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Abstra
t. In 
ontrast to the usual Lips
hitz seminorms asso
iated to

ordinary metri
s on 
ompa
t spa
es, we show by examples that Lips
hitz

seminorms on possibly non-
ommutative 
ompa
t spa
es are usually not

determined by the restri
tion of the metri
 they de�ne on the state spa
e,

to the extreme points of the state spa
e. We 
hara
terize the Lips
hitz

norms whi
h are determined by their metri
 on the whole state spa
e as

being those whi
h are lower semi
ontinuous. We show that their domain

of Lips
hitz elements 
an be enlarged so as to form a dual Bana
h spa
e,

whi
h generalizes the situation for ordinary Lips
hitz seminorms. We

give a 
hara
terization of the metri
s on state spa
es whi
h 
ome from

Lips
hitz seminorms. The natural (broader) setting for these results is

provided by the \fun
tion spa
es" of Kadison. A variety of methods for


onstru
ting Lips
hitz seminorms is indi
ated.
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In non-
ommutative geometry (based on C

�

-algebras), the natural way to spe
-

ify a metri
 is by means of a suitable \Lips
hitz seminorm". This idea was �rst

suggested by Connes [C1℄ and developed further in [C2, C3℄. Connes pointed

out [C1, C2℄ that from a Lips
hitz seminorm one obtains in a simple way an

ordinary metri
 on the state spa
e of the C

�

-algebra. This metri
 generalizes
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the Monge{Kantorovi
h metri
 on probability measures [KA, Ra, RR℄. In this

arti
le we make more pre
ise the relationship between metri
s on the state

spa
e and Lips
hitz seminorms.

Let � be an ordinary metri
 on a 
ompa
t spa
e X . The Lips
hitz seminorm,

L

�

, determined by � is de�ned on fun
tions f on X by

(0.1) L

�

(f) = supfjf(x)� f(y)j=�(x; y) : x 6= yg:

(This 
an take value +1.) It is known that one 
an re
over � from L

�

by the

relationship

�(x; y) = supfjf(x)� f(y)j : L

�

(f) � 1g:

But a slight extension of this relationship de�nes a metri
, ��, on the spa
e

S(X) of probability measures on X , by

(0.2) ��(�; �) = supfj�(f)� �(f)j : L

�

(f) � 1g:

This is the Monge{Kantorovi
h metri
. The topology whi
h it de�nes on S(X)


oin
ides with the weak-� topology on S(X) 
oming from viewing it as the

state spa
e of the C

�

-algebra C(X). The extreme points of S(X) are identi�ed

with the points of X . On the extreme points, �� 
oin
ides with �. Thus the

relationship (0:1) 
an be viewed as saying that L

�


an be re
overed just from

the restri
tion of its metri
 �� on S(X) to the set of extreme points of S(X).

Suppose now that A is a unital C

�

-algebra with state spa
e S(A), and let L

be a Lips
hitz seminorm on A. (Pre
ise de�nitions are given in Se
tion 2.)

Following Connes [C1, C2℄, we de�ne a metri
, �, on S(A) by the evident

analogue of (0:2). We show by simple �nite dimensional examples determined

by Dira
 operators that L may well not be determined by the restri
tion of �

to the extreme points of S(A).

It is then natural to ask whether L is determined by � on all of S(A), by a

formula analogous to (0:1). One of our main theorems (Theorem 4:1) states

that the Lips
hitz seminorms for whi
h this is true are exa
tly those whi
h are

lower semi
ontinuous in a suitable sense.

For ordinary 
ompa
t metri
 spa
es (X; �) it is known that the spa
e of Lip-

s
hitz fun
tions with a norm 
oming from the Lips
hitz seminorm is the dual

of a 
ertain other Bana
h spa
e. Another of our main theorems (Theorem 5:2)

states that the same is true in our non-
ommutative setting, and we give a

natural des
ription of this predual. We also 
hara
terize the metri
s on S(A)

whi
h 
ome from Lips
hitz seminorms (Theorem 9:11).

