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ABSTRACT. In this paper we find asymptotic upper and lower bounds
for the spectrum of random operators of the form

S*S = (iai ®Yi(n))*(iai ®Yi(n)),
i=1 i=1

where ai,...,a, are elements of an exact C*-algebra and
Yl(n), e ,Yr(n) are complex Gaussian random n X n matrices, with
independent entries. Our result can be considered as a generalization
of results of Geman (1981) and Silverstein (1985) on the asymptotic
behavior of the largest and smallest eigenvalue of a random matrix of
Wishart type. The result is used to give new proofs of:

(1) Every stably finite exact unital C*-algebra A has a tracial state.

(2) If A is an exact unital C*-algebra, then every state on Ko(A) is
given by a tracial state on A.

The new proofs do not rely on quasitraces or on AW *-algebra tech-
niques.

1991 Mathematics Subject Classification: Primary 46L05; Secondary
46L50, 46135, 46180, 60F15.

INTRODUCTION

Following the terminology in [HT], we let GRM(m,n,0?) denote the

class of m x n random matrices B = (bij)i<i<m, 1<j<n, for which
(Re(b;), Tm(bij)), e 1<j<n form a set of 2mn independent Gaussian
<i<m, 1<5< L

random variables, all with mean 0 and variance -o”. In other words, the
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342 U. HAAGERUP AND S. THORBJ®RNSEN

entries of B are mn independent complex random variables with distribution
measure on C given by

L exp(—‘;—‘;) dRe(z) dIm(z).

The theory of exact C*-algebras has been developed by Kirchberg (see [Kil],
[Ki2], [Ki3], [Was] and references given there). A C*-algebra A is exact, if for
all pairs (B, J), of a C*-algebra B and a closed two-sided ideal J in B, the
sequence

0—ART —A®B— A® (B/J) — 0
is exact. Here, for any C*-algebras C and D, C ®pui, D means the completion
of the algebraic tensor product C @ D in the minimal (=spatial) tensor norm.
Sub-algebras and quotients of exact C*-algebras are again exact (cf. e.g. [Was,
2.5.2 and Corollary 9.3]), and the class of exact C*-algebras contains most of
the C*-algebras of current interest, such as all nuclear C*-algebras, and the
non-nuclear reduced group C*-algebras C; (I, ), associated with the free group
F,, on n generators (2 < n < 00).
For any element T of a unital C*-algebra, we let sp(T') denote the spectrum of
T. The main result of this paper is

0.1 MAIN THEOREM. Let H and K be Hilbert spaces, and let ay,...,a, be
elements of B(#,K), such that {afa; | 1 < i,j < r} is contained in an exact
C*-subalgebra A of B(H). Let (2, F, P) be a fixed probability space, and let,
for each n in N, Yl(n), e ,Yr(n) be independent Gaussian random matrices on
Q in the class GRM(n,n, 1). Put

.
Sn=Y a;aY™, (neN),
i=1

and let ¢, d be positive real numbers. We then have
(i) || >, ajail| < cand || Y ;_, aial|| < d, then for almost all w in Q,

lim sup max [sp(S;; (w)Sn(w))] < (Ve + \/c_i)2

n—o0

(i) If 327 afa; = clpewy, || iy aiaf]] < d, and d < ¢, then for almost all
w in €,

. . X 2

hnrglgf min [sp(S;; (w)Sy(w))] > (Ve — \/c_i) . O
The Main Theorem can be considered as a generalization of the results of
Geman (cf. [Gem]) and Silverstein (cf. [Si]), on the asymptotic behavior of the
largest and smallest eigenvalues of a random matrix of Wishart type (see also
[BY], [YBK] and [HT]).
The Main Theorem has the following two immediate consequences:
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0.2 COROLLARY. Let ay,...,a, be elements of an exact C*-algebra A, and
for each n in N, let Yl(l), ..., Y™ be independent elements of GRM(n, n, 1)
Then
r r 1 r 1
lim sup H Zai ® Yi(n) (w)H < H Zafai ® 4 H Zaia; 2’
n—roo i=1 i=1 i=1
for almost all w in Q. O
0.3 COROLLARY. Let ay,...,a, and Sy, n € N, be as in the Main Theorem,

and assume that y_;_, afa; = clpyy and || Y.!_, afa;|| < d, for some positive
real numbers ¢, d, such that d < c¢. Then for almost all w in {2,

0 ¢ sp(Sp(w)Sy(w)), eventually as n — oco. O

In a subsequent paper [Th] by the second named author, it is proved, that if
ai,...,a, and S,, n € N, are as in the Main Theorem, and if furthermore
Y1 ara; = clgyy and Yo a;af = dlpk), for some positive real numbers
¢, d, then

lim max [sp(S:S,)] = (Ve+ \/c_l)Q, almost surely,

n—oo

and if ¢ > d, then
lim min [sp(S;S,)] = (Ve — \/6_1)2, almost surely.
n—oo

Hence the asymptotic upper and lower bounds in the Main Theorem cannot,
in general, be improved.

Exactness is essential both for the Main Theorem and for the corollaries. An
example of violation of the upper bound in the Main Theorem is given in
Section 4. The example is based on the non-exact full C*-algebra C*(F,)
associated with the free group on r generators, for r > 6.

In [Haal, the first named author proved that bounded quasitraces on exact
C*-algebras are traces. Together with results of Handelman (cf. [Han]) and
Blackadar and Rgrdam (cf. [BR]), this result implies

(1) Every stably-finite exact unital C*-algebra has a tracial state.

(2) If Ais an exact unital C*-algebra, then every state on Ko(A) is given by
a tracial state on A.

The proof in [Haa] of the above mentioned quasitrace result, relies heavily
on ultra product techniques for AW *-algebras, but the starting point of the
proof in [Haa] is the following fairly simple observation: Let ai,...,a, be r
elements in a (not necessarily exact) C*-algebra A, such that > ., afa; =14
and || Y7, a;af|| < 1. Let further z4,... ,z, be a semi-circular system (in the
sense of Voiculescu; cf. [Vo2]) in some C*-probability space (B,). Then the
operator s = Y. a; ® x; in A® C*(x1,...,3,,1p), satisfies 0 ¢ sp(s*s) but
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0 € sp(ss*), and this implies that u = s(s*s) 3 is a non-unitary isometry in
the C*-algebra A ® C*(z1,... ,2,,15).

Corollary 0.3 can be viewed as a random matrix version of the result that
0 ¢ sp(s*s). The corresponding random matrix version of the result that
0 € sp(ss*), holds too, i.e., if a1,... ,a, and Sy, n € N, are as in Corollary 0.3,
then with probability 1, 0 € sp(S,S};), eventually as n — oo (cf. [Th]). In
view of Voiculescu’s random matrix model for a semi-circular system (cf. [Vol,
Theorem 2.2]), it would have been more natural to substitute Yl(n), . ,Y,«(n)
from GRM(n,n, L), with a set of independent, selfadjoint Gaussian random
matrices. However, we found it more tractable to work with the non-selfadjoint
random matrices Yl(n), . ,YT(n).

In the last section (Section 9), we use Corollary 0.3 to give a new proof of the
statements (1) and (2) above. The new proof does not rely on quasitraces or
AW*-algebra techniques. The main step in the new proof of (1) and (2) is to

prove, that Corollary 0.3 implies the following

0.4 PROPOSITION. Let p,q be projections in an exact C*-algebra A, and as-
sume that there exists an € in |0, 1], such that

m(g) < (1 —e)7(p),

for all lower semi-continuous (possibly unbounded) traces 7: Ay — [0, 00].
Then for some n in N, there exists a partial isometry u in My (A) = A® M, (C),
such that

u'u=q® 1y, (g and uu® <p® 1y (o) O

In the rest of this introduction, we shall briefly discuss the main steps of the
proof of the Main Theorem. Observe first, that by a simple scaling argument,
it is enough to treat the case d = 1. This normalization will be used throughout
the paper. The proof of the Main Theorem relies on the following

0.5 KEY ESTIMATES. Let aq,... ,a, be elements of B(H, K), let ¢ be a positive

constant, and put S, = >.._, a; ® Yi(n), n € N, as in the Main Theorem. We
then have

(a) I || o7 afas]| < cand || Y7 a;af|| <1, then for 0 < ¢ < min{Z, %},

E[ exp(tS;Sn)] < exp (Ve + 1)%t + (c+ 1)2%)13(Hn). (0.1)

(b) Y7 aja; = clgy, Y1y aiaf =lgpcyand ¢ > 1, thenfor 0 <t < L,

E[ exp(—tS;:S,)] <exp (— (Ve—1)%t+ (c+ 1)2%)13(7{71). (0.2)

O
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We emphasize that the key estimates (0.1) and (0.2) hold without the exact-
ness assumption of the Main Theorem. Once these estimates are proved, a
fairly simple application of the Borel-Cantelli Lemma yields, that if H is finite
dimensional, and Amax and Amin denote largest and smallest eigenvalues, then
one has

lim sup Amax (S Sn) < (Ve + 1)2, almost surely,

n— o0

in the situation of (a) above, and

linrgioréf Amin (S5Sn) > (Ve — 1)2, almost surely,

in the situation of (b) above. (This is completely parallel to the proof of the
complex version of the Geman-Silverstein result, given in [HT, Section 7]). To
pass from the case dim(#) < oo to the case dim(H) = 400, we need the
assumption that the C*-algebra C*({afa; | 1 <1i,j < r}) is exact, as well as
the following characterization of exact C*-algebras, due to Kirchberg (cf. [Ki2]
and [Was, Section 7]):

A unital C*-subalgebra A of B(H) is exact if and only if the inclusion map
t: A= B(H) has an approximate factorization

A5 M,, (C) L B(H),

through a net of full matrix algebras M,, (C), A € A. Here, ¢y, are unital
completely positive maps, and

li/{n a0 pa(z) —z|| =0, for all z in A.

Finally, we use a dilation argument to pass from the condition Y, a;af = 1x
of (b) above, to the less restrictive one: || 3.7, a;af|| < 1, which is assumed
in (i) of the Main Theorem (when d = 1). The proof of the fact that the key
estimates (0.1) and (0.2) imply the Main Theorem, is given in Section 4 for the
upper bound, and in Section 8 for the lower bound. Sections 1-3 and 5-7 are
used to prove the key estimates (0.1) respectively (0.2).

In Section 1, we associate to any permutation 7 in the symmetric group S,, a
permutation 7 in Sa,, for which #2 = o7 = id and #(j) # j for all j, namely
the permutation given by

#(2j-1) = 207'(j), (Geft,2,....p})
#27) = 2r()—1, (je{1,2,...,p}).

Moreover, following [Vol], we let ~; denote the equivalence relation on
{1,2,...,2p}, generated by the expression:

Jj~r®(g) +1, (addition formed mod. 2p),

and we let d(7) denote the number of equivalence classes for ~z. We can write
d(#) = k(7)) + 1(7), where k(7) (resp. [(#)) denotes the number of equivalence
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classes for ~z, consisting entirely of even numbers (resp. odd numbers) in
{1,2,...,2p}. With this notation we prove, that for any random matrix B
from GRM(m,n,1),

EoTr,[(B*B)P] = Y m*®n!®). (0.3)
TESy

Consider next the quantity o(#) = £(p+ 1 — d(#)). It turns out, that o(7) is
always a non-negative integer, and that o(#) = 0 if and only if # is non-crossing
(cf. Definition 1.14). In Section 2 we show, that if a;,...,a, are elements
of B(H,K) and S = Y/, a; ® Yi(n), where Yl(n), e ,Yr(n) are independent
elements of GRM(n,n, %), then

E[(5*5)"] = ( Z =27 Z aj, @i "'azpaiw(p)) ®1u, (0 (04)

€S, 1<t ip<r

In [HT, Section 6], we found explicit formulas for the quantities E o
Tr,[exp(tB*B)] and E o Tr,[B*Bexp(tB*B)], where B is an element of
GRM(m,n,1). In Section 3, a careful comparison of the terms in (0.3)
and (0.4), combined with these explicit formulas, allows us to prove, that if
| > i afa;ll < cand || >0 aaf]| < 1, then for 0 < ¢ < min{3%, 2},

[Elexp (£5*S)]|| < exp((c + 1)2%)/000 exp(tx) dpe(z), (0.5)

where p. is the free (analog of the) Poisson distribution with parameter ¢ (cf.
[VDN] and [HT, Section 6]). The measure p. is also called the Marchenko-
Pastur distribution (cf. [OP]), and it is given by

(z —a)(b—1x)

.= 1—¢,0}4
e = max{l —¢,0}d + Zy—-

. ]-[a7b] (x) dl‘,

where a = (/e — 1)?, b = (y/c + 1)? and § is the Dirac measure at 0. Since
supp(e) C [0, b], the first key estimate, (0.1), follows immediately from (0.5).
To prove the second key estimate, (0.2), we show in Sections 5-6, that under
the condition

Z aja; = clp(y), and Z aia; = 1p(x),
=1 =1

one has, for any ¢ in N, the formula:

E[P;(S*S)] = |: Z n720(ﬁ) ( Z a; aiﬂ(l) T afq aip(q)):| ® ]'Mn(‘c) :

pESirr 1<i1,0.0,ig <1
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Here P§(z), Pf(z), P5(x),..., is the sequence of monic polynomials obtained
from 1,z,2%,..., by the Gram-Schmidt orthogonalization process, w.r.t. the
inner product

<f,g>=/0 fTdpe, (frg€ LR o).

Moreover, S;” denotes the set of permutations p in S, for which

L#p(1) #2#p(2) # -+ # a # p(q)-

For fixed ¢ in R, we expand in Section 7 the exponential function z + exp(tz),
in terms of the polynomials Py (z), ¢ € Ny:

oo

exp(tr) = ) hy(W)F;(x), (2 €0,00]). (0.7)

q
7=0

We show that the coefficients 1¢(t) are non-negative for all ¢ in [0, o[, and that
for any ¢ in Ny,

i exp(—ta) due(a)
J57 exp(tz) dpc(z)

By combining (0.6), (0.7) and (0.8) with the proof of (0.5), we obtain that for
c>land 0 <t < o,

e ()] < ( ) WS, (teloo].  (08)

[[Elexp (=tS™S)]|| < exp((c + 1)2%)/0oo exp(—tz) dpc(z),

and since supp(u.) C [a, 00[ = [(v/c—1)2, 0o[, when ¢ > 1, we obtain the second
key estimate (0.2).

The rest of the paper is organized in the following way:

1 A Combinatorial Expression for Eo Tr,[(B*B)P], for a Gaussian

Random Matrix B in GRM(m,n,1) . . . . .. .. .. ... ... .. 348
2 A Combinatorial Expression for the Moments of S*S . . . . . ... 360
3 An upper bound for IE[ exp(tS*S)], t>0. .. 370
4  Asymptotic Upper Bound on the Spectrum of S} .S,, in the Exact

Case . . .. e 379
5 A New Combinatorial Expression for E[(S*S)P] . . . .. ... ... 390
6  The Sequence of Orthogonal Polynomials for the Measure p. . . . . 405
7  An Upper Bound for E[exp(—tS*S)], t>0 ... 415
8  Asymptotic Lower Bound on the Spectrum of S} S,, in the Exact

Case . . .. e 428
9  Comparison of Projections in Exact C*-algebras and states on

the Ko-group . . . . . . . . . e 435

DOCUMENTA MATHEMATICA 4 (1999) 341-450



348 U. HAAGERUP AND S. THORBJ®RNSEN

1 A COMBINATORIAL EXPRESSION FOR E o Tr,,[(B*B)P], FOR A GAUSSIAN
RaNDOM MATRIX B IN GRM(m,n,1)

For ¢ in R and o2 in ]0, 0o[, we let N (&, 0%) denote the Gaussian (or normal)
distribution with mean ¢ and variance 2. In [HT], we introduced the following
class of Gaussian random matrices

1.1 DEFINITION. (CF. [HT]) Let (2, F, P) be a classical probability space, let
m,n be positive integers, and let

B = (b(i,)))1<i<m: @ = Mpn(C),
1<5<n

be a complex, random m x n matrix defined on 2. We say then that B is a
(standard) Gaussian random m xn matrix with entries of variance o2, if the real
valued random variables Re(b(i, 7)), Im(b(i,5)), 1 <i <m, 1 < j <n, form
a family of 2mn independent, identically distributed random variables, with
distribution N(0, ";) We denote by GRM(m,n,o?) the set of such random
matrices defined on Q. Note that o2 equals the second absolute moment of the
entries of an element from GRM(m,n,o?). O

In the following we shall omit mentioning the underlying probability space
(Q,F,P), and it will be understood that all considered random matri-
ces/variables are defined on this probability space. As a matter of notation,
by 1, we denote the unit of M, (C), and by tr,, we denote the trace on M, (C)
satisfying that tr,(1,) = 1. Moreover, we put Tr,, = n - tr,.

Let B be an element of GRM(m,n,c?). Then for any p in N, (B*B)? is a
positive definite n x n random matrix, and Tr, ((B*B)P) is a positive valued,
integrable, random variable. The main aim of this section is to derive a com-
binatorial expression for the moments E o Tr, ((B*B)?) of B*B w.r.t. E o Try,,
where E denotes expectation w.r.t. P.

1.2 LEMMA. Let m,n,r,p be positive integers, let By, Bs,...,B, be inde-
pendent elements of GRM(m,n,0?), and for each s in {1,2,...,r}, let
b(u,v,8), 1 <u < m, 1 <wv <n, denote the entries of B;. Then for any
il,jl,ig,jg, . ,ip,jp in {1, 2, . ,’I"}, we have that

Eo T‘rn(B:1B]1B:2B]2 o 'BZ)';B]'p)

= > E(b(u2,ul,i1)b(u2,U3aJ1) : "b(u2pau2p717ip)b(u2pau17jp))7

1<us,uq,... ,uzp, <m
1<uy,uz,... ;uzp—1<n
(1.1)
* * * _ .
and moreover E o Tr,(B; Bj, Bj,Bj, --- B} Bj,) = 0, unless there exists a

permutation 7 in the symmetric group Sy, such that j, = i) for all h in
{1,2,...,p}.
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Proof. Let f(u,v), 1 < u<m, 1 <wv < n, denote the usual m x n matrix
units, and let g(u,v), 1 <u <mn, 1 < v < m, denote the usual n X m matrix
units. We have then that

]E ° Trn(B:;BJlBZ*zBJZ T B:ijp)
= Z E(b* (u1,v1,i1)b(uz,va, 1) - - b* (t2p—1, Vap—1,ip)b(u2p, V2p, jp) )

1§v1,UQ7v37u4,... yV2p—1,U2p Sm
1<u1,v2,u3,V4,... ,u2p—1,V2p <N

- Try (g(u1,v1) f(u2,v2) - - - g(u2p 1, v2p 1) f (t2p, V2p))

= Z E(b(u27u17i1)b(u27u35j1)"'b(u2pau2p717ip)b(u2pau13jp))'

1<u2,u4,... ,uzp <m

1<u1,uz,... ,uzp—1<n
Note here, that for any ws,u4,... ,uzp in {1,2,... ,m} and uy,ug,... ,u2p_1
in {1,2,...,n}, we have because of the independence assumptions,

B(Bluz, ur, i0)b(uz, us, 1) -~ bluzgs wap—1, ip)bluzp, s, i)

:ﬁ]E( H b(uan, uzh—1,1) H b(u2hau2h+17l))7

=1 h:ip=l h:jn=l

where 2h + 1 is calculated mod. 2p.

Note here, that for any [ in {1,2,...,r}, any w in {1,2,...,m} and any v in
{1,2,...,n}, the distribution of b(u,v,l) is invariant under multiplication by
complex numbers of norm 1. Hence, for any s, ¢ in Ny, E[b(u, v,0)%-b(u, v, l)t] =
0, unless s = t. Using this, and the independence assumptions, it follows

that for any [ in {1,2,...,r}, any us,u4,... ,u9, in {1,2,... ,m} and any
U1, Us,. .. ,Uzp—1 in {1,2,...,n}, a necessary condition for the mean
E( IT b(uon,van—s,)- ] b(uzh,u2h+17l))
h:ip=l h:jp=l

to be distinct from zero is that

card({h e{1,2,...,p} | in = l}) = card({h e{1,2,...,p} |jh = l}) (1.2)

It follows that E o Trn(B;, Bj, By, Bj, - -- Bj Bj,) = 0, unless (1.2) holds for all
l'in {1,2,...,r}, and in this case, it is not hard to construct a permutation =
from S, with the property described in the lemma. O

1.3 DEFINITION. Let p be a positive integer, and let 7 be an element of S,. We
associate to m a family A(w,m,n), m,n € N, of complex numbers, as follows:
Let B1, Bs, ..., B, be independent elements of GRM(m,n,1), and then define

A(’ﬂ', m, TL) =FEo Trn(BikBﬂ.(l)B;Bﬂ.@) e B;Bﬂ.(p)) a
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1.4 REMARK. Let m,n,r,p be positive integers, and let By, Bs,...,B, be
arbitrary elements of GRM(m,n,c?). Moreover, let i1,j1,... ,ip,j, be ar-
bitrary elements of {1,2,...,r}. We shall need the fact that the quan-
tity E o Trn(B}, Bj, --- B; Bj,) is bounded numerically by some constant

K(m,n,p,0?) depending only on m,n,p,0? and not on r or the distribu-

tional relations between Bi, Bs,...,B,.. For this, adapt the notation from
Lemma 1.2, and note then that by (1.1) from that lemma,

|E o Trn (B}, By, - BL, By, )|
< Y |E(b(u27ulai1)b(u27u3aj1)"'b(u2p7U2p—177:p)b(u2paulajp)) |-

1<uz,uqg,... ;uzp<m
1<u1,us,... ,uzp—1<n

Then let M (2p,0?) denote the 2p’th absolute moment of the entries of an
element from GRM(m,n, 0?). A standard computation yields that M (2p, 0?) =
o?P . p!, but we shall not need this explicit formula. It follows now by the
generalized Holder inequality, that for any us, w4, ... ,usp, in {1,2,... ,m} and
Uy, Us, ... ,Uzp—1 in {1,2,... 0},
|E(b(U2,U1,i1)b(u2,u3,jl) : "b(u2p7u2p7177:p)b(u2p7u17jp)) |

< ||b(U2,U1,i1)||2p||b(u2,U37j1)||2p o ||b(U2an2p71,ip)||2p||b(u2p,Uhjp)ng

= (M(2p,0%) %)™ = M(2p,0?).
Thus it follows that we may use K (m,n,p,o?) = mPnP M (2p, o?). O

1.5 PROPOSITION. Let B be an element of GRM(m,n,1), and let p be a pos-
itive integer. We then have

E o Tr,[(B*B)?] = ZAwmn
TES,

Proof. Let (B;)ien be a sequence of independent elements of GRM(m,n,1).
Note then that for any s in N, the matrix \[(Bl +- -+ By) is again an element

of GRM(m,n, 1), and therefore
1 * 1 p
EoTr, [(B*B)’) =Eo T, [((s H(Bi+-+B,) (s #(Bi+--+B,)) |
=5 3 EoTw, BBy BB
1<i1,J15 00 50p,Jp <8
(1.3)
For 7 in S, we define

M(7r,s) = {('L'la]'l,--- ,ip,jp) € {1,2,... ,S}2p |]1 :7:71-(1)7--- ,jp:iﬂ.(p)}.
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It follows then from Lemma 1.2, that in (1.3), we only have to sum over those

2p-tuples (i1,71,.-. ,ip, jp) that belong to M(w,s) for some 7 in Sp, and con-
sequently
E o Tr, [(B*B)?] = s7P > Eo Tr, [Bi*l Bj, -+ B} ij] :

(11,415 vip,jp) EUres, M(m,s)

Note though, that the sets M(w,s), = € S,, are not disjoint. However, if we
put

D(s) = {(i1, 415 »ip,dp) € {1,2,...,s}*P | i1 i2,... ,ip are distinct },
then the sets M (w,s) N D(s), ® € Sp, are disjoint. Thus we have
E o Tr, [(B*B)?]

— 5P Z Z E o Tr, {B;lle---B;ij]
TESp (41,41, »ip,Jp) EM (mw,s)ND(s)
g 3 Eo Tr, [B;Ile ---prij] .

(i1,j1,... ’ip’jp)G(Uﬂ'Gsp M(Tr,s))\D(s)
(1.4)

Note here, that if (i1, j1,...,0p,Jp) € M(m,s) N D(s), then B;,,B;,,...,B
are independent elements of GRM(m,n, 1), and hence

Eo Tr, [B;;le ---B;;ij] = A(w,m,n).
Thus, the first term on the right hand side of (1.4) equals

s7P Z card(M (m,s) N D(s)) - A(w,m,n).

TESy

Here card(M(m,s) ND(s)) =s(s—1)---(s—p+ 1), so

s P.card(M(m,s) ND(s)) = 1 as s — oo.
Hence, the first term on the right hand side of (1.4) tends to Znesp
ass — 00, and since the left hand side of (1.4) does not depend on s, it remains
thus to show that the second term on the right hand side of (1.4) tends to 0
as s — oo. This follows by noting that according to Remark 1.4, for any
(1,51, »ip, Jp) in {1,2,...,s}?P, the quantity |E o Tr, [B;*lle ---B;;ij]|
is bounded by some constant K (m,n,p) depending only on m,n,p; not on s.
And moreover,

s Peard((Ures, M (m,s)) \ D(s)) < Z s Pcard(M (m, s) \ D(s))

A(m,m,n)

TES,
= Z [s Pcard(M (7, s)) — s Pcard(M(m,s) N D(s))]
TES,
= Z [1— s Pcard(M(m,s) N D(s))] = 0,
TESy
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as s — oo. This concludes the proof of the proposition. O

It follows from Proposition 1.5, that in order to obtain a combinatorial expres-
sion for the moments E o Tr,,((B*B)P) for a matrix B from GRM(m,n,1), we
need to derive a combinatorial expression for the quantities

A(’ﬂ', m, TL) =FEo Trn(BIBﬂ.(l)B;Bﬂ.@) e B;Bﬂ.(p)),

where m € S, and By, ..., B, are independent elements of GRM(m,n, 1).

As it turns out, it shall be useful to have the relations between the factors in
the product B Br(1) B3 Br(2) ‘- - B, Br(p) determined in terms of a permutation
7 in Sy, rather than in terms of the permutation 7 from S,.

1.6 DEFINITION. Let p be a positive integer, and let 7 be a permutation in S,,.
Then the permutation 7 in Sy, is determined by the equations:

#(2i — 1) = 2071 (i), (i €{1,2,...,p}),
7(2i) = 2n(i) — 1, (i€ {1,2,...,p}). O

1.7 REMARK. (a) Let p, m# and # be as in Definition 1.6. Note then that
#? = # o & = id, the identity mapping on {1,2,...,2p}, and that # maps
odd numbers to even numbers, i.e., that #(j) —j = 1 (mod. 2), for all j in
{1,2,...,2p}. In particular, # has no fixed points. It is easy to check that
{# | m € S,} is exactly the set of permutations 7 in Ss,, for which ? = id and
v(j)—j =1 (mod. 2), for all j in {1,2,...,2p}. Moreover, the mapping 7 — 7
is injective.

