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ABSTRACT. A flat complex vector bundle (E, D) on a compact Rie-
mannian manifold (X, g) is stable (resp. polystable) in the sense of
Corlette [C] if it has no D-invariant subbundle (resp. if it is the D-
invariant direct sum of stable subbundles). It has been shown in [C]
that the polystability of (E, D) in this sense is equivalent to the exis-
tence of a so-called harmonic metric in E. In this paper we consider
flat complex vector bundles on compact Hermitian manifolds (X, g).
We propose new notions of g-(poly-)stability of such bundles, and of g-
Einstein metrics in them; these notions coincide with (poly-)stability
and harmonicity in the sense of Corlette if g is a Kdhler metric, but
are different in general. Our main result is that the g-polystability
in our sense is equivalent to the existence of a g-Hermitian-Einstein
metric. Our notion of a g-Einstein metric in a flat bundle is moti-
vated by a correspondence between flat bundles and Higgs bundles
over compact surfaces, analogous to the correspondence in the case of
Kahler manifolds [S1], [S2], [S3].

1991 Mathematics Subject Classification: 53C07

1 INTRODUCTION.

Let X be an n-dimensional compact complex manifold. If X admits a Kdhler
metric g, then it is known by work of in particular Simpson [S1],[S2],[S3] that
there exists an canonical identification of the moduli space of polystable (or
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semisimple) flat bundles on X with the moduli space of g-polystable Higgs-
bundles with vanishing Chern classes on X. This identification has been used
in showing that certain groups are not fundamental groups of compact Kéhler
manifolds. The construction uses the existence of canonical metrics, called
g-harmonic in the case of flat bundles, and g-Einstein in the case of Higgs
bundles.

For flat bundles, the equivalence of semisimplicity and the existence of a g-
harmonic metric holds on compact Riemannian manifolds [C]. Furthermore,
the equivalence of g-polystability and the existence of a g-Einstein metrics for
Higgs bundles should generalize to the case of Hermitian manifolds as in the
case of holomorphic vector bundles, using Gauduchon metrics. Nevertheless,
an identification as above cannot be expected for general compact Hermitian
manifolds, since it should imply restrictions on the fundamental group, but
every finitely presented group is the fundamental group of a 3-dimensional
compact complex manifold by a theorem of Taubes [T].

In the case of compact complex surfaces, however, things are different. We show
that for an integrable Higgs bundle (E,d") with vanishing real Chern numbers
and of g-degree 0 with g-Einstein metric h on a compact complex surface X
with Hermitian metric g, there is an canonically associated flat connection D
in E, again of g-degree 0, such that h is what we call a g- Einstein metric for
(E, D), and that the converse is also true. Furthermore, this correspondence
preserves isomorphism types and hence descends to a bijection between moduli
spaces.

The notion of a g-Einstein metric in a flat bundle makes sense in higher di-
mension, too, is equivalent to g-harmonicity in the case of a Kahler metric, but
different in general, and we show that the existence of such a metric in a flat
bundle (E, D) is equivalent to the g-polystability of this bundle in the sense
that E is the direct sum of D-invariant g-stable flat subbundles. Here we call a
flat bundle (E, D) g-stable if every D-invariant subbundle has g-slope larger(!)
than the g-slope of (E, D). g-stability of a flat bundle is equivalent to its sta-
bility (in the sense of Corlette) in the Kéhler case, but a weaker condition in
general: A stable bundle is always g-stable, but the tangent bundles of certain
Inoue surfaces are examples of g-stable bundles which are not stable.

We expect that for a non-K&hler surface with Hermitian metric g, there is a
natural bijection between the moduli space of g-polystable Higgs bundles, with
vanishing Chern numbers and g-degree, and the moduli space of g-polystable
flat bundles with vanishing g-degree. In the last section we consider the special
case of line bundles on surfaces. Here the stability is trivial, and the existence
of Einstein metrics is easy to show, so we get indeed the expected natural
bijection between moduli spaces of line bundles of degree 0. We further show
how this can be extended (in a non-natural way) to the moduli spaces of line
bundles of arbitrary degree; this extension argument works in fact for bundles
of arbitrary rank once the correspondence for degree 0 has been established.
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2 PRELIMINARIES.

Let X be a compact n-dimensional complex manifold, and £ — X a differ-
entiable C"-vector bundle on X. We fix the following

NOTATIONS:

AP(X) (resp. AP9(X)) is the space of differentiable p-forms (forms of type
(p,q)) on X.

AP(E), AP1(E) are the spaces of differential forms with values in E.

A(E) is the space of linear connections D in E. For a connection D € A(E)
we write D = D' 4+ D" where D’ is of type (1,0) and D" of type (0,1).
A(E,h) C A(E) is the subspace of h-unitary connections d in E, where h is a
Hermitian metric in E. We write d = 9 + 9, where 9 is of type (1,0) and d of
type (0,1).

A¢(E):={ D€ A(E) | D> =0 } is the subset of flat connections.

A(E) is the space of semiconnections 0 of type (0,1) in E (i.e. 9 is the (0,1)-
part of some D € A(E) ).

H(E):={0 € A(E) | 3> =0 } is the subset of integrable semiconnections or
holomorphic structuresin E.

A"(E) .= A(E) ® A (EndE) = {d"=0+0 |0 € AE), § € AY°(EndE) }
is the space of Higgs operators in E.

H'"(E):={d" € A"(E)|(d")? = 0} is the subset of integrable Higgs operators.
Often the same symbol is used for a connection, semiconnection, Higgs operator
etc. in E and the induced operator in EndE.

Two connections Dy, Dy € A(E) are isomorphic, D1 = D, if there exists a
differentiable automorphism f of E such that foD; = Dso f, which is equivalent
to D(f) =0, where D is the connection in EndE induced by Dy and D, i.e.
D(f) = Dy o f — f o Dq. In the same way the isomorphy of semiconnections
resp. Higgs operators is defined.

If a Hermitian metric h in E is given, then a superscript * means adjoint with
respect to h.

For D = D' + D" there are unique semiconnections 6} ,6; of type (1,0), (0,1)
respectively such that D' + §; and d}, + D" are h-unitary connections. Define
dp = 0}, + 0; then d), = %(D + 0p) is h-unitary, and ©p := D —d; =
(D — 63,) is a h-selfadjoint 1-form with values in EndE. Let dj = 0, + Oy
be the decomposition in the parts of type (1,0) and (0,1), and let 6, be the

(1,0)-part of ©y; then it holds
D =dp+ 0y =04+0L+0L+6;.
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The map
Iy : A(E) — A"(E), I(D) :=d}, :== 0y + 0, € A"(E)

is bijective; the inverse is given as follows. For d" = 0 + 6 € A"(E) let Oy, be
the unique semiconnection of type (1,0) such that the connection dj, := 0y, + 0
is h-unitary, and define © := 6 + 8*. Then

I7'(d") = Dy, :=dj, + © € A(E).