We should make pre
ise that we ultimately require that our Lips
hitz semi-

norms be su
h that the metri
 on S(A) whi
h they determine gives the weak-�

topology on S(A). An elementary 
hara
terization of exa
tly when this hap-

pens was given in [Rf℄. (See also [P℄.) This property obviously holds for �nite-

dimensional C

�

-algebras. It is known to hold in many situations for 
ommuta-

tive C

�

-algebras, as well as for C

�

-algebras obtained by 
ombining 
ommutative

ones with �nite dimensional ones. But this property has not been veri�ed for
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many examples beyond those. However in [Rf℄ this property was veri�ed for

some interesting in�nite-dimensional non-
ommutative examples, su
h as the

non-
ommutative tori, and I expe
t that eventually it will be found to hold in

a wide variety of situations.

A
tually, we will see below that the natural setting for our study is the broader

one of order-unit spa
es. The theory of these spa
es was laun
hed by Kadison

in his memoir [K1℄. For this reason it is espe
ially appropriate to dedi
ate this

arti
le to him. (In [K2℄ Kadison uses the terminology \fun
tion systems", but

we will follow [Al℄ in using the terminology \order-unit spa
e" as being a bit

more des
riptive of these obje
ts.)

On the other hand, most of the interesting 
onstru
tions 
urrently in view

of Lips
hitz seminorms on non-
ommutative C

�

-algebras, su
h as those from

Dira
 operators, or those in [Rf℄, also provide in a natural way seminorms on all

the matrix algebras over the algebras. Thus it is likely that \matrix Lips
hitz

seminorms" in analogy with the matrix norms of [Ef℄ will eventually be of

importan
e. But I have not yet seen how to use them in a signi�
ant way, and

so we do not deal with them here.

Let us mention here that a variety of metri
s on the state spa
es of full matrix

algebras have been employed by the pra
titioners of quantum me
hani
s. A

re
ent representative paper where many referen
es 
an be found is [ZS℄. We will

later make a few 
omments relating some of these metri
s to the 
onsiderations

of the present paper.

The last three se
tions of this paper will be devoted to a dis
ussion of the great

variety of ways in whi
h Lips
hitz seminorms 
an arise, even for 
ommutative

algebras. We do dis
uss here some non-
ommutative examples, but most of our

examples are 
ommutative. I hope in a later paper to dis
uss and apply some

other important 
lasses of non-
ommutative examples. Some of the appli
a-

tions whi
h I have in mind will require extending the theory developed here to

quotients and sub-obje
ts.

Finally, we should remark that while we give here 
onsiderable attention to

how Dira
 operators give metri
s on state spa
es, Connes has shown [C2℄ that

Dira
 operators en
ode far more than just the metri
 information. In parti
ular

they give extensive homologi
al information. But we do not dis
uss this aspe
t

here.

I thank Nik Weaver for suggestions for improvement of the �rst version of this

arti
le, whi
h are a
knowledged more spe
i�
ally below.

1. Re
olle
tions on order-unit spa
es

We re
all [Al℄ that an order-unit spa
e is a real partially-ordered ve
tor spa
e,

A, with a distinguished element e, the order unit, whi
h satis�es:

1) (Order unit property) For ea
h a 2 A there is an r 2 R su
h that

a � re.

2) (Ar
himedean property) If a 2 A and if a � re for all r 2 R

+

, then

a � 0.
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For any a 2 A we set

kak = inffr 2 R

+

: �re � a � reg:

We obtain in this way a norm on A. In turn, the order 
an be re
overed from

the norm, be
ause 0 � a � e i� kak � 1 and ke� ak � 1. The primary sour
e

of examples 
onsists of the linear spa
es of all self-adjoint elements in unital

C

�

-algebras, with the identity element serving as order unit. But any linear

spa
e of bounded self-adjoint operators on a Hilbert spa
e will be an order-unit

spa
e if it 
ontains the identity operator. We expe
t that this broader 
lass of

examples will be important for the appli
ations of metri
s on state spa
es.