(b) If By,Bs,...,B, are independent elements of GRM(m,n,1) ,
then we may write the product By Br1)B5Br(2) - B,Bry) in the form
CrCC3Cy---C3, 1Oy, where Coiy = B; and Cy = By for all i
in {1,2,...,p}. Then # is constructed exactly so that for any j,j' in
{1,2,...,2p}, we have

Cj:eréj:j'orﬁ'(j):j'. [
1.8 DEFINITION. We associate to © an equivalence relation ~; on Zs,. This

is the equivalence relation (introduced by Voiculescu in [Vol, Proof of Theo-
rem 2.2]), generated by the expression:

JNfrﬁ-(J)-l-]-a (.76{172772p})7

where addition is formed mod. 2p. O

1.9 REMARK. For a permutation 7 in S, the ~;-equivalence classes are pre-
cisely the orbits in {1,2,...,2p} for the cyclic subgroup of Ss, generated by
the permutation j — #(j) + 1 (addition formed mod. 2p). Since this subgroup
is finite, the equivalence class [j]# of an element j in {1,2,...,2p} has the
following form:
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Let ¢ be the number of elements in [j]z. Then

[.]]ﬁ' = {j07j17"' :jq—l}:

where jo = j,j1 = @(jo) + Lj2 = #(j1) + 1,... ,jg—1 = 7(jg—2) + L,jo =
7(jq—1) + 1, (addition formed mod. 2p). O

It follows immediately from the definition of 7 and Remark 1.9 that each ~;-
equivalence class consists entirely of even numbers or entirely of odd numbers.
This is used in the following definition:

1.10 DEFINTTION. Let p be a positive integer, let 7 be a permutation in S,

and consider the corresponding permutation 7 in Ss,. By k() and I(7), we
denote then the number of ~;-equivalence classes consisting of even numbers,
respectively the number of ~z-equivalence classes consisting of odd numbers:

k(ﬁ') = Card({[j]fr | .7 € {2a47' .. 72p}})7
I(7) = card({[j]fr | je{1,3,...,2p— 1}})
Moreover, we define the quantities d(7) and o(7) by the equations:
d(it) = k(7) + 1(7) = card({[j]+ | j € {1,2,...,2p}}),
o(®) =3(p+1-d(7)). O

Regarding the definition of o(7), it will be shown later (cf. Theorem 1.13), that
o(7) is always a non-negative integer. The quantity d(#) was introduced by
Voiculescu in [Vol, Proof of Theorem 2.2].

1.11 THEOREM. For any positive integers m,n and any m in S,, we have that
A(m,m,n) = mFEplF),

Proof. Consider independent elements Bi, Bs, ... ,B, of GRM(m,n,1), and
for each j in {1,2,...,p}, let b(u,v,5), 1 <u < m, 1 <wv < n, denote the
entries of B;. It follows then by (1.1) in Lemma 1.2, that

A(m,m,n)
=FEo Trn(BfBﬁ(l)B;Bﬂ(g) s B;Bﬂ(p))
= Z E(b(u2,u1, D)b(uz2, uz, (1)) - "b(U2p,U2p—1,p)b(U2p,U1,7T(p)))-

1<uy,uz,...,u2p1<n
1<uz,uq,...,uzp<m

(1.5)

Arguing as in the proof of Lemma 1.2, it follows that the term in the above
sum corresponding to uq,usa, ... ,usp is zero, unless the corresponding matrix
entries are pairwise conjugate to each other, i.e., unless we have that

b(uzi, uzit1,m(i)) = b(u27r(i)7u27r(i)7177r(i))7 (i€ {l,2,...,p}). (1.6)
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Note also, that if (1.6) is satisfied, then the corresponding term in (1.5) equals
1, and consequently

A(m,m,n)
= card({(u,us, ... ,uzp) | 1 <uzimy <, 1 <uz; <m, and (1.6) holds}).

To calculate this cardinality, we note first that (1.6) is equivalent to the condi-
tion

U2i = Uar () and w1 = U (i)—15 (ie{L,2,...,p}), (1.7)

where addition and subtraction are formed mod. 2p. Replacing now i by 7! (i)
in the first equation in (1.7), we get the equivalent condition:

Ui = Up—1() and U241 = Uzn(i)—1, (i €{1,2,...,p})-

Recall then that by definition of #, #(2i — 1) = 27~1(4), and using this formula
with ¢ replaced by 7 (i), we get that also 27 (i) — 1 = 7 (7(2m (i) — 1)) = 7(2i).
Thus (1.6) is equivalent to the condition

U2 = Un(2i-1), and  Uzip1 = Uz(2i), (i €{1,2,...,p}),
i.e., the condition
Uj :ufr(jfl)a (] € {1’27 72p})

Replacing finally j by #(j) + 1, we conclude that (1.6) is equivalent to the
condition

Uj = Uz (5)+1> (.7 € {172a a2p})7
where 7(j) + 1 is calculated mod. 2p. Having realized this, it follows immedi-
ately from Remark 1.9 and the definitions of k(7) and I(7), that the right hand
side of (1) equals m*(™n!(") and hence we have the desired formula. O

1.12 COROLLARY. Let m,n be positive integers and let B be an element of
GRM(m,n,1). Then for any positive integer p, we have that

Eo Tr, [(B*B)?] = Z mFEplF),
TESy

Proof. This follows immediately by combining Proposition 1.5 and Theo-
rem 1.11. |

1.13 THEOREM. Let p be a positive integer, and let m be a permutation in S,,.
Then
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Proof. (i) This is clear from Definition 1.10.

(ii) Since d(7) = k(7) + I(7) is the number of equivalence classes for ~z, (ii)
follows from [Vol, Proof of Theorem 2.2].

(iii) The proof of (iii) requires more work. For elements p of N and k, of Ny,

we define
d(p, k1) = card({m € Sp | k(7) =k and I(7) =1}).

By (i) and (ii), 6(p,k,]) = O unless k¥ > 1,1 > l and k+1 < p+ 1. By
Corollary 1.12, we have for an element B of GRM(m,n, 1), that

EoTr,[(B*B)"] = > 6&(p,k,lymFn’.
k,leN
k+I<p+1
On the other hand, by the recursion formula for the moments E o
Tr, [(B*B)?], (p € N), found in [HT, Theorem 8.2], it follows that for p in
N, the moment E o Tr,, [(B*B)”] can be expressed as a polynomial in m and n
of the form:
EoTr,[(B*BY] = > &(pk,l)mFn',
k,leN
k+HI<p+1
for suitable coeffecients §'(p,k,l). By the remarks following the proof of
[HT, Theorem 8.2], only terms of homogeneous degree p + 1 — 2j, j €
{0,1,2,..., [%]}, appear in this polynomial, i.e.,

8 (p,k,1) =0, when k+1=p (mod.2).

If polynomials of two variables coincide on N2, then they are equal. Therefore,
d(p, k,1) = &' (p, k,1) for all k,I, which proves that

card({m € Sp | k() =k and I(7) =1}) =0, if k+1=p (mod. 2).

Hence, o(7) is an integer for all = in Sp, and by (ii), o(#) > 0. This proves
(iii). O
In the rest of this section, we shall introduce a method of “reductions of per-
mutations”, which will be needed to determine the asymptotic lower bound of
the spectrum of S5, (cf. Sections 5-8).

Let p be a positive integer, let 7 be a permutation in S,, and consider the
corresponding permutation # in Ss,, introduced in Definition 1.6. Since 72 = id
and 7 has no fixed points, the orbits under the action of # form a partition of
{1,2,...,2p} into p sets, each with two elements.

1.14 DEFINITION. Let p be a positive integer, and let 7 be a permutation in
Sp. Following the standard definition of crossings in partitions of {1,2,...,2p}
into sets of cardinality 2 (see e.g. [Sp]), we say that (a,b, ¢, d) is a crossing for
7, if a,b,e,d € {1,2,...,2p} such that

a<b<e<d, and #t(a) = ¢, 7(b) =d. (1.8)
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If & has no such crossings, we say that 7 is a non-crossing permutation, and
we let S)¢ denote the set of permutations 7 in S, for which 7 is non-crossing.
O

1.15 DEFINITION. Let p be a positive integer, let 7 be a permutation in S,
and let e be an element of {1,2,...,2p — 1}. We say then that (e,e + 1) is a
pair of neighbors for 7, if #(e) = e + 1. Note, that a pair of neighbors for 7 is
either of the form

(2k —1,2k), where k€ {1,...,p},
or of the form
(2k,2k + 1), where ke {l,...,p—1}.
In the first case k = n(k), and in the second case w(k) = k + 1. O

1.16 DEFINITION. Let p be a positive integer, let 7 be a permutation in S, and
consider the permutation 7 in Ss, introduced in Definition 1.6. We say then
that 7 is srreducible if # has no pair of neighbors (in the sense of Definition 1.15),
Le., if #(j) # j+1forall j in {1,2,...,2p —1}. We denote by SI'™ the set of
permutations 7 in S, for which 7 is irreducible. Note that

TESE e 1A m(l) £247(2) £ £ p £ (D).
If € S, \ SI™, we say that 7 is reducible. Note, that we do not require that

p
7(2p) # 1 in order for 7 to be irreducible. Thus, irreducibility of 7 is not
invariant under cyclic permutations of {1,2,...,2p}. O

1.17 LEMMA. Let p be a positive integer, and let m be a permutation in S)°.
Then 7 has a pair of neighbors, i.e., 7 is reducible in the sense of Definition 1.16.
In other words, we have the inclusion S;¢ C S, \ S* or equivalently S C

S, \ Sme.

Proof. We prove the inclusion: Si™ C S, \ S5¢. So let 7 from Si™ be given,
and consider the set M = {j € {1,2,...,2p} | #(§) > j}. Note that M # 0,
since clearly 1 € M. Define now

o = min{#(j) —j | j € M}.
Since 7 has no fixed points and no pairs of neighbors (since 7 € S’Ii,”), we must,
have a > 2. Choose j in {1,2,...,2p} such that #(j) — j = a. Since a > 2,
#(j) # 7 + 1, or equivalently (since #2 = id), #(j + 1) # j. Combining this
with the definition of «, and the fact that 7 has no fixed points, it follows that
TG+ ¢+ g+t ={ii+1...,7()}

i.e., either 7(j+1) < jor w(j+1) > #(4). In the first case (7(j+1),4,j+1,7(4))
is a crossing for 7, and in the second case (4,7 + 1, #(j), #(j + 1)) is a crossing
for 7. In all cases, m € S, \ S, as desired. O
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1.18 DEFINITION. Let p be a positive integer, greater than or equal to 2, let 7
be a permutation in S), and assume that the permutation 7 in Sy, has a pair of
neighbors (e,e+1). Let ¢ be the order preserving bijection of {1,2,...,2p—2}
onto {1,2,...,2p}\ {e,e+ 1}, i.e.,

. Fl<ice
R H 1o
By my we denote then the unique permutation in Sp,_1, satisfying that
Fo=¢ ‘ofoq.
We say that 7 is obtained from # by cancellation of the pair (e,e+1). O

A few words are appropriate about the introduction of my in the defini-
tion above. Note first of all that ¢~ ! o # o ¢ is a well-defined permu-
tation of {1,2,...,2p — 2}, since @2 = id and @(e) = e + 1, so that
7({1,2,...,2p} \ {e,e + 1}) = {1,2,...,2p} \ {e,e + 1}. To see that this
permutation is actually of the form 7y for some (necessarily uniquely deter-
mined) permutation 7 in S,_1, it suffices, by Remark 1.7(a), to check that
(o7l o0 p)? = id, and that p~! o7 0 p(j) —j = 1 (mod. 2), for all j in
{1,2,...,2p — 2}. But these properties follow from the corresponding proper-
ties of 7, and the fact that ¢(j) = j (mod. 2), for all j.

1.19 REMARK. Let p be a positive integer, greater than or equal to 2, let 7 be
a permutation in Sp, and assume that the permutation 7 in Ss, has a pair of
neighbors (e,e + 1). Let 7y be the permutation in S,_; obtained from 7 as in
Definition 1.18.

(a) If (e,e+1) = (2k — 1,2k) for some k in {1,...,p}, then mp = Lo o),
where ¢: {1,... ,p—1} = {1,...,p} \ {k} is the bijection given by

. B f1<j<k-1,
v =47 . ! (1.10)
j+1, ifk<j<p-1

(b) If (e,e+1) = (2k,2k+1) for some k in {1,... ,p—1}, then mg = y“lomor),
where x: {1,...,p—1} = {1,... ,p} \ {k + 1} is the bijection given by

. J, if1<j<k,
x()=1" . ) (1.11)
j+1, fk+1<j<p-1,

and where 1 is given by (1.10). O

1.20 LEMMA. Let p be a positive integer, greater than or equal to 2, and let
7 be a permutation in S, \ Sli,”. Let (e,e+ 1) be a pair of neighbors for & and
let my be the permutation in Sp,_1, for which y is the permutation obtained
from 7 by cancellation of (e,e + 1). Then 7 is non-crossing if and only if Ty is
non-crossing.
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Proof. Let p: {1,2,...,2p—2} — {1,2,...,2p} \ {e,e + 1} be the bijection
introduced in (1.9). We show that 7y has a crossing if and only if 7 does.
Assume first that 7o has a crossing (a, b, ¢, d). Then since ¢ is (strictly) mono-
tone and since (by definition of my) 7(p(a)) = ¢(c), 7(p(b)) = ¢(d), it follows
that (p(a),(b), p(c), p(d)) is a crossing for 7.

Assume conversely that 7 has a crossing (a’,b’, ¢, d’). Then clearly

{a 0, c,d}n{e,e+1} =0,

so that the numbers ¢ 1(a’), o 1(b'), o 1(c"), ¢ 1(d") are well-defined. It fol-
lows then, as above, that (¢~'(a'), =1 (b"), 0~ (c"), o~ (d")) is a crossing for
. O

1.21 LEMMA. Let m,n be positive integers, and let B be an element of
GRM(m,n,1). Then

E(B*B) =ml,,  and E(BB*)=nl,,. (1.12)

Proof. Let (bij)1<i<m be the entries of B. Then
1<j<n

1, if (4,5) = (s, 1),

. (1.13)
0, otherwise.

E(Ebst) = {

Since (B*B);; = Y. bsibs; and (BB*);; = Y.0_ bisbjs, for all 4,7, (1.12)

s=1

follows readily from (1.13). O

1.22 PROPOSITION. Let p be a positive integer, greater than or equal to 2,
and let ™ be a permutation in S, \ Si'". Let (e,e + 1) be a pair of neighbors
for # and let my be the permutation in Sp_1, for which 7y is the permutation
obtained from # by cancellation of (e,e +1). Then with k(-),I(-),d(-) and o(-)
as introduced in Definition 1.10, we have that

(i) Ife is odd, then k(#p) = k(7)) — 1 and I(7g) = (7).

(ii) If e is even, then k(7o) = k(7) and l(7g) = I(7) — 1.
In both cases, d(7) = d(7) — 1 and o(7g) = o(7).

Proof. Let m,n be positive integers, and let By, ... , B, be independent random
matrices from GRM(m,n,1). By Theorem 1.11, we have then that

E o Trp [B Br(1) + + By Ba(p)] = m*®nl(®). (1.14)

(i) Assume that e is odd, i.e., that (e,e + 1) = (2¢q — 1,2q) for some ¢ in
{1,2,...,p}. Then 7(q) = ¢, and hence the set of random matrices

(B)lka Bﬂ'(l)? s 7B;71a Bw(qfl)aB;Jrla Bﬂ'(qul)a s aB;a Bw(p))
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is independent from the set (B}, By(,)). Therefore,

E o Tr, [Bf By - - B:Bry)]
=E o Tru[Bf Br(1) - Bj_1 Br(g-1)E(B] Br(9)) Bjs1 - By Briy)]

=m-EoTr,[BiBra) - By 1 Baig-1)Bis1 - By Brp)]
(1.15)

where the last equality follows from Lemma 1.21. Note that only the random
matrices By, ... ,By_1,Bgt1,. .., By occur in the last expression in (1.15). De-
fine now for ¢ in {1,2,...,p — 1},

! Biy1, ifg<i<p-1

Then by Remark 1.19(a), it follows that the last expression in (1.15) is equal
to
m-Eo Tr,[(B})* By 1y (By_1) By (o1

o

which, by Theorem 1.11, is equal to m-mF(7o)p!(7o) - Altogether, we have shown
that
mFEpl(7) = ko) (o)

and since this holds for all positive integers m, n, it follows that k(7) = k(7o) +1
and I(#) = I(#p). This proves (i).

(ii) Assume that e is even, i.e., that (e,e + 1) = (2¢,2q + 1), for some ¢ in
{1,2,...,p—1}. Then m(q) = ¢+ 1, and arguing now as in the proof of (i), we
find that

mFERUF) — | o Tr, [BfB,T(l) - B;Bﬂ(p)]
= E o Try[Bi Br(r) - - BiE(Br(q) Byi1) Br(at1) =~ By Br(p)]
=n-EoTry[Bi By BiBrgin) - By By ],
(1.16)

where the last equality follows from Lemma 1.21. Defining, this time, for each
iin {1,2,...,p—1},

! Bi+17 1fq+1SZ§p_17

we get by application of Remark 1.19(b), that the last expression in (1.16) is
equal to

n-EoTr, [(Bi)*B;O(l) - (By_y)" ;ro(pﬂ)],
which, by Theorem 1.11, equals n - m*(o)pk(#0) = Arguing then as in the proof
of (i), it follows that k(7) = k(&) and I(#) = (%) + 1. This proves (ii).
The last statements of Proposition 1.22 follow immediately from (i), (ii) and
Definition 1.10. O
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1.23 PROPOSITION. Let p be a positive integer, and let m be a permutation in
Sp. By finitely many (or possibly none) successive cancellations of pairs, # can
be reduced to either

(i) é1, where e; is the trivial permutation in Si,

or

(ii) p, where p is a permutation in S;‘I” for some q in {2,... ,p}.

Case (i) appears if and only if m € S)°.

Proof. Tt is clear, that by finitely many (or possibly none) successive cancel-
lations of pairs, @ can be reduced to a permutation p, where either p € S; or
pE S(i]” for some ¢ in {2,3,...,p}. By Lemma 1.20, 7 is non-crossing if and
only if p is. Since Sy = S7¢ = {e1}, and SiTNSP¢ = for all ¢ in {2,3,... ,p},
by Lemma, 1.17, it follows thus, that either case (i) or case (ii) occurs, and that
case (i) occurs if and only if # is non-crossing,. O

The following corollary is a special case of [Sh, Lemma 2.3]. For the convenience
of the reader, we include a proof based on Propositions 1.22 and 1.23.

1.24 COROLLARY. Let p be a positive integer and let m be a permutation in
Sp. Then 7 is non-crossing if and only if k(7) + (%) = p + 1, or, equivalently,
if and only if o(7) = 0.

Proof. Assume first that 7 is non-crossing. It follows then from Proposi-
tion 1.23, that by successive cancellations of pairs, # may be reduced to é,
where e; is the unique permutation in S;. Since o(-) is invariant under can-
cellations of pairs, (cf. Lemma 1.22), it follows that o(#) = o(é;1), and it is
straightforward to check that o(é;) = 0.

Agsume next that 7 has a crossing. Then, by Proposition 1.23, there exist
q in {2,...,p} and a permutation p in S;”, such that 7 may be reduced to
p by finitely many (or possibly none) successive cancellations of pairs. By
Proposition 1.22, o(#) = o(p), and hence it suffices to show that o(p) > 0, i.e.,
that d(p) < q + 1. Note for this, that since p is irreducible, p(j) # j + 1, for
all j in {1,2,...,2¢ — 1}. Since p> = id, this is equivalent to the condition
that p(j) # j — 1, for all j in {2,3,...,2q}, and by Remark 1.9, this implies
that card([j];) > 2, for all j in {2,3,...,2q}. Letting r denote the number of
~ s-equivalence classes, that are distinct from [1];, we have thus the inequality

2r + card([1];) < 2q.
Since r = d(p)—1, and since card([1],) > 1, this implies that 2(d(p)—1)+1 < 2g,
and hence that d(p) < g, as desired. O
2 A COMBINATORIAL EXPRESSION FOR THE MOMENTS OF S*S

Let H and K be Hilbert spaces, let r be a positive integer, and let ay, ... ,a,
be elements of B(#,K). Moreover, let n be a fixed positive integer, and let
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Yi1,..., Y. be independent elements of GRM(n, n, %) We then define

r
S==§E:ai®iﬁ.
i=1

Note that S is a random variable taking values in B(H,K) ® M, (C). The aim
of this section is to derive combinatorial expressions for the moments

(idpr) ® (Eotrn))[(S7S)P] and  (idpp) ® B)[(S*S)?], (p€N),

where idg(5;) denotes the identity mapping on B(#). Moreover, we shall obtain
another combinatorial expression, which is an upper estimate for the norm of
(idg(x) ® E)[(S*S)P]. For the sake of short notation, in the following we shall
just write E o tr, and E instead of idg(y) ® (E o tr,,) and idg) ® E.

We start with the following generalization of Proposition 1.5.

2.1 PrRoOPOSITION. Let H,K be Hilbert spaces, let r be a positive integer, and
let aq,...,a. be elements of B(H,K). Moreover, let m,n be fixed positive
integers, and let By, ..., B, be independent elements of GRM(m,n,1). Then
with T = %.._, a; ® B;, we have for any positive integer p, that

k *
Eo Tr,[(T*T)?] = E mFEpl (7). E @G Qi) 0 A Qi -
TESy 1<é1,...,ip <1

Proof. Let (B(1,h))nen,-.-,(B(r,h))nen be sequences of elements from
GRM(m,n, 1), such that (the entries of) the random matrices B(i, h), 1 <
i <r, h €N, are jointly independent. Then for h in N, we define

T, =Y a;® B(i,h).

i=1

Note then, that for each s in N,

s*%ZTh:s*%ZZm@Bzh Zal ( EZB(i,h)),
h=1 h=1 i=1 h=1
where the random matrices s~ 325_, B(1,h),... 572 30_, B(r,h) are in-
dependent elements of GRM(m,n,1). It follows thus, that the moments of
s h_ Th)* S5~ Th w.r.t. EoTr,, are equal to those of T*T'. Thus for any
p,s in N, we have

E o Tr,[(T*T)?] = Eo Tr, [s—” (( zs: Th)* zs: Th)p
h=1 h=1

— o« P . * * LT

=5 > BT, [T Ti Ty Ti T, -
1Sh1,h2,...,hpgs
1<91,92,---,9p<$

(2.1)
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Consider here an arbitrary 2p-tuple (h1,g1,...,hp,gp) in {1,2,...,5}*”. Re-
calling then the definition of T}, we find that

EoTr, [T,jl Ty Tr Ty Th, Tgp]

= Y (a5, -a},a;,) -E[Ten(Blir, ha)*B(jr, 1) -+ Blin, hp)*Blips 95))] -
1§i1,... ,iPST
1<j1sesJp<T

Since B(i, h) is independent of B(j,g) unless i = j and h = g, it follows here
from Lemma 1.2 in Section 1, that

E o Tr, [B(ila hl)*B(jlagl) T B(ipa hp)*B(jpagp)] 7"é 0

. . . . (2.2)
=3It €S, (J1,91) = (in()s Pr())s - - -+ Ups 9p) = (in(p)s Por(p))-

In particular it follows that in (2.1), we only have to sum over
(h1,915--- ,hp,gp) in Ures, M (7, s), where, as in the proof of Proposition 1.5
in Section 1 ,

M(ﬂ',S) = {(hlagla"' 7hp7gp) € {1727 78}2p | g1 = hﬂ'(l)?"' y9p = hﬂ’(p)}?

for any m in S,. Following still the proof of Proposition 1.5 in Section 1, we
define,

D(s) = {(hl,gl,... hpygp) € {1,2,...,8}%F | hi,...,hy are distinct },
and then the sets M (7, s) N D(s), ™ € Sp, are disjoint and

E o Tr, [(T*T)?]

=57y > E o Tro [Ty, Ty, -+ Tpr. T, ]
TE€Sp (h1,91s.. hp,gp)EM (m,5)ND(s)
+57P > B o Tro [Ty, Ty, -+ Tpt. T, .
(h1,91,... 7hp’9p)€(u1r€sp M(Tr,s))\D(s)

(2.3)

As was noted in the proof of Proposition 1.5, we have here that
s P.card(M(m,s) ND(s)) = 1, as s > 00, (7€ Sy), (2.4)

and that

577 card((Ugres, M(m,s)) \ D(s)) = 0, as s = . (2.5)
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Moreover, for any h1,91,...,hp, gp in N, we have that
”]E o Try [Ty, Ty, "'Ti:pTgp]”
< Y llaj,ag, - ai g, |l - [B[Ten(B(ir, hi)* B(ji, g1) - - Blip, hp)* B, 9p))]|

1<i,.,ip <1
1<g1,ee50p <
* *
< K(manapa]-) ’ E ||ai1aj1 "'aipajp”a
1<it o ip <t
1<j1,esdp<r

where K (m,n,p, 1) is the constant introduced in Remark 1.4 in Section 1. Since
this constant does not depend on s, it follows thus, by (2.5), that the second
term on the right hand side of (2.3) tends to 0 as s — oo.

Regarding the first term on the right hand side of (2.3), for any 7 in S, and
any 2p—tuple (h1,91,...,hp,gp) in M(m,s) ND(s), we have that

E o Tr, [T} Ty, -- -T,;‘pTgp] =E o Tr, [Ty, Th, ., -Tngh”(p)]
= Z (aj,aj, -+~ aj aj,)
1<it,een ip<r
1<j1,.--,jp <1
: E[Trn(B(ila hl)*B(jla hw(l)) T B(ipa hp)*B(jpa hﬂ(p)))]-
Recalling here the statement (2.2) and that hy, ..., h, are distinct, it follows
that the term in the above sum corresponding to (i1, j1, .- . ,ip,jp) is 0, unless
J1 =lx(1),--- >Jp = fx(p)- Thus we have that

Eo T‘I‘n[Tftngl T T]:pTgp]
= Z (a; Qiggyy """ a’:p aiw(p))

1<t o sip<r
“E[Tr(B(i1, h1)*Blin(1ys her1)) - - Blips hip)* Blin(p)s bor(p))] -
Note here, that since hq,... , h, are distinct, B(i1, h1), ... ,B(ip, hp) are inde-
pendent for any choice of iy,... i, in {1,2,...,r}, and consequently

E[Trn(B(lla hl)*B(iW(l) ) hrr(l)) T B(ipv hp)*B(iTr(p)a hrr(p)))] = A(ﬂ', m, n):

for any 41,...,4p in {1,2,...,r}. Thus, we may conclude that

Eo Trn[TItle T TltpTgp] = A(ﬂ-a m, TL) : Z a;ﬁ Qirry " a;’;ai,,(p)a
1<it e ip<r
and this holds for any (h1,g1,...,hp, gp) in M (mw,s)ND(s). Therefore the first
term on the right hand side of (2.3) equals

Z s P-card(M(m,s) N D(s)) - A(m,m,n) - Z Gy Qi " A Qi s

TESy 1<iy,oyip <r

DOCUMENTA MATHEMATICA 4 (1999) 341-450



364 U. HAAGERUP AND S. THORBJ®RNSEN

and by (2.4), this tends to

*
E A(m,m,n) - E a“alﬂm ag a,

TESy 1<ig,.oyip <r

as s — oo. Since the left hand side of (2.3) does not depend on s, we get thus
by letting s — oo in (2.3), that

E o Tr,[(T*T)?] = Z A(m,m,n) Z @G Wiy "0 O Qi -
TESy 1<iy, o yip <r
Combining finally with Theorem 1.11, we obtain the desired formula. O

2.2 COROLLARY. Let H,K be Hilbert spaces, let r be a positive integer, and
let ai,...,a, be elements of B(H,K). Moreover, let n be a fixed positive
integer, and let Y7,...,Y, be independent elements of GRM(n,n, %) Then
with S = 3", a; ® Y;, we have for any positive integer p, that

Eotr,[(S*S)P 1= Y n 2. N" arai --alai,, (2.6)
TESy 1<iy,..yip <r
where o (#) is the quantity introduced in Definition 1.10 in Section 1.

