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Abstra
t. A 
at 
omplex ve
tor bundle (E;D) on a 
ompa
t Rie-

mannian manifold (X; g) is stable (resp. polystable) in the sense of

Corlette [C℄ if it has no D-invariant subbundle (resp. if it is the D-

invariant dire
t sum of stable subbundles). It has been shown in [C℄

that the polystability of (E;D) in this sense is equivalent to the exis-

ten
e of a so-
alled harmoni
 metri
 in E. In this paper we 
onsider


at 
omplex ve
tor bundles on 
ompa
t Hermitian manifolds (X; g).

We propose new notions of g-(poly-)stability of su
h bundles, and of g-

Einstein metri
s in them; these notions 
oin
ide with (poly-)stability

and harmoni
ity in the sense of Corlette if g is a K�ahler metri
, but

are di�erent in general. Our main result is that the g-polystability

in our sense is equivalent to the existen
e of a g-Hermitian-Einstein

metri
. Our notion of a g-Einstein metri
 in a 
at bundle is moti-

vated by a 
orresponden
e between 
at bundles and Higgs bundles

over 
ompa
t surfa
es, analogous to the 
orresponden
e in the 
ase of

K�ahler manifolds [S1℄, [S2℄, [S3℄.

1991 Mathemati
s Subje
t Classi�
ation: 53C07

1 Introdu
tion.

Let X be an n-dimensional 
ompa
t 
omplex manifold. If X admits a K�ahler

metri
 g, then it is known by work of in parti
ular Simpson [S1℄,[S2℄,[S3℄ that

there exists an 
anoni
al identi�
ation of the moduli spa
e of polystable (or
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semisimple) 
at bundles on X with the moduli spa
e of g-polystable Higgs-

bundles with vanishing Chern 
lasses on X . This identi�
ation has been used

in showing that 
ertain groups are not fundamental groups of 
ompa
t K�ahler

manifolds. The 
onstru
tion uses the existen
e of 
anoni
al metri
s, 
alled

g-harmoni
 in the 
ase of 
at bundles, and g-Einstein in the 
ase of Higgs

bundles.

For 
at bundles, the equivalen
e of semisimpli
ity and the existen
e of a g-

harmoni
 metri
 holds on 
ompa
t Riemannian manifolds [C℄. Furthermore,

the equivalen
e of g-polystability and the existen
e of a g-Einstein metri
s for

Higgs bundles should generalize to the 
ase of Hermitian manifolds as in the


ase of holomorphi
 ve
tor bundles, using Gaudu
hon metri
s. Nevertheless,

an identi�
ation as above 
annot be expe
ted for general 
ompa
t Hermitian

manifolds, sin
e it should imply restri
tions on the fundamental group, but

every �nitely presented group is the fundamental group of a 3-dimensional


ompa
t 
omplex manifold by a theorem of Taubes [T℄.

In the 
ase of 
ompa
t 
omplex surfa
es, however, things are di�erent. We show

that for an integrable Higgs bundle (E; d

00

) with vanishing real Chern numbers

and of g-degree 0 with g-Einstein metri
 h on a 
ompa
t 
omplex surfa
e X

with Hermitian metri
 g, there is an 
anoni
ally asso
iated 
at 
onne
tion D

in E, again of g-degree 0, su
h that h is what we 
all a g-Einstein metri
 for

(E;D), and that the 
onverse is also true. Furthermore, this 
orresponden
e

preserves isomorphism types and hen
e des
ends to a bije
tion between moduli

spa
es.

The notion of a g-Einstein metri
 in a 
at bundle makes sense in higher di-

mension, too, is equivalent to g-harmoni
ity in the 
ase of a K�ahler metri
, but

di�erent in general, and we show that the existen
e of su
h a metri
 in a 
at

bundle (E;D) is equivalent to the g-polystability of this bundle in the sense

that E is the dire
t sum of D-invariant g-stable 
at subbundles. Here we 
all a


at bundle (E;D) g-stable if every D-invariant subbundle has g-slope larger(!)

than the g-slope of (E;D). g-stability of a 
at bundle is equivalent to its sta-

bility (in the sense of Corlette) in the K�ahler 
ase, but a weaker 
ondition in

general: A stable bundle is always g-stable, but the tangent bundles of 
ertain

Inoue surfa
es are examples of g-stable bundles whi
h are not stable.

We expe
t that for a non-K�ahler surfa
e with Hermitian metri
 g, there is a

natural bije
tion between the moduli spa
e of g-polystable Higgs bundles, with

vanishing Chern numbers and g-degree, and the moduli spa
e of g-polystable


at bundles with vanishing g-degree. In the last se
tion we 
onsider the spe
ial


ase of line bundles on surfa
es. Here the stability is trivial, and the existen
e

of Einstein metri
s is easy to show, so we get indeed the expe
ted natural

bije
tion between moduli spa
es of line bundles of degree 0. We further show

how this 
an be extended (in a non-natural way) to the moduli spa
es of line

bundles of arbitrary degree; this extension argument works in fa
t for bundles

of arbitrary rank on
e the 
orresponden
e for degree 0 has been established.
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2 Preliminaries.

Let X be a 
ompa
t n-dimensional 
omplex manifold, and E �! X a di�er-

entiable C

r

-ve
tor bundle on X . We �x the following

Notations:

A

p

(X) (resp. A

p;q

(X)) is the spa
e of di�erentiable p-forms (forms of type

(p; q)) on X .

A

p

(E), A

p;q

(E) are the spa
es of di�erential forms with values in E.

A(E) is the spa
e of linear 
onne
tions D in E. For a 
onne
tion D 2 A(E)

we write D = D

0

+D

00

; where D

0

is of type (1,0) and D

00

of type (0,1).

A(E; h) � A(E) is the subspa
e of h-unitary 
onne
tions d in E, where h is a

Hermitian metri
 in E. We write d = � +

�

�; where � is of type (1,0) and

�

� of

type (0,1).

A

f

(E) := f D 2 A(E) j D

2

= 0 g is the subset of 
at 
onne
tions.

�

A(E) is the spa
e of semi
onne
tions

�

� of type (0,1) in E (i.e.

�

� is the (0,1)-

part of some D 2 A(E) ).

H(E) := f

�

� 2

�

A(E) j

�

�

2

= 0 g is the subset of integrable semi
onne
tions or

holomorphi
 stru
tures in E.

A

00

(E) :=

�

A(E) �A

1;0

(EndE) = f d

00

=

�

� + � j

�

� 2

�

A(E); � 2 A

1;0

(EndE) g

is the spa
e of Higgs operators in E.

H

00

(E) := f d

00

2 A

00

(E) j (d

00

)

2

= 0 g is the subset of integrable Higgs operators.

Often the same symbol is used for a 
onne
tion, semi
onne
tion, Higgs operator

et
. in E and the indu
ed operator in EndE.

Two 
onne
tions D

1

; D

2

2 A(E) are isomorphi
, D

1

�

=

D

2

; if there exists a

di�erentiable automorphism f of E su
h that fÆD

1

= D

2

Æf; whi
h is equivalent

to D(f) = 0; where D is the 
onne
tion in EndE indu
ed by D

1

and D

2

, i.e.

D(f) = D

2

Æ f � f Æ D

1

: In the same way the isomorphy of semi
onne
tions

resp. Higgs operators is de�ned.

If a Hermitian metri
 h in E is given, then a supers
ript

�

means adjoint with

respe
t to h.

For D = D

0

+ D

00

there are unique semi
onne
tions Æ

0

h

,Æ

00

h

of type (1,0), (0,1)

respe
tively su
h that D

0

+ Æ

00

h

and Æ

0

h

+D

00

are h-unitary 
onne
tions. De�ne

Æ

h

:= Æ

0

h

+ Æ

00

h

; then d

h

:=

1

2

(D + Æ

h

) is h-unitary, and �

h

:= D � d

h

=

1

2

(D � Æ

h

) is a h-selfadjoint 1-form with values in EndE. Let d

h

= �

h

+

�

�

h

be the de
omposition in the parts of type (1,0) and (0,1), and let �

h

be the

(1; 0)-part of �

h

; then it holds

D = d

h

+�

h

= �

h

+

�

�

h

+ �

h

+ �

�

h

:
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The map

I

h

: A(E) �! A

00

(E); I

h

(D) := d

00

h

:=

�

�

h

+ �

h

2 A

00

(E)

is bije
tive; the inverse is given as follows. For d

00

=

�

� + � 2 A

00

(E) let �

h

be

the unique semi
onne
tion of type (1; 0) su
h that the 
onne
tion d

h

:= �

h

+

�

�

is h-unitary, and de�ne � := � + �

�

: Then

I

�1

h

(d

00

) = D

h

:= d

h

+� 2 A(E):

Remark 2.1 i) In general, if D

1

; D

2

2 A(E) are isomorphi
, then I

h

(D

1

)

and I

h

(D

2

) are not isomorphi
, and vi
e versa.

ii) D

h

= d

h

+�+�

�

is not h-unitary unless � = 0; but the 
onne
tions d

h

��+�

�

and d

h

+ � � �

�

are.

iii) Any metri
 h

0

in E is of the form h

0

= f � h ; i.e. h

0

(s; t) = h(f(s); t);

where f is a h-selfadjoint and positive de�nite. For a 
onne
tion D it is easy

to show that the operator Æ

h�f

asso
iated to D and f � h is given by Æ

h�f

=

f

�1

Æ Æ

h

Æ f = Æ

h

+ f

�1

Æ Æ

h

(f); so it holds

d

00

f �h

= d

00

h

+

1

2

f

�1

Æ Æ

00

h

(f)� f

�1

Æ Æ

0

h

(f)

= d

00

h

+

1

2

f

�1

Æ

�

�

h

(f)�

1

2

f

�1

Æ �

�

h

(f)�

1

2

f

�1

Æ �

h

(f) +

1

2

f

�1

Æ �

h

(f):

Conversely, for a given Higgs operator d

00

one veri�es

D

f �h

= D

h

+ f

�1

Æ �

h

(f) + f

�1

Æ �(f):

In parti
ular, if f is 
onstant then the two maps I

h

and I

f �h


oin
ide.

