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ABSTRACT. We study the versal unfolding of a vector field of codi-
mension two, that has an algebraically double eigenvalue 0 in the
linearisation of the origin and is equivariant under a representation of
the symmetry group D3. A subshift of finite type is encountered near
a clover of homoclinic orbits. The subshift encodes the itinerary along
the three different homoclinic orbits. In this subshift all those symbol
sequences are realized for which consecutive symbols are different. In
the parameter space we also locate a transcritical, three different Hopf
and two global (homoclinic) bifurcations.
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1 INTRODUCTION

A vector field has a Takens-Bogdanov point, if there is a Jordan block ( g é )

in the linearisation of a steady state and if certain nondegeneracy conditions
are fulfilled. This codimension two degeneracy with its unfolding is a key
to understand several phenomena in dynamical systems (see [17, 3] and text-
books like [13]). Takens-Bogdanov points can also serve as a starting point
for the path following in two-parameter flows of global Hopf bifurcation [6]
and homoclinic orbits [7]. One parameter families of homoclinic orbits are
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464 KARSTEN MATTHIES

created at Takens-Bogdanov points of two-parameter flows. Hence these bifur-
cation points play the same role for the creation of homoclinic orbits in two-
parameter flows as Hopf bifurcation for periodic solutions in one-parameter
flows. Near homoclinic orbits several bifurcations to other bounded solutions
may occur. Thus Takens-Bogdanov points are important organizing centers for
the bifurcation analysis of dynamical systems. Suppose the dynamical system
% = f(z) has constraints given by an equivariance under a symmetry group I,
ie. f(yx) = vf(x), for v € I'. Then one often finds complicated bifurcation
diagrams even at simple bifurcations, [11].
Similarly at the Takens-Bogdanov point with D3 symmetry the dynamics are
much richer than in the non-symmetric case. Applications are given to systems
of three coupled oscillators in a ring. The results could be also applied to mode
interactions for pattern formation in convection problems, where solutions with
D3 symmetry exist [12]. We will encounter a subshift of finite type, which is a
novel dynamical feature in a bifurcation problem of dynamical systems defined
by a vector field. Whereas in many bifurcations one can encounter Smale
horseshoes giving rise to a full shift, the existence of a subshift of finite type is
a rare phenomenon.
A subshift o(zn)nez = (Tnt1)nez of finite type on three symbols {1,2,3} is
defined on

Xa ={(@n)nezlen € {1,2,3}, 00,,2,4, =1}

where A = (a;j)i jef1,2,3} 18 @ 3x 3 matrix with entries 0 and 1. The topology of
X 4 is defined as the product topology of the discrete set of symbols {1,2,3}. A
subshift of finite type allows only those symbol sequences, for which consecutive
symbols z,, x,1+1 are compatible with the transition matrix A. The symmetry
group D3 will act on X 4 in the following manner

‘fip’: k((xn)nez) = (Rep)nez with &1 =1,82=3,kR3 =2
‘rotation”: y((zn)nez) = (2n +1mod 3),cz.

(1)

The bifurcation analysis will be reduced in section 2 to the discussion of a
vector field on R* =2 C?, where D5 acts as

‘fip’: k(v,w) = (0,w)
‘rotation’:  y(v,w) = (eXp(i%ﬂ)U,eXp(i%ﬁ)w)-

2)

A vector field in normal form can be derived. Using additional parameters
(1, p2) to unfold the singularity the normal form is generically given - up to
time reversal - by

U= w (3)
W = v+ pow + 07 — 0w + [Ajv]? + Blw|* + C (v + vw)]v + D]v|*w.

A bifurcation diagram describing the complete plane of unfolding parameters is
given in figure 1. The main result of this paper is formulated in theorem 1. It
states the existence of a special form of a horseshoe for an open set of parameter

DOCUMENTA MATHEMATICA 4 (1999) 463-485



TAKENS-BOGDANOV POINT WITH D3 SYMMETRY 465

Ho
™
S
3
s
' 'hqm.o‘d toN / B-point .
.............. 1
D-Hopf at 0 7| X
, N,
’ N
’ AN .'%'f
//'» %/\\"'.[%’7%.
/\’&é (»( N 6 /Cb
7 S N
Q Q-
//\2\ \\0)00/,
’ N Op
s \

Figure 1: Bifurcation diagram in parameter space: transcritical bifurcation of
steady states (bold line), three kind of Hopf bifurcation (dashed lines), two dif-
ferent homoclinic bifurcations (dotted lines) and shift dynamics (shaded area).

values. Later we will rigorously define three Poincaré sections Si", Si*, Si? as
sections along three coexisting homoclinic orbits biasymptotic to the origin. P
will be the return map on Si™ U S§" U S5™.

THEOREM 1 For 0 < ps + %,ul small, uy > 0, there exists an invariant hyper-
bolic Cantor set C C Si" U Sim U Si such that the return map P : C — C
induced by the flow of (3) is topological conjugate to the irreducible subshift of

0 1 1
finite type with transition matriz A = 1 0 1 |. Here means topological
1 10

conjugacy that there exists an homeomorphism 7 : C — X 4 such that TP = o1
on C.

Furthermore P and T can be chosen to be D3-equivariant, when using the rep-
resentation (2) on C and (1) on X4. C is Dz-invariant.

So in fact we have a Ds-subshift of finite type as defined in [8]. Neither the
incomplete bifurcation diagram in figure 1 nor theorem 1 depend on the coeffi-
cients A, B,C, D and other higher order terms. In the bifurcation diagram the
lines will be bended to curves by a near-identity diffeomorphism. This is pecu-
liar to the case of D3 symmetry. When the system has some other symmetry
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466 KARSTEN MATTHIES

group like O(2) [4] or D4 [1] many more parameters and several different bifur-
cation diagrams have to be discussed. Thus our analysis can only be a first step
to a general analysis of D, equivariant Takens-Bogdanov singularities, where
one might hope to encounter the O(2) case as a limit.

