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Abstra
t. We study the versal unfolding of a ve
tor �eld of 
odi-

mension two, that has an algebrai
ally double eigenvalue 0 in the

linearisation of the origin and is equivariant under a representation of

the symmetry group D

3

. A subshift of �nite type is en
ountered near

a 
lover of homo
lini
 orbits. The subshift en
odes the itinerary along

the three di�erent homo
lini
 orbits. In this subshift all those symbol

sequen
es are realized for whi
h 
onse
utive symbols are di�erent. In

the parameter spa
e we also lo
ate a trans
riti
al, three di�erent Hopf

and two global (homo
lini
) bifur
ations.
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1 Introdu
tion

A ve
tor �eld has a Takens-Bogdanov point, if there is a Jordan blo
k

�

0 1

0 0

�

in the linearisation of a steady state and if 
ertain nondegenera
y 
onditions

are ful�lled. This 
odimension two degenera
y with its unfolding is a key

to understand several phenomena in dynami
al systems (see [17, 3℄ and text-

books like [13℄). Takens-Bogdanov points 
an also serve as a starting point

for the path following in two-parameter 
ows of global Hopf bifur
ation [6℄

and homo
lini
 orbits [7℄. One parameter families of homo
lini
 orbits are
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reated at Takens-Bogdanov points of two-parameter 
ows. Hen
e these bifur-


ation points play the same role for the 
reation of homo
lini
 orbits in two-

parameter 
ows as Hopf bifur
ation for periodi
 solutions in one-parameter


ows. Near homo
lini
 orbits several bifur
ations to other bounded solutions

may o

ur. Thus Takens-Bogdanov points are important organizing 
enters for

the bifur
ation analysis of dynami
al systems. Suppose the dynami
al system

_x = f(x) has 
onstraints given by an equivarian
e under a symmetry group �,

i.e. f(
x) = 
f(x); for 
 2 �. Then one often �nds 
ompli
ated bifur
ation

diagrams even at simple bifur
ations, [11℄.

Similarly at the Takens-Bogdanov point with D

3

symmetry the dynami
s are

mu
h ri
her than in the non-symmetri
 
ase. Appli
ations are given to systems

of three 
oupled os
illators in a ring. The results 
ould be also applied to mode

intera
tions for pattern formation in 
onve
tion problems, where solutions with

D

3

symmetry exist [12℄. We will en
ounter a subshift of �nite type, whi
h is a

novel dynami
al feature in a bifur
ation problem of dynami
al systems de�ned

by a ve
tor �eld. Whereas in many bifur
ations one 
an en
ounter Smale

horseshoes giving rise to a full shift, the existen
e of a subshift of �nite type is

a rare phenomenon.

A subshift �(x

n

)

n2Z

= (x

n+1

)

n2Z

of �nite type on three symbols f1; 2; 3g is

de�ned on

X

A

= f(x

n

)

n2Z

jx

n

2 f1; 2; 3g; a

x

n

;x

n+1

= 1g

where A = (a

i;j

)

i;j2f1;2;3g

is a 3�3 matrix with entries 0 and 1. The topology of

X

A

is de�ned as the produ
t topology of the dis
rete set of symbols f1; 2; 3g. A

subshift of �nite type allows only those symbol sequen
es, for whi
h 
onse
utive

symbols x

n

; x

n+1

are 
ompatible with the transition matrix A. The symmetry

group D

3

will a
t on X

A

in the following manner

`
ip': �((x

n

)

n2Z

) = (~�x

n

)

n2Z

with ~�1 = 1; ~�2 = 3; ~�3 = 2

`rotation': 
((x

n

)

n2Z

) = (x

n

+ 1 mod 3)

n2Z

:

(1)

The bifur
ation analysis will be redu
ed in se
tion 2 to the dis
ussion of a

ve
tor �eld on R

4

�

=

C

2

, where D

3

a
ts as

`
ip': �(v; w) = (�v; �w)

`rotation': 
(v; w) = (exp(i

2�

3

)v; exp(i

2�

3

)w):

(2)

A ve
tor �eld in normal form 
an be derived. Using additional parameters

(�

1

; �

2

) to unfold the singularity the normal form is generi
ally given - up to

time reversal - by

_v = w (3)

_w = �

1

v + �

2

w + �v

2

� �v �w + [Ajvj

2

+Bjwj

2

+ C(v �w + �vw)℄v +Djvj

2

w:

A bifur
ation diagram des
ribing the 
omplete plane of unfolding parameters is

given in �gure 1. The main result of this paper is formulated in theorem 1. It

states the existen
e of a spe
ial form of a horseshoe for an open set of parameter
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Figure 1: Bifur
ation diagram in parameter spa
e: trans
riti
al bifur
ation of

steady states (bold line), three kind of Hopf bifur
ation (dashed lines), two dif-

ferent homo
lini
 bifur
ations (dotted lines) and shift dynami
s (shaded area).

values. Later we will rigorously de�ne three Poin
ar�e se
tions S

in

1

; S

in

2

; S

in

3

as

se
tions along three 
oexisting homo
lini
 orbits biasymptoti
 to the origin. P

will be the return map on S

in

1

[ S

in

2

[ S

in

3

.

Theorem 1 For 0 < �

2

+

6

7

�

1

small, �

1

> 0, there exists an invariant hyper-

boli
 Cantor set C � S

in

1

[ S

in

2

[ S

in

3

su
h that the return map P : C ! C

indu
ed by the 
ow of (3) is topologi
al 
onjugate to the irredu
ible subshift of

�nite type with transition matrix A =

0

�

0 1 1

1 0 1

1 1 0

1

A

. Here means topologi
al


onjuga
y that there exists an homeomorphism � : C ! X

A

su
h that �P = ��

on C.

Furthermore P and � 
an be 
hosen to be D

3

-equivariant, when using the rep-

resentation (2) on C and (1) on X

A

. C is D

3

-invariant.

So in fa
t we have a D

3

-subshift of �nite type as de�ned in [8℄. Neither the

in
omplete bifur
ation diagram in �gure 1 nor theorem 1 depend on the 
oeÆ-


ients A;B;C;D and other higher order terms. In the bifur
ation diagram the

lines will be bended to 
urves by a near-identity di�eomorphism. This is pe
u-

liar to the 
ase of D

3

symmetry. When the system has some other symmetry
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group like O(2) [4℄ or D

4

[1℄ many more parameters and several di�erent bifur-


ation diagrams have to be dis
ussed. Thus our analysis 
an only be a �rst step

to a general analysis of D

n

equivariant Takens-Bogdanov singularities, where

one might hope to en
ounter the O(2) 
ase as a limit.

The rest of the paper is organized as follows. In se
tion 2 we give the Taylor

expansion near the origin of a generi
 ve
tor �eld equivariant under (2) at the

Takens-Bogdanov point, derive a normal form up to third order and unfold it.

We dis
uss the basi
 dynami
al behavior in se
tion 3, i.e. we analyze steady

states, Hopf bifur
ations and the dynami
s in invariant subspa
es in
luding

homo
lini
 orbits. The existen
e of the subshift will be proved in se
tion 4,

where we use a de�nition of a general horseshoe. In the last se
tion 5 we will

dis
uss some further numeri
al studies and appli
ations.