REMARK 2.1 i) In general, if D1,Dy € A(E) are isomorphic, then I;(D1)
and I, (D3) are not isomorphic, and vice versa.

ii) Dy, = dp+6046* is not h-unitary unless 6 = 0, but the connections dp, —0+6*
and dy, + 0 — 6* are.

it1) Any metric h' in E is of the form h' = f-h , i.e. h'(s,t) = h(f(s),t),
where f is a h-selfadjoint and positive definite. For a connection D it is easy
to show that the operator 0p.5 associated to D and f - h is given by Op.p =
f~lodpof=20n+ ftodn(f), so it holds

1. _
o= ik sf ol f e d()
U 1 —1 2} 1 —1 * 1 —1 1 —1
= dy+ 50 (f) =5 o0 (f) = 5F T 0 On(f) + 5F T e Onlf).
Conwversely, for a given Higgs operator d' one verifies
Dy =Dp+ frodn(f)+ f o b8(f).
In particular, if f is constant then the two maps Iy, and I.;, coincide.

DEFINITION 2.2 i) G, := (d}})? is called the pseudocurvature of D with respect
to h.
ii) Fy, := D37 is called the curvature of d" with respect to h.

REMARK 2.3 i) Obviously it holds: In(D) is an integrable Higgs operator if
and only if G, =0, and I;7'(d") is a flat connection if and only if Fy, = 0.
it) Fori = 1,2, let E; be a differentiable complex vector bundle on X with Her-
mitian metric h; and connection D;. Let h be the induced metric and D the
induced connection in Hom(E, E2). Denote by G, p, resp. G, the pseudocurva-
ture of D; resp. D with respect to h; resp. h. Then for f € A°(Hom(E;, Es))
it holds Gp(f) =Gapo f— foGyp.

Similarly, the curvature Fy, of the Higgs operator induced in Hom(E;, Es) by
Higgs operators d} in the E; is given by Fp(f) = Fapo f — f o Fip.

ii1) If D is a connection, then D? is the curvature of dj with respect to h, and
if d" is a Higgs operator, then (d")? is the pseudocurvature of Dy, with respect
to h. This trivially follows from the bijectivity of I,.
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LEMMA 2.4 i) For D € A(E) let D = d, + O, = 6h+3h+0h+9* be
the decomposition induced by h as above. If D is flat, then it holds 67
dn(©r) = 0, i.e. On(6r) = On(0;) = On(0}) + On(6r) = 0, and furthermore
d% = -0, A Oy.

i) For d’ = 0+ 6 € A"(E) let Oy, dy and Dy, be as above, and write dj, :=
oy, + 6*.

If d" is integrable, then it holds (d})* =0, i.e. 87 = Op(6*) =6*AO* =0
d2 = [0h,0), and hence Fj, = d; +[0,6*] + 0n(0) + 0(6*).

PRrROOF: i) For D = D' + D" € A;(E) it holds

0 = 80h(s,t)
h((D")?(s),t) — h(D'(s), 8, (t)) + h(D'(s), 0, (1)) + h(s, (6)° (1))
= h(s, (03)%(t))

for all s,t € A°(E), i.e. (4})*> = 0. Similarly one sees (§})? = 0 = 6,8} + 4,5},
yielding 42 = 0. We conclude

dh(®h) = [D +6p, D — 5h] =0,

R

and
0=D>=(d, +0,)> =d} +dp(Oh) + O, AOy =d} + O} AOy.

ii) For d" =0+ 6 € H"(E) and dj, = 0, + 0 it is well known that 9} = 0, and
hence d; = [0y, ). Furthermore, for all s,t € A°(E) it holds

(Bh( ")(s),1)

h(On 0 8(s),t) + (6" 0 On(s),1)
);t) + h(0"(s5),0(t)) — h(On(s

= ah(<9*( ),6(t))

= Oh(s,0(t)) + h(s,0 0 0(t)) — h(2 ()9(t))

= h(On(s),0(t)) +h(8 00 0(t)) + h(s,0 0 0(t)) — h(On(s),0(t))
= h(s,000)(t) =

and

h(6* AN 6*(s),t) = —h(s,0 AB(t)) = 0;
this shows 0, (6*) =0 = 6* A 6*. o
Now let g be a Hermitian metric in X, and denote by w, the associated (1,1)-
form on X, by A, the contraction by w,, and by *, the associated Hodge-x-
operator.
Recall that in the conformal class of g there exists a Gauduchon metric §, i.e.

a metric satisfying 56((4};’71) = 0; § is unique up to a constant positive factor
if n > 2 ([G] p. 502, [LT] Theorem 1.2.4).
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There is a natural way to define a map
deg, : H(E) — R,

called g-degree, with the following properties (see [LT] sections 1.3 and 1.4):

- If g is a Gauduchon metric, and 9 € H(E) is a holomorphic structure, then
degg(g) is given as follows: Choose any Hermitian metric b in E, and let d
be the Chern connection in (E,0) induced by h, i.e. the unique h-unitary

connection in F with (0,1)-part 9. Then

deg, (D) := i/tr(d% Awpt = ﬁ/tr/&gf LW = ﬁ/trAg[é,O] LW,
X X X

- If g is arbitrary, then there is a unique Gauduchon metric g in the conformal
class of g such that deg, = deg; .
The g-slope of 9 is
- deg, (0)
1y (9) o= S

r

where r is the rank of E.
If D= D'+ D" is a flat connection, then it holds (D"”)?> = 0, so D" is a
holomorphic structure. We define the g-degree and g-slope of D as

deg, (D) := degg(D”)aﬂg(D) 1= pg(D").

Similarly, for an integrable Higgs operator d” = d +# it holds 8% = 0, and we
define

deg, (d") = deg, (9), 1y (d") := 11y (D).

Observe that in all three cases the g-degrees (resp. slopes) of isomorphic oper-
ators are the same.

REMARK 2.5 Suppose that g is a Kdhler metric, i.e. d(w,) = 0. Then the g-
degree is a topological invariant of the bundle E, completely determined by the
first real Chern class c1(E)r € H?(X,R). In particular, since all real Chern
classes of a flat bundle vanish, it holds deg (D) = 0 for every flat connection
D in E. On the other hand, if e.g. X is a surface admitting no Kdahler metric
and g is Gauduchon, then every real number is the g-degree of a flat line bundle
on X ([LT] Proposition 1.3.13).

LEMMA 2.6 If g is a Gauduchon metric, then for any metric h in E it holds:
i) If D is a flat connection, then

i
deg, (D) = - /trAgGh “wys
X
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where Gy, is the pseudocurvature of d" with respect to h.
it) If d'" is an integrable Higgs operator, then
i

degg(d") = P /tI‘Ath . wg,
X

where Fy, is the curvature of d" with respect to h.

PROOF: i) Observe that A,G = A;0x(61) . The Chern connection in (E, D")
induced by h is D" + 8, — 6, = D — 26}, and it holds

trAy (D — 260,)2 = —2trA, (3 + 6°)(8) = —2trA, (G, + [0,6%]) = —2trA,(Gy),

so the claim follows by integration.
ii) Lemma 2.4 implies trA,F}, = trA,d2; again the claim follows by integration.
O

3 EINSTEIN METRICS AND STABILITY FOR FLAT BUNDLES.

We fix a Hermitian metric g in X; the associated volume form is vol, := %wg,

and the g-volume of X is Vol,(X) := [ vol,. We further fix a Hermitian metric
b's

h in E, and denote by |. | the pointwise norm on forms with values in E (and
associated bundles) defined by h and g.