Definition 2.2 i) G

h

:= (d

00

h

)

2

is 
alled the pseudo
urvature of D with respe
t

to h.

ii) F

h

:= D

2

h

is 
alled the 
urvature of d

00

with respe
t to h.

Remark 2.3 i) Obviously it holds: I

h

(D) is an integrable Higgs operator if

and only if G

h

= 0; and I

�1

h

(d

00

) is a 
at 
onne
tion if and only if F

h

= 0:

ii) For i = 1; 2; let E

i

be a di�erentiable 
omplex ve
tor bundle on X with Her-

mitian metri
 h

i

and 
onne
tion D

i

. Let h be the indu
ed metri
 and D the

indu
ed 
onne
tion in Hom(E

1

; E

2

). Denote by G

i;h

resp. G

h

the pseudo
urva-

ture of D

i

resp. D with respe
t to h

i

resp. h. Then for f 2 A

0

(Hom(E

1

; E

2

))

it holds G

h

(f) = G

2;h

Æ f � f ÆG

1;h

:

Similarly, the 
urvature F

h

of the Higgs operator indu
ed in Hom(E

1

; E

2

) by

Higgs operators d

00

i

in the E

i

is given by F

h

(f) = F

2;h

Æ f � f Æ F

1;h

:

iii) If D is a 
onne
tion, then D

2

is the 
urvature of d

00

h

with respe
t to h, and

if d

00

is a Higgs operator, then (d

00

)

2

is the pseudo
urvature of D

h

with respe
t

to h. This trivially follows from the bije
tivity of I

h

.
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Lemma 2.4 i) For D 2 A(E) let D = d

h

+ �

h

= �

h

+

�

�

h

+ �

h

+ �

�

h

be

the de
omposition indu
ed by h as above. If D is 
at, then it holds Æ

2

h

= 0,

d

h

(�

h

) = 0; i.e. �

h

(�

h

) =

�

�

h

(�

�

h

) = �

h

(�

�

h

) +

�

�

h

(�

h

) = 0; and furthermore

d

2

h

= ��

h

^�

h

:

ii) For d

00

=

�

� + � 2 A

00

(E) let �

h

, d

h

and D

h

be as above, and write d

0

h

:=

�

h

+ �

�

:

If d

00

is integrable, then it holds (d

0

h

)

2

= 0 ; i.e. �

2

h

= �

h

(�

�

) = �

�

^ �

�

= 0 ;

d

2

h

= [�

h

;

�

�℄; and hen
e F

h

= d

2

h

+ [�; �

�

℄ + �

h

(�) +

�

�(�

�

):

Proof: i) For D = D

0

+D

00

2 A

f

(E) it holds

0 = ��h(s; t)

= h((D

0

)

2

(s); t) � h(D

0

(s); Æ

00

h

(t)) + h(D

0

(s); Æ

00

h

(t)) + h(s; (Æ

00

h

)

2

(t))

= h(s; (Æ

00

h

)

2

(t))

for all s; t 2 A

0

(E); i.e. (Æ

00

h

)

2

= 0: Similarly one sees (Æ

0

h

)

2

= 0 = Æ

0

h

Æ

00

h

+ Æ

00

h

Æ

0

h

;

yielding Æ

2

h

= 0: We 
on
lude

d

h

(�

h

) =

1

4

[D + Æ

h

; D � Æ

h

℄ = 0;

and

0 = D

2

= (d

h

+�

h

)

2

= d

2

h

+ d

h

(�

h

) + �

h

^�

h

= d

2

h

+�

h

^�

h

:

ii) For d

00

=

�

� + � 2 H

00

(E) and d

h

= �

h

+

�

� it is well known that �

2

h

= 0; and

hen
e d

2

h

= [�

h

;

�

�℄: Furthermore, for all s; t 2 A

0

(E) it holds

h(�

h

(�

�

)(s); t)

= h(�

h

Æ �

�

(s); t) + h(�

�

Æ �

h

(s); t)

= �h(�

�

(s); t) + h(�

�

(s);

�

�(t))� h(�

h

(s); �(t))

= �h(s; �(t)) + h(s; � Æ

�

�(t)) � h(�

h

(s); �(t))

= h(�

h

(s); �(t)) + h(s;

�

� Æ �(t)) + h(s; � Æ

�

�(t))� h(�

h

(s); �(t))

= h(s;

�

�(�)(t)) = 0;

and

h(�

�

^ �

�

(s); t) = �h(s; � ^ �(t)) = 0;

this shows �

h

(�

�

) = 0 = �

�

^ �

�

:

Now let g be a Hermitian metri
 in X , and denote by !

g

the asso
iated (1; 1)-

form on X , by �

g

the 
ontra
tion by !

g

, and by �

g

the asso
iated Hodge-�-

operator.

Re
all that in the 
onformal 
lass of g there exists a Gaudu
hon metri
 ~g, i.e.

a metri
 satisfying

�

��(!

n�1

~g

) = 0; ~g is unique up to a 
onstant positive fa
tor

if n � 2 ([G℄ p. 502, [LT℄ Theorem 1.2.4).
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There is a natural way to de�ne a map

deg

g

: H(E) �! R;


alled g-degree, with the following properties (see [LT℄ se
tions 1.3 and 1.4):

- If g is a Gaudu
hon metri
, and

�

� 2 H(E) is a holomorphi
 stru
ture, then

deg

g

(

�

�) is given as follows: Choose any Hermitian metri
 h in E, and let d

be the Chern 
onne
tion in (E; �) indu
ed by h, i.e. the unique h-unitary


onne
tion in E with (0; 1)-part

�

�. Then

deg

g

(

�

�) :=

i

2�

Z

X

tr(d

2

) ^ !

n�1

g

=

i

2n�

Z

X

tr�

g

d

2

� !

n

g

=

i

2n�

Z

X

tr�

g

[

�

�; �℄ � !

n

g

:

- If g is arbitrary, then there is a unique Gaudu
hon metri
 ~g in the 
onformal


lass of g su
h that deg

g

= deg

~g

:

The g-slope of

�

� is

�

g

(

�

�) :=

deg

g

(

�

�)

r

;

where r is the rank of E.

If D = D

0

+ D

00

is a 
at 
onne
tion, then it holds (D

00

)

2

= 0; so D

00

is a

holomorphi
 stru
ture. We de�ne the g-degree and g-slope of D as

deg

g

(D) := deg

g

(D

00

); �

g

(D) := �

g

(D

00

):

Similarly, for an integrable Higgs operator d

00

=

�

� + � it holds

�

�

2

= 0; and we

de�ne

deg

g

(d

00

) := deg

g

(

�

�); �

g

(d

00

) := �

g

(

�

�):

Observe that in all three 
ases the g-degrees (resp. slopes) of isomorphi
 oper-

ators are the same.

Remark 2.5 Suppose that g is a K�ahler metri
, i.e. d(!

g

) = 0: Then the g-

degree is a topologi
al invariant of the bundle E, 
ompletely determined by the

�rst real Chern 
lass 


1

(E)

R

2 H

2

(X;R): In parti
ular, sin
e all real Chern


lasses of a 
at bundle vanish, it holds deg

g

(D) = 0 for every 
at 
onne
tion

D in E. On the other hand, if e.g. X is a surfa
e admitting no K�ahler metri


and g is Gaudu
hon, then every real number is the g-degree of a 
at line bundle

on X ([LT℄ Proposition 1.3.13).

Lemma 2.6 If g is a Gaudu
hon metri
, then for any metri
 h in E it holds:

i) If D is a 
at 
onne
tion, then

deg

g

(D) = �

i

n�

Z

X

tr�

g

G

h

� !

n

g

;
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where G

h

is the pseudo
urvature of d

00

with respe
t to h.

ii) If d

00

is an integrable Higgs operator, then

deg

g

(d

00

) =

i

2n�

Z

X

tr�

g

F

h

� !

n

g

;

where F

h

is the 
urvature of d

00

with respe
t to h.

Proof: i) Observe that �

g

G

h

= �

g

�

�

h

(�

h

) : The Chern 
onne
tion in (E;D

00

)

indu
ed by h is D

00

+ �

h

� �

h

= D � 2�

h

; and it holds

tr�

g

(D � 2�

h

)

2

= �2tr�

g

((

�

� + �

�

)(�) = �2tr�

g

(G

h

+ [�; �

�

℄) = �2tr�

g

(G

h

);

so the 
laim follows by integration.

ii) Lemma 2.4 implies tr�

g

F

h

= tr�

g

d

2

h

; again the 
laim follows by integration.

3 Einstein metri
s and stability for flat bundles.

We �x a Hermitian metri
 g in X ; the asso
iated volume form is vol

g

:=

1

n!

!

n

g

;

and the g-volume of X is Vol

g

(X) :=

R

X

vol

g

:We further �x a Hermitian metri


h in E, and denote by j: j the pointwise norm on forms with values in E (and

asso
iated bundles) de�ned by h and g.