2 D

3

-equivariant ve
tor fields and normal forms

Before giving a Taylor expansion near the singularity we �rst use some repre-

sentation theory to justify the representation like in (2). There are in general

two possibilities that a representation spa
e of a 
ompa
t Lie group � admits a

non-diagonalizable �-equivariant linearisation A at the origin. Similar to 
hap-

ter XVI of [11℄ there must be a �-invariant subspa
e W , that is either of the

form V �V , where V is absolutely irredu
ible, or that is irredu
ible but not ab-

solutely irredu
ible. The se
ond 
ase is not possible for the Takens-Bogdanov

singularity. The linearisation A 
ontains the nilpotent matrix

�

0 1

0 0

�

. Sup-

pose W is irredu
ible but not absolutely irredu
ible, then A(W ) = 0 or A(W )

is isomorphi
 to W [11, Lemma XII.3.4℄. But if A

jW


ontains the nilpotent

Jordan blo
k then A :W ! A(W ) 
annot be an isomorphism. Hen
e A

jW

= 0

and this is in 
ontradi
tion that the Jordan blo
k is non-zero. So we use a repre-

sentation of the form V �V . When 
hoosing for V the standard representation

of D

3

on C

�

=

R

2

we get the representation (2).

Proposition 2 (i) The ring of all D

3

-invariant germs a
ting on C�C as

in (2) is generated by

s

1

= v�v; s

2

= w �w; s

3

= v �w + �vw and

t

j

= v

j

w

3�j

+ �v

j

�w

3�j

, j 2 f0; : : : ; 3g

(ii) The module of D

3

-equivariant smooth mappings of C � C ! C � C is

generated by

g

0

=

�

v

0

�

; g

1

=

�

0

v

�

; g

2

=

�

w

0

�

; g

3

=

�

0

w

�

and

f

j

=

�

�v

j

�w

2�j

0

�

; h

j

=

�

0

�v

j

�w

2�j

�

, j 2 f0; 1; 2g;
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i.e. all D

3

-equivariant smooth germs of mappings h : R

4

! R

4


an be

written in the form h(v; �v; w; �w) = p

0

g

0

+ p

1

g

1

+ p

2

g

2

+ p

3

g

3

+ q

0

f

0

+

q

1

f

1

+ q

2

f

2

+ r

0

h

0

+ r

1

h

1

+ r

2

h

2

where p

0

; : : : ; p

3

; q

0

; q

1

; q

2

; r

0

; r

1

; r

2

are

smooth fun
tion germs of s

1

; s

2

; s

3

; t

0

; : : : ; t

3

.

Proof: For polynomials the 
ompleteness of the generators 
an be 
he
ked by

lengthy by-hand 
al
ulations or by 
omputer algebra, see [9℄. These are then by

Po�enaru's theorem also the generators of the module of germs of mappings.2

Then a general D

3

-Takens-Bogdanov point has the following Taylor expansion

up to third order with real 
oeÆ
ients a

1

; b

1

; : : ::

_v = w + a

1

�v

2

+ b

1

�v �w + 


1

�w

2

+ v(d

1

v�v + e

1

w �w + f

1

(v �w + �vw))

+ w(g

1

v�v + h

1

w �w + i

1

(v �w + �vw))

_w = a

2

�v

2

+ b

2

�v �w + 


2

�w

2

+ v(d

2

v�v + e

2

w �w + f

2

(v �w + �vw))

+ w(g

2

v�v + h

2

w �w + i

2

(v �w + �vw)):

(4)

First we try to remove as many se
ond order terms as possible, therefore we


hoose a general near-identity D

3

-equivariant 
oordinate 
hange.

v = v

0

+ �

1

�v

2

+ �

1

�v �w + 


1

�w

2

w = w

0

+ �

2

�v

2

+ �

2

�v �w + 


2

�w

2

We rewrite (4) in the new 
oordinates and this yields to

_

v

0

= w

0

+ (a

1

+ �

2

)�v

02

+ (b

1

+ �

2

� 2�

1

)�v

0

�w

0

+ (


1

+ 


2

� �

1

) �w

02

+ v

0

(

~

d

1

v

0

�v

0

+ ~e

1

w

0

�w

0

+

~

f

1

(v

0

�w

0

+ �v

0

w

0

))

+ w

0

(~g

1

v

0

�v

0

+

~

h

1

w

0

�w

0

+

~

i

1

(v

0

�w

0

+ �v

0

w

0

))

_

w

0

= a

2

�v

02

+ (b

2

� 2�

2

)�v

0

�w

0

+ (


2

� �

2

) �w

02

+ v

0

(

~

d

2

v

0

�v

0

+ ~e

2

w

0

�w

0

+

~

f

2

(v

0

�w

0

+ �v

0

w

0

))

+ w

0

(~g

2

v

0

�v

0

+

~

h

2

w

0

�w

0

+

~

i

2

(v

0

�w

0

+ �v

0

w

0

))

(5)

where the~terms depend on the original term, a

i

; b

i

; 


i

and �

i

; �

i

; 


i

for i = 1; 2.

By 
hoosing

�

1

=

1

2

(b

1

+ 


2

); �

2

= �a

1

; �

1

= 0; �

2

= 


2

; 


1

= 0; 


2

= �


1

we 
an remove all se
ond order terms in the �rst 
omponent and �w

02

in the

se
ond 
omponent in (5). All the third order terms are O(2)-equivariant. Thus

we 
an use exa
tly the same 
oordinate 
hange as Dangelmayr and Knoblo
h

[4℄ (after removing the se
ond order terms) without a�e
ting the lower order

terms to get the following simpli�ed system:

_v = w

_w = E�v

2

+ F �v �w +

�

Ajvj

2

+Bjwj

2

+ C(v �w + �vw)

�

v +Djvj

2

w;
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where E = a

2

; F = b

2

+ 2a

1

; A =

~

d

2

; B =

~

d

2

� ~g

1

+

~

f

1

� 2

~

i

2

; C =

~

d

1

+

~

f

2

and D =

~

d

1

+ ~g

2

. We use an unfolding to des
ribe the behavior of generi


families of ve
tor �elds near the singular point. Even if there is not a general

method to unfold the whole ve
tor �eld, the linear part 
an be unfolded by

�

0 0

�

1

�

2

�

su
h that all nearby linear parts 
an be rea
hed up to 
onjugation

[2℄. After s
aling v; w; t and possibly a time-reversal we 
an set generi
ally

E = 1; F = �1, if the transformed se
ond order terms are nonzero. Then we

get the normal form as in equation (3):

_v = w

_w = �

1

v + �

2

w + �v

2

� �v �w + [Ajvj

2

+Bjwj

2

+ C(v �w + �vw)℄v +Djvj

2

w:

3 Bifur
ations

Standard 
omputations show some symmetry breaking bifur
ations. Here es-

pe
ially the behavior inside the 
ow-invariant �xed point spa
e Fix(�) =

f(v; w)j�(v; w) = (v; w)g = f(v; w)jv; w 2 Rg will be 
onsidered. The same

dynami
s 
an be en
ountered in the rotated spa
es 
Fix(�) and 


2

Fix(�). The

bifur
ation inside these planes is a Takens-Bogdanov bifur
ation, in whi
h the

origin remains a singular point. This was analyzed by Hirs
hberg and Knoblo
h

[14℄.

In general 
ubi
 and quinti
 terms 
annot be negle
ted in Hopf bifur
ation with

D

3

symmetry. But in our situation the higher order terms are not important as

long �

1

; �

2

are small enough. To see this we have to perform the normal form


al
ulations in
luding these terms. The terms involving e.g. A;B;C;D are all

of higher order in �

1

; �

2

and hen
e 
an be negle
ted in a small neighborhood

of 0 in the �

1

; �

2

plane. For illustration we 
onsider a Hopf bifur
ation of the

origin at �

2

= 0; �

1

< 0 inside Fix(�). After 
al
ulating a normal form for Hopf

bifur
ation like in [13℄ the dire
tion of bran
hing is determined by the sign of

the term a = �

1

8j�

1

j

+

2C+D

8

. So the higher order terms 
an be negle
ted inside

a neighborhood of (0; 0) in parameter spa
e (�

1

; �

2

). Similar results hold for

the other bifur
ations too. We suppress therefore the dependen
e on these

terms. They only bend some lines in the bifur
ation diagram to 
urves by a

near-identity di�eomorphism. See also �gure 1.