We will not assume that A is 
omplete for its norm. This is important for us

be
ause the domains of Lips
hitz norms will be dense, but usually not 
losed,

in the 
ompletion. (The 
ompletion is always again an order-unit spa
e.) This

also a

ords with the de�nition in [Al℄.

By a state of an order-unit spa
e (A; e) we mean a 
ontinuous linear fun
tional,

�, onA su
h that �(e) = 1 = k�k. States are automati
ally positive. We denote

the 
olle
tion of all the states of A, i.e. the state spa
e of A, by S(A). It is a

w

�

-
ompa
t 
onvex subset of the Bana
h spa
e dual, A

0

, of A.

To ea
h a 2 A we get a fun
tion, â, on S(A) de�ned by â(�) = �(a). Then

â is an aÆne fun
tion on S(A) whi
h is 
ontinuous by the de�nition of the

w

�

-topology. The basi
 representation theorem of Kadison [K1, K2, K3℄ (see

Theorem II.1.8 of [Al℄) says that for any order-unit spa
e the representation

a ! â is an isometri
 order isomorphism of A onto a dense subspa
e of the

spa
e Af(S(A)) of all 
ontinuous aÆne fun
tions on S(A), equipped with the

supremem norm and the usual order on fun
tions (and with e 
learly 
arried to

the 
onstant fun
tion 1). In parti
ular, if A is 
omplete, then it is isomorphi


to all of Af(S(A)).

Thus we 
an view the order-unit spa
es as exa
tly the dense subspa
es 
on-

taining 1 inside Af(K), where K is any 
ompa
t 
onvex subset of a topologi
al

ve
tor spa
e. This provides an e�e
tive view from whi
h to see many of the

properties of order-unit spa
es. Most of our theoreti
al dis
ussion will be 
ar-

ried out in the setting of order-unit spa
es and Af(K), though our examples will

usually involve spe
i�
 C

�

-algebras. We let C(K) denote the real C

�

-algebra

of all 
ontinuous fun
tions on K, in whi
h Af(K) sits as a 
losed subspa
e.

It will be important for us to work on the quotient ve
tor spa
e

~

A = A=(Re).

We let k k

�

denote the quotient norm on

~

A from k k. This quotient norm

is easily des
ribed. For a 2 A set

max(a) = inffr : a � reg

min(a) = supfr : re � ag;

so that kak = (max(a)) _ (�min(a)). Then it is easily seen that

k~ak

�

= (max(a)�min(a))=2:
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2. The radius of the state spa
e

Let A be an order-unit spa
e. Sin
e the term \Lips
hitz seminorm" has some-

what wide but impre
ise usage, we will not use this term for our main obje
ts

of pre
ise study (whi
h we will de�ne in Se
tion 5). Almost the minimal re-

quirement for a Lips
hitz seminorm is that its null-spa
e be exa
tly the s
alar

multiples of the order unit. We will use the term \Lips
hitz seminorm" in this

general sense. We emphasize that a Lips
hitz seminorm will usually not be


ontinuous for k k.

Let L be a Lips
hitz seminorm on A. For �; � 2 S(A) we 
an de�ne a metri
,

�

L

, on S(A) by

�

L

(�; �) = supfj�(a)� �(a)j : L(a) � 1g

(whi
h may be +1). Then �

L

determines a topology on S(A). Eventually

we want to require that this topology agrees with the weak-� topology. Sin
e

S(A) is weak-� 
ompa
t, �

L

must then give S(A) �nite diameter. We examine

this latter aspe
t here, in part to establish further notation.

It is a
tually more 
onvenient for us to work with \radius" (half the diameter),

sin
e this will avoid fa
tors of 2 in various pla
es. We would like to use the

properties of order-unit spa
es to express the radius in terms of L in a somewhat

more pre
ise way than was impli
it in [Rf℄ in its more general 
ontext. The

following 
onsiderations [Al℄ will also be used extensively later.