Let D 2 A

f

(E) be a 
at 
onne
tion in E, and write D = d+� = �+

�

�+�+�

�

as in se
tion 1. Let d

00

h

= I

h

(D) =

�

� + � 2 A

00

(E) be the Higgs operator

asso
iated to D, and G

h

= (d

00

h

)

2

its pseudo
urvature. From �

g

G

h

= �

g

�

�

h

(�

h

)

and Lemma 2.4 we dedu
e

(i�

g

G

h

)

�

= �i�

g

((

�

�(�))

�

) = �i�

g

�(�

�

) = i�

g

�

�(�) = i�

g

G

h

;

so i�

g

G

h

is selfadjoint with respe
t to h.

Remark 3.1 It also holds i�

g

G

h

=

i

2

�

g

(

�

�(�) � �(�)) ; whi
h in the 
ase of

a K�ahler metri
 g equals

1

2

d

�

(�), where d

�

is the L

2

-adjoint of d = � +

�

�:

Definition 3.2 h is 
alled a g-Einstein metri
 in (E;D) if i�

g

G

h

= 
 � id

E

with a real 
onstant 
, whi
h is 
alled the Einstein 
onstant.

Lemma 3.3 Let h be a g-Einstein metri
 in (E;D), and ~g = ' � g 
onformally

equivalent to g. Then there exists a ~g-Einstein metri


~

h in (E;D) whi
h is


onformally equivalent to h.

Proof: ~g = ' � g implies �

~g

=

1

'

� �

g

: From Remark 2.1 iii) it follows

that for f 2 C

1

(X;R) it holds G

e

f

�h

= G

h

�

1

4

�

��(f) � id

E

: Hen
e the 
ondi-

tion i�

g

G

h

= 
 � id

E

implies i�

~g

G

e

f

�h

= (




'

�

1

4

P (f)) � id

E

; where P := i�

~g

�

��:

Sin
e C

1

(X;R) = imP � R ([LT℄ Corollary 2.9), there exists an f su
h that




'

�

1

4

P (f) is 
onstant.
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Lemma 3.4 If i�

g

G

h

= 
 � id

E

with 
 2 R; then it holds:

i) 
 = �

�

(n�1)!�Vol

g

(X)

� �

g

(D) if g is Gaudu
hon.

ii) deg

g

(D) = 0 if and only if 
 = 0:

Proof: i) is an immediate 
onsequen
e of Lemma 2.6.

ii) If g is Gaudu
hon, then this follows from i). If g is arbitrary, then let ~g = ' � g

be the Gaudu
hon metri
 in its 
onformal 
lass su
h that deg

g

= deg

~g

: Now

we have

i�

g

G

h

= 0() i�

~g

G

h

= 0() deg

~g

(D) = 0() deg

g

(D) = 0:

Remark 3.5 i) If two 
at 
onne
tions D

1

,D

2

are isomorphi
 via the automor-

phism f of E, i.e. if D

2

Æ f � f ÆD

1

= 0; and if h is a g-Einstein metri
 in

(E;D

1

), then f

�

h is a g-Einstein metri
 in (E;D

2

) with the same Einstein


onstant.

ii) By Remark 2.3, a ne
essary 
ondition for d

00

h

= I

h

(D) to be an integrable

Higgs operator is that h is a g-Einstein metri
 for D with Einstein 
onstant


 = 0; so in parti
ular deg

g

(D) = 0: On the other hand it holds d

2

= �� ^ �

(Lemma 2.4), and, if d

00

h

is integrable, � ^ � = 0 implying �

�

^ �

�

= 0 : This

gives tr(d

2

) = �tr[�; �

�

℄ = 0; whi
h implies deg

g

(d

00

h

) = 0:

iii) For 
omplex ve
tor bundles on 
ompa
t Riemannian manifolds (X; g),

Corlette de�nes a g-harmoni
 metri
 for a 
at 
onne
tion by the 
ondition

d

�

(�) = 0 ([C℄). If X is 
omplex and g is a K�ahler metri
, then the g-degree

of any 
at 
onne
tion vanishes, so in this 
ontext g-harmoni
 is the same as

g-Einstein (see Remarks 2.5 and 3.1), but in general the two notions are dif-

ferent.

Now we prove a useful Vanishing Theorem.

Proposition 3.6 Let D be a 
at 
onne
tion in E, and h a g-Einstein metri


in (E;D) with Einstein 
onstant 
.

If 
 > 0; then the only se
tion s 2 A

0

(E) with D(s) = 0 is s = 0:

If 
 = 0; then for every se
tion s 2 A

0

(E) with D(s) = 0 it holds

�

�(s) = �(s) =

0 and �(s) = �

�

(s) = 0; so in parti
ular d

00

h

(s) = 0 :

Proof: D(s) = 0 is equivalent to

�(s) = ��(s);

�

�(s) = ��

�

(s); (1)

this implies

�

��h(s; s) = �h(

�

� Æ �(s); s)� h(�(s); �(s)) + h(

�

�(s);

�

�(s))�h(s; � Æ �

�

(s)): (2)

The assumption that h is g-Einstein means i�

g

�

�(�) = i�

g

G

h

= 
 � id

E

; whi
h is

equivalent to i�

g

�(�

�

) = �
�id

E

sin
e (i�

g

�

�(�))

�

= �i�

g

(

�

�(�)

�

) = �i�

g

�(�

�

);

these relations 
an be rewritten as

i�

g

�

� Æ � = �i�

g

� Æ

�

� + 
 � id

E

; i�

g

� Æ �

�

= �i�

g

�

�

Æ � � 
 � id

E

: (3)
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Using (1) and (3) we get

i�

g

h(

�

� Æ �(s); s) = �i�

g

h(� Æ

�

�(s); s) + 
 � jsj

2

= i�

g

h(

�

�(s); �

�

(s)) + 
 � jsj

2

= �i�

g

h(

�

�(s);

�

�(s)) + 
 � jsj

2

= j

�

�(s)j

2

+ 
 � jsj

2

;

and similarly

i�

g

h(s; � Æ �

�

(s)) = j�(s)j

2

+ 
 � jsj

2

;

so (2) implies

i�

g

�

��h(s; s) = �2

�

j

�

�(s)j

2

+ j�(s)j

2

+ 
 � jsj

2

�

:

Sin
e the image of the operator i�

g

�

�� on real fun
tions 
ontains no non-zero

fun
tions of 
onstant sign ([LT℄ Lemma 7.2.7), this gives s = 0 in the 
ase


 > 0; and if 
 = 0 we get

�

�(s) = �(s) = 0; implying �(s) = �

�

(s) = 0 be
ause

of (1).

The following 
orollary will be used later in the 
ontext of moduli spa
es.

Corollary 3.7 For i = 1; 2 let D

i

2 A

f

(E) be a 
at 
onne
tion, h

i

a g-

Einstein metri
 in (E;D

i

), and d

00

i

:= I

h

i

(D

i

) 2 A

00

(E) the asso
iated Higgs

operator. If D

1

and D

2

are isomorphi
 via the automorphism f of E, then d

00

1

and d

00

2

are isomorphi
 via f , too.

Proof: Let h be the metri
 in EndE = E

�


 E indu
ed by the dual metri


of h

1

in E

�

and h

2

in E, and D the 
onne
tion in EndE de�ned by D(f) =

D

2

Æ f � f ÆD

1

for all f 2 A

0

(EndE): Then D is 
at of g-degree 0 sin
e D

1

and D

2

are 
at of equal degree, and h is a g-Einstein metri
 in (EndE;D)

with Einstein 
onstant 
 = 0 (
ompare Remark 2.3). Furthermore, the Higgs

operator d

00

in EndE de�ned by d

00

(f) = d

00

2

Æ f � f Æ d

00

1

equals I

h

(D). Hen
e

Proposition 3.6 implies that an automorphism f of E with D(f) = 0 also

satis�es d

00

(f) = 0:

If F � E is a D-invariant subbundle of E, then it is obvious that 
atness of D

implies 
atness of Dj

F

, and hen
e the following de�nition makes sense.

Definition 3.8 A 
at 
onne
tion D in E is 
alled g-(semi)stable i� for ev-

ery proper D-invariant subbundle 0 6= F � E it holds �

g

(Dj

F

) > �

g

(D)

(�

g

(Dj

F

) � �

g

(D)). D is 
alled g-polystable i� E = E

1

� E

2

� : : : � E

k

is a

dire
t sum of D-invariant and g-stable subbundles E

i

with �

g

(Dj

E

i

) = �

g

(D)

for i = 1; 2; : : : ; k:

Remark 3.9 i) Let D be a 
at 
onne
tion in E, and 0 6= F � E a proper

D-invariant subbundle. Then g-stability of D implies �

g

(Dj

F

) > �

g

(D) and

hen
e the g-instability of the holomorphi
 stru
ture D

00

in E (in the sense of

e.g. [LT℄) sin
e F is a D

00

-holomorphi
 subbundle of E.

ii) Suppose that g is a K�ahler metri
; then deg

g

(D) = 0 for every 
at 
onne
-

tion D (Remark 2.5). Hen
e a 
at 
onne
tion D in E is
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- always g-semistable,

- g-stable if and only if E has no proper non-trivial D-invariant subbundle,

- g-polystable if E is a dire
t sum of D-invariant g-stable subbundles.

This means that g-(poly-)stability on a K�ahler manifold 
oin
ides with (poly-

)stability in the sense of Corlette [C℄.

iii) It is obvious that stability in the sense of Corlette always implies g-stability,

but at the end of this se
tion we will give an example of a g-stable bundle whi
h

is not stable in the sense of Corlette.