� The only stable feature is the origin for �

1

; �

2

< 0.

� For �

1

= 0 there is a trans
riti
al bifur
ation of se
ondary steady state

N

1

= (��

1

; 0) and the rotated points N

2

= 
N

1

, N

3

= 


2

N

1

ea
h with

isotropy Z

2

.

� For �

2

= 0; �

1

< 0 the spe
trum of the origin is purely imaginary and the

system undergoes a D

3

-Hopf bifur
ation [11℄, where three di�erent types

of periodi
 solutions appear (isotropy type

~

Z

3

for �

2

< 0; solutions of
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isotropy type

~

Z

2

and inside Fix(�) of isotropy type Z

2

both for �

2

> 0;

all these solutions are of saddle type).

� For �

2

= �

1

< 0 N

1

; N

2

; N

3

undergo Hopf bifur
ations, where the imag-

inary eigenvalues have eigenve
tors outside the invariant subspa
es and

the solutions have isotropy

~

Z

2

.

� For 0 > �

2

= ��

1

N

1

; N

2

; N

3

undergo Hopf bifur
ations inside the in-

variant subspa
es, i.e. the periodi
 orbit have isotropy Z

2

.

� For some 
urve with �

2

� �

6

7

�

1

; �

1

> 0 there exists an orbit inside Fix(�)

homo
lini
 to 0, see [14℄.

� Similar there are orbits homo
lini
 to N

1

; N

2

; N

3

for �

2

� �

1

7

�

1

; �

1

< 0.

For the homo
lini
 orbits we have even nearly expli
it expressions. S
aling the

equation (3)

� = �t; v = �

2

x;w = �

3

y; �

1

= �

2

�

1

; �

2

= �

2

�

2

:

and _=

d

d�

give

_x = y (6)

_y = �

1

x+ �x

2

+ �(�

2

y � �x�y) +O(�

2

):

Letting � = 0 the system has an expli
it homo
lini
 orbit for �

1

> 0 inside

Fix(�):

q

0

(t) =

�

x

q

(t)

y

q

(t)

�

=

0

�

�

3�

1

2

�

1� tanh

2

�

p

�

1

2

t

��

3�

1

2

p

�

1

se
h

2

�

p

�

1

2

t

�

tanh

�

p

�

1

2

t

�

1

A

:

Using the Melnikov method, see e.g. Gu
kenheimer and Holmes [13℄, we 
an

then 
ompute parameter values for whi
h the homo
lini
 orbit persists for � > 0

to get the above results.

By symmetry there are homo
lini
 orbits biasymptoti
 to the origin inside

the other two invariant �xed point spa
es 
Fix(�) and 


2

Fix(�) for the same

parameter values too. So there exists a `
lover' like stru
ture of homo
lini


orbits, see �gure 2.

4 General Horseshoes and Proof of Theorem 1

In this se
tion we prove the existen
e of the subshift of �nite type near the 
lover

of homo
lini
 orbits. We will 
ompute a Poin
ar�e map near the homo
lini


orbits with varying unfolding parameters �

1

and �

2

. For ea
h of the three

homo
lini
 orbits we de�ne an `in' and an `out' se
tion, 
alled S

in

i

and S

out

i

(�gure 3). The return map P : S

in

1

[ S

in

2

[ S

in

3

! S

in

1

[ S

in

2

[ S

in

3

is dis
ussed

by dividing it into lo
al parts near the steady state, whi
h 
an be des
ribed by
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1

2

3

Figure 2: A sket
h of the 
lover of homo
lini
 orbits. The three orbits lie all

in di�erent planes, whi
h interse
t only in the origin.

S
in v

Sout
1

1 1

v3

Figure 3: The se
tions S

out

1

and S

in

1

at the homo
lini
 orbit proje
ted to Fix(�).

its linearisation (lemma 4) and global parts along the homo
lini
 orbit. This

te
hnique 
an also be used to analyze several other homo
lini
 bifur
ations, see

for example the textbook [10℄.

Before we give the te
hni
al details of the analysis of P , we des
ribe the ge-

ometri
 idea: The se
tions S

in

i

and S

out

i

are 
ubes in R

3

. We identify those

regions in S

out

i

, whi
h have a preimage in some S

in

i

under the lo
al maps (see

�gure 4). Similarly we 
ompute the regions in S

in

i

, whi
h are mapped by the

lo
al maps to some S

out

i

(see �gure 5). The global map P will map the 
ube

in �gure 4 to the 
ube in �gure 5.

For appropriately 
hosen parameters (�

1

; �

2

) the slabs marked `2' and `3' in

�gure 4 will interse
t the slabs `2' and `3' in �gure 5. We 
an then show

that there is a Smale horseshoe in three dimensions in the upper half of the


ube. But be
ause of the symmetry we have three 
opies of these 
ubes and

the possible itineraries inside the invariant set are more 
ompli
ated. In the

�gures 4 and 5 the se
tions of the homo
lini
 orbit marked `1' in �gure 2 are

shown. The traje
tories of points in the regions `2' and `3' in �gure 4 were in

the se
tions S

in

2

and S

in

3

before. In the same way the slabs `2' and `3' in �gure

5 are those regions, where the forward orbit will rea
h the se
tion S

out

2

and
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Figure 4: The se
tion S

out

1

with the images of S

in

1

, S

in

2

and S

in

3

. The line in

the middle is the se
tion with Fix(�).

S

out

3

next. Hen
e the itineraries, des
ribed in the �gures 4 and 5, have �rst a

symbol `2' or `3' then the symbol `1', be
ause they are now at the homo
lini


orbit with symbol `1', and then pro
eed with `2' or `3'. At the other se
tions

there is the same behavior after following on
e along the homo
lini
 loop: The

traje
tories of points inside the invariant set will lead to another se
tion and

hen
e to another symbol. Therefore the subshift des
ribed in theorem 1 
an

be realized, but no other in�nite symbol sequen
es.

To rigorously prove the existen
e of the subshift, we des
ribe brie
y the notion

of a general horseshoe in R

3

following Katok and Hasselblatt [15℄. First we

explain the meaning of `full interse
tion'. Then using 
one 
onditions we give

pre
ise meaning to `horizontal expansion' and `verti
al 
ontra
tion'. We prove

a te
hni
al lemma to justify the 
omplete linearisation near the steady state

before 
omputing the lo
al and global maps.

We will 
onsider a re
tangle � = D

1

�D

2

� R�R

2

= R

3

where D

1

and D

2

are dis
s. The proje
tions on the 
omponents are denoted by �

1

(\horizontal")

and �

2

(\verti
al"). Let � � U � R

3

be a re
tangle and f : U ! R

3

be a

di�eomorphism. Then we 
all a 
onne
ted 
omponent S

0

= fS � � \ f� full,

if

1. �

2

(S) = D

2

,

2. for all z 2 S; �

1

jf(S\(D

1

��

2

(z)))

is a bije
tion onto D

1

.

The �rst 
ondition implies that S rea
hes 
ompletely along the verti
al dire
tion

and se
ond one that the image of every horizontal �ber in S meets � and
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Figure 5: The se
tion S

in

1

where the preimages of S

out

1

, S

out

2

and S

out

3

are the

dotted slabs.

traverses it 
ompletely.