As in [Rf℄ and in the previous se
tion, we denote the quotient ve
tor spa
e

A=(Re) by

~

A, with its quotient norm k k

�

. But in addition to this norm, the

quotient seminorm

~

L from L is also a norm on

~

A, sin
e L takes value 0 only

on Re.

The dual Bana
h spa
e to

~

A for k k

�

is just A

0

0

, the subspa
e of A

0


onsisting

of those � 2 A

0

su
h that �(e) = 0. We denote the norm on A

0

dual to k k

still by k k. The dual norm on A

0

0

is just the restri
tion of k k to A

0

0

. If

we view A as a dense subspa
e of Af(K) � C(K), then by the Hahn{Bana
h

theorem � extends (not uniquely) to C(K) with same norm. There we 
an take

the Jordan de
omposition into disjoint non-negative measures. Note that for

positive measures their norm on C(K) equals their norm on A, sin
e e 2 A.

Thus we �nd �; � � 0 su
h that � = � � � and k�k = k�k + k�k. But

0 = �(e) = �(e) � �(e) = k�k � k�k. Consequently k�k = k�k = k�k=2. Thus

if k�k � 2 we have k�k = k�k � 1. If k�k < 2 set t = k�k < 1, and res
ale �

and � so that they are in S(A). Then

� = t�� t� = �� (t� + (1� t)�):

Now (t� + (1 � t)�) is no longer disjoint from �, but we have obtained the

following lemma, whi
h will be used in a number of pla
es.

2.1 Lemma. The ball D

2

of radius 2 about 0 in A

0

0


oin
ides with f� � � :

�; � 2 S(A)g.

Noti
e that if there is an a 2 A su
h that L(a) = 0 but a =2 Re, then from this

lemma we 
an �nd �; � 2 S(A) su
h that (���)(a) 6= 0, so that �

L

(�; �) = +1.
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Thus our standing assumption that there is no su
h a serves to redu
e the

possibility of having in�nite distan
es. But it does not eliminate this possibility,

as seen by the example of the algebra of smooth (or Lips
hitz) fun
tions of


ompa
t support on the real line, with 
onstant fun
tions adjoined, and with

the usual Lips
hitz seminorm.

2.2 Proposition. With notation as earlier, the following 
onditions are equiv-

alent for an r 2 R

+

:

1) For all �; � 2 S(A) we have �

L

(�; �) � 2r.

2) For all a 2 A we have k~ak

�

� rL

�

(~a).

Proof. Suppose that 
ondition 1 holds. Let a 2 A and � 2 D

2

. Then by the

lemma � = �� � for some �; � 2 S(A). Thus

j�(a)j = j(�� �)(a)j � L(a)�

L

(�; �) � L(a)2r:

Sin
e �(e) = 0, thus inequality holds whenever a is repla
ed by a+se for s 2 R.

Thus 
ondition 2 holds.

Conversely, suppose that 
ondition 2 holds. Then for any �; � 2 S(A) and

a 2 A with L(a) � 1 we have

j�(a)� �(a)j = j(�� �)(a)j � 2k~ak

�

� 2r:

Thus �

L

(�; �) � 2r as desired. �

Of 
ourse, we 
all the smallest r for whi
h the 
onditions of this proposition

hold the radius of S(A).

We 
aution that just be
ause a metri
 spa
e has radius r, it does not follow

that there is a ball of radius r whi
h 
ontains it, as 
an be seen by 
onsidering

equilateral triangles in the plane. We remark that just be
ause �

L

gives S(A)

�nite radius, it does not follow that �

L

gives the weak-� topology. Perhaps the

simplest example arises when A is in�nite dimensional and L(a) = k~ak

�

.

