in `

2

(N

0

), we de�ne

[';  ℄

j;k

= '(j) (k) � '(k) (j); (j; k 2 N

0

):

Consider then furthermore f; g from `

2

(N

0

), satisfying that

(e) f(k) � 0 and g(k) � 0 for all k in N

0

.

(f) [f; g℄

j;k

� 0, for all k; j in N

0

su
h that k > j.

Then for all j; k in N

0

, su
h that k > j, we have that

(i) [Cf;Cg℄

j;k

� 0.

(ii) [Df;Cg℄

j;k

� 0.

(iii) [D

n

f; C

n

g℄

j;k

� 0, for all n in N.

(iv) [exp(tD)f; exp(tC)g℄

j;k

� 0, for all t in [0;1[.

Do
umenta Mathemati
a 4 (1999) 341{450



424 U. Haagerup and S. Thorbj�rnsen

7.7 Remark. If ';  are stri
tly positive fun
tions in `

2

(N

0

), then the state-

ment

[';  ℄

j;k

� 0; for all j; k in N

0

; su
h that k > j;

is equivalent to the 
ondition that

'(0)

 (0)

�

'(1)

 (1)

�

'(2)

 (2)

� � � � : �

Proof of Lemma 7.6. Note �rst that for any ';  in `

2

(N

0

) and j; k in N

0

, we

have that [';  ℄

j;k

= �[';  ℄

k;j

. In parti
ular,

[';  ℄

j;j

= 0; (';  2 `

2

(N

0

); j 2 N

0

): (7.28)

Note also that the positivity of C implies that

det

�




jj




jk




kj




kk

�

� 0; for all j; k in N

0

, su
h that j 6= k: (7.29)

To prove (i), 
onsider k; j in N

0

, su
h that k > j � 0. We then have

�

Cf

�

(j) =

(




j;j�1

f(j � 1) + 


j;j

f(j) + 


j;j+1

f(j + 1); if j � 1;




0;0

f(0) + 


0;1

f(1); if j = 0;

and sin
e k 6= 0,

�

Cg

�

(k) = 


k;k�1

g(k � 1) + 


k;k

g(k) + 


k;k+1

g(k + 1):

Thus,

[Cf;Cg℄

j;k

=

(

P

j+1

l=j�1

P

k+1

m=k�1




jl




km

[f; g℄

l;m

; if j � 1;

P

1

l=0

P

k+1

m=k�1




0l




km

[f; g℄

l;m

; if j = 0:

Assume �rst that k � j + 2. In this 
ase, l � j + 1 � k � 1 � m, for all terms

in the above sums, and thus, by (f) and (7.28), [f; g℄

l;m

� 0. Sin
e 


lm

� 0 for

all l;m in N

0

(by (a)), it follows thus that [Cf;Cg℄

j;k

� 0.

Assume next that k = j + 1, and 
onsider �rst the 
ase j � 1. Then

[Cf;Cg℄

j;k

=

j+1

X

l=j�1

j+2

X

m=j




jl




j+1;m

[f; g℄

l;m

: (7.30)

In 8 of the 9 terms in the sum above, l � m, and hen
e [f; g℄

l;m

� 0. Only in

the 
ase (l;m) = (j + 1; j), do we have l > m. However, the sum of the two

terms 
orresponding to (l;m) = (j; j+1) and (l;m) = (j+1; j) is non-negative,

sin
e




jj




j+1;j+1

[f; g℄

j;j+1

+ 


j;j+1




j+1;j

[f; g℄

j+1;j

= (


jj




j+1;j+1

� 


j;j+1




j+1;j

)[f; g℄

j;j+1

;
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whi
h is non-negative by (7.29). Sin
e the remaining 7 terms in the sum on the

right hand side of (7.30) are also non-negative, it follows that [Cf;Cg℄

j;k

� 0.

If j = 0, and k = j + 1 = 1, the same argument 
an be used to show that

[Cf;Cg℄

0;1

=

1

X

l=0

2

X

m=0




0l




1m

[f; g℄

l;m

� 0:

This proves (i).

To prove (ii), note �rst that by (a) and (
), we have

�

Df

�

(j) =

�

Cf

�

(j); if j � 1;

and

�

Df

�

(0) =

�

Cf

�

(0) + (d

00

� 


00

)f(0):

Hen
e, if k > j � 1, we get from (i), that

[Df;Cg℄

j;k

= [Cf;Cg℄

j;k

� 0:

If k > j = 0, then

[Df;Cg℄

0;k

=

�

Df

�

(0)

�

Cg

�

(k)�

�

Df

�

(k)

�

Cg

�

(0)

= [Cf;Cg℄

0;k

+ (d

00

� 


00

)f(0)(Cg)(k):

But (d

00

�


00

)f(0) � 0 by (d) and (e), and sin
e also (Cg)(k) =

P

1

l=0




kl

g(l) �

0, by (a) and (e), it follows by (i), that also [Df;Cg℄

0;k

� 0. This proves (ii).

Next, (iii) follows from (ii) and indu
tion on n, and from noting (by indu
tion),

that (D

n

f)(j); (C

n

g)(j) � 0 for all n in N and j in N

0

.

To prove (iv), we let t be a �xed number in [0;1[, and put

C

n

= 1

1

1 +

t

n

C; and D

n

= 1

1

1 +

t

n

D; (n 2 N

0

):

Then, for all n, C

n

and D

n

are positive selfadjoint operators on `

2

(N

0

), whi
h

also satisfy the requirements (a)-(d). Hen
e, if f; g 2 `

2

(N

0

) whi
h satisfy (e)

and (f), we 
on
lude from (iii), that

��

1

1

1 +

t

n

D

�

n

f;

�

1

1

1 +

t

n

C

�

n

g

�

j;k

� 0; when j > k;

and hen
e, letting n!1, we get that

�

exp(tD)f; exp(tC)g

�

j;k

� 0; when j > k;

as desired. �

End of Proof of Proposition 7.5. Only (iii) in Proposition 7.5 remains to be

proved. Let A;B from B

�

L

2

([a; b℄; �




)

�

be as in the �rst part of the proof of

Proposition 7.5. Sin
e A is the multipli
ation operator asso
iated to a positive

fun
tion on [a; b℄, and sin
e B � A, both A and B are positive selfadjoint

Do
umenta Mathemati
a 4 (1999) 341{450



426 U. Haagerup and S. Thorbj�rnsen

operators on L

2

([a; b℄; �




). Let C and D be the operators in B

�

`

2

(N

0

)

�


orre-

sponding to A and B respe
tively, via the natural Hilbert spa
e isomorphism

between L

2

([a; b℄; �




) and `

2

(N

0

), given by the orthonormal basis (�




q

)

q2N

0

for

L

2

([a; b℄; �




). Then C andD are positive selfadjoint operators and by (7.22) and

(7.24), they satisfy the 
onditions (a)-(d) of Lemma 7.6. Now, let both f and g

be the �rst basis ve
tor in the natural basis for `

2

(N

0

) (i.e., f(k) = g(k) = Æ

k;0

for all k in N

0

). Then (e),(f) of Lemma 7.6 are also satis�ed, and hen
e we

obtain from (iv) of that lemma, that for all j; k in N

0

su
h that k > j,

�

exp(tD)f

�

(j)

�

exp(tC)f

�

(k)�

�

exp(tD)f

�

(k)

�

exp(tC)f

�

(j) � 0;

i.e.,




exp(tB)�




0

; �




j

�

�




exp(tA)�




0

; �




k

�

�




exp(tB)�




0

; �




k

�

�




exp(tA)�




0

; �




j

�

:

For j = 0, we get in parti
ular,

M(exp(tB))

k;0

M(exp(tA))

k;0

�

M(exp(tB))

0;0

M(exp(tA))

0;0

; (k 2 N

0

): (7.31)

Note here, that by (7.26),

(�1)

k

M(exp(�tA))

k;0

= exp(�2(
+ 1)t)M(exp(tB))

k;0

> 0; (k 2 N

0

):

Inserting this in (7.31), it follows that

(�1)

k

M(exp(�tA))

k;0

M(exp(tA))

k;0

�

M(exp(�tA))

0;0

M(exp(tA))

0;0

; (k 2 N

0

): (7.32)

By (7.23) and (7.27),

M(exp(�tA))

k;0

= 


�

k

2

Z

b

a

exp(�tx)P




k

(x) d�




(x) = 


k

2

 




k

(�t); (k 2 N

0

):

Hen
e, (iii) in Proposition 7.5 follows from (7.32). �

7.8 Theorem. Let H and K be Hilbert spa
es, and let a

1

; : : : ; a

r

be elements

of B(H;K) su
h that

P

r

i=1

a

�

i

a

i

= 
1

1

1

B(H)

, and

P

r

i=1

a

i

a

�

i

= 1

1

1

B(K)

, for some


onstant 
 in [1;1[. Consider furthermore independent elements Y

1

; : : : ; Y

r

of

GRM(n; n;

1

n

), and put S =

P

r

i=1

a

i


 Y

i

. Then for any t in [0;

n

2


℄,

E

�

exp(�tS

�

S)

�

� exp

�

� (

p


� 1)

2

t+ (
+ 1)

2

�

t

2

n

�

� 1

1

1

B(H

n

)

: (7.33)

Proof. Consider a �xed t in [0;

n

2


℄. By Proposition 7.4 and Proposition 7.5 we

then have







E

�

exp(�tS

�

S)

�







�

1

X

q=0

j 




q

(�t)j �







E

�

P




q

(S

�

S)

�







�

 




0

(�t)

 




0

(t)

1

X

q=0

 




q

(t)







E

�

P




q

(S

�

S)

�







:

(7.34)
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From (7.16) in the proof of Proposition 7.4, we have here that

1

X

q=0

 




q

(t) �







E

�

P




q

(S

�

S)

�







�

1

X

p=0

1

p!