Next we introdu
e 
one 
onditions. A horizontal s-
one H

s

x

is de�ned by H

s

x

=

f(u; v) 2 T

x

R

3

jkvk � skukg, similarly a verti
al s-
one V

s

x

by V

s

x

= f(u; v) 2

T

x

R

3

jkuk � skvkg at x 2 R

3

for some s. A map f preserves a family H

x

of horizontal 
ones for x 2 U � R

3

, if Df

x

(H

x

) � int(H

f(x)

) [ f0g. It is


alled expanding on a horizontal 
one family H

x

, if kDf

x

�k � �k�k for � 2 H

x

and some �xed � > 1. We want to express a 
ontra
tion property in the

verti
al dire
tion, thus we 
onsider f

�1

on verti
al 
one families. It preserves

the verti
al 
one family V

x

, if Df

�1

x

(V

f(x)

) � int(V

x

) [ f0g and f

�1

expands

them, if kDf

�1

x

�k � �

�1

k�k for � 2 V

f(x)

and some uniform � < 1. Then the

appropriate generalization of a Smale horseshoe in higher spa
e dimensions is

given by

Definition 3 [15℄ Let � � U � R

3

be a re
tangle and f : U ! R

3

be a

di�eomorphism. � \ f(�) is 
alled a horseshoe if it 
ontains at least two full


omponents �

1

and �

2

su
h that for �

0

= �

1

[ �

2

the following 
onditions

hold:

1. �

2

(�

0

) � int(D

2

) and �

1

(f

�1

(�

0

)) � int(D

1

),

2. D(f

jf

�1

(�

0

)

) preserves and expands a horizontal 
one family on f

�1

(�

0

),

3. D(f

�1

j�

0

) preserves and expands a verti
al 
one family on �

0

.

To 
ompute the return map P we will �rst prove that we 
an 
ompletely lin-

earize the lo
al maps.
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Lemma 4 Suppose that the distin
t eigenvalues of the linearisation A at 0

�

1;2

=

�

2

2

�

q

�

2

2

4

+ �

1

are not in resonan
e, i.e. �

i

� (k�

1

+ l�

2

) 6= 0 for

k; l 2 N; k + l > 1. Then there exists a D

3

-equivariant smooth di�eomorphism

H 
onjugating the 
ow �

t

of (3) and exp(At) on some neighborhood U of the

origin: H�

t

= exp(At)H.

Proof: We 
onsider �rst the time-one-map �

1

, again the linear part is diago-

nal with eigenvalues e

�

1

; e

�

2

. For these the non-resonan
e 
onditions for maps

exp�

i

6= exp(k�

1

) � exp(l�

2

) for k; l 2 N; k + l > 1 hold. The non-resonan
e


onditions imply that we 
an formally remove all terms of algebrai
 order by

a near-identity 
oordinate 
hange. This is possible even in a D

3

-equivariant

setting [11℄. So we still have to remove 
at terms and dis
uss 
onvergen
e. To

remove these 
at terms we use a version of Sternberg's theorem [15, theorem

6.6.7℄. The assumptions are ful�lled: The linear part is diagonal and the nor-

mal form whi
h 
an be a
hieved by the above 
oordinate 
hange is a 
onvergent

power series, sin
e it is only linear. The theorem then gives the existen
e of a

smooth di�eomorphism 
onjugating �

1

and its normal form. Thus there exists

a smooth di�eomorphism H

1

linearizing �

1

in a neighborhood of the origin.

Furthermore the 
onstru
tion in [15℄ 
an be 
hosen to preserveD

3

-equivarian
e,

when we use invariant 
ut-o� fun
tions. Then the D

3

-equivariant di�eomor-

phism H =

R

1

0

exp(�At)H

1

�

t

dt is the needed 
onjuga
y for the entire 
ow on

some neighborhood U of 0. This 
an be seen when using exp(�A)H

1

�

1

= H

1

exp(�As)H�

s

=

R

1

0

exp(�A(t+ s))H

1

�

t+s

dt =

R

s+1

s

exp(�Au)H

1

�

u

du

= H �

R

s

0

exp(�Au)H

1

�

u

du+

R

s+1

1

exp(�Au)H

1

�

u

du

= H �

R

s

0

exp(�A(u+ 1))H

1

�

u+1

du+

R

s+1

1

exp(�Au)H

1

�

u

du

= H2

Now we 
an 
ompute the map P . After the 
oordinate 
hange of the lemma the

lo
al maps are given by a linear 
ow. Then the stable and unstable manifolds


oin
ide with the stable and unstable eigenspa
es. To 
arry out the analysis

we use again the s
aled 
oordinates x = x

1

+ ix

2

; y = y

1

+ iy

2

2 C for some

� > 0 small. We know the homo
lini
 orbits expli
itly by se
tion 3 up to

perturbations of order O(�). While negle
ting terms of order O(�

2

) the system

in C

2

is given by equation (6).

Lo
al maps: To 
ompute the lo
al maps we use a basis of eigenve
tors of the

linearized system: For the eigenvalue �

1

=

��

2

2

+

q

�

2

�

2

2

4

+ �

1

> 0 we 
hoose

v

1

; v

2

and for the eigenvalue �

2

=

��

2

2

�

q

�

2

�

2

2

4

+ �

1

< 0 the ve
tors v

3

; v

4

. The

original basis of R

4

�

=

C

2

is given by (x

1

; y

1

; x

2

; y

2

).

v

1

= (1 + �

2

1

)

�

1

2

(1; �

1

; 0; 0)

T

; v

2

= (1 + �

2

1

)

�

1

2

(0; 0; 1; �

1

)

T

;

v

3

= (1 + �

2

2

)

�

1

2

(1; �

2

; 0; 0)

T

; v

4

= (1 + �

2

2

)

�

1

2

(0; 0; 1; �

2

)

T

:

A ve
tor a 2 R

4

is then denoted as a = a

1

v

1

+ a

2

v

2

+ a

3

v

3

+ a

4

v

4

. The
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eigenve
tors v

1

and v

3

span Fix(�). The se
tion S

out

1

is then de�ned by

a

1

= �
 and maxfja

2

j; ja

3

j; ja

4

jg < Æ

with 
 small and 0 < Æ � 
 su
h that the se
tion is 
ompletely inside U , where

the 
ow is linearized. S

in

1

is given by

a

3

= �
 and maxfja

1

j; ja

2

j; ja

4

jg < Æ:

We will also use rotated 
oordinate systems with basis ve
tors v

0

l

= 
v

l

and

v

00

l

= 


2

v

l

with 
oeÆ
ients a

0

l

; a

00

l

. Thus we 
an de�ne the se
tions of the rotated

homo
lini
 orbits.

S

out

2

: a

0

1

= �
;maxfja

0

2

j; ja

0

3

j; ja

0

4

jg < Æ

S

out

3

: a

00

1

= �
;maxfja

00

2

j; ja

00

3

j; ja

00

4

jg < Æ

S

in

2

: a

0

3

= �
;maxfja

0

1

j; ja

0

2

j; ja

0

4

jg < Æ

S

in

3

: a

00

3

= �
;maxfja

00

1

j; ja

00

2

j; ja

00

4

jg < Æ

First we 
ompute P

lo


l

; l 2 f1; 2; 3g. The 
ow of the linear system is given by

�

t

(a) = a

1

v

1

e

�

1

t

+ a

2

v

2

e

�

1

t

+ a

3

v

3

e

�

2

t

+ a

4

v

4

e

�

2

t

; (7)

similarly in the primed versions for the rotated 
oordinate systems. Starting

at a ve
tor a 2 S

in

1

[ S

in

2

[ S

in

3

with P

lo


l

(a) 2 S

out

1

(i.e. espe
ially a

1

< 0),

the time t = (ln




ja

1

j

)=�

1

is needed to rea
h the S

out

1

se
tion. Then P

lo


l

(a

1

v

1

+

a

2

v

2

+ a

3

v

3

+ a

4

v

4

)

= (�
v

1

+ a

2

�

�

�

�




a

1

�

�

�

�

v

2

+ a

3

�

�

�

a

1




�

�

�

j�

2

j

�

1

v

3

+ a

4

�

�

�

a

1




�

�

�

j�

2

j

�

1

v

4

) (8)

with

j�

2

j

�

1

= 1 +

18

49

�

2

�

1

+

6

7

�

q

9

49

�

2

�

2

1

+ �

1

+O(�

3

).