Proof. With B; = \/n-Y;, i € {1,2,...,r}, we have that By,...,B, are
independent elements of GRM(n,n,1). It follows thus from Proposition 2.1,
that for any p in N,

p. w)+I(7) *
n? - E o Try| E nk E a; @i, g Qi
TES) 1<it e yip<r

and consequently

*g —p—1+k(7)+! ®
E o tr,[(S*S E n ()+(7) E QG @iy "0 QG Qi -
TESy 1<iy,.oyip <r

Formula (2.6) now follows by noting that,
p+1—k(7)—I(7) =p+1—d(7) =20(7),

for any 7 in S),. O

Our next objective is to derive a matrix version of formula (2.6). In other
words, we shall obtain a combinatorial expression for E[(S*S)P].

2.3 LEMMA. Let n,r be positive integers and let Y7,...,Y, be independent
elements of GRM(n,n,0?). Then for any (non-random) unitary n X n matrices
Ui,...,Up, the random matrices u1Y1uj,... ,u,Y,uy: are again independent
elements of GRM(n,n,o?).
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Proof. Note first that for each 7 in {1,2,...,r}, the entries of u;Y;u} are all
measurable w.r.t. the o—algebra generated by the entries of Y;. It follows there-
fore immediately that u1Yiuj,. .., u,Y,u; are independent random matrices.
We note next, that it follows easily from Definition 1.1, that the joint distribu-
tion of the entries of an element from GRM(n,n,c?) has the following density
w.r.t. Lebesgue measure on M,(C) ~ R

2

y (s52)" exp (=& - Tra(y*y)), (y € Mo(0)). (2.7)
(Here the identification of M, (C) with R2"” is given by
y = (Re(yjr), Im(yjk))1<jk<n-)
Now let u be a unitary n X n matrix, and consider then the linear mapping
Adu: y = uyu*: M, (C) - M,(C).

Under the identification of M,,(C) with R2"" | the Euclidean structure on 2"’
is given by the inner product:

(y,2) = Re(Trn(27y)),  (y,2 € Mn(C)).

Thus Adu: R2"° — R2"” is a linear isometry, and hence the Jacobi determi-
nant of this mapping equals 1. Combining this fact with (2.7) and the usual
transformation theorem for Lebesgue measure, it follows that for any Y in
GRM(n,n,0?), the joint distribution of the entries of uYu* equals that of the
entries of Y. O

2.4 LEMMA. Let B be a C*—algebra with unit 1, let n be a positive integer,
and consider the tensor product B @ M,(C). If x € B® M,(C), such that
(1®u)z(l ® u)* = x for any unitary n X n matrix u, then x € B®1,,.

Proof. Assume that z € B ® M,(C), and that (1 ® u)z(1 ® u)* = z for any
unitary n X n matrix u. Since M, (C) is the linear span of its unitaries, it
follows that

z€{yeB®M,(C) |yT =Ty forall Tinl1® M,(C)} =B®1,,

where the last equality follows by standard matrix considerations; thinking of
B ® M, (C) as the set of n X n matrices with entries from B. O

2.5 PROPOSITION. Let S be as in Corollary 2.2. Then for any positive integer
p, we have that:

E[(S*S)P] = ( Z n=20 (@) . Z aj, @iy "‘a:paiw(p)) ® Ln.

ﬂ'GSp 1Si1,...7iPST‘
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Proof. Let u be an arbitrary unitary n x n matrix, and define: S, =>|_, a; ®

(uY;u*). Note then that S;S, = (1 ® u)S*S(1y ® u)*, where 14 denotes the
unit of B(H). It follows now by Lemma 2.3, that
E{(S™S)P] = E[(S;, Su)"]
= Bl(1y @ u) (S"S)P(1n ® )] = (1n ® w)E[(S" S)P)(1n @ w)"

Since this holds for any unitary u, it follows from Lemma 2.4, that E[(S*S)?] €
B(H) ® 1,, and consequently

B[(5*5)"] = (tra(B(S"S)?)) @ 1n = (E o tra[(S*S)"]) @ 1.

The proposition now follows by application of Corollary 2.2. O
In the next section, we shall obtain combinatorial expressions that are upper
estimates for the moments E[(S*S)P]. Tt follows from Proposition 2.5, that in
order to obtain such combinatorial estimates, we should concentrate on deriving
combinatorial estimates for the quantities

* *
| § : @iy Cinay © " Qi By
1<izymrsip<r

)

where m € Sp, and a4, ... ,a, are arbitrary bounded operators from a Hilbert
space H to a Hilbert space K.

2.6 DEFINITION. Let p be a positive integer, let = be a permutation in S, and
consider the permutation 7 in Sy,. We then put

k(7)) = card({j € {1,3,... ,2p— 1} | #(j) > j}),
A(#) = card({j € {1,3,...,2p — 1} | #(j) < j}) + L. O
We note, that since 7 has no fixed points, it follows that
K(T)+ A7) =p+1, (peN, meS,). (2.8)
Recalling that by definition of #, #(2h —1) = 27 ~1(h) for all hin {1,2,... ,p},
it follows furthermore that
k(#) = card({h € {1,2,... ,p} | 2x7' (k) > 2h — 1})
=card({h € {1,2,... ,p} | 7~ "(h) > h}) (2.9)
= card({h € {1,2,... ,p} | h > m(h)}),
where the last equality follows by replacing h by 7—1(h). Similarly we have
that
A7) =p+1— k()
=card({h € {1,2,...,p} | 77" (k) <h}) +1 (2.10)
=card({h € {1,2,...,p} | h < w(h)}) + 1.
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We note also, that since 7(j) = 7+ 1 mod. 2 and #(7(j)) = j for all j, we have
that

k() = card(7[{j € {1,3,...,2p— 1} | #(j) > j}])

) R (2.11)
= card({j €{2,4,...,2p} | () < j}),
and similarly
A7) = card({j € {2,4,...,2p} | #(j) > j}) + L. (2.12)
In connection with products of the form aj a;_,, -+ aj ai,, , note that x(#)
denotes the number of h’s in {1,2,...,p} for which the factor aj, appears

before the factor a;, in this product. Similarly A(7) — 1 denotes the number of
R’sin {1,2,...,p} for which the factor a;, appears before the factor aj, .

2.7 PROPOSITION. Let H, K be Hilbert spaces, let r be a positive integer, and
let a1,...,a, be elements of B(H,K). Let further ¢ and d be positive real
numbers, such that

r
*
H Z a/i a/i
i=1

Then for any positive integer p and any permutation 7 in Sy, we have that

<c and H Z a;af || < d. (2.13)
i=1

E s eeeat a; w(7) gA(#) =1
H Qi Wiy = O Qi H <c"Md .
1<t yoeeip<r

Proof. Let V be an infinite dimensional Hilbert space, and choose r isometries
$1,.-.,8r in B(V), with orthogonal ranges, i.e.,

S;Sj :(51"]'15();), (l,_] € {1,2,... ,’I‘}). (214)

Consider then the Hilbert space V =V ® ---® V (p factors), and for each i in

{1,2,...,r} and h in {1,2,...,p}, define the operator s(i, h) in B(V) by the
equation

S(i, h) = ]-B(V) Q- 13(1;) b2y Sl b2y ]-B(V) Q- 13(1;). (215)

t
h’th position

Next, put

(7/6 {]"27"' 77‘}7 h€{172)"' 7p})7

(2.16)

o Js(i,h), if h <a7'(h),
ti,h) = {s(z’,h)*, it h > 1(h),
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and
Ay = a;®t(i,h),  (he{L2,...,p}). (2.17)
i=1

We consider Ay, as an element of B(H ® V,K ® V) in the usual way. We claim
then that

A Ay A3 Ane) - ey = (D aliai,alai, ) @ L)
1Si1,... 7iPS7‘

(2.18)
To prove (2.18), observe first that
Aldr) - ApAn(p)
= Y (ahajaLagafa) gz da i), (219)
1<i1,i2,...,ip <1
1<51,J25 0 5dp <1
where
H(ilajla s 7ip7jp)
= t(i1, 1)"t(j1, m(1))t(ia, 2)"t(j2, m(2)) - - - t(ip, )"t (Jp, 7(p)),

for all 41,41, .. ,ip,Jp in {1,2,...,r}. By (2.15) and (2.16), ¢(i, h) and ¢(i, h)*
both commute with ¢(j, k) and ¢(j, k)*, as long as h # k. Hence, we can reorder
the factors in the product on the right hand side of (2.20), according to the
second index in t(+,) and ¢(-,-)*, in the following way

H(ilajla s 7ip7jp) = T(I)T(Q) o -T(p),

(2.20)

where
; i, . < 1
T(h) = t(’L.h,h) t(jx .(h),h), %fh_ﬂ 1(h),
t(ja—1(ny, R)t(in, h)*, if b > a7 (h),

for each h in {1,2,...,p}. By (2.16), it follows that
T(h) — S(Z’.hah)*s(jﬂ_l(llz)ah)a lfh < ﬂ-:i(h)a
S(]ﬂ_l(h)ah)*s(zhah)a ith>mn (h)7

and thus by (2.14)-(2.15), we get that for all 41,71,... ,4p, 7, in {1,2,...,7}
and all hin {1,2,...,p},

T(hy = { ey e =dei,
0, if i # et (h)-

Therefore, I1(i1, j1,. .. ,ip,jp) = 0, unless ip, = jr—1(4), forall hin {1,2,... ,p},
or equivalently, unless i) = jp, for all h in {1,2,...,p}, in which case
(i1, j1,- - ipsjp) = L. Combining this with (2.19), we obtain (2.18).
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Using again that s(i, h)*s(j, h) = 513]-18(9), for all 4,7 in {1,2,...,7}, we get
that if h < 7 1(h),

AhAh_Zaa](@s(zh Zaaz®1

3,j=1

and if h > 771 (h),
i=1
By (2.13), it follows thus, that

[4n]1* = |45 Anll < e, if h <77 (h),
14n]* = |An A5l < d, i > (R),

so by (2.9) and (2.10),

p
147 Arqyy - ApAr | < T AR < F@ XD
h=1

Together with (2.18), this proves the proposition. O

2.8 COROLLARY. Let H,K be Hilbert spaces, let r be a positive integer, and
let ay,...,a, be elements of B(H,K). Moreover, let n be a fixed positive
integer, and let Y7,...,Y, be independent elements of GRM(n,n, %) Then
with S =Y 1 a; ®Y;, ¢ = ||Y1_, afa;|| and d = || Y_;_, a;af||, we have for
any positive integer p, that

||E S* || < Z n720' ) d/\(rr)
TESy

Proof. This follows immediately by combining Propositions 2.5 and 2.7. O

In Section 3 we shall estimate further the quantity ||E[(S*S)?]||. As preparation
for this, we will in Proposition 2.10 below, compare the numbers x(7) and A(7)
with the numbers k(#) and [(#), defined in Section 1.

2.9 LEMMA. Let p be a positive integer, let m be a permutation in S,, and con-
sider the permutation 7 in Ss, and the corresponding equivalence relation ~ ;.
Then any equivalence class for ~;, except possibly [1];, contains an element j
with the property that 7(j) < j.

Proof. Let j' be an element of {1,2,...,2p}, such that 1 ¢ [j']z. We show
that [j']# contains an element j such that 7(j) < j. For this, note first, that
we may assume that j' is the smallest element of [j'];. Then, by assumption,
j' > 2. Now write in the usual manner (cf. Remark 1.9)

[jl]ﬁ' = {jOajla' .. ajq}'
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In particular, #(j,) + 1 = jo = j' (addition formed mod. 2p). Now, since
j' > 2, we have that j' — 1 < j’, even when the subtraction is formed mod. 2p.
Therefore, since j' is the smallest element of [j']+, 7(jg) =3 —1 < j' < jq-
Thus we may choose j = j,. O

2.10 PROPOSITION. Let p be a positive integer, let m be a permutation in Sp,
and consider the permutation 7 in Ss,. We then have

() w(7) > k() and A7) > 1(7).

(i) (k(7) = k(7)) + (A7) = (7)) = 20(7).

(i) w(7) = k(7)) and A(7) = I(7) if and only if 7 is non—crossing.
Proof. (i) By Lemma 2.9 and the definition of (), it follows that

I(7) —1<card({j € {1,3,...,2p— 1} | #(j) < j}) = A(#) — L.
Similarly we find by application of (2.11), that
k(#) < card({j € {2,4,...,2p} | #(j) < j}) = k(7).
(ii) We find by application of (2.8), that

(k(7) = k(7)) + (A7) = U(7)) = (£(7) + M7)) = d(7) = p + 1 —d(7) = 20(7).

(iii) This follows immediately by combining (i), (ii) and Corollary 1.24. O

3 AN UPPER BOUND FOR E[ exp(tS*S)], t > 0

In the previous section, we computed E[(S*S)?], forpinNand S =), a; ®
Y, where ay,...,a, € B(H,K), for Hilbert spaces H and K, and where
Yi,...,Y, are independent random matrices in GRM(n,n, %) For fixed p
in N, the function w — (S* (w)S(w))p only takes values in a finite dimen-
sional subspace of B(H) ® M,(C). This is not the case for the function
w > exp (tS*(w)S(w)), so in order to give precise meaning to the mean
E[ exp(tS*S)], we will need the following definition (cf. [Ru, Definition 3.26]).

3.1 DEFINITION. Let X’ be a Banach space, let (2, F, P) be a probability space,
and let f: Q@ — X be a mapping, that satisfies the following two conditions
(a) Ype X*:pofe LY N F,P)

(b) Jzo € X Vo e X*: [, po f(w) dP(w) = ¢(xo).

We say then that f is integrable in X', and we call o the integral of f, and
write

Q
Note that in the above definition, z is uniquely determined by (b). Note also,
that we do not require that [, [|f|| dP < oo, in order for f to be integrable.

However, if X is finite dimensional, then this follows automatically from (a).

DOCUMENTA MATHEMATICA 4 (1999) 341-450



RANDOM MATRICES AND K-THEORY ... 371

3.2 PROPOSITION. Let H and K be Hilbert spaces, let ay,... ,a, be elements
of B(H,K), and let vy be a strictly positive number, such that

max {[| 2 afaill, | iy asafll} < -

Furthermore, let n be a positive integer, let Y1, ... ,Y, be independent random
matrices in GRM(n,n, L), and put S =Y\ a; ®Y;.
Then for any complex number ¢, such that |t| < 2, the function

w — exp (tS*(w)S(w)), (we ),

is integrable in B(H™), in the sense of Definition 3.1, and
E[exp(tS*S)] = LE[(S*5)], (3.1)
p=0

where the series on the right hand side is absolutely convergent in B(H™).
Proof. By Proposition 2.5, we have for any p in N,
E[(S*S)"] = ( Z n =2 Z a3, Qi ---a;»*pai,,(p)) ®1n,
TESy 1<i,onsip<r

and by Proposition 2.7 and formula (2.8), we have here for all 7 in S,, that

” Z g, Wiy Gy, i ” <. (3.2)
1<y, ip<r

Hence the absolute convergence of the right hand side of (3.1) will follow, if we
can prove that

1430 O (3 ) <o, (3.3)
p=1 TESy

whenever || < 2. For this, consider an element B of GRM(n, n,1), and recall
then from Corollary 1.12, that

Eo Tr, [(B*B)p] = Z pEEH(T) = pptl Z n =207,
TESy TESy

Hence for positive numbers s, we have

(oo}

From [HT, Theorem 6.4], we know that

E o Tr,,[exp(sB*B)] < oo, when 0<s<1.
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Hence the sum in (3.4) is finite, whenever 0 < s < 1, and this implies that (3.3)
holds whenever [¢] < 2.

Consider now the state space S(B(H")) of B(H™) and an element ¢ of
S(B(H")). For any w in Q, we have then that

p[exp (£S*(w Z Lro[(S*(w)S(w))],

which is clearly a positive measurable function of w (since ¢ is a state). More-
over, by Lebesgue’s Monotone Convergence Theorem,

Bp(ep(t5°5)] = Y BE[o((575))]

p=0
(o)
=D Le(E[(s75)7])
p=0
=1+ Z & 90( Z n720(7r)( Z a“ @iy a;fpai”(p)) ® ]-n)
T€S, 1<itennsip<r
<1+ Z BN n 2@ >N afai,eahai |,
p=0 weS, 1<iy e ,ip <7
(3.5)
and by (3.2) and (3.3), the latter sum is finite, when |¢| 2. Since

B(H™)* = span(S(B(H™)), it follows that the function w — exp(t5*(w)S(w)),
is integrable, and (by the first two equalities in (3.5)) that E[ exp(tS*S)] is
given by (3.1). O

The main result of this section is the following

3.3 THEOREM. Let H,K be Hilbert spaces, and let aq,... ,a, be elements of
B(H,K), satisfying that

r r
Zafai <clpy and Zaia; <1pk),
=1 =1

for some constant c in ]0 oo[. Consider furthermore independent elements
Yi,..., Y. of GRM(n,n, ), and put S = Y./, a; ® Y;. Then for any t in
0, 5%] m [0, 3], we have that

E[ exp(t5*S)] < exp (Ve + 1%t + (c+1)% - L) - 1g(3m).

For the proof of Theorem 3.3, we need three lemmas. Before stating these
lemmas, we introduce some notation:
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For any p, k,l in N, we put
d(p, k,1) = card({m € Sp | k(7) =k and I(7) =1}). (3.6)

Note that for any p,k,l in N, §(p,k,l) = 0, unless k +1 < p+ 1 (cf. Theo-
rem 1.13).
For any complex number w and any n in Ny, we put

(w) 1, if n=20,
W) =
ww+1)(w+2)---(w+n-1), ifneN
We recall then, that the hyper-geometric function F', is defined by the formula

Fonnn 2

k=0

for a,b, ¢,z in C, such that ¢ ¢ Z \ N, and |z| < 1.

3.4 LEMMA. For all positive real numbers «, 3, we have that

[ee] tp,1
5 ,k,l akfl [—1
Lo 2, (ki
k- <p+1 (3.7)
F(1—a,1- 8,2,

= 1= fyo+d , (teC |t| <1).

Proof. Assume first that « = n and 8 = m, where m,n € N, and consider an
element B of GRM(m,n,1). Then by [HT, Theorem 6.4],

F(1—n,1-m,2,t%) 1 . .
=y = %EOTrn[B Bexp(tB*B)]

1 tp—1

=— > o 1)!IE‘, o Tr, [(B*B)”].

But from Section 1 of this paper, we know that for any p in N

EoTr,[(B*B)P] = Y m*®nl®) = 3" §(p, k,lymFnl,

€S, k,lEN
k+I<p+1

and thus (3.7) holds for all a, 8 in N. In particular, the left hand side (3.7) is
finite for all a,, 8 in N. Since the left hand side of (3.7) is an increasing function
of both a and g, it is therefore finite for all «, 3 in ]0, ool.
To prove (3.7) for general positive real numbers, «, 3, we get first, as in [HT,
Proof of Proposition 8.1], by multiplying the power series

F(1-a,1- 8,2 =Zj%<af1> (ﬁj_.l)t”, (It} < 1),

j=0 J
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and
o = (a+B+k-1
(1—¢)~(eth) = Z ( N )t’“, (It] < 1),
k=0

2
that the power series expansion for %{frf” is given by

F(l_aal_ﬂa2;t2) -

1 pats =3 wpaB)rt, (<), (3.8)
p=1
where for all p in N,
23] .
_ 1 fa-1\/B-1\(a+8+p—2j—2
Wp’a’ﬁ)‘;wl( )OS e

Since we know that (3.7) holds for all o, 8 in N, we have, on the other hand,
that

Y(p,a, B) =

(p_ 1)| Z 6(pak7l)ak_1ﬂl_la (310)
k,leEN

k+I<p+1

for all a, 8 in N. Thus, for fixed p, the right hand sides of (3.9) and (3.10)
coincide whenever a,3 € N, and since these two right hand sides are both
polynomials in « and £, they must therefore coincide for all «, 8 in ]0,00[. In
other words, (3.10) holds for all a, 8 in ]0, 0cc[, and inserting this in (3.8), we
get the desired formula. O

3.5 LEMMA. Let «, 3 be positive numbers, and assume that either « or (3 is
an integer. Then

( )Jt2]
«jl G+l

1\ (B=1\
("7 wen.
J
If both o« and (3 are integers, then

— J J
o< ("7 <5 ma 0<(P7N)< <2
J J-: J J-

for all j in Ny, and (3.11) follows immediately. By symmetry of (3.11) in «
and 3, it is therefore sufficient to treat the case where « is an integer and (3 is
not. In this case, we have

1 fa—1\[/B=1\ ..
F(l—a,1-3,2;t*) = —( ) )( } >t2’.
;J+1 J J

DOCUMENTA MATHEMATICA 4 (1999) 341-450

o0
Fl—a,1-3,2:1%) < Z whenever 0 <t < 1.  (3.11)

k}

Proof. We recall first, that

F(l1—a,1-3,2;t%) =

||M8



RANDOM MATRICES AND K-THEORY ... 375

If 8 > a, we have for any j in {0,1,...,a — 1}, that 0 < (a;.l) < j—f and
0< (6;1) < i—:, and again (3.11) follows immediately.

Assume then that 8 < «, and let n be the integer for which n — 1 < 8 < n.
Since « is an integer, and a > 3, we have that a > n. Forming now Taylor

expansion on the function f(s) = F(1 — «a,1 — ,2;s), (s > 0), it follows that

P(l=a,1- 8,25) = i P EEC !

(3.12)

where 7, (s) = LIl L2 en for some &(s) in 10, s[. It suffices thus to show that

n.:

f(€) <0, for all £ in [0, 1], since this will imply that for all s in [0, 1],

n—1
1 -1 -1\
Fl-a,1-4,2;8) < Z,—(a . > (ﬂ . >s],
—o ) +1 ] ]
;v}here, as above, 0 < (“;1) < C]’—,] and 0 < (6;1) < i—:, for all jin {0,1,... ,n—
To show that f(™(¢) < 0 for all £ in [0, 1, we note that by [HTF, Vol. 1, p. 58,
formula (7)],

fME) = ——=F(1l-a,1-32¢

dgn
_ (1_(an)i(ll)_!ﬂ)nF(n_'_l_a’n+1_ﬂ7n+2;€),

for all ¢ in [0, 1[. Note here that

(I=a)u(l =P =(a=1)(a=2)---(a=n)(-1)(B~=2)---(8-n) <0,

because @ > n and n — 1 < 8 < n. Moreover, by [HTF, Vol. 1, p. 105, formula
(2)], we have for all £ in [0, 1]

Fn+l—an+1-8n+2:6)=1-P"Fla+1,83+1,n+2;¢)

o0
= (1 - gatsn Lﬂﬂm
> i ¢,

= +2);

and therefore F(n + 1 —a,n+1—8,n+2;¢) > 0 for all £ in [0,1[. Taken
together, it follows that f(™) (&) < 0 for all € in [0, 1], as desired. O
For any ¢ in ]0, co[, we let i, denote the free Poisson distribution with parameter
¢, i.e., the probability measure on R, given by

(z —a)(b— 1)

e = 1—¢,0}4
pe = max{1l —¢,0}dp + Zy—

. l[a,b] (1‘) ' dac, (313)
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where a = (/e — 1)%, b = (/e + 1)? and Jp is the Dirac measure at 0 (cf. [HT,
Definition 6.5]).

3.6 LEMMA. Let a, 8 be strictly positive real numbers, and assume that either
a or B is an integer. Then for any t in [0, %],

00 " ~ )

0 Y Ak Dati T < expl(at HE) [ explote) dug o),
p=1 k,lEN
k+H<p+1

Proof. Using that —log(1 —t) = Y.»°, & <t + >, whenever 0 <t < 3, we
note first that

(1= 1)~ <exp((a + B)t)exp((a + B)E), (€ [0, 3]).

Hence by Lemma 3.4 and Lemma 3.5,

— P! k—1 gl—1
Z(p_l)! > dp, k1)t
p=1 k,lEN
k+l<p+1 (3.14)
= (aB)it?
< + + B)t%)
< exp((e + B)t) exp((a + B) ;J )

Put ¢ = § and s = 8t. From [HT, Formula (6.27)], it follows then that

00 > Cj82j

rexp(sx) du.(x) = cexp((c+1)s —_—

| wexploa) dueto) = cex( MY

— (Bt
= cexp((a + B)t Y .

(0 Y 50y

Hence (3.14) can be rewritten as
5 ,kl k—1pl—1
Z1 (p - 1)‘ klZGN v ’
k+I<p+1 (3.15)

< Zexplla+ M) [ aexp(Bte) dus ().

0
Using then that t = Ot (’;p ny7 du, for all p in N, and that exp((a + B)u?) <
exp((a + B)t?), whenever 0 < u < t, we get by termwise integration of (3.15)
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(after replacing ¢ by ), that

it—ﬁ Z S(p, k, 1)k 1t

p=1%"  leN
k+I<p+1

< 2 exp((a + B)P) / t( / " s expl(Buc) dyus, (x)) du

—Zexp((a+9¢) [ o SPEDZL g )

—Lexp((a+96%) [ (exp(3t) - 1) dug (o).

Hence, using that I is a probability measure, it follows that

1+Z > dpk,Dakp!

=1 p: k,leN
k+I<p+1

<1expla+H0)( [ exp(Bta) dus () -1)

0
<expl(a+)R) [ exp(te) dus (o).
0
This concludes the proof. O

Proof of Theorem 3.3. Let aq,... ,a,, Y1,...,Y,. and S be as set out in Theo-
rem 3.3. By Proposition 2.5 and Proposition 2.7, we have then that

_ —20 (%) Z * .
= ( Z n a; @i, gy i, | @1,

TES, 1<81,...,ip <1

< (X e @) g,

TESy

(3.16)

where x(#) was introduced in Definition 2.6.
We assume first that ¢ > 1. By Proposition 2.10(i) and (ii), we have that

k(7)) < k(7t) + 20(7), (m € Sp).