Let D € A;(E) be a flat connection in E, and write D = d+0 = 0+ 0 +60 +0*
as in section 1. Let d} = I,(D) = 9+ 60 € A"(E) be the Higgs operator
associated to D, and G}, = (d}})? its pseudocurvature. From A,Gp = A,9,(05)
and Lemma 2.4 we deduce

(iAgGr)" = —iAg((8(0))") = —iA,0(8") = iA,0(0) = i, G,
so iAyG), is selfadjoint with respect to h.

REMARK 3.1 It also holds iA,Gj, = £A,(9(0) — 9(O)) , which in the case of
a Kdhler metric g equals %d*(@), where d* is the L?-adjoint of d = 0 + 0.

DEFINITION 3.2 h is called a g-Einstein metric in (E,D) if iN,G), = c-idg
with a real constant ¢, which is called the Einstein constant.

LEMMA 3.3 Let h be a g-Einstein metric in (E,D), and § = ¢ - g conformally
equivalent to g. Then there exists a §-Finstein metric h in (E,D) which is
conformally equivalent to h.

PROOF: §g=¢-g implies Aj = % -Agy. From Remark 2.1 iii) it follows
that for f € C*°(X,R) it holds G.s.,, = G — $09(f) - idp. Hence the condi-
tion iAgGp = c-idp implies iA;Ger.p = (§ — 1P(f)) -idg, where P := iA;00.
Since C*(X,R) =imP @ R ([LT] Corollary 2.9), there exists an f such that

< - 1P(f) is constant. o
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LEMMA 3.4 IfiA,Gp, = c-idg with c € R, then it holds:
i)c= — DTV () - ptg (D) if g is Gauduchon.
i) deg, (D) = 0 if and only if c=0

PROOF: i) is an immediate consequence of Lemma 2.6.

ii) If g is Gauduchon, then this follows from i). If g is arbitrary, thenlet g = - ¢
be the Gauduchon metric in its conformal class such that deg, = deg;. Now
we have

iNgGh =0 <= iA;Gp = 0 <= deg;(D) = 0 <= deg, (D) = 0.
m

REMARK 3.5 i) If two flat connections Dy,Dy are isomorphic via the automor-
phism f of E, i.e. if Dyo f — fo Dy =0, and if h is a g-Einstein metric in
(E,Dy), then f.h is a g-FEinstein metric in (E,Ds) with the same Einstein
constant.

ii) By Remark 2.3, a necessary condition for d; = Iy(D) to be an integrable
Higgs operator is that h is a g-Einstein metric for D with Einstein constant
¢ =0, so in particular deg, (D) = 0. On the other hand it holds d> = —© A ©
(Lemma 2.4), and, if d}, is integrable, 6 A 6 = 0 implying 0* A 6* = 0 . This
gives tr(d?) = —tr[0,0*] = 0, which implies deg,(d}) = 0.

iii) For complex wvector bundles on compact Riemannian manifolds (X, g),
Corlette defines a g-harmonic metric for a flat connection by the condition
d*(©) =0 ([C]). If X is complex and g is a Kdhler metric, then the g-degree
of any flat connection vanishes, so in this context g-harmonic is the same as
g-FEinstein (see Remarks 2.5 and 3.1), but in general the two notions are dif-
ferent.

Now we prove a useful Vanishing Theorem.

PROPOSITION 3.6 Let D be a flat connection in E, and h a g-Finstein metric
n (E, D) with Einstein constant c.

If ¢ > 0, then the only section s € A°(E) with D(s) =0 is s = 0.

If ¢ = 0, then for every section s € A°(E) with D(s) = 0 it holds O(s) = 0(s) =
0 and 9(s) = 0*(s) = 0, so in particular dj(s) =0 .

PrOOF: D(s) =0 is equivalent to
d(s) = —0(s),0(s) = —0"(s); (1)
this implies
00h(s,s) = —h(D08(s),s) —h(B(s),8(s)) + h(D(s),(s)) — h(s,000*(s)). (2)

The assumption that h is g-Einstein means iA,0(6) =
equivalent to iA,0(8*) = —c-idp since (iA,0(0 )) =
these relations can be rewritten as

iNgD o =—iNBod+c-idp, iAo =—iNf 0D —c-idg. (3)

iAyGp, = ¢ idg, which is
—A( 0(0)") = —iA,0(6%);
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Using (1) and (3) we get

iNgh(D00(s),s) = —iAh(f

0 d(s),s) +c-|s]* = iAgh(3(s),0"(s)) + ¢ - |s?
= —iAh((s),d

0(s)) +c-[s|* =13(s)|* + - Is]?,

and similarly
iAgh(s,800%(s)) = |0(s)|* + ¢ |s],

so (2) implies
iNgOON(s,s) = =2 (|0(s)]> +10(s)]> + ¢ - |s]?) .

Since the image of the operator iA,00 on real functions contains no non-zero
functions of constant sign ([LT] Lemma 7.2.7), this gives s = 0 in the case
¢>0,and if ¢ =0 we get I(s) = 0(s) =0, implying 9(s) = 6*(s) = 0 because
of (1). o

The following corollary will be used later in the context of moduli spaces.

COROLLARY 3.7 For i = 1,2 let D; € Af(E) be a flat connection, h; a g-
FEinstein metric in (E,D;), and d := Iy, (D;) € A"(E) the associated Higgs
operator. If Dy and Dy are isomorphic via the automorphism f of E, then dY
and dy are isomorphic via f, too.

PROOF: Let h be the metric in EndE = E* ® FE induced by the dual metric
of hy in E* and hs in E, and D the connection in EndE defined by D(f) =
Dyo f— foD; for all f € A°(EndE). Then D is flat of g-degree 0 since Dy
and D, are flat of equal degree, and h is a g-Einstein metric in (EndFE, D)
with Einstein constant ¢ = 0 (compare Remark 2.3). Furthermore, the Higgs
operator d"’ in EndE defined by d"(f) = dy o f — f o dY equals Ij,(D). Hence
Proposition 3.6 implies that an automorphism f of E with D(f) = 0 also
satisfies d’(f) =0. o

If F C E is a D-invariant subbundle of E, then it is obvious that flatness of D
implies flatness of D|p, and hence the following definition makes sense.

DEFINITION 3.8 A flat connection D in E is called g-(semi)stable iff for ev-
ery proper D-invariant subbundle 0 # F C E it holds py(D|r) > pe(D)
(kg(D|F) > pg(D)). D is called g-polystable iff E=E, @ E, ... ®Ey is a
direct sum of D-invariant and g-stable subbundles E; with py(D|g,) = pe(D)
for i=1,2,... k.

REMARK 3.9 i) Let D be a flat connection in E, and 0 # F C E a proper
D-invariant subbundle. Then g-stability of D implies py(D|r) > pg(D) and
hence the g-instability of the holomorphic structure D" in E (in the sense of
e.g. [LT]) since F is a D"-holomorphic subbundle of E.
ii) Suppose that g is a Kihler metric; then deg, (D) = 0 for every flat connec-
tion D (Remark 2.5). Hence a flat connection D in E is
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- always g-semistable,

- g-stable if and only if E has no proper non-trivial D-invariant subbundle,

- g-polystable if E is a direct sum of D-invariant g-stable subbundles.

