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ABSTRACT. In contrast to the usual Lipschitz seminorms associated to
ordinary metrics on compact spaces, we show by examples that Lipschitz
seminorms on possibly non-commutative compact spaces are usually not
determined by the restriction of the metric they define on the state space,
to the extreme points of the state space. We characterize the Lipschitz
norms which are determined by their metric on the whole state space as
being those which are lower semicontinuous. We show that their domain
of Lipschitz elements can be enlarged so as to form a dual Banach space,
which generalizes the situation for ordinary Lipschitz seminorms. We
give a characterization of the metrics on state spaces which come from
Lipschitz seminorms. The natural (broader) setting for these results is
provided by the “function spaces” of Kadison. A variety of methods for
constructing Lipschitz seminorms is indicated.
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In non-commutative geometry (based on C*-algebras), the natural way to spec-
ify a metric is by means of a suitable “Lipschitz seminorm”. This idea was first
suggested by Connes [C1] and developed further in [C2, C3]. Connes pointed
out [C1, C2] that from a Lipschitz seminorm one obtains in a simple way an
ordinary metric on the state space of the C*-algebra. This metric generalizes
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the Monge—Kantorovich metric on probability measures [KA, Ra, RR]. In this
article we make more precise the relationship between metrics on the state
space and Lipschitz seminorms.

Let p be an ordinary metric on a compact space X. The Lipschitz seminorm,
L,, determined by p is defined on functions f on X by

(0.1) Lo(f) = sup{|f(z) = F(W)l/p(z,y) : = # y}-

(This can take value +00.) It is known that one can recover p from L, by the
relationship

p(z,y) =sup{|f(z) — f(y)|: L,(f) < 1}.

But a slight extension of this relationship defines a metric, p, on the space
S(X) of probability measures on X, by

(0.2) pp,v) = sup{|u(f) = v(F)| : Lp(f) < 1}.

This is the Monge-Kantorovich metric. The topology which it defines on S(X)
coincides with the weak-* topology on S(X) coming from viewing it as the
state space of the C*-algebra C'(X). The extreme points of S(X) are identified
with the points of X. On the extreme points, p coincides with p. Thus the
relationship (0.1) can be viewed as saying that L, can be recovered just from
the restriction of its metric g on S(X) to the set of extreme points of S(X).
Suppose now that A is a unital C*-algebra with state space S(A), and let L
be a Lipschitz seminorm on A. (Precise definitions are given in Section 2.)
Following Connes [C1, C2], we define a metric, p, on S(A) by the evident
analogue of (0.2). We show by simple finite dimensional examples determined
by Dirac operators that L may well not be determined by the restriction of p
to the extreme points of S(A).

It is then natural to ask whether L is determined by p on all of S(A), by a
formula analogous to (0.1). One of our main theorems (Theorem 4.1) states
that the Lipschitz seminorms for which this is true are exactly those which are
lower semicontinuous in a suitable sense.

For ordinary compact metric spaces (X, p) it is known that the space of Lip-
schitz functions with a norm coming from the Lipschitz seminorm is the dual
of a certain other Banach space. Another of our main theorems (Theorem 5.2)
states that the same is true in our non-commutative setting, and we give a
natural description of this predual. We also characterize the metrics on S(.A)
which come from Lipschitz seminorms (Theorem 9.11).

We should make precise that we ultimately require that our Lipschitz semi-
norms be such that the metric on S(A) which they determine gives the weak-*
topology on S(A). An elementary characterization of exactly when this hap-
pens was given in [Rf]. (See also [P].) This property obviously holds for finite-
dimensional C*-algebras. It is known to hold in many situations for commuta-
tive C*-algebras, as well as for C'*-algebras obtained by combining commutative
ones with finite dimensional ones. But this property has not been verified for
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many examples beyond those. However in [Rf] this property was verified for
some interesting infinite-dimensional non-commutative examples, such as the
non-commutative tori, and I expect that eventually it will be found to hold in
a wide variety of situations.

Actually, we will see below that the natural setting for our study is the broader
one of order-unit spaces. The theory of these spaces was launched by Kadison
in his memoir [K1]. For this reason it is especially appropriate to dedicate this
article to him. (In [K2] Kadison uses the terminology “function systems”, but
we will follow [Al] in using the terminology “order-unit space” as being a bit
more descriptive of these objects.)

On the other hand, most of the interesting constructions currently in view
of Lipschitz seminorms on non-commutative C*-algebras, such as those from
Dirac operators, or those in [Rf], also provide in a natural way seminorms on all
the matrix algebras over the algebras. Thus it is likely that “matrix Lipschitz
seminorms” in analogy with the matrix norms of [Ef] will eventually be of
importance. But I have not yet seen how to use them in a significant way, and
so we do not deal with them here.

Let us mention here that a variety of metrics on the state spaces of full matrix
algebras have been employed by the practitioners of quantum mechanics. A
recent representative paper where many references can be found is [ZS]. We will
later make a few comments relating some of these metrics to the considerations
of the present paper.

The last three sections of this paper will be devoted to a discussion of the great
variety of ways in which Lipschitz seminorms can arise, even for commutative
algebras. We do discuss here some non-commutative examples, but most of our
examples are commutative. I hope in a later paper to discuss and apply some
other important classes of non-commutative examples. Some of the applica-
tions which I have in mind will require extending the theory developed here to
quotients and sub-objects.

Finally, we should remark that while we give here considerable attention to
how Dirac operators give metrics on state spaces, Connes has shown [C2] that
Dirac operators encode far more than just the metric information. In particular
they give extensive homological information. But we do not discuss this aspect
here.

I thank Nik Weaver for suggestions for improvement of the first version of this
article, which are acknowledged more specifically below.

1. RECOLLECTIONS ON ORDER-UNIT SPACES

We recall [Al] that an order-unit space is a real partially-ordered vector space,
A, with a distinguished element e, the order unit, which satisfies:

1) (Order unit property) For each a € A there is an r € R such that
a < re.

2) (Archimedean property) If a € A and if a < re for all » € Rt then
a<0.
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For any a € A we set
la|]| = inf{r € RT : —re < a < re}.

We obtain in this way a norm on A. In turn, the order can be recovered from
the norm, because 0 < a < e iff ||a]| < 1 and ||e —a|| < 1. The primary source
of examples consists of the linear spaces of all self-adjoint elements in unital
C*-algebras, with the identity element serving as order unit. But any linear
space of bounded self-adjoint operators on a Hilbert space will be an order-unit
space if it contains the identity operator. We expect that this broader class of
examples will be important for the applications of metrics on state spaces.
We will not assume that A is complete for its norm. This is important for us
because the domains of Lipschitz norms will be dense, but usually not closed,
in the completion. (The completion is always again an order-unit space.) This
also accords with the definition in [Al].

By a state of an order-unit space (A, e) we mean a continuous linear functional,
i, on A such that u(e) = 1 = ||u||. States are automatically positive. We denote
the collection of all the states of A, i.e. the state space of A, by S(A). It is a
w*-compact convex subset of the Banach space dual, A’, of A.

To each a € A we get a function, a, on S(A) defined by a(u) = p(a). Then
G is an affine function on S(A) which is continuous by the definition of the
w*-topology. The basic representation theorem of Kadison [K1, K2, K3] (see
Theorem I1.1.8 of [Al]) says that for any order-unit space the representation
a — a is an isometric order isomorphism of A onto a dense subspace of the
space Af(S(A)) of all continuous affine functions on S(A), equipped with the
supremem norm and the usual order on functions (and with e clearly carried to
the constant function 1). In particular, if A is complete, then it is isomorphic
to all of Af(S(A)).

Thus we can view the order-unit spaces as exactly the dense subspaces con-
taining 1 inside Af(K), where K is any compact convex subset of a topological
vector space. This provides an effective view from which to see many of the
properties of order-unit spaces. Most of our theoretical discussion will be car-
ried out in the setting of order-unit spaces and A f(K), though our examples will
usually involve specific C*-algebras. We let C'(K') denote the real C*-algebra
of all continuous functions on K, in which Af(K) sits as a closed subspace.

It will be important for us to work on the quotient vector space A = A/(Re).
We let || ||~ denote the quotient norm on A from || ||. This quotient norm
is easily described. For a € A set

max(a) = inf{r : a < re}

min(a) = sup{r : re < a},
so that ||a|| = (max(a)) V (—min(a)). Then it is easily seen that

lal] = (max(a) - min(a)) /2.
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2. THE RADIUS OF THE STATE SPACE

Let A be an order-unit space. Since the term “Lipschitz seminorm” has some-
what wide but imprecise usage, we will not use this term for our main objects
of precise study (which we will define in Section 5). Almost the minimal re-
quirement for a Lipschitz seminorm is that its null-space be exactly the scalar
multiples of the order unit. We will use the term “Lipschitz seminorm” in this
general sense. We emphasize that a Lipschitz seminorm will usually not be
continuous for || ||

Let L be a Lipschitz seminorm on A. For u,v € S(A) we can define a metric,
pr, on S(A) by

p (s v) = sup{|u(a) — v(a)| : L(a) < 1}

(which may be +00). Then p;, determines a topology on S(A). Eventually
we want to require that this topology agrees with the weak-* topology. Since
S(A) is weak-* compact, pr, must then give S(A) finite diameter. We examine
this latter aspect here, in part to establish further notation.

It is actually more convenient for us to work with “radius” (half the diameter),
since this will avoid factors of 2 in various places. We would like to use the
properties of order-unit spaces to express the radius in terms of L in a somewhat
more precise way than was implicit in [Rf] in its more general context. The
following considerations [Al] will also be used extensively later.

As in [Rf] and in the previous section, we denote the quotient vector space
A/(Re) by A, with its quotient norm || ||~. But in addition to this norm, the
quotient seminorm L from L is also a norm on A, since L takes value 0 only
on Re.

The dual Banach space to A for || ||~ is just A’°, the subspace of A’ consisting
of those A € A’ such that A(e) = 0. We denote the norm on A’ dual to || ||
still by || ||. The dual norm on A'" is just the restriction of || || to A’°. If
we view A as a dense subspace of Af(K) C C(K), then by the Hahn—Banach
theorem M\ extends (not uniquely) to C'(K) with same norm. There we can take
the Jordan decomposition into disjoint non-negative measures. Note that for
positive measures their norm on C(K) equals their norm on A, since e € A.
Thus we find p,v > 0 such that A = p — v and [|A|| = ||p|| + ||¥||. But
0= Ae) = u(e) —v(e) = |l — |lv[|. Consequently [|ul| = ||| = [|All/2. Thus
if [|A]] €2 we have ||u|| = ||v|| < 1. If ||\|] < 2 set ¢t = ||u|| < 1, and rescale u
and v so that they are in S(A). Then

A=tp—tv=p— (tv+ (1 —t)u).
Now (tv + (1 — t)u) is no longer disjoint from u, but we have obtained the
following lemma, which will be used in a number of places.
2.1 LEMMA. The ball Dy of radius 2 about 0 in A'° coincides with {u — v :
v € S(A)}.