�


t

n

�

p

X

�2S

p

n

k(�̂)

�

n




�

l(�̂)�1

�

1

X

p=0

1

p!

�


t

n

�

p

X

k;l2N

k+l�p+1

Æ(p; k; l)n

k

�

n




�

l�1

;

where Æ(p; k; l) was introdu
ed in (3.6). Applying now Lemma 3.6, we get for

t in [0;

n

2


℄, that

1

X

q=0

 




q

(t) �







E

�

P




q

(S

�

S)

�







� exp

�

(n+

n




)(


t

n

)

2

�

Z

b

a

exp

�

n




(


t

n

x)

�

d�




(x)

� exp

�

(
+ 1)

2

�

t

2

n

�

Z

b

a

exp(tx) d�




(x):

Note here, that  




0

(t) =

R

b

a

exp(tx) d�




(x), and hen
e we get by (7.34), that







E

�

exp(�tS

�

S)

�







� exp

�

(
+ 1)

2

�

t

2

n

�

 




0

(�t)

= exp

�

(
+ 1)

2

�

t

2

n

�

Z

b

a

exp(�tx) d�




(x):

But exp(�tx) � exp(�ta) = exp(�t(

p


 + 1)

2

) for all x in [a; b℄, and hen
e it

follows that







E

�

exp(�tS

�

S)

�







� exp

�

(
+ 1)

2

�

t

2

n

�

exp(�(

p


� 1)

2

t); (t 2 [0;

n

2


℄):

This proves (7.33). �

7.9 Remark. By appli
ation of the method of Remark 3.7, it is easy to extend

Theorem 7.8, to the 
ase where

r

X

i=1

a

�

i

a

i

= 
1

1

1

B(H)

; and

r

X

i=1

a

i

a

�

i

= d1

1

1

B(K)

;

for 
onstants 
; d su
h that 
 � d > 0. In this 
ase, one obtains that for t in

[0;

n

2


℄,

E

�

exp(�tS

�

S)

�

� exp

�

� (

p


�

p

d)

2

t+ (
+ d)

2

�

t

2

n

�

� 1

1

1

B(H

n

)

: �
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8 Asymptoti
 Lower Bound on the Spe
trum of S

�

n

S

n

in the Exa
t

Case

Let H and K be Hilbert spa
es, and 
onsider elements a

1

; : : : ; a

r

of B(H;K).

Let A denote the C

�

-subalgebra of B(H), generated by the family

�

a

�

i

a

j

�

�

i; j 2

f1; 2; : : : ; rg

	

. Consider furthermore, for ea
h n in N, independent elements

Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

), and de�ne

S

n

=

r

X

i=1

a

i


 Y

(n)

i

; (n 2 N): (8.1)

In this se
tion, we shall determine (almost surely), the asymptoti
 behavior of

the smallest element of the spe
trum of S

�

n

S

n

, under the assumptions that A

is an exa
t C

�

-algebra and that a

1

; : : : ; a

r

satisfy the 
ondition

r

X

i=1

a

�

i

a

i

= 
1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

� 1

1

1

B(K)

; (8.2)

for some 
onstant 
 in [1;1[. We start, however, by 
onsidering the simpler


ase, where, instead of (8.2), a

1

; : : : ; a

r

, satisfy the stronger 
ondition

r

X

i=1

a

�

i

a

i

= 
1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(K)

; (8.3)

for some 
onstant 
 in [1;1[. On
e this simpler 
ase has been handled, we

obtain the more general 
ase by virtue of a dilation result.

As in Se
tion 4, we determine �rst the asymptoti
 behavior of the smallest

eigenvalue of V

n

, where

V

n

=

�

�
 id

n

�

(S

�

n

S

n

); (n 2 N); (8.4)

and �: A !M

d

(C ) is a 
ompletely positive mapping, for some d in N.

8.1 Lemma. Let S

n

, n 2 N, and V

n

, n 2 N, be as in (8.1) and (8.4), and

assume that a

1

; : : : ; a

r

satisfy the 
ondition (8.3). Let �

min

(V

n

) denote the

smallest eigenvalue of V

n

(
onsidered as an element of M

dn

(C )). Then for any

� in ℄0;1[, we have that

1

X

n=1

P

�

�

min

(V

n

) � (

p


� 1)

2

� �

�

<1:

Proof. The proof is basi
ally the same as the proof of Lemma 4.2; the main

di�eren
e being that in this proof we apply Theorem 7.8 instead of Theorem 3.3.

Consequently, we shall not repeat all details in this proof.
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For �xed n in N, and arbitrary t in ℄0;1[, we �nd that

P

�

�

min

(V

n

) � (

p


� 1)

2

� �

�

= P

�

exp

�

� t�

min

(V

n

) + t(

p


� 1)

2

� t�

�

� 1

�

� exp(t(

p


� 1)

2

� t�) � E

�

exp

�

� t�

min

(V

n

)

��

� exp(t(

p


� 1)

2

� t�) � E ÆTr

dn

�

exp(�tV

n

)

�

:

(8.5)

By appli
ation of Lemma 4.1(ii), we have here, that

tr

dn

�

exp(�tV

n

)

�

= tr

dn

�

exp

�

� t(�
 id

n

)(S

�

n

S

n

)

��

� tr

dn

��

�
 id

n

�

(exp(�tS

�

n

S

n

))

�

= tr

d


 tr

n

��

�
 id

n

�

(exp(�tS

�

n

S

n

))

�

= �
 tr

n

�

exp(�tS

�

n

S

n

)

�

;

(8.6)

where � is the state tr

d

Æ � on A. It follows here from De�nition 3.1 and

Theorem 7.8, that

E

�

�
 tr

n

�

exp(�tS

�

n

S

n

)

��

= �
 tr

n

�

E

�

exp(�tS

�

n

S

n

)

��

� exp

�

� t(

p


� 1)

2

+

t

2

n

(
+ 1)

2

�

;

(8.7)

for all t in ℄0;

n

2


℄. Combining now (8.5)-(8.7), it follows that for all t in ℄0;

n

2


℄,

P

�

�

min

(V

n

) �(

p


� 1)

2

� �

�

� dn � exp(t(

p


� 1)

2

� t�) � exp

�

� t(

p


� 1)

2

+

t

2

n

(
+ 1)

2

�

= dn � exp

�

t(

t

n

(
+ 1)

2

� �)

�

:

From here, the proof is 
on
luded exa
tly as the proof of Theorem 4.2. �

8.2 Proposition. Let S

n

, n 2 N, and V

n

, n 2 N, be as in (8.1) and (8.4), and

assume that a

1

; : : : ; a

r

satisfy the 
ondition (8.3). We then have

lim inf

n!1

�

min

(V

n

) �

�

p


� 1

�

2

; almost surely:

Proof. By Lemma 4.2 and the Borel-Cantelli Lemma (
f. [Bre, Lemma 3.14℄),

we have for any � from ℄0;1[, that

P

�

�

min

(V

n

) � (

p


� 1)

2

� �; for all but �nitely many n

�

= 1;

and from this the proposition follows readily. �

The next two lemmas enable us to pass from the situation 
onsidered in Propo-

sition 8.2 to the more general situation, where it is only assumed that a

1

; : : : ; a

r

satisfy (8.2).
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8.3 Lemma. Let 
 be a number in [1;1[, and put q = 2+[
℄, where [
℄ denotes

the integer part of 
. Then there exist elements x

1

; : : : ; x

q

in the Cuntz algebra

O

2

, su
h that

q

X

i=1

x

�

i

x

i

= 
1

1

1

O

2

; and

q

X

i=1

x

i

x

�

i

= 1

1

1

O

2

:

Proof. Re
all that O

2

is the unital C

�

-algebra C

�

(s

1

; s

2

) generated by two

operators s

1

; s

2

satisfying that s

�

i

s

j

= Æ

i;j

1

1

1

O

2

, i; j 2 f1; 2g, and that s

1

s

�

1

+

s

2

s

�

2

= 1

1

1

O

2

. De�ne then t

1

; : : : ; t

q�1

in O

2

, by the expression

t

j

=

(

s

j�1

2

s

1

; if j 2 f1; 2; : : : ; q � 2g;

s

q�2

2

; if j = q � 1:

Then t

�

i

t

j

= Æ

i;j

1

1

1

O

2

, for all i; j in f1; 2; : : : ; q � 1g, and

q�1

X

j=1

t

j

t

�

j

=

q�3

X

i=0

s

i

2

(1

1

1

O

2

� s

2

s

�

2

)(s

i

2

)

�

+ s

q�2

2

(s

q�2

2

)

�

= 1

1

1

O

2

; (8.8)

(i.e., t

1

; : : : ; t

q�1

generates a 
opy of O

q�1

inside O

2

). De�ne now x

1

; : : : ; x

q

in O

2

, by

x

i

=

8

>

>

<

>

>

:

�


� 1

q � 2

�

1

2

t

i

; if i 2 f1; 2; : : : ; q � 1g

�

q � 1� 


q � 2

�

1

2

1

1

1

O

2

; if i = q:

Then

q

X

i=1

x

�

i

x

i

= (q � 1) �


� 1

q � 2

� 1

1

1

O

2

+

q � 1� 


q � 2

� 1

1

1

O

2

= 
1

1

1

O

2

;

and by (8.8),

q

X

i=1

x

i

x

�

i

=


� 1

q � 2

� 1

1

1

O

2

+

q � 1� 


q � 2

� 1

1

1

O

2

= 1

1

1

O

2

:

Thus, x

1

; : : : ; x

q

have the desired properties. �

8.4 Lemma. Let H and K be Hilbert spa
es, and let a

1

; : : : ; a

r

be elements of

B(H;K), su
h that

P

r

i=1

a

�

i

a

i

= 
1

1

1

B(H)

, and

P

r

i=1

a

i

a

�

i

� 1

1

1

B(K)

.

Then there exist Hilbert spa
es

~

H;

~

K, s in fr; r + 1; r + 2; : : : g and elements

~a

1

; : : : ; ~a

s

of B(

~

H;

~

K), su
h that the following 
onditions hold:

(i)

~

H � H and

~

K � K.

(ii) ~a

i

jH

=

(

a

i

; if 1 � i � r;

0; if r + 1 � i � s:

(iii)

P

s

i=1

~a

�

i

~a

i

= 
1

1

1

B(

~

H)

and

P

s

i=1

~a

i

~a

�

i

= 1

1

1

B(

~

K)

.
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Proof. By Lemma 8.3, we may 
hoose �nitely many elements x

1

; : : : ; x

q

of the

Cuntz algebra O

2

, su
h that

P

q

i=1

x

�

i

x

i

= 
1

1

1

O

2

and

P

q

i=1

x

i

x

�

i

= 1

1

1

O

2

. We

assume that O

2

is represented on some Hilbert spa
e L, so that x

1

; : : : ; x

r

2

B(L). De�ne then

~

H = (H
 L)� (K 
L) and

~

K = (K 
L)� (H
L):

For Hilbert spa
es V ;W , an element v of B(V ;W), and an element y of B(L),

we 
onsider v 
 y as an element of B(V 
 L;W 
 L) in the natural manner.

Moreover, given v

11

in B(H 
 L;K 
 L), v

12

in B(K 
 L), v

21

in B(H 
 L)

and v

22

in B(K 
 L;H 
 L), we shall 
onsider the matrix (v

ij

)

1�i;j�1

as an

element of B(

~

H;

~

K) in the usual way. With these 
onventions, 
onsider now the

following elements of B(

~

H;

~

K),

~a

i

=

�

a

i


 1

1

1

B(L)

0

0 0

�

; (i 2 f1; 2; : : : ; rg);

b

j

=

�

0 (1

1

1

B(K)

�

P

r

i=1

a

i

a

�

i

)

1

2


 x

j

0 0

�

; (j 2 f1; 2; : : : ; qg);




i;j;k

=

�

0 0

0

1

p




� a

�

i


 (x

j

x

k

)

�

; (i 2 f1; 2; : : : ; rg; j; k 2 f1; 2; : : : ; qg):

It follows then by dire
t 
al
ulation, that

r

X

i=1

~a

�

i

~a

i

+

q

X

j=1

b

�

j

b

j

+

r

X

i=1

q

X

j;k=1




�

i;j;k




i;j;k

=

�
�

P

r

i=1

a

�

i

a

i

�


 1

1

1

B(L)

0

0

�


(1

1

1

B(K)

�

P

r

i=1

a

i

a

�

i

) + 


P

r

i=1

a

i

a

�

i

�


 1

1

1

B(L)

�

= 
1

1

1

B(

~

H)

;

and that

r

X

i=1

~a

i

~a

�

i

+

q

X

j=1

b

j

b

�

j

+

r

X

i=1

q

X

j;k=1




i;j;k




�

i;j;k

=

�
�

P

r

i=1

a

i

a

�

i

+ (1

1

1

B(K)

�

P

r

i=1

a

i

a

�

i

)

�


 1

1

1

B(L)

0

0

�

1




P

r

i=1

a

�

i

a

i

�


 1

1

1

B(L)

�

= 1

1

1

B(

~

K)

:

Thus, if we put s = r + q + rq

2

, and let ~a

r+1

; ~a

r+2

; : : : ; ~a

s

, be new names for

the elements in the set fb

j

j j 2 f1; : : : ; qgg [ f


i;j;k

j i 2 f1; : : : ; rg; j; k 2

f1; : : : ; qgg, then it follows that ~a

1

; ~a

2

; : : : ; ~a

s

satisfy 
ondition (iii).
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Choosing a �xed unit ve
tor � in L, we have natural embeddings �

H

: H !

~

H

and �

K

: K !

~

K given by the equations

�

H

(h) = (h
 �)� 0; (h 2 H);

�

K

(k) = (k 
 �)� 0; (k 2 K):

This justi�es (i), and moreover, it is straightforward to 
he
k, that under the

identi�
ations of H with �

H

(H) and K with �

K

(K), 
ondition (ii) is satis�ed.

This 
on
ludes the proof. �

8.5 Proposition. Let S

n

, n 2 N, and V

n

, n 2 N, be as in (8.1) and (8.4), and

assume now that a

1

; : : : ; a

r

satisfy the 
ondition (8.2). Then

lim inf

n!1

�

min

(V

n

) �

�

p


� 1

�

2

; almost surely:

Proof. By Lemma 8.4, we may 
hoose Hilbert spa
es

~

H;

~

K, s in fr; r +

1; : : : ; g and elements ~a

1

; ~a

2

; : : : ; ~a

s

of B(H;K), su
h that 
onditions (i)-(iii)

of Lemma 8.4 are satis�ed. If r < s, then for ea
h n in N we 
hoose additional

elements Y

(n)

r+1

; : : : ; Y

(n)

s

of GRM(n; n;

1

n

), su
h that Y

(n)

1

; Y

(n)

2

; : : : ; Y

(n)

s

are

independent. We then de�ne

~

S

n

=

s

X

i=1

~a

i


 Y

(n)

i

; (n 2 N):

Re
all from (8.4), that

V

n

=

�

�
 id

n

�

(S

�

n

S

n

); (n 2 N);

where �: A !M

d

(C ) is a 
ompletely positive mapping from the C

�

-subalgebra

A of B(H) generated by fa

�

i

a

j

j i; j 2 f1; 2; : : : ; rgg, into the matrix algebra

M

d

(C ). By [Pa, Theorem 5.2℄, there exists a 
ompletely positive mapping

�

1

: B(H)!M

d

(C ) extending �. Note that sin
e � is unital, so is �

1

.