This means that g-(poly-)stability on a Kdhler manifold coincides with (poly-
)stability in the sense of Corlette [C].

ii1) It is obvious that stability in the sense of Corlette always implies g-stability,
but at the end of this section we will give an example of a g-stable bundle which
is not stable in the sense of Corlette.

DEFINITION 3.10 A flat connection D in E is simple if the only D-parallel
endomorphisms f, i.e. those with Drna(f) = Do f — fo D = 0, are the
homotheties f = a-idg, a € C.

Let D be a flat connection in E, 0 # F' C E a D-invariant subbundle, and @ :=
E / F the quotient with natural projection w : £ — (). Then D induces a flat
connection Dg in @ such that Dgon = 7o D. In particular, F' is a holomorphic
subbundle of (E,D"), and D¢ is the induced holomorphic structure in Q.
Since the g-degree of a flat connection D by definition equals the g-degree
of the associated holomorphic structure D", it follow deg, (D) = deg,(D1) +
deg,(Dgq). Hence as in the case of holomorphic bundles one verifies (compare
[K] Chapter V)

ProPOSITION 3.11 i) A flat connection D in E is g-(semi)stable if and only
if for every D-invariant proper subbundle 0 # F C E  with quotient QQ = E/F
it holds 1,(Dg) < p1y(D) (resp. 11y(Dq) < 1y(D).)

ii) Let (En, D1) and (B2, D2) be g-stable flat bundles over X with py(D1) =
pg(D2). If f € A°(Hom(Ey, E»)) satisfies Dy o f = f o Dy, then either f =0
or f is an isomorphism.

iii) A g-stable flat connection D in E is simple.

Next we prove the first half of the main result of this section.

PROPOSITION 3.12 Let D be a flat connection in E, and h a g-Finstein metric
in (E, D) with Einstein constant c; then D is g-semistable. If D is not g-stable,
then D is g-polystable; more precisely, E = E1®Ex®...® Ey, is a h-orthogonal
direct sum of D-invariant g-stable subbundles such that py(D|g;) = pe(D) for
i = 1,2,...,k. Furthermore, h|g, is a g-Einstein metric in (E;, D|g,) with
Einstein constant ¢ for all i, and the direct sum is invariant with respect to the
Higgs operator dj, = I (D).

PROOF: First we consider the case when ¢ is a Gauduchon metric. Let 0 #
F C E be a D-invariant proper subbundle of rank s; then £ = F @ F-, where
F* is the h-orthogonal complement of F.. With respect to this decomposition,
we write operators as 2 X 2 matrices, so D has the form

(D A
o= (% 5 )
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where Dy = D|p and D- is a flat connection in F+. We use notations as in
section 2; it is easy to see that the operator § associated to D by h has the

form
(6 0
= (% 5)

where the d; are the operators associated to the D; by h. Similarly it holds

5 1 " "o 1 Dlll + 51/ Al _ 6_1 %A”
a_E(D +4 )_5 AI* D'2'+5g - %A'* 52 )

and

1., o[ Di=4 A’ _ 0, %A’
Q_E(D _5)_< _A//* D’2—6§ - _%A//* 92 )

where A’ resp. A" is the part of A of type (1,0) resp. (0,1). This implies

a@B) = 1[0,6]

_ 51(91) + %(A’ ANAY — A" /\_A”*) *

B * 62(92)-I-%(A’*/\A’—A”*/\A”) ’
hence

C-idE = iAgGh
iAgGl,hﬁ-iAg(A’/\A’* —A”/\A”*) * ()
* tAgGap + %AQ(A’* AA — AN AT

and thus

) * * . 1
sc = tr(iA,Gyp + iAg(A’ NAT = AT NAT) = iteA G + 7 |AP

Using Lemma 2.6 and Lemma 3.4 we conclude

(n—1)!

i n c !
o) = = [t G g = =Nl () = (D) (5)
X

this prove that D is g-semistable.

If D is not g-stable, then there exists a subbundle F' as above such that equality
holds in (5), which implies A = 0. This means not only that F* is D-invariant,
too, with D|p1 = Ds, but also that

'L'AgGLh =cC- idF, iAgG27h =cC- idFL

by (4). Hence the restriction of h to F resp. F* is g-Einstein for D; resp.
Dy, and it holds py(D1) = pg(D) = pg(D2) by Lemma 3.4. Furthermore, the
D-invariance of F' means that the inclusion i : F' < E is parallel with respect
to the flat connection in Hom(F, E) induced by Dy and D. Using Remark 2.3
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and Proposition 3.6 as in the proof of Corollary 3.7, we conclude that i is
also parallel with respect to the associated Higgs operator, i.e. that F'is dj-
invariant; the same argument works for FL. If D; and D, are stable, then we
are done; otherwise the proof is finished by induction on the rank.

Now let g be arbitrary, let ¢ be the Gauduchon metric in its conformal class
with deg, = deg;, and let h be a g-Einstein metric in the conformal class of
h, which exists by Lemma 3.3; then the theorem holds for § and h. Since g
and g define the same degree and slope, and hence stability, it follows that D
is g-semistable. If D is not g-stable, then there exists a D-invariant proper
subbundle F as above with p15(D1) = pg(D1) = pg(D) = pz(D). Note that the
h-orthogonal complement F- of F is also the ﬁ—orthogonal complement, since
h and h are conformally equivalent. Hence, using § and & we conclude as above

that D = ( %1 l()) with respect the decomposition E = F @& F; now we
2
can proceed as in the Gauduchon case. ]

Another consequence of Proposition 3.6 is

PROPOSITION 3.13 Let D be a simple flat connection in E. If a g-FEinstein
metric in (E, D) exists, then it is unique up to a positive scalar.

ProOOF: Let hj,hs be g-Einstein metrics in (E, D), and ¢ € R the Einstein
constant. There are differentiable automorphisms f and k& of E, selfadjoint
with respect to both hy and hs, such that f = k2 and ha(s,t) = hy(f(s),t) =
hi(k(s),k(t)) for all s,t € A°(E). Since D is simple it suffices to show D(f) = 0.
We define a new flat connection D := ko D o k!, In what follows, operators
4, d, © etc. with a subscript 7 are associated to D by the metric h;, without a
subscript they are associated to D by hi. One verifies

62 :f710($1Of,62k710510k2k0620k71,
implying

d= (f)+6):kodzok*1,®:%(D—&):ko@bok*l

N | =

and hence

iNGhy, =iA,0(0) = ik o AyOa(f2) okt =ikoAyGap, ok ! =c-idp,
so hp is a g-Einstein metric in (E,D) It follows that hy induces a g-Einstein
metric with Einstein constant 0 for the flat connection Dgnqg(.) = .0 D —Do. in
EndE. By definition it holds Dgnq(k) = 0, so Proposition 3.6 implies drna (k) =
0. Since dgna = 2dgnd — Dgnd, it follows

0=0mnda(k) =kod —dok=Fkod —k ' odiok> =k o(fod —bof),
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implying 81 gna(f) = 0, where 01 gna is the operator on EndE induced by D
and hy. But this is equivalent to 6] g,4(f) = 0 and 67 g,4(f) = 0, and taking
adjoints with respect to h; we get

0= ( 1,End(f))* = Dgnd(f)ao = ( f,End(f))* = D]IEnd(f)a
i.e. DEnd(f) =0. O

L - k
Let (E, D), (E, D) be flat bundles with g-Einstein metrics h, h. Let E = @ E;
i=1

N L.
and E = @ E; be the orthogonal, invariant splittings given by Proposi-
i=1
tion 3.12. We write D; := D|g,, D; := D
Propositions 3.11 and 3.13 one verifies

B hi = h

B hi == h 5, Using

COROLLARY 3.14 If there exists an isomorphism f € A°(Hom(E, E)) satisfy-
ing foD = Do f, then it holds k = 1, and, after renumbering of the sum-
mands if necessary, there are isomorphisms f; € A°(Hom(E;, E;)) such that
fioDi=Djo f and f.(h;) = h;.