The rest of the paper is organized as follows. In section 2 we give the Taylor
expansion near the origin of a generic vector field equivariant under (2) at the
Takens-Bogdanov point, derive a normal form up to third order and unfold it.
We discuss the basic dynamical behavior in section 3, i.e. we analyze steady
states, Hopf bifurcations and the dynamics in invariant subspaces including
homoclinic orbits. The existence of the subshift will be proved in section 4,
where we use a definition of a general horseshoe. In the last section 5 we will
discuss some further numerical studies and applications.

2 D3-EQUIVARIANT VECTOR FIELDS AND NORMAL FORMS

Before giving a Taylor expansion near the singularity we first use some repre-
sentation theory to justify the representation like in (2). There are in general
two possibilities that a representation space of a compact Lie group I' admits a
non-diagonalizable I'-equivariant linearisation A at the origin. Similar to chap-
ter XVI of [11] there must be a I-invariant subspace W , that is either of the
form V@V, where V is absolutely irreducible, or that is irreducible but not ab-
solutely irreducible. The second case is not possible for the Takens-Bogdanov
0 1 g
0 o ) Sup-
pose W is irreducible but not absolutely irreducible, then A(W) = 0 or A(W)
is isomorphic to W [11, Lemma XII.3.4]. But if Ay contains the nilpotent
Jordan block then A : W — A(W) cannot be an isomorphism. Hence Ay = 0
and this is in contradiction that the Jordan block is non-zero. So we use a repre-
sentation of the form V & V. When choosing for V' the standard representation
of D3 on C =2 R? we get the representation (2).

singularity. The linearisation A contains the nilpotent matrix

PROPOSITION 2 (i) The ring of all Ds-invariant germs acting on C ® C as
in (2) is generated by

$1 = vV, S2 = ww, S3 = VW + tw and
G 3—F 4 =i=3—ji
t; =v'w ™ +v'w’™ , j€H0,...,3}

(ii) The module of Ds-equivariant smooth mappings of C® C — C @ C is
generated by

w=(5) 0 =(0)m=(5) 0= ()

vl w27 0 ;
fi = < 0 >,h]-: ( w2 ) -7 €1{0,1,2},
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i.e. all Ds-equivariant smooth germs of mappings h : R* — R* can be
written in the form h(v,0,w,w) = pogo + p1g1 + P2g2 + pags + qofo +
a1fi + @ f> + roho + rihy 4+ rahs where po, ..., p3,q0,q1,42,70,71,72 are
smooth function germs of s1, s2,83,tg,---,t3.

Proof: For polynomials the completeness of the generators can be checked by
lengthy by-hand calculations or by computer algebra, see [9]. These are then by
Poénaru’s theorem also the generators of the module of germs of mappings.Od
Then a general Ds-Takens-Bogdanov point has the following Taylor expansion
up to third order with real coefficients a1, by, .. .:

0 o= w 4+ a0+ b 0w + e w?

+ v(d1vt + eqww + fi(vw + Tw))

+ w(g1v0 + hyww + i1 (vw + dw)) 4
W= 202 + bo W + o> (4)

+  v(dav + eoww + fo(vw + tw))
+  w(g2v0 + howw + ix(v0 + Tw)).

First we try to remove as many second order terms as possible, therefore we
choose a general near-identity Ds-equivariant coordinate change.

v = v 4 a0+ fow + yw’

w = w + b’ + Bolib + Yob®
We rewrite (4) in the new coordinates and this yields to

v = w4 (a4 a2)0? + (b + B2 — 200)0' W0 + (c1 + 72 — Br)w"?
+ v’(cilv’z‘)’ +ew'w' + fl(v’u‘)’ + 7'w'))
+ W (10" + hw'®' + i (VD + T'w'))
u}’ = 0,2172 + (bg — 20&2)17”117’ + (02 — ﬁg)’lI)IQ
+ v’(cigv’z‘)’ + éw'w' + fg(v’u‘)’ + 7'w'))
+ W (§ov'0 4 how'®' + ix (V'@ + T'w'))
()
where the terms depend on the original term, a;, b;, ¢; and «;, 3;,7; fori =1, 2.
By choosing

1
o = §(b1 + ), a0 =—a1,51 =0,fp=c2,1 =0,72 = —c1

we can remove all second order terms in the first component and w'? in the
second component in (5). All the third order terms are O(2)-equivariant. Thus
we can use exactly the same coordinate change as Dangelmayr and Knobloch
[4] (after removing the second order terms) without affecting the lower order
terms to get the following simplified system:

Vo= w
w = Ev’+ Fow+ [Ajv]> + Blw|® + C(vw + vw)] v + D|v|*w,
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where F :~(12,F = bg + 2a1,A = d2,B = d~2 _gl -|-f1 - 252,0 = dl + fg
and D = d; + g2. We use an unfolding to describe the behavior of generic
families of vector fields near the singular point. Even if there is not a general
method to unfold the whole vector field, the linear part can be unfolded by
( l? l? ) such that all nearby linear parts can be reached up to conjugation
1 M2

[2]. After scaling v,w,t and possibly a time-reversal we can set generically
E = 1,F = —1, if the transformed second order terms are nonzero. Then we
get the normal form as in equation (3):

Vo= w

W = v+ pow +0° — 0w + [Ajv]? + Blw|* + C(vw + vw)]v + D]v|*w.