Consider next the orthogonal proje
tion P

H

of

~

H onto H. Then the mapping

C

P

H

: b 7! P

H

bP

H

: B(

~

H)! P

H

B(

~

H)P

H

' B(H);

is unital 
ompletely positive. Hen
e, so is the mapping �

2

: B(

~

H) ! M

d

(C ),

given by

�

2

(b) = �

1

(P

H

bP

H

) = �

1

Æ C

P

H

(b); (b 2 B(

~

H)):

Thus, if we de�ne

~

V

n

=

�

�

2

Æ id

n

)(

~

S

�

n

~

S

n

); (n 2 N);

then it follows from Lemma 8.4(iii) and Proposition 8.2, that

lim inf

n!1

�

min

(

~

V

n

) �

�

p


� 1

�

2

; almost surely: (8.9)
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However, by Lemma 8.4(ii), we have here that

~

V

n

=

�

�

2


 id

n

�

h

s

X

i;j=1

~a

�

i

~a

j




�

Y

(n)

i

�

�

Y

(n)

j

i

=

s

X

i;j=1

�

2

�

~a

�

i

~a

j

�




�

Y

(n)

i

�

�

Y

(n)

j

=

s

X

i;j=1

�

1

�

P

H

~a

�

i

~a

j

P

H

�




�

Y

(n)

i

�

�

Y

(n)

j

=

r

X

i;j=1

�

1

(a

�

i

a

j

)


�

Y

(n)

i

�

�

Y

(n)

j

=

r

X

i;j=1

�(a

�

i

a

j

)


�

Y

(n)

i

�

�

Y

(n)

j

= V

n

:

Therefore (8.9) yields the desired 
on
lusion. �

It remains now to show that we 
an repla
e V

n

in Proposition 8.5 by S

�

n

S

n

itself. Before pro
eeding with this task, we draw attention to the following

simple observation:

8.6 Lemma. For ea
h n in N, let B

n

be a unital C

�

-algebra, and let b

n

be

an element of B

n

. Then for any R in [0;1[, the following two 
onditions are

equivalent:

(i) lim sup

n!1

kb

n

k � R.

(ii) lim sup

n!1

max(sp(b

n

)) � R, and lim inf

n!1

min(sp(b

n

)) � �R.

Proof. This is 
lear, sin
e, for ea
h n, kb

n

k is the largest of the two numbers

max(sp(b

n

)) and �min(sp(b

n

)). �

8.7 Theorem. Let a

1

; : : : ; a

r

be elements of B(H;K), su
h that

P

r

i=1

a

�

i

a

i

=


1

1

1

B(H)

and

P

r

i=1

a

i

a

�

i

� 1

1

1

B(K)

, for some 
onstant 
 in [1;1[. Assume, in ad-

dition, that the unital C

�

-subalgebra A of B(H), generated by the set fa

�

i

a

j

j

i; j;2 f1; 2; : : : ; rgg, is exa
t. Consider furthermore, for ea
h n in N, indepen-

dent elements Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

), and put S

n

=

P

r

i=1

a

i


 Y

(n)

i

,

n 2 N. We then have

lim inf

n!1

min

�

sp(S

�

n

S

n

)

�

� (

p


� 1)

2

; almost surely: (8.10)

Proof. Put E = spanfa

�

i

a

j

j i; j 2 f1; 2; : : : ; rgg, and note that x

�

2 E for

all x in E, and that 1

1

1

A

= 


�1

P

r

i=1

a

�

i

a

i

2 E. Thus, E is a �nite dimensional

operator system, and sin
e A is exa
t, it follows thus from Proposition 4.4,

that for any � from ℄0;1[, there exist d in N and a unital 
ompletely positive

mapping �: A ! M

d

(C ), su
h that







�

�
 id

n

�

(x)







� (1� �)kxk; (n 2 N; x 2M

n

(E)): (8.11)

Consider now a �xed � from ℄0;1[, let d, � be as des
ribed above, and de�ne

V

n

=

�

�
 id

n

�

(S

�

n

S

n

); (n 2 N):
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Re
all then from Proposition 4.3 and Proposition 8.5, that

lim sup

n!1

max

�

sp(V

n

)

�

� 
+ 1 + 2

p


; almost surely;

lim inf

n!1

min

�

sp(V

n

)

�

� 
+ 1� 2

p


; almost surely;

and hen
e that

lim sup

n!1

max

�

sp

�

V

n

� (
+ 1)1

1

1

dn

��

� 2

p


; almost surely;

lim inf

n!1

min

�

sp

�

V

n

� (
+ 1)1

1

1

dn

��

� �2

p


; almost surely:

By Lemma 8.6, this means that

lim sup

n!1







V

n

� (
+ 1)1

1

1

dn







� 2

p


; almost surely: (8.12)

Note here, that sin
e S

�

n

S

n

� (
 + 1)1

1

1

A
M

n

(C)

2 M

n

(E), for all n, it follows

from (8.11), that







S

�

n

S

n

� (
+ 1)1

1

1

A
M

n

(C)







� (1� �)

�1







�

�
 id

n

��

S

�

n

S

n

� (
+ 1)1

1

1

A
M

n

(C)

�







= (1� �)

�1







V

n

� (
+ 1)1

1

1

dn







;

for all n in N. Hen
e (8.12) implies that

lim sup

n!1







S

�

n

S

n

� (
+ 1)1

1

1

A
M

n

(C)







� (1� �)

�1

� 2

p


; almost surely:

Sin
e this holds for arbitrary � from ℄0;1[, it follows that a
tually

lim sup

n!1







S

�

n

S

n

� (
+ 1)1

1

1

A
M

n

(C)







� 2

p


; almost surely:

By Lemma 8.6, this implies, in parti
ular, that

lim inf

n!1

min

�

sp(S

�

n

S

n

)� (
+ 1)

�

� �2

p


; almost surely;

and this proves (8.10). �

8.8 Remark. As for the upper bound (
f. Se
tion 4), Theorem 8.7 does not, in

general, hold without the 
ondition, that the C

�

-algebra generated by fa

�

i

a

j

j

1 � i; j � rg be exa
t. In fa
t, for any 
 in ℄1;1[, it is possible to 
hoose

a �nite set of elements a

1

; : : : ; a

r

of B(H), for an in�nite dimensional Hilbert

spa
e H, su
h that

r

X

i=1

a

�

i

a

i

= 
1

1

1

B(H)

and

r

X

i=1

a

i

a

�

i

= 1

1

1

B(H)

;
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but at the same time

P

�

0 2 sp(S

�

n

S

n

); for all but �nitely many n

�

= 1;

where S

n

=

P

r

i=1

a

i


 Y

(n)

i

, as in (8.1). The proof of this is, however, mu
h

more 
ompli
ated than the 
orresponding proof of the possible violation for the

upper bound (
f. Proposition 4.9(ii)), and it will be presented elsewhere. �

9 Comparison of Proje
tions in Exa
t C

�

-algebras and states on

the K

0

-group

In [Haa℄, the �rst named author proved that quasitra
es on exa
t, unital C

�

-

algebras are tra
es. This result implies the following two theorems

9.1 Theorem. (
f. [Han℄, [Haa℄) If A is an exa
t, unital, stably �nite C

�

-

algebra, then A has a tra
ial state.

9.2 Theorem. (
f. [BR, Corollary 3.4℄) If A is an exa
t, unital C

�

-

algebra, then every state on K

0

(A) 
omes from a tra
ial state on A.

The proof given in [Haa℄ of the fa
t that quasitra
es in exa
t unital C

�

-algebras

are tra
es, is based on an ultra-produ
t argument, involving ultra produ
ts of

�nite AW

�

-algebras. The aim of this se
tion is to show that Theorem 9.1 and

Theorem 9.2 
an be obtained from the random matrix results of the previous

se
tions, without appealing to results on quasitra
es and AW

�

-algebras.

We start by re
apturing some of the standard notions and notation in


onne
tion with 
omparison theory for proje
tions in C

�

-algebras (see e.g.

[Bl1℄,[Bl2℄,[Cu℄ and [Go2℄). For a C

�

-algebra A, we put

M

1

(A) =

[

n2N

M

n

(A);

where elements are identi�ed via the (non-unital) embeddings M

n

(A) ,!

M

n+1

(A), given by addition of a row and a 
olumn of zeroes. Given two

proje
tions p; q in M

1

(A), we say, as usual, that p and q are (Murray-von

Neumann) equivalent, and write p � q, if there exists a u in M

1

(A), su
h that

u

�

u = p and uu

�

= q. We let V (A) denote the set of equivalen
e 
lasses hpi

of proje
tions p in M

1

(A), w.r.t. Murray-von Neumann equivalen
e, and we

equip V (A) with an order stru
ture and an addition, as follows: For proje
-

tions p; q in M

1

(A), we write hqi � hpi if q � p, i.e., if q is equivalent to a

sub-proje
tion of p. Moreover, we de�ne hpi+hqi to be hp

0

+q

0

i, where p

0

; q

0

are

proje
tions in M

1

(A), satisfying that p

0

� p, q

0

� q and p

0

? q

0

. Finally, for k

in N, we let khpi denote the equivalen
e 
lass hpi+ � � �+ hpi (k summands).