Definition 3.10 A 
at 
onne
tion D in E is simple if the only D-parallel

endomorphisms f , i.e. those with D

End

(f) = D Æ f � f Æ D = 0; are the

homotheties f = a � id

E

; a 2 C :

Let D be a 
at 
onne
tion in E, 0 6= F � E a D-invariant subbundle, and Q :=

E

Æ

F

the quotient with natural proje
tion � : E �! Q: Then D indu
es a 
at


onne
tion D

Q

in Q su
h that D

Q

Æ� = �ÆD: In parti
ular, F is a holomorphi


subbundle of (E;D

00

), and D

00

Q

is the indu
ed holomorphi
 stru
ture in Q.

Sin
e the g-degree of a 
at 
onne
tion D by de�nition equals the g-degree

of the asso
iated holomorphi
 stru
ture D

00

, it follow deg

g

(D) = deg

g

(D

1

) +

deg

g

(D

Q

): Hen
e as in the 
ase of holomorphi
 bundles one veri�es (
ompare

[K℄ Chapter V)

Proposition 3.11 i) A 
at 
onne
tion D in E is g-(semi)stable if and only

if for every D-invariant proper subbundle 0 6= F � E with quotient Q =

E

Æ

F

it holds �

g

(D

Q

) < �

g

(D) (resp. �

g

(D

Q

) � �

g

(D).)

ii) Let (E

1

; D

1

) and (E

2

; D

2

) be g-stable 
at bundles over X with �

g

(D

1

) =

�

g

(D

2

): If f 2 A

0

(Hom(E

1

; E

2

)) satis�es D

2

Æ f = f ÆD

1

; then either f = 0

or f is an isomorphism.

iii) A g-stable 
at 
onne
tion D in E is simple.

Next we prove the �rst half of the main result of this se
tion.

Proposition 3.12 Let D be a 
at 
onne
tion in E, and h a g-Einstein metri


in (E;D) with Einstein 
onstant 
; then D is g-semistable. If D is not g-stable,

then D is g-polystable; more pre
isely, E = E

1

�E

2

�: : :�E

k

is a h-orthogonal

dire
t sum of D-invariant g-stable subbundles su
h that �

g

(Dj

E

i

) = �

g

(D) for

i = 1; 2; : : : ; k: Furthermore, hj

E

i

is a g-Einstein metri
 in (E

i

; Dj

E

i

) with

Einstein 
onstant 
 for all i, and the dire
t sum is invariant with respe
t to the

Higgs operator d

00

h

= I

h

(D):

Proof: First we 
onsider the 
ase when g is a Gaudu
hon metri
. Let 0 6=

F � E be a D-invariant proper subbundle of rank s; then E = F �F

?

; where

F

?

is the h-orthogonal 
omplement of F . With respe
t to this de
omposition,

we write operators as 2� 2 matri
es, so D has the form

D =

�

D

1

A

0 D

2

�

;
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where D

1

= Dj

F

and D

2

is a 
at 
onne
tion in F

?

. We use notations as in

se
tion 2; it is easy to see that the operator Æ asso
iated to D by h has the

form

Æ =

�

Æ

1

0

A

�

Æ

2

�

;

where the Æ

i

are the operators asso
iated to the D

i

by h. Similarly it holds

�

� =

1

2

(D

00

+ Æ

00

) =

1

2

�

D

00

1

+ Æ

00

1

A

00

A

0

�

D

00

2

+ Æ

00

2

�

=

�

�

�

1

1

2

A

00

1

2

A

0

�

�

�

2

�

;

and

� =

1

2

(D

0

� Æ

0

) =

�

D

0

1

� Æ

0

1

A

0

�A

00

�

D

0

2

� Æ

0

2

�

=

�

�

1

1

2

A

0

�

1

2

A

00

�

�

2

�

;

where A

0

resp. A

00

is the part of A of type (1; 0) resp. (0; 1). This implies

�

�(�) = [

�

�; �℄

=

�

�

�

1

(�

1

) +

1

4

(A

0

^ A

0

�

�A

00

^A

00

�

) �

�

�

�

2

(�

2

) +

1

4

(A

0

�

^ A

0

�A

00

�

^ A

00

)

�

;

hen
e


 � id

E

= i�

g

G

h

=

�

i�

g

G

1;h

+

i

4

�

g

(A

0

^ A

0

�

�A

00

^ A

00

�

) �

� i�

g

G

2;h

+

i

4

�

g

(A

0

�

^ A

0

�A

00

�

^ A

00

)

�

;(4)

and thus

s
 = tr(i�

g

G

1;h

+

i

4

�

g

(A

0

^ A

0

�

�A

00

^A

00

�

)) = itr�

g

G

1;h

+

1

4

jAj

2

:

Using Lemma 2.6 and Lemma 3.4 we 
on
lude

�

g

(D

1

) = �

i

sn�

Z

X

tr�

g

G

1;h

� !

n

g

� �


(n� 1)!

�

Vol

g

(X) = �

g

(D); (5)

this prove that D is g-semistable.

If D is not g-stable, then there exists a subbundle F as above su
h that equality

holds in (5), whi
h implies A = 0: This means not only that F

?

is D-invariant,

too, with Dj

F

?
= D

2

, but also that

i�

g

G

1;h

= 
 � id

F

; i�

g

G

2;h

= 
 � id

F

?

by (4). Hen
e the restri
tion of h to F resp. F

?

is g-Einstein for D

1

resp.

D

2

, and it holds �

g

(D

1

) = �

g

(D) = �

g

(D

2

) by Lemma 3.4. Furthermore, the

D-invarian
e of F means that the in
lusion i : F ,! E is parallel with respe
t

to the 
at 
onne
tion in Hom(F;E) indu
ed by D

1

and D. Using Remark 2.3
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and Proposition 3.6 as in the proof of Corollary 3.7, we 
on
lude that i is

also parallel with respe
t to the asso
iated Higgs operator, i.e. that F is d

00

h

-

invariant; the same argument works for F

?

. If D

1

and D

2

are stable, then we

are done; otherwise the proof is �nished by indu
tion on the rank.

Now let g be arbitrary, let ~g be the Gaudu
hon metri
 in its 
onformal 
lass

with deg

g

= deg

~g

; and let

~

h be a ~g-Einstein metri
 in the 
onformal 
lass of

h, whi
h exists by Lemma 3.3; then the theorem holds for ~g and

~

h. Sin
e g

and ~g de�ne the same degree and slope, and hen
e stability, it follows that D

is ~g-semistable. If D is not g-stable, then there exists a D-invariant proper

subbundle F as above with �

~g

(D

1

) = �

g

(D

1

) = �

g

(D) = �

~g

(D): Note that the

h-orthogonal 
omplement F

?

of F is also the

~

h-orthogonal 
omplement, sin
e

h and

~

h are 
onformally equivalent. Hen
e, using ~g and

~

h we 
on
lude as above

that D =

�

D

1

0

0 D

2

�

with respe
t the de
omposition E = F � F

?

; now we


an pro
eed as in the Gaudu
hon 
ase.

Another 
onsequen
e of Proposition 3.6 is

Proposition 3.13 Let D be a simple 
at 
onne
tion in E. If a g-Einstein

metri
 in (E;D) exists, then it is unique up to a positive s
alar.

Proof: Let h

1

,h

2

be g-Einstein metri
s in (E;D), and 
 2 R the Einstein


onstant. There are di�erentiable automorphisms f and k of E, selfadjoint

with respe
t to both h

1

and h

2

, su
h that f = k

2

and h

2

(s; t) = h

1

(f(s); t) =

h

1

(k(s); k(t)) for all s; t 2 A

0

(E): Sin
e D is simple it suÆ
es to showD(f) = 0:

We de�ne a new 
at 
onne
tion

~

D := k ÆD Æ k

�1

: In what follows, operators

Æ, d, � et
. with a subs
ript i are asso
iated to D by the metri
 h

i

, without a

subs
ript they are asso
iated to

~

D by h

1

. One veri�es

Æ

2

= f

�1

Æ Æ

1

Æ f; Æ = k

�1

Æ Æ

1

Æ k = k Æ Æ

2

Æ k

�1

;

implying

d =

1

2

(

~

D + Æ) = k Æ d

2

Æ k

�1

;� =

1

2

(

~

D � Æ) = k Æ�

2

Æ k

�1

and hen
e

i�

g

G

h

1

= i�

g

�

�(�) = ik Æ �

g

�

�

2

(�

2

) Æ k

�1

= ik Æ �

g

G

2;h

2

Æ k

�1

= 
 � id

E

;

so h

1

is a g-Einstein metri
 in (E;

~

D). It follows that h

1

indu
es a g-Einstein

metri
 with Einstein 
onstant 0 for the 
at 
onne
tion

~

D

End

(:) = :ÆD�

~

DÆ : in

EndE. By de�nition it holds

~

D

End

(k) = 0; so Proposition 3.6 implies

~

d

End

(k) =

0: Sin
e

~

Æ

End

= 2

~

d

End

�

~

D

End

; it follows

0 =

~

Æ

End

(k) = k Æ Æ

1

� Æ Æ k = k Æ Æ

1

� k

�1

Æ Æ

1

Æ k

2

= k

�1

Æ (f Æ Æ

1

� Æ

1

Æ f) ;
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implying Æ

1;End

(f) = 0; where Æ

1;End

is the operator on EndE indu
ed by D

and h

1

. But this is equivalent to Æ

0

1;End

(f) = 0 and Æ

00

1;End

(f) = 0 ; and taking

adjoints with respe
t to h

1

we get

0 = (Æ

0

1;End

(f))

�

= D

00

End

(f); 0 = (Æ

00

1;End

(f))

�

= D

0

End

(f);

i.e. D

End

(f) = 0:

Let (E;D), (

~

E;

~

D) be 
at bundles with g-Einstein metri
s h,

~

h. Let E =

k

L

i=1

E

i

and

~

E =

l

L

i=1

~

E

i

be the orthogonal, invariant splittings given by Proposi-

tion 3.12. We write D

i

:= Dj

E

i

;

~

D

i

:=

~

Dj

~

E

i

; h

i

:= hj

E

i

;

~

h

i

:=

~

hj

~

E

i

: Using

Propositions 3.11 and 3.13 one veri�es

Corollary 3.14 If there exists an isomorphism f 2 A

0

(Hom(E;

~

E)) satisfy-

ing f Æ D =

~

D Æ f; then it holds k = l; and, after renumbering of the sum-

mands if ne
essary, there are isomorphisms f

i

2 A

0

(Hom(E

i

;

~

E

i

)) su
h that

f

i

ÆD

i

=

~

D

i

Æ f and f

�

(h

i

) =

~

h

i

:

The following result is the 
onverse of Proposition 3.12.