3 BIFURCATIONS

Standard computations show some symmetry breaking bifurcations. Here es-
pecially the behavior inside the flow-invariant fixed point space Fix(k) =
{(v,w)|k(v,w) = (v,w)} = {(v,w)|v,w € R} will be considered. The same
dynamics can be encountered in the rotated spaces YFix(k) and y?Fix(x). The
bifurcation inside these planes is a Takens-Bogdanov bifurcation, in which the
origin remains a singular point. This was analyzed by Hirschberg and Knobloch
[14].

In general cubic and quintic terms cannot be neglected in Hopf bifurcation with
D3 symmetry. But in our situation the higher order terms are not important as
long g1, uo are small enough. To see this we have to perform the normal form
calculations including these terms. The terms involving e.g. A, B,C, D are all
of higher order in u;,us and hence can be neglected in a small neighborhood
of 0 in the uy, uo plane. For illustration we consider a Hopf bifurcation of the
origin at gz = 0, w1 < 0 inside Fix(k). After calculating a normal form for Hopf
bifurcation like in [13] the direction of branching is determined by the sign of
the term a = — 8“1“‘ + 295D So the higher order terms can be neglected inside
a neighborhood of (0,0) in parameter space (u1,p2). Similar results hold for
the other bifurcations too. We suppress therefore the dependence on these
terms. They only bend some lines in the bifurcation diagram to curves by a
near-identity diffeomorphism. See also figure 1.

e The only stable feature is the origin for u;, us < 0.

e For py = 0 there is a transcritical bifurcation of secondary steady state
N; = (—p1,0) and the rotated points No = YNy, N3 = y2N; each with
isotropy Zs.

e For py = 0, 41 < 0 the spectrum of the origin is purely imaginary and the
system undergoes a D3-Hopf bifurcation [11], where three different types
of periodic solutions appear (isotropy type Zs for ps < 0; solutions of
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TAKENS-BOGDANOV POINT WITH D3 SYMMETRY 469

isotropy type Zs and inside Fix(k) of isotropy type Zs both for s > 0;
all these solutions are of saddle type).

e For us = p1 < 0 Ny, Na, N3 undergo Hopf bifurcations, where the imag-
inary eigenvalues have eigenvectors outside the invariant subspaces and
the solutions have isotropy Z-.

e For 0 > pus = —uy Ny, No, N3 undergo Hopf bifurcations inside the in-
variant subspaces, i.e. the periodic orbit have isotropy Zs.

e For some curve with py ~ —gul, w1 > 0 there exists an orbit inside Fix (k)
homoclinic to 0, see [14].

o Similar there are orbits homoclinic to N1, No, N3 for po &~ —2p1, iy < 0.

For the homoclinic orbits we have even nearly explicit expressions. Scaling the
equation (3)

T =¢€t, 0= e2x,w = eSy,ul = 62V1,u2 = e%v,.
and "= -~ give

T o=y (6)
j = nz+ I +e(ray - F]) + O().

Letting ¢ = 0 the system has an explicit homoclinic orbit for v; > 0 inside
Fix(k):

([ (e (35))
q(t) = < Yq(t) ) B 3 forsech? (@t) tanh (@t)

Using the Melnikov method, see e.g. Guckenheimer and Holmes [13], we can
then compute parameter values for which the homoclinic orbit persists for € > 0
to get the above results.

By symmetry there are homoclinic orbits biasymptotic to the origin inside
the other two invariant fixed point spaces YFix(k) and v2?Fix(k) for the same
parameter values too. So there exists a ‘clover’ like structure of homoclinic
orbits, see figure 2.

4 GENERAL HORSESHOES AND PROOF OF THEOREM 1

In this section we prove the existence of the subshift of finite type near the clover
of homoclinic orbits. We will compute a Poincaré map near the homoclinic
orbits with varying unfolding parameters pu; and ps. For each of the three
homoclinic orbits we define an ‘in’ and an ‘out’ section, called Si" and S{“!
(figure 3). The return map P : Si" U Si* U Sit — Siny Sin U Sit is discussed
by dividing it into local parts near the steady state, which can be described by
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Figure 2: A sketch of the clover of homoclinic orbits. The three orbits lie all
in different planes, which intersect only in the origin.

out

Figure 3: The sections S{“* and Si" at the homoclinic orbit projected to Fix(k).

its linearisation (lemma 4) and global parts along the homoclinic orbit. This
technique can also be used to analyze several other homoclinic bifurcations, see
for example the textbook [10].

Before we give the technical details of the analysis of P, we describe the ge-
ometric idea: The sections S and S2* are cubes in R?. We identify those
regions in S¢% which have a preimage in some Si" under the local maps (see
figure 4). Similarly we compute the regions in Si", which are mapped by the
local maps to some S¢* (see figure 5). The global map P will map the cube
in figure 4 to the cube in figure 5.

For appropriately chosen parameters (u1, p2) the slabs marked ‘2’ and ‘3’ in
figure 4 will intersect the slabs ‘2’ and ‘3’ in figure 5. We can then show
that there is a Smale horseshoe in three dimensions in the upper half of the
cube. But because of the symmetry we have three copies of these cubes and
the possible itineraries inside the invariant set are more complicated. In the
figures 4 and 5 the sections of the homoclinic orbit marked ‘1’ in figure 2 are
shown. The trajectories of points in the regions 2’ and ‘3’ in figure 4 were in
the sections S&* and Si" before. In the same way the slabs 2’ and ‘3’ in figure
5 are those regions, where the forward orbit will reach the section S§“¢ and
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3

bty

S

Figure 4: The section S{*' with the images of Si", Sim and Si*. The line in
the middle is the section with Fix (k).