Re
all that for a unital C

�

-algebra A, K

0

(A) is the additive group obtained

from the semi group V (A), via the Grothendie
k 
onstru
tion (
f. [Bl1℄), and
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that K

0

(A)

+

denotes the range of V (A) under the natural map

� : V (A)! K

0

(A):

In parti
ular, we have that K

0

(A) = K

0

(A)

+

�K

0

(A)

+

.

For a proje
tion p in M

1

(A), we put

[p℄ = �(hpi):

Note then, that for proje
tions p; q in M

1

(A), [p℄ = [q℄ if and only if there

exists a proje
tion r in M

1

(A), su
h that hpi+ hri = hqi+ hri.

The four lemmas 9.3-9.6 below are well known and easy, but sin
e we have not

been able to �nd pre
ise referen
es in the literature, we have in
luded proofs

of these lemmas.

9.3 Lemma. Let A be a C

�

-algebra, and let p; q be proje
tions in A. Then

with I(p) the ideal in A generated by p, the following three 
onditions are

equivalent:

(i) hqi � khpi, for some k in N.

(ii) q 2 I(p).

(iii) q 2 I(p).

Proof. (i) ) (ii) : Assume that (i) holds, i.e., that there exists k in N and u in

M

k

(A), su
h that

u

�

u =

�

q 0

0 0

�

and uu

�

�

0

B

�

p 0

.

.

.

0 p

1

C

A

:

This implies that u is of the form

u =

0

B

�

u

11

0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

u

k1

0 � � � 0

1

C

A

;

where u

11

; u

21

; : : : ; u

k1

2 pAq. It follows thus, that

q =

k

X

j=1

u

�

j1

u

j1

=

k

X

j=1

u

�

j1

pu

j1

2 I(p);

as desired.

(ii) ) (iii) : This is trivial.

(iii) ) (i) : Assume that (iii) holds. Then there exist k in N and a

1

; : : : ; a

k

,

b

1

; : : : ; b

k

in A, su
h that










k

X

j=1

a

j

pb

j

� q










< 1: (9.1)
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Thus, by [Go2, 10.7℄,

�

q 0

0 0

�

�

0

B

�

p 0

.

.

.

0 p

1

C

A

in M

k

(A);

i.e., hqi � khpi. �

9.4 Lemma. Let M be a von Neumann algebra, and let p be a proje
tion in

M. Then any �-weakly lower semi-
ontinuous tra
e

� :

�

pMp

�

+

! [0;1℄;

has an extension to a �-weakly lower semi-
ontinuous tra
e ~� on M

+

.

Proof. We 
an assume that p 6= 0. Choose then a maximal family (p

i

)

i2I

of

pairwise orthogonal proje
tions in M, su
h that p

i

� p for all i in I . Then, by

standard 
omparison theory, it follows that

X

i2I

p

i

= 
(p);

where 
(p) denotes the 
entral support of p in M. Choose next, for ea
h i in

I , a partial isometry v

i

in M, su
h that

v

�

i

v

i

= p

i

and v

i

v

�

i

� p; (i 2 I):

De�ne then ~� : M

+

! [0;1℄, by the equation

~� (a) =

X

i2I

�(v

i

av

�

i

); (a 2 M

+

):

Clearly ~� is additive, homogeneous and �-weakly lower semi-
ontinuous. To

show that ~� has the tra
e property, note �rst that sin
e pv

i

= v

i

for all i, we

have also that 
(p)v

i

= v

i

for all i. Sin
e 
(p) is in the 
enter of M, it follows

thus, that for any x in M,

~�(xx

�

) =

X

i2I

�

�

v

i

xx

�

v

�

i

�

=

X

i2I

�

�


(p)v

i

xx

�

v

�

i

�

=

X

i2I

�

�

v

i

x
(p)x

�

v

�

i

�

=

X

i2I

X

j2I

�

�

(v

i

xv

�

j

)(v

j

x

�

v

�

i

)

�

;

and similarly

~� (x

�

x) =

X

j2I

X

i2I

�

�

(v

j

x

�

v

�

i

)(v

i

xv

�

j

)

�

:

But by the tra
e property of � on pMp, we have that

�

�

(v

i

xv

�

j

)(v

j

x

�

v

�

i

)

�

= �

�

(v

j

x

�

v

�

i

)(v

i

xv

�

j

)

�

;
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for all i; j, and sin
e all the terms in the above sums are positive, we 
an

permute their order without 
hanging the sums, and thus obtain

~� (xx

�

) = ~� (x

�

x):

Taken together, we have veri�ed that ~� is a �-weakly lower semi-
ontinuous

tra
e onM

+

, and it remains thus to show that ~� 
oin
ides with � on

�

pMp

�

+

.

Given a from

�

pMp

�

+

, we have that v

i

a

1

2

2 pMp, for all i, and therefore

~� (a) =

X

i2I

�

�

(v

i

a

1

2

)(a

1

2

v

�

i

)

�

=

X

i2I

�

�

a

1

2

v

�

i

v

i

a

1

2

�

= �

�

a

1

2


(p)a

1

2

�

= �(a);

as desired. �

9.5 Lemma. Let M be a von Neumann algebra, and let 1

1

1 denote the unit of

M. Let furthermore p; q be proje
tions in M, that satisfy the following two


onditions:

(i) 1

1

1 2 I(p).

(ii) �(q) � �(p), for any normal, tra
ial state � on M.

Then q � p.

Proof. LetM = eM� (1

1

1� e)M, be the de
omposition ofM into a �nite part

eM and a properly in�nite part (1

1

1� e)M, by a 
entral proje
tion e. Sin
e any

normal, tra
ial state onM must vanish on (1

1

1�e)M, 
ondition (ii) is equivalent

to the 
ondition

�(eq) � �(ep); for any normal tra
ial state � on eM:

By 
omparison theory for �nite von Neumann algebras (
f. e.g. [KR, Theo-

rem 8.4.3(vii)℄), this 
ondition implies that

eq � ep in eM; (9.2)

By Lemma 9.3, 
ondition (i) implies that there exists a k in N, su
h that

1

1

1
 e

11

� p
 1

1

1

k

in M

k

(M);

where (e

ij

)

1�i;j�k

are the usual matrix units in M

k

(C ). Therefore, we have

also that

(1

1

1� e)
 e

11

� (1

1

1� e)p
 1

1

1

k

in M

k

((1

1

1� e)M):

At the same time, sin
e 1

1

1 � e is a properly in�nite proje
tion in M, we have

that

(1

1

1� e)
 e

11

� (1

1

1� e)
 1

1

1

k

in M

k

((1

1

1� e)M):

It follows thus, that

(1

1

1� e)q
1

1

1

k

� (1

1

1� e)
1

1

1

k

� (1

1

1� e)
 e

11

� (1

1

1� e)p
1

1

1

k

in M

k

((1

1

1� e)M);
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and by [KR, Exer
ise 6.9.14℄, this implies that

(1

1

1� e)q � (1

1

1� e)p in (1

1

1� e)M: (9.3)

Combining (9.2) and (9.3), it follows that q � p, as desired. �

9.6 Lemma. Let M be a von Neumann algebra, and let p; q be proje
tions in

M. Then the following two 
onditions are equivalent

(i) q � p.

(ii) q 2 I(p), and �(q) � �(p) for every �-weakly lower semi-
ontinuous tra
e

� on M

+

.

Proof. Clearly (i) implies (ii). To show that (ii) implies (i), assume that (ii)

holds. By Lemma 9.3 there exists then a k in N, su
h that hqi � khpi, i.e., su
h

that

q 
 e

11

� q

0

� p
 1

1

1

k

;

for some proje
tion q

0

in M

k

(M). Consider now the von Neumann algebra

N =M

k

(pMp);

with unit 1

1

1

N

= p
1

1

1

k

. Set p

0

= p
 e

11

. Then p

0

; q

0

are both proje
tions in N ,

and

1

1

1

N

2 I

N

(p

0

); (9.4)

where I

N

(p

0

) is the ideal in N generated by p

0

.