3. Lower semi
ontinuity for Lips
hitz seminorms

Let L be any Lips
hitz seminorm on an order-unit spa
e A. (We will not at

�rst require that it give S(A) �nite diameter.) We would like to show that L

and �

L


ontain the same information, and more spe
i�
ally that we 
an re
over

L from �

L

as being the usual Lips
hitz seminorm for �

L

. By this we mean the

following. Let � be any metri
 on S(A), possibly taking value +1. De�ne L

�

on C(S(A)) by

(3.1) L

�

(f) = supfjf(�)� f(�)j=�(�; �) : � 6= �g;

where this may take value +1. Let Lip

�

= ff : L

�

(f) < 1g. We 
an

restri
t L

�

to Af(S(A)). In general, few elements of Af(S(A)) will be in Lip

�

.

However, on viewing the elements of A as elements of Af(S(A)), we have:
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3.2 Lemma. Let L be a Lips
hitz seminorm on A with 
orresponding metri


�

L

on S(A). Then A � Lip

�

L

, and on A we have L

�

L

� L , in the sense that

L

�

L

(a) � L(a) for all a 2 A.

Proof. For �; � 2 S(A) and a 2 A we have

jâ(�)� â(�)j = j�(a)� �(a)j � L(a)�

L

(�; �):

�

For later use we remark that if L and M are Lips
hitz seminorms on A and if

M � L, then �

M

� �

L

in the evident sense.

We would like to re
over L on A from �

L

by means of formula (3:1). However,

the seminorms de�ned by (3:1) have an important 
ontinuity property:

3.3 Definition. Let A be a normed ve
tor spa
e, and let L be a seminorm on

A, ex
ept that we permit it to take value +1. Then L is lower semi
ontinuous

if for any sequen
e fa

n

g in A whi
h 
onverges in norm to a 2 A we have

L(a) � lim inffL(a

n

)g. Equivalently, for one, hen
e every, t 2 R with t > 0,

the set

L

t

= fa 2 A : L(a) � tg

is norm-
losed in A.

3.4 Proposition. Let A be an order-unit spa
e, and let � be any metri
 on

S(A), possibly taking value +1. De�ne L

�

on C(S(A)) by formula (3:1).

Then L

�

is lower semi
ontinuous. Consequently, the restri
tion of L

�

to any

subspa
e of C(S(A)), su
h as A or Af(S(A)), will be lower semi
ontinuous.

Proof. When we view L

�

as a fun
tion of f , the formula (3:1) says that L

�

is

the pointwise supremum of a 
olle
tion of fun
tions (labeled by pairs �; � with

� 6= �) whi
h are 
learly 
ontinuous on C(S(A)) for the supremum norm. But

the pointwise supremum of 
ontinuous fun
tions is lower semi
ontinuous. �

3.5 Example. Here is an example of a Lips
hitz seminorm L whose metri



an be seen to give S(A) the weak-� topology, but whi
h is not lower semi
on-

tinuous. Let I = [�1; 1℄, and let A = C

1

(I), the algebra of fun
tions whi
h

have 
ontinuous �rst derivatives on I . De�ne L on A by

L(f) = kf

0

k

1

+ jf

0

(0)j:

For ea
h n let g

n

be the fun
tion de�ned by g

n

(t) = njtj for jtj � 1=n, and

g

n

(t) = 1 elsewhere. Let f

n

(t) =

R

t

�1

g

n

(s)ds. Then the sequen
e ff

n

g 
on-

verges uniformly to the fun
tion f given by f(t) = t + 1. But L(f

n

) = 1 for

ea
h n, whereas L(f) = 2.

A substantial supply of examples of lower semi
ontinuous seminorms 
an be

obtained from the W

�

-derivations of Weaver [W2, W3℄. These derivations will

in general have large null spa
es, and the seminorms from them need not give

the weak-� topology on the state spa
e. But many of the spe
i�
 examples of

W

�

-derivations whi
h Weaver 
onsiders do in fa
t give the weak-� topology. In

terms of Weaver's terminology, whi
h we do not review here, we have:
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3.6 Proposition. Let M be a von Neumann algebra and let E be a normal

dual operator M-bimodule. Let Æ : M ! E be a W

�

-derivation, and denote

the domain of Æ by L, so that L is an ultra-weakly dense unital �-subalgebra

of M . De�ne a seminorm, L, on L by L(a) = kÆ(a)k

E

. Then L is lower

semi
ontinuous, and L

1

= fa 2 L : L(a) � 1g is norm-
losed in M itself.