Sgut next. Hence the itineraries, described in the figures 4 and 5, have first a
symbol ‘2’ or ‘3’ then the symbol ‘1’, because they are now at the homoclinic
orbit with symbol ‘1’, and then proceed with ‘2’ or ‘3’. At the other sections
there is the same behavior after following once along the homoclinic loop: The
trajectories of points inside the invariant set will lead to another section and
hence to another symbol. Therefore the subshift described in theorem 1 can
be realized, but no other infinite symbol sequences.

To rigorously prove the existence of the subshift, we describe briefly the notion
of a general horseshoe in R? following Katok and Hasselblatt [15]. First we
explain the meaning of ‘full intersection’. Then using cone conditions we give
precise meaning to ‘horizontal expansion’ and ‘vertical contraction’. We prove
a technical lemma to justify the complete linearisation near the steady state
before computing the local and global maps.

We will consider a rectangle A = Dy x Dy C R® R? = R? where D; and D,
are discs. The projections on the components are denoted by m; (“horizontal”)
and my (“vertical”). Let A C U C R? be a rectangle and f : U — R? be a
diffeomorphism. Then we call a connected component S’ = fS C AN fA full,
if

1. 71'2(5) = DQ,
2. for all 2 € 5,1 |f(sn(Dy xma(z))) 18 @ bijection onto D;.

The first condition implies that S reaches completely along the vertical direction
and second one that the image of every horizontal fiber in S meets A and
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Figure 5: The section Si" where the preimages of S{*, S9%* and S¢%! are the
dotted slabs.

traverses it completely.

Next we introduce cone conditions. A horizontal s-cone H; is defined by H; =
{(u,v) € T,R?|||v|| < s||u||}, similarly a vertical s-cone V; by V,# = {(u,v) €
T,R3|||ul| < s|lv]|]} at z € R? for some s. A map f preserves a family H,
of horizontal cones for x € U C R3, if Df,(H,) C int(H,)) U{0}. Tt is
called expanding on a horizontal cone family H,, if || D f,&|| > ul|&|| for € € H,
and some fixed p > 1. We want to express a contraction property in the
vertical direction, thus we consider f~! on vertical cone families. It preserves
the vertical cone family V,, if Df, ' (Vy)) C int(V,) U {0} and f~! expands
them, if ||[Df; "¢l > A7H|€]] for € € Vy(,) and some uniform A < 1. Then the
appropriate generalization of a Smale horseshoe in higher space dimensions is
given by

DEFINITION 3 [15] Let A C U C R? be a rectangle and f : U — R? be a
diffeomorphism. AN f(A) is called a horseshoe if it contains at least two full

components A1 and As such that for A' = Ay U As the following conditions
hold:

1. my(A") C int(Ds) and 7 (f~1(A")) C int(Dy),
2. D(f|-1(ar)) preserves and expands a horizontal cone family on 1A,
3. D(f‘_Al,) preserves and ezxpands a vertical cone family on A’.

To compute the return map P we will first prove that we can completely lin-
earize the local maps.

DOCUMENTA MATHEMATICA 4 (1999) 463-485



TAKENS-BOGDANOV POINT WITH D3 SYMMETRY 473

LEMMA 4 Suppose that the distinct eigenvalues of the linearisation A at 0

Aip = B2+ %% + w1 are not in resonance, i.e. A\, — (kA1 +1A2) # 0 for
k,l € N,k +1> 1. Then there exists a Ds-equivariant smooth diffeomorphism
H conjugating the flow ®; of (3) and exp(At) on some neighborhood U of the
origin: H®; = exp(At)H.

Proof: We consider first the time-one-map ®1, again the linear part is diago-
nal with eigenvalues e*', e*2. For these the non-resonance conditions for maps
exp \; # exp(kA;) - exp(IXs) for k,1 € N,k +1 > 1 hold. The non-resonance
conditions imply that we can formally remove all terms of algebraic order by
a near-identity coordinate change. This is possible even in a Ds-equivariant
setting [11]. So we still have to remove flat terms and discuss convergence. To
remove these flat terms we use a version of Sternberg’s theorem [15, theorem
6.6.7]. The assumptions are fulfilled: The linear part is diagonal and the nor-
mal form which can be achieved by the above coordinate change is a convergent,
power series, since it is only linear. The theorem then gives the existence of a
smooth diffeomorphism conjugating ®; and its normal form. Thus there exists
a smooth diffeomorphism H; linearizing ®; in a neighborhood of the origin.
Furthermore the construction in [15] can be chosen to preserve D3-equivariance,
when we use invariant cut-off functions. Then the Ds-equivariant diffeomor-
phism H = fol exp(—At)H; ®;dt is the needed conjugacy for the entire flow on
some neighborhood U of 0. This can be seen when using exp(—A)H; ®; = H;

exp(—As)H®, = [} exp(—A(t + ) Hi @y 5dt = [*7 exp(—Au) Hy @, du
= H — [ exp(—Au)H, &, du + [ exp(—Au)H; &, du

=H - fgs exp(—A(u + 1)) H1 @y 41 du + fls+1 exp(—Au)H, ®,du

= HO

Now we can compute the map P. After the coordinate change of the lemma the
local maps are given by a linear flow. Then the stable and unstable manifolds
coincide with the stable and unstable eigenspaces. To carry out the analysis
we use again the scaled coordinates x = xy + ix2,y = y1 + iy2 € C for some
e > 0 small. We know the homoclinic orbits explicitly by section 3 up to
perturbations of order O(e). While neglecting terms of order O(e?) the system
in C? is given by equation (6).