We show next, that

�(q

0

) � �(p

0

); for any normal, tra
ial state � on N : (9.5)

Indeed, if � is a normal, tra
ial state on N , then by Lemma 9.4, the restri
tion

�

jN

+

of � to N

+


an be extended to a �-weakly lower semi-
ontinuous tra
e ~�

on M

k

(M)

+

. Then the mapping

a 7! ~� (a
 e

11

); (a 2 M

+

);

is a �-weakly lower semi-
ontinuous tra
e on M

+

, and hen
e the assumption

(ii) yields that

~� (q 
 e

11

) � ~� (p
 e

11

):

Sin
e q

0

� q 
 e

11

, p

0

= p
 e

11

and p

0

; q

0

2 N , it follows thus that

�(q

0

) = ~� (q

0

) = ~� (q 
 e

11

) � ~�(p
 e

11

) = ~� (p

0

) = �(p

0

);

whi
h proves (9.5).

Applying now Lemma 9.5, it follows from (9.4) and (9.5), that q

0

� p

0

in N ,

and hen
e that

q 
 e

11

� q

0

� p

0

= p
 e

11

in M

k

(M);

whi
h implies that q � p in M. �
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9.7 Proposition. Let A be a C

�

-algebra, and let p; q be proje
tions in A.

Then the following two 
onditions are equivalent:

(i) q � p in A

��

.

(ii) �(q) � �(p), for every (norm) lower semi-
ontinuous tra
e � on A

+

.

Proof. (i) ) (ii) : Assume that q � p in A

��

, and 
hoose u in A

��

, su
h that

u

�

u = q and uu

�

� p. Then kuk � 1, and hen
e by the Kaplansky Density

Theorem, we may 
hoose a net (u

�

)

�2B

from A, su
h that ku

�

k � 1, for all

� in B, and u

�

! u in the strong (operator) topology.

De�ne now: v

�

= pu

�

q, (� 2 B), and note that v

�

! puq = u in the strong

(operator) topology, so that v

�

�

v

�

! u

�

u = q in the weak (operator) topology.

Sin
e kv

�

k � 1 for all �, this implies that a
tually

v

�

�

v

�

! q in the �-weak topology:

Note also, that sin
e ku

�

k � 1 for all �,

v

�

v

�

�

� p; (� 2 B): (9.6)

Re
all now that the �-weak topology on A

��

is the weak* topology i.e., the

�(A

��

;A

�

)-topology, and hen
e its restri
tion to A is the weak topology, i.e.,

the �(A;A

�

)-topology. Sin
e v

�

2 A for all �, we have thus, that

v

�

�

v

�

! q in the �(A;A

�

)-topology:

Consider then the 
onvex hull K of fv

�

�

v

�

j � 2 Bg. Then q 2 K

��(A;A

�

)

,

but sin
e 
onvex sets in a Bana
h spa
e have the same 
losure in weak and

norm topology (
f. [KR, Theorem 1.3.4℄), it follows that a
tually q 2 K

�norm

.

Hen
e, we may 
hoose a sequen
e (w

n

)

n2N

from K, whi
h 
onverges to q in

norm. Then, for any (norm) lower semi-
ontinuous tra
e � : A

+

! [0;1℄,

�(q) � lim inf

n!1

�(w

n

) � sup

�2B

�(v

�

�

v

�

) = sup

�2B

�(v

�

v

�

�

) � �(p); (9.7)

and this proves (i).

(ii) ) (i) : Assume (ii) holds. We set out to show that 
ondition (ii) in

Lemma 9.6 is satis�ed, in the 
ase M = A

��

. Consider �rst the fun
tion

�

0

: A

+

! [0;1℄, de�ned by

�

0

(a) =

(

0; if a 2 I

A

(p)

+

;

1; if a 2 A

+

n I

A

(p)

+

:

Then �

0

is a (norm) lower semi-
ontinuous tra
e on A

+

, and hen
e the as-

sumption (ii) yields that �

0

(q) � �

0

(p) = 0, whi
h means that q 2 I

A

(p)

+

.

A

ording to Lemma 9.3, this implies that a
tually q 2 I

A

(p) � I

A

��

(p).

Note next, that for any �-weakly lower semi-
ontinuous tra
e � on (A

��

)

+

, the

restri
tion �

jA

+

is a (norm) lower semi-
ontinuous tra
e on A, and hen
e, by

the assumption (ii), �(q) � �(p).
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Taken together, we have veri�ed that the proje
tions p; q satisfy the 
ondition

(ii) in Lemma 9.6, in the 
ase M = A

��

, and hen
e this lemma yields that

q � p in A

��

, as desired. �

9.8 Corollary. Let A be a C

�

-algebra, and let p; q be proje
tions in A. Then

the following two 
onditions are equivalent:

(i) 9k 2 N : khqi � (k � 1)hpi in V (A

��

).

(ii) 9� > 0: �(q) � (1� �)�(p), for any (norm) lower semi-
ontinuous tra
e �

on A

+

.

Proof. (i) ) (ii) : Assume that (i) holds, and de�ne, for the existing k, q

0

=

q 
 1

1

1

k

and p

0

= p


�

P

k�1

i=1

e

ii

�

. Then q

0

; p

0

are proje
tions in M

k

(A), and the

assumption (i) implies that

q

0

� p

0

in M

k

(A

��

): (9.8)

Given now any (norm) lower semi-
ontinuous tra
e � on A

+

, note that the

expression

�

k

(a) =

k

X

i=1

�(a

ii

); (a = (a

ij

) 2M

k

(A)

+

);

de�nes a (norm) lower semi-
ontinuous tra
e � on M

k

(A)

+

. Thus, by Propo-

sition 9.7, (9.8) implies that �

k

(q

0

) � �

k

(p

0

), i.e., that k�(q) � (k�1)�(p). This

shows that (ii) holds for any � in ℄0;

1

k

℄.

(ii) ) (i) : Assume that (ii) holds, and 
hoose, for the existing �, a k in N su
h

that

1

k

� �. De�ne then, for this k, q

0

and p

0

as above.

Now, for any (norm) lower semi-
ontinuous tra
e � on M

k

(A)

+

, the mapping

a 7! �(a
 e

11

); (a 2 A

+

);

is a (norm) lower semi-
ontinuous tra
e on A

+

, and thus the assumption (ii)

yields that

�(q 
 e

11

) � (1� �)�(p
 e

11

) �

k�1

k

� �(p 
 e

11

);

and hen
e that

�(q

0

) = k � �(q 
 e

11

) � (k � 1) � �(p
 e

11

) = �(p

0

):

A

ording to Proposition 9.7, this means that q

0

� p

0

inM

k

(A

��

)(=M

k

(A)

��

),

whi
h shows that (i) holds. �

9.9 Lemma. Let A be a C

�

-algebra, and let p; q be proje
tions in A. Then

the following two 
onditions are equivalent:

(i) There exists an � in ℄0;1[, su
h that

�(q) � (1� �)�(p); for any (norm) lower semi-
ontinuous tra
e � on A

+

:
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(ii) There exist � in ℄0;1[, r in N and a

1

; : : : ; a

r

in A, su
h that

r

X

i=1

a

�

i

a

i

= q; and

r

X

i=1

a

i

a

�

i

� (1� �)p:

Proof. The proof follows the ideas of the �rst se
tion of [Haa℄.

Note �rst that (ii) 
learly implies (i). To show the 
onverse impli
ation, assume

that (i) holds. Then, by Corollary 9.8, there exists a k in N, su
h that

q 
 1

1

1

k

� p


�

P

k�1

i=1

e

ii

�

in M

k

(A

��

);

i.e., su
h that

u

�

u = q 
 1

1

1

k

; and uu

�

� p
 (

P

k�1

i=1

e

ii

�

; (9.9)

for some u = (u

ij

)

1�i;j�k

in M

k

(A

��

). For this u, we have then that

k

X

j=1

k

X

i=1

u

�

ij

u

ij

=

k

X

j=1

(u

�

u)

jj

= kq;

and that

k

X

i=1

k

X

j=1

u

ij

u

�

ij

=

k

X

i=1

(uu

�

)

ii

� (k � 1)p:

Thus, if b

1

; : : : ; b

k

2

2 A

��

denote the elements

1

p

k

u

ij

, i; j 2 f1; 2; : : : ; kg, listed

in any �xed order, then we have that

k

2

X

i=1

b

�

i

b

i

= q; and

k

2

X

i=1

b

i

b

�

i

�

k�1

k

p:

Note also, that (9.9) implies that b

i

2 pA

��

q for all i. Consider then the subset

K of A�A, de�ned by

K =

n�

P

r

i=1




�

i




i

; g +

P

r

i=1




i




�

i

�

�

�

�

r 2 N; 


1

; : : : ; 


r

2 pAq; g 2 (pAp)

+

o

:

Then K is 
learly 
losed under addition and multipli
ation by a non-negative

s
alar, and thus K is a 
onvex 
one in A�A.