To understand the geometry of the lo
al maps we 
ompute how the preimage of

the `out'-se
tions S

out

l

; l 2 f1; 2; 3g interse
ts the `in'-se
tions S

in

l

; l 2 f1; 2; 3g

and how the images of S

in

l

interse
t the `out'-se
tions S

out

l

. We start with the

preimage of S

out

1

interse
ted with S

in

1

S

in

1;1

= S

in

1

\ P

lo


1

�1

(S

out

1

)

= f(a

1

; a

2

; a

3

; a

4

)ja

3

= �
;maxfja

1

j; ja

2

j; ja

4

jg < Æg

\ f(a

1

; a

2

; a

3

; a

4

)ja

1

< 0;maxfja

2

j

�

�

�

�




a

1

�

�

�

�

; ja

3

j

�

�

�

a

1




�

�

�

j�

2

j

�

1

; ja

4

j

�

�

�

a

1




�

�

�

j�

2

j

�

1

g < Æg

= f(a

1

; a

2

; a

3

; a

4

)j � Æ < a

1

< 0; ja

2

j < Æ

�

�

�

a

1




�

�

�

; a

3

= �
; ja

4

j < Æg:

This is the slab with label `1' in�gure 5. Then the image of S

in

1

inside S

out

1

is

given by S

out

1

\ P

lo


1

(S

in

1

) = P

lo


1

(S

in

1;1

)

= f(a

1

; a

2

; a

3

; a

4

)ja

1

= �
; ja

2

j < Æ;�Æ

j�

2

j

�

1

< a

3

< 0; ja

4

j <

Æ




ja

3

jg:
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This set is the slab with label `1' in �gure 4. To determine the images

P

lo


2

(S

in

2

) \ S

out

1

and P

lo


3

(S

in

3

) \ S

out

1

we have just to rotate a part of the


oordinate system. Inside the stable eigenspa
e (v

3

; v

4

) is 
hanged to (v

0

3

; v

0

4

)

and (v

00

3

; v

00

4

) respe
tively. Equation (7) holds for ea
h eigenspa
e independently.

Thus the restri
tions are essentially the same as for S

out

1

\ P

lo


1

(S

in

1

) just with

a

0

3

; a

0

4

and a

00

3

; a

00

4

instead of a

3

; a

4

. Hen
e the slab S

out

1

\P

lo


1

(S

in

1

) has just to be

rotated by 2�=3 and 4�=3 inside the (v

3

; v

4

) plane to get S

out

1

\ P

lo


2

(S

in

2

) and

S

out

1

\ P

lo


3

(S

in

3

). A sket
h of se
tion S

out

1

with the images of S

in

l

; l 2 f1; 2; 3g

is given in �gure 4.

Next we will 
ompute the preimage of S

out

2

and S

out

3

under P

lo


1

to get the

stru
ture of S

in

1

. When we use a rotated 
oordinate system (v

0

1

; v

0

2

) instead of

(v

1

; v

2

) inside the unstable eigenspa
e, the time t = (ln




ja

0

1

j

)=�

1

is needed to

rea
h S

out

2

. This yields to

P

lo


1

(a

0

1

v

0

1

+ a

0

2

v

0

2

� 
v

3

+ a

4

v

4

)

= (�
v

0

1

+ a

0

2

�

�

�

�




a

0

1

�

�

�

�

v

0

2

� 


�

�

�

�

a

0

1




�

�

�

�

j�

2

j

�

1

v

3

+ a

4

�

�

�

�

a

0

1




�

�

�

�

j�

2

j

�

1

v

4

):

So the preimage of S

out

2

under P

lo


1

is just S

in

1;1

rotated by 2�=3 inside the

unstable eigenspa
e. And �nally for the preimage of S

out

3

the 
oordinate system

has to be rotated by 4�=3 in the unstable eigenspa
e. The se
tion S

in

1

with the

preimages of S

out

l

; l 2 f1; 2; 3g is drawn in �gure 5.

Global maps: Next we approximate P

glo

l

: S

out

l

! S

in

l

by an Taylor ex-

pansion using the linearisation along the homo
lini
 orbit. This approxima-

tion is valid by a general perturbation argument for hyperboli
 sets, when

we 
hoose the size of the 
ubes Æ small enough. We get a 
onstant term

of the global map when 
onsidering the splitting of the homo
lini
 orbit.

The point (�
; 0; 0; 0) 2 S

out

1

is inside Fix(�), hen
e it will be mapped to

S

in

1

\ Fix(�). Thus the 
onstant term is the distan
e of the stable and unsta-

ble manifolds inside Fix(�). Using [13, Eq.(4.5.11)℄ this distan
e is given by

d(�

2

; �) =

�M(�

2

)

kf(q)k

+ O(�

2

), with Melnikov fun
tional M(�

2

) and ve
tor �eld f

on Fix(�). For our system this is d(�

2

) = �

4

5


p

�

1

(�

2

+

6

7

�

1

).

In (x

1

; y

1

; x

2

; y

2

) 
oordinates the linearisation along the homo
lini
 solution for

� > 0 is given by B = D

(x;y)

f

j(x(t);y(t))

=

0

B

B

�

0 1 0 0

�

1

+ 2x

1

(t)� �y

1

(t) �(�

2

� x

1

(t)) 0 0

0 0 0 1

0 0 �

1

� 2x

1

(t) + �y

1

(t) �(�

2

+ x

1

(t))

1

C

C

A

;

(9)

where x

1

(t); y

1

(t) are the non-zero 
omponents of the homo
lini
 orbit. This

means that we have to solve the non-autonomous linear di�erential equation

_

� = B�. We use the blo
k diagonal stru
ture of the matrix. The �rst blo
k

des
ribes the behavior inside the invariant subspa
e Fix(�) and the se
ond

blo
k the orthogonal 
omplement Fix(�)

?

.
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In the �rst blo
k we are interested in the initial values �

0

= a

3

v

3

inside S

out

1

.

One solution of the variational equation inside Fix(�) is given by _q

0

(t) for

� = 0. Letting q

0

(0) 2 S

out

1

and q

0

(T ) 2 S

in

1

, then kq

0

(0)k = kq

0

(T )k by

symmetry. The ve
tors �

0

; _q

0

(0) restri
ted to Fix(�) are a fundamental system.

The Wronskian W of this system is 
onstant by Liouville's theorem:

_

W =

tra
e(B

jFix(�)

)W = 0 . Therefore, as _q

0

(0) = kv

1

and _q

0

(T ) = kv

3

, the

proje
tion of �

0

(T ) onto v

1

is a

3

. By smooth dependen
e on parameters this

yields to P

glo

1

(a

3

v

3

) = (1 +O(�))a

3

v

1

.