Proposition 3.15 Let (E;D) a g-stable 
at bundle over X. Then there exists

a g-Einstein metri
 for (E;D).

Sket
h of proof: The proof is very similar to the one for the existen
e of a

g-Hermitian Einstein metri
 in a g-stable holomorphi
 ve
tor bundle as given

in Chapter 3 of [LT℄. Therefore we will be brief, leaving it to the reader to �ll

in the ne
essary details.

First observe that by Lemma 3.3 we may assume that g is a Gaudu
hon metri
.

For any metri
 h in E it holds

G

h

=

�

�

h

(�

h

) =

1

4

[D

00

+ Æ

00

h

; D

0

� Æ

0

h

℄ = �

1

4

[D

00

; Æ

0

h

℄ +

1

4

[D

0

; Æ

00

h

℄

sin
e D

2

= Æ

2

h

= 0: Observe that [D

00

; Æ

0

h

℄ resp. [D

0

; Æ

00

h

℄ is the 
urvature of the

h-unitary 
onne
tion D

00

+ Æ

0

h

resp. D

0

+ Æ

00

h

.

Fix a metri
 h

0

in E, and let Æ = Æ

0

+Æ

00

; d = �+

�

�; � = �+�

�

be the operators

asso
iated toD = D

0

+D

00

and h

0

as in se
tion 2. Consider for an h

0

-selfadjoint

positive de�nite endomorphism f of E and " 2 [0; 1℄ the di�erential equation

L

"

(f) := K

0

�

i

4

�

g

D

00

(f

�1

Æ Æ

0

(f))+

i

4

�

g

D

0

(f

�1

Æ Æ

00

(f))� " � log(f) = 0; (6)

where K

0

:= i�

g

�

�(�) � 
 � id

E

= �

i

4

�

g

([D

00

; Æ

0

℄ � [D

0

; Æ

00

℄) � 
 � id

E

; and 
 is

the 
onstant asso
iated to a possible g-Einstein metri
 for (E;D). The metri


f � h

0

; de�ned by f � h

0

(s; t) := h

0

(f(s); t) for se
tions s; t in E, is g-Einstein if

and only if L

0

(f) = 0:
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The term T

1

:= i�

g

D

00

(f

�1

Æ Æ

0

(f)) (asso
iated to the unitary 
onne
tion

d

1

:= Æ

0

+ D

00

) in equation (6) is of pre
isely the same type as the term

T

0

:= i�

g

�

�(f

�1

Æ �

0

(f)) (asso
iated to the unitary 
onne
tion d

0

= �

0

+

�

� )

in equation (��) on page 62 in [LT℄, and the term T

2

:= �i�

g

D

0

(f

�1

Æ Æ

00

(f))

(asso
iated to the unitary 
onne
tion d

2

:= D

0

+ Æ

00

) is almost of this type;

e.g. the tra
e of all three terms equals i�

g

�

��(tr(log f), and the symbols of the

di�erential operators

d

df

^

T

i

, where

^

T

i

(f) := f Æ T

i

(f); are equal, too. Therefore

most of the arguments in [LT℄ 
an easily be adapted to show �rst that for a

simple 
at 
onne
tion D equation (6) has solutions f

"

for all " 2 (0; 1℄; whi
h

satisfy det f

"

� 1; and whi
h 
onverge to a solution f of L

0

(f) = 0 if the

L

2

-norms of the f

"

are uniformly bounded. (There are two pla
es where one

has to argue in a slightly di�erent way: In the proof of the analogue of [LT℄

Lemma 3.3.1, one uses the Lapla
ian �

D

= D

�

ÆD instead of �

�

�

, and in the

proof of the analogue of [LT℄ Proposition 3.3.5 the sum �

d

1

+�

d

2

of the two

Lapla
ians asso
iated to d

1

and d

2

instead of just one.)

Then, under the assumptions that rkE � 2 and that the L

2

-norms of the f

"

are unbounded, one shows that for suitable "

i

�! 0; �("

i

) �! 0; the limit

� := id

E

� lim

��!0

�

lim

i�!1

�("

i

) � f

"

i

�

�

exists weakly in L

2

1

, and satis�es in L

1

� = �

�

= �

2

and

(id

E

� �) ÆD(�) = 0: (7)

This implies (id

E

��)ÆD

00

(�) = 0; so � de�nes a weakly holomorphi
 subbundle

F of the holomorphi
 bundle (E;D

00

) by a theorem of Uhlenbe
k and Yau (see

[UY℄, [LT℄ Theorem 3.4.3). F is a 
oherent subsheaf of (E;D

00

), a holomorphi


subbundle outside an analyti
 subset S � X of 
odimension at least 2, and �

is smooth on X n S. Therefore (7) implies that Fj

XnS

is in fa
t a D-invariant

subbundle of Ej

XnS

, whi
h extends to a D-invariant subbundle F of E by the

Lemma below. Again using arguments as is [LT℄, one �nally shows that F

violates the stability 
ondition for (E;D).

Lemma 3.16 Let X be a di�erentiable manifold, E a di�erentiable ve
tor bun-

dle over X, and D a 
at 
onne
tion in E. Let S � X be a subset su
h that

X nS is open and dense in X, and with the following property: For every point

x 2 S and every open neighborhood U of x in X there exists an open neighbor-

hood x 2 U

0

� U su
h that U

0

n S is path-
onne
ted.

Then every D-invariant subbundle F of Ej

XnS

extends to a D-invariant sub-

bundle F of E.

Proof: For every x 2 S 
hoose an open neighborhood x 2 U � X su
h that

U nS is path 
onne
ted and (Ej

U

; D)

�

=

(U � V; d); where V is a ve
tor spa
e

and d the trivial 
at 
onne
tion. Sin
e F is D-invariant and U n S is path


onne
ted, it holds

(Fj

UnS

; D)

�

=

((U n S)�W;d);
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where W � V is a 
onstant subspa
e. De�ne F over U by F j

U

:

�

=

U �W ;

then the topologi
al 
ondition on S implies that this is well de�ned on S, and

hen
e gives a D-invariant extension F of F over X .

The following main result of this se
tion is a dire
t 
onsequen
e of Proposi-

tions 3.12 and 3.15.

Theorem 3.17 A 
at 
onne
tion D in E admits a g-Einstein metri
 if and

only if it is g-polystable.

As for stable ve
tor bundles and Hermitian-Einstein metri
s, the gauge theo-

reti
 interpretation of our results is as follows. The group

G

C

:= A

0

(GL(E))

of di�erentiable automorphisms of E a
ts on A(E) by D � f = f

�1

ÆD Æ f; so

A(E)

Æ

G

C

is the moduli spa
e of isomorphism 
lasses of 
onne
tions in E. Observe that


atness, simpli
ity and g-stability are preserved under this a
tion. Fix a metri


h in E; then it holds:

Corollary 3.18 The following two statements for a 
at 
onne
tion D are

equivalent:

i) D is g-stable.

ii) D is simple, and there is a 
onne
tion D

0

in the G

C

-orbit through D su
h

that h is g-Einstein for D

0

.

The essential uniqueness of a g-Einstein metri
 (Proposition 3.13) implies that

the 
onne
tion D

0

in ii) is unique up to the a
tion of the subgroup

G := A

0

(U(E; h)) � G

C

of h-unitary automorphisms. This means that the moduli spa
e

M

st

f

(E) =

f D 2 A

f

(E) j D is g � stable g

Æ

G

C

of isomorphism 
lasses of g-stable 
at 
onne
tions in E 
oin
ides with the

quotient

f D 2 A

f

(E) j D is simple and h is g � Einstein for D g

Æ

G

:

Example: We now give the promised example of a 
at bundle whi
h is g-

stable, but not stable in the sense of Corlette.
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An Inoue surfa
e of type S

�

N

is the quotient of H �C by an aÆne transformation

group G generated by

g

0

(w; z) := (�w;�z + t);

g

i

(w; z) := (w + a

i

; z + b

i

w + 


i

); i = 1; 2;

g

3

(w; z) := (w; z + 


3

);

with 
ertain 
onstants �; a

i

; b

i

; 


3

2 R; 


1

; 


2

2 C (see [P℄ p. 160). Sin
e the

se
ond Betti number of S

�

N

vanishes, the degree map

deg

g

: Pi
(S

�

N

) �! R

asso
iated to a Gaudu
hon metri
 g is, up to a positive fa
tor, independent

of the 
hosen metri
 g. In parti
ular, all Hermitian metri
s g de�ne the same

notion of g-stability ([LT℄ Remark 1.4.4 iii)).