Proof. Let fa

n

g be a sequen
e in L whi
h 
onverges in norm to b 2M . To show

that L is lower semi
ontinuous, it suÆ
es to 
onsider the 
ase in whi
h fa

n

g is


ontained in L

1

. Then the set f(a

n

; Æ(a

n

))g is a bounded subset of the graph

of Æ for the norm maxfk k

M

; k k

E

g. Sin
e the graph of a W

�

-derivation is

required to be ultra-weakly 
losed, and sin
e bounded ultraweakly 
losed sub-

sets are 
ompa
t for the ultra-weak topology, there is a subnet whi
h 
onverges

ultra-weakly to an element (
; Æ(
)) of the graph of Æ. Then ne
essarily 
 = b,

so that b 2 L, and Æ(b) is in the ultra-weak 
losure of fÆ(a

n

)g. Consequently

L(b) = kÆ(b)k � 1. �

Be
ause of the importan
e of Dira
 operators, it is appropriate to verify lower

semi
ontinuity for the Lips
hitz seminorms whi
h they determine. This is 
lose

to a spe
ial 
ase of Proposition 3:6, but does not require any kind of 
omplete-

ness, nor an algebra stru
ture on A.

3.7 Proposition. Let A be a linear subspa
e of bounded self-adjoint operators

on a Hilbert spa
e H, 
ontaining the identity operator. Let D be an essentially

self-adjoint operator on H whose domain, D(D), is 
arried into itself by ea
h

element of A. Assume that [D; a℄ is a bounded operator on D(D) for ea
h

a 2 A (so that [D; a℄ extends uniquely to a bounded operator on H). De�ne L

on A by L(a) = k[D; a℄k. Then L is lower semi
ontinuous.

Proof. Let fa

n

g be a sequen
e in A whi
h 
onverges in norm to a 2 A. Suppose

that there is a 
onstant, k, su
h that L(a

n

) � k for all n. For any �; � 2 D(D)

with k�k = 1 = k�k we have

h[D; a℄�; �i = ha�;D�i � hD�; a�i = limh[D; a

n

℄�; �i:

But jh[D; a

n

℄�; �ij � k for ea
h n, and so k[D; a℄k � k. �

We remark that the Lips
hitz seminorms 
onstru
ted in [Rf℄ by means of a
tions

of 
ompa
t groups are easily seen to be lower semi
ontinuous.

4. Re
overing L from �

L

In this se
tion we show that a lower semi
ontinuous Lips
hitz seminorm L


an be re
overed from its metri
 �

L

. But before showing this we would like

to emphasize the following point. Let (X; �) be an ordinary 
ompa
t metri


spa
e, with A the algebra of its Lips
hitz fun
tions, with Lips
hitz seminorm

L. Then S(A) 
onsists of the probability measures on X , and the points of X


orrespond exa
tly to the extreme points of S(A). The restri
tion of �

L

to the

extreme points is exa
tly �. Thus when one says that one 
an re
over L from

Do
umenta Mathemati
a 4 (1999) 559{600



Metri
s on State Spa
es 567

the metri
 �, one is saying that one 
an re
over L from the restri
tion of �

L

on

S(A) to the extreme points of S(A). However, for the more general situation

whi
h we are 
onsidering, it will be false in general that we 
an re
over L from

the restri
tion of �

L

to the extreme points of S(A). Simple expli
it examples

will be given in Se
tion 7.

One of the main theorems of this paper is:

4.1 Theorem. Let L be a lower semi
ontinuous Lips
hitz seminorm on an

order-unit spa
e A, and let �

L

denote the 
orresponding metri
 on S(A), pos-

sibly taking value +1. Let L

�

L