In the se
ond blo
k we 
onsider initial values �

1

= a

2

v

2

and �

2

= a

4

v

4

. First

assume that � = 0. As (�

1

� 2x

1

(t)) > �

1

> 0 and �

(1)

1

(0); �

(2)

1

(0) > 0 hold, the

two 
omponents �

(1)

1

(t) and �

(2)

1

(t) are in
reasing. The global map also expands

this ve
tor for � > 0 by the smooth dependen
e on the parameter � for �nite

time. Hen
e in linear approximation we get P

glo

1

(a

2

v

2

) = a

2

(�

1

v

2

+�

2

v

4

) with

�

2

1

+ �

2

2

� 1. Furthermore

�

1

� 0:9j�

2

j (10)

holds be
ause the 
oeÆ
ients of the solution are positive in the x

2

; y

2


oordi-

nates. Applying Liouville's theorem again for � = 0, the se
ond initial ve
tor

is mapped to P

glo

1

(a

4

v

4

) = a

4

(�

1

v

2

+�

2

v

4

) with �

1

�

2

��

2

�

1

= 1. Again � > 0

will give perturbations of type 1 + O(�), whi
h we will suppress by still using

the same notation.

Full Map: We now 
onsider only those points whi
h are mapped under the

lo
al maps from S

in

1

[ S

in

2

[ S

in

3

to S

out

1

. When we use (v

1

; v

2

; v

3

; v

4

) as a


oordinate system for all three `in'-se
tions then the 
omposed mapping is

given by

P

glo

1

Æ P

lo


l

: S

in

l

! S

in

1

; l 2 f1; 2; 3g

0

B

B

�

a

1

a

2

a

3

a

4

1

C

C

A

7!

0

B

B

B

B

�

4�

5


p

�

1

(

6

7

�

1

+ �

2

) + (1 +O(�))a

3

�

�

a

1




�

�

1+

6

7

�

p

�

1

�

1

a

2

j




a

1

j+ �

1

a

4

�

�

a

1




�

�

1+

6

7

�

p

�

1

�


�

2

a

2

j




a

1

j+ �

2

a

4

�

�

a

1




�

�

1+

6

7

�

p

�

1

1

C

C

C

C

A

(11)

Now we 
an use this to determine the return map P : S

in

1

[ S

in

2

[ S

in

3

!

S

in

1

[S

in

2

[S

in

3

, where it is de�ned. Be
ause of the symmetry the maps P

glo

2

ÆP

lo


l

and P

glo

3

Æ P

lo


l

are related to (11) by simple rotations of whole R

4

. When


hanging to the rotated 
oordinates, the maps P

glo

2

Æ P

lo


l

and P

glo

3

Æ P

lo


l

are

given by equation (11) with a

i

repla
ed by a

0

i

and a

00

i

. Therefore it is enough to


onsider a redu
ed map

~

P just as a map from one se
tion S

in

to itself. We just

have to 
hange the original labels `1', `2' and `3' in the S

in

2

and S

in

3

se
tions.

We will use a labeling relative to our position and 
all our position `1', the next

homo
lini
 orbit in the dire
tion of the rotation is 
alled `2' and the other one

`3'.

Proof of theorem 1: The existen
e of a horseshoe for this redu
ed map

~

P will be shown. Analyzing the impli
ations for the full map will prove the
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theorem. The 
onditions of de�nition 3 will be 
he
ked for the map:

~

P : S

in

! S

in

0

�

a

1

a

2

a

4

1

A

7!

0

B

B

�

4�

5


p

�

1

(

6

7

�

1

+ �

2

) + (1 +O(�))ja

1

j

�

�

a

1




�

�

6

7

�

p

�

1

�

1

a

2

j




a

1

j+ �

1

a

4

�

�

a

1




�

�

1+

6

7

�

p

�

1

�

2

a

2

j




a

1

j+ �

2

a

4

�

�

a

1




�

�

1+

6

7

�

p

�

1

1

C

C

A

: (12)

The horizontal dire
tion is �

1

v

2

+ �

2

v

4

and the verti
al dire
tions are v

1

and

v

4

. Using these as a new basis with 
oeÆ
ients �

1

; �

2

and �

3

we de�ne � as

the produ
t of dis
s with radii 2Æ in �

1

for D

1

and Æ in (�

2

; �

3

) for D

2

with

the further restri
tion

Æ

6

< �

2

<

Æ

3

. This means we 
hoose a 
oordinate system

su
h that we 
an ignore any rotation of �gure 4 under the global mapping to

�gure 5, even if j�

2

j is not small. This 
an be done, be
ause we estimated

�

1

� 0:9j�

2

j in (10). We just have to 
hange the labels from a

2

to �

1

, a

1

to �

2

and a

4

to �

3

. As above we denote the rotated 
oordinates by �

0

i

and �

00

i

. The

re
tangle is given in �gure 6. We 
hoose the distan
e of splitting d =

Æ

6

. The

two full 
omponents �

1

and �

2

, whi
h have to be 
ontained in �\

~

P (�), are

the two top dotted slabs in �gure 6.

We 
onsider the preimages of these two slabs under the original return map

P , i.e. we are interested in the preimages of �

1

;�

2

� S

in

1

under P

glo

1

Æ P

lo


2;3

.

Then we get (P

glo

1

Æ P

lo


2

)

�1

(�

1

) =

~

�

1

= f(�

1

; �

2

; �

0

3

) 2 
 ��j0 < ��

2

< 2Æ; j�

1

j � Æ

�

�

�

�

�

2


�

1

�

�

�

�

g � 
� � S

in

2

and similarly (P

glo

1

Æ P

lo


3

)

�1

(�

2

) =

~

�

2

= f(�

1

; �

2

; �

00

3

) 2 


2

��j0 < ��

2

< 2Æ; j�

1

j � Æ

�

�

�

�

�

2


�

1

�

�

�

�

g � 


2

� � S

in

3

:

As we identi�ed the three se
tions in this analysis of

~

P , we deal with �

1

and

�

2

, whi
h are 
ontained in the slabs with labels 2 and 3 in �gure 6. The further

restri
tions are due to the possible additional expanding of the global map, i.e.

the slabs are de�ned by

�

1

= 


�1

~

�

1

= f(�

00

1

; �

00

2

; �

3

) 2 �j0 < ��

00

2

< 2Æ; j�

00

1

j � Æ

�

�

�

�

�

00

2


�

1

�

�

�

�

g: (13)

�

2

= 


�2

~

�

2

= f(�

0

1

; �

0

2

; �

3

) 2 �j0 < ��

0

2

< 2Æ; j�

0

1

j � Æ

�

�

�

�

�

0

2


�

1

�

�

�

�

g; (14)

After relabeling we have �

1

=

~

P (�

1

) and �

2

=

~

P (�

2

): The slab �

1

is mapped

by P

lo


1

to S

out

3

and then by P

glo

3

, be
ause of our relabeling it will be the

slab 
oming from S

out

2

, hen
e it is the dotted slab with label 2 and therefore

�

1

=

~

P (�

1

). In the same manner we get �

2

=

~

P (�

2

).
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D2

ζ3

ζ2

∆rectangle

1

2

3

D

ζ1

1

d

1

3

2

Γ Γ

∆

∆2

1

1 2

Figure 6: The se
tion S

in

with re
tangle � = D

1

�D

2

in
luding �

1;2

=

~

P (�

1;2

)

So we 
an now 
he
k the 
onditions in the de�nition of the horseshoe. The two


omponents �

1

= P (�

1

) and �

2

= P (�

2

) are full: �

2

(�

i

) = D

2

for i = 1; 2,

be
ause we 
an 
hoose �

3

freely and �

0

2

< 0 (respe
tive �

00

2

) freely with j�

0

1

j

(respe
tive �

00

1

) small inside �, i.e. we get all wanted �

2

> 0 in the de�nition

of �

i

. For all � 2 �

i

the restri
tion �

1

jf(�

i

\(D

1

��

2

(�)))

is a bije
tion onto D

1

.