The trivial 
at 
onne
tion d on H � C indu
es a 
at 
onne
tion D in the

tangent bundle E := T

S

�

N

: A D-invariant sub-line bundle of E is in parti
ular

a holomorphi
 subbundle, so it de�nes a holomorphi
 foliation of S

�

N

. A
-


ording to [B℄ Th�eor�eme 2, there is pre
isely one su
h foliation, namely the

one indu
ed by the G-invariant verti
al foliation (i.e. with leaves fwg � C ) of

H � C . The 
orresponding trivial line bundle L

0

on H � C is d-invariant, so

it des
ends to a unique D-invariant subbundle L of E; this shows that E is

not stable in the sense of Corlette. Observe that L has fa
tors of automorphy

�(g

i

) = �1; i = 0; 1; 2; 3; so the standard 
at metri
 in L

0

de�nes a metri
 h

in L su
h that the asso
iated Chern 
onne
tion in (L;D

00

j

L

) is 
at; this implies

�

g

(Dj

L

) = deg

g

(Dj

L

) = 0: On the other hand, the g-degree, and hen
e the g-

slope, of E is negative by [P℄ Proposition 4.7; this implies the g-stability of E

sin
e L is the only D-invariant proper subbundle of E.

4 Einstein metri
s and stability for Higgs bundles.

Again we �x Hermitian metri
s g in X and h in E.

Let d

00

=

�

� + � 2 A

00

i

(E) be an integrable Higgs operator,

D

h

= I

�1

h

(d

00

) = d+� = � +

�

� + � + �

�

2 A(E)

the 
onne
tion asso
iated to d

00

as in se
tion 2, and F

h

= D

2

h

its 
urvature.

Definition 4.1 h is 
alled a g-Einstein metri
 in (E; d

00

) if and only if

K

h

:= i�

g

F

h

= 
 � id

E

with a real 
onstant 
, the Einstein 
onstant.

Lemma 4.2 Let h be a g-Einstein metri
 in (E; d

00

), and ~g = ' � g 
onformally

equivalent to g. Then there exists a ~g-Einstein metri


~

h in (E; d

00

) whi
h is


onformally equivalent to h.

Do
umenta Mathemati
a 4 (1999) 487{512



Einstein Metri
s and Stability for Flat Conne
tions 503

Proof: From Remark 2.1 iii) it follows that for f 2 C

1

(X;R) it holds

F

e

f

�h

= F

h

+

�

��(f) � id

E

: Using this, the proof is analogous to that of Lem-

ma 3.3.

Noti
e that sin
e d

00

is integrable it holds (
ompare Lemma 2.4)

K

h

= i�

g

(d

2

+ [�; �

�

℄) = i�

g

([�;

�

�℄ + [�; �

�

℄)

where d = � +

�

�: An immediate 
onsequen
e of Lemma 2.6 and Lemma 4.2 is

(
ompare the proof of Lemma 3.4)

Lemma 4.3 If i�

g

F

h

= 
 � id

E

with 
 2 R; then it holds:

i) 
 =

2�

(n�1)!�Vol

g

(X)

� �

g

(d

00

) if g is Gaudu
hon.

ii) deg

g

(d

00

) = 0 if and only if 
 = 0:

Remark 4.4 (
ompare Remark 3.5)

i) If two integrable Higgs operators d

00

1

,d

00

2

are isomorphi
 via the automorphism

f of E, i.e. if d

00

2

Æ f � f Æ d

00

1

= 0; and if h is a g-Einstein metri
 in (E; d

00

1

),

then f

�

h is a g-Einstein metri
 in (E; d

00

2

), and the asso
iated Einstein 
onstants

are equal.

ii) By Remark 2.3, a ne
essary 
ondition for D

h

= I

h

(d

00

) to be a 
at 
onne
tion

is h to be Einstein with Einstein 
onstant 
 = 0; so in parti
ular deg

g

(d

00

) = 0:

On the other hand, the Chern 
onne
tion in (E;D

00

h

) is ���+

�

�+�

�

, so the g-

degree of D

h

is obtained by integrating tr�

g

[

�

�+�

�

; ���℄ whi
h equals tr�

g

[

�

�; �℄

sin
e d

00

is integrable (Lemma 2.4 ii)). If D

h

is 
at, we furthermore have

d

2

= �� ^� (Lemma 2.4 i)), implying tr[

�

�; �℄ = 0 and hen
e deg

g

(D

h

) = 0:

In analogy with the 
ase of Hermitian-Einstein metri
s in holomorphi
 ve
tor

bundles, the following vanishing theorem holds.

Proposition 4.5 Let h be a g-Einstein metri
 in (E; d

00

) with Einstein 
on-

stant 
.

If 
 < 0; then the only se
tion s 2 A

0

(E) with d

00

(s) = 0 is s = 0:

If 
 = 0; then for every se
tion s 2 A

0

(E) with d

00

(s) = 0 it holds D

h

(s) = 0:

Proof: For s 2 A

0

(E); d

00

(s) = 0 is equivalent to

�

�(s) = 0 = �(s): This im-

plies


 � jsj

2

= 
 � h(s; s) = h(K

h

(s); s) = i�

g

�

h(

�

��(s); s) + h(�

�

(s); �

�

(s))

�

: (8)

We have

i�

g

�

��h(s; s) = i�

g

�

h(

�

��(s); s)� h(�(s); �(s))

�

sin
e

�

�(s) = 0; and using (8) we get

i�

g

�

��h(s; s) = 
 � jsj

2

� j�(s)j

2

� j�

�

(s)j

2

:

Now the 
laim follows as in the proof of Proposition 3.6.

The proof of the following 
orollary is analogous to that of Corollary 3.7.
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Corollary 4.6 For i = 1; 2 let d

00

i

2 A

00

i

(E) be an integrable Higgs operators,

h

i

a g-Einstein metri
 in (E; d

00

i

), and D

i

:= I

�1

h

i

(d

00

i

) 2 A(E) the asso
iated


onne
tion. If d

00

1

and d

00

2

are isomorphi
 via the automorphism f of E, then

D

1

and D

2

are isomorphi
 via f , too.

Let d

00

=

�

� + � be an integrable Higgs operator in E. A 
oherent subsheaf F

of the holomorphi
 bundle (E;

�

�) is 
alled a Higgs-subsheaf of (E; d

00

) i� it is

d

00

-invariant. For the de�nition of the g-degree and g-slope of a 
oherent sheaf

see [LT℄.

Definition 4.7 An integrable Higgs operator d

00

in E is 
alled g-(semi)stable

i� for every 
oherent Higgs-subsheaf F of (E; d

00

) with 0 < rkF < rkE it holds

�

g

(F) < �

g

(E) ( �

g

(F) � �

g

(E) ). d

00

is 
alled g-polystable i� E is a dire
t

sum E = E

1

�E

2

� : : :�E

k

of d

00

-invariant and g-stable subbundles E

i

with

�

g

(d

00

j

E

i

= �

g

(d

00

) for i = 1; 2; : : : ; k:

Definition 4.8 An integrable Higgs operator d

00

in E is 
alled simple i� for

every f 2 A

0

(EndE) with d

00

Æ f = f Æ d

00

it holds f = a � id

E

with a 2 C :

As in the 
ase of stable ve
tor bundles or 
at 
onne
tions, (semi)-stability 
an

equivalently be de�ned using quotients of E; again it follows

Lemma 4.9 i) A g-stable integrable Higgs operator in E is simple.

ii) Let d

00

1

, d

00

2

be g-stable integrable Higgs operators in bundles E

1

, E

2

on X

su
h that �

g

(d

00

1

) = �

g

(d

00

2

) : If f 2 A

0

(Hom(E

1

; E

2

)) satis�es d

00

2

Æ f = f Æ d

00

1

;

then either f = 0 or f is an isomorphism.

Furthermore, using arguments similar to those in the proof of Proposition 3.13,

we get the following 
onsequen
e of Proposition 4.5.

Proposition 4.10 Let d

00

be a simple integrable Higgs operator in E. If a

g-Einstein metri
 in (E; d

00

) exists, then it is unique up to a positive s
alar.

The proof of the next result is a straightforward generalization of that in

the K�ahler 
ase [S2℄ (just as for the proof of the 
orresponding statement for

Hermite-Einstein metri
s in ve
tor bundles, see [LT℄).

Proposition 4.11 Let d

00

be an integrable Higgs operator in E, and h

a g-Einstein metri
 in (E; d

00

) with Einstein 
onstant 
; then d

00

is g-

semistable. If d

00

is not g-stable, then d

00

is g-polystable; more pre
isely,

E = E

1

�E

2

� : : :�E

k

is an h-orthogonal dire
t sum of d

00

-invariant and g-

stable subbundles su
h that �

g

(d

00

j

E

i

) = �

g

(d

00

) for i = 1; 2; : : : ; k : Further-

more, hj

E

i

is a g-Einstein metri
 in (E

i

; d

00

j

E

i

) with Einstein 
onstant 
 for all

i, and the dire
t sum is invariant with respe
t to the 
onne
tion D

h

= I

�1

h

(d

00

):
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Let d

00

,

~

d

00

be integrable Higgs operators in bundles E,

~

E with g-Einstein met-

ri
s h,

~

h. Let E =

k

L

i=1

E

i

and

~

E =

l

L

i=1

~

E

i

be the orthogonal, invariant split-

tings given by Proposition 4.11. We write d

00

i

:= d

00

j

E

i

;

~

d

00

i

:=

~

d

00

j

~

E

i

; h

i

:= hj

E

i

;

~

h

i

:=

~

hj

~

E

i

:

As in the previous se
tion (but now using Lemma 4.9 and Proposition 4.10) we

dedu
e

Corollary 4.12 Suppose that there exists an isomorphism

f 2 A

0

(Hom(E;

~

E)) satisfying f Æ d

00

=

~

d

00

Æ f: Then it holds k = l; and,

after renumbering of the summands if ne
essary, there are isomorphisms

f

i

2 A

0

(Hom(E

i

;

~

E

i

)) su
h that f

i

Æ d

00

i

=

~

d

00

i

Æ f and f

�

(h

i

) =

~

h

i

:

Remark 4.13 We expe
t that the existen
e of a g-Einstein metri
 for a g-

stable Higgs operator d

00


an be proved by solving (again using the 
ontinuity

method as in [LT℄) the di�erential equation

K

h

+ i�

g

d

00

(f

�1

Æ d

0

(f)) = 
 � id

E

for a positive de�nite and h-selfadjoint endomorphism f of E, where h is a

suitable �xed metri
 in E.