Hence, )
E[(s*91] < (30 (2)777 ) 1pen).
TES,
Using now that 20(7) =p+ 1 —d(7) =p+ 1 — k(7) — I(%), we find that
] < ( DY (A)(%)l(ﬁ)) Apem)
TES,
= ()" 3 ok D (2)) s,
k,lEN
k- <p+1
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and therefore, for 0 < ¢t < m = 2, it follows by application of Proposi-
tion 3.2, that

E[ exp(tS*S)] = 1pa) + Y, LE[(S*S)?
p=1

(o]
S(l +3HE)” Y ik Dk (%) )-13(Hn)_
p=1 k,leN
k+l<p+1

Using now Lemma 3.6, we get for 0 < Ct <3 1 that

Blexp(t5°5)] < (oxp (0 + D)) [ exp (2()a) due(o)) Lo
= (exp (c(c+ 1)%)/000 exp(tx) duc(m)) o VETCTAS:

< (exp (e 17+ 2) [ explts) dula)) Lo

Since supp(ue) C [0, (v/e + 1)?], it follows that

E[ exp(tS*S)] < exp ((c+1)*- ) exp ((ve+1)%t) - Lgpny,

and this proves the theorem in the case where ¢ > 1.
Assume then that ¢ < 1. In this case we use (3.16) together with the fact that
k(7) > k() for all 7 in S, (Proposition 2.10(ii)) to obtain

5{(5°57) < (702 e) Ao

< (e 3 00 Ly

TESy

(n—lp Z 6(p,k,l)(nc)knl71)-IB(Hn).

k,leN
k-+<p+1

Hence for 0 <t < T =N, we get by application of Proposition 3.2,

max{c 1

E[exp(tS*S)] < 1) +Z LE[(S*5)7]

p=1
< (1 + Z ﬁ(%)p Z §(p,k,l)(nc)knl_1) “1pny-
=1
’ k4igpr1
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Hence by Lemma 3.6, we have for 0 <

E[ exp(tS*S)] < (exp ((nc+n)(%)2)/ooo exp (n(L)z) duc(ac)) “1pm)

= (exp ((c+ 1)%)/000 exp(t) dpe()) - Lo

<exp ((e+ 1)+ 5)) exp (Ve +1)%) - Lggn,
and this completes the proof. O

3.7 REMARK. Assume that aq,...,a, € B(H,K), satisfying that .|, aja; <
clp(3) and i aial < d1p(4y), for some positive constants ¢ and d. Consider
furthermore independent elements Yi,...,Y, of GRM(n,n, %), and put S =
i, a; ®Y;. Applying then Theorem 3.3 to a} = ﬁai and ¢’ = §, we get the
following extension of Theorem 3.3:

For any ¢ in [0, 2] N [0, &

n n
’ 2¢ ’2d D

E[ exp(tS*S)] < exp ((vVe + Vd)*t + (¢ + d)* - %) “1g(ny- O

4 Asymproric UPPER BOUND ON THE SPECTRUM OF S} S, IN THE EXACT
Cask

Throughout this section, we consider elements ai,...,a, of B(H,K) (for
Hilbert spaces H and K), satisfying that

r T
I Zafai” <c¢, and | Zamf” <1, (4.1)
i=1 i=1

for some constant ¢ in ]0,00[. Let A denote the unital C*-subalgebra of B(H)
generated by the family {afaj | i,7 €41,... ,r}} U {1p(2) }- Furthermore, for
each n in N, we consider independent elements Yl(n), v of GRM(n,n, 1),
and we define

.
Sn=Y ai@Y,". (4.2)
=1

In this section, we shall determine (almost surely) the asymptotic behavior (as
n — o0) of the largest element of the spectrum of S5, (i.e., the norm of S%S,,),
under the assumption that A is an exact C*-algebra. We start by studying the
corresponding asymptotic behavior for the image of S} S,, under certain matrix
valued completely positive mappings. More precisely, let d be a fixed positive
integer, and let ®: 4 — My(C) be a unital completely positive mapping. For
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each nin N, let id,, : M, (C) — M,(C) denote the identity mapping on M, (C).
We then define

Vo = (& @id,)(SES,) = Z ®(afa;) © ()Y, (neN. (43)

i,j=1

Note that V}, is a random variable taking values in My(C) ® M, (C) ~ M4,(C).
As indicated above, our first objective is to determine the asymptotic behavior
of the largest eigenvalue of V,,. We emphasize, that this step does not require
that A be exact.

The following lemma is a version of Jensen’s Inequality, which we shall need
significantly in this section and in Section 8. The lemma has been proved in
much more general settings by Brown and Kosaki (cf. [BK]) and by Petz (cf.
[Pe]). For the reader’s convenience, we include a short proof, handling the
special case needed here.

4.1 LEMMA. (i) Let £ be a Hilbert space, and let P be a finite dimensional
projection in B(L). Let tr denote the normalized trace on B(P(L)). Then for
any selfadjoint element a of B(L), and any convez function g: R — R, we have
that

tr[g(PaP)] < tr[Pg(a)P]. (4.4)

(ii) Let B be a C*-algebra, let m be a positive integer and let ¥: B — M,,(C)
be a unital completely positive mapping. Then for any selfadjoint element a of
B and any convex function g: R — R, we have that

1 [9(¥(a))] < tr [¥(g(a))].

Proof. (i) Note first that g is continuous (being convex on the whole real
line). Let m denote the dimension of P(L), and choose an orthonormal basis
(e1,...,em) for P(L) consisting of eigenvectors for PaP. Let A,...,\p be
the corresponding eigenvalues for PaP, i.e.,

Ai = (PaPe;,e;) = (ae;, e;), (te{1,2,...,m}).

Then g(A1),...,9(\y) are the eigenvalues of g(PaP), and hence

m m

trlg(PaP)] =Y g(\i) = > g((aei,es)). (4.5)

i=1 =1

Since the trace on B(P(L)) is independent of the choice of orthonormal basis
for P(L), we have at the same time, that

m m

tr[Pg(a)P] =Y (Pg(a)Pes,e;) = Y (g(a)es,es). (4.6)

i=1 i=1
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Comparing (4.5) and (4.6), we see that it suffices to show that (g(a)e;,e;) >
g({aei,e;)), for all 7 in {1,2,...,m}. But for each i, this follows from the
classical Jensen Inequality, applied to the distribution of a w.r.t. the state
( - e4,€;), i.e., the probability measure u; supported on sp(a), and satisfying
that (f(a)e;, e;) = fsp(a)f(t) du;(t), for all functions f in C(sp(a)). This
concludes the proof of (i).

(ii) By Stinespring’s Theorem, we may choose a Hilbert space £, a *-
representation 7: B — B(L) of B on L, and an embedding ¢: C™ — L of
C™ into L, such that

U(b) = Pr(b)Px,  (beB), (4.7)

where K = ((C™), and Py is the orthogonal projection of £ onto K. Moreover,
the equality (4.7) is modulo the natural identifications associated with ¢. Let
trr denote the normalized trace on B(K). By application of (i), it follows then
that

trm [9(2())] = trx [g(Pir(a) Pi)] < tric [Prcg(n(a)Pic]

and this proves (ii). O

4.2 LEMMA. Let V,,, n € N, be as in (4.3), and let Amax(V;,) denote the largest
eigenvalue of V,, (considered as an element of My,(C)). Then for any € in
10, o[, we have that

> P(Amax(Va) > (Ve +1)° +¢) < oo. (4.8)

Proof. The proof proceeds along the same lines as the proof of [HT, Lemma 7.3];
the main difference being that in the present situation, we have to rely on the
estimate obtained in Theorem 3.3. Consider first a fixed n in N. We find then
for any ¢ in ]0, oo, that

P(/\mEX(Vn) > (Ve+ 1)2 + ) = ( (t/\max —t(Ve+ 1)2 - te) > 1)
[ D (FAmax(Va) — t(ve + 1) — te) ]

xp(—t(ve+ ) t€) - E[Amax (exp(tV))]

xp(—t(ve +1)? — te) - E[Trqp (exp(tV, )]

(4.9

where the last inequality follows by noting, that since exp(tV,,) is a positive
dn x dn matrix, Amax(exp(tVy,)) < Tran(exp(tV,)). Note now, that since the
mapping ® ® id, is unital, completely positive, and since the function z —
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e!”: R — R is convex, it follows from Lemma 4.1(ii), that

tran [ exp(tVy)] = tran [exp (H(® ® idy,) (S5 Sn))]
< tran [(® ®idy,) (exp(tS;Sn))]
= trg ® try, [(‘I> ® idn) (exp(tST*LSn))] =) ®try, [exp(tS,*LSn)],
(4.10)

where ¢ is the state try o ® on 4. Note here, that by Definition 3.1 and
Theorem 3.3,
E[¢ ® tr,, (exp(tS;Sn))] = ¢ ® tr, (E[ exp(tS;:S,)])

. (4.11)
<exp (t(vVe+1)? + L(c+1)%),

for all ¢ in ]0, 5%].
Combining now (4.9)-(4.11), we get that for all ¢ in 0, 5%],
P(Amax(Va) >(Ve +1)% +¢)
< dn - exp(—t(v/c+1)? — te) -exp (t(V/e +1)* + L (c + 1))
=dn-exp (t(L(c+1)* —¢)),

Now choose t = t, = 2(671—61)2, and note that ¢, € ]0,5:], as long as e < 1.

Clearly it suffices to prove the lemma for such €, so we assume that e < 1. It
follows then that

2

(c+1)?—¢€)) = dn-exp (;7255).

P(/\max(vn) Z (\/E+1)2+6) S dn'exp (tn(t 4(c+1)2

ta
Since this estimate holds for all n» in N, it follows immediately that (4.8) holds.
O

4.3 PROPOSITION. Let V,,, n € N, be as in (4.3). We then have

lim sup Amax(Vn) < (Ve + 1)2, almost surely.

n—oo

Proof. Tt suffices to show, that for any e from ]0, co[,

P(limsup Amax (Vi) < (Ve + 1) + e) — 1,

n—oo

and this will follow, if we show that
P(Amax(Vn) < (Ve +1)* +¢, for all but finitely many n) = 1,

for all € in ]0,00[. But this follows from the Borel-Cantelli Lemma (cf. [Bre,
Lemma 3.14]) together with Lemma 4.2. O
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The next step is to replace V,, in Proposition 4.3 by S} S,, itself. This is where we
need to assume that A4 is an exact C*-algebra. The key point in this step is the
important result of E. Kirchberg that exactness implies nuclear embeddability
(cf. [Ki2, Theorem 4.1] and [Was, Theorem 7.3]).

Let B be a unital C*-algebra. Recall then that an operator system in B is a
subspace E of B, such that 1z € E and z* € E for all x in E.

4.4 PROPOSITION. Let B be a unital exact C*-algebra, and let E be a finite
dimensional operator system in . Then for any ¢ in |0, co], there exist d in N
and a unital completely positive mapping ®: B — M;(C), such that

|(@ ®ida) @) > (1 = ollz]
for all n in N and all z in M, (E).

Proof. Clearly we may assume that B is a unital C*-subalgebra of B(L) for
some Hilbert space £. Let N denote the dimension of E. Then by Auerbach’s
Lemma (cf. [LT, Proposition 1.c.3]), we may choose linear bases e1,... ,en of
E and e],... e} of the dual space E*, such that

leill = llejll =1, and ej(ej) =iy, (1,5 €{1,2,...,N}).  (412)

Now since B is exact, and hence nuclear embeddable, there exist d in N, and
unital completely positive mappings ®: B — My(C) and ¥: M4(C) — B(L),
such that

(®(es)) —eill <%, ((€{1,2,...,N}), (4.13)

(cf. [Was, p. 60]). We show that this ® has the property set out in the propo-
sition. For this, it suffices to show that

[(Wo®—up)g|,, <€ (4.14)

where 15: B — B(L) is the embedding of B into B(L). Indeed, knowing the
validity of (4.14), we have for n in N and z in M, (E), that

loll < [[((% 0 @) @ida) (@) = al| + | (¥ 0 ®) @ id,) ()]
< ellz]| + | (¥ o @) ®id,) (2)]],

and hence that
(1=l < [[((¥o @) ®id,)(z)| < (P ®idy)(2)]],

where the last inequality is due to the fact that ¥, being unital completely
positive, is a complete contraction.
To verify (4.14) note first, that for z in E, we have by (4.12),

N
x = Z er(x)e;,
i=1
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and hence
N N
Vod(r)—z ="y ef(z)(Vod(e;) —e;) =Y ei(a)fi,
i=1 i=1

where f; = W o ®(e;) — e;. Note that by (4.13), [|fil| < ., for all i in
{1,2,...,N}.
Consider now n in N and z = (s)1<r,s<n in My (E). We then have

[(\IJ ° q>)(w7”3) - wrs] 1<r,s<n

[Zﬁile; (l'rs)fz]

(To®)®id,)(z) — =

1<rs<n (4.15)

N
= (lei @rolirocn - ding, (Fir- - £i))
i=1

where diag,,(fi, ..., fi) is the n x n diagonal matrix with f; in all the diagonal
positions. Note here that by (4.12), [|ef|lco = |lef|| = 1, for all i (cf. [Pa,
Proposition 3.7]). Consequently,

[le3 (zra)i<rs<nl| < lleflles - llall = llzll, (i €{1,2,...,N}),

and using this in (4.15), we get that

N N
(T o) @idy) (@) — 2 <3 Izl Ifll < llzll& = ellll,
=1 =1
which proves (4.14). O

4.5 THEOREM. Let ai,...,a, be elements of B(H,K), such that
1> ataill < ¢, and ||Yi_, a;af|| < 1, for some constant ¢ in ]0,00[.
Assume, in addition, that the C*-subalgebra A of B(H), generated by
{aja; | i,5 € {1,2,...,r}} U{lps}, is exact. Consider furthermore, for
each n in N, independent elements Yl(n), Y of GRM(n,n, L), and put
Sp=31,0;® Yi(n). We then have

lim sup max [sp(S;;Sn)] < (\/E + 1)2, almost surely.

n—o0

Proof. Tt suffices to show, that for any e from ]0, co[, the set

T. = {w € Q | limsup max [sp(Sn(w)*Sn(w))] < = (Ve + 1)2},

n—00
has probability 1. So let € from ]0, co[ be given, and put

E = span({IA} U {a;‘aj i,j €{1,2,... ,r}}).
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Note that z* € F for all z in E, and that 14 € E. Hence E is a finite di-
mensional operator system in A. Since A is exact, it follows thus from Propo-
sition 4.4, that we may choose d in N and a completely positive mapping
®: A — My(C), such that

[(® ®idy) ()] > (1= e)llll, (n €N, z € M,(E)). (4.16)

Now put
Vo = (2 ®id,)(S7Sn),  (n€N),

and define furthermore

Vz{wGQ

lim sup ||V, ()] < (Ve +1)°}.

By Proposition 4.3, P(V) = 1, and hence it suffices to show that 7. O V. But
if weV, it follows from (4.16) that

lim sup [| Sy (w)*Sn(@)]| < (1= )~ limsup [V, ()| < (1 =)™ (Ve +1)7,

n—o00 n—oo
which shows that w € 7. This concludes the proof. O
4.6 COROLLARY. Let ay,...,a, be elements of an exact C*-algebra A, and

let, for each n in N, Yl(n), e ,Y,«(n) be independent elements of GRM(n, n, %)
Then

r T r
lim sup || Z a; ® Yi(n) || < || Zafai”% + || Z aia;*”%, almost surely.
e o i=1 i=1
Proof. We may assume that not all a; are zero. Put v = || >7_, afa;|| > 0 and

§ =X, aial]| > 0. We may assume that A C B(H) for some Hilbert space
H. Then the unital C*-algebra A = C*(A,15(4)) is also exact, and hence so is
every C*-subalgebra of A (cf. [Kil] and [Was, 2.5.2]). Therefore Corollary 4.6

follows by applying Theorem 4.5 to a} = \/Lgai, i=1,...,r,and c= 7. O
Regarding the corollary above, consider arbitrary elements aq,...,a, of an
arbitrary C*-algebra A, and let {yi,...,y,} be a circular (or semi-circular)

system in some C*-probability space (B,) (cf. [Vo2]), and normalized so that
Y(yry:) =1,i=1,2,...,r. In [HP, Proof of Proposition 4.8], G. Pisier and
the first named author showed, that in this setting, the following inequality
holds:

r r T
IS a0l < 2max {[| S araill | 3w *}. (4.17)
i=1 i=1 i=1

In [HP, Proof of Proposition 4.8], the factor 2 on the right hand side of (4.17)
is missing, but this is due to a different choice of normalization of semi-circular

DOCUMENTA MATHEMATICA 4 (1999) 341-450



386 U. HAAGERUP AND S. THORBJ®RNSEN

and circular families. By application of [Haa, Section 1], it is not hard to
strengthen (4.17) to the inequality

r r . r
12 ai il <X aiaill* + |3 aiai
i=1 i=1 i=1

both for semi-circular and circular systems. Since independent elements
Yl("), ., Y™ of GRM(n, n, L) can be considered as a random matrix model
for the circular system {yi,...,y,}, in the sense of [Vol, Theorem 2.2], we
should thus consider Corollary 4.6 as a random matrix version of (4.18). How-
ever, the random matrix version holds only under the assumption that the
C*-algebra A be exact. In fact, we shall spend the remaining part of this sec-
tion, showing that the assumption in Theorem 4.5 that the C*-algebra A be
exact, can not be omitted. We start with two lemmas, the first of which is a
slightly strengthened version of [HT, Theorem 7.4] (which, in turn, is a special
case of a theorem of Wachter (cf. [Wac])).

(4.18)

4.7 LEMMA. Let ¢ be a positive number, and let (m,,) be a sequence of positive
integers, such that ™ — c as n — oo. Let furthermore (Y,) be a sequence of
random matrices, such that for each n in N, Y,, € GRM(m,n, %) Then for
any continuous function f: [0, 00[ = C, we have that

b
lim tr, [f(Y;Y5)] :/ f(z) dpc(z), almost surely, (4.19)
n—o0 0

where b = (y/c + 1) and p is the measure introduced in (3.13).

Proof. By splitting f in its real and imaginary parts, it is clear, that we may
assume that f is a real valued continuous function on [0,00[. We note next,
that it follows from [HT, Theorem 7.4] and the definition of weak convergence
(cf. [HT, Definition 2.2]), that (4.19) holds for all continuous bounded functions
f:]0,00] = R. Thus, our objective is to pass from bounded to unbounded
continuous functions, and the key to this, is the fact (cf. [HT, Theorem 7.1]),
that

Tim (VY= (Ve+1)°,  almost surely. (4.20)
Indeed, it follows from (4.20), that (for example)
P(|IV;rYa|l < (Ve+1)? + 1, for all but finitely many n) = 1,
and hence, given any € in ]0, oo, we may choose N in N, such that
P(Fn)>1—¢,
where

Fy ={w e Q| |V () Y,(w)|| < (ve+1)> + 1, whenever n > N}.
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Now, given a continuous function f: [0,00] = R, let fi1: [0,00[ = R be an

arbitrary continuous function, satisfying that f; = f on [0, (/e +1)% + 1], and
that supp(f) is compact. Then for any w in F, we have that

[V (w)'Ya(w)) = f(Va(w)*Y,(w)), whenever n > N,

and hence, since f; is bounded,

lim tr, [f(Yn(w)*Yn(w))] = hm trn[fl( n(w) / fi(z) duc(x

n— 00
/ f(z) dp(x

It follows thus, that

P(limtrn[ V)] = [P f(2) dpe(z )ZP(FN)ZI—C,

n—oo

and since this holds for any € in ]0, oo[, we obtain the desired conclusion. O

Next, we shall study the polar decomposition of Gaussian random matrices.

Let n be a positive integer and let ¥ be an element of GRM(n,n, 1), defined
n (2, F, P). Furthermore, let U,, denote the unitary group of M, ((C)

By a measurable unitary sign for Y, we mean a random matrix U: Q — U,,

such that for almost all w in , the polar-decomposition of Y'(w) is given by:

Y(w) = UW)Y(w)],

where, as usual, |V (w)| = [V (w)*Y (w)]2. To see that such measurable unitary
signs do exist, we note first that by [HT, Theorem 5.2], Y (w) is invertible for
almost all w. Thus, for example the random matrix U:  — U,, given by

Uw) = Y (w)[Y(w)*Y (w)] 2, if Y(w) is invertible,
1,, otherwise,

is a measurable unitary sign for Y.

4.8 LEMMA. For each n in N, let Y(n) . ,Y( ") he (not necessarily indepen-
dent) random matrices in GRM(n, n, 1), and let U™, ..., U™ be measurable
unitary signs for Y1( ), ey Y,«( ), respectively. Furthermore, let Uin), . ,Uf,n),
denote the complex conjugated matrices of Ul(n), e ,U,(n). We then have
77(n) 8 .
lim inf I Z U." ey || > almost surely.
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Proof. Let (e1,...,e,) be the usual orthonormal basis for C*, and consider
then the unit vector & = ﬁ Y, e;®e;in C" ®C". Note then that for any

A = (ajr) and B = (bjx) in M,(C), we have that

(A@ B, &) =1 D> ((A® B)(ej ®e)) ex @ ex)
Jyk=1
= 13" (dej,ex) - (Bej, ex)

Jik=1

% Z akjbkj = tI‘n(ABt) = tI‘n(AtB).
Jyk=1

It follows thus, that

IS0 o) > \((erﬁﬁ”) @y M)e )| = itrn[(Ui(”))*Yi(”)]‘
=1 1 i=1

=3 :trn(|Yi(n)|),
=1
(4.21)

where the last equation holds almost surely. By Lemma 4.7, we have for all ¢
in {1,...,r}, that

4
lim trn(|Yi(")|) :/ Ve dp (o), almost surely,
n—oo 0

and combining this with (4.21), it follows that

r 4
lim inf I ZUEn) Y™ | > r/o VT dp (), almost surely.

i=1

We note finally that

4 4 4
/Ox/a_:dm(:v):/o Vi Vs d‘”%/o Iado= 2,

and this concludes the proof. O

We are now ready to give an example where the conclusion of Theorem 4.5 fails,
due to lack of exactness of the C*-algebra A. Consider a fixed positive integer
r, greater than or equal to 2, and let F,. denote the free group on r generators.
Let ¢1,..., g denote the generators of F,., and let C*(F,.) denote the full C*-
algebra associated to F,.. Recall that there is a canonical unitary representation
ugp, : F, — C*(F,), and that the pair (C*(F,),ur,.) is characterized (up to *-
isomorphism) by the universal property, that given any unital C*-algebra B
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and any unitary representation u: F. — B, there exists a unique unital *-
homomorphism ®,,: C*(F,) — B, such that the following diagram commutes:

ur

F, ——= C*(F,)

| A

B
It is well-known (cf. [Was, Corollary 3.7]) that C*(IF,.) is not exact. We let
u1,... ,u, be the canonical unitaries in C*(F,.) associated to ¢i,... , g, respec-
tively, i.e., u; = up,(g:), i = 1,... ,r. We then define
a; = %ui, (ted{l,...,r}). (4.22)

Then clearly,
Z aja; = Zaia; =1c+(F,)- (4.23)
=1 =1

Consider now, in addition, for each n in N, independent elements Yl(n), ey Yr(n)
of GRM(n,n, 1), and define

So=Y a;0Y™, (neN). (4.24)
i=1

We then have the following

4.9 PROPOSITION. With aq,... ,a, and Sp, n € N, as introduced in (4.22) and
(4.24), we have that
(i) liminf[|S5S,[| > (£)*-r, almost surely.

n—oo
(ii) The conclusion of Theorem 4.5 does not hold for these a1, . .. ,a,, whenever
r > 6.
In particular, the assumption in Theorem 4.5, that A be exact, can not, in
general, be omitted.

Proof. (i) For each positive integer n, choose measurable unitary signs
Ul(n), e ,Uﬁn) for Yl(n), e ,YT(n) respectively, and let Uﬁ”), e ,qun) denote
the complex conjugated matrices of Ul("), ...UM Since F, is the group free
product of r copies of Z, it follows that for each w in € and each n in N, there

exists a unitary representation u&n): F, — M, (C), such that

u(g) =T W),  Gefl,....r}.

By the universial property of C*(F,) it follows then, that for each w in Q and

each n in N, we may choose a *-homomorphism ). (F.) = M,(C), such
that )
o (u) =T, (w),  (i€{l,...,r}.
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For each w in  and each n in N, note now that

IS w ey @) > (@0 @ida) (3w v w)]
i=1 i=1

—~—(n)
= IYT" @) 2 VW)
i=1

Applying then Lemma 4.8, it follows that

o a (n) 8

lgggf I Zluz VM| > &, almost surely,

1=

and hence that

r
linrr_1>ior<1)f I Z a; ® Yi(n) | >, almost surely.

i=1
Since ||S%Sn|| = ||1Snl|?, we get the desired formula.
(ii) By (4.23), aq, ... ,a, introduced in (4.22) satisfy condition (4.1) in the case
¢ = 1. Thus, if the conclusion of Theorem 4.5 were to hold for these aq,... ,a,,

it would mean that
”
lim sup || Z a; @ Y™ | <2, almost surely.

However, Proposition 4.9 shows that

linnii;l)f I Z a; ® Yi(n) | > (&) vr, almost surely,

i=1

and thus the conclusion of Theorem 4.5 breaks down, for ¢ = 1, whenever
r> (3%)% x 5.55, i.e., for r > 6. a

5 A NEW COMBINATORIAL EXPRESSION FOR E[(S*S)P]

Throughout this section, we consider elements aq,... ,a, of B(H,K), where
H and K are Hilbert spaces. In Section 2 we proved that if Yi,... Y, are
independent random matrices in GRM(n,n, 1), and we put S =37 a; ®Y;,
then

E[(S*S)"] = ( Z n” 2o Z i, Qi "'azpaiw(p)) ®1a. (5.1)

TESy 1<in e ip<r
In this section, we shall assume that aq,... ,a, satisfy the condition
r r
Z aja; = clgy), and Z a;a; = 1g, (5.2)
i=1 i=1
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for some number ¢ in ]0,00[. Under this assumption, and by application of
the method of “reductions of permutations”, introduced in Section 1, we show
that ]E[(S*S)p] can be expressed as a constant plus a linear combination of the
sums:

Z T’L_Qa(ﬁ) ( Z a’; Gipry a’;qa'ip(q))’ (q = 2’ T ’p)’

peSi 1<, yip<r
where S;”, as in Section 1, denotes the set of permutations p in S, for which

p is irreducible in the sense of Definition 1.16.

5.1 LEMMA. Let ay,...,a, be elements of B(H,K), and assume that (5.2)
holds. Let p be a positive integer, greater than or equal to 2, let m be a
permutation in Sp, \ Sip”, and let my be the permutation in S,_; obtained by
cancellation of a pair (e,e + 1) for 7t (cf. Definition 1.18). We then have

(i) Ife is odd, then k(#y) = k(&) — 1, and

* * A * . oo q¥ -
Z ail alﬂ(l) . aipalﬁ(p) =cC ( Z a“ a”ro(l) alpflalﬁo(p_l)) .

1§i17...7ip§7” 1§i1,... 7ip_1§7”
(5.3)
(ii) If e is even, then k(7o) = k(#), and
* * — * . cooqf )
Z Ay Qi gy """ Ay Qi (y = Z Ay Qi 1y iy Qi o1y -
1<iy,unyip < 1<y, yip_1<r
(5.4)

Proof. (i) Assume that e is odd. Then k(7g) = k(#) — 1 by Proposition 1.22.
Moreover, (e,e + 1) is of the form (25 — 1,25) for some j in {1,2,...,p}, and
therefore m(j) = j (cf. Definition 1.15). Hence, the index i; occur only at the
2j — I’th and the 2j’th factor in the product aj, a;,,, - - - aj ai,,,, and therefore

the sum on the left hand side of (5.3) is equal to

,
* * * *
§ : Ciy Firay =" Py ( Z i a’f')aiHl i, Gin )

1§i1,...,ij_17i]‘+1,...7ip§7‘ lj:l

which by (5.2) is equal to

* * *
¢ ( § : @iy Qiggry =" Qimgjay Vi *° 'aipaiﬂ(p))' (5.5)
1<81 e 8= 1 8 1 geee s ip <P
Note here, that if we relabel the indices ij41,...,% by %j,...,ip—1, then it

follows from Remark 1.19(a), that (5.5) is equal to

* *
C- ( E ailazm(l) "'aip_1a”1ro(p71))’

1<y, yip_1<r
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and this proves (5.3).

(ii) Assume that e is even. Then k(7y) = k(#) by Proposition 1.22, and
(e,e+1) = (24,25 + 1), for some j in {1,2,...,p — 1}, so that 7(j) =j + 1
(c.f. Definition 1.15). Hence, the left hand side of (5.4) is equal to

,
* * * *
E : Oy Qi 1y """ A ( E : a2j+1ai,-+1)alﬂ(j+1) 0, Qi gy -

1§i1,...7ij7ij+2,...,ip§7’ ij+1:1

(5.6)

Here, Z;H:l @i a5, = lpxy, by (5.2), and proceeding then as in the
proof of (i), we obtain by Remark 1.19(b) (after relabeling i;42,...,i, by
Qj41s--- ,0p—1), that (5.6) is equal to

* *
Z @iy Qing (1) =" iy Vi (1) -
1<it e yipo1 <1
This proves (5.4) O

Recall that for p in N, 5S¢ denotes the set of permutations 7 in S, for which
the permutation 7 is non-crossing in the sense of Definition 1.14.