The following result is the converse of Proposition 3.12.

PROPOSITION 3.15 Let (E, D) a g-stable flat bundle over X. Then there exists
a g-Einstein metric for (E, D).

SKETCH OF PROOF: The proof is very similar to the one for the existence of a
g-Hermitian Einstein metric in a g-stable holomorphic vector bundle as given
in Chapter 3 of [LT]. Therefore we will be brief, leaving it to the reader to fill
in the necessary details.
First observe that by Lemma, 3.3 we may assume that g is a Gauduchon metric.
For any metric h in E it holds
_ A _ 1 n " i 1 1 "nogr 1 roen

Gn = On(0h) = Z[D +4,, D' —68,] = _Z[D , 0] + Z[D , O
since D? = 62 = 0. Observe that [D",4}] resp. [D',8}] is the curvature of the
h-unitary connection D" + 6}, resp. D' + 6}.
Fix a metric ho in E, and let § = §'+6",d = 0+0, © = H+60* be the operators
associated to D = D'+ D" and hg as in section 2. Consider for an hg-selfadjoint
positive definite endomorphism f of E and ¢ € [0, 1] the differential equation

L(f) = K= {8, D" (57 08/ (1) + {4, D' (7 08"(£) ~< log(£) = 0, (6)

where K°:=iA,0(0) — c-idg = —2A,([D",8'] — [D',6"]) — c¢-idg, and c is
the constant associated to a possible g-Einstein metric for (E, D). The metric
f - ho, defined by f - ho(s,t) := ho(f(s),t) for sections s,t¢ in E, is g-Einstein if
and only if Lo(f) = 0.
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The term T := iA,D"(f~ o 6'(f)) (associated to the unitary connection
dy := ¢ + D" ) in equation (6) is of precisely the same type as the term
To :=iA,0(f ' 0 Oo(f)) (associated to the unitary connection dy = 9y + 0 )
in equation (xx) on page 62 in [LT], and the term Ts := —iA,D'(f~' 0 8" (f))
(associated to the unitary connection dy := D' + 6" ) is almost of this type;
e.g. the trace of all three terms equals iA,00(tr(log f), and the symbols of the
differential operators %Ti, where Tl( f) = foTi(f), are equal, too. Therefore
most of the arguments in [LT] can easily be adapted to show first that for a
simple flat connection D equation (6) has solutions f. for all e € (0, 1], which
satisfy det fo = 1, and which converge to a solution f of Lo(f) = 0 if the
L?-norms of the f. are uniformly bounded. (There are two places where one
has to argue in a slightly different way: In the proof of the analogue of [LT]
Lemma 3.3.1, one uses the Laplacian Ap = D* o D instead of Aj, and in the
proof of the analogue of [LT] Proposition 3.3.5 the sum A4, + Ay, of the two
Laplacians associated to d; and d» instead of just one.)

Then, under the assumptions that rkE > 2 and that the L?-norms of the f.
are unbounded, one shows that for suitable &; — 0, p(g;) — 0, the limit

m:=idg — lim ( lim p(g;) - fgi)a

c—0 \i—o0

2

exists weakly in L?, and satisfies in L! 7 = 7* = 72 and

(idg — ) o D(m) = 0. (7)

This implies (idg—m)o D" (w) = 0, so w defines a weakly holomorphic subbundle
F of the holomorphic bundle (E, D") by a theorem of Uhlenbeck and Yau (see
[UY], [LT] Theorem 3.4.3). F is a coherent subsheaf of (E, D"), a holomorphic
subbundle outside an analytic subset S C X of codimension at least 2, and 7
is smooth on X \ S. Therefore (7) implies that F|x\g is in fact a D-invariant
subbundle of E|x\g, which extends to a D-invariant subbundle F' of E by the
Lemma below. Again using arguments as is [LT], one finally shows that F’
violates the stability condition for (E, D). o

LEMMA 3.16 Let X be a differentiable manifold, E a differentiable vector bun-
dle over X, and D a flat connection in E. Let S C X be a subset such that
X\ S is open and dense in X, and with the following property: For every point
x € S and every open neighborhood U of x in X there exists an open neighbor-
hood x € U' C U such that U’ \ S is path-connected.

Then every D-invariant subbundle F of E|x\s extends to a D-invariant sub-
bundle F of E.

PROOF: For every z € S choose an open neighborhood z € U C X such that
U\ S is path connected and (E|¢, D) = (U x V,d), where V' is a vector space
and d the trivial flat connection. Since F is D-invariant and U \ S is path

connected, it holds
(‘7:|U\57D) = ((U\S) X Wad)a
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where W C V' is a constant subspace. Define F' over U by F|y :=U x W;
then the topological condition on S implies that this is well defined on S, and
hence gives a D-invariant extension F' of F over X. m|

The following main result of this section is a direct consequence of Proposi-
tions 3.12 and 3.15.

THEOREM 3.17 A flat connection D in E admits a g-FEinstein metric if and
only if it is g-polystable.

As for stable vector bundles and Hermitian-Einstein metrics, the gauge theo-
retic interpretation of our results is as follows. The group

Gt .= A°(GL(E))
of differentiable automorphisms of E acts on A(E) by D-f=ftoDo f,so

AE)/ 5

is the moduli space of isomorphism classes of connections in E. Observe that
flatness, simplicity and g-stability are preserved under this action. Fix a metric
h in E; then it holds:

COROLLARY 3.18 The following two statements for a flat connection D are
equivalent:

i) D is g-stable.

ii) D is simple, and there is a connection Dy in the GC-orbit through D such
that h is g-Finstein for Dy.

The essential uniqueness of a g-Einstein metric (Proposition 3.13) implies that
the connection Dy in ii) is unique up to the action of the subgroup

G :=A°(U(E,h)) c G©
of h-unitary automorphisms. This means that the moduli space

Mjct(E) _{DeA;(E)|Dis g— stable }/g(c

of isomorphism classes of g-stable flat connections in F coincides with the
quotient

{ D€ Af(E) | D is simple and h is g — Einstein for D }/Q

ExaMpPLE: We now give the promised example of a flat bundle which is g-
stable, but not stable in the sense of Corlette.
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An Inoue surface of type Sﬁ is the quotient of Hx C by an affine transformation
group G generated by

go(w,z) = (aw,*z+1),
gi(w,z) = (w+a;,z+bw+c), i=1,2,
g3(w,z) = (w,z+c3),

with certain constants «, a;,b;,c3 € R, ¢1,c2 € C (see [P] p. 160). Since the
second Betti number of Sﬁ vanishes, the degree map

deg,, : Pic(S%) — R

associated to a Gauduchon metric ¢ is, up to a positive factor, independent
of the chosen metric g. In particular, all Hermitian metrics g define the same
notion of g-stability ([LT] Remark 1.4.4 iii)).