LocaL MaPs: To compute the local maps we use a basis of eigenvectors of the

2,,2
linearized system: For the eigenvalue \; = % + 1/ £ :2 4+ v1 > 0 we choose

2,,2
vy, v and for the eigenvalue Ay = % —4/ £ :2 + 11 < 0 the vectors vs,vs. The
original basis of R* & C? is given by (21, y1, %2, ¥2).

U1 = (1 + /\%)7%(17)‘1:070)117 V2 = (1 + )‘%)7%(07[): laAl)Ta
U3 = (1 + /\%)_%(17/\2’070)7’7 Vg = (1 + /\%)_%(0705 17/\2)T'

A vector a € R* is then denoted as a = a1v1 + asvy + asvs + asvs. The
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eigenvectors v; and v3 span Fix(k). The section S¢“! is then defined by
a; = —c and max{|as|, |as|, |as|} < &

with ¢ small and 0 < § < ¢ such that the section is completely inside U, where
the flow is linearized. Si" is given by

a3 = —c and max{|a1], |az|, |as|} < 4.

We will also use rotated coordinate systems with basis vectors v; = vyv; and
i = y?u; with coefficients aj, a)’. Thus we can define the sections of the rotated
homoclinic orbits.

Sgut a1 = —c,max{|a}|, a}], |la}|} < &
S‘?“t: al = —c, max{|a}], |a¥|, |a}|} < &
Syt ay = —c,max{la|, |ay], laj|} <&
Sir: af = —¢,max{|af|, a5, |a}|} < &

First we compute Plloc,l € {1,2,3}. The flow of the linear system is given by

At At Aot

Di(a) = arvieM’ + agvae™t + agvze™®’ + asvse?t, (7)

similarly in the primed versions for the rotated coordinate systems. Starting
at a vector a € S{" U Si" U Si" with P/°°(a) € S{"! (i.e. especially a; < 0),
the time ¢t = (In s |)//\1 is needed to reach the So“t section. Then P}°°(ajv; +
azvz + azvs + aqgvs)

22l
a1 X1

vs) (8)

= (—cv1 + a2 ; v2+a3‘—‘ v3+a4
1

with l)‘2|—1+18€l/ + Sey/ 15€2vE + v + O(3).

To understand the geometry of the local maps we compute how the preimage of

the ‘out’-sections SP“f,1 € {1,2,3} intersects the ‘in’-sections S;",l € {1,2,3}

and how the images of S/™ intersect the ‘out’-sections Sy“f. We start with the

preimage of S{“! intersected with Sin

in

1,1
— S 1loc (Sout)
= {(al,az,ag,cu)laz = —¢,max{la], |a2| |a4|}<5}
M
N {(ar,a2,a3,00) a1 <0, max{as] ||| 3|‘ Ul |2y <0

= {(a17a27a37a4)

,az3 = —c, lag| < 8}

This is the slab with label ‘1’ infigure 5. Then the image of Si" inside S{** is
given by Sg*t 1 Ploc(Si) = Ploc(Sin)

122l 1)
= {(a1,a2,as3,a4)|a; = —¢,|az| < 9,—0*1 < az <0,|aq] < E|a3|}.
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This set is the slab with label ‘1’ in figure 4. To determine the images
Ploc(Sin)y 0 S¢ut and Ploc(Sit) N S¢“t we have just to rotate a part of the
coordinate system. Inside the stable eigenspace (vs,v4) is changed to (v, v})
and (v§,v]) respectively. Equation (7) holds for each eigenspace independently.
Thus the restrictions are essentially the same as for S{% N P{°¢(Si") just with
ak,al and a4, a!f instead of ag, ay. Hence the slab SN P/o¢(Sin) has just to be
rotated by 27/3 and 47/3 inside the (vs,v4) plane to get S{ N Pio¢(Sir) and
Sout n ploc(Sin). A sketch of section S¢* with the images of Si™,1 € {1,2,3}
is given in figure 4.

Next we will compute the preimage of S and S$% under P{°¢ to get the
structure of Si”. When we use a rotated coordinate system (v}, v5) instead of
(v1,v2) inside the unstable eigenspace, the time ¢t = (In \a_c’l\)/)‘l is needed to

reach S$“t. This yields to

A [ o
Pi°¢(ajv; + ayvy — cvg + aqvs)
Aol Aol
1 all
U3+ a4 |—

aj 1
U4).

!
vy —C

¢
= (—cv| + aj ar
So the preimage of Sg% under P/°° is just Sim rotated by 27/3 inside the
unstable eigenspace. And finally for the preimage of S$“ the coordinate system
has to be rotated by 47 /3 in the unstable eigenspace. The section Si"” with the
preimages of S7“*,1 € {1,2,3} is drawn in figure 5.

GLOBAL MAPS: Next we approximate Plglo : Sput — Sim by an Taylor ex-
pansion using the linearisation along the homoclinic orbit. This approxima-
tion is valid by a general perturbation argument for hyperbolic sets, when
we choose the size of the cubes § small enough. We get a constant term
of the global map when considering the splitting of the homoclinic orbit.
The point (—¢,0,0,0) € S¢U! is inside Fix(x), hence it will be mapped to
Sin N Fix(k). Thus the constant term is the distance of the stable and unsta-

ble manifolds inside Fix(x). Using [13, Eq.(4.5.11)] this distance is given by
d(va,€) = EHAJ/‘[((qV)ZII) + O(€?), with Melnikov functional M (v2) and vector field f
on Fix(k). For our system this is d(v2) = ez- /U1 (v2 + S11).