When we vary �

1

for any given z = (a

1

; �

1

�

1

; �

2

�

1

+ a

4

) 2 �

i

then P is aÆne

linear (see (12)) and the proje
tion �

1

to the �

1


omponent is inje
tive, whi
h

is the a

2


omponent in P . It is also surje
tive onto D

1

, be
ause the restri
tions

on a

2

inside �

i

((14) and (13)) were given su
h that the maximal modulus of

the a

2


omponent is Æ in the image.

Next we 
he
k the �rst 
ondition in de�nition 3. �

2

(�

0

) � int(D

2

) holds

be
ause of the 
ontra
tion in the a

1

= �

2

and �

3


omponent when 
hoosing

6

7

�

1

+ �

2

small enough. The �

3


omponent is given by

�

�

�

�

�

(�

1

�

3

� �

2

�

1

)

�

�

�

�

�

2




�

�

�

�

1+

6

7

�

p

�

1

�

�

�

�

�

� Æ:

The other 
ondition �

1

(P

�1

�

0

) � int(D

1

) also holds, be
ause j�

1

j � j�

00

1

j=2 +
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p

3j�

00

2

j=2 and �

0

1

; �

0

2

and �

00

1

; �

00

2

are small enough by the de�nition of �

1

and �

2

(see (14),(13)).

Finally we have to 
he
k the 
one 
onditions, for whi
h we need the lineari-

sations of

~

P and

~

P

�1

. Suppressing all fa
tors 1 + O(�) these are given in the

original (a

1

; a

2

; a

4

) 
oordinates by D

~

P

x

(a

1

; a

2

; a

4

) =

0

B

B

�

�

�

�

a

1




�

�

6

7

�

p

�

1

0 0

�

1

a

2




a

2

1

� �

1

a

4

�

�

a

1




�

�

6

7

�

p

�

1

�

1

�

�

�




a

1

�

�

�

�

�

�

a

1




�

�

1+

6

7

�

p

�

1

�

2

a

2




a

2

1

� �

2

a

4

�

�

a

1




�

�

6

7

�

p

�

1

�

2

�

�

�




a

1

�

�

�

�

2

�

�

a

1




�

�

1+

6

7

�

p

�

1

1

C

C

A

(15)

and if (a

1

; a

2

; a

4

) =

~

P

�1

(z) then D

~

P

�1

x

(z) = (D

~

P

x

(a

1

; a

2

; a

4

))

�1

is

0

B

B

B

B

�

�

�

�

�




a

1

�

�

�

6

7

�

p

�

1

0 0

�

a

2

a

1

�

�

�




a

1

�

�

�

1�

6

7

�

p

�

1

a

2

�

2

�

�

a

1




�

�

��

�

�

a

1




�

�

�a

4

�

�

�




a

1

�

�

�

1+

6

7

�

p

�

1

��

2

�

�

�




a

1

�

�

�

1+

6

7

�

p

�

1

�

�

�

�




a

1

�

�

�

1+

6

7

�

p

�

1

1

C

C

C

C

A

: (16)

Changing to the new � 
oordinates, we 
an easily 
he
k the 
one 
onditions:

The matrix D

~

P (�

2

; �

1

; �

3

) is given by

0

B

B

B

�

�

�

�

�

�

2




�

�

�

6

7

�

p

�

1

0 0

�

1

�

1




�

2

2

�(�

1

�

3

��

2

�

1

)

�

1

�

1

�

�

�

2




�

�

6

7

�

p

�

1

�

1

�

�




�

2

�

�

+

�

2

�

1

�

�

�

2




�

�

1+

6

7

�

p

�

1 �

1

�

1

�

�

�

2




�

�

1+

6

7

�

p

�

1

�(�

1

�

3

��

2

�

1

)

�

�

�

2




�

�

6

7

�

p

�

1

�

2

�

�

�

2




�

�

1+

6

7

�

p

�

1

�

�

�

2




�

�

1+

6

7

�

p

�

1

1

C

C

C

A

(17)

and D

~

P

�1

by

0

B

B

B

�

�

�

�

�




�

2

�

�

�

6

7

�

p

�

1

0 0

�

�

�

�




�

2

�

�

�

6

7

�

p

�

1

�

1

�

2

�

2

1

�

�

�

�

2


�

1

�

�

�

�

�

1

�

1

�

�

�

�

2




�

�

�

(

�

2

�

1




��

1

(�

1

�

3

��

2

�

1

))

�

�




�

2

�

�

1+

6

7

�

p

�

1

��

2

�

�




�

2

�

�

1+

6

7

�

p

�

1

�

2

1

�

�




�

2

�

�

1+

6

7

�

p

�

1

+�

1

�

2

�

�

�

2




�

�

1

C

C

C

A

:

(18)

Now it is straightforward to see, that the term �

1

�

�

�




�

2

�

�

�

is the largest entry in

the matrix (17). Then it preserves horizontal 
ones with 
onstant e.g. s =

0:3 and expands them with expansion rate � = �

1




2Æ

> 1. Similar we see,

that �

2

1

�

�

�




�

2

�

�

�

1+

6

7

�

p

�

1

is the leading term of the last two lines in (18). Hen
e it

preserves verti
al 
ones with 
onstants s = 0:3 and expands them with 
onstant

�

�1

for � = 2

Æ




6

7

�

p

�

1

< 1.

By Katok and Hasselblatt [15, p.274℄ we have the existen
e of an invariant

hyperboli
 Cantor set for the redu
ed map

~

P , su
h that the dynami
s are
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topologi
al 
onjugate to the shift on two symbols for this redu
ed map. Then

for the 
omplete return map P there exists the shift of �nite type with the

transition matrix of the theorem: if an orbit is near the loop l in the present,

then as the shift is on the symbols 2 and 3 the next loop in the itinerary has

to be l + 1 mod 3 or l + 2 mod 3. Similarly the previous one was l + 1 mod 3

or l + 2 mod 3. Thus possible sequen
es (x

n

)

n2Z

have the form x

n

6= x

n+1

.

The realization of all these sequen
es are guaranteed by the existen
e of the full

shift on two symbols for

~

P . Proposition 6.5.3 in [15℄ gives then even persisten
e

under small C

1

perturbations i.e. for an open set in parameter spa
e. Hen
e we


an in
lude higher order terms. This also veri�es the linear approximation of

the global maps, for whi
h all equivariant higher order terms 
an be negle
ted.

It remains to 
he
k the symmetry properties of C, P and � . The se
tions S

in

k

are related by symmetry: S

in

2

= 
S

in

1

and S

in

3

= 


2

S

in

1

. Furthermore S

in

1

is

�-invariant and S

in

3

= �S

in

2

. Then P

lo


is equivariant, be
ause the linearizing

di�eomorphism isD

3

-equivariant. The global part is equivariant under rotation


 by 
onstru
tion. It is equivariant under � by the following argument:

�

�1

P

glo

�x = �

�1

�

t(�x)

(�x) = �

t(�x)

(x)

P

glo

x = �

t(x)

(x)

As the times t(�x) and t(x) are both 
lose to the time needed of the homo
lini


orbits from the `out' se
tion to the `in' se
tion, we get t(�x) � t(x). As

�

t(x)

(x);�

t(�x)

(x) 2 S

in

k

for the same k, we get t(x) = t(�x). Hen
e P

glo

and

P are equivariant. Then C = \

1

n=�1

P

n

([

i=1;2;3

S

in

i

) is D

3

invariant, be
ause

P

n

is equivariant and [

i=1;2;3

S

in

i

is invariant. If x 2 C and x = P

n

(a

n

) with

a

n

2 S

in

x

n

, then �(x) = (x

n

)

n2Z

and the equivarian
e of � 
an be easily 
he
ked

using the representations (2) and (1). 2

5 Dis
ussion

In this se
tion we give a more 
omplete bifur
ation diagram of the Takens-

Bogdanov point with D

3

-symmetry, using numeri
al studies of the normal form

equations. Then we will des
ribe an appli
ation to 
oupled os
illators.