Notice that if there is an a € A such that L(a) = 0 but a ¢ Re, then from this
lemma we can find p, v € S(A) such that (u—v)(a) # 0, so that pr, (u, v) = +00.
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Thus our standing assumption that there is no such a serves to reduce the
possibility of having infinite distances. But it does not eliminate this possibility,
as seen by the example of the algebra of smooth (or Lipschitz) functions of
compact support on the real line, with constant functions adjoined, and with
the usual Lipschitz seminorm.

2.2 PROPOSITION. With notation as earlier, the following conditions are equiv-
alent for anr € RT :

1) For all p,v € S(A) we have pr,(p,v) < 2r.

2) For all a € A we have ||a||~ < rL™(a).

Proof. Suppose that condition 1 holds. Let a € A and A € Dy. Then by the
lemma A = p — v for some p,v € S(A). Thus

[A(@)] = |(u = v)(a)| < L(a)pr(p,v) < L(a)2r.

Since A(e) = 0, thus inequality holds whenever a is replaced by a+ se for s € R.
Thus condition 2 holds.

Conversely, suppose that condition 2 holds. Then for any u,» € S(A) and
a € A with L(a) <1 we have

lua) —v(a)| = |(u = v)(a)| < 2[|al|™ < 2r.

Thus pr,(u,v) < 2r as desired. O

Of course, we call the smallest r for which the conditions of this proposition
hold the radius of S(A).

We caution that just because a metric space has radius r, it does not follow
that there is a ball of radius r which contains it, as can be seen by considering
equilateral triangles in the plane. We remark that just because pr, gives S(A)
finite radius, it does not follow that pr, gives the weak-x topology. Perhaps the
simplest example arises when A is infinite dimensional and L(a) = ||a||™.

3. LOWER SEMICONTINUITY FOR LIPSCHITZ SEMINORMS

Let L be any Lipschitz seminorm on an order-unit space A. (We will not at
first require that it give S(A) finite diameter.) We would like to show that L
and py, contain the same information, and more specifically that we can recover
L from py, as being the usual Lipschitz seminorm for pz,. By this we mean the
following. Let p be any metric on S(A), possibly taking value +oo. Define L,
on C(S(A)) by

(3.1) Lo(f) = sup{|f (1) = FW)I/p(p,v) : o # v},
where this may take value +o0o. Let Lip, = {f : L,(f) < oo}. We can

)
restrict L, to Af(S(A)). In general, few elements of Af(S(A)) will be in Lip,.
However, on viewing the elements of A as elements of Af(S(A)), we have:
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3.2 LEMMA. Let L be a Lipschitz seminorm on A with corresponding metric
pr, on S(A). Then A C Lip,,, and on A we have L,, < L , in the sense that
L,, (a) < L(a) for all a € A.

Proof. For p,v € S(A) and a € A we have

|a(p) = a(v)| = |u(a) —v(a)| < L(a)pr(p, v).
O

For later use we remark that if L and M are Lipschitz seminorms on A and if
M < L, then pps > pr in the evident sense.

We would like to recover L on A from pr, by means of formula (3.1). However,
the seminorms defined by (3.1) have an important continuity property:

3.3 DEFINITION. Let A be a normed vector space, and let L be a seminorm on
A, except that we permit it to take value +o00. Then L is lower semicontinuous
if for any sequence {a,} in A which converges in norm to a € A we have
L(a) < liminf{L(ay)}. Equivalently, for one, hence every, t € R with ¢ > 0,
the set

Li={ae A:L(a) <t}

is norm-closed in A.

3.4 PROPOSITION. Let A be an order-unit space, and let p be any metric on
S(A), possibly taking value +o0o. Define L, on C(S(A)) by formula (3.1).
Then L, is lower semicontinuous. Consequently, the restriction of L, to any
subspace of C(S(A)), such as A or Af(S(A)), will be lower semicontinuous.

Proof. When we view L, as a function of f, the formula (3.1) says that L, is
the pointwise supremum of a collection of functions (labeled by pairs u, v with
u # v) which are clearly continuous on C(S(A)) for the supremum norm. But
the pointwise supremum of continuous functions is lower semicontinuous. [

3.5 ExAMPLE. Here is an example of a Lipschitz seminorm L whose metric
can be seen to give S(A) the weak-* topology, but which is not lower semicon-
tinuous. Let I = [—1,1], and let A = C'(I), the algebra of functions which
have continuous first derivatives on I. Define L on A by

L(f) = If'llee + [F(0)].
For each n let g, be the function defined by g¢,(t) = nlt| for |t| < 1/n, and
gn(t) = 1 elsewhere. Let f,(t) = ffl gn(s)ds. Then the sequence {f,} con-

verges uniformly to the function f given by f(¢t) =t + 1. But L(f,) = 1 for
each n, whereas L(f) = 2.

A substantial supply of examples of lower semicontinuous seminorms can be
obtained from the W*-derivations of Weaver [W2, W3]. These derivations will
in general have large null spaces, and the seminorms from them need not give
the weak-x topology on the state space. But many of the specific examples of
W*-derivations which Weaver considers do in fact give the weak-* topology. In
terms of Weaver’s terminology, which we do not review here, we have:
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3.6 PROPOSITION. Let M be a von Neumann algebra and let E be a normal
dual operator M-bimodule. Let 6 : M — E be a W*-derivation, and denote
the domain of § by L, so that L is an ultra-weakly dense unital x-subalgebra
of M. Define a seminorm, L, on L by L(a) = ||0(a)||g- Then L is lower
semicontinuous, and L1 = {a € L : L(a) < 1} is norm-closed in M itself.

Proof. Let {ay} be a sequence in £ which converges in norm to b € M. To show
that L is lower semicontinuous, it suffices to consider the case in which {a,} is
contained in £y. Then the set {(an,d(a,))} is a bounded subset of the graph
of § for the norm max{|| ||a,|| |lg}- Since the graph of a W*-derivation is
required to be ultra-weakly closed, and since bounded ultraweakly closed sub-
sets are compact for the ultra-weak topology, there is a subnet which converges
ultra-weakly to an element (c,d(c)) of the graph of 4. Then necessarily ¢ = b,
so that b € £, and 4(b) is in the ultra-weak closure of {§(ay)}. Consequently
L) = BB < 1. O

Because of the importance of Dirac operators, it is appropriate to verify lower
semicontinuity for the Lipschitz seminorms which they determine. This is close
to a special case of Proposition 3.6, but does not require any kind of complete-
ness, nor an algebra structure on A.

3.7 PROPOSITION. Let A be a linear subspace of bounded self-adjoint operators
on a Hilbert space H, containing the identity operator. Let D be an essentially
self-adjoint operator on H whose domain, D(D), is carried into itself by each
element of A. Assume that [D,a] is a bounded operator on D(D) for each
a € A (so that [D,a] extends uniquely to a bounded operator on H). Define L
on A by L(a) = ||[D,a]||. Then L is lower semicontinuous.

Proof. Let {a,} be a sequence in A which converges in norm to a € A. Suppose
that there is a constant, k, such that L(a,) < k for all n. For any £,n € D(D)
with [[£]| = 1 = ||n|| we have

<[Da a]fa 77) = <a§7 D77> - <D€7 a77> = hm([‘Da an]ga 77)

But |([D, an]¢,n)| < k for each n, and so ||[D,d]|| < k. O

We remark that the Lipschitz seminorms constructed in [Rf] by means of actions
of compact groups are easily seen to be lower semicontinuous.

4. RECOVERING L FROM pp,

In this section we show that a lower semicontinuous Lipschitz seminorm L
can be recovered from its metric p;,. But before showing this we would like
to emphasize the following point. Let (X, p) be an ordinary compact metric
space, with A the algebra of its Lipschitz functions, with Lipschitz seminorm
L. Then S(A) consists of the probability measures on X, and the points of X
correspond exactly to the extreme points of S(A). The restriction of py, to the
extreme points is exactly p. Thus when one says that one can recover L from
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the metric p, one is saying that one can recover L from the restriction of py, on
S(A) to the extreme points of S(A). However, for the more general situation
which we are considering, it will be false in general that we can recover L from
the restriction of py, to the extreme points of S(A). Simple explicit examples
will be given in Section 7.

One of the main theorems of this paper is:

4.1 THEOREM. Let L be a lower semicontinuous Lipschitz seminorm on an
order-unit space A, and let pr, denote the corresponding metric on S(A), pos-
sibly taking value +o0o. Let L,, be defined by formula (3.1), but restricted to
AC Af(S(A)). Then

L, =1L.

Theorem 4.1 is an immediate consequence of the following theorem, since we
saw that lower semicontinuity coincides with £; being norm closed.

4.2 THEOREM. Let L be any Lipschitz seminorm on an order-unit space A,
and let pr denote the corresponding metric on S(A). Let L,, be defined by
formula (3.1), but restricted to A C Af(S(A)). Then {a € A: L, (a) <1}
coincides with the norm closure, Ly, of L1 in A. In particular, L,, is the
largest lower semicontinuous seminorm smaller than L, and pr, = pr.

Proof. (An idea leading to this proof, which is simpler than my original proof,
was suggested to me by Nik Weaver.) On A’ we define the seminorm, L' | dual
to L, by

L'(\) = sup{|A(a)| : L(a) < 1}.

Note that L' takes value +00 on any A for which A(e) # 0, and very possibly
on some elements of A" as well. But at any rate we have the following key
relationship:

4.3 LEMMA. For p,v € S(A) we have pr.(n,v) = L'(p — v).
Proof.

L' (= v) = supf|(u - v)(a)] : L(a) < 1}
— sup{|u(a) - v(a)| : L(a) < 1} = pu(,v).

O

Because £; is already convex and balanced, the bipolar theorem [Cw] says
that £, is exactly the bipolar of £;. Thus we just need to show that {a €
A : L, (a) < 1} is the bipolar of £1. Now it is clear that the unit L'-ball
in A’ is exactly the polar [Cw] of £;. This provides the last of the following
equivalences. Let a € A. Then:

L,, (a) <1 exactly if |u(a) — v(a)| < pr(p,v) for all p,v € S(A) ,

exactly if [A(a)| < L'(A) for all A € Dy (by Lemma 4.3 and Lemma 2.1),
exactly if [A(a)] <1 for all A € A’ with L'(\) <1,
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exactly if a is in the prepolar of {A : L'(\) < 1} (by definition [Cw]),

exactly if a is in the bipolar of £;.

It is clear that L, is lower semicontinuous, that it is the largest such seminorm
smaller than L, and that it gives the same metric. O

Note in particular that if L gives S(A) finite diameter, or the weak-* topology,
then so does L,, .

We remark that a sort of dual version of Theorem 4.1 can be found later in
Theorem 9.7.

We have the following related considerations. Suppose again that L is a Lip-
schitz seminorm on an order-unit space A. Let A denote the completion of
Afor || ||, and let £; denote now the closure of £; in A rather than just in
A. Let L denote the corresponding “Minkowski functional” on A obtained by
setting, for b € A,

L) =inf{r e Rt :b e rLy}.

Since there may be no such r, we must allow the value +o0o0. With this under-
standing, L will be a seminorm on A. It is easily seen that L(b) < 1 exactly if
b e Ly, and that L is lower semicontinuous because £; is closed.