The trivial flat connection d on H x C induces a flat connection D in the
tangent bundle E := 5t - A D-invariant sub-line bundle of E is in particular

a holomorphic subbundle, so it defines a holomorphic foliation of Sﬁ. Ac-
cording to [B] Théoréme 2, there is precisely one such foliation, namely the
one induced by the G-invariant vertical foliation (i.e. with leaves {w} x C) of
H x C. The corresponding trivial line bundle Ly on H x C is d-invariant, so
it descends to a unique D-invariant subbundle L of E; this shows that E is
not stable in the sense of Corlette. Observe that L has factors of automorphy
x(gi) = %1, i =0,1,2,3, so the standard flat metric in Ly defines a metric h
in L such that the associated Chern connection in (L, D"|1,) is flat; this implies
pg(D|1) = deg, (D) = 0. On the other hand, the g-degree, and hence the g-
slope, of E is negative by [P] Proposition 4.7; this implies the g-stability of E
since L is the only D-invariant proper subbundle of E.

4 EINSTEIN METRICS AND STABILITY FOR HIGGS BUNDLES.

Again we fix Hermitian metrics g in X and h in E.
Let d" = 0+ 6 € AY(E) be an integrable Higgs operator,

Dpy=I'(d")=d+0©=0+0+0+6" € A(E)
the connection associated to d” as in section 2, and Fj, = D? its curvature.

DEFINITION 4.1 h is called a g-FEinstein metric in (E,d") if and only if
K :=iAgFy, = c-idg with a real constant ¢, the Einstein constant.

LEMMA 4.2 Let h be a g-Einstein metric in (E,d"), and g = ¢ - g conformally
equivalent to g. Then there exists a g-Einstein metric h in (E,d") which is

conformally equivalent to h.
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PRrROOF: From Remark 2.1 iii) it follows that for f € C>(X,R) it holds
F,;.p, = Fyp +00(f) -idg. Using this, the proof is analogous to that of Lem-
ma 3.3. O

Notice that since d" is integrable it holds (compare Lemma 2.4)
Ky = ihg(d® +[0,07]) = iA,((0,0] + [0,6])

where d = 0 + 0. An immediate consequence of Lemma 2.6 and Lemma 4.2 is
(compare the proof of Lemma 3.4)

LEMMA 4.3 IfiAyFy, = c¢-idg with ¢ € R, then it holds:
i) c= W{m g (d") if g is Gauduchon.
i) deg,(d") = 0 if and only if c = 0.

REMARK 4.4 (compare Remark 3.5)

i) If two integrable Higgs operators d ,dy are isomorphic via the automorphism
fofE,ie ifdyof—fod! =0, and if h is a g-Einstein metric in (E,d}),
then f.h is a g-Einstein metric in (E,d}), and the associated Einstein constants
are equal.

ii) By Remark 2.3, a necessary condition for D = I, (d") to be a flat connection
is h to be Einstein with Einstein constant ¢ = 0, so in particular deg,(d") = 0.
On the other hand, the Chern connection in (E,D}) is 0 —0+0+6*, so the g-
degree of Dy, is obtained by integrating trA,[0+6*,0—6] which equals trA,[0, 0]
since d" is integrable (Lemma 2.4 1i)). If Dy is flat, we furthermore have
&> = —O A O (Lemma 2.4 i), implying tr[0,0] = 0 and hence deg, (D) = 0.

In analogy with the case of Hermitian-Einstein metrics in holomorphic vector
bundles, the following vanishing theorem holds.

PROPOSITION 4.5 Let h be a g-Einstein metric in (E,d") with Einstein con-

stant c.
If ¢ < 0, then the only section s € A°(E) with d"(s) =0 is s = 0.
If ¢ =0, then for every section s € A°(E) with d"(s) =0 it holds Dy(s) = 0.

PRrROOF: For s € A%(E), d"(s) =0 is equivalent to d(s) = 0 = 6(s). This im-
plies

c-|s|” = c-h(s,s) = h(Kn(s),s) = i\y (h(DO(3),s) + h(6*(s),07(s))) . (8)

We have B B
iAgOON(s,s) = iAy (h(DO(s),s) — h(D(s),D(s)))

since d(s) = 0, and using (8) we get
i8yB0h(s,5) = o |sf? — D) — ()]

Now the claim follows as in the proof of Proposition 3.6. m]
The proof of the following corollary is analogous to that of Corollary 3.7.
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COROLLARY 4.6 Fori=1,2 letd € AY(E) be an integrable Higgs operators,
hi a g-Einstein metric in (E,d), and D; := Ihi,l(d;»') € A(E) the associated
connection. If d and di are isomorphic via the automorphism f of E, then
Dy and D5 are isomorphic via f, too.

Let d’ =0+ 6 be an integrable Higgs operator in £. A coherent subsheaf F
of the holomorphic bundle (E, ) is called a Higgs-subsheaf of (E,d") iff it is
d"-invariant. For the definition of the g-degree and g-slope of a coherent sheaf
see [LTJ.

DEFINITION 4.7 An integrable Higgs operator d' in E is called g-(semi)stable
iff for every coherent Higgs-subsheaf F of (E,d") with 0 < rkF < rkE it holds
po(F) < pug(E) ( pg(F) < pg(E) ). d" is called g-polystable iff E is a direct
sum E=FE  ®FEs®...® E, of d'-invariant and g-stable subbundles E; with
po(d" B, = pg(d") fori=1,2,.. k.

DEFINITION 4.8 An integrable Higgs operator d" in E is called simple iff for
every f € A°(EndE) with d" o f= fod" it holds f = a-idg with a € C.

As in the case of stable vector bundles or flat connections, (semi)-stability can
equivalently be defined using quotients of F; again it follows

LEMMA 4.9 i) A g-stable integrable Higgs operator in E is simple.

ii) Let df, di be g-stable integrable Higgs operators in bundles Ey, Fs on X
such that py(d}) = py(dy) . If f € A°(Hom(E, Es)) satisfies dy o f = fod,
then either f =0 or f is an isomorphism.

Furthermore, using arguments similar to those in the proof of Proposition 3.13,
we get, the following consequence of Proposition 4.5.

PROPOSITION 4.10 Let d" be a simple integrable Higgs operator in E. If a
g-Einstein metric in (E,d") ezists, then it is unique up to a positive scalar.

The proof of the next result is a straightforward generalization of that in
the Kéahler case [S2] (just as for the proof of the corresponding statement for
Hermite-Einstein metrics in vector bundles, see [LT]).

PROPOSITION 4.11 Let d" be an integrable Higgs operator in E, and h
a g-Einstein metric in (E,d") with Finstein constant c; then d"' is g-
semistable. If d' is not g-stable, then d" is g-polystable; more precisely,
E=E ®E;®...® Ey is an h-orthogonal direct sum of d'-invariant and g-
stable subbundles such that pg(d"\g;) = pe(d") for i=1,2,...,k . Further-
more, h|g, is a g-FEinstein metric in (E;,d"|g,) with Einstein constant ¢ for all
i, and the direct sum is invariant with respect to the connection Dy = I, *(d").
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Let d”, d” be integrable Higgs operators in bundles E, E with g-Einstein met-
- k . L.
rics h, h. Let E= @ E; and E = @ E; be the orthogonal, invariant split-
i=1 i=1

tings given by Proposition 4.11. We write d := d"
iLi = iL|E'-l .