5.2 LEMMA. Let aq,... ,a, be elements of B(H,K), such that (5.2) holds, let
p be a positive integer, and let m be a permutation in S)¢. Then
k(7)

* * _
Z Ay Qiyy =" Qg By = € 1By, (5.7)

1<itoonip<r

and

Z Qg afm) Tt aipafw(p) = Cl(fr)illg(;c). (5.8)

1<iy oo sip<r

Proof. We start by proving (5.7); proceeding by induction on p. The case
p = 1lis clear from (5.2). Assume now that p > 2, and that (5.7) holds for p—1
instead of p, and all permutations in Sp¢;. Consider then a permutation m
from Sp¢, and recall from Lemma 1.17 that 7 has a pair of neighbors (e, e +1).
Let my be the permutation in S,_; obtained by cancellation of this pair. Then
by Lemma 1.20, mo € S;¢, and hence by the induction hypothesis,

* o coa* , — k(7o)
E QG Qi oy Qg i gy = C 15(3)- (5.9)
1<y, yip_1<r

But by Lemma 5.1, (5.9) implies (5.7), both when e is odd, and when e is even.
This completes the proof of (5.7).
To prove (5.8), we put b; = %a* i=1,2,---,r. Then

c i

T r
> bibi=c M), and Y bib =lpy).

i=1 =1
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Applying then (5.7), with ¢ replaced by ¢!, it follows that
* * —k(w
Z b3 bincry - b3, bingyy = € M15x),
1<ty ip<r
i.e., that

Lk o A% _ o p—k(&x
E @iy A, @i, Qi = C ( )IB(K).
1<ty yip<r

Recall finally, that since # is non-crossing, k(7) + I(7) = p + 1 (cf. Corol-
lary 1.24), and hence it follows that (5.8) holds. O
As in Section 3, for any ¢ in ]0,00[, p. denotes the probability measure on
[0, 00, given by

W Aoy () - da,

where a = (y/c — 1)?, b = (y/e + 1)? and Jp is the Dirac measure at 0. Recall
from [OP] or [HT, Remark 6.8], that the moments of p. are given by

e = max{l — ¢,0}dgp +

o] p
| e @) =550 (2 wem. (5.10)
j=1
5.3 LEMMA. For any positive integer p, we have
P
ST O =1N 02, (5.11)
meSne j=1
and
P
1(7)—
SRR
mESpe j=1

Proof. To prove (5.11), recall from Corollary 1.12, that for B in GRM(m,n, 1),
we have that

(") (7). (5.12)

J/\j—1

Eo Tr,[(B*B)?] = Z m*FEpl),
TES,

Hence, for Y in GRM(m,n, 1),

Eotr,[Y*Y)"] =n P! Z mEEplF) = Z n*2"(ﬁ)(%)k(ﬁ), (5.13)
TESy TESy

where we have used that o(#) = £ (p+1—k(#)—I(#)). Consider now a sequence
(my,) of positive integers, such that ™= — ¢ as n — 0o, and for each n in N,
let Y, be an element of GRM(m, n, g) It follows then from (5.13), that

lim Eotr, [(V*YV)] = Y ™= 3" ), (5.14)

n—o0o
TES, mesne
o(7)=0
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where the last equality follows from Corollary 1.24. On the other hand, it
follows from [HT, Theorem 6.7(ii)] and (5.10), that

n—oo

lim Eotr,[(Y*Y)?] = /000 o dpe(z) = %Z(g’) (;2))e (5.15)

Combining (5.14) and (5.15), we obtain (5.11).
To prove (5.12), we use, again, that k(7) + [(7) = p + 1 for all = in Sp°. Tt
follows thus, that

Z A1 _ p Z k() (5.16)

TeSne TeSne

But by (5.11) (with ¢ replaced by ¢~!), the right hand side of (5.16) is equal
to

P
%Z(g) (;7y)er. (5.17)

j=1
Substituting finally j with p+ 1 — j in (5.17), we obtain (5.12). O

5.4 COROLLARY. Let ay,... ,a, be elements of B(H,K), such that (5.2) holds.
Then for any p in N, we have that

P

(i) Z ( Z ag, Qi "'a;paiw(p)) = [% (?) (jfl)cj] RYCIENE
meSpe  1<iy,...,ip<r j=1

and

p .

(ii) Z ( Z @iy 45, ---aipa:”(p)) - [%Z(?) (jfl)c]_l] s
resne 1<iy,... ip<r j=1

Proof. Combine Lemma 5.2 and Lemma 5.3. O

5.5 DEFINITION. (a) A subset I of Z is called an interval of integers, if it is
the form

I:{a7a+17"'7/8}7

for some «, 8 in Z, such that o < .

(b) Let p be a positive integer, let m be a permutation in Sp, and let I be
an interval of integers, such that I C {1,2,...,2p}. We say then that the
restriction 7|y of  to I is non-crossing, if #(I) = I, and 7 has no crossing
(a,b,c,d) where a,b,c,d € I. In this case, we refer to I as a non-crossing
interval of integers for 7. O
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5.6 REMARK. Let p be a positive integer, let = be a permutation in S, and let
I be an interval of integers, such that I C {1,2,...,2p} and #(I) = I. Since
#2 = id and 7 has no fixed points, it follows then, that card(I) is an even
number. Put ¢ = Lcard(I), and consider the unique order preserving bijection
w: {1,2,...,2t} —» I of {1,2,...,2t} onto I (i.e., ¢(j) = min(I) — 1 + j, for
all j in {1,2,...,2t}). It is clear then, that the mapping ¢! o (Tr)opis a
permutation of {1,2,...,2t}, and that we may choose a (unique) permutation
m in Sy, such that

1 =9 o(F) o, (5.18)

(cf. Remark 1.7(a)). It is clear too, that the restriction 7|; of & to I is non-
crossing in the sense of Definition 5.5, if and only if 7; is a non-crossing per-
mutation in the usual sense (cf. Definition 1.14). O

5.7 LEMMA. Let p be a positive integer, and let = be a permutation in S,,.

(i) If I is an interval of integers such that I C {1,2,...,2p} and #|; is non-
crossing, then there exists e in I, such that e+ 1 € I and 7t(e) = e + 1.

(ii) Ifw € Si™, then @ has no non-crossing interval of integers.

Proof. (i) Assume that I C {1,2,...,2p} and that 7; is non-crossing. Put
t = %card([), let ¢ be the order preserving bijection of {1,2,...,2t} onto I,
and let 1 be the permutation in S; given by (5.18). Then m; € Sp¢, and hence
71 has a pair of neighbors (e¢’,e’ + 1) by Lemma 1.17. Putting e = p(e'), it
follows that e + 1 = 7 (e) € I, and this proves (i).

(ii) This follows immediately from (i). O

5.8 LEMMA. Let p be a positive integer, and let m be a permutation in Sp,
such that 7 is reducible. Consider furthermore a family (Iy)xca of intervals
of integers, such that Iy C {1,2,...,2p} for all A\, and such that the union
I = Uxea Iy is again an interval of integers. If each I is a non-crossing interval
of integers for 7, then so is I.

Proof. Assume that each I is a non-crossing interval of integers for #. Then
#(Iy) = I for all A, and hence also #(I) = I. Assume then that I contains a
crossing for 7, i.e., that there exist a,b,c,d in I, such that a < b < ¢ < d and
#(a) = ¢, w(b) = d. Choose A in A such that a € I\. Then ¢ = 7(a) € I, and
since I is an interval of integers, also b € I. But then d = #(b) € I, too, and
hence (a,b,c,d) is a crossing for 7 contained in Iy; a contradiction. Therefore
I too is a non-crossing interval of integers for 7. a

5.9 DEFINITION. Let p be a positive integer and let 7 be a permutation in S,.
By J (%) we denote then the family of all non-crossing intervals of integers for
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7. Moreover, we put

NC(#) = U I, (5.19)
IeJ(#)
IRR(7) = {1,2,...,2p}\NC(#). (5.20)

We refer to NC(7) (respectively IRR(7)) as the non-crossing set (respectively
irreducible set) for 7. O

5.10 LEMMA. Let p be a positive integer and let m be a permutation in Sp.
We then have

(i) NC(n) ={1,2,...,2p} if and only if & is non-crossing.

(i) NC(#) = 0 if and only if # is irreducible.

Proof. (i) If NC(#) = {1,2,...,2p}, then is follows from Lemma 5.8, that # is
non-crossing. If, conversely, 7 is non-crossing, then {1,2,...,2p} € J(#), and
hence NC(7) ={1,2,...,2p}.

(ii) If NC(x) = 0, then for any j in {1,2,...,2p — 1}, {j,j + 1} can not
be a non-crossing interval of integers for #. Hence 7(j) # j + 1 for all j
in {1,2,...,2p — 1}, which means that 7 is irreducible. If, conversely, 7 is
irreducible, then J(7) = @ by Lemma 5.7(ii), and hence also NC(7) =0. O

5.11 PROPOSITION. Let p be a positive integer, let m be a permutation in Sp,
and assume that & has a crossing. Then the set IRR(#) is of the form

IRR(ﬁ') = {81,82, I ,qu},

where ¢ € {1,...,p}, and 1 < 51 < s3 < --+ < s34 < 2p. Moreover,
81, 82,... , 52, have the following properties:
(i) The set {s1,s2,...,82} is #-invariant and 7(s;) # Sit1, for all i in

{1,2,...,2¢—1}.
(ii) If we put sop = 0 and Szq41 = 2p + 1, then for each i in {0,1,...,2q}, the
set

I; :]Si,8i+1[ﬁZ

is either the empty set or a non-crossing interval of integers for 7.

Proof. By Definition 5.5(b), each I in J(7) is #-invariant. Therefore NC(7)
is 7-invariant too, and hence so is IRR(#). Since #? = id and 7 has no fixed
points, it follows that card(IRR(#)) = 2¢ for some ¢ in {0,1,... ,p}, and since
# has a crossing, Lemma 5.10(i) shows that ¢ > 1. Thus, we may write IRR(7)
in the form {s1, s2,..., 824}, where s1 < 83 < --+ < s294, and it remains to show
that these s1, 82, ... 824 satisfy (i) and (ii).

We start by proving (ii). For all I from J(7), I N {s1,82,...,82} = 0,
and hence each such I is contained in one of the sets I; = ]s;, $;41[ N Z,
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i=0,1,...,2q. Therefore
2q
J(#) =] Ji#), (5.21)
i=0

where J;(71) ={I € J(#) | I C I;}, for all ¢ in {0,1,...,2¢}. Note here that

IeJ;()
and that
2q
J T=NC@#) ={1,2,... ,2p} \IRR(%) = | J I. (5.23)
IeJ(7) =0

Combining (5.21)-(5.23), it follows that we actually have equality in (5.22), i.e.,

U =5, (i€{01,...,2¢}). (5.24)
TeJ: (%)

Since each I; is either empty or an interval of integers, (ii) follows now by
combining (5.24) with Lemma 5.8.
It remains to prove (i). We already noted (and used) that IRR(#) is #-invariant.
Assume then that #(s;) = s;41 for some i in {1,...,2¢ —1}. Then, by (ii), the
set,

Ii = {si}UL; U{sit1},

is a non-crossing interval of integers for 7. But this contradicts that s; ¢ NC(#),
and hence we have proved (i). O

We prove next the following converse of Proposition 5.11.

5.12 PROPOSITION. Let p be a positive integer, let m be a permutation in

Sp, and assume that there exist ¢ in {1,...,p} and s; < $3 < -+ < Syq In
{1,2,...,2p}, such that
(i) The set {s1,s2,...,82} is #-invariant and 7(s;) # Sit1, for all i in

{1,2,...,2¢—1}.

(i) If we put so = 0 and sag11 = 2p + 1, then for each i in {0,1,...,2q},
the set I; = |s;, $;+1[ N Z is either the empty set or a non-crossing interval of
integers for 7.

Then {s1,s2,...,824} = IRR(7).

Proof. It follows from (i), that there exists a (unique) permutation 7 in Sa,,
such that

ﬁ'(sl) = Sy(i)» ('L € {1,2,... ,Qq}),
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and moreover

@) £i+1,  (i€{1,2,...,2q—1}). (5.25)

Our first objective is to prove that 7 is of the form p for some (unique) per-
mutation p in SI'". For this, note first that by (ii), card(I;) is an even number
for all ¢ in {0,1,...,2q}. Hence s;+1 — s; is odd for all ¢ in {0,1,...,2q¢}, and
this implies that

51,83,...,52g—1 are odd numbers

82,84,... ,82¢ are even numbers

Since 72 = id and 7(j) — j is odd for all j in {1,2,...,2p}, it follows now
that v2 = id and that (i) — i is odd for all i in {1,2,...,2¢}. Therefore, by
Remark 1.7(a), v = p for some (unique) p in S;, and (5.25) shows that in fact
p €SI

Returning now to the proof of the equation {s1,s2,...,s2,} = IRR(7), note
first that U2 I; C NC(#), and therefore

{s1,82,... 800} = {1,2,...,2p} \ U2, I; D IRR(%).

Suppose then that IRR(7) is a proper subset of {s1,s2,...,s2,}. Then there
exists jo in {1,2,...,2q}, such that s;, € NC(7), i.e., s;, € I, for some non-
crossing interval of integers for 7. For this I, define

J={je{1,2,...,2¢} | s; € I}.

Then J # (), and since 1 < s2 < -+ < $24, J is an interval of integers. Consider
now the permutation p in S;”, introduced above. Then, since #(I) = I, we
have also that p(J) = J. Moreover, J is a non-crossing interval of integers
for p. Indeed, if (a,b,c,d) were a crossing for p contained in J, then clearly
(Sa, Sby Sc, S4) would be a crossing for 7 contained in I, which is impossible.
Altogether, p is both irreducible and has a non-crossing interval of integers, and
by Lemma 5.10(ii), this is impossible. Thus, we have reached a contradiction,
which means that we must also have the inclusion {s1,s2, ..., s2¢} C IRR(7).

O

5.13 LEMMA. Let p be a positive integer, and let ™ be a permutation in S, \ Sp°.
Write then, as in Proposition 5.11, IRR(#) in the form

IRR(ﬁ') = {81,.92, N ,qu},

where g € {1,...,p} and 1 < s1 < s9 < -+- < 82 < 2p. Then s1, 582, ... , Sy
satisfy, in addition, that

(i) s1,83,...,824—1 are odd numbers.

(ii) s2,84,...,824 are even numbers.

(iii) There is one and only one permutation p in S
for all j in {1,2,...,2q}.

irr

y s such that w(s;) = s
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Proof. This follows immediately from Proposition 5.11 and the first part of the
proof of Proposition 5.12. O

5.14 DEFINITION. Let p be a positive integer, let 7 be a permutation in S, \Sp¢,
and let g, s1,52,...,824 and Iy, I1,... , Iz, be as in Proposition 5.11. Then
put

t; = Lcard(I;), (i € {0,1,...,2q}),

and note that since I; is either empty or a non-crossing interval of integers
for 7, t; € Ny for all i. If ¢; > 0, then as in Remark 5.6, we consider the

order-preserving bijection ¢; of {1,2,...,2t;} onto I;, and we let m; denote
the (unique) permutation in Sy;, satisfying that #; = ¢; ' o (71;) o . Clearly
T € Szc

It is convenient to consider the permutation group Sy of the empty set, as a
group with one element my. Then, in the setting considered above, we put
m; = g, for all i in {0,1,...,2¢}, for which ¢; = 0. By convention, we put

k() =0, and  I(7p) = 1. (5.26)
O

5.15 LEMMA. Let p be a positive integer, let m be a permutation in S \ S},
and let p be the irreducible permutation introduced in Lemma 5.13(iii). Then

o(p) = o(7).

Proof. Let q, s1,82,...,82¢ and Io, I, ... , I, be as in Proposition 5.11, and
for each i in {0,1,...,2¢}, let ¢; and 7; be as in Definition 5.14. If ¢; > 0, then
m; is non-crossing, and hence, by Proposition 1.23, 7; may be reduced to é;
(where e; is the permutation in S;), by a series of successive cancellations of
pairs. Here é; consists exactly of one pair of neighbors, so, formally speaking, é;
can be reduced 7y, by cancellation of this pair. Thus, #; can be reduced to 7y,
by a series of successive cancellations of pairs, and forming the corresponding
series of cancellations of pairs to 7|y, it follows that 7 can be reduced to a
permutation, which is, loosely speaking, obtained by “cutting out” 7|, from 7.
Forming these reductions for each i in {0, 1, ... ,2q}, for which ¢; > 0, it follows
that 7 can be reduced to p by a series of successive cancellations of pairs. By
Proposition 1.22, this implies that o(#) = o(p). O

5.16 PROPOSITION. Let p be a positive integer, let m be a permutation in
Sp \ Sp¢, and let q, s1,52,... ,524 be as in Proposition 5.11. Let further p be
the permutation in S;‘I” introduced in Lemma 5.13(iii), and let mo, 71, ... ,Taq
be as in Definition 5.14. Then for any elements a1, ... ,a, of B(H,K) for which
(5.2) holds, we have

* o e as — h(7) R
Z Gy Qi (yy " A, Qi) =€ § : @iy Qipay " @i, Qiggy
1<t ,ip <1 1<in,.nnig<r

(5.27)
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where
h(7) = k(7o) + (I(71) = 1) + k(72) + - - + (I(Fr2g—1) — 1) + k(724).  (5.28)

Proof. We start by introducing some notation. Let ¢ be a positive integer, and
let n be a permutation in S;. We then put

L) = Z ai, @i,y G Qi s (5.29)
1<y e yie <r

and moreover, we put
[(7p) = 15(3)- (5.30)

Note that T'(7)) can be expressed in terms of 7 only, namely as

F(ﬁ) = Z a’;l iy a:g Qiy == afzt,laizn (531)
(i1,i2,83,i4,... ,i2t) EN (1))
where
N(#n)
= {(i1, iz, ... i) € {1,2,...,7}*" | ij = i), for all jin {1,2,...,2t}},

(5.32)

(cf. Remark 1.7(b)). Consider next an interval of integers I, such that I C
{1,2,...,2t} and #(I) = I. Write I in the form {a,a + 1,...,8}, and note
that 8 — a + 1 = card(]) is an even number. We then put

N, I) = {(ia,--- ,ig) € {1,2,...,r}7 % | i =iz, j=a,a+1,...,8}

(5.33)
and

Z @ Qigyr " 5, Qig, if ais odd,
L@, 1) = ¢ G N . (5.34)

Z Qin i,y " Qig_ g, 1 ais even.

(ias.rsig) EN (1, T)

Now, to prove (5.27), consider pin N and 7 in S\ S;¢, and let g, 51, 82,... , 824
and Iy, I, ... , Iz, to,t1,... ,t2q be as in Proposition 5.11. Note then, that we

may write N(7) as
N(7) =

U NG o) x {ie,} x N(&, ) x {igy} X -+ X {igy,} x N(#, @),
(isy oo sisgy )ENL(T)
(5.35)
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with the convention that N (7, I;) is omitted in the product sets when 2t; =
card(I;) = 0, and where

Nl(ﬁ-) = {(is17--- 7i52q) € {1527 7r}2q |is]' = ifr(sj-)a ]: 1327--- 72q}
(5.36)

It follows thus, by (5.31), that

I(#) = > T(#,Io)a;

D(&,L)as,, -ai,, D(ir, L), (5.37)
(isy s visng JENL(R)

with the convention that if card(7;) = 0,

1 if s; i
(i, ;) = B0 1118 evem (5.38)
15k, if si is odd.
To calculate I'(7,Ip),... ,I'(7, Is4), consider the non-crossing permutations
o, M1, ... ,Maq introduced in Definition 5.14. Note then, that for each v in

{0,1,...,2q}, such that ¢, > 0, we have by a suitable relabeling of indices,

N(#, L) = {(i1,is ... ,is,) € {1,2,..., 7}
= N (7).

i = s,y 5= 1,2,...,2t,)

It follows thus, that if ¢, > 0,

* * . .
E a; @i, 0, G, iU ds even,
1<t e, <7

* * . .
E aia;_ i, if o s odd,

1<i1,.00 e, <7

F(ﬁ', [v) =

and hence by Lemma 5.2 (since 7, is non-crossing),

k(7)1 Foi
P Iy) = 5 o 20 e (5.39)
)" gy, if v is odd.
If t, = 0, then by definition,
T(#,1,) = 1p(n), %f v ?S even,  _ c:“(j%“)_llg(y.[), ?f v %s even,
1g(k), if vis odd, A7) 15k, if v is odd,
(5.40)

with k(7g),l(#p) as defined in (5.26). Combining (5.37),(5.39) and (5.40), it
follows that with h(7) given in (5.28), we have

D(#) = M) Z a; a;, ---ai a (5.41)

isq ls ing—1 %lang
(g seeesisny )ENL(T)
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Note finally, that with p the permutation introduced in Lemma 5.13(iii), we
have that

Ni(7) = {(i1,i2,-- - yizg) € {1,2,... v} |ij = ipy, 5 =1,2,...,2q}
=N(p),

and therefore

j : * * — E * o ea¥ a;
ai51 Qigy " ai2q—1 alszq - @iy Gy alq Giygy
(isy o sisag)ENI (7) 1<it,onn g <r
Inserting this in (5.41), we obtain (5.27). O

5.17 DEFINITION. Let ¢ be a positive number. Then for any p in Ny, we define

LS (B)( P Yei |
gc(p) = {i’ j=1 (])(J*l)c ’ lfp iNa (542)
, if p=0,
and
Ly () (P )eiml it
hc(p) _ {f j=1 (])(Jfl)c ) ifz iI;L (543)

Moreover, for p,q in Ny, such that p > ¢, we put

v'(c,p,q) = > 9e(ro)he(r1)ge(ra)he(rs) -+ ge(rag).  (5.:44)

T0, 1y yT2¢g 20
ro+ri+---+reg=p—q

O
We are now ready to prove the main result of this section.
5.18 THEOREM. Let ay,...,a, be elements of B(H,K), let ¢ be a positive
number, and assume that Y:_, aja; = clpy), and Y;_; a;al = lp). Con-
sider furthermore independent elements Yi,... .Y, of GRM(n,n, %), and put
S =3%._,a; ®Y;. Then for any positive integer p,
E[(5"5)"]
= [V'(C,p, 0)15(2)
(5.45)

+ Z VI(C’p’ q)( Z n720(ﬁ) Z arl @ipery " a:qaio(q))] @ Ln.

g=1 pESirr 1<i1,.un,ig <P
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Proof. Let p from N be given. Then for each ¢ in {1,2,...,p}, we define
Spq = {m €S, | card(IRR(7)) = 2¢}, (5.46)

and

My= Y ”_20(7%)( Y. dhaig, "'a:pai«(p)) (5.47)

TESp q 1<é1,...,ip <r
It follows then by (5.1), that

E[(S*S)p] = |: Z 71720(7?)( Z G’Z Qipry " a:p ai"(P)):| ®1n

TESy 1<81,...,ip <1
(5.48)

P
=> M,®1,.
q=0
By Lemma 5.10, S0 = S2¢ and S, , = Si™. Hence
M, = Z n*2"(ﬁ)( Z aj, Qi) ---a;*paiﬂ(p)), (5.49)
wEShr 1<t e yip <1
and by Corollary 5.4(i) and Corollary 1.24,

Mo = g:.(P)1pw) = V' (¢, p,0)1p(3).- (5.50)

To calculate My, M, ..., M,_1, we let, for each 7 in S,, p(7) denote the irre-
ducible permutation p associated to 7 in Lemma 5.13(iii). Then for any ¢ in
{1,2,...,p—1} and any p in S;, we define

R(p,p) = {m € Sp,q | p(7) = p}.
Then we have the following disjoint union
Spq = U R(p,p),
pESirr

and therefore

Mq = Z Z n720(fr) ( Z aZ‘I Qipry " azpai”(p))‘ (551)

pESir T€R(p,p) 1<t ip <1

Note here, that for any p in Sfl”, we have by Proposition 5.16 and Lemma 5.15,

—20(#) E: s eeea” as
Z n ( ai1alw(1) aipalw(p)

TER(p,p) 1<ig,.oyip <r
_ h(#) —20(p) _ R
= ( Z c )n E ail a’lp(l) aiqalp(q) y
mER(p,p) 1<it,.nnyig <t
(5.52)
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where for each 7 in R(p, p),
h(7) = k(fo) + (I(71) — 1) + k(72) + - -+ + (I(F2g—1) — 1) + k(7r2q),

and where my,my,... , Ty, are the permutations introduced in Definition 5.14.
For any p in S;” and any 7 in R(p,p), it follows from Proposition 5.11 and
Lemma 5.13, that # can be obtained from p in a unique way, by “stuffing
in” the intervals (or empty sets) I, Ii,...,I»,, and the corresponding non-
crossing permutations @y, 71, ... ,7Ts,. Conversely, if 7 € S, such that 7 can
be obtained from p by “stuffing in” intervals (or empty sets) Jo, J1,. .., Joq
and corresponding non-crossing permutations 7o, 1, ... , 24, then, by Propo-
sition 5.12, 7 € R(p,p) and J; = I;, n; = =, for all j in {0,1,...,2q}. It
follows thus, that the mapping

T (0, Miy- .., T2g)

is a bijection of R(p, p) onto the set of (2¢ + 1)-tuples (7o, 71, ... ,m24) of per-
mutations for which there exist to,%1,... ,t2, in No, such that 7; € S° for all 4,

and Z?io t; = p— q (here we have used the convention that S§° = Sy = {mp}).
Using this description of R(p, p), it follows that

DA 3 R (0) (1) =1) ph(a) . k(iag)

TER(p,p) to,.--,t24>0 770652‘;,...77r2q€5{‘2°q
tot+t2g=p—q

(5.53)

Recall here from Definition 5.17 and Lemma 5.3, that for any ¢ in N,

Z ck(ﬁ) = gc(t)a and Z Cl(ﬁ)_l = hc(t)a

nesye nesye

and by (5.26) this formula holds for ¢ = 0 too. Using this in (5.53), it follows
that

Y M= > 9e(to)he(t1)ge(t2)he(ts) - - - go(tzq)

TER(p,p) tost1ye.. t2q>0
o1+ ¥ 12 =p—q (5.54)

=v'(¢,p,q).

Note, in particular, that the right hand side depends only on p and ¢, and not
on p itself. Combining (5.51),(5.52) and (5.54), it follows that for any ¢ in

{1527"' 7p_1}7

M, =v'(e,p,q) Z n72"(‘3)( Z a; @i, ---a;»*qaip(q)). (5.55)

peSir 1< e yig<r

Since v'(c,p,p) = 1, (5.55) holds for ¢ = p too, by (5.49), and combining this
with (5.48) and (5.50), we obtain, finally, (5.45). O
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5.19 PROPOSITION. Let ai,... ,a, in B(H,K), c in]0,00[ and S =%, , a; ®
Y;, be as in Theorem 5.18. Then for any p in N, we have that

—20(7) * o ceat as
Z n E : iy Vi (ry " W, Vi)

TESy 1<é1,...,ip <r

p
=V (ep0)+ Y Vema Y v P S ahai, el a,
q=1

peSi 1<it,oyig<r

Proof. This follows by exactly the same proof as for Theorem 5.18. O

5.20 EXAMPLE. Let aq,...,a, in B(H,K) and ¢ from ]0,00[ be as in Theo-
rem 5.18.

(a) For p=1orp=2, we have S, = S)°. Hence by (5.1), Corollary 1.24 and
Corollary 5.4(i), we get that

E[S*S] = clpayom.,  and  E[(S*S)’] = (¢® + ) lsryem. (-

This can also easily be obtained directly from (5.1) and (5.2).
(b) For p = 3, card(S3) = 6 and card(S5°) = 5. The only element of S5\ S§°
is the irreducible permutation 7 given by

For this 7, o(#) = 1, and it follows then by (5.1) and Corollary 5.4(i), that
r
E[(S*S)?] = (¢® + 3¢” + o) lgem. () + (n_2 Z a:aka;aia};aj) ®1,.
i,g k=1

This follows also from Theorem 5.18, because Si'* = SI* = () and Si™ = {r}.
(|

6 THE SEQUENCE OF ORTHOGONAL POLYNOMIALS FOR THE MEASURE p,

Throughout this section we consider a fixed positive constant ¢, and elements
ai,-..,ar of B(H,K), satisfying that

Z aia; = clpy) and Z a;a; = 1p(y).
i=1

i=1

Moreover, we put
,
S=Y a;eY,
i—1
where Y1, ... ,Y, are independent elements of GRM(n,n, 1).
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As in Section 3, we let u. denote the probability measure on R, given by

(z —a)(b—1x)

pe = max{l —¢,0}do + Y-

where a = (y/e —1)%, b= (y/e + 1)%

The asymptotic upper bound for the spectrum of S*S obtained in Section 4
(in the exact case), was obtained by making careful estimates of the moments
E[(S*S)”], p € N. However, these estimates cannot be used to give good
asymptotic lower bounds for the spectrum of S*S in the case ¢ > 1. To obtain
such lower bounds, we shall instead consider the operators IE[P;(S *S )], where
(Py)qen, is the sequence of monic polynomials, obtained by Gram-Schmidt
orthogonalization of the polynomials 1, z, 2, ..., w.r.t. the inner product

: 1[(1,,!)] (CE) . dl’,

(f.g) = / T H@7® due@),  (fg € LR ).