Re
all next, that the �-strong

�

topology on a von Neumann algebra M, is

generated by the semi-norms

x 7! '(x

�

x+ xx

�

)

1

2

; (' 2 (M

�

)

+

):

Sin
e the �-strong

�


ontinuous fun
tionals onM are also �-weakly 
ontinuous

(i.e., belong toM

�

; 
f. [Ta, Lemma II.2.4℄), any 
onvex set inM has the same


losure in �-strong

�

and �-weak topology. In parti
ular it follows that

pAq is �-strong

�

dense in pA

��

q; and (pAp)

+

is �-strong

�

dense in (pA

��

p)

+

:
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Thus, we may 
hoose a net (


�

1

; : : : ; 


�

k

2

; g

�

)

�2A

in

�

�

k

2

j=1

pAq

�

� (pAp), su
h

that

� 


�

i

! b

i

, in the �-strong

�

topology, for all i in f1; 2; : : : ; k

2

g,

� g

�

� 0, for all �,

� g

�

!

k�1

k

p�

P

k

2

i=1

b

i

b

�

i

, in the �-strong

�

topology.

It follows then that

lim

�

�

k

2

X

i=1

(


�

i

)

�




�

i

�

= q; �-weakly;

and that

lim

�

�

g

�

+

k

2

X

i=1




�

i

(


�

i

)

�

�

=

k�1

k

p; �-weakly:

But sin
e the �-weak topology on A

��

is just the weak

�

-topology (i.e., the

�(A

��

;A

�

)-topology), its restri
tion to A is the weak topology (i.e., the

�(A;A

�

)-topology) on A. It follows thus that

�

q;

k�1

k

p

�

2 K

��(A�A;A

�

�A

�

)

:

But 
onvex sets in a Bana
h spa
e have the same 
losure in weak and norm

topology (
f. [KR, Theorem 1.3.4℄), so it follows that in fa
t

�

q;

k�1

k

p

�

2 K

�norm

: (9.10)

Sin
e (1 � Æ)

�1

�

k�1

k

+ Æ

�

!

k�1

k

< 1, as Æ ! 0, we may 
hoose Æ; � in ℄0; 1[,

su
h that

(1� Æ)

�1

�

k�1

k

+ Æ

�

= 1� �:

By (9.10), there exist then r in N, 


1

; : : : ; 


r

in pAq and g in (pAp)

+

, su
h that










q �

P

r

i=1




�

i




i










< Æ and










k�1

k

p� g �

�

P

r

i=1




i




�

i

�










< Æ: (9.11)

The �rst inequality in (9.11) implies that

P

r

i=1




�

i




i

is invertible in the C

�

-

algebra qAq. Let h 2 (qAq)

+

denote the inverse of

P

r

i=1




�

i




i

in qAq. Sin
e

(1� Æ)q �

r

X

i=1




�

i




i

� (1 + Æ)q;

it follows then that

(1 + Æ)

�1

q � h � (1� Æ)

�1

q: (9.12)

De�ne now: a

i

= 


i

h

1

2

, i 2 f1; 2; : : : ; rg. Then

P

r

i=1

a

�

i

a

i

= q, and moreover,

by (9.12) and the se
ond inequality in (9.11),

r

X

i=1

a

i

a

�

i

=

r

X

i=1




i

h


�

i

� (1� Æ)

�1

r

X

i=1




i




�

i

� (1� Æ)

�1

�

g +

r

X

i=1




i




�

i

�

� (1� Æ)

�1

�

k�1

k

+ Æ

�

p = (1� �)p:
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Thus, it follows that (ii) holds. �

9.10 Theorem. Let A be an exa
t C

�

-algebra, and let p; q be proje
tions in

A. Assume that there exists � in ℄0;1[, su
h that

�(q) � (1� �)�(p)

for any (norm) lower semi-
ontinuous tra
e � : A

+

! [0;1℄:

Then there exists n in N, su
h that

q 
 1

1

1

n

� p
 1

1

1

n

in M

n

(A):

Proof. By Lemma 9.9, we get (after multiplying the a

i

's from Lemma 9.9(ii)

by (1� �)

�

1

2

), that there exist 
 in ℄1;1[, r in N and a

1

; : : : ; a

r

in A, su
h that

r

X

i=1

a

�

i

a

i

= 
q; and

r

X

i=1

a

i

a

�

i

� p: (9.13)

We may assume that A is a C

�

-subalgebra of B(H) for some Hilbert spa
e

H. Then (9.13) implies that we may 
onsider a

1

; : : : ; a

r

as elements of

B(q(H); p(H)), and that

r

X

i=1

a

�

i

a

i

= 
1

1

1

q(H)

; and

r

X

i=1

a

i

a

�

i

� 1

1

1

p(H)

:

Moreover, the set

�

a

�

i

a

j

�

�

i; j 2 f1; 2; : : : ; rg

	

is 
ontained in the exa
t, uni-

tal C

�

-algebra qAq. Choosing now, for ea
h n in N, independent elements

Y

(n)

1

; : : : ; Y

(n)

r

of GRM(n; n;

1

n

), it follows from Theorem 8.7, that with

S

n

=

r

X

i=1

a

i


 Y

(n)

i

; (n 2 N);

we have that

lim inf

n!1

�

min

�

sp(S

n

(!)

�

S

n

(!))

	�

�

�

p


� 1

�

2

; for almost all ! in 
:

In parti
ular, there exists one(!) ! in 
, and an n in N, su
h that S

n

(!)

�

S

n

(!)

is invertible in the C

�

-algebra M

n

(qAq). For this pair (!; n), we de�ne

u = S

n

(!)

�

S

n

(!)

�

S

n

(!)

�

�

1

2

;

where the inverse is formed w.r.t. M

n

(qAq). Then u 2M

n

(pAq), and

u

�

u = 1

1

1

q(H)


 1

1

1

n

= q 
 1

1

1

n

: (9.14)

Moreover, uu

�

2M

n

�

B(p(H))

�

, and sin
e u

�

u is a proje
tion inM

n

�

B(q(H))

�

,

uu

�

is a proje
tion in M

n

�

B(p(H))

�

, so that

uu

�

� 1

1

1

p(H)


 1

1

1

n

= p
 1

1

1

n

: (9.15)

Combining (9.14) and (9.15), we obtain the desired 
on
lusion. �
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9.11 Corollary. If A is an exa
t, unital and simple C

�

-algebra, and p; q are

proje
tions in A, su
h that p 6= 0 and �(q) < �(p) for all tra
ial states � on A,

then for some n in N

q 
 1

1

1

n

� p
 1

1

1

n

in M

n

(A): (9.16)

Proof. By simpli
ity of A, �(p) > 0 for all tra
ial states � on A, and hen
e by

weak* 
ompa
tness of the set of tra
ial states on A, there exists � in ℄0;1[,

su
h that

�(q) � (1� �)�(p);

for all tra
ial states � on A. By the assumptions onA, A is algebrai
ally simple.

Hen
e, every non-zero tra
e � : A

+

! [0;1℄ is either equal to +1 on all of

A

+

nf0g, or proportional to a tra
ial state. Hen
e we 
an apply Theorem 9.10.

�

9.12 Remark. In the \inequality" (9.16) in Corollary 9.11, the tensoring with

1

1

1

n


an in general not be avoided. This follows from Villadsen's result in [Vi℄

that there exist nu
lear (and hen
e exa
t) unital simple C

�

-algebras with weak

perforation. Re
all that a unital C

�

-algebra A has weak perforation, if there

exists x in K

0

(A), su
h that x =2 K

0

(A)

+

, but nx 2 K

0

(A)

+

n f0g, for some

n in N. To see how Villadsen's result implies, that we 
annot, in general,

avoid tensoring with 1

1

1

n

in (9.16), let A be a unital exa
t simple C

�

-algebra,

and assume that x 2 K

0

(A), su
h that x =2 K

0

(A)

+

and nx 2 K

0

(A)

+

n f0g,

for some positive integer n. Write then x in the form x = [p℄ � [q℄, where

p; q are proje
tions in M

k

(A) for some k in N. By the assumption that nx 2

K

0

(A)

+

n f0g, and the simpli
ity of A, it is not hard to dedu
e that

(� 
 tr

k

)(p) > (� 
 tr

k

)(q);

for all tra
ial states � on A, and hen
e ~� (p) > ~� (q) for all tra
ial states ~� on

M

k

(A). However, sin
e x =2 K

0

(A)

+

, q 
annot be equivalent to a sub-proje
tion

of p. �

9.13 Theorem. Let A be a unital, exa
t C

�

-algebra. Then the following two


onditions are equivalent:

(i) A has no tra
ial states.