Up to this point we did not require lower semicontinuity of L. It’s import is
given by:

4.4 PROPOSITION. Let L be a lower semicontinuous Lipschitz seminorm on an
order-unit space A. Let L on A be defined as above. Then L is an extension
of L, that is, for a € A we have L(a) = L(a). Furthermore, p; = pr.

Proof. Suppose that a € A and L(a) = 1. Then a € £; C £; and so clearly
L(a) < 1. Conversely, if L(a) < 1, then a € £;. Thus there is a sequence
{an} in £y which converges to a, with L(ay) < 1 for every n. From the lower
semicontinuity of L it follows that L(a) < 1. Finally, for u,v € S(A) we have

pr(p,v) = sup{|p(a)—v(a)| : a € L1} = sup{|u(a)—v(a)| s a € L1} = pr(n,v).

O

Note in particular that if L gives S(A) finite diameter, or the weak-* topology,
then so does L. However, in general L need not be a Lipschitz seminorm. For
example, let A be the algebra of real polynomials viewed as functions on the
interval [0, 2], and let L be the usual Lipschitz seminorm but defined using only
points in [0, 1].

4.5 DEFINITION. We will call L the closure of L. We will say that a Lipschitz
seminorm is closed if L = L (on the subspace where L is finite), or equivalently,
if £; is complete for the metric from || ||.

Then Proposition 4.4 says that for most purposes we can assume that L is
closed if convenient.
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Suppose now that L is a Lipschitz seminorm on A which is closed. On A4 we
can define a new norm, ||| |||, by

llalll = [lall + L(a).

It is easily verified that A is complete for this new norm. Suppose that A is a
x-algebra and || || is a C*-norm (this can be weakened). Suppose further that
L is a closed Lipschitz seminorm on A which satisfies the Leibniz inequality.
Then the new norm is a normed-algebra norm, and so A becomes a Banach
algebra for the new norm. In Sections 10 and 11 we will indicate many examples
of Lipschitz seminorms satisfying the Leibniz inequality. This provides a rich
class of examples of Banach algebras which merit study (even in the cases when
they are commutative) along the lines considered in [BCD, J, W1].

5. THE PRE-DUAL OF (A, L)

It has been shown in an increasing variety of situations that the space of Lip-
schitz functions with a suitable Lipschitz norm is isometrically isomorphic to
the dual of some Banach space. Some of the history of this phenomenon is
sketched in the notes at the end of chapter 2 of [W1], or more briefly in [W2].
Within the non-commutative setting, Weaver shows in Proposition 2 of [W2]
that the domains of W*-derivations (as defined there) are dual spaces. How-
ever, his W*-derivations can have large null spaces, and they need not give
the weak-* topology on S(A). Nevertheless, Weaver’s approach applies to the
non-commutative tori, and gives them the same space of Lipschitz elements as
the approach of the present paper (when combined with [Rf]). In fact, Weaver
shows in [W3] that for the non-commutative tori one can also define Lip®, and
that Lip® is actually the second dual of lip® when a < 1.

To show within our setting that the space of Lipschitz elements is the dual of a
Banach space, we need to assume that p;, gives the weak-* topology on S(A).
As before, let £; = {a : L(a) < 1}. From theorem 1.8 of [Rf] we know that
pr, will give the weak- topology on S(A) exactly if the image of £1 in A is
totally bounded for || ||~. Equivalently, by theorem 1.9 of [Rf], L must give
S(A) finite radius, and for one, hence all, t € R with ¢ > 0, the set

By ={a:L(a) <1 and ||a|| <t}

must be totally bounded in A for || ||. We remark that this implies that if
{an} is a sequence (or net) in A converging pointwise on S(A) to a € A, and
if there is a constant k such that ||a,|| < k and L(a,) < k for all n, then a,
converges to a in norm. This is because {a,} is contained in kB; whose closure
in the completion A of A is compact. Let b be any norm limit point of {a,} in
A. Then a subsequence of {a,} converges in norm to b. But it still converges
pointwise on S(A) to a. Consequently b = a, and a is the only norm limit point
of {an}.

We now have in view all the requirements on Lipschitz seminorms which we
need for our present purposes. So we now define what we expect is the correct
way to specify metrics on compact non-commutative spaces:
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5.1 DEFINITION. Let A be an order-unit space. By a Lip-norm on 4 we mean
a seminorm, L, on A (taking finite values) with the following properties:

1) For a € A we have L(a) = 0 if and only if a € Re.
2) L is lower semicontinuous.
3) {a € A: L(a) < 1} has image in A which is totally bounded for || ||™.

We remark that it is easily checked that the closure (Definition 4.5) of a Lip-
norm is again a Lip-norm.

Within the present setting the fact that the space of Lipschitz elements is a
dual Banach space takes the following form (which requires the Lip-norm to be
closed).

5.2 THEOREM. Let A be an order-unit space, and let L be a Lip-norm on A
which is closed. Let K = {a € A: L(a) < 1}, so that K is a compact (conver)
set for || ||~. Then (A, L) is naturally isometrically isomorphic to the dual
Banach space of Afo(K), the Banach space of continuous affine functions on
K which take value O at 0 € A, with the supremum norm.

Proof. Let L1 and B; be as defined as above. Because L is closed, the totally
bounded sets B; are complete for | ||, and so are compact. From the finite
radius considerations of Section 2 the image of £; in A will coincide with the
image of B; for sufficiently large ¢. Hence the image of £ in A is compact for
|| ||, not just totally bounded. But the image of £; is exactly K as defined
in the statement of the theorem.

We can now argue as in the proof of proposition 1 of [W4]. We include the
argument here in a form specific to our particular situation.

Let V = Afo(K), as defined in the statement of the theorem. Then from lemma
4.1 of [K3] each element of V extends to a linear functional (not necessarily
continuous for || [|~) on A. But we still view V as equipped with the uniform
norm || || from C(K), for which V' is complete. Then for any f € V we have

[flleo = sup{f(a) : a € K} = sup{f(a) : L(a) <1}.

Consequently || ||o is just the dual norm to the norm L on A. But V will
usually be much smaller than the entire dual Banach space of (A, L) because
of the requirement that if f € V then f is continuous on K.

We let V' denote the dual Banach space to V. We have the evident mapping
o from A to V' defined by o(a)(f) = f(@). Use of the Hahn-Banach theorem
shows that Afy(K) separates the points of K, and from this we see that o is
injective. Furthermore |o(a)(f)| = |f(@)| < ||fllsoL(@), and so ||o|| < 1 for
the norm L on A. In particular, o(K) C (V')1, the unit ball of V'. From
the definitions of o and V we see immediately that o is continuous from K
to (V'); with its weak-* topology from V. Since K is compact, o(K) must be
compact for the weak-* topology. If o(K) were not all of (V');, there would
be a ¢ € (V') and a weak-* continuous linear functional separating ¢o from
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o(K). But every weak-x linear functional comes from V. Thus there would be
an f € V such that

fla) <1< po(f)

for every a € K. But the first inequality means that ||f||c < 1, and so the
second inequality means that ||po|| > 1, contradicting the assumption that
wo € (V')1. Thus o(K) = (V');. Consequently o is an isometric isomorphism
of (A, L) with V'. O

We remark that, if desired, we can make A itself into the dual of a Banach
space, in a non-canonical way, as follows. Let r be the radius of (A, L), and let
it be any fixed state of A. Define an actual norm, L,, on A by

Ly(a) = max{|u(a)|/r, L(a)}.

Let INJM be the quotient of L, on A. Tt is clear that f/“ > L. But for any given
a € A we can find a € R such that ||a —al| < rL(a), by the definition of radius.
Then ~

lu(a — )| < la—al| < rL(a),

while L(a — o) = L(a). Consequently L,(a) < L(a), so that, in fact, L, = L.
Thus (A, L,) has (A, L) as quotient space. The quotient map splits by the
isometric map @+ a — pu(a). Since (A, L) is isometrically isomorphic to a dual
Banach space, it follows easily that (A, L,) is also.

See also section 2 of [H], which gives a slightly different approach because the
norm on Lip, is slightly different from that implicit here.

Let £ and V = Afy(K) be as in the statement of Theorem 5.2. As in Section 2,
the dual of (A, || ||™~)is A’°. By the finite diameter condition and Proposition
2.2 each A € A’° defines a continuous linear functional on (A, L). Each such
functional is clearly continuous on K for its topology from || ||~. Thus each
X € A'° defines an element of V', and so we obtain a linear map from A" into
V. From Theorem 5.2 the norm || || on V from C(K) coincides with the
dual norm L' from (A, L). We have the following addition to Theorem 5.2.

5.3 PROPOSITION. The image of A" in Afo(K) is dense in Afo(K) for its
norm || ||eo = L'.

Proof. Let ¢ be any continuous linear functional on V' which is 0 on the image
of A'°. From Theorem 5.2 every continuous linear functional on V' comes from
an element of A. If @ is the element of A corresponding to ¢, we then have
Xa) = 0 for all X\ € A’°, which implies that @ = 0 so that ¢ = 0. Tt follows
from the Hahn-Banach theorem that the image of A’ % is norm dense in V. O

6. EXTREME POINTS

Let L be a Lipschitz seminorm on an order-unit space A, and let pr be the
corresponding metric on S(A). Let E denote the set of extreme points of S(A).
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Then E need not be a closed subset of S(A), but S(A) is the closed convex
hull of E by the Krein—Milman theorem. Of course py, restricts to a metric
on E. We will give explicit examples in the next section to show that even
when L is a Lip-norm the restriction of pr, to E does not determine py, or L.
Nevertheless, we can try to use the restriction of py, to define a new Lipschitz
seminorm, L¢, on A, by

L%(a) = sup{|e(a) —n(a)|/pr(e,n) : e, € E, e #n}.

6.1 PROPOSITION. With the above definition, L° is a lower semicontinuous
Lipschitz seminorm on A, and it is the smallest such on A whose metric on
S(A) agrees on E with that of L. If L is a Lip-norm then so is L°.

Proof. From Theorem 4.2 it is clear that we can assume that L is lower semi-
continuous. From Theorem 4.1 we know that any lower semicontinuous Lip-
schitz seminorm, say L1, is recovered from its metric by a supremum as above,
but ranging over all of S(A) rather than just over E. Thus if the metric for
L, agrees with pr on E, we must have L* < L;. By using the argument in
the proof of Proposition 3.4 it is easily seen that L¢ is lower semicontinuous.
Suppose that L¢(a) = 0 for some a € A. Recall that Dy = {\ € A"° : ||A|| < 2}.

6.2 LEMMA. The convex hull of {e —n :e,n € E, ¢ # n} is dense in Do for
the weak-* topology.

Proof. From Lemma 2.1 we know that any element of D> can be expressed
as u — v for p,v € S(A). By the Krein-Milman theorem each of u,v can be
approximated arbitrary closely in the weak-* topology by convex combinations
from E, say > aje; and ) Beng- But the difference of such combinations can
be expressed as

> (@iBi) (e —m)-
O

From this lemma it is clear that if L°(a) = 0 then L(a) = 0, and thus a € Re.
Also, it is easy to see that pr. agrees with py on E.