The main result of this section is the equation

E[P;(S*S)] — [ Z n*20(ﬁ)( Z aflaip(l) .. -a,:qaip(q))] ®1,, (¢ € N),
pESirr 1<i1,een,ig <7
where S;” is the set of permutations p in Sy, satisfying that
1#p(1) #2#p(2) #--- # pla)
(cf. Definition 1.16).

6.1 PROPOSITION. Let (P;)qen, be the sequence of polynomials on R, defined
by the recursion formulas:

Ps(z) = 1, (6.1)
Pf(z) = z-—e¢, (6.2)
Pia(@) = (z—c=DP/(z) —cP/_(x),  (¢21). (6.3)

We then have
(i) For each q in Ny, P (x) is a monic polynomial of degree q, and Pj(r) € R
for all real numbers .

¢ sin((q + 1)6) + ¢*= sin(qf)

i) P¢ 1+2 = .
(i) Pg(c+1+2yccosh) il , (0 €]o,7])
@ [ e =" g geny
iii )PS5 (x () = , .

o 1 : 0, if q¢#4, BaET
In particular, (ch)quo is the sequence of monic orthogonal polynomials ob-
tained by Gram-Schmidt orthogonalization of 1,z,z2,..., in the Hilbert space

LQ(Ra fe)-
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Proof. (i) This is clear from (6.1)-(6.3).
(ii) Consider the sequences (Rj)sen, and (T})4en, of polynomials, given by
the recursion formulas

Ri(z) = 1, (6.4)
Ri(z) = xz—c—1, (6.5)
gr1(®) = (z—c—DRy(x) —cRy_,(z), (¢21), (6.6)
respectively
Ti@) = o, (6.7)
T (x) = 1, (6.8)
Tina() = (@—c-DTj(x) -l (), (¢=1) (6.9)

Note here, that the conditions (6.6) and (6.9) are the same, and therefore, the
sequence (R, + Tj)qen, satisfies this condition too. Moreover, the sequence
(Rg + Ty)qen, also satisfies (6.1) and (6.2), and it follows thus, that

P;(x) = Ry(x) + T, (z), (g € Ny).

Note also, that T5(z) = 2 — ¢ — 1, so that the sequence (7)4en, satisfies
(6.4)-(6.6), and hence

Tj(x) =Ry, (z), (¢€N).
Altogether, it follows that

Pi(x) = Ry(x)+Riy(z),  (¢=1), (6.10)
Py(z) = R(z). (6.11)

To prove (ii), it suffices therefore to show, that with z = ¢ + 1 + 2y/ccos¥,
6 €10, 7], one has

¢t sin((g + 1)6)

Rq(:v) - sin @

L (geM). (6.12)
For ¢ = 0, this is clear from (6.4), and for ¢ = 1, it follows easily from (6.5),
using that sin 20 = 2sinfcosf. Proceeding by induction, assume now that
p > 1 and that (6.12) has been proved for all ¢ in {0,1,...,p}. Then by (6.6),

_ 2y/ccosf - c2 sin((p + 1)6) ' sin(ph)

c —
p(7) = sin 6 sinf "’

when z = ¢+ 14 2+/ccosf, 6 € 10, 7. But 2cosfsin((p+1)0) = sin((p+2)0) +
sin(pf), and therefore

e ) _c% sin((p+2)0)
pr(7) = sin 6 ’
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which means that (6.12) holds for ¢ = p + 1. Thus, by induction, (6.12) holds
for all ¢ in Ny, and this concludes the proof of (ii).
(iii)) We show first, that for any m,n in Ny,

0, if n #m,

| eRe @i @) due(o) = {cmﬂ (6.13)

, ifn=m,
where R§, R{, RS, ..., are the polynomials determined by (6.4)-(6.6). Note for

this, that if ¢ < 1, then the atom for u. at 0, does not contribute to the integral
on the left hand side of (6.13). Hence, for all values of ¢ in ]0, co[, we have

0o b
| amn @R @) dueto) = & [ R@ R @V = a6 —) do. (614

By the substitution z = ¢+ 1+ 24/ccos b, 6 € 10, 7[, and by (6.12), the integral
on the right hand side of (6.14) can be reduced to

T

E/Owc”z*" sin((m + 1)8) sin((n + 1)6) d8,

which is equal to ¢™*14,, ,. This proves (6.13).
We show next that

xRy (z) = Py (x) + cPy,(z), (m e Ny). (6.15)

For m = 0, this is clear from (6.1),(6.2) and (6.4), and for m > 1, we get from
(6.6) and (6.10), that

2Ry, () = Ry (2) + (¢ + DRy, (2) + eRy, o (2) = Pryy (2) + ePpy (2).
This proves (6.15). Define now
o0
= [ Po@Pi(e) duele), (i € N).
0
It follows then from (6.15), that
Tmton+ Cmn = [ 0BG @PH(0) dpelo), (o € No),
0

and applying then (6.10),(6.11) and (6.13), we get that
Ym+i,n + Chmon = cm“(&m,n + Omn—1), (m € Ng,n €N), (6.16)
and

Ymt1,0 + Ym0 = " 0, (m € Np). (6.17)
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Since p. is a probability measure, vy,0 = 1, and using this and induction on
(6.17), it follows that .0 = 0 for all m in N. Thus

1, fn=0
n = Tn,0 = ’ ’ 6.18
Tom = Ym0 {0, ifn > 1. (6.18)

Consider now a fixed n in N. By (6.16), we have then that

0, ifmef0,1,...,n—2}

n

Ym+1,n + CYm,n = .
c*, ifm=n-—1.

By induction in m (0 < m < n), we get then, by application of (6.18), that

0, ifm<n,
Ym,n =

c”, ifm=n,

and this completes the proof of (iii). O

6.2 LEMMA. For any non-negative integers p, q, put

b
ve.pa) =0 [ " Pi(@) duo) (6.19)

We then have
(i) For any p in No, 2 = >0 _o v(e, p,q) Py (2).
(ii) For any p,q in Ny,

vie,p,q) > 0, ifqg<p, (6.20)
vie,p,p) = 1, (6.21)
vie,p,q) = 0, ifg>p. (6.22)
Proof. (i)  Consider a fixed p from N. By Proposition 6.1,

span{ P, Pf,... , Py} is equal to the set of all polynomials of degree less
than or equal to p. In particular we have that z” = qu):o 74Py (), for suitable
complex numbers vo,...,7, (depending on ¢ and p). Applying then the
orthogonality relation in Proposition 6.1(iii), it follows that v, = v(e,p, q) for
all ¢ in {0,1,...,p}, and this proves (i).

(ii) By (6.1)-(6.3), it follows that

x) = Pf(x)+cP§(z), (6.23)
r) = P/ (x)+ (c+1)P/(z)+cP; (), (g >1), (6.24)
so by induction in p, we get that z?(= z?P§(x)), can be expressed as a lin-

ear combination of Fg(x), Pf(z),...,P5(x), in which all coefficients are non-
negative. By (i) and the linear independence of Fs(z), Pf(x),... , Ps(z), these
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coefficients are exactly v(c,p,0),v(c,p,1),...,v(c,p,p), and hence (6.20) fol-
lows.
Note next that (6.21) follows from (i) and the facts that Pg(z) is a monic

polynomial of degree p, whereas P (z),..., Py () are all of degree at most
p—1.

Finally, (6.22) follows from (i) and the orthogonality relation in Proposi-
tion 6.1(iii). O

6.3 LEMMA. Let v(c,p,q), p,q € No, be as in Lemma 6.2. Then for any fixed
q in Ny, the power series

o0

Z v(e,p, q)t*, (6.25)

converges for all t in the open complex ball B(0, 1), where b = (y/c + 1)2.
Moreover, the function

o0

T ) =Y viepat’,  (t€B(,3))

p=0
is for all t in B(0, 1) \ {0}, given by
Jq(t) =
1—(c— 1)t — /(T —at)(1—bt) (1 —(c+ 1)t — /(1T —at)(1 — bt))q (6.26)
2¢ ’

2t t

where /- is the principal branch of the complex square-root.

Proof. Consider the Hilbert space L?(IR, p. ), and let A be the bounded operator
on L2(R, u.), given by

[AN)@) =2f(z),  (feL’Rpc), = €R).

Note that A* = A and that sp(A) = supp(u.) C [0,b]. Thus, letting 1 denote
the identity operator on L?(R, ), 1 —tA is invertible for all complex numbers
t such that |t| < %, and moreover, for such t,

(1—-tA)~ Z tP AP, (norm convergence).

For any t in B(0, %), we have thus that

Z v(e,p,q)t? = ¢ 7 Z (zP, P)tP =1 Z (APFy, P;)t?
p=0 p=0 p=0

=c (1 —tA) P, P).
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This shows that the series in (6.25) converges for all ¢ in B(0, ), and moreover,
that

Jo(t) = c (1 —tA)"' P, Py), (t € B(0,1)). (6.27)

To prove (6.26), we shall calculate the right hand side of (6.27). For this,
consider for each z in B(O,%) the series Zq 021P;, and note that by
Lemma 6.1(iii), this series converges in || - [|>-norm in L?(R,pu.). We may
thus define

w. =Y 2'Pf e L*(R pe), (z € B(0,
q=0

1)) (6.28)

With A as above, it follows now by (6.23) and (6.24), that for any z in
B(0, 5)\ {0},

[oe] [oe]
Aw, =3 2"AP{ =cPs + P{ + Y _2"(cP5_ + (c+ 1)P; + Py,y)

n=0 n=1
(oo}

(c+c2z)Py + Z (c+1)2" + 2"t Pe
n=1

=(cH+c2)P{+ 27" (1 + (c+ 1)z +¢c2?) Z 2" Py
n=1
=(ctez—2' 1+ (c+1)z+c2®))P§+2 "1+ (c+ Dz + c2?)w.
— 2 Y14+ 2)P§+ 27 (1 + 2)(1 + c2)w.,

where the infinite sums converge in || - ||o-norm. From this it follows that
(1 +2)1+e)l - Aw. =27 (1+2)F5, (2 € B0, ) \ {0}),
and hence that

- o de: = o=l (zeB0, )\ {-1,-¢}). (6.29)

Define now 5

(1+2)(1+¢cz)’
Since sp(A4) C [0, ], it follows that (1 — ¢(2)A) is invertible whenever ¢(z) ¢
[+, 00], and in particular, as long as |¢(z)| < §. Note then, that ¢ is analytic
on C\ {—1,—1}, and that ¢(0) = 0, ¢'(0) = 1. It follows thus, that we may

choose neighborhoods U and V of 0 in C, such that ¢ is a bijection of U onto
V. We may assume, in addition, that

p(z) = (z € C\ {-1,¢})-

Z/{gB(Oaﬁ)\{_la_%}a and VgB(Oa%)
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For z in U, it follows now from (6.29), that

Wy = L (1_90('2)14)_113067

1+4+cz
and hence, by (6.27) and Lemma 6.1(iii),
Jo(0(2)) = (1 +c2) - ™Y ws, Py) = (1 4 cz)2Y, (z e U). (6.30)

It remains to invert ¢. By solving the equation

z

b= (14+2)(1+cz)’

w.r.t. z, we find that

PP el (a2 2;1 —a0=00 oy oy,

where, as usual, a = (/c—1)? and b = (y/c+1)2. Since p~!(t) = 0ast — 0, it
follows that for some neighbourhood Vy of 0, such that Vo C V, we must have
_1—(c+ 1t — /(1 —at)(1-0bt)

N 2ct ’

(1)

(teVo\ {0},  (6.31)
where /- is the principal part of the square root. Hence, we have also that

_l—(e—1)t—- 2t(1 —at)(1 - bt)’ (teVo\{0}). (6.32)

Inserting (6.31) and (6.32) in (6.30), we obtain that (6.26) holds for all ¢ in
Vo \ {0}

To show that (6.26) actually holds for all ¢ in B(0, 3) \ {0}, note that for all
such ¢, Re(1—at) > 0 and Re(1—bt) > 0, so that (1—at)(1—bt) € C\]—o00,0].
Hence, with /- the principal branch of the square root, t — +/(1 — at)(1 — bt)
is an analytic function of ¢ € B(0, ). By uniqueness of analytic continuation,
it follows thus, that (6.26) holds for all ¢ in B(0, ) \ {0}. O

1+ cp™ (1)

6.4 LEMMA. Let g.(p) and h.(p), p € Ny, be as in Definition 5.17. Then the
power series

Ge(t) =Y 9., (6.33)
p=0
and
He(t) = he(p)t”, (6.34)

are convergent for all t in B(0, 3), and

JE(t) = t'G.(t) " He (1)1, (t € B(0,1)). (6.35)
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Proof. By (5.10), we have

%@zﬁmﬂmum e,

and since g.(0) = 1, the same formula holds for p = 0. Hence g.(p) = v(¢, p,0),
for all p in Ny, so by Lemma 6.3, the series in (6.33) converges for all ¢ in
B(0,3), and
1—(c—1t—+/(1—at)(1—"0bt)
Ge(t) = J5(t) = . (teB(0,3)\{0}).

2
(6.36)

Since h.(0) = 1 and since h.(p) = 1g.(p), for all p in N, the series in (6.34) is
also convergent for all ¢ in B(0, 1), and

Hc(t) :1+%(Gc(t)_1)v (tEB(O,%))
Hence by (6.34)

ity = LDV Z AU g, )\ o)), (67)

By (6.36) and (6.37), we get now for all ¢ in B(0, 3) \ {0},

G.(t)H.(t)

(- /AO=a)T—bt)" — (- 1)

o 4ct?

1+ (1 —at)(1—bt) — 2¢/(1 — at)(1 — bt) — (c — 1)%#?

o 4ct?

14+ (1 =2(c+ Dt + (e —1)°1?) — 2\/(1 — at)(1 — bt) — (¢ — 1)*¢?
N 4ct?

1 (c+ 1)t — /(AT —at)(1 - bt)

N 2ct? ’

Combining this with (6.36) and (6.26), it follows that
JUt) = Ge(H) (1G(H(1))", (€ B(0, 7)),

c

and the same formula holds trivially for ¢ = 0, by (6.22). This proves (6.35).
d

6.5 LEMMA. For all p,q in Ny such that p > q, let v(c,p,q) be as introduced
in Definition 5.17. Then

v'(e,p,q) = v(e,p,q), (p,q € No, ¢ <p).
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Proof. Recall from Definition 5.17, that for p, ¢ in Ny, such that p > ¢, we have

v'(e,p,q) = Z 9e(r0)he(r1)ge(ra)he(r3) - - - ge(rag).

70,71, ,T2¢ >0
ro+ri+---+reg=p—gq

Hence v'(e, p, q) is the coefficient to t?~? in the power series for
G.(t)H (t)G:(t)H(t) - - - Ge(t), (2¢ + 1 factors),

and therefore v'(c,p,q) is the coefficient to ¥ in the power series for
t1G . (t)7 1 H.(t)9. Thus, by Lemma 6.3 and Lemma 6.4, it follows that

V'(e,p,q) = v(e,p,q), forall p,qin Ny, such that p > gq. O

6.6 THEOREM. Let H, K be Hilbert spaces, and let aq,... ,a, be elements of
B(M,K), satisfying that > ;_, aja; = clgpyy and Y, a;af = lg(k), for some
positive real number c. Furthermore, let Y1,...,Y, be independent elements
of GRM(n,n, 1), and put S =3 a; ®Y;. Then for any q in N,

[PC ($*S [ Z n720(p)( Z a; @i, - a;*qaip(q))] ®1,.

pESirr 1<iy,..,ig <P

Proof. For each ¢ in N, put

_ —20(p) Z x o
- Z n alla’p(l) TG Gigg) )

pESir 1<i e yig <7
and put To = 15(71). By Theorem 5.18 and Lemma 6.5, it follows then that

P
ZI/ (¢,p,q)- T, ®1,, (p e Ny). (6.38)
q=0

On the other hand, it follows from Lemma 6.2(i), that

p
=Y vl 9E[P;(S*S)],  (peN). (6.39)
q=0

We prove that

E[P;(S*S)] =T, @15,  (q€DNo), (6.40)

by induction in g. Note that (6.40) is trivial for ¢ = 0. Consider then p
from N, and assume that (6.40) has been proved for ¢ = 0,1,... ,p — 1. Since
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v(e,p,p) = 1, by Lemma 6.2(ii), it follows then from (6.39) and (6.38), that

p—1
IE[P;(S*S)] =E[(S*9)"] - v(e,p, q)E[PqC(S*S)]

q=0
p—1

:E[(S*S)p] — vie,p,q) - Ty @1,
q=0

=T, ®1,.

Thus, (6.40) holds for ¢ = p, and this completes the proof. O

6.7 EXAMPLE. By (6.1)-(6.3), it follows that

Pf(z) = z-—c¢, (6.41)
Pj(z) = 2*—(2c+1)z+c?, (6.42)
Pi(z) = 2*—(3c+2)2*+ (3¢ +2c+ 1)z —c>. (6.43)

By Example 5.20, Si* = Q)
permutation given by 7(1) =
thus by Theorem 6.6, that

€ {1 2}, and S = {7}, where 7 is the
)=

( ,m(3) =2, so that o(7) = 1. Tt follows

E[P(5*S)] = o,
E[PS(5°S)] = O,
[P5(S*S)] = n? Z ajarajaiaga;.

ij k=1

These three formulas can also easily be derived directly from Example 5.20,
using the formulas (6.41)-(6.43). O

7 AN UPPER BOUND FOR E[ exp(—tS*S)], t >0

Throughout this section, we consider elements ay, ... , a, of B(H,K) (for given
Hilbert spaces H and K), satisfying that

r r
Z aja; = clppy and Z a;a; = 1p(x)
i=1 =1

for some constant ¢ in [1 oo[. Moreover, we consider independent elements
Y1,...,Y, of GRM(n,n, 1), and put

S:iaiéin.
i=1
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As in Section 3, we let u. denote the probability measure on R, given by

xr—a)(b—=x
He = ( 27r):n( ). 1o (2) - de,
where a = (y/c —1)? and b = (y/c + 1). Furthermore, we let (Pf)qen, be the
sequence of monic orthogonal polynomials w.r.t. u. as defined in Section 6. In
particular P§ = 1.

7.1 LEMMA. Let, as above, a = (y/¢ — 1)? and b = (\/c + 1)2. Then for any q
in No,

(i) Pg(x) > P;(b) >0, for all x in ]b,oc0[.

(ii) |P;(x)| < P;(b), for all x in [a,b].

(iii) |Py(z)| < Pj(2c+2—=x), for all x in ] — 00, al.

Proof. We start by proving (ii). If z € [a,b], then z = ¢ + 1 + 2y/ccos8, for
some 6 in [0,x]. For 6 in ]0, x|, we have from Proposition 6.1(ii), that

¢ sin((q + 1)6) + ¢*= sin(qf)

P 142 = . 1
“(c+1+2/ccosh) g (7.1)
Note here that for any k in Ny,
sin((lf +1) _ M (14 2 4?4 ...y (2h0) (7.2)
sin #
so that W| < k+ 1. Tt follows thus that
i@ <clg+ 1) +c"q,  (x €la,b), (7.3)

and by continuity, (7.3) holds also for z = a and z = b. By (7.2),
limg_yq W =k + 1, for any k in Ny, and hence the right hand side
of (7.3) is equal to P;(b). This proves (ii).

To prove (i), we note first, that by uniqueness of analytic continuation, (7.1)
actually holds for all 8 in C\ 7Z. If we put 8 = ip, p > 0, we get the equation:

¢# sinh((q + 1)p) + ¢*= sinh(gp)
sinh p

Pf(c+ 14 2y/ccoshp) = , (p €]0, 0]),

(7.4)
which covers the values of P,(z) for all z in ]b, co[. Note here that for any k in

N07
sinh((k + 1)p)

- =e M (1+e +e' + - +ehr),
sinh p
and hence, if £ is even,

sinh((k + 1)p)

sinh p = 1+ 2cosh(2p) + 2 cosh(4p) + - - - + 2 cosh(kp),
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whereas, if k£ is odd,

sinh((k +1)p)

sinh = 2cosh(p) + 2cosh(3p) + - - - + 2 cosh(kp),

so in both cases W is an increasing function of p > 0. It follows thus
from (7.4), that P;(x) > P;(b) for all z in ]b, oo[. Moreover, as we saw in the
proof of (ii), P;(b) > 0. This concludes the proof of (i).

Finally, to prove (iii), we put @ = w +ip in (7.1), and get for p in ]0, co[, that

(=1)%c# sinh((g + 1)p) + (1)~ 'c"z sinh(gp)
sinh p

|Pi(c+1—2y/ccoshp)| = ‘

< ¢? sinh((g + 1)p) + ¢*= sinh(gp)
- sinh p
= P7(c+ 1+ 2y/ccoshp).

This proves (iii). O
7.2 DEFINITION. For each ¢ in Ny, we define the function ¢7: R — R, by the
equation
b
Py (t) = c_q/ exp(tz) P, (x) du.(), (t € R). O
a

7.3 LEMMA. Consider the sequence (¢;),en, of functions, introduced in Defi-
nition 7.2, and for each p in Ny, let, as in Section 6,

b
vepa) =t [ PPi@) du(o). (g€ No).
a
We then have
(i) ¥g(t) =302, ;—;;V(C,p, q), for allt in R.

(i) Yogeg g ()] - 1Py ()] < exp(|t|z) +exp(|t|(2¢ +2)), for all t in R and all

z in [0, oo
(iii) exp(tz) = .20 ¢5(t) - Pf(x), forallt in R and z in [0, oo[, and for fixed

t in R, the series converges uniformly in x on compact subsets of [0, co].

Proof. (i) By Lemma 6.2(ii), v(¢,p, q¢) = 0 whenever ¢ > p. Hence (i) follows
from the power series expansion of exp(tz).
(ii) Let 8: R — [b, 00] be the continuous function defined by:

x, if x > b,
Bx) = { b, ifa<z<b
2c+2—z, if z <a,
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It follows then from Lemma 7.1, that
|Py(x)] < Py(B(z)), (z€R, ¢€No). (7.5)

Recall that 2P = Z:o v(e,p,q) Py (z), for all pin N (c.f. Lemma 6.2(i)). Hence,
for x,t in R, we have that

exp(tx) Zt,mp i (i (c,p,q) Py (x )) (7.6)

Substituting 2 with A(z) and ¢t with |¢| in this formula, and recalling from
Lemma 6.2(ii), that v(c, p,q) > 0, for 0 < ¢ < p, we get by application of (7.5),

i%(iwc,p,q)w;(w) Z%(Zucp, )Py ((x))
— exp(H18(e)) <

Hence, we can apply Fubini’s theorem to the double sum in (7.6), and obtain
that

exp(tz) Z(Z Lv(e,pq ) Py (z), (z,t € R). (7.7)
q=0 p=q
Similarly we have that
exp(t18(@) = (3 Wvie,,0)Py(B), (@ te®. (75
q=0 p=q

Note here that by (i) proved above, we have that,

|5 (t) Z'p— v(e,p,q (7.9)

Since B(z) < max{2¢c+ 2,z} for all z in [0, oo, (7.5) and (7.7)-(7.9) imply that
for all ¢ in R and z in [0, oo],

Z g ()] - [Py (x)] < exp([t]5(z)) < exp(|t](2¢ + 2)) + exp(|t]x),

and this proves (ii).
(iii) The summation formula in (iii) follows from (i) and (7.7). To prove that
the convergence is uniform in z on compact subsets, we observe that for any

DOCUMENTA MATHEMATICA 4 (1999) 341-450



RANDOM MATRICES AND K-THEORY ... 419

Q in N,

o0

Q
|exp(ta) = S wsPi@)| < 3 w0l |P5)]

g=Q+1
S vie,p,0) Py (5(x))

o0

(]

SR (7.10)
< szlp—'(zoucp, B(x)))
p=Q+ q=
i (113(2))”
p=Q+1 g

Since (3 is continuous, and hence bounded on compact sets, it follows readily
from (7.10) that for fixed ¢ in R, the series in (iii) converges uniformly in z on
compact subsets of [0, ool. O

7.4 PROPOSITION. Consider the sequence (1) ,en, of functions, introduced in
Definition 7.2. Then for any t in R such that [t| < %, the function w
exp(tS*(w)S(w)) is integrable in the sense of Definition 3.1, and

E[ exp(tS*S i@z; E[P;(S*9)], (7.11)

q=0
where the sum on the right hand side is absolutely convergent in B(H").

Proof. We start by proving that the right hand side of (7.11) is absolutely
convergent in B(H"). Since [¢pg(t)] < ¢g(|t]) by Lemma 7.3(i) and (7.9), it
suffices to consider the case where ¢ > 0.

By Lemma 7.3(i), we have for any ¢ in [0, 00|,

3w E[ P (579)] Z _(Z” e.p,@)|E[P(S™S)).  (712)

Note here, that by Theorem 6.6,

HE[P;(S*S)]” < Z ”_QJ(ﬁ)H Z gy Qi o G, Qi |

peSi 1<iy e yig<r

for any ¢ in N, whereas
||E[Poc(5*5)] || = [[E(Lgm))l| = 1.
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Hence, by Proposition 5.19, Lemma 6.5 and Proposition 2.7, we have for any
pin N,

> vlep @)[E[PE(S )| < Y 072
q=0

*
Z Ay Wiy~ G, i)

TES, 1<é1,...,ip <1
< 3 n2e s
TESy

(7.13)

Using now that ¢ > 1, and that &(7) < k(%) + 20(#) (c.f. Proposition 2.10), it
follows that for any p in N,

Z =20 (0) os(®) < Z )~ ) k(i) (7.14)

TESy TESy

For p = 0, we note that
P
> v(e,p,q)|E[PF(S*S)]| = 1. (7.15)
q=0
Combining now (7.12)-(7.15), we get that
S EPs )] <1+ 3 5( X0 (2) T Te). (16)
q=0 =

Using then that —20(7) = k(%) + 1(7) —p — 1, it follows that

N T)—
IOl ACEESE: z 1 () 3 b ()0
=0 TESy
<1+ ctz =y ()P Yk (m)/P-1
p=1 TES,
(7.17)

where the last equality follows by noting that 1 < oo 1), for all p in N. By

Lemma 3.4, the last quantity in (7.17) is finite whenever 0 << <1, and this
shows that the right hand side of (7.11) is absolutely convergent for all ¢ in

— 2,2[, as desired.