(ii) For some n in N there exist proje
tions p; q in M

n

(A), su
h that

p ? q and p � q � 1

1

1

A


 1

1

1

n

:

Proof. Clearly, (ii) implies (i). To show the 
onverse impli
ation, assume that

(i) holds, and 
onsider then the two proje
tions p

0

; q

0

in M

2

(A) given by

p

0

=

�

1

1

1

A

0

0 0

�

; and q

0

=

�

1

1

1

A

0

0 1

1

1

A

�

:
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Sin
e A has no tra
ial states, A

��

has no normal tra
ial states, and hen
e A

��

is a properly in�nite von Neumann algebra. Therefore,

h1

1

1

A

i = 4h1

1

1

A

i in V (A

��

);

whi
h implies that

hp

0

i = 2hq

0

i in V

�

M

2

(A

��

)

�

:

Hen
e by Corollary 9.8 and Theorem 9.10, there exists an n in N, su
h that

q

0


 1

1

1

n

� p

0


 1

1

1

n

in M

2n

(A):

Here, p

0


 1

1

1

n

�

�

1

1

1

A


 1

1

1

n

0

0 0

�

, and thus there exists u in M

2n

(A), su
h that

u

�

u =

�

1

1

1

A


 1

1

1

n

0

0 1

1

1

A


 1

1

1

n

�

; and uu

�

�

�

1

1

1

A


 1

1

1

n

0

0 0

�

: (9.17)

The inequality in (9.17) implies that u has the form

u =

�

u

11

u

12

0 0

�

;

for suitable u

11

; u

12

from M

n

(A). The equality in (9.17) yields then subse-

quently that

u

�

11

u

11

= u

�

12

u

12

= 1

1

1

A


 1

1

1

n

; and u

�

11

u

12

= 0:

De�ning now

p = u

11

u

�

11

and q = u

12

u

�

12

;

it follows that p; q are orthogonal proje
tions in M

n

(A), su
h that p � q �

1

1

1

A


 1

1

1

n

. This shows that (ii) holds. �

In parti
ular, Theorem 9.13 implies the validity of Theorem 9.1:

9.14 Corollary. If A is an exa
t, unital, stably �nite C

�

-algebra, then A

has a tra
ial state.

Proof. This is an obvious 
onsequen
e of Theorem 9.13. �

Consider next an arbitrary unital C

�

-algebra A. A fun
tion ' : V (A) ! R is

said to be a state on V (A), if it satis�es the following three 
onditions:

� '(x) � 0, for all x in V (A).

� '(x + y) = '(x) + '(y), for all x; y in V (A).

� '

�

h1

1

1

A

i

�

= 1.

Similarly, a fun
tion  : K

0

(A)! R is said to be a state onK

0

(A), if it satis�es

the 
onditions:

�  (z) � 0, for all z in K

0

(A)

+

.

�  (z + w) =  (z) +  (w), for all z; w in K

0

(A).
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�  

�

[1

1

1

A

℄

�

= 1.

The set of states on V (A) (resp. K

0

(A)) is denoted by S(V (A)) (resp.

S(K

0

(A))). Note that S(V (A)) and S(K

0

(A)) are both 
onvex 
ompa
t sets

in \the topology of pointwise 
onvergen
e". Let � : V (A) ! K

0

(A) be the

natural map introdu
ed in the beginning of this se
tion. Then it is 
lear, that

the map  7!  Æ �,  2 S(K

0

(A)), gives a one-to-one 
orresponden
e between

the states on K

0

(A) and the states on V (A). Moreover, this map is an aÆne

homeomorphism of S(K

0

(A)) onto S(V (A)).

9.15 Lemma. Let A be a unital, exa
t C

�

-algebra, and let p; q be proje
tions

in A, su
h that

�(q) � �(p); for any tra
ial state � on A: (9.18)

Then for any k in N, there exists n in N, su
h that

nkhqi � nkhpi+ nh1

1

1

A

i:

Proof. Let k from N be given, and 
onsider then the proje
tions p

0

; q

0

in

M

k+1

(A) de�ned by:

p

0

= p


�

P

k

i=1

e

ii

�

+1

1

1

A


 e

k+1;k+1

; and q

0

= q 


�

P

k

i=1

e

ii

�

:

Given now an arbitrary non-zero, bounded tra
e � on M

k+1

(A), note that the

mapping

a 7! �(a
 e

11

); (a 2 A);

is proportional to a tra
ial state on A. It follows thus from the assumption

(9.18), that �(q 
 e

11

) � �(p 
 e

11

), and hen
e

�(q

0

) = k � �(q 
 e

11

) � k � �(p 
 e

11

) =

k

k+1

� �(p
 1

1

1

k+1

) �

k

k+1

� �(p

0

):

Sin
e 1

1

1

A


 e

11

� p

0

, any unbounded (lower semi-
ontinuous) tra
e � on

M

k+1

(A) must take the value +1 at p

0

, and hen
e we have also in this 
ase,

that

�(q

0

) �

k

k+1

� �(p

0

):

Applying now Theorem 9.10, it follows that there exists an n in N, su
h that

nhq

0

i � nhp

0

i, and hen
e su
h that nkhqi � nkhpi+ nh1

1

1

A

i, as desired. �

Next, we need the following version of the Goodearl-Handelman theorem (see

[Bl2, 3.4.7℄, [Go1, 7.11℄ and [BR, Lemma 2.9℄).

9.16 Lemma. Let A be a unital C

�

-algebra, and 
onsider a 
onvex subset K of

S

�

V (A)

�

, whi
h is 
losed in \the topology of pointwise 
onvergen
e". Assume

furthermore that the following impli
ation holds

8x; y 2 V (A) :

�

8' 2 K : '(x) � '(y)

�

=)

�

8' 2 S

�

V (A)

�

: '(x) � '(y)

�

:

(9.19)

Then K = S

�

V (A)

�

.
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Proof. By the one-to-one 
orresponden
e between states on K

0

(A) and states

on V (A), we 
an �nd a 
onvex 
ompa
t subset L of S(K

0

(A)), su
h that

K = f Æ � j  2 Lg:

Sin
e K

0

(A) = �(V (A)) � �(V (A)), 
ondition (9.19) is equivalent to the 
on-

dition:

8z 2 K

0

(A) :

�

8 2 L :  (z) � 0

�

=)

�

8 2 S(K

0

(A)) :  (z) � 0

�

:

Thus by [Go1, Corollary 7.11℄, all the extreme points of S(K

0

(A)) are 
ontained

in L = L. Hen
e by Krein-Milman's theorem,

S(K

0

(A)) � 
onv(L) = L;

and therefore L = S(K

0

(A)), whi
h is equivalent to the equation: K =

S(V (A)). �

9.17 Theorem. Let A be a unital, exa
t C

�

-algebra. Then for any state ' on

V (A), there exists a tra
ial state � on A, su
h that

'(hpi) = (� 
 Tr

m

)(p); for all proje
tions p in M

m

(A); and m in N:

(9.20)

Proof. Let K denote the subset of S

�

V (A)

�


onsisting of those states on V (A),

that are given by (9.20) for some tra
ial state � on A. Then K is 
learly a


onvex, 
ompa
t subset of S

�

V (A)

�

, and hen
e, by Lemma 9.16, it suÆ
es to

verify that K satis�es 
ondition (9.19). So 
onsider proje
tions p; q inM

1

(A).

We may assume that p; q 2M

m

(A), for some suÆ
iently large positive integer

m. Suppose then that

(� 
 Tr

m

)(q) � (� 
 Tr

m

)(p); for all tra
ial states � on A:

Sin
e any tra
ial state on M

m

(A) has the form

1

m

� � 
 Tr

m

, for some tra
ial

state � on A, it follows then from Lemma 9.15, that for any k in N, there exists

an n in N, su
h that

nkhqi � nkhpi+ nh1

1

1

A


 1

1

1

m

i:

Hen
e for any ' in S

�

V (A)

�

, and any k in N, we have that

'(hqi) � '(hpi) +

m

k

;

and this shows that K satis�es 
ondition (9.19). �

Using the one-to-one 
orresponden
e between states on K

0

(A) and states on

V (A), Theorem 9.17 gives a new proof, not relying on quasitra
es, for the

following

9.18 Corollary. Let A be a unital, exa
t C

�

-algebra. Then any state on

K

0

(A) 
omes from a tra
ial state on A, i.e., for every state  on K

0

(A), there

exists a tra
ial state � on A, su
h that

 

�

[p℄

�

= (� 
 Tr

m

)(p); for all proje
tions p in M

m

(A); and all m in N: �
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