Finally, we must show that if L is a Lip-norm then the image of Ky = {a :
L¢(a) < 1} in A is totally bounded for || ||™. Notice that this image is larger
than that for L, so we can not immediately apply the corresponding fact for L.
Let E denote the closure of E in S(A). It is clear that the supremum defining
L° could just as well be taken over E, and so L¢ on A is just the Lipschitz
norm for the metric py, restricted to E. Thus Ky can be viewed as contained
in {f € C(E) : L?(f) < 1}, and the latter has totally bounded image in
C(E)/Re since it consists of Lipschitz functions for a metric and E is compact.
Thus Ko has totally bounded image in C(E)/Re. But the restriction map
from Af(S(A)) to C(E) is isometric for || || since E contains the extreme
points. (See Theorem I1.1.8 of [Al]. We are dealing here with Kadison’s smallest
separating representation.) It follows easily that Ko has totally bounded image
in A as needed. O
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We remark that if F' is any subset of S(A) which contains E, then we can use
F instead of E to define a Lip-norm L just as we defined L¢ above. Then we
will have

Lf<LF<L

in the evident sense, with reverse inequalities for the corresponding metrics.
Suppose that A is a dense x-subalgebra of a C*-algebra, A, and that L is a Lip-
norm on A, with corresponding metric pr, on S(A). As above let E denote the
set of extreme points of S(A). Assume first that A is commutative. Then E is
compact and A = C(E). Assume that L = L°. Then L is the usual Lipschitz
norm coming from the metric on the compact set E obtained by restricting pr,
to E. But in this case we know that L must then satisfy the Leibniz rule

L(ab) < L(a)[[b]| + [lal|L(b)-

It is thus natural to ask the general question:

6.3 QUESTION. What conditions on a Lip-norm L on a general unital C*-
algebra imply that L satisfies the Leibniz rule?

In the next section we will see examples of Lip-norms which do not satisfy
L = L¢ and yet satisfy the Leibniz rule.

7. DIRAC OPERATORS AND ORDINARY FINITE SPACES

Connes has shown [C1, C2, C3] that for a compact Riemannian (spin) man-
ifold all the metric information is contained in the Dirac operator. This led
him to suggest that for “non-commutative spaces”, metrics should be specified
by some analogue of Dirac operators. We explore here some aspects of this
suggestion for finite-dimensional commutative C*-algebras, i.e. ordinary finite
spaces. This will clarify some of the considerations of the previous sections.
Here and throughout all the rest of this paper, when we say that an operator D
is a “ Dirac” operator, this is not meant to indicate any particular properties
of D, but rather is meant to indicate how D is employed, namely to define a
Lipschitz seminorm.

Let X be a finite set, and let A = C'(X). In order to remain fully in the setting
of the previous sections we take C'(X) to consist only of real-valued functions.
But in the present commutative situation this is not so important because,
unlike the non-commutative case, if one does not know the algebra structure,
the norm for complex-valued functions is still given by a simple formula in
terms of the norm for real-valued functions. (See e.g. lemma 14 of [W2].)
Consequently we will be a bit careless here about this distinction.

We will suppose that A has been faithfully represented on a finite-dimensional
complex Hilbert space H. We suppose given on ‘H an operator D (the “Dirac”
operator). It is usual to take D to be self-adjoint. But we find it slightly more
convenient to take D to be skew-adjoint. The two choices are related by a
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multiplication by i, and give the same metric results. Following Connes, we
define a seminorm, L, on A by

L(a) = [[[D, dll],

where [, ] denotes the usual commutator of operators, and the norm is the
operator norm. We want L to be a Lip-norm. Thus we require that if [D,a] =0
then a € CI. Because we are in a finite-dimensional setting, L is continuous
for || ||, and indeed is a Lip-norm on A.

From L we obtain a metric, pr,, on the space S(A) of probability measures on
X, as well as on its set of extreme points, which is identified with X itself. We
now give a very simple example to show that pz, on S(A) need not agree with
the metric obtained from py on X.

7.1 ExAMPLE. Consider a three-dimensional commutative C*-algebra, A, rep-
resented faithfully on a three-dimensional Hilbert space. Thus we can identify
A with the algebra of diagonal matrices in the full matrix algebra M3 = M;3(C).
We will consider Dirac operators of a special form which facilitates calculation,
namely matrices D in M3(C) of the form

0 0 «
D= 0 0 pg
—a -0 0

where @ > 0 and 8 > 0. We will also restrict to those f € A which are real,
and denote the three values (or diagonal entries) of f by (f1, f2, f3). Because
D is skew-symmetric, [D, f] is a real symmetric matrix, whose eigenvalues thus
are real. In fact, we have

0 0 a(fs — fi)
[D, f]= 0 0 B(fs = f2)
alfs = fi) B(fs — f2) 0

Because of this special form, the eigenvalues are easily calculated, and one finds
that

L(f) = D, flll = (@2 (fa = f1)* + B°(fz = f2))/2.

It is clear from this that if L(f) = 0 then f is a constant function. Thus L
defines a Lip-norm on A.

We now proceed to calculate the corresponding metric on S(A4). We first cal-
culate the dual norm, L, on A’°, the dual space of A, with notation as in the
previous sections. We identify A’ ? with real diagonal matrices of trace 0, paired
with A via the trace. For A € A'° we denote its components by A = (A1, A2, A3).
Of course

L'(\) = sup{[{f, N} : L(f) < 1},

Now both [(f,A)| and L(f) are unchanged if we add a constant function to
f- Thus for the supremum defining L'(\) we can assume that f3 = 0 always.
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Furthermore, we know that A3 = —(A; + A2). Thus we need only deal with the
first two components of f and A. We do this without changing notation. Then
we see that

L'(N) =sup{|fidi + fodo| 1 &7 f7 + B2 f5 < 1}

But this is just the norm of a functional on a suitable Hilbert space. Specifically,
let 1?(w) be the Hilbert space of functions on a 2-point space with weight
function w given by (a?,3?). Then

fidi + f2do = fi(Mi/a?)a® + f2(A2/B%) 37,

and in this form the norm of the functional is the length of the vector in /2 (w)
defining it. This gives

L) = (/) + (% /8)°%)'/2
= (/0?4 23/6%) 2.

We now apply this to obtain the metric on S(A). If u,v € S(A), then for the
evident notation

pr(p,v) = L'(u—v) = (11 — 11)*/a® + (ua — v)?/5%)"/2.

Let X denote the maximal ideal space of 4. We identify its 3 points with the
3 extreme points of S(A), and label them, corresponding to the coordinates in
A, by 81,02,03. Then from the above formula for pr, we find that the metric
on X is given by:

pr(01,05) = (1/a® +1/8%)'/?
pr(1,03) = 1/a
pL(§2a53) :1//6

Define v by pr,(d1,02) = 1/v. Let L¢ denote the ordinary Lipschitz norm on A
coming from this metric on X. Then

Le(f) = max{|fi — falv, |fi — falo, |f2 — f3|B}.

Clearly L°¢ is quite different from L. From Theorem 4.1 we know that the
metrics on S(A) will thus be quite different, even though they agree on the
extreme points. This is, of course, also easily seen by direct calculations.

We now make some observations in preparation for the next section. It is well-
known [W1, W2] that the Lipschitz seminorms L = L, from ordinary metrics
on a metric space X have a nice relation to the lattice structure of (real-valued)
C(X), namely

L(fV g) < L(f)V L(g).
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We remark that for the L of the above example this inequality fails. For
instance, with notation as above, let f = (1,0,0) and g = (0,1,0), so that
fVvg=(1,1,0). Then we see that

L(f) = @, L(g) = 3, while L(f V g) = (a® + %)'/2.

(This is related to the counterexample following theorem 16 of [W2].)
However, it is not difficult to check that the above L does satisfy the weaker
inequality

L(f Vv 0) < L(f).

In fact, one can prove that this holds for any choice of skew-adjoint D for the
above A. To find a counterexample for this weaker inequality one must take
A to be 4-dimensional. I have not found a systematic way of constructing
a counterexample there, but some examination of what is needed, followed
by some experimentation with MATLAB yields the following (and related)
example:

0 4 -1 0
-4 0 2 =2
D= 1 -2 0 -4
0 2 4 0

and f = (4,2,0,-1).

We remark that ordinary Lipschitz norms on compact metric spaces can all be
easily obtained by means of Dirac operators. I pointed this out in a lecture in
1993, and the details are indicated after the proof of proposition 8 of [W2]. See
also the discussion for graphs which we will give toward the end of Section 11.

8. A CHARACTERIZATION OF ORDINARY LIPSCHITZ SEMINORMS

Let X be a compact space, let p be a metric on X (giving the topology of X),
and let L denote the corresponding ordinary Lip-norm on C'(X) (permitted to
take value +00). As just mentioned in the last section, it is well-known [W1,
W2] and easy to prove that L relates nicely to the lattice structure of C'(X) by
means of the inequality

L(fVvg) <L(f)V L(g).

In Weaver’s more general setting of domains of W*-derivations he proves this
inequality for W*-derivations of Abelian structure. (See lemma 12 of [W2].)
We show here that the above inequality exactly characterizes the Lip-norms
which are the ordinary Lipschitz seminorms coming from ordinary metrics on
X.

We remark that we never assume here that our Lip-norms satisfy the Leibniz
inequality for the algebra structure, namely

L(fg) < L(H)llgll + I FI1LCg)-
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But ordinary Lipschitz seminorms do satisfy this inequality. Thus one conse-
quence of this section is that the above lattice inequality implies the Leibniz
inequality. On the other hand, the Lip-norm from any “Dirac” operator will
satisfy the Leibniz inequality, but can easily fail to satisfy the lattice inequality,
as we saw by examples in the previous section. Thus the lattice inequality is
much stronger than the Leibniz inequality.

However we should point out that for Dirac operators on compact spin Rie-
mannian manifolds, in spite of their being defined by means of various partial
derivatives and spinors, the corresponding Lip-norms do satisfy the lattice in-
equality. This is because Connes shows [C1, C2, C3] that the Lip-norms which
those Dirac operators define coincide with the ordinary Lip-norms for the or-
dinary metrics on the manifolds determined by the Riemannian metrics.
Recall that for us C'(X) consists of real-valued functions.

8.1 THEOREM. Let X be a compact space, let A be a dense subspace of C'(X)
containing the constant functions, and let L be a Lip-norm on A. Let L denote
the closure of L, viewed as defined on all of C(X) as in the discussion before
Proposition 4.4, and thus permitted to take value +o0o. Then the following
conditions are equivalent:

1. The Lip-norm L is the restriction to A of the usual Lipschitz seminorm
corresponding to a metric on X (namely the metric pr, ).
2. For every f,g € C(X) we have

L(fVg) < L(f) VvV L(g).

The following lemma is somewhat parallel to lemma 13 of [W2]. For later use
we state it in slightly greater generality than needed immediately.

8.2 LEMMA. Let A be a dense subspace of C(X) containing the constant func-
tions, and closed under the finite lattice operations (i.e. if f,g € A then
fVvgeA). Let L be a Lip-norm on A which satisfies the inequality

L(fVg) <L(f) v L(g)

for all f,g € A. Let L be the closure of L, defined on all of C(X), permitted to
take value +00. Let F be a bounded subset of A for which there is a constant,
k, such that L(f) < k for all f € F. Let g = sup{f € F}. Then g € C(X)
and L(g) < k.