In (x1,y1,®2,y2) coordinates the linearisation along the homoclinic solution for

€e>0is given by B = D(z,y)f\(z(t),y(t)) =

0 1 0 0

vi +2x1(t) —eyr(t)  e(va — z1 (1)) 0 0
0 0 0 1 ’
0 0 v —2x1(t) + eyr(t)  e(va + (1))

(9)
where z1(t), y1(t) are the non-zero components of the homoclinic orbit. This
means that we have to solve the non-autonomous linear differential equation
f = B¢. We use the block diagonal structure of the matrix. The first block
describes the behavior inside the invariant subspace Fix(k) and the second
block the orthogonal complement Fix(x)™.
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In the first block we are interested in the initial values £ = asvs inside Si’“t.
One solution of the variational equation inside Fix(x) is given by ¢o(t) for
e = 0. Tetting qo(0) € 57 and qo(T) € Si, then go(0)]l = lao(T)|| by
symmetry. The vectors &y, ¢o(0) restricted to Fix(k) are a fundamental system.
The Wronskian W of this system is constant by Liouville’s theorem: W =
trace(BlFiX(n))W = 0 . Therefore, as Go(0) = kv; and Go(T) = kuvs, the
projection of &(7T) onto v; is az. By smooth dependence on parameters this
yields to PY"°(asvs) = (1 + O(e))asv; .
In the second block we consider initial values &5 = asvs and & = aqv4. First
assume that € = 0. As (v; — 221 (¢)) > v1 > 0 and £§1)(0),§£2) (0) > 0 hold, the
two components él) (t) and Ef) (t) are increasing. The global map also expands
this vector for € > 0 by the smooth dependence on the parameter e for finite
time. Hence in linear approximation we get Plglo(agvg) = az(@1v2 + anvy) with
a? + a3 > 1. Furthermore

aq Z 09|O[2| (10)

holds because the coefficients of the solution are positive in the xs,ys coordi-
nates. Applying Liouville’s theorem again for ¢ = 0, the second initial vector
is mapped to Pflo(a4v4) = a4(B1v2 + B2vg) with ay 8y — B = 1. Againe >0
will give perturbations of type 1+ O(e), which we will suppress by still using
the same notation.

FuLrL Map: We now consider only those points which are mapped under the
local maps from Si" U Si" U Si" to S¢**. When we use (vy,v2,v3,v4) as a
coordinate system for all three ‘in’-sections then the composed mapping is
given by

P o ploc.gin 5 S e {1,2,3}

€ a 1+§e v
a s VTL(Evn ) + (L4 O(e)a | 227"

1+§e v
a2 Oé1a2|a—cl|+,31(14|a—cl| TV

as —C
aq

(11)

azaz| | + Boaa |4 |1+%6\m

Now we can use this to determine the return map P : Si® U Sin U Sin —
SinySinuSi®, where it is defined. Because of the symmetry the maps P;looplloc
and Pz;?lo o P/°¢ are related to (11) by simple rotations of whole R*. When
changing to the rotated coordinates, the maps PY'’ o P!°¢ and P¢'° o Pl¢ are
given by equation (11) with a; replaced by a} and af . Therefore it is enough to
consider a reduced map P just as a map from one section S to itself. We just
have to change the original labels ‘1’, ‘2’ and ‘3’ in the Si" and Si" sections.
We will use a labeling relative to our position and call our position ‘1’, the next
homoclinic orbit in the direction of the rotation is called ‘2’ and the other one
‘3.

PROOF OF THEOREM 1: The existence of a horseshoe for this reduced map
P will be shown. Analyzing the implications for the full map will prove the
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theorem. The conditions of definition 3 will be checked for the map:

P.g" — gin

6
o V() + (15 0 o[22
1
o n aras| | + Bras |2 | +8 - (12)
as a202|—|+ﬁ ezt |a1| +

The horizontal direction is a;vs + asvs and the vertical directions are v; and
v4. Using these as a new basis with coefficients (1, (> and (3 we define A as
the product of discs with radii 2§ in (; for Dy and § in ((3,(3) for D2 with
the further restriction % < (< %. This means we choose a coordinate system
such that we can ignore any rotation of figure 4 under the global mapping to
figure 5, even if |ao| is not small. This can be done, because we estimated
ay > 0.9]|as| in (10). We just have to change the labels from as to (1, a1 to &
and a4 to (3. As above we denote the rotated coordinates by ¢} and ¢}'. The
rectangle is given in figure 6. We choose the distance of splitting d = %. The
two full components A; and A,, which have to be contained in AN IB(A), are
the two top dotted slabs in figure 6.

We consider the preimages of these two slabs under the original return map
P, i.e. we are interested in the preimages of Aj, Ay C S{” under P{* o P%.

Then we get (PY'° o Ploc)~1(A,) =

By = {(C1yar ) € 7- A0 < =Gy < 26, |<1|<6\ s
and similarly (P o PLo¢)=1(A,) =
By = {(G, G &) €72 - A0 < c2<25|c1|<6‘ N

As we identified the three sections in this analysis of P, we deal with I'; and
['s, which are contained in the slabs with labels 2 and 3 in figure 6. The further
restrictions are due to the possible additional expanding of the global map, i.e.
the slabs are defined by

"
M= =g e A< <2 <L
1
!
P o= = (GG e A< -G <2 <5 L aa)

After relabeling we have Ay = (1“1) and Ay = ( 2): The slab T'y is mapped
by Pl¢ to S¢u* and then by PY", because of our relabeling it will be the
slab coming from S9ut, hence it is the dotted slab with label 2 and therefore
Ay = P(T;). In the same manner we get Ay = P(Ty).
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rectangle A

Figure 6: The section S with rectangle A = D x Dy including A; 5 = P(T 5)

So we can now check the conditions in the definition of the horseshoe. The two
components Ay = P(T';) and Ay = P(T') are full: m2(T;) = Dy for i = 1,2,
because we can choose (3 freely and ¢ < 0 (respective (}) freely with |(]]
(respective ({') small inside A, i.e. we get all wanted (> > 0 in the definition
of I';. For all ¢ € T'; the restriction m1|¢(r,n(p, xms(c))) 18 @ bijection onto D.
When we vary ¢(; for any given z = (a1, @1(1,a2(1 + aq4) € T; then P is affine
linear (see (12)) and the projection 7y to the (; component is injective, which
is the as component in P. It is also surjective onto Dy, because the restrictions
on ay inside I'; ((14) and (13)) were given such that the maximal modulus of
the ay component is § in the image.