As in the previous section (but now using Lemma 4.9 and Proposition 4.10) we
deduce

Jno._ i —
B dl=d"g, b = h

E;»

COROLLARY 4.12 Suppose that there exists an isomorphism

f € A%Hom(E,E)) satisfying fod' =d"of. Then it holds k=1, and,
after renumbering of the summands if necessary, there are isomorphisms
fi € A°(Hom(E;, E;)) such that fiod! =d! o f and f.(h;) = hi.

REMARK 4.13 We expect that the existence of a g-Einstein metric for a g-
stable Higgs operator d" can be proved by solving (again using the continuity
method as in [LT]) the differential equation

Kn+iMd"(f Lod(f) =c-idg

for a positive definite and h-selfadjoint endomorphism f of E, where h is a
suitable fixed metric in E.

5 SURFACES.

In this section we consider the special case n = 2, i.e. where X is a compact
complex surface; again we fix a Hermitian metric g in X. In this case, the real
Chern numbers ¢?(E), c2(E) € H*(X,R) = R can be calculated by integrating
the corresponding Chern forms of any connection in E, independently of the
chosen metric g. In particular, if £ admits a flat connection, then these Chern
numbers vanish.

PROPOSITION 5.1 Suppose that D € A;(E) is a flat connection of g-degree 0,
and that h is a g-Einstein metric in (E, D). Then it holds Gy, = 0. In particular,
the Higgs operator dj associated to D and h is integrable with deg,(dy) =0,
and h is a g-Einstein metric for (E,d}).

PROOF: (see [S2]) For € > 0 we define a new connection B, :=d+ 16 + €f*,
and F, := B2 Observe that n = 2 implies F? = 5V, where V. =dj +ed'.

€

The vanishing of the Chern numbers of E implies [ trF2 =0, and hence
X

[trV% =0 for all € > 0. Taking the limit € — 0 it follows
X

/ G2 =0, (9)

X
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Write G, = G1,1 + G2, where G 1 is the component of the 2-form G, of type
(1,1). Then it holds
xgG11 = —G11, %G = Go; (10)

the first equation is a consequence of A;G, = 0, which follows from the assump-
tion and Lemma 3.4. On the other hand, it holds G, = 9* + 9(6) + 0 A 6, so
Lemma 2.4 implies

Gia=0(0) =0(0") =-9(8)" = -G7 1, (11)
and
Go=0*+0N0=—0"NO"—ONO=(0OANO+0"NO)* =G5 (12)

11) and (12) combined with (10) give x,G; = G}, so from (9) it follows
9Ch

0=/trG2 :/tr(GhA*gG;;) :/|Gh|2volg,
X

X X

implying (d})*> = G, = 0. Hence dj is integrable, deg,(dj) vanishes (Re-
mark 3.5), and h is g-Einstein for (E,d")h) because the curvature of dj with
respect to h equals D? = 0. O

PROPOSITION 5.2 Suppose that c3(E) = c2(E) =0, that d" is an integrable
Higgs operator of g-degree 0, and that h is a g-Einstein metric in (E,d").
Then it holds Fy, = 0. In particular, the connection Dy, associated to d' and h
is flat with deg,(Dy) =0, and h is a g-Einstein metric for (E, D).

PrOOF: Define Fy 1 :=d? + [0,0*], F» := 0(0) + 0(8*); then Fj, = Fy 1 + Fb.
Observe that Fj; is of type (1,1) because d is a unitary connection in
the holomorphic bundle (E,d). Since deg,(d") =0, Lemma 4.3 implies
0= Ath = AgFl,la hence it holds *gFLl = —F171 and *gF2 = FQ. On the
other hand, it is easy to see that Fl*’1 = —Fy1; and Fy = F5 . Combining these
relations we get *,F* = F},. Since ¢} (E) resp. cs(E) are obtained by integrating
— o5 (trFp)? resp. — gz ((trFp)? — tr(F7)), we get
0= [ u(FD) = [ B ns ) = IFP

X X

implying Dj = Fj, = 0. Hence Dy, is flat, deg, (D) vanishes (Remark 4.4), and
h is g-Einstein for (E, Dy) because the pseudocurvature of Dy, with respect to
h equals (d")? = 0. o

REMARK 5.3 The above proposition implies in particular the following: Sup-
pose that ¢2(E) = co(E) = 0; if there exists an integrable Higgs operator d" in
E with g-degree 0 admitting a g-FEinstein metric, then the real Chern class
c1(E)r € H?(X,R) vanishes, because there is a flat connection in E.
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We define Ay (E)Y to be the space of D € As(E) of g-degree 0 such that there
exists a g-Einstein metric in (E, D), and A} (E)) to be the space of d" € A{(E)
of g-degree 0 such that there exists a g-Einstein metric in (E,d"). By Re-
mark 3.5 and Remark 4.4, the two moduli sets

0
My(BYy = AP

g/ isomorphy of connections

and

0. AII
M”(E)g : g/1somorphy of Higgs operators

are well defined. The main result of this section is

THEOREM 5.4 There is a natural bijection

I: Mf(E)g — M”(E)g.
PrOOF: First observe that we may assume that the real Chern classes of E
vanish, since otherwise both spaces are empty (see Remark 5.3).
Let D be a flat connection in E with g-degree 0, and h a g-Einstein metric
n (E,D). By Proposition 5.1, the associated Higgs operator dj, = I(D) is
integrable with g-degree 0, and h is a g-Einstein metric in (E,d}). We will
show that the map I defined by I([D]) := [d}] is well defined and bijective.
Suppose that D,D € Af(E)g are isomorphic via the automorphism f of E;
then f.h is g-Einstein in (E, D) (Remark 3.5), the Higgs-operator d”’ associ-
ated to D and f.h is isomorphic to d” via f (Corollary 3.7), and f.h is a
g-Einstein metric in (E,d") (Remark 4.4). To prove that I is well defined
it thus suffices to show that two different g-Einstein metrics h, h for a fixed

D e Af(E)g produce isomorphic Higgs operators dj, d;-;. For this consider the

k !
D-invariant and h- resp. h-orthogonal splittings F = @D E; resp. E=6 E;

=1 i=1
associated to h resp. h by Proposition 3.12. According to Corollary 3.14 (with
E=E, D=D, f=idg ) it holds k£ =1, and we may assume that there are
isomorphisms f; : (E;, Dy, h;) — (E;, Dz, h;) of ﬂat bundles ofg degree 0 with
g-Einstein metrics, where D; := D|g,, D; = D|E , hi == h|g,, hi := h|E This
means in particular that the Higgs operator di in E; associated to D; and h;
is isomorphic via f; to the Higgs operator d” in E; associated to D; and h;.
Hence d) = d{ & ...d} is isomorphic to dZ = d” .D d” via the isomorphism
fi= f1EB...EBfk.
In the same way, but using Proposition 5.2 and the results of section 4, one
shows that there is a well defined map from M"(E)) to M;(E)), associating
to the class of an integrable Higgs operator d" w1th g-Einstein metrlc h the
class of the connection Dy, = I, ' (d"); this obviously is an inverse of I. o
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6 LINE BUNDLES ON NON-KAHLER SURFACES.