Proof. Let {go} be the net of suprema of finite subsets of F. Then {g,} is
contained in A, and converges up to f pointwise. By the hypothesis on L we
have L(gy) < k for all a. Thus we have

19a(2) — ga (V)| < kpr(z,y)

for all @ and all z,y € X; that is, {ga} is equicontinuous. We can thus apply
the Ascoli theorem [Ru] to conclude that the net {g,} has a subnet which
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converges uniformly. But the limit of this subnet must be g, and so g must
be continuous. Furthermore, from the lower semicontinuity of L we must have
L(g) <k. O

Proof of Theorem 8.1. As indicated above, it is basically well-known, and not
hard to verify, that condition 1 implies condition 2. Suppose conversely that
condition 2 holds. For any = € X let p7 be the continuous function on X
defined by p%(y) = pr(z,y). Set Sy = {f € A: f(z) =0, L(f) < 1}. Since
L(f) is unchanged when a constant function is added to f, or when f is replaced
by —f, the definition of p;, can be rewritten as

PL(y) =sup{f(y): f € S:}.

This means that p} = supS;. But S, is a bounded set in A by the finite
radius considerations. Thus we can apply the above lemma to conclude that
L(p%) < 1. Suppose that L(p%) = ¢ < 1. Then L((1/c)p%) = 1, and so from
the definition of py we obtain

(1/e)lpt () — pL W) < pr(2,v),

for all y € X, that is,
pr(z,y) < cpr(z,y)

for all y € X, which is impossible (unless X has only one point, which we now
do not permit). Thus L(p%) = 1.

Much as in Section 6, let L¢ denote the ordinary Lip-norm on C'(X) (permitting
value 4+00) corresponding to the restriction of py, as metric on X. (Recall that
X is identified with the extreme points of S(A).) As seen in Proposition 6.1,
L¢ < L. We now show that L¢ = L because of the inequality in the hypotheses
of our theorem (and its extension in Lemma 8.2). Let f € C'(X), and suppose
that L¢(f) < 1. Thus

|f(z) = f(y)] < pr(z,y)
for all z,y € X. In particular
f(@) = pr(z,y) < fy).

For each z € X define h* € C(X) by

h*(y) = f(x) = pr(z,y).
Then the above inequality says that h® < f for each z. But it is clear that
h*(z) = f(x). Thus f = sup{h® : © € X}. Then from the considerations of

the previous paragraph we see that L(h*) = 1 for all z. Thus by Lemma 8.2
we have L(f) < 1. It follows that L = L¢ as desired. O
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8.3 COROLLARY. Let X be a compact space, and let A be a dense subspace
of C(X) which contains the constant functions and is closed under the finite
lattice operations. Let L be a Lip-norm on A, and suppose that

L(fVg) <L(f) Vv L(g)

for all f,g € A. Then L is the restriction to A of the ordinary Lip-norm on
C(X) corresponding to the metric p on X.

Proof. Let f,g € C(X). Then from Lemma 8.2 we see immediately that

L(fVg) <L(f) v L(g).

We can thus apply Theorem 8.1 to obtain the desired conclusion. [

One way of viewing Theorem 8.1 is that it characterizes the Lip-norms on
commutative C*-algebras which come from the corresponding metric on the
extreme points of S(A). It would be interesting to have a corresponding charac-
terization for non-commutative C*-algebras, and for general order-unit spaces.

9. LIP-NORMS FROM METRICS ON S(A)

It is natural to ask which metrics on S(A) arise from Lip-norms on A. We
obtain here a characterization of such metrics. Many of the steps work for
arbitrary convex sets, and so at first we will work in that setting. Thus we let
V be any vector space over R, and we let K be any convex set in V' which spans
V. Much as above, let Do = K — K. Note that not only is D, convex, but it is
also balanced, in the sense that if A € D, and if ¢t € [-1,1], then ¢\ € D>. To
see this, note that if A € D» then clearly —\ € D5, so we only need consider
t > 0. But
tw—v)=p—(v+ (1 —-1)n),

which is in Dy by the convexity of K. Let V° = RD,. Then V? is a vector
subspace of V. In the setting where K = S(A) we know that V° is a proper
subspace of V. Let M be a norm on V°. Then we can define a metric, p, on
K by p(p,v) = M(u — v). We want to characterize the metrics which arise in
this way.

The most natural property to expect is that p be convex (in each variable),
that is:

9.1 DEFINITION. We say that a metric p on K is convez if for every u,vy,vs €
K and t € [0, 1] we have

plpstry + (1 —t)ve) <tp(p,vi) + (1 —1)p(p, v2).
The metrics coming from norms on V° are convex because
p—(tr + (1= tve) =t(p—11) + (L= t)(p — va).
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Given a metric p on K, our strategy will be to try to use p to define a norm,
M, on VO by first defining it on D». Specifically, for A € Dy we would like to
set

M) = p(p,v)

for A = p — v with u,v € K. But we need to know that this is well-defined.
That is, we need to know that if p,v,p/,v' € K and if u —v = p' — v/, then
p(u,v) = p(u',v'). This can be rewritten in terms of midpoints so as to appear
a bit closer to considerations of convexity, namely, that if

9.2) (1t v')/2= (i +v)/2

then p(u,v) = p(u',v'). This clearly holds for the metrics coming from norms.
One finds an attractive geometrical interpretation when one draws a picture of
this relation.

9.3 DEFINITION. We say that a metric p on K is midpoint-balanced if whenever
equation (9.2) above holds, it follows that p(u,v) = p(u',v').

Let us now assume that p is midpoint-balanced. Then M on D, is well-defined
as above. We wish to extend it to a norm on V°. For this to be possible we
first must have the property that if ¢ € R, |¢| < 1, and if A € D5, then M (t\) =
[t|M (X\). Now from the definition of M it is clear that M (—X) = M (A). Thus
it suffices to treat the case in which ¢t > 0. If A = 4 — v, then

tA=tp—v)=p—(tr+(1-1t)n),

so that by the definition of M we have M(t\) = p(p,tv + (1 — t)u). From
convexity, p(u, tv+ (L —t)p) < tp(p,v). But also tA = (tu+ (1 —t)v) —v, which
gives a similar inequality. Then from the triangle inequality and convexity we
have

p(p,v) < plp,tv + (1 —t)p) + p(tv + (1 = t)p,v)
<tp(p,v) + (1 = t)p(p,v) = p(p,v).
Thus the inequalities must be equalities, and we obtain:

9.4 LEMMA. Let p be a metric on K which is convexr and midpoint balanced.
Define M on Dy as above using p. Then for any p,v € S(A) and t € [0,1] we
have

p(p,tv + (L = t)p) = tp(p,v),
and for any A € Dy and t € [—1,1] we have

M(tX) = [t{M(N).

Next, we need that M is subadditive on D,. This means that if \,\' € Dy and
if A+ X € Do, then M(A+)X) < M(AN)+M(N). Let A = p—v, N = p'—v'. Then
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A+ XN = (u+p)— (v+v). Assuming that p is convex and midpoint-balanced,
we obtain from Lemma 9.4 that

MO+ X) = 2M((\+ \)/2).

NEW A+XN)/2=(p+u)/2—(w+v")/2,and (n+ p')/2,(v+ ") /2 € S(A).
Thus

M((A+X)/2) = p((p+p)/2, (v +1")/2),
and we see that what we need is:

9.5 DEFINITION. We say that a metric p on K is midpoint concave if for any
w, v, i1, v € K we have

p((+1)/2, (v +v)/2) < (1/2)(p(p, v) + p(u', "))

Again one finds an attractive geometrical interpretation when one draws a
picture of this inequality. From the discussion above we now know that:

9.6 LEMMA. Let p be a metric on K which is convex, midpoint balanced, and
midpoint concave. Define M on K as above. If \,\' € D> and if A\ + X' € Ds,
then

MO+ XN) < M) + M.

9.7 THEOREM. Let p be a metric on the convex subset K of V., and let V° =
RDy; = R(K — K). Then there is a norm, M, on V° such that p(u,v) =
M(u —v) for all p,v € K, if and only if p is convex, midpoint balanced, and
midpoint concave. The norm M is unique.

Proof. The uniqueness is clear since V°® = R(K — K). We have seen above that
the conditions on p are necessary. We now show that they are sufficient. We
let M be defined on Dy = K — K as above. For any A € V° thereisat > 0
such that t\ € Dy. We want to extend M to V' by setting

M(X\) =t~ M(tN).

From Lemma 9.4 it is easily seen that M is well-defined, and furthermore that
M(sA\) = |s|M(X) for all s € R and A € V°. The subadditivity of M then
follows easily from Lemma 9.6. O

We now want to apply the above ideas to S(A) for an order-unit space A. Note
that the VO of just above is then the A’ % of earlier. We will need the following
theorem, which does not involve the above ideas.

DOCUMENTA MATHEMATICA 4 (1999) 559-600



582 MARC A. RIEFFEL

9.8 THEOREM. Let A be an order-unit space, and let M be a norm on A'°.
Define a metric, p, on S(A) by

p(p,v) = M(p —v).
If the p-topology coincides with the weak-+ topology on S(A), then
M = (Lp)l

0
on A"

Proof. Since Lip, is a subspace of C(S(A)), we can set Ay, = (Lip,)NAf(S(A)).
Note that A7 need not be contained in 4 unless A is complete. Initially it is
not clear how big Az is. Parallel to our earlier notation, let V' denote the
normed space A’ % with norm M. Note that V need not be complete. Let V'
denote the Banach space dual of V', with dual norm M’'. Fix any vy € S(A).
For any ¢ € V' define a function, 7(¢), on S(A) by

() (1) = (i — 1)
Then for p,v € S(A) we have

IT(@) (1) — T(@) (V)| = o — v)| < M' ()M (1 — v) = M'(@)p(p, V).

Thus 7(¢) € Lip, and L,(7(¢)) < M'(p). In particular, 7(y) is continuous on
S(A) since p gives the weak-* topology. Furthermore it is easily seen that 7(ip)
is affine on S(A). Thus 7(p) € Ar. Consequently 7 is a norm-non-increasing
linear map from (V', M') to (Ar,L,). Let 7 denote T composed with the map
from Ay, to Az. Then it is easily seen that 7 does not depend on the choice of
vy. We now need:

9.9 LEMMA. Let A= Af(S(A)), the completion of A for || ||, so that A, C

A. Then Ay, is dense in A.

Proof. Since Re C Ay, it suffices to show that Ay is dense in A~. Let X €
Dy C A" = (A™)". Suppose that A(Az) = 0. Let A = u — v with p,v € S(A).
For any ¢ € V' we have 7(¢) € AL, so

0= X7(p)) = p(r(p)) —v(r(v)) = p(p — o) — p(v — 1) = p(N).

Since this is true for all p € V', it follows that A = 0. Since D» spans A’O,
an application of the Hahn-Banach theorem now shows that Ay, is dense on

A O

Now let f € Ar. We seek to define a linear functional, o(f), on A" related to
the ¢ in the proof of Theorem 5.2. We first try to define o on Dy by
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where A = p — v for p,v € S(A). But we need to show that o(f) is well-
defined. We argue much as we did before Definition 9.3. If also A = pu; — vy for
pi,v1 € S(A), then (u+11)/2 = (11 + v)/2. But these are elements of S(A)
and so

fp+v1)/2) = f((pa +v)/2).
But from the fact that f is affine it now follows that

flp) = f(v) = Flp) = f(v).