It remains now (cf. Definition 3.1) to show, that for any state ¢ on B(H"),

[ee]

E[p(exp(tS°S)] = Y ws(e(E[PH(S™S)]),  (tel-2,2).  (7.18)

q=0
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So consider a fixed ¢ from | — 2, 2[ and a fixed state ¢ on B(H"™). Since

the spectrum of S*(w)S(w) is cgmcpact for each w in Q, it follows then by

Lemma, 7.3, that

[ee]

Lexp(tS* ()S@)] = 3 U5 [Py(Sa(@) Sul@))],  (7.19)

p=0

so we need to show that we can integrate termwise in the sum on the right
hand side. Note for this, that by Lemma 7.3(ii), and the function calculus for
selfadjoint operators on Hilbert spaces,

Y] 1P (S(w)*S(@))] < exp(2(c + D[t Lp(n) + exp([t]S(w)*S(w)),

(7.20)

where |T| = (T2)2, for any selfadjoint 7' in B(H™). For such T, we have also
that |o(T)| < ¢(|T), and hence it follows from (7.20), that

Do 1wsO] - [P (S@)*S@))]] < exp(2(e + D)It]) + [ exp(|t]S(w)*S(w))]-

(7.21)

Since E[¢(exp([t|S*S))] < oo, by Proposition 3.2, it follows from (7.21) and
Lebesgue’s theorem on dominated convergence, that we may integrate termwise
in (7.19), and hence obtain (7.18). This concludes the proof. O

In order to obtain the upper bound for IE[ exp(—tS*S)] in Theorem 7.8 below,
we need more precise information about the behavior of the function 1§ (t) for
t <0.

7.5 PROPOSITION. Consider the sequence (1§) 4en, of functions, defined in Def-
inition 7.2. Then for any q in Ny, and any t in ]0, 0o, we have that

(i) ¥g(t) > 0.
(i) (=1)%5(=t) > 0.
(i) [og(—1)] < Luc(r).

Proof. (i) This follows from Lemma 7.3(i), but for completeness we include a
different proof, which will also be needed in the proof of (ii) and (iii). For each
q in Ny, we put

pi@) = ¢ 1Pi@),  (zER).

Then by Proposition 6.1, (pg)en, is an orthonormal basis for Ly ([a, b], p.). Let
A be the (bounded) operator for multiplication by « in La([a, b], p.). Then by
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(6.23) and (6.24), the matrix M(A) of A w.r.t. (pg)gen,, is given by

c e 0
Ve e+1 e

M(A) = ve C_J‘r ! \/E (7.22)
0

From this, it follows, that for any p in N,
M(AP);r, >0, when |j— k| <p,
M(Ap)jk:(), when |j—k|>p.
Hence, for any ¢ in [0, co[,
o0
M (exp(tA))jn = 0 + Y B M(AP)j >0, (j,k € No).
p=1

Since exp(tA) is the operator for multiplication by exp(tz) in La([a, b], f1), and
since P¢(x) =1, we get that

b
T/JZ(t) = c*q/ exp(tac)ch(x)POC(x) du.(z) = c*%(exp(tA)pg,pf))

(7.23)
= ¢ % M(exp(tA))o,, > 0,
and this proves (i).
(ii) To prove (ii), we consider the operator
B=A+2p,
where Py is the projection onto Cp§ in B(La([a,b], uc)). Then
c+2 e 0
Ve e+l G/e
Ve e+l e
M(B) = L ; (7.24)
0
so as above, we get that
M (exp(tB))jr >0, forall j,kin Np. (7.25)

Let U be the unitary operator on Ls([a,b], i), defined by the equation:
Upg = (=1)pg, (¢ €No).
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Then
c+2 —c 0
-/ c+1 —\/

M(UBU*) = Ve cfl __T/E | =Meerni-a),
0

Hence A = 2(c+ 1)1 — UBU*, and for ¢ in [0, oo[, we have thus that
exp(—tA) = exp(—2(c+ 1)t) exp(tUBU™) = exp(—2(c + 1)t)U exp(tB)U™.
Therefore,

M (exp(=tA))ji = (1)’ * exp(=2(c + 1)) M (exp(tB))jn, (G, k € No),
(7.26)

so in particular, by (7.25),
(=1 M (exp(~tA)je >0, (G, k € No).

For t in [0, oo[, we note here that

b
Yy (—t) = ch/ exp(—tz) P} (z) Py (z) dpc(x) = cng(eXp(—tA))qo, (7.27)

and hence it follows that (—1)%),(—t) > 0, which proves (ii).
To prove (iii), we need the following technical lemma:

7.6 LEMMA. Let C and D be bounded positive selfadjoint operators on £2(Ny),
and assume that the corresponding matrices (¢ji)j.ren, and (dji); ren, satisfy
the following conditions:

(a) c¢jr >0 for all j,k inNy.

(b) ¢jr =0 when |j — k| > 2.

(C) dj = Cjk, when (.77 k) 7é (070)

(d) doop > coo-
For ¢, in 5(Ny), we define

(o, ¥]ik = 0()Y(k) —k)Y(G), (k€ No).

Consider then furthermore f, g from f5(Ny), satisfying that

(e) f(k)>0and g(k) >0 for all k in Ny.

(£) [f.9ljx >0, for all k,j in Ny such that k > j.
Then for all j, k in Ny, such that k > j, we have that

(i) [CF.Cygljk > 0.

(11) [Df, Cg]j,k Z 0.

(iii) [D"f,C"gljk >0, for all n in N.

(iv) [exp(tD)f,exp(tC)gl;x > 0, for all t in [0, co].
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7.7 REMARK. If @, are strictly positive functions in ¢5(Ny), then the state-
ment
[p, Y]k >0, forallj,kin Ny, such that k& > j,

is equivalent to the condition that

©0(0) _ (1)
5(0) = o) = v2)

Proof of Lemma 7.6. Note first that for any ¢, ¢ in l5(Ny) and 7,k in Ny, we
have that [p, ¢];r = —[p,¥]k,;. In particular,

[<Pa¢]j,j =0, (90,111 € £2(N0)7 JE NO) (728)

Note also that the positivity of C' implies that

@) 0

det (cff cf’“) >0, forall j,kin Ny, such that j # k. (7.29)
Ckj Ckk

To prove (i), consider k,j in Ny, such that £ > j > 0. We then have
(CF)() = cjj—1f(I—=1) + ¢ fO) + e fG+1), ifj>1,
Co,gf(O) + Co’lf(].), lfj = 0,
and since k # 0,
(Cg) (k) = crh—19(k = 1) + crrg(k) + crpr19(k + 1).
Thus,
{i_jlfl an—i_zlkfl leckm[fa g]l,’n’h lf] Z 17
o Smt L corcmlfy glim,  if 5 =0.

Agsume first that & > j + 2. In this case, ] < j+1 <k —1 < m, for all terms
in the above sums, and thus, by (f) and (7.28), [f, gli,m > 0. Since ¢, > 0 for
all [,m in Ny (by (a)), it follows thus that [C f,Cgl;r > 0.

Assume next that & = j + 1, and consider first the case j > 1. Then

[Cf,Cyljnr = {

J+1 42
[Cf,Cqljr = Z chlcj+1,m[fag]l,m- (7.30)

I=j—1 m=j

In 8 of the 9 terms in the sum above, | < m, and hence [f, g];,m > 0. Only in
the case (I,m) = (j + 1,j), do we have [ > m. However, the sum of the two
terms corresponding to (I,m) = (j,j+1) and (I,m) = (j+1,7) is non-negative,
since

cijCitt i+ lf gligt + ciricizglf, gliv

= (€jjCj+1,541 = €1,j+1C+1,5)[f> glj+15
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which is non-negative by (7.29). Since the remaining 7 terms in the sum on the
right hand side of (7.30) are also non-negative, it follows that [C f,Cgl;r > 0.
If j=0,and kK =j+ 1 =1, the same argument can be used to show that

1 2
[Cf,Cgloa =D Y corcimlf,glim > 0.

=0 m=0
This proves (i).
To prove (ii), note first that by (a) and (c), we have

(Df)@) = (Ch)G), ifj>1,
and
(Df)(0) = (C£)(0) + (doo — coo) f(0).
Hence, if k > j > 1, we get from (i), that

[Df.Cgljk=[Cf,Cglik > 0.
If k> 7 =0, then

[Df,Cglo,. = (Df)(0)(Cyg) (k) — (Df)(k)(Cyg)(0)
= [Cf,Cglo,r + (doo — coo0) f(0)(Cg)(k).
But (doo —coo) f(0) > 0 by (d) and (e), and since also (Cg)(k) = >°;2, crg(l) >
0, by (a) and (e), it follows by (i), that also [Df, Cglo,x > 0. This proves (ii).
Next, (iii) follows from (ii) and induction on n, and from noting (by induction),

that (D™ f)(j),(C™g)(j) >0 for all n in N and j in Np.
To prove (iv), we let ¢ be a fixed number in [0, co[, and put

C’n=1+%C, and Dn=1+%D, (n € Ny).

Then, for all n, C,, and D,, are positive selfadjoint operators on £2(Ny), which
also satisfy the requirements (a)-(d). Hence, if f,g € ¢5(Ny) which satisfy (e)
and (f), we conclude from (iii), that

[(1+LD)"f, (1+LC)"]., >0,  whenj>k,

Js
and hence, letting n — 0o, we get that
[exp(tD)f, exp(tC)g]j L >0, when j > k,

as desired. O

End of Proof of Proposition 7.5. Only (iii) in Proposition 7.5 remains to be
proved. Let A, B from B(L2([a, b],uc)) be as in the first part of the proof of
Proposition 7.5. Since A is the multiplication operator associated to a positive
function on [a,b], and since B > A, both A and B are positive selfadjoint
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operators on Ly ([a,b], uc). Let C and D be the operators in B(¢2(Ny)) corre-
sponding to A and B respectively, via the natural Hilbert space isomorphism
between Ly ([a,b], 1) and £2(Np), given by the orthonormal basis (p)4en, for
Ly ([a,b], ). Then C and D are positive selfadjoint operators and by (7.22) and
(7.24), they satisfy the conditions (a)-(d) of Lemma 7.6. Now, let both f and g
be the first basis vector in the natural basis for £2(Np) (i.e., f(k) = g(k) = dr0
for all k in Ny). Then (e),(f) of Lemma 7.6 are also satisfied, and hence we
obtain from (iv) of that lemma, that for all 5,k in Ny such that k > j,

(exp(tD)f)(5) (exp(tC) f) (k) — (exp(tD)f) (k) (exp(tC)f)(j) > 0,
ie.,
(exp(tB)pj, ps) - (exp(tA)p, pi) > (exp(tB)pj, pi.) - { exp(tA)pf, pS)-
For j = 0, we get in particular,

M (exp(tB))r,o _ M(exp(tB))o,o
M(exp(tA))eo ~ M(exp(tA))oo’ (k € No). (7.31)

Note here, that by (7.26),
(—1)* M (exp(—tA))r0 = exp(—2(c+ 1)) M (exp(tB))ko >0, (k€ N).

Inserting this in (7.31), it follows that

(=1)* M (exp(=tA))s.0 < M(exp(=tA))o,0
M (exp(tA))k.o = M(exp(tA))o,0

By (7.23) and (7.27),

(k € Ny). (7.32)

b
M (exp(£tA))go = 3 / exp(£tx) P¢(z) dpe(z) = cégb,i(:tt), (ke Ny).

Hence, (iii) in Proposition 7.5 follows from (7.32). O
7.8 THEOREM. Let ‘H and K be Hilbert spaces, and let ay, ... ,a, be elements
of B(H,K) such that Y. afa; = clgy), and Y., a;aj = lp,), for some
constant ¢ in [1,00[. Consider furthermore independent elements Y3, ... ,Y, of

GRM(n,n, L), and put S =3";_, a; ® Y;. Then for any t in [0, 2],

E[ exp(—tS*S)] < exp (— (Ve — 1%t + (c+1)2 - £) - 1pm). (7.33)

Proof. Consider a fixed ¢ in [0
then have

]. By Proposition 7.4 and Proposition 7.5 we

n
? 2¢

B exp(—t5"9)]| < 3 s (-0 - [E[PE(S" )|
(7.34)
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From (7.16) in the proof of Proposition 7.4, we have here that

So i) - B[RS )] | < 30 4 ()" S nk ) (z)' 0
q=0 p=0 TESy
<3S L) N bkt (2)
p=0 k,JeN
k+I<p+1

where §(p, k,1) was introduced in (3.6). Applying now Lemma 3.6, we get for
t in [0, Z], that

n
? 2¢

[e%) b
D owst) - |[E[P(S*9)]|| < exp ((n+ 2)(£)?) / exp (2(22)) dpe()

—0 b
<exp((c+1)%: %)/ exp(tzr) du.(z).

a

Note here, that ¢§(t) = fab exp(tz) du.(z), and hence we get by (7.34), that

b
=exp ((c+1)2- %)/ exp(—tz) du.().

But exp(—tz) < exp(—ta) = exp(—t(y/c + 1)?) for all z in [a, b], and hence it
follows that

|E[ exp(—tS*S)]|| < exp ((c+ 1) - %) exp(—(v/e —1)%t), (t €0, ).

This proves (7.33). O

7.9 REMARK. By application of the method of Remark 3.7, it is easy to extend
Theorem 7.8, to the case where

r r
Za:ai = clp), and Zaia: = dlpk),
i=1 i=1

for constants ¢, d such that ¢ > d > 0. In this case, one obtains that for ¢ in
[07 Qﬂc )

E[ exp(—tS*S)] <exp (- (Ve — V)t + (c+d)? - %) “1pny- O
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8 AsyMPTOTIC LOWER BOUND ON THE SPECTRUM OF S} S,, IN THE EXACT
CASE

Let H and K be Hilbert spaces, and consider elements aq, ... ,a, of B(H,K).
Let A denote the C*-subalgebra of B(H), generated by the family {a}a; | i,J €
{1,2,... ,r}}. Consider furthermore, for each n in N, independent elements

Y™, Y™ of GRM(n,n, 1), and define
r
Sn = Zai ® Yi("), (n € N). (8.1)
i=1

In this section, we shall determine (almost surely), the asymptotic behavior of
the smallest element of the spectrum of S}S,, under the assumptions that 4

is an exact C*-algebra and that ai,... ,a, satisfy the condition
T T
Za;‘ai = clpy) and Zaia: < 1p(k), (8.2)
i=1 =1
for some constant ¢ in [1,00[. We start, however, by considering the simpler
case, where, instead of (8.2), ay, ... ,a,, satisfy the stronger condition
T T
Z aja; = clpey) and Z a;a; = 1p(x), (8.3)
i=1 i=1

for some constant ¢ in [1,00[. Once this simpler case has been handled, we
obtain the more general case by virtue of a dilation result.

As in Section 4, we determine first the asymptotic behavior of the smallest
eigenvalue of V,,, where

Vo = (@ ®idy) (S5 S,), (n €N), (8.4)

and ®: A — M,(C) is a completely positive mapping, for some d in N.

8.1 LEMMA. Let Sy, n € N, and V,,, n € N, be as in (8.1) and (8.4), and
assume that ai, ... ,a, satisfy the condition (8.3). Let Amin(V;) denote the
smallest eigenvalue of V,, (considered as an element of My, (C)). Then for any
€ in |0, c0[, we have that

ZP(/\min(Vn) < (Ve-1)? —¢) < 0.

Proof. The proof is basically the same as the proof of Lemma 4.2; the main
difference being that in this proof we apply Theorem 7.8 instead of Theorem 3.3.
Consequently, we shall not repeat all details in this proof.
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For fixed n in N, and arbitrary ¢ in ]0, 0o, we find that

P(Amin(Vn) S (\/E - 1)2 - E)
= P(exp (— tAmin(Va) + (/e —1)> —te) > 1)

< exp(t(ve—1)? — te) - E[ exp ( — tAmin (V)] (8:5)
< exp(t(ve — 1)* — te) - E o Trgn [ exp(—tV3)].
By application of Lemma 4.1(ii), we have here, that
tran [ exp(—tVy)] = tran [exp (— (@ ®1d,)(S5S,))]
< tryg, [(<I> ® idn) (exp(—tST*lSn))] (8.6)

= trg ® tr,, [ (® ® idy, ) (exp(—tS;Sy,))]
= ¢ @ trp[exp(—tS;Sn)],

where ¢ is the state trg o ® on A. It follows here from Definition 3.1 and
Theorem 7.8, that

E[¢ ® tr,, (exp(—tS;Sn))] = ¢ @ tr, (E[ exp(—£S5:Sn)])
<exp (—t(ve—1)2+L(c+1)?),
for all ¢ in ]0, 3%]. Combining now (8.5)-(8.7), it follows that for all ¢ in ]0, 3t],
P()\min(vn) S(\/E - 1)2 - 6)

< dn-exp(t(v/c—1)® —te) -exp (— t(v/e — 1)* + %(c +1)?)
=dn-exp (t(L(c+1)* —¢)).

(8.7)

From here, the proof is concluded exactly as the proof of Theorem 4.2. O

8.2 PROPOSITION. Let Sp,,n € N, and V,,, n € N, be as in (8.1) and (8.4), and
assume that ai, ... ,a, satisfy the condition (8.3). We then have

lim inf Apin (V) > (Ve — 1)2, almost surely.

n—oo

Proof. By Lemma 4.2 and the Borel-Cantelli Lemma (cf. [Bre, Lemma 3.14]),
we have for any e from ]0, oo[, that

P(Amin(V) > (Ve — 1)? — ¢, for all but finitely many n) = 1,

and from this the proposition follows readily. O

The next two lemmas enable us to pass from the situation considered in Propo-
sition 8.2 to the more general situation, where it is only assumed that ay, ... ,a,
satisfy (8.2).
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8.3 LEMMA. Let ¢ be a number in [1, 00|, and put ¢ = 2+ [c], where [c] denotes
the integer part of c. Then there exist elements x1, ... ,z, in the Cuntz algebra
O-, such that

q q
E zix; = clo,, and E iz =1o,.
i=1 i=1

Proof. Recall that O, is the unital C*-algebra C*(s1,s2) generated by two
operators s1, s» satisfying that sfs; = 0;;10,, 4,J € {1,2}, and that sisf +
s255 = 1p,. Define then tq,...,t,_1 in Oy, by the expression

q—2

b= Sé_lsl, lf] € {1727 ’q_2}7
7 Sy 7, if j=q—1.

Then tt; = 6; j10,, for all 4,7 in {1,2,...,¢ — 1}, and

q—1 q—3
tit; = sh(Lo, — s283)(sh)" + 557 (s57°)" = 1o, (8.8)
j=1 i=0
(i.e., t1,... ,tq—1 generates a copy of Oy inside Os). Define now z1,... ,xzq4
in 02, by
c—1\3 e
( 2) t, ifie{1,2,...,q—1}
i g: 1—c\3
(ﬁ) 102, ifi = q.
Then .
" c—1 g—1—-c
;xm =(q—-1)- =2 1o, + IECE ‘1o, = clo,,
and by (8.8),
q
c—1 qg—1—c
T = -1 — 1o, =1p,.
;wlmz q_2 02+ q_2 02 02
Thus, 21, ... ,z, have the desired properties. |
8.4 LEMMA. Let H and K be Hilbert spaces, and let ay, ... ,a, be elements of

B(M,K), such that Y., afa; = clpy), and Y., a;a; < 1lp).

Then there exist Hilbert spaces H,K, s in {r,r + 1,7+ 2,...} and elements
a,...,as of B(H,K), such that the following conditions hold:

i) HOH and KDOK.

a;, if 1<i<r,

0, if r+1<i<s.

(i) Y7y a5a; = clpygy, and Y @i =gz

(i) dipy =
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Proof. By Lemma 8.3, we may choose finitely many elements z;,... ,z, of the
Cuntz algebra O,, such that > !, 2fz; = clo, and Y|, z;z} = 1p,. We
assume that O is represented on some Hilbert space £, so that xy,... ,z, €

B(L). Define then
H=HoL)d (KoL) and K=(K®L)d (H®L).

For Hilbert spaces V, W, an element v of B(V, W), and an element y of B(L),
we consider v ® y as an element of B(V ® £, W ® L) in the natural manner.
Moreover, given vi1 in B(H ® £L,K ® L), v12 in B(K ® L), v21 in B(H ® L)
and vz in B(K ® £,H ® L), we shall consider the matrix (vi;j)i1<; j<1 as an
element of B(H, K) in the usual way. With these conventions, consider now the
following elements of B(H, K),

. a; ®1 0 .
ai:<’ oo 0), (ie{l,2,...,r}),
0 (1 — ® .
b]:(O o zlolal V! xj)’ (G e{1,2,...,q}),
0 0 . .
Ci’j,k = (0 % .a;!‘ ® (xjxk)> ) (Z € {1527 ,T‘}, Jak € {1527 7Q})

It follows then by direct calculation, that

Za az—}—Zb*b +Z Z c”kcmk

i=1 j,k=1
_ [Zf 167ai] ©1p(r) 0 )
0 [C(IB(IC)_Z —1 G0 )+Cz —1 G0 ]®13(£)
= 018(7:[)7
and that
Z‘W +beb;+z Z Cij kCi gk
i=1 j,k=1
_ <[Zi:1 aia; + (L) — Xiey @iaf)] @ 1p(e) 0 )
0 [F i1 afai] @ s
Thus, if we put s = r + g + r¢?, and let @,41,8,492,... ,ds, be new names for
the elements in the set {b; | j € {1,...,¢}}U{cijn | i € {1,...,r}, j,k €
{1,...,q}}, then it follows that a1, as, ... ,as satisfy condition (iii).
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Choosing a fixed unit vector { in £, we have natural embeddings t3: H — H
and 1 : K — K given by the equations

m(h) = (h®& a0, (het),
wk) = (ko8& a0, (kek).

This justifies (i), and moreover, it is straightforward to check, that under the
identifications of H with 19,(H) and K with 1x(K), condition (ii) is satisfied.
This concludes the proof. |

8.5 PROPOSITION. Let S,,,n € N, andV,,, n € N, be as in (8.1) and (8.4), and
assume now that ay, ... ,a, satisfy the condition (8.2). Then

lim inf Amin (Vy) > (Ve — 1)2, almost surely.

n—oo

Proof. By Lemma 8.4, we may choose Hilbert spaces H,K, s in {r,r +
1,...,} and elements ap,as,...,ads of B(H,K), such that conditions (i)-(iii)
of Lemma 8.4 are satisfied. If r < s, then for each n in N we choose additional
elements Y;(f)l,... V4™ of GRM(n, n, 1), such that v v v are
independent. We then define

S
$o=Yaov™, (neN).
i=1

Recall from (8.4), that
Vo = (® ®id,)(S;S0), (n €N),

where ®: A — My(C) is a completely positive mapping from the C*-subalgebra
A of B(H) generated by {ala; | i,j € {1,2,...,r}}, into the matrix algebra
M4(C). By [Pa, Theorem 5.2], there exists a completely positive mapping
@y : B(H) - My(C) extending ®. Note that since ® is unital, so is ®;.

Consider next the orthogonal projection Py of H onto H. Then the mapping

Cpy : b PybPy: B(H) — PyB(H)Py ~ B(H),

is unital completely positive. Hence, so is the mapping ®5: B(H) — M4(C),
given by
B3(b) = @1 (PybPy) = &1 0Cp,, (b), (b€ B(H)).
Thus, if we define
Vi = (®20id,)(S55,), (neEN),

then it follows from Lemma 8.4(iii) and Proposition 8.2, that

lim inf Amin (Vi) > (Ve — 1)2, almost surely. (8.9)

n—oo
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However, by Lemma 8.4(ii), we have here that

V <I>2 ® id,, [ Z a;a; ® ] Z <I>2 a aJ Y(n)) Y.(n)
i,j=1 i,j=1
Z ®, P?-La aJPH) ( Z ®1(ajaj) ( ))*Yj(n)
i,j=1 i,j=1
= Z ‘i(a:aj) ® ()/—i(n))*)/;(n) =V,
ij=1
Therefore (8.9) yields the desired conclusion. O

It remains now to show that we can replace V,, in Proposition 8.5 by S}S,,
itself. Before proceeding with this task, we draw attention to the following
simple observation:

8.6 LEMMA. For each n in N, let B,, be a unital C*-algebra, and let b,, be
an element of B,,. Then for any R in [0, 00[, the following two conditions are
equivalent:

(i) limsup|lba] < R.

n—oo

(ii) limsupmax(sp(by)) < R, and liminfmin(sp(b,)) > —R.
n—o0

n—oo

Proof. This is clear, since, for each n, ||b,|| is the largest of the two numbers
max(sp(by)) and — min(sp(by,)). O

8.7 THEOREM. Let ai,...,a, be elements of B(H,K), such that Y., a}a
clpy) and S aal < 15(k), for some constant c in [1,00[. Assume, in ad—
dition, that the unital C*-subalgebra A of B(#), generated by the set {afa; |
i,75,€{1,2,...,r}}, is exact Consider furthermore, for each n in N, indepen-
dent elements Yl(n), ceey r ) of GRM(n, n, ) and put S, = >0 a4; ® Yi(n),
n € N. We then have

liminf min [sp(S;S,)] > (Ve — 1), almost surely. (8.10)

n—oo

Proof. Put E = span{aja; | i,j € {1,2,...,r}}, and note that z* € E for
all z in E, and that 14 = ¢™'Y"!_ aja; € E. Thus, E is a finite dimensional
operator system, and since A is exact, it follows thus from Proposition 4.4,
that for any e from ]0, 0o[, there exist d in N and a unital completely positive
mapping ¢: A — Md((C), such that

[(® ®idy) ()] > (1 —e)llll, (n €N, z € M, (E)). (8.11)
Consider now a fixed € from |0, oo, let d, ® be as described above, and define

V, = (®®id,)(S%S,),  (n€N).
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Recall then from Proposition 4.3 and Proposition 8.5, that

lim sup max [sp(V;,)] < c+1+ 2/, almost surely,

n—oo

lim inf min [sp(V,)] > ¢+ 1 — 2/, almost surely,

n—oo

and hence that

lim sup max [sp(V, — (¢ + D1gy)] < 2/, almost surely,
n—odo
lim inf min [sp(V,, — (¢ + 1)1an)] > —2V/, almost surely.

n—oo

By Lemma 8.6, this means that

limsup ||V, — (c+ Dlan | < 2V, almost surely. (8.12)
n—oo

Note here, that since S;S, — (¢ + 1)lagnm, () € Mn(E), for all n, it follows
from (8.11), that

1958 = (c+ Dlagar, || < (1 =€) (2 ®idy) [SpSn — (¢ + Dlaga, ]|
(1- 6)_1||Vn —(c+ 1)1y, |7

for all n in N. Hence (8.12) implies that

lim sup ||S;;Sn —(e+ Dlsgm, (0 || <(1—e)t-2ve, almost surely.

n—oo

Since this holds for arbitrary e from ]0, oo, it follows that actually

limsup |[S;Sn — (¢ + Dlagnm, © || < 2V, almost surely.

n—oo

By Lemma 8.6, this implies, in particular, that

lim inf min [sp(S;S,) — (c+ 1)] > —2V/c, almost surely,
n—oo
and this proves (8.10). O

8.8 REMARK. As for the upper bound (cf. Section 4), Theorem 8.7 does not, in
general, hold without the condition, that the C*-algebra generated by {ala; |
1 < 4,7 < r} be exact. In fact, for any ¢ in ]1,00][, it is possible to choose
a finite set of elements ay, ... ,a, of B(H), for an infinite dimensional Hilbert
space H, such that

r r
Z aja; = clpyy) and Z aia; = 1),
i=1

i=1
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but at the same time

P( 0 € sp(S;:Sy,), for all but finitely many n) =1,

where S, =Y, a; ® Yi(n), as in (8.1). The proof of this is, however, much
more complicated than the corresponding proof of the possible violation for the
upper bound (cf. Proposition 4.9(ii)), and it will be presented elsewhere. O

9 COMPARISON OF PROJECTIONS IN EXACT C*-ALGEBRAS AND STATES ON
THE Kp-GROUP

In [Haa], the first named author proved that quasitraces on exact, unital C*-
algebras are traces. This result implies the following two theorems

9.1 THEOREM. (CF. [HAN], [HAA]) If A is an exact, unital, stably finite C*-
algebra, then A has a tracial state.

9.2 THEOREM. (CF. [BR, COROLLARY 3.4]) If A is an exact, unital C*-
algebra, then every state on Ky(A) comes from a tracial state on A.