Next we check the first condition in definition 3. w3(A’) C int(D3) holds
because of the contraction in the a; = (» and (3 component when choosing
Sv1 4 v2 small enough. The (3 component is given by

1+$e\/1/1

(01 (s — a2Ch) )

The other condition m (P~'A’) C int(D) also holds, because |¢1| < [¢]']/2 +
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V3|¢Y1/2 and ¢!, ¢4 and ¢, ¢ are small enough by the definition of 'y and Ty
(see (14),(13)).

Finally we have to check the cone conditions, for which we need the lineari-
sations of P and P~'. Suppressing all factors 1 + O(e) these are given in the
original (a1, as,a4) coordinates by DP, (a1, as,as) =

— |ﬂ|%ﬁv”1 0 0
c
g51/1/ 1+§€\/V
ala2é_ﬂla4|%|7 ta a gl v (15)
8 /T 1+8¢. /o7
ozzaz%—/32a4|%1|7E o a ﬁ2|a71| Frevm
and if (a1,a2,a4) = P~1(2) then DP;'(2) = (DP,(a1,as,a4)) " is
6
76 v
C
- || 0 0
1—%6\/1/1
o |ar a Ba | —B[%| - (16)
1+$€\/V1 1—‘,—%61/1/1 1—‘,—%61/1/1
—as | < —a | < <
a4 a1 a2 a1 aq

Changing to the new ( coordinates, we can easily check the cone conditions:
The matrix DP((s, (1,(3) is given by

C %E\/Vl
-2 0 0
6 6 6
¢ B1 |2 |7TVPT Co |MF7VT By | G [T VT
a_llé*(OQCZS*C!ZCl)Q_i 22T ar|&|+aZ 2| T il B
6 6 6
¢o | $eviT ¢ |1+ EevmT G |1+ EeviT
—(a1(s—az(1) |22 az |22 =2
(17)
and DP~' by
6
z€\/V1
- C% 0 0
6
ARV
_|e|TYT ey _ B
C2 Ca0? caq at | ¢
1+&emr 1+&emr 1+ 8emr
(225 — oy (a1 Ca—aar)) &7 —an|&| T ol T +51a2|%|
(18)

C

C2
the matrix (17). Then it preserves horizontal cones with constant e.g. s =
0.3 and expands them with expansion rate u = a13; > 1. Similar we see,

1+%6\/ﬁ
is the leading term of the last two lines in (18). Hence it

Now it is straightforward to see, that the term aq

is the largest entry in

that of | £

preserves vertical cones with constants s = 0.3 and expands them with constant
6

Al for A= 2%76@ <1.

By Katok and Hasselblatt [15, p.274] we have the existence of an invariant

hyperbolic Cantor set for the reduced map P, such that the dynamics are
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topological conjugate to the shift on two symbols for this reduced map. Then
for the complete return map P there exists the shift of finite type with the
transition matrix of the theorem: if an orbit is near the loop [ in the present,
then as the shift is on the symbols 2 and 3 the next loop in the itinerary has
to be I + 1 mod 3 or [ + 2 mod 3. Similarly the previous one was [ + 1 mod 3
or I +2mod 3. Thus possible sequences (z,)ncz have the form z,, # z,41.
The realization of all these sequences are guaranteed by the existence of the full
shift on two symbols for P. Proposition 6.5.3 in [15] gives then even persistence
under small C! perturbations i.e. for an open set in parameter space. Hence we
can include higher order terms. This also verifies the linear approximation of
the global maps, for which all equivariant higher order terms can be neglected.
It remains to check the symmetry properties of C, P and 7. The sections S}"
are related by symmetry: Si" = 4Si" and Si* = 42Si". Furthermore Si" is
k-invariant and S = kS&". Then P!°¢ is equivariant, because the linearizing
diffeomorphism is Dz-equivariant. The global part is equivariant under rotation
~ by construction. It is equivariant under & by the following argument:

ETPYks = KT @y (kT) = Ryp) ()

Pglom = (I)t(m) (iE)

As the times ¢(kz) and t(z) are both close to the time needed of the homoclinic
orbits from the ‘out’ section to the ‘in’ section, we get t(kx) =~ t(x). As
By (1) (), By(xa) () € S} for the same k, we get t(x) = t(kx). Hence P9 and
P are equivariant. Then C = N _  P"(Uij=1,2,35;") is D3 invariant, because
P is equivariant and U;—1 2 35" is invariant. If z € C' and * = P"(a,,) with
an € S, then 7(z) = (z,,)nez and the equivariance of T can be easily checked
using the representations (2) and (1). O

5 DISCUSSION

In this section we give a more complete bifurcation diagram of the Takens-
Bogdanov point with D3-symmetry, using numerical studies of the normal form
equations. Then we will describe an application to coupled oscillators.

A major drawback in all further numerical studies is that there are not any
stable dynamic features except the origin for some parameter values (p1, p2 <
0). Therefore all direct simulations will not give much insight. Some conjectures
about the periodic solutions created at Hopf bifurcations are possible using the
path-following program AUTO [5].