5 Surfa
es.

In this se
tion we 
onsider the spe
ial 
ase n = 2; i.e. where X is a 
ompa
t


omplex surfa
e; again we �x a Hermitian metri
 g in X . In this 
ase, the real

Chern numbers 


2

1

(E); 


2

(E) 2 H

4

(X;R)

�

=

R 
an be 
al
ulated by integrating

the 
orresponding Chern forms of any 
onne
tion in E, independently of the


hosen metri
 g. In parti
ular, if E admits a 
at 
onne
tion, then these Chern

numbers vanish.

Proposition 5.1 Suppose that D 2 A

f

(E) is a 
at 
onne
tion of g-degree 0,

and that h is a g-Einstein metri
 in (E;D). Then it holds G

h

= 0: In parti
ular,

the Higgs operator d

00

h

asso
iated to D and h is integrable with deg

g

(d

00

h

) = 0;

and h is a g-Einstein metri
 for (E; d

00

h

).

Proof: (see [S2℄) For � > 0 we de�ne a new 
onne
tion B

�

:= d+

1

�

� + ��

�

;

and F

�

:= B

2

�

: Observe that n = 2 implies F

2

�

=

1

�

2

r

4

�

; where r

�

= d

00

h

+ �d

0

:

The vanishing of the Chern numbers of E implies

R

X

trF

2

�

= 0; and hen
e

R

X

trr

4

�

= 0 for all � > 0: Taking the limit �! 0 it follows

Z

X

trG

2

h

= 0: (9)
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Write G

h

= G

1;1

+G

2

; where G

1;1

is the 
omponent of the 2-form G

h

of type

(1; 1). Then it holds

�

g

G

1;1

= �G

1;1

; �

g

G

2

= G

2

; (10)

the �rst equation is a 
onsequen
e of �

g

G

h

= 0; whi
h follows from the assump-

tion and Lemma 3.4. On the other hand, it holds G

h

=

�

�

2

+

�

�(�) + � ^ �; so

Lemma 2.4 implies

G

1;1

=

�

�(�) = �(�

�

)

�

= �

�

�(�)

�

= �G

�

1;1

; (11)

and

G

2

=

�

�

2

+ � ^ � = ��

�

^ �

�

� � ^ � = (� ^ � + �

�

^ �

�

)

�

= G

�

2

: (12)

(11) and (12) 
ombined with (10) give �

g

G

�

h

= G

h

; so from (9) it follows

0 =

Z

X

trG

2

h

=

Z

X

tr(G

h

^ �

g

G

�

h

) =

Z

X

jG

h

j

2

vol

g

;

implying (d

00

h

)

2

= G

h

= 0: Hen
e d

00

h

is integrable, deg

g

(d

00

h

) vanishes (Re-

mark 3.5), and h is g-Einstein for (E; d

00

)h) be
ause the 
urvature of d

00

h

with

respe
t to h equals D

2

= 0:

Proposition 5.2 Suppose that 


2

1

(E) = 


2

(E) = 0; that d

00

is an integrable

Higgs operator of g-degree 0, and that h is a g-Einstein metri
 in (E; d

00

).

Then it holds F

h

= 0: In parti
ular, the 
onne
tion D

h

asso
iated to d

00

and h

is 
at with deg

g

(D

h

) = 0; and h is a g-Einstein metri
 for (E;D

h

).

Proof: De�ne F

1;1

:= d

2

+ [�; �

�

℄; F

2

:= �(�) +

�

�(�

�

); then F

h

= F

1;1

+ F

2

:

Observe that F

1;1

is of type (1,1) be
ause d is a unitary 
onne
tion in

the holomorphi
 bundle (E;

�

�). Sin
e deg

g

(d

00

) = 0; Lemma 4.3 implies

0 = �

g

F

h

= �

g

F

1;1

; hen
e it holds �

g

F

1;1

= �F

1;1

and �

g

F

2

= F

2

: On the

other hand, it is easy to see that F

�

1;1

= �F

1;1

and F

�

2

= F

2

: Combining these

relations we get �

g

F

�

h

= F

h

: Sin
e 


2

1

(E) resp. 


2

(E) are obtained by integrating

�

1

4�

2

(trF

h

)

2

resp. �

1

8�

2

((trF

h

)

2

� tr(F

2

h

)), we get

0 =

Z

X

tr(F

2

h

) =

Z

X

tr(F

h

^ �

g

F

�

h

) = kF

h

k

2

;

implying D

2

h

= F

h

= 0: Hen
e D

h

is 
at, deg

g

(D

h

) vanishes (Remark 4.4), and

h is g-Einstein for (E;D

h

) be
ause the pseudo
urvature of D

h

with respe
t to

h equals (d

00

)

2

= 0:

Remark 5.3 The above proposition implies in parti
ular the following: Sup-

pose that 


2

1

(E) = 


2

(E) = 0; if there exists an integrable Higgs operator d

00

in

E with g-degree 0 admitting a g-Einstein metri
, then the real Chern 
lass




1

(E)

R

2 H

2

(X;R) vanishes, be
ause there is a 
at 
onne
tion in E.
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We de�ne A

f

(E)

0

g

to be the spa
e of D 2 A

f

(E) of g-degree 0 su
h that there

exists a g-Einstein metri
 in (E;D), and A

00

i

(E)

0

g

to be the spa
e of d

00

2 A

00

i

(E)

of g-degree 0 su
h that there exists a g-Einstein metri
 in (E; d

00

). By Re-

mark 3.5 and Remark 4.4, the two moduli sets

M

f

(E)

0

g

:=

A

f

(E)

0

g

Æ

isomorphy of 
onne
tions

and

M

00

(E)

0

g

:=

A

00

i

(E)

0

g

Æ

isomorphy of Higgs operators

are well de�ned. The main result of this se
tion is

Theorem 5.4 There is a natural bije
tion

I :M

f

(E)

0

g

�!M

00

(E)

0

g

:

Proof: First observe that we may assume that the real Chern 
lasses of E

vanish, sin
e otherwise both spa
es are empty (see Remark 5.3).

Let D be a 
at 
onne
tion in E with g-degree 0, and h a g-Einstein metri


in (E;D). By Proposition 5.1, the asso
iated Higgs operator d

00

h

= I

h

(D) is

integrable with g-degree 0, and h is a g-Einstein metri
 in (E; d

00

h

). We will

show that the map I de�ned by I([D℄) := [d

00

h

℄ is well de�ned and bije
tive.

Suppose that D;

~

D 2 A

f

(E)

0

g

are isomorphi
 via the automorphism f of E;

then f

�

h is g-Einstein in (E;

~

D) (Remark 3.5), the Higgs-operator

~

d

00

asso
i-

ated to

~

D and f

�

h is isomorphi
 to d

00

via f (Corollary 3.7), and f

�

h is a

g-Einstein metri
 in (E;

~

d

00

) (Remark 4.4). To prove that I is well de�ned

it thus suÆ
es to show that two di�erent g-Einstein metri
s h;

~

h for a �xed

D 2 A

f

(E)

0

g

produ
e isomorphi
 Higgs operators d

00

h

; d

00

~

h

. For this 
onsider the

D-invariant and h- resp.

~

h-orthogonal splittings E =

k

L

i=1

E

i

resp. E =

l

L

i=1

~

E

i

asso
iated to h resp.

~

h by Proposition 3.12. A

ording to Corollary 3.14 (with

E =

~

E; D =

~

D; f = id

E

) it holds k = l; and we may assume that there are

isomorphisms f

i

: (E

i

; D

i

; h

i

) �! (

~

E

i

;

~

D

i

;

~

h

i

) of 
at bundles of g-degree 0 with

g-Einstein metri
s, where D

i

:= Dj

E

i

;

~

D

i

:= Dj

~

E

i

; h

i

:= hj

E

i

;

~

h

i

:=

~

hj

~

E

i

: This

means in parti
ular that the Higgs operator d

00

i

in E

i

asso
iated to D

i

and h

i

is isomorphi
 via f

i

to the Higgs operator

~

d

00

i

in

~

E

i

asso
iated to

~

D

i

and

~

h

i

.

Hen
e d

00

h

= d

00

1

� : : : d

00

k

is isomorphi
 to d

00

~

h

=

~

d

00

1

� : : :�

~

d

00

k

via the isomorphism

f := f

1

� : : :� f

k

:

In the same way, but using Proposition 5.2 and the results of se
tion 4, one

shows that there is a well de�ned map from M

00

(E)

0

g

to M

f

(E)

0

g

, asso
iating

to the 
lass of an integrable Higgs operator d

00

with g-Einstein metri
 h the


lass of the 
onne
tion D

h

= I

�1

h

(d

00

); this obviously is an inverse of I .
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6 Line bundles on non-K

�

ahler surfa
es.