A major drawba
k in all further numeri
al studies is that there are not any

stable dynami
 features ex
ept the origin for some parameter values (�

1

; �

2

<

0). Therefore all dire
t simulations will not give mu
h insight. Some 
onje
tures

about the periodi
 solutions 
reated at Hopf bifur
ations are possible using the

path-following program AUTO [5℄.

The dynami
s are fully understood in the invariant plane Fix(�) by [14℄, see

also [16℄. There are two bran
hes of periodi
 orbits starting from the D

3

-Hopf

bifur
ation of 0 and the Hopf of N

1

at �

2

= ��

1

; �

1

> 0. These bran
hes do

not undergo any folds and end at the homo
lini
 orbit. The global behavior

of the other bran
hes of periodi
 solutions are analyzed using AUTO. These

bran
hes of periodi
 solutions outside Fix(�) seem to break down at the 
lover
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1

2

3

Figure 7: A periodi
 orbit with sequen
e 1213 of isotropy type

~

Z

2

of the bran
h


oming from the D

3

-Hopf. Parameter values are near the existen
e of the ho-

mo
lini
 
lover. A proje
tion on the v plane is shown, the 
rosses denote steady

states. The traje
tory of periodi
 orbit was approximated by integrating the

di�erential equation starting at points, whi
h des
ribed the periodi
 solution

for AUTO.

stru
ture of homo
lini
 orbits. Probably they are some of the periodi
 orbits

of the subshift:

� The periodi
 solutions with isotropy type

~

Z

2


oming from the D

3

-Hopf

bifur
ation have period 4 
reated by the sequen
es 1213, 2321 and 3132,

see �gure7.

� The solutions 
oming from the Hopf bifur
ation ofN

1;2;3

at �

2

= �

1

; �

1

<

0 seem to have period 2, see �gure 8.

� Even if the author 
ould not pi
k up the

~

Z

3

periodi
 solutions starting

at the D

3

-Hopf bifur
ation for path-following with AUTO. We might


onje
ture that this bran
h also ends at the homo
lini
 
lover. They are

probably of period 3 with sequen
es 123 and 132.
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2

3

Figure 8: A periodi
 solution with sequen
e 23 with isotropy type

~

Z

2

on the

bran
h 
oming from the Hopf bifur
ation of N

1

.

The entire horseshoe does persist for some parameter by a general perturbation

argument for hyperboli
 sets. It remains an open question how long for example

the other periodi
 orbits 
reated by the horseshoe persist. This will probably

involve even more 
ompli
ated bifur
ations.

We will 
onsider an appli
ation to three 
oupled os
illators following Fiedler

[6℄. The system is given by

_x

i

= f(x

i

) +D(x

i�1

+ x

i+1

� 2x

i

) (mod 3); i = 1; 2; 3; (19)

where x

i

2 R

k

and D = diag(d

1

; : : : ; d

k

). This system is equivariant under

permutations of x

1

; x

2

and x

3

. The symmetry group is isomorphi
 to D

3

. If

we have a homogeneous solution, it will stay homogeneous under the evolution

of time. We 
hange to (x; y; z) 
oordinates where

x = x

1

+ x

2

+ x

3

; y = x

1

� x

2

; z = x

2

� x

3

:
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In the new 
oordinate system we then have:

_x = f(

x+ z + 2y

3

) + f(

x+ z � y

3

) + f(

x� y � 2z

3

)

_y = f(

x+ z + 2y

3

)� f(

x+ z � y

3

)� 3Dy

_z = f(

x+ z � y

3

)� f(

x� y � 2z

3

)� 3Dz (20)

We 
onsider the homogeneous equilibrium (x

0

; x

0

; x

0

) with linearisation

f

0

(x

0

) = A. In the new 
oordinates the equilibrium is (3x

0

; 0; 0). Its Ja
o-

bian in the entire system is given by the blo
k diagonal matrix diag(A;A �

3D;A� 3D).

We 
hoose k = 2 and for f the dynami
s of the Brusselator as an easy example.

It gives some insight into the possible behavior of 
hemi
al os
illator. So f =

(f

1

; f

2

) is given by f

1

(�

1

; �

2

) = a� (b+1)�

1

+ �

2

1

�

2

; f

2

(�

1

; �

2

) = b�

1

� �

2

1

�

2

with

a; b > 0, the equilibrium is x

0

= (a;

b

a

) and A =

�

b� 1 a

2

�b �a

2

�

. We 
hoose

D =

1

3

�

�

1

0

0 �

2

�

: Then A� 3D has a double eigenvalues 0 if

det(A� 3D) = �

1

�

2

+ �

1

a

2

� �

2

(b� 1) + a

2

= 0

tra
e(A� 3D) = b� 1� a

2

� �

1

� �

2

= 0

The solution is given by (�

1

; �

2

) = (b � 1 � a

p

b;�a

2

+ a

p

b), the di�usion


onstants �

1

; �

2

are positive and therefore somehow realisti
 for a <

b�1

p

b

. So

this D

3

-equivariant system has a Takens-Bogdanov point sin
e there is a double

zero eigenvalue and A�3D 6= 0. We apply our bifur
ation analysis for Takens-

Bogdanov points with D

3

-symmetry to this problem. It will be valid on a

four-dimensional 
enter manifold whi
h is tangent to the subspa
e spanned by

y and z.

As tra
e(A) > tra
e(A � 3D) = 0 holds for �

1

+ �

2

> 0, the matrix A has at

least one eigenvalue with positive real part. Hen
e all dynami
al features will be

unstable if we 
onsider the entire system. We 
ould stabilize the system when

using negative di�usion rates. But still all bran
hing solutions have unstable

dire
tions due to the Takens-Bogdanov point making them ina

essible for

dire
t numeri
al simulation.

The origin will still 
orrespond to the homogeneous solution even after the

needed 
oordinate 
hanges. Then an interpretation of a D

3

-Hopf bifur
ation in

a ring of three 
oupled os
illators is given in [11, XVII.4℄. The three di�erent

types of periodi
 solutions give di�erent waveforms, phase shifts and resonan
es

for the three 
ells. We furthermore expe
t near the bifur
ation point the exis-

ten
e of inhomogeneous steady state solutions with two 
ells being in the same

state. The periodi
 solutions 
oming from the Hopf bifur
ations of these �xed

points os
illate around these inhomogeneous steady states. In the �rst type

two 
ells are in phase and in the other type two 
ells have a phase shift of
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�. The periodi
 solutions 
ollapse at the homo
lini
 orbits, sin
e by moving

in parameter spa
e parts of the periodi
 orbits rea
h a state very 
lose to the

homogeneous equilibrium. For these parameter values the system is already

`
haoti
' be
ause of the existen
e of shift dynami
s. When the solution follows

one of the loops of the `
lover' stru
ture it has nearly a Z

2

symmetry, i.e. two


ells have nearly the same state. Hen
e within the shift dynami
s we have

arbitrary 
hanges of two out of three 
ells being nearly in phase. The stru
ture

of our subshift for
es the system to 
hange to another pair of 
ells being in

phase after some time. Be
ause of the unstable dire
tions of the hyperboli


stru
ture this behavior is only observable as a transient motion to in�nity or

to some stable solutions far away from the Takens-Bogdanov point.
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