Isomorphism classes of flat complex line bundles (L, D) on a manifold X are
parametrized by H'(X,C*). On the other hand, an integrable Higgs operator
d" = 0+ 6 in a complex line bundle L consists of a holomorphic structure 9 in
L and a holomorphic 1-form # on X (the condition 6 A6 =0 now is trivial).
Furthermore, two integrable Higgs operators df and dj in L are isomorphic if
and only if the two holomorphic line bundles (L, d;) and (L, ;) are isomorphic
and 6; = 6. Hence, the space parametrizing isomorphism classes of integrable
Higgs operators is H' (X, 0*) & H°(X, Q' (X)) = Pic(X) ® H"?(X). In partic-
ular, the moduli sets M (L)) and M" (L) defined in the previous section are

g
subsets of H(X,C*) resp. Pic(X) @ HV0(X).

LEMMA 6.1 Let L be a complex line bundle on X, and g a Hermitian metric
in X. Then every flat connection in L and every integrable Higgs operator in
L admits a g-Finstein metric.

ProOOF: Let hy be fixed metric in L, then every metric is of the form
hy =el -hy with f € C®(X,R). Let D be a flat connection in L; then hj
is a g-Einstein metric for D if and only if it is a solution of the equation
iNgGhy, — £A,00(f) = c with a real constant c. Such a solution exists by [LT]
Corollary 7.2.9. A similar argument works for integrable Higgs operators. O
From now on let X be a surface, and g a fixed Hermitian metric in X. Then
the map deg, : Pic(X) — R is a morphism of Lie groups ([LT] Proposition
1.3.7; recall that deg, = deg; for some Gauduchon metric §). We define

H'(X,C*) :={[(L,D)] € H'(X,C") | deg,(D) =0},

Pic(X)? := { [(L,8)] € Pic(X) | e1(L)r =0 },

and
Pic(X)/ := ker(deg, |pic(x)7)-

Observe that Pic(X)/ can be identified with the set of isomorphism classes of
line bundles admitting a flat unitary connection ([LT] Proposition 1.3.13).
Theorem 5.4 and Lemma 6.1 imply

PROPOSITION 6.2 There is a natural bijection
I : HY(X,C*)/ — Pic(X)? x HO(X).

If X admits a Kahler metric, i.e. if the first Betti number of by (X) is even,
then deg,, is a topological invariant for every metric g ([LT] Corollary 1.3.12 i)).
Hence in this case it holds H'(X,C*)¥ = H'(X,C*) and Pic(X)f = Pic(X)7,
and I; is the natural bijection from the moduli space of isomorphism classes of
flat line bundles to the moduli space of integrable Higgs operators in line bun-
dles with vanishing first real Chern class, which (e.g. by the work of Simpson)
already is known to exist for a K&hler metric g.
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So let us assume that b;(X) is odd. Then deg, [pico(x) :Pic’(X) — R is
surjective, and it holds

Pic(X)T foie(xy = Pic”(X) fpico () = R

([LT] Corollary 1.3.12 and Proposition 1.3.13). We will show that I; extends
to a (non-natural) bijection from H'(X,C*) to Pic(X)T x H'°(X) in this case,
too.

LEMMA 6.3 There is a bijection i : Pic(X)T — Pic(X)7 x R such that the
diagram
Pic(X)T 8y R

il I
Pic(X)f x R -2rely R
commutes.

PROOF: deg, |pico(x) is surjective, so we can choose £ := [(L1,01)] € Pic’(X)
with deg, (L) = deg,(01) = 1, and a class « € H' (X, O) such that £; = 7(a)
where 7: H'(X,0) — Pic’(X) is the natural surjection. For A € R define

Ly :=7(X-a);
then deg,(£x) = A since deg, o : H'(X,0) — R is linear. Now define i by
Z(L) = (£ ®L_ degg(ﬁ)adegg(ﬁ));

then it is obvious that the inverse of i is given by (£,\) = £ ® £, and that
the diagram above commutes. ]

In the proof of a similar statement for H'(X,C*) we will use
LEMMA 6.4 The natural map
I': H'(X,C*) — Pie(X)", 1" ((L, D)]) := [(L,D")].

is surjective, i.e. a holomorphic structure O in a differentiable line bundle L on
X is the (0,1)-part of a flat connection if and only if the real first Chern class
c1(L)r vanishes.

PROOF: Pic(X)f is naturally identified with H*(X,U(1)), such that the inclu-
sion Pic(X)/ < Pic(X) becomes the injection k! : H'(X,U(1)) — H'(X,0*)
([LT] p. 38). Observe that k' is the composition of the natural map
HY(X,U(1)) — HY(X,C*) and [}, so it holds

Pic(X)f =im(k') C im(1").
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Each component of Pic(X)” contains a component of Pic(X)/ ([LT] Remark
1.3.10), hence for each component

Pic’(X) := { [(L,9)] € Pic(X) | e1(L)z = ¢ } C Pic(X)T

there exists a class [(L., D.)] € H'(X,C*) such that I*([(L., D.)]) € Pic(X).
Define H'(X,C*)°:={[(L,D)] € HY(X,C*) | e1(L)z =0 }. The commuta-
tive diagram with exact rows

0 — zZ — C =2 C — 0

| + S

0 — Z — 0 &5 O — 0
induces the commutative diagram

H'(X,C) — H'Y(X,C*)°
hl \L \L ll
H'(X,0) —  Pic®(X)

with surjective horizontal arrows. Since X is a surface, the left vertical arrow
h! is also surjective ([BPV] p. 117), hence I' maps H'(X,C*)? surjectively
onto Pic’(X). Now it is easy to see that every element of Pic®(X) C Pic(X)T
is of the form I'([(L. ® L, D. ® D)]) for some [(L,D)] € H' (X, C*)°. O

LEMMA 6.5 There is a bijection j : H'(X,C*) — H'(X,C*)! x R such that
the diagram

H'(X,C) deggy, R
i I
H'(X,C*)/ xR 2oy R

commutes, where deg; = deg, ol' is the map associated to the g-degree of flat
connections.

PRrOOF: Choose £; € Pic’(X), a € H'(X,0) as in the proof of Lemma 6.3,
and a class 8 € H(X,C) with h'(8) = a. Let ' : H(X,C) — H'(X,C*)
be the map induced by exp:C — C*, and define £} := 7'(8) € H*(X,C*).
Since the diagram
H'(X,C) = HY(X,C¥)
hl ~L ~Lll
H'(X,0) —  Pic(X)T
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commutes, it holds deg] (£]) = 1. The rest of the proof is as for Lemma 6.3. ©

We conclude
THEOREM 6.6 The composition

I:HY(X,C*) L HY(X,C*) x R-DLxidey FLO(X) x Pie(X) x R

. .1
MEL) HLO(X) > Pic(X)T
is a bijective extension of the map I, and preserves the g-degree.

We finish with the obvious remark that the map I' : H*(X,C*) — Pic(X)”
in general does not coincide with the composition of I and projection onto
Pic(X)T.
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