Isomorphism 
lasses of 
at 
omplex line bundles (L;D) on a manifold X are

parametrized by H

1

(X; C

�

). On the other hand, an integrable Higgs operator

d

00

=

�

� + � in a 
omplex line bundle L 
onsists of a holomorphi
 stru
ture

�

� in

L and a holomorphi
 1-form � on X (the 
ondition � ^ � = 0 now is trivial).

Furthermore, two integrable Higgs operators d

00

1

and d

00

2

in L are isomorphi
 if

and only if the two holomorphi
 line bundles (L;

�

�

1

) and (L;

�

�

2

) are isomorphi


and �

1

= �

2

: Hen
e, the spa
e parametrizing isomorphism 
lasses of integrable

Higgs operators is H

1

(X;O

�

)�H

0

(X;


1

(X)) = Pi
(X)�H

1;0

(X): In parti
-

ular, the moduli sets M

f

(L)

0

g

and M

00

(L)

0

g

de�ned in the previous se
tion are

subsets of H

1

(X; C

�

) resp. Pi
(X)�H

1;0

(X).

Lemma 6.1 Let L be a 
omplex line bundle on X, and g a Hermitian metri


in X. Then every 
at 
onne
tion in L and every integrable Higgs operator in

L admits a g-Einstein metri
.

Proof: Let h

0

be �xed metri
 in L, then every metri
 is of the form

h

f

= e

f

� h

0

with f 2 C

1

(X;R): Let D be a 
at 
onne
tion in L; then h

f

is a g-Einstein metri
 for D if and only if it is a solution of the equation

i�

g

G

h

0

�

i

2

�

g

�

��(f) = 
 with a real 
onstant 
. Su
h a solution exists by [LT℄

Corollary 7.2.9. A similar argument works for integrable Higgs operators.

From now on let X be a surfa
e, and g a �xed Hermitian metri
 in X . Then

the map deg

g

: Pi
(X) �! R is a morphism of Lie groups ([LT℄ Proposition

1.3.7; re
all that deg

g

= deg

~g

for some Gaudu
hon metri
 ~g). We de�ne

H

1

(X; C

�

)

f

:= f [(L;D)℄ 2 H

1

(X; C

�

) j deg

g

(D) = 0 g;

Pi
(X)

T

:= f [(L;

�

�)℄ 2 Pi
(X) j 


1

(L)

R

= 0 g;

and

Pi
(X)

f

:= ker(deg

g

j

Pi
(X)

T
):

Observe that Pi
(X)

f


an be identi�ed with the set of isomorphism 
lasses of

line bundles admitting a 
at unitary 
onne
tion ([LT℄ Proposition 1.3.13).

Theorem 5.4 and Lemma 6.1 imply

Proposition 6.2 There is a natural bije
tion

I

1

: H

1

(X; C

�

)

f

�! Pi
(X)

f

�H

1;0

(X):

If X admits a K�ahler metri
, i.e. if the �rst Betti number of b

1

(X) is even,

then deg

g

is a topologi
al invariant for every metri
 g ([LT℄ Corollary 1.3.12 i)).

Hen
e in this 
ase it holds H

1

(X; C

�

)

f

= H

1

(X; C

�

) and Pi
(X)

f

= Pi
(X)

T

;

and I

1

is the natural bije
tion from the moduli spa
e of isomorphism 
lasses of


at line bundles to the moduli spa
e of integrable Higgs operators in line bun-

dles with vanishing �rst real Chern 
lass, whi
h (e.g. by the work of Simpson)

already is known to exist for a K�ahler metri
 g.
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So let us assume that b

1

(X) is odd. Then deg

g

j

Pi


0

(X)

: Pi


0

(X) �! R is

surje
tive, and it holds

Pi
(X)

T
Æ

Pi
(X)

f

�

=

Pi


0

(X)

Æ

Pi


0

(X)

f

�

=

R

([LT℄ Corollary 1.3.12 and Proposition 1.3.13). We will show that I

1

extends

to a (non-natural) bije
tion from H

1

(X; C

�

) to Pi
(X)

T

�H

1;0

(X) in this 
ase,

too.

Lemma 6.3 There is a bije
tion i : Pi
(X)

T

�! Pi
(X)

f

� R su
h that the

diagram

Pi
(X)

T

deg

g

���! R

i # k

Pi
(X)

f

� R

proj:

����! R


ommutes.

Proof: deg

g

j

Pi


0

(X)

is surje
tive, so we 
an 
hoose L

1

:= [(L

1

;

�

�

1

)℄ 2 Pi


0

(X)

with deg

g

(L

1

) = deg

g

(

�

�

1

) = 1; and a 
lass � 2 H

1

(X;O) su
h that L

1

= �(�)

where � : H

1

(X;O) �! Pi


0

(X) is the natural surje
tion. For � 2 R de�ne

L

�

:= �(� � �);

then deg

g

(L

�

) = � sin
e deg

g

Æ� : H

1

(X;O) �! R is linear. Now de�ne i by

i(L) := (L 
 L

� deg

g

(L)

; deg

g

(L));

then it is obvious that the inverse of i is given by (L; �) 7! L 
 L

�

; and that

the diagram above 
ommutes.

In the proof of a similar statement for H

1

(X; C

�

) we will use

Lemma 6.4 The natural map

l

1

: H

1

(X; C

�

) �! Pi
(X)

T

; l

1

([(L;D)℄) := [(L;D

00

)℄:

is surje
tive, i.e. a holomorphi
 stru
ture

�

� in a di�erentiable line bundle L on

X is the (0,1)-part of a 
at 
onne
tion if and only if the real �rst Chern 
lass




1

(L)

R

vanishes.

Proof: Pi
(X)

f

is naturally identi�ed with H

1

(X;U(1)), su
h that the in
lu-

sion Pi
(X)

f

,! Pi
(X) be
omes the inje
tion k

1

: H

1

(X;U(1)) ,! H

1

(X;O

�

)

([LT℄ p. 38). Observe that k

1

is the 
omposition of the natural map

H

1

(X;U(1)) �! H

1

(X; C

�

) and l

1

, so it holds

Pi
(X)

f

= im(k

1

) � im(l

1

):
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Ea
h 
omponent of Pi
(X)

T


ontains a 
omponent of Pi
(X)

f

([LT℄ Remark

1.3.10), hen
e for ea
h 
omponent

Pi





(X) := f [(L;

�

�)℄ 2 Pi
(X) j 


1

(L)

Z

= 
 g � Pi
(X)

T

there exists a 
lass [(L




; D




)℄ 2 H

1

(X; C

�

) su
h that l

1

([(L




; D




)℄) 2 Pi





(X):

De�ne H

1

(X; C

�

)

0

:= f [(L;D)℄ 2 H

1

(X; C

�

) j 


1

(L)

Z

= 0 g: The 
ommuta-

tive diagram with exa
t rows

0 �! Z �! C

exp

���! C

�

�! 0

k # #

0 �! Z �! O

exp

���! O

�

�! 0

indu
es the 
ommutative diagram

H

1

(X; C ) �! H

1

(X; C

�

)

0

h

1

# # l

1

H

1

(X;O) �! Pi


0

(X)

with surje
tive horizontal arrows. Sin
e X is a surfa
e, the left verti
al arrow

h

1

is also surje
tive ([BPV℄ p. 117), hen
e l

1

maps H

1

(X; C

�

)

0

surje
tively

onto Pi


0

(X). Now it is easy to see that every element of Pi





(X) � Pi
(X)

T

is of the form l

1

([(L





 L;D





D)℄) for some [(L;D)℄ 2 H

1

(X; C

�

)

0

:

Lemma 6.5 There is a bije
tion j : H

1

(X; C

�

) �! H

1

(X; C

�

)

f

� R su
h that

the diagram

H

1

(X; C

�

)

deg

0

g

���! R

j # k

H

1

(X; C

�

)

f

� R

proj:

����! R


ommutes, where deg

0

g

:= deg

g

Æl

1

is the map asso
iated to the g-degree of 
at


onne
tions.

Proof: Choose L

1

2 Pi


0

(X); � 2 H

1

(X;O) as in the proof of Lemma 6.3,

and a 
lass � 2 H

1

(X; C ) with h

1

(�) = �: Let �

0

: H

1

(X; C ) �! H

1

(X; C

�

)

be the map indu
ed by exp : C �! C

�

; and de�ne L

0

1

:= �

0

(�) 2 H

1

(X; C

�

):

Sin
e the diagram

H

1

(X; C )

�

0

��! H

1

(X; C

�

)

h

1

# # l

1

H

1

(X;O) �! Pi
(X)

T
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ommutes, it holds deg

0

g

(L

0

1

) = 1: The rest of the proof is as for Lemma 6.3.

We 
on
lude

Theorem 6.6 The 
omposition

�

I : H

1

(X; C

�

)

j

�! H

1

(X; C

�

)

f

� R

I

1

�id

R

�����! H

1;0

(X)� Pi
(X)

f

� R

id

H

1;0

(X)

�i

�1

����������! H

1;0

(X)� Pi
(X)

T

is a bije
tive extension of the map I

1

, and preserves the g-degree.

We �nish with the obvious remark that the map l

1

: H

1

(X; C

�

) �! Pi
(X)

T

in general does not 
oin
ide with the 
omposition of

�

I and proje
tion onto

Pi
(X)

T

.
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