Thus o(f) is well-defined on D5. We now need to know that o(f) is “linear” on
D5. The proof that o(f)(tA) = to(f)(N) for ¢t € [—1, 1] is similar to the proof of
Lemma 9.4. The proof that o(f)(A+ A1) =a(f)(A) +o(f)(M) if A+ A1 € Do
is similar to the argument just before Definition 9.5. The proof that o(f) then
extends to a linear functional on A'° is similar to the arguments in the proof
of Theorem 9.7. For A = y — v with pu,v € S(A) we have

()N =1 () = FW)] < Lp(f)pp,v) = Ly ()M (1 —v) = Ly (f)M(X).

It follows that o(f) € V' and M'(o(f)) < L,(f). Thus o is a norm-non-
increasing linear map from (Ar,L,) to (V', M'). Note that the constant func-
tions are in the kernel of o, so that o determines a norm-non-increasing linear
map from (Az,L,) to (V', M"). But for f € Az we have

m(o()(w) = o(f)(n—ro) = f(1) — f(po)-
Consequently 7(5(f)) = f. Similarly, for ¢ € V' and A\ = p — v we have
F(F(p)(N) = 7(@) (1) — (@) (v) = (= vo) — (v —1o) = p(N),

so that 6(7(¢)) = ¢. Thus & and 7 are inverses of each other. Since they are
norm-non-increasing, we obtain:

9.10 LEMMA. The map 7 is an isometric isomorphism of (V',M') onto
(AL, L,), with inverse &.

We can now complete the proof of Theorem 9.8. Since Ay is dense in A by
Lemma 9.9, for any A € V' we have

(Lp)'(A) = sup{A(7(¢)) : L,(7(¢)) < 1} =sup{p(A) : M'(p) <1} = M(N).
O
Putting together the various pieces of this section, we obtain:

9.11 THEOREM. Let A be an order-unit space, and let p be a metric on S(A)
which gives the weak-x topology. Then p comes from a Lip-norm L on A via
the relation

p(p,v) = L'(p—v)
if and only if p is convex, midpoint balanced, and midpoint convex.

Nik Weaver has suggested to me the following alternative treatment of the
material of this section. Let V, K, and V° be as at the beginning of this
section.
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9.12 DEFINITION. We say that a metric p on K is linear if for every p,v € K,
every v € VO, and every ¢t € Rt such that p + tv and v + v are in K we have

p(p, p+ tv) =tp(v,v + v).

It is easily seen that if p comes from a norm on V° then p is linear. Conversely,
if p is linear, define a norm, M, on V° by

M(v) = p(p, u + tv)/t

for any 4 € K and any t € Rt such that u +tv € K. One checks that M is
well-defined and is indeed a norm. Furthermore, p comes from M.

Weaver also points out that if V' is a locally convex topological vector space
and if K is compact, then for a suitable definition of p being compatible with
the topology, one can show that when p is linear and compatible, then K
is isometrically isomorphic to S(Af(K)) when the latter is given the metric
coming from the Lipschitz seminorm on Af(K) coming from p.

It is not clear that examples will come up where it is actually useful to apply
the considerations of this section in order to obtain Lip-norms. Until such
examples arise, it will not be clear whether my version or Weaver’s will be the
more useful.

10. MUSINGS ON METRICS

Since the theory in the previous sections worked for order-unit spaces, which
need not be algebras, the Leibniz inequality played no significant role there.
Indeed, even when one has an algebra, I have not seen how to make effective
use of the Leibniz inequality. Nevertheless, most constructions of Lipschitz
seminorms which I have seen in the literature seem to provide ones which do
satisfy the Leibniz inequality. We will briefly explore here a variety of such
constructions, and the relationships between them. Our interest will be on
seeing general patterns, and we will not try to deal carefully with the many
technical issues which arise. Thus we will be less precise than in the previous
sections.

A very natural way to look for Lipschitz seminorms, closely related to Weaver’s
W*-derivations [W2], goes as follows. Let A be a unital algebra and let (Q,d)
be a first-order differential calculus for 4. Thus ©Q (which is also often denoted
O) is an A-A-bimodule, and d is an Q-valued derivation on A, that is, a linear
map from A into @ which satisfies the Leibniz identity

d(ab) = (da)b + a(db).

We do not require that the range of d generates Q2. Suppose now that A is in
fact a normed algebra, and that we have a bimodule norm, N, on Q (for the
norm || || on A), that is, a norm such that

N(awb) < |la||N (w)[[b]l
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for a,b € A and w € Q. Define a seminorm L on 2 by
L(a) = N(da).

It is easily seen that L satisfies the Leibniz inequality. Since d1 = 0, we have
L(1) = 0. Of course, without further hypotheses the null-space of L may be
much bigger. (We should mention that not all seminorms satisfying the Leibniz
inequality can be constructed in this way—see the discussion in [BC].)
There is a universal first-order differential calculus for any unital algebra A
[Ar, C2]. We approach this in a way which emphasizes more than usual those
differential calculi which are inner, since at least conceptually that is what
Dirac operators give, as we will see shortly. We form the algebraic tensor
product
A=A A,

with bimodule structure defined as usual by a(b® ¢)d = ab ® cd. We define d
by

da=1®%a—-—a®l.

10.1 DEFINITION. A first-order calculus (2, d) is inner if there is a wy € Q
such that
da = wpa — awy.

Then the calculus (2%, d) defined above is inner, with wp = 1 ® 1. Note that
here wg may not be in the sub-bimodule generated by the range of d. This is
an indication of why we do not require this generation property. It is simple
to verify:

10.2 PROPOSITION. The inner first-order calculus (Q%,d,1 ® 1) is univer-
sal among inner first-order differential calculi over A, in the sense that if
(Q,d',w}) is any other inner first-order differential calculus, then there is a bi-
module homomorphism ® : QY — Q' such that ®(da) = d'a and P(1® 1) = wy}.
In particular,

®(a®b) = awb

for a,be A. If Q' is generated by wj as bimodule, then ® is surjective, so that
Q' is a quotient of QY.
10.3 PROPOSITION. Any first-order differential calculus is contained in an in-
ner first-order calculus.

Proof. Let (Q,d) be a first-order calculus. Set Q = Q @ A as left .A-module,
set da = da @ 0, and set @y = 0 ® 1. We must extend the right action of A on
Q to a right action on Q such that da = @pa — a@y. Thus it is clear that we
must set (0@ 1)a = @oa = da ® 0 + aly = da & a, and so

(w,b)a = (wa + bda, ba).
It is simple to check that this gives the desired structure. O
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Now let 2" denote the sub-bimodule of Q} generated by the range of d, and so
spanned by elements of the form

adb=a®b—ab® 1.

Let (', d') be a first-order differential calculus which is not inner. Expand it
to an inner calculus by the construction of the previous proposition, and then
restrict ® of that proposition to Q%. It is clear from the construction that ®
will carry Q" into ', where Q' is viewed as a sub-bimodule of its expansion.
We obtain in this way:

10.4 PROPOSITION. The calculus (Q%,d) is universal among all first-order dif-
ferential calculi over A, in the sense that if (V,d') is any other first-order
differential calculus, then there is a bimodule homomorphism ® : Q" — Q such
that ®(da) = d'a. If Q' is generated by the range of d' as bimodule, then ® is
surjective, so that Q' is a quotient of Q™.

We notice that if (€2, d) is any first-order differential calculus and if A/ is any sub-
bimodule of 2, then we obtain a calculus (Q/A,d') where d' is the composition
of d with the canonical projection of Q onto /A . However, unlike the universal
calculus, there may now be many more elements a for which da = 0 beyond
the scalar multiples of 1.

Let us examine briefly what the above looks like when A = C(X) for a compact
space X. Then Q%(= A ® A) is naturally viewed as a dense sub-bimodule, in
fact subalgebra, of C(X x X). The bimodule actions are, of course,

(fE)(z,y) = f(2)F(z,y), (Ff)(x,y) = F(z,y)f(y),

and wg = 1 ® 1 is the constant function 1, so that d is given by

(df)(z,y) = f(y) = f(2).

Then Q" is spanned by the fdg, where

(fdg)(z,y) = f(z)(g9(y) — g(z)).

Thus the elements of Q% take value 0 on the diagonal, A, of X x X, and
consequently Q% C Cpr (X x X N A). In fact it is easy to see that Q" is a dense
subalgebra of Co (X x X N A).

Let p be an ordinary metric on X (giving the topology of X). View p as
a strictly positive function on X x X \ A, and let v = p~!'. Then v is a
continuous function on X x X \ A, but v is unbounded if X is not finite. Let
C(X x X\ A) denote the algebra of continuous possibly-unbounded functions
on X X X N\ A. Then C(X x X \A) can be viewed as the algebra of operators
affiliated with the C*-algebra C'», (X x X N\ A) in the sense studied by Baaj [Ba]
and Woronowicz [Wo]. In an evident way C'(X x X \ A) is an .A-A-bimodule,
containing -y.
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There are now two routes which we can take. One is to consider the inner-
derivation, d, defined by . Thus

(dyf)(2,y) = v(2,9)f () = F@)v(2,y) = (fy) = f(2)/p(z,y).

Then we can consider bimodule norms, possibly taking value +o00, on C(X x
X N\ A), as a way to obtain Lipschitz norms on A. The other route is to use
~ (or p) to directly define norms on Cu (X x X N\ A). For the first route the
most obvious norm is the supremum norm, which leads to the usual definition
of the Lipschitz seminorm for a metric space.

However, we choose to explore further the second route. (But most of what
we find will have a fairly evident reinterpretation in terms of the first route.)
There is a large variety of ways to obtain bimodule norms on Co (X X X N\ A).
The one which gives the usual definition of the Lipschitz seminorm for a metric
is clearly

N(F) = [YFlloo,

permitted to take value +oco. But here are some others. Let m be any positive
(finite) measure on X, and assume that m x m restricted to X x X \ A has
as support all of X x X ~\ A. Then one can consider all of the LP-norms for
m x m. If one wants to put 7 (or p) explicitly into the picture, one can consider
the measure y(m x m), although this just represents the choice of a different
measure. Note that if f is an ordinary Lipschitz function for p, then ~df is
a bounded function on X x X \ A, so that ||vdf||p,mxm is finite. Thus the
subalgebra of elements of A for which this Lipschitz seminorm is finite is dense
in A.