The proof given in [Haa] of the fact that quasitraces in exact unital C*-algebras
are traces, is based on an ultra-product argument, involving ultra products of
finite AW *-algebras. The aim of this section is to show that Theorem 9.1 and
Theorem 9.2 can be obtained from the random matrix results of the previous
sections, without appealing to results on quasitraces and AW *-algebras.

We start by recapturing some of the standard notions and notation in
connection with comparison theory for projections in C*-algebras (see e.g.
[BI1],[B12],[Cu] and [Go2]). For a C*-algebra A, we put

MOO(A) = U Mn(A)a

neN

where elements are identified via the (non-unital) embeddings M,(A) <
Mp+1(A), given by addition of a row and a column of zeroes. Given two
projections p,q in M (A), we say, as usual, that p and ¢ are (Murray-von
Neumann) equivalent, and write p ~ g, if there exists a u in M (A), such that
vw*u = p and vu* = ¢q. We let V(A) denote the set of equivalence classes (p)
of projections p in My, (A), w.r.t. Murray-von Neumann equivalence, and we
equip V(A) with an order structure and an addition, as follows: For projec-
tions p,q in My (A), we write (q) < (p) if ¢ < p, i.e., if ¢ is equivalent to a
sub-projection of p. Moreover, we define (p) + (g} to be (p'+¢'), where p’, ¢’ are
projections in My, (A), satisfying that p’ ~ p, ¢ ~ ¢ and p’ L ¢'. Finally, for k
in N, we let k(p) denote the equivalence class (p) + --- + (p) (k summands).

Recall that for a unital C*-algebra A, Ky(A) is the additive group obtained
from the semi group V(A), via the Grothendieck construction (cf. [Bl1]), and
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that Ko(A)+ denotes the range of V(. A) under the natural map
p: V(A) = Ko(A).

In particular, we have that Ko(A) = Ko(A)1 — Ko(A) 4.
For a projection p in M (A), we put

[p] = p({p))-

Note then, that for projections p,q in My (A), [p] = [g] if and only if there
exists a projection r in M (A), such that (p) + (r) = (¢) + (r).

The four lemmas 9.3-9.6 below are well known and easy, but since we have not
been able to find precise references in the literature, we have included proofs
of these lemmas.

9.3 LEMMA. Let A be a C*-algebra, and let p,q be projections in A. Then
with I(p) the ideal in A generated by p, the following three conditions are
equivalent:

(i) (q) < k(p), for some k in N.

(i) q€I(p).

(iii) ¢ € I(p).

Proof. (i) = (ii) : Assume that (i) holds, i.e., that there exists k in N and u in
M, (A), such that

P 0
« _(a 0 .
uru = (0 0) and wu* < )
0 D
This implies that « is of the form
U1 0 0
u = )
Uk1 0 0
where w11, us21, ... ,ur; € pAg. It follows thus, that

k k
q= Zu;lujl = Zu;ﬁpuﬂ € I(p),
i=1 i=1

as desired.
(i) = (iii) : This is trivial.
(iii) = (i) : Assume that (iii) holds. Then there exist k£ in N and a4, ... , a,

bi,...,br in A, such that

k
H Zajpbj — qH <1 (9.1)
j=1
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Thus, by [Go2, 10.7],
) 0

(g 8>< in M, (A),
0 D

ie., (q) < k(p). O

9.4 LEMMA. Let M be a von Neumann algebra, and let p be a projection in
M. Then any o-weakly lower semi-continuous trace

T: (p./\/lp)+ — [0, o],
has an extension to a o-weakly lower semi-continuous trace 7 on M .

Proof. We can assume that p # 0. Choose then a maximal family (p;);er of
pairwise orthogonal projections in M, such that p; < p for all  in I. Then, by
standard comparison theory, it follows that

Zpl = C(p)a
el

where ¢(p) denotes the central support of p in M. Choose next, for each ¢ in
I, a partial isometry v; in M, such that

viv; =p; and wv] <p, (1 €1).
Define then 7: M4 — [0, 00], by the equation
Fa)= Y rlac)),  (ae M),
iel

Clearly 7 is additive, homogeneous and o-weakly lower semi-continuous. To
show that 7 has the trace property, note first that since pv; = v; for all i, we
have also that ¢(p)v; = v; for all 7. Since ¢(p) is in the center of M, it follows
thus, that for any z in M,

T(zz™) = Zr(vixac*v{) = Zr(c(p)vixx*v;‘)

iel i€l
= E (vize(p E E (i) (vjz*vy)),
i€l i€l jeI
and similarly
*
E E ((vjz*v]) (vizv])).
jelI iel

But by the trace property of 7 on pMp, we have that
T((viwv;)(vja:*v;‘)) = T((vja:*vf)(vi:w;f)),
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for all 7,7, and since all the terms in the above sums are positive, we can
permute their order without changing the sums, and thus obtain

T(zz*) = 7(x*z).

Taken together, we have verified that 7 is a o-weakly lower semi-continuous
trace on M, and it remains thus to show that 7 coincides with 7 on (p/\/lp)+.

Given a from (p/\/lp)+, we have that v;a® € pMp, for all i, and therefore
7(a) = ZT((via%)(a%vZ)) = Zr(a%v;*via%) = T(a%c(p)a%) = 7(a),
icI icl

as desired. O

9.5 LEMMA. Let M be a von Neumann algebra, and let 1 denote the unit of
M. Let furthermore p,q be projections in M, that satisfy the following two
conditions:

(i) 1€ I(p).

(ii) 7(q) < 7(p), for any normal, tracial state 7 on M.

Then g < p.

Proof. Let M = eM @ (1 —e)M, be the decomposition of M into a finite part
eM and a properly infinite part (1 —e) M, by a central projection e. Since any
normal, tracial state on M must vanish on (1—e) M, condition (ii) is equivalent
to the condition

7(eq) < 7(ep), for any normal tracial state 7 on eM.

By comparison theory for finite von Neumann algebras (cf. e.g. [KR, Theo-
rem 8.4.3(vii)]), this condition implies that

eq<ep in eM, (9.2)
By Lemma 9.3, condition (i) implies that there exists a k in N, such that
1®e; <p®1 in Mp(M),

where (ej;)i1<;j<k are the usual matrix units in M}(C). Therefore, we have
also that
l-e)®e1 <(1—e)p®l; in M((1-e)M).

At the same time, since 1 — e is a properly infinite projection in M, we have
that
(1 — 6) R epp ~ (1 — 6) ®1; in Mk((l — 6)M)

It follows thus, that
l-e)gel,<(1-e)®1ly~(1-e)®e;; < 1—e)p®1; in Mi((1-—e)M),
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and by [KR, Exercise 6.9.14], this implies that
l-e)g<1—-ep in (1-e)M. (9.3)
Combining (9.2) and (9.3), it follows that ¢ < p, as desired. O

9.6 LEMMA. Let M be a von Neumann algebra, and let p,q be projections in
M. Then the following two conditions are equivalent

(i) a=<p.

(ii) q € I(p), and 7(q) < 7(p) for every o-weakly lower semi-continuous trace
T on M.

Proof. Clearly (i) implies (ii). To show that (ii) implies (i), assume that (ii)
holds. By Lemma 9.3 there exists then a k in N, such that {g) < k(p), i.e., such
that

q@en ~q¢ <pely,

for some projection ¢’ in My (M). Consider now the von Neumann algebra

N = Mk(pMp)a

with unit 1r = p®1;. Set p’ = p®eq;1. Then p',q" are both projections in N,
and

Ly € In(p'), (9.4)

where I (p') is the ideal in N generated by p'.
We show next, that

7(q¢") < 7(p’), for any normal, tracial state T on N. (9.5)

Indeed, if 7 is a normal, tracial state on A/, then by Lemma 9.4, the restriction
Ty of T to N can be extended to a o-weakly lower semi-continuous trace 7
on My (M);. Then the mapping

a|—>7~'(a®611), (GGM+),

is a o-weakly lower semi-continuous trace on M, and hence the assumption
(ii) yields that
T(g®en) <T(p®@en).

Since ¢' ~q® e, p' = p®e1; and p',q' € N, it follows thus that
() =7(¢) =7(q®en) <T(p®@en) =7(p) =70"),

which proves (9.5).
Applying now Lemma 9.5, it follows from (9.4) and (9.5), that ¢’ < p' in N,
and hence that

g®en~q¢ <p' =p®e in Mi(M),

which implies that ¢ < p in M. O

DOCUMENTA MATHEMATICA 4 (1999) 341-450



440 U. HAAGERUP AND S. THORBJ®RNSEN

9.7 PROPOSITION. Let A be a C*-algebra, and let p,q be projections in A.
Then the following two conditions are equivalent:

(i) ¢ <pin A**.

(ii) 7(q) < 7(p), for every (norm) lower semi-continuous trace 7 on A .

Proof. (i) = (ii) : Assume that ¢ < p in A**, and choose u in A**, such that
uw*u = ¢ and wu* < p. Then ||lu|| < 1, and hence by the Kaplansky Density
Theorem, we may choose a net (ug)ger from A, such that ||lug|| <1, for all
B in B, and ug — u in the strong (operator) topology.

Define now: vg = pugq, (8 € B), and note that vz — pug = u in the strong
(operator) topology, so that v3vs — u*u = ¢ in the weak (operator) topology.
Since ||vg|| < 1 for all 3, this implies that actually

vjvg — ¢ in the o-weak topology.
Note also, that since ||ug|| < 1 for all 3,
vgvs < p, (B € B). (9-6)

Recall now that the o-weak topology on A** is the weak* topology i.e., the
a(A**, A*)-topology, and hence its restriction to A is the weak topology, i.e.,
the (A, A*)-topology. Since vg € A for all 3, we have thus, that

vvg — ¢ in the o(A, A")-topology.

Consider then the convex hull K of {vjvs | 8 € B}. Then ¢ € K=oAA,
but since convex sets in a Banach space have the same closure in weak and
norm topology (cf. [KR, Theorem 1.3.4]), it follows that actually ¢ € K—mor™,
Hence, we may choose a sequence (wy,)nen from K, which converges to ¢ in
norm. Then, for any (norm) lower semi-continuous trace 7: A4 — [0, 00],

7(¢) < liminf 7(w,) < sup 7(vzvs) = sup 7(vgvs) < 7(p), (9.7)
n—00 ﬁEB BGB

and this proves (i).

(ii) = (i) : Assume (ii) holds. We set out to show that condition (ii) in
Lemma 9.6 is satisfied, in the case M = A**. Consider first the function
T0: Ay — [0, 00], defined by

- (a) o 07 if a € I_A(p)_;’_,
VT loo,  ifae A\ i)+

Then 7y is a (norm) lower semi-continuous trace on A, and hence the as-
sumption (ii) yields that 79(¢) < 7o(p) = 0, which means that ¢ € T4(p)+.-
According to Lemma 9.3, this implies that actually ¢ € I4(p) C L4+« (p).

Note next, that for any o-weakly lower semi-continuous trace 7 on (A4**),, the
restriction 74, is a (norm) lower semi-continuous trace on A, and hence, by
the assumption (ii), 7(q) < 7(p).
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Taken together, we have verified that the projections p, ¢ satisfy the condition
(ii) in Lemma 9.6, in the case M = A**, and hence this lemma yields that
q < pin A**, as desired. O

9.8 COROLLARY. Let A be a C*-algebra, and let p, q be projections in A. Then
the following two conditions are equivalent:

(i) Fk e N: k(g) < (k—1)(p) in V(A4*).

(ii) Je>0:7(q) <(1—€)1(p), for any (norm) lower semi-continuous trace 7
on Ay.

Proof. (i) = (ii) : Assume that (i) holds, and define, for the existing k, ¢’ =
g1y andp =p® (Zf;ll e;i). Then ¢',p' are projections in Mj(A), and the
assumption (i) implies that

¢ <p in M(A™). (9.8)

Given now any (norm) lower semi-continuous trace 7 on A4, note that the
expression

() = ZT(au), (a = (aij) € M(A)+),

defines a (norm) lower semi-continuous trace 7 on My(A);. Thus, by Propo-
sition 9.7, (9.8) implies that 7 (¢') < 7 (p'), i.e., that k7(¢) < (k—1)7(p). This
shows that (ii) holds for any € in ]0, 1].

(ii) = (i) : Assume that (ii) holds, and choose, for the existing €, a k in N such
that % < €. Define then, for this k, ¢’ and p’ as above.

Now, for any (norm) lower semi-continuous trace 7 on My, (.A)4, the mapping

a— 1(a®er), (a € Ay),

is a (norm) lower semi-continuous trace on Ay, and thus the assumption (ii)
yields that

T(g®en) <1 —erlpen) < 5L -r(p®en),
and hence that
)=k -t(goen)<(k—1)-T(p®es) =1(p').

According to Proposition 9.7, this means that ¢’ < p’ in My (A**)(= My (A)**),
which shows that (i) holds. O

9.9 LEMMA. Let A be a C*-algebra, and let p,q be projections in A. Then
the following two conditions are equivalent:
(i) There exists an € in ]0, o[, such that

7(q) < (1 —€)7(p), for any (norm) lower semi-continuous trace 7 on A, .
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(ii) There exist € in ]0,00[, r in N and a4, ... ,a, in A, such that
T T
Za;‘ai =q, and Z a;a; < (1 —e)p.
i=1 i=1

Proof. The proof follows the ideas of the first section of [Haa].
Note first that (ii) clearly implies (i). To show the converse implication, assume
that (i) holds. Then, by Corollary 9.8, there exists a k in N, such that

g1 <p® (Zi:lleii) in  M;p(A*),
i.e., such that
uwu=q®1y, and uu* <p® (Zf;lleii), (9.9)

for some u = (uij)1<i j<k in My (A**). For this u, we have then that

k k k
YO upuig =Y (wtu)y; = ka,
j=1 i=1 =1
and that
k k k
Z Zuiiuzj = Z(UU*)ii < (k= 1)p.
i=1 j=1 i=1

Thus, if by, ... ,by2 € A* denote the elements ﬁuij, i,7 €4{1,2,...,k}, listed
in any fixed order, then we have that

k2 k2
D bibi=gq, and Y bby < Ep.
=1 i=1

Note also, that (9.9) implies that b; € pA**q for all i. Consider then the subset
K of A® A, defined by

K= {(Z::1 e g+ Y, cic;*) ‘ reN, c,...,c, €pAg, g€ (pAp)+}.

Then K is clearly closed under addition and multiplication by a non-negative
scalar, and thus K is a convex cone in A @ A.

Recall next, that the o-strong® topology on a von Neumann algebra M, is
generated by the semi-norms

ze p(r e +aat)E, (g€ (M)

Since the o-strong® continuous functionals on M are also o-weakly continuous
(i.e., belong to M; cf. [Ta, Lemma I1.2.4]), any convex set in M has the same
closure in o-strong* and o-weak topology. In particular it follows that

pAq is o-strong® dense in pA**q, and (pAp). is o-strong™ dense in (pA™*p)..
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Thus, we may choose a net (cf,..., ¢, 9%)aca in [@fil pAq] ® (pAp), such
that

e c¥ = b;, in the o-strong* topology, for all i in {1,2,...,k?},

e g >0, foralla

e ZZ L bib?, in the o-strong* topology.
It follows then that

k:2

lim (Z(cf)*cf) =gq, o-weakly,

@
i=1

and that
k2
lim (gCY + Z C?(C?)*) =421y o-weakly.
)

But since the o-weak topology on A** is just the weak*-topology (i.e., the
o(A**, A*)-topology), its restriction to A is the weak topology (i.e., the
o(A, A*)-topology) on A. It follows thus that

(g, 521p) € Ko(AGAA DAY,

But convex sets in a Banach space have the same closure in weak and norm
topology (cf. [KR, Theorem 1.3.4]), so it follows that in fact

(¢, 52p) € K—nom, (9.10)

Since (1 —6) ' (&2 +46) - &L <1, as § — 0, we may choose 4, ¢ in ]0,1],
such that
1-0)""'(B+d)=1-e

By (9.10), there exist then r in N, ¢1,... , ¢, in pAqg and g in (pAp)4, such that
Hq_ZZ 1cicil| <0 and H%p—g— (i cici)

The first inequality in (9.11) implies that Y !, cfc¢; is invertible in the C*-
algebra qAq. Let h € (¢Aq)+ denote the inverse of ., cfc; in qAq. Since

| <5 (9.11)

zlz

(1-9 q<Zc ci <(1+d)q
it follows then that
148 '¢g<h<(1-6)7"q (9.12)

Define now: a; = cih%, i €{1,2,...,r}. Then > !, afa; = q, and moreover,
by (9.12) and the second inequality in (9.11),

iaiaf = icihcf <(1-6)"" icicf <(1-6)"" (g + icic;)
i=1 =1 =1 =1
<(1- 5)_1(16%1 + 5)p = (1 —¢€)p.
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Thus, it follows that (ii) holds. O

9.10 THEOREM. Let A be an exact C*-algebra, and let p,q be projections in
A. Assume that there exists € in |0, oo[, such that

7(q) < (1 = e)7(p)

for any (norm) lower semi-continuous trace 7: Ay — [0, 00].
Then there exists n in N, such that

g®1l,<p®1l, in My(A).
Proof. By Lemma 9.9, we get (after multiplying the a;’s from Lemma 9.9(ii)

by (1 —e)*%), that there exist ¢ in ]1,00[, 7 in N and a4, ... ,a, in A, such that
r r
Z aya; = cq, and Z a;al < p. (9.13)
i=1 =1

We may assume that A is a C*-subalgebra of B(#) for some Hilbert space
H. Then (9.13) implies that we may consider aj,...,a, as elements of
B(q(H),p(H)), and that

r r
Za;‘ai = clyn), and Z a;a; < 1py).
i=1 i=1

Moreover, the set {afaj | i,7 € {1,2,... ,r}} is contained in the exact, uni-
tal C*-algebra gqA4q. Choosing now, for each n in N, independent elements
Yl("), ., Y™ of GRM(n, n, 1), it follows from Theorem 8.7, that with

.
Sn=Y a;aY™, (neN),
i=1

we have that

lim inf [ min {sp(S,(w)*Sn(w))}] > (Ve — 1)2, for almost all w in Q.

n—oo

In particular, there exists one(!) win 2, and an n in N, such that S, (w)*Sp(w)
is invertible in the C*-algebra M, (¢q.Aq). For this pair (w,n), we define

U= S (@) [Sn(@)*Su(@)] 2.
where the inverse is formed w.r.t. M,,(qAq). Then u € M, (pAq), and
wru =1y @1, =q®1,. (9.14)

Moreover, uu* € M, (B(p(H))), and since u*u is a projection in M, (B(q(H))),
uu* is a projection in M, (B(p(H))), so that

uu* <1y @1, =p1,. (9.15)
Combining (9.14) and (9.15), we obtain the desired conclusion. O
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9.11 CoROLLARY. If A is an exact, unital and simple C*-algebra, and p, q are
projections in A, such that p # 0 and 7(q) < 7(p) for all tracial states T on A,
then for some n in N

g1, <p®l, in M,(A). (9.16)

Proof. By simplicity of A, 7(p) > 0 for all tracial states 7 on A, and hence by
weak* compactness of the set of tracial states on 4, there exists € in ]0, co[,
such that

7(¢) < (1 -e)7(p),

for all tracial states 7 on A. By the assumptions on A, A is algebraically simple.
Hence, every non-zero trace 7: A; — [0, 00] is either equal to +oo on all of
A4\ {0}, or proportional to a tracial state. Hence we can apply Theorem 9.10.

(|

9.12 REMARK. In the “inequality” (9.16) in Corollary 9.11, the tensoring with
1,, can in general not be avoided. This follows from Villadsen’s result in [Vi]
that there exist nuclear (and hence exact) unital simple C*-algebras with weak
perforation. Recall that a unital C*-algebra 4 has weak perforation, if there
exists = in Ko(A), such that z ¢ Ko(A)+, but nz € Ko(A)+ \ {0}, for some
n in N. To see how Villadsen’s result implies, that we cannot, in general,
avoid tensoring with 1,, in (9.16), let A be a unital exact simple C*-algebra,
and assume that z € Ky(A), such that x ¢ Ko(A)y and nz € Ko(A)1 \ {0},
for some positive integer n. Write then z in the form z = [p] — [¢], where
D, q are projections in My (A) for some k in N. By the assumption that nz €
Ko(A)+ \ {0}, and the simplicity of A, it is not hard to deduce that

(T ® trg)(p) > (7 @ try)(q),

for all tracial states 7 on A, and hence 7(p) > 7(q) for all tracial states 7 on
M;.(A). However, since z ¢ K(A)+, ¢ cannot be equivalent to a sub-projection
of p. O

9.13 THEOREM. Let A be a unital, exact C*-algebra. Then the following two
conditions are equivalent:

(i) A has no tracial states.

(ii) For some n in N there exist projections p,q in M,,(A), such that

plyq and p~g~la®1,.

Proof. Clearly, (ii) implies (i). To show the converse implication, assume that
(i) holds, and consider then the two projections p',q' in M(A) given by

;) 1.A0 r_ l.A 0
p—<0 0l and 7=\, 1)
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Since A has no tracial states, A** has no normal tracial states, and hence A4**
is a properly infinite von Neumann algebra. Therefore,

(Ta) =4(1y) in V(A™),

which implies that
) =2(¢) in V(Mx(A™)).
Hence by Corollary 9.8 and Theorem 9.10, there exists an n in N, such that

¢ ®1,<p®l, in M,(A).

Here, p' ® 1,, ~ <1A ? L, 8), and thus there exists u in My, (A), such that
u'u = ( 0 1 ®1n> , and uu® < ( 0 0 (9.17)

The inequality in (9.17) implies that u has the form

_ (U111 U2
=8 ).

for suitable w1, ui2 from M, (A). The equality in (9.17) yields then subse-
quently that

* * *
ul U1 = ulatiz =14 ®1,, and uiuiz = 0.

Defining now
* *
P =ur1ugy and q = U12Uq9,

it follows that p,q are orthogonal projections in M, (A), such that p ~ ¢ ~
14 ®1,,. This shows that (ii) holds. O

In particular, Theorem 9.13 implies the validity of Theorem 9.1:

9.14 CorOLLARY. If A is an exact, unital, stably finite C*-algebra, then A
has a tracial state.

Proof. This is an obvious consequence of Theorem 9.13. (|

Consider next an arbitrary unital C*-algebra A. A function ¢: V(A) — R is
said to be a state on V(A), if it satisfies the following three conditions:

e o(x) >0, for all z in V(A).

o o(x+y)=p(x)+ p(y), forall z,y in V(A).

o o((a)) =1.
Similarly, a function ¢: Ko(A) — Ris said to be a state on Ko(A), if it satisfies
the conditions:

e (z) >0, for all zin Ko(A);+.

e Y(z+w)=1(z) +Y(w), forall z,w in Ky(A).
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° ¢([1 A]) =1.

The set of states on V(A) (resp. Ko(A)) is denoted by S(V(A)) (resp.
S(Ko(A))). Note that S(V(A)) and S(Ky(A)) are both convex compact sets
in “the topology of pointwise convergence”. Let p: V(A) — Ko(A) be the
natural map introduced in the beginning of this section. Then it is clear, that
the map ¢ — 1pop, ¥ € S(Ko(A)), gives a one-to-one correspondence between
the states on Ky(A) and the states on V(A). Moreover, this map is an affine
homeomorphism of S(Ky(A)) onto S(V (A)).

9.15 LEMMA. Let A be a unital, exact C*-algebra, and let p,q be projections
in A, such that

7(q) < 7(p), for any tracial state T on A. (9.18)
Then for any k in N, there exists n in N, such that
nk(q) < nk(p) +n(la).

Proof. Let k from N be given, and consider then the projections p',q in
Mk+1 (A) defined by:

pP=p® (Zle eii) +14® epst by, and ¢ =q® (Zle eii)-

Given now an arbitrary non-zero, bounded trace 7 on Mj1(A), note that the
mapping

arT(a®ey), (a € A),
is proportional to a tracial state on A. It follows thus from the assumption
(9.18), that (¢ ® e11) < 7(p ® e11), and hence

m(q) =k -Tg@en) <k-Tlp@en) = gy - T(p® 1) < g - 7(0).

Since 14 ® e;; < p', any unbounded (lower semi-continuous) trace 7 on
Mj11(A) must take the value +oo at p’, and hence we have also in this case,
that

m(¢') < &5 - 7).
Applying now Theorem 9.10, it follows that there exists an n in N, such that
n{q") < n(p'), and hence such that nk(q) < nk(p) + n(l4), as desired. O

Next, we need the following version of the Goodearl-Handelman theorem (see
[B12, 3.4.7], [Gol, 7.11] and [BR, Lemma 2.9]).

9.16 LEMMA. Let A be a unital C*-algebra, and consider a convex subset K of
S (V(A)), which is closed in “the topology of pointwise convergence”. Assume
furthermore that the following implication holds

Vr,y e V(A): [V € K:p(z) <p(y)] = [Vp e S(V(A)): p(z) < w((y)]-)
9.19

Then K = S(V(A)).
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Proof. By the one-to-one correspondence between states on K((.A) and states
on V(A), we can find a convex compact subset L of S(Ky(A)), such that

K={bop|ieL)
Since Ko(A) = p(V(A)) — p(V(A)), condition (9.19) is equivalent to the con-
dition:

Vz e Ko(A): [V € L:p(2) > 0] = [V € S(Ky(A)): ¥(2) > 0].
Thus by [Gol, Corollary 7.11], all the extreme points of S(K((A)) are contained
in L = L. Hence by Krein-Milman’s theorem,

S(Ko(A)) Cconv(L) =L,

and therefore L = S(Kp(A)), which is equivalent to the equation: K =
S(V(A)). O

9.17 THEOREM. Let A be a unital, exact C*-algebra. Then for any state ¢ on
V(A), there exists a tracial state 7 on A, such that

e((p)) = (T ® Try)(p), for all projections p in M,,(A), and m in N.
(9.20)

Proof. Let K denote the subset of S(V(A)) consisting of those states on V (A),
that are given by (9.20) for some tracial state 7 on A. Then K is clearly a
convex, compact subset of S(V(A)), and hence, by Lemma 9.16, it suffices to
verify that K satisfies condition (9.19). So consider projections p, ¢ in My (A).
We may assume that p,q € Mp,(A), for some sufficiently large positive integer
m. Suppose then that

(r®Trm)(q) < (r®Trpy)(p), for all tracial states T on A.

Since any tracial state on M, (A) has the form % -7 ® Tr,,, for some tracial
state 7 on A, it follows then from Lemma 9.15, that for any &k in N, there exists
an n in N, such that

nk(q) < nk(p) +n{la ©1p).
Hence for any ¢ in S(V(A)), and any k in N, we have that
e((q) < o((p) +

and this shows that K satisfies condition (9.19). O

Using the one-to-one correspondence between states on Kg(A) and states on
V(A), Theorem 9.17 gives a new proof, not relying on quasitraces, for the
following

9.18 CoROLLARY. Let A be a unital, exact C*-algebra. Then any state on
Ko(A) comes from a tracial state on A, i.e., for every state ¢ on Ko(A), there
exists a tracial state 7 on A, such that

¥([p]) = (1 @ Trp)(p), for all projections p in My, (A), and allm inN. O
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