The dynamics are fully understood in the invariant plane Fix(x) by [14], see
also [16]. There are two branches of periodic orbits starting from the D3-Hopf
bifurcation of 0 and the Hopf of Ny at pus = —py1, 1 > 0. These branches do
not undergo any folds and end at the homoclinic orbit. The global behavior
of the other branches of periodic solutions are analyzed using AUTO. These
branches of periodic solutions outside Fix(x) seem to break down at the clover
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/‘A“

Figure 7: A periodic orbit with sequence 1213 of isotropy type Z of the branch
coming from the Ds-Hopf. Parameter values are near the existence of the ho-
moclinic clover. A projection on the v plane is shown, the crosses denote steady
states. The trajectory of periodic orbit was approximated by integrating the
differential equation starting at points, which described the periodic solution
for AUTO.

structure of homoclinic orbits. Probably they are some of the periodic orbits
of the subshift:

e The periodic solutions with isotropy type Zs coming from the Ds-Hopf
bifurcation have period 4 created by the sequences 1213, 2321 and 3132,
see figure?7.

e The solutions coming from the Hopf bifurcation of N1 23 at po = p1, 1 <
0 seem to have period 2, see figure 8.

e Even if the author could not pick up the Zs periodic solutions starting
at the Ds-Hopf bifurcation for path-following with AUTO. We might
conjecture that this branch also ends at the homoclinic clover. They are
probably of period 3 with sequences 123 and 132.
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Figure 8 A periodic solution with sequence 23 with isotropy type Z» on the
branch coming from the Hopf bifurcation of Nj.

The entire horseshoe does persist for some parameter by a general perturbation
argument, for hyperbolic sets. It remains an open question how long for example
the other periodic orbits created by the horseshoe persist. This will probably
involve even more complicated bifurcations.

We will consider an application to three coupled oscillators following Fiedler
[6]. The system is given by

2% = f(x;) + D(xi—1 + 2301 — 22;) (mod 3),i=1,2,3, (19)
where z; € R¥ and D = diag(dy,...,d;). This system is equivariant under
permutations of z1,z2 and x3. The symmetry group is isomorphic to Ds. If

we have a homogeneous solution, it will stay homogeneous under the evolution
of time. We change to (z,y, z) coordinates where

r=x1 +T2+ T3,y =T1 —T2,2 = Ty — T3.
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In the new coordinate system we then have:

T+ 242y rT+z—y T —y—2z

T = f(f)ﬂLf(T)ﬂLf(f)
o= JEEEEE) - g P sy
2= fEEEY) - p(PEEE) gps (20)

We consider the homogeneous equilibrium (zg,zo,xo) with linearisation
f'(xzo) = A. In the new coordinates the equilibrium is (3z9,0,0). Its Jaco-
bian in the entire system is given by the block diagonal matrix diag(A4, A —
3D, A —3D).

We choose k = 2 and for f the dynamics of the Brusselator as an easy example.
It gives some insight into the possible behavior of chemical oscillator. So f =

(f1, f2) is given by f1(&1,&) = a— (b+1)& + & &, f2(&1, &) = b& — E& with

= 2
a,b > 0, the equilibrium is zo = (a, %) and A = b_bl _aa2 . We choose
D=1 < /})1 )(\) > . Then A — 3D has a double eigenvalues 0 if
2
det(A—3D) = Ml+Ma®>—Xb-1)+ada> = 0
trace(A—3D) = b—1—-a>—X — X =0

The solution is given by (A1, X2) = (b — 1 — av/b, —a® + av/b), the diffusion
constants A1, Ao are positive and therefore somehow realistic for a < b_Tbl So
this Ds-equivariant system has a Takens-Bogdanov point since there is a double
zero eigenvalue and A — 3D # 0. We apply our bifurcation analysis for Takens-
Bogdanov points with Ds-symmetry to this problem. It will be valid on a
four-dimensional center manifold which is tangent to the subspace spanned by
y and z.

As trace(A) > trace(A — 3D) = 0 holds for A\; + A» > 0, the matrix A has at
least one eigenvalue with positive real part. Hence all dynamical features will be
unstable if we consider the entire system. We could stabilize the system when
using negative diffusion rates. But still all branching solutions have unstable
directions due to the Takens-Bogdanov point making them inaccessible for
direct numerical simulation.

The origin will still correspond to the homogeneous solution even after the
needed coordinate changes. Then an interpretation of a D3-Hopf bifurcation in
a ring of three coupled oscillators is given in [11, XVIL.4]. The three different
types of periodic solutions give different waveforms, phase shifts and resonances
for the three cells. We furthermore expect near the bifurcation point the exis-
tence of inhomogeneous steady state solutions with two cells being in the same
state. The periodic solutions coming from the Hopf bifurcations of these fixed
points oscillate around these inhomogeneous steady states. In the first type
two cells are in phase and in the other type two cells have a phase shift of
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m. The periodic solutions collapse at the homoclinic orbits, since by moving
in parameter space parts of the periodic orbits reach a state very close to the
homogeneous equilibrium. For these parameter values the system is already
‘chaotic’ because of the existence of shift dynamics. When the solution follows
one of the loops of the ‘clover’ structure it has nearly a Z, symmetry, i.e. two
cells have nearly the same state. Hence within the shift dynamics we have
arbitrary changes of two out of three cells being nearly in phase. The structure
of our subshift forces the system to change to another pair of cells being in
phase after some time. Because of the unstable directions of the hyperbolic
structure this behavior is only observable as a transient motion to infinity or
to some stable solutions far away from the Takens-Bogdanov point.
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