To explore further possibilities, let us for simplicity assume that X is finite.
Then Qf = C(X x X)) can be viewed as the algebra of all matrices whose entries
are indexed by elements of X x X. The left and right actions of A on Q} can
be viewed as coming from embedding A as the diagonal matrices and using
left and right matrix multiplication. Then wg is the matrix with a 1 in each
entry. On A we keep the supremum norm, but on the matrix algebra )" we can
consider any A-A-bimodule norm. Let B denote Q} viewed as matrix algebra,
and equipped with the usual C*-algebra norm. View Q} as a B-B-bimodule in
the evident way. Then we can consider B-B-bimodule norms on Q}. Any such
will in particular be an A-A-bimodule norm. But there has been extensive
study of the possible B-B-bimodule norms on 2f. They are commonly called
“symmetric norms”, and among the best known are the Schatten p-norms,
which include the Hilbert—Schmidt norm and the trace norm. These have,
of course, also been extensively studied for operators on infinite dimensional
Hilbert spaces, and play a fundamental role in Connes’ theory of integration
on non-commutative spaces. (See [C2] Chapter IV and its Appendix D. A
nice treatment of the finite case can be found in [Bh].) From every symmetric
norm we obtain a Lip-norm on A (since A is finite-dimensional). This does
not exhaust the possibilities, as there is no necessity to restrict to symmetric
norms in order to get A-.A-bimodule norms.
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All of the above discussion has been for the universal differential calculus. We
get many more possibilities by using other differential calculi. We continue
to concentrate on the case of 4 = C(X) with X compact. Now sub-A-A-
bimodules of C'(X x X), when closed in the supremum norm, will be ideals of
C(X x X), and the quotient can be identified with C(W) for some closed subset
W of X x X. We can restrict df to W. But some condition must be placed
on W if we want to ensure that df|w = 0 only if f is a constant function. For
this purpose it is convenient to assume, to begin with, that W contains the
diagonal A and is symmetric about A, that is, if (x,y) € W then (y,z) € W.
Given z € X we define the W-neighborhood of z to be the (closed) set of those
y € X such that (z,y) € W. By the W-component of  we mean the smallest
closed subset of X which contains the W-neighborhood of each of its points.
If df|w = 0, then f is constant on the W-component of each point. Thus a
sufficient condition under which df|w = 0 will imply that f is constant, is that
the W-component of each point is all of X. If X is a finite set, then W \ A can
be viewed as consisting of the directed edges for a graph whose vertices are the
points of X. Then the above condition becomes the condition that this graph
is connected in the usual sense. If X is not discrete, it is usual to require that
W is a neighborhood of A. Then each W-neighborhood of a point will be an
ordinary (closed) neighborhood, and so the W-component of each point will
be both closed and open. In particular, if X is connected it will be true that
df|lw = 0 implies that f is constant.

We remark that if W is a neighborhood of A and is symmetric about A, and
if we set Q@ = C(W), then the first order calculus (£2,d) obtained as above
is the typical degree-one piece of the complexes (2};,,d) used in defining the
Alexander—Spanier cohomology of X. The higher-degree pieces are defined
similarly but in terms of X™ for various n. The Alexander—Spanier cohomology
is then obtained by taking a limit of the homology of these complexes as W
shrinks to A. Essentially this view can be seen in lemma 1.1 of [CM], where
smooth functions on a manifold are used, and in Section 1 of [MW], where
continuous functions are used.

Suppose now that @ = C(WW) as above, but assume now for simplicity that
W and A are disjoint (with W no longer required closed). Let d be defined
by df = df|w, and assume that if df = 0 then f is a scalar multiple of 1. To
obtain a Lipschitz seminorm on A we again just need to put a bimodule norm
on ). The method which is closest to the usual Lipschitz norm is to specify a
nowhere zero function v on W and set

L(f) = [ldfll

(on W, allowing value +00). In this context however, if we set p = v~ 1, it no
longer makes much sense to ask that the triangle inequality hold for p. About
the most that is reasonable is to ask that p, hence 7, be positive, and that
v(z,y) = v(y,z) for (z,y) € W, & # y. This is a situation which has been
widely studied. Entire books [Ra, RR] have been written about the problem
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of finding the corresponding distance between two probability measure on X,
often under the heading of “the mass transportation problem”. The function
p is then often called a “cost function”. We should clarify that when p is not
a metric we are dealing here with mass transportation “with transshipment
permitted” [RR], not the original Monge-Kantorovich [KA] mass transporta-
tion problem, which does not permit transshipment, and may well not yield a
metric. When transshipment is permitted and p is not a metric on X, the cor-
responding metric on S(X) is called the Kantorovich—-Rubenstein metric [KR1,
KR2]. For a fascinating survey of some recent developments concerning the
original Monge—Kantorovich problem see [Ev].

When X is a finite set and W is viewed as specifying edges for a graph which has
X as set of vertices, the cost function p is naturally interpreted as assigning
lengths to the edges (though we will see a quite different interpretation in
Section 12). Then the metric on X coming from L, is the usual path-length
distance on the graph. There has been much study of how to compute this
path-length distance efficiently for large graphs. We remark that if one prefers
to have p defined on all of X x X one can simply set it equal to +00 on any
(z,y), x # y, which is not an edge.

We remark that in the context of cost functions on compact sets there may well
be no non-constant functions for which the Lipschitz seminorm is finite. As
one example let X be the unit interval [0, 1], and set p(z,y) = |z —y|*>. This is,
in effect, because we permit transshipment — the original Monge—Kantorovich
problem is quite interesting for this particular cost function, as shown in [Ev].
It is just that the minimal cost of moving one probability measure directly to
another does not then give a metric on probability measures, because it may
be less costly to use two or more moves.

There is a variety of other bimodule norms, such as LP-norms, which one can
use for various differential calculi, and these give a wide variety of metrics on
probability measures [Ra]. A particularly deep application of such norms, for
the case of graphs, and involving explicitly Connes ideas of non-commutative
metrics, appears in [Dal]. (I thank Nik Weaver for bringing this paper to my
attention.)

Let us now discuss briefly the case in which we have A = M, a full matrix
algebra. As mentioned much earlier, one natural Lip-norm on A is just L =
|| ||~. Now A’ can be identified by means of the normalized trace, 7, with 4
itself, but equipped with the trace-norm. Then A’ 0, as in our earlier notation,
consists of the matrices with trace 0. Of course, S(A) is identified with the
positive matrices of normalized trace 1. With this identification, we have

pr (11, v) = trace(|u — v]).

This is exactly one of the metrics listed (with references) in the introduction
to [ZS]. Another one listed there uses the Hilbert—Schmidt norm instead of the
trace norm. Listed also is a variety of other metrics on S(M,,) which have
appeared in various applications. But I have not checked whether they come
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from Lip-norms. There has also been much study of the differential geometry of
S(M,,) for a variety of Riemannian metrics, especially the “monotone metrics”,
which are closely related to operator monotone functions. Two very recent
articles which contain many references to previous work on this topic are [Di,
S]. But the emphasis of most of this work is not on the ordinary metric which a
Riemannian metric induces on S(My), but rather on the differential geometric
aspects. There is also study of the volume form which is induced, and on
associated probabilistic aspects. For recent related study going in the direction
of non-commutative entropy see [LR].

11. DIRAC OPERATORS AND DIFFERENTIAL CALCULI

We continue our comments of the previous section, but here we focus on how
Dirac operators fit into the picture. Let A be a unital x-algebra equipped with
a C*-norm (perhaps not complete), and let 7 be a faithful representation of A,
that is, an isometric *-homomorphism of A into the algebra B(#) of bounded
operators on a Hilbert space 7. Let D be an essentially self-adjoint, possibly
unbounded, operator on #, and assume that 7(a) carries the domain of D into
itself for each a € A, and that on this domain [D,n(a)] is a bounded operator,
and so extends uniquely to a bounded operator on H. Then, following Connes,

we set
L(a) = |I[D, 7 (a)]l|-

As we did earlier, it is natural to require that [D,7(a)] = 0 only when a is a
scalar multiple of 1. Many important examples of this situation are now known.
But in general it seems difficult to ascertain whether the corresponding metric
on states gives the weak-x topology, though this has been shown for certain
examples in [Rf]. See also [W2, W3, W5], where the sets B; defined at the
beginning of Section 3 are shown to be totally bounded, in fact compact, for
various examples. We do not deal with this question here, but rather try to
relate the bimodule picture to the Dirac picture. One direction is apparent.
We view B(H) as an A-A-bimodule by setting

aTb = 7(a)Tn(b).

Then, although D is only affiliated with B(H), conceptually we use the inner
derivation which D defines, so that

da = Dr(a) — w(a)D = [D,n(a)].

(This, of course, is the starting point for Connes’ non-commutative differential
calculus [C2].) We then note that the operator norm on B(H) is an A-A-
bimodule norm, and so upon setting

L(a) = [[[D,m(a)]

we obtain a Lipschitz norm, which we showed to be lower semicontinuous in
Proposition 3.8.
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But suppose we are given instead some first order differential calculus (2, d)
and a bimodule norm on (2 so that we obtain the corresponding Lipschitz norm
L. Can we also obtain L from a Dirac operator? For this to be possible we
must have L(a*) = L(a), and L must be lower semicontinuous. As mentioned
earlier, L must also fit into a family of “matrix Lipschitz seminorms”. These
conditions are probably not enough in general, though I have not tried to find
a counterexample. But the following superficial comments help to give some
perspective. (In most of the considerations which follow the algebra structure
on A is only used in order to get the Leibniz inequality. Thus much of what
follows actually works for order-unit spaces.)

We saw in Proposition 10.3 that we can extend (€2, d) to obtain an inner first-
order calculus. In analogy with this idea, suppose that we can realize Q as
a subspace of B(H) for some Hilbert space H, in such a way that the norm
on {2 is the operator norm, and the bimodule structure is given by two x-
representations, my and ms, of 4 on #, so that

awb = 71 (a)wms (b)

for a,b € A and w € Q. Suppose further that there is a possibly-unbounded
essentially self-adjoint operator, Dy, on H, such that 7 (a) and 72 (a) carry the
domain of Dy into itself, and such that

da = Dgm2(a) — w1 (a)Do,

which in particular must be a bounded operator. Set L(a) = ||da||. This is not
exactly the Dirac operator setting, but it is not difficult to convert it into that
setting. To arrange matters so that we have only one representation, we let
T =m Dy on HSH and set

_ (0 D,
b= (3 %),

L(a) = [[[Dy, w(a)]l|-

Then we find that

But of course D is not self-adjoint. We fix this in the traditional way by again
doubling the Hilbert space, with representation = & 7 of A, and setting

_( 0 Dy
p=(S B0).
The corresponding Lipschitz norm is L(a)V L(a*), but from the self-adjointness

of D one can check that we actually get back L.
Anyway, we are left with

11.1 QUESTION. For an order-unit space A, or a %-algebra A with C*-norm,
how does one characterize those Lip-norms on A which come from the Dirac
operator construction?
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Even for finite-dimensional commutative C*-algebras it is not clear to me what
the answer is.

As mentioned earlier, a Dirac operator also gives seminorms on all of the matrix
algebras over A, so that one can speak of this family as a “matrix Lipschitz
norm”, in the spirit of [Ef]. Thus a related problem is to characterize these
structures.

Of course a given metric on S(A) may come from several fairly different Dirac
operators. For example, suppose that we have a compact space X, and a closed
neighborhood W of the diagonal A of X x X, together with a cost function
p on W, just as in the previous section. As discussed there, we can use p
together with the first-order calculus determined by W to define a Lipschitz
norm on C(X). (Further hypotheses are needed for it to be a Lip-norm on
a dense subalgebra of C'(X).) Then by the procedure discussed earlier in the
present, section we can pass to a Dirac operator. But that procedure enlarged
the Hilbert space because a first-order differential calculus usually involves two
representations rather than one. We will now show that there is an alternative
method which does not enlarge the Hilbert space. This is a mild generalization
of my lecture comments for metric spaces mentioned earlier, whose details
are indicated on page 274 of [W2]. As earlier, let m be a measure on X of
full support, and consider m x m on W ~. A. Form the Hilbert space H =
L?(W . A,m x m). We consider only the representation 7 of 4 = C(X) on H
defined by

(&) (2,y) = f(2)¢(2,y).

(This is, of course, essentially the left action on the bimodule for W.) Define
an operator, F', on H by the flip

(F&)(z,y) = &(y, x).

Because we are using a product measure, the operator F' is self-adjoint and
unitary. Define an (unbounded) positive operator, P, on H by

(P&)(z,y) = &(z,y)/p(, y).

Because we assume that p(z,y) = p(y,x) for all (z,y) € W, the operators F’
and P commute. We define the Dirac operator by

D = PF,

so that F is the phase of D and P = |D|. Informal calculation shows that for
any f € C(X) we have

(D, 75)8) (x,y) = ((F(y) = F(2))/p(z,9))E(y, ),

so that
L(f) = I[D, m¢]ll = sup{|f(y) — f(2)|/p(z,y) : (z,y) € W}.
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Of course, further hypotheses must be placed on p in order for this to give a
Lip-norm. But the right-hand side of the above equality is the usual definition
of a Lipschitz norm in this situation, especially in contexts such as graph theory.
It will coincide with what one obtains in the corresponding bimodule approach.
Notice that the resulting distance between two points =,y € X can easily be
strictly smaller than p(z,y) (if (x,y) happens to be in W).

For an interesting alternative (but closely related) method of obtaining the
usual distance on a graph (including infinite graphs) from a cost function,
by means of Dirac operators, see theorem 7.2 of [Da]. Furthermore, in [Da]
other very interesting and quite different Dirac operators associated to cost
functions on graphs are discussed in some detail, and used to obtain improved
estimates for heat kernels on graphs. They can be described in terms of first-
order differential calculi and Laplace operators along much the same lines as we
used in Section 10. Much of this is explicit in [Da], and we will not elaborate
on it here.

We should mention here that very interesting examples of Dirac operators as-
sociated with non-commutative variants of sub-Riemannian manifolds appear
in the second example following axiom 4’ of [C3], and in [W5].

12. RESISTANCE DISTANCE

We conclude with an appealing class of examples which do not fit into the
previous framework of differential calculi, and for which the Lip-norm does
not satisfy the Leibniz identity. These examples come from graphs with “cost
functions” on the edges, but now the graph is interpreted as an electrical circuit
with resistances on the edges, whose values are given by the cost function.
These examples have been extensively studied [DS, K1, KIR, KZ], but I have
not seen earlier mention of the corresponding metric on probability measures
which we will define here. It is not clear to me whether this metric is more
than a curiosity.

All of the discussion here can be carried out for infinite graphs, along the lines
discussed extensively in [DS], but for simplicity we only discuss finite graphs
here. The examples also have a fine alternative interpretation in terms of
random walks [DS]. Our term “resistance distance” is taken from the title of
[KIR].

The set-up, as indicated above, is a finite graph with set X of vertices, together
with strictly positive real numbers r,, = ry, assigned to each (undirected)
edge. We interpret these numbers as resistances. We assume throughout that
the graph is connected. Given z,y € X, z # y, we can imagine putting a
voltage difference across = and y, adjusted so that one unit of current flows
in at z and out at y. Then Ohm’s law says that the “effective resistance” is
equal to the required voltage difference. We denote this effective resistance by
p(z,y). It is, in fact, a metric on X. The only reference I know for this is [KIR,
K, KZ], but my friends in probability theory tell me that within the context of
random walks rather than resistances this is well-known, even if no reference
comes to mind.
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Suppose now that p and v are general probability measures on X. Although it
does not seem so intuitively obvious, we will see shortly that we can establish
voltages on the points of X such that unit total current flows into the circuit,
with the amount flowing in at each point z given by u,, while unit total current
flows out of the circuit, with the amount at each point given by v (with the
evident interpretation when the supports of p and v are not disjoint). For the
analysis of this situation it is useful to define a function, ¢, on the edges, by
Czy = 1/rgy. This is commonly called the “conductance”. It is convenient to
extend c to all of X x X by setting ¢, = 0 if (2,y) is not an edge (or if y = ).
Let f € C(X), interpreted as voltages applied to the points of X. We let df be
defined as earlier for the universal calculus (or for the calculus corresponding
to the edges). We let V f denote the resulting flow inside the circuit. By Ohm’s
law the flow (before electrons were discovered) from z to y is given by

(VI (@,y) = (F(2) = f(y))cay = —c(df),

where by ¢(df) we mean the pointwise product of functions. Note that Vf is a
function on directed edges, with

(VA y) = =(VH(y, )

(and value 0 if (z,y) is not an edge).

Suppose now that w is any function on directed edges such that w(z,y) =
—w(y,z). We interpret w(z,y) as giving the magnitude of a current from z to
y. (To be more realistic we should require 0 circulation, but we will have no
need to impose this requirement.) To sustain this current, we will in general
have to insert (or extract) current at various vertices. We let div(w)(z) denote
the current which must be inserted at z. By Kirchhoff’s laws we have

div(w)(z) = Z w(z,y)-

y

Note that because w(z,y) = —w(y, z), we will have
> div(w)(z) =0,
x

which accords with the fact that the total amount of current inserted must be
0.

Suppose now that f € C(X) and that we set w = Vf. We see from above that
the currents which must be inserted to sustain the voltages given by f must be

div(V ),

which we denote by Af. To accord with our earlier notation, we let A’® denote
the signed measures, A\, on X for which (1,\) = 0. The discussion of the
previous paragraph can be interpreted as saying that Af € A'°.
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Suppose now that we are given A\ € A, Can we find f such that Af = \?
Note that since A1l = 0, we know that f will not be unique, but rather that,
as usual with potential functions, we can expect f to be unique only up to
a constant function. To proceed further we must more carefully analyze the
operator A in the traditional way [DS, K]. For f € C(X) we have

(Af)(x) =D (V@)
=D (f@) = FW)eay = F(2) D oy = > FW)cay-

Let D denote the diagonal matrix with diagonal entries
D,, = Z Cry-
y

If we view f as a column vector, we see that
Af=(D=0)f.

From the Peron—Frobenius theorem and the fact that our graph is connected,
it follows that the kernel of A consists exactly of the constant functions. If we
permit ourselves to confuse vector spaces a bit, we see that A is self-adjoint
with respect to the standard inner-product on column vectors. Thus it carries
the orthogonal complement, #, of the constant functions into itself, and it is
invertible on . Consequently, for every A € A'® we can find a unique f € H
such that Af = X. We will write this as f = A~'\, where we view A as
restricted to A so that it is invertible there.

Suppose now that z and y are fixed points of X, and that A = 6, — d,,, where
0, denotes the §-measure at z. Thus we are inserting one unit of current at x
and extracting it at y. Let f = A7'\. According to our earlier comments, the
effective resistance from z to y, p(z,y), is given by f(z) — f(y) = (A7) (z) —
(A7'\)(y). It is now easy to see why p is a metric, along the lines given in
[KIR]. If z is any other point of X, let

g=A"10,-0.), h=AT'0,-4,).
Clearly f = g+ h, so
p(z,y) = g(x) — g(y) + h(z) — h(y).

But simple considerations show that g must take its maximum and minimum
values at xz and z, so that

9(x) = g(y) < g(x) — 9(2) = p(z, 2).
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Similarly h(z) — h(y) < p(z, z). The triangle inequality for p follows.

But we are interested more generally in the effective resistance between u and
v where p and v are arbitrary probability measures, and it is not even clear
how this should be defined. (It does not seem natural just to use the Monge—
Kantorovich metric from p.) In view of our earlier considerations we should
form A = p — v, and so we need an appropriate norm on A’ 0, and this should
be the dual norm of a Lip-norm, say L, on C'(X), probably defined by means
of a norm on Q". The dual norm, L', should be such that if A = 0, — J,,
then L'(\) = (A™'A\)(2) — (A= \)(y). But as remarked above, A~'\ takes its
maximum and minimum values at z and y. Thus a norm which will meet this

requirement is
L'(\) = 2[[ATI%,

where || ||% is as defined in Section 1. To find L on C(X) we use the self-
adjointness of A to calculate, for g € C(X) and any A € A"°,
(9, 0) = (9, AATIX) = (Ag, A7),

The supremum over \ such that 2||A=!\||Z, < 1 is the same as the supremum
of
((1/2)Ag, h)

over h such that ||2]| < 1. But we saw earlier that this gives just the restriction
to A'® of the dual norm for | ||~ on C(X), which is the L'-norm. Thus we
see that we must set

L(g) = (1/2)|Agll: = (1/2) Y_ [(Ag)(x)]

=(1/2) ) =(1/2))

€T T

Yy

> dg(w,y)cay
Yy

This is certainly rather different from the usual Lip-norms for metrics on finite
sets. The above expression suggests that we define a seminorm, N, on Q" by

Z w(:v, y)cxy

Y

Nw)=(1/2))

T

)

so that we have
L(g) = N(dg).

Reversal of the earlier calculation shows that the dual norm is the L' considered
above, so that we obtain the desired p(u,v). However N will not usually be a
bimodule norm, so that we are not fully in the context of the previous sections,
and L need not satisfy the Leibniz inequality.

I must admit that I see no particularly natural interpretation for L(g), nor for
p(u,v), even if we call the latter “effective resistance”. If g were interpreted as
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giving voltages on X, then L(g) would be half the sum of the absolute values of
the currents inserted or extracted from the circuit, and thus exactly the sum of
the currents inserted into the circuit (disregarding the currents extracted). But
I do not see why it is natural to give g such an interpretation as voltages. If one
goes back to the effective resistance between two points, then it is easily seen
that this is equal to the energy dissipated by the circuit when one unit of current
is inserted. This suggests using the dissipated energy in the more general case
of arbitrary probability measures p and v. But the energy dissipated along
any edge varies as the square of the current, and one can see by examples
that this causes the triangle inequality to fail. One does obtain a metric if
one uses the square-root of the dissipated energy, but this does not give the
correct value for the effective resistance between two points. These possibilities
are not far from the Lipschitz norm used right after lemma 4.1 of [Da] to
define the metric denoted there by d3. This Lipschitz norm can be interpreted
as the supremum over the points x of X of the square roots of the energy
dissipations in all the edges beginning at 2. Perhaps the discussion of Dirichlet
spaces given in section 6 of [W6], or the “twisted bimodule structure” and
corresponding differential discussed beginning on page 149 of [Me] in connection
with Hudson’s treatment of discrete flows and stochastic differential equations,
could be used to shed more light on this. Or perhaps some of the stopping
rules or mixing times considered for Markov chains, as discussed in [LW], are
relevant.

Finally, we remark that it would be interesting to study resistance distance in
the continuous case, for example for thin plates of resistance metal of various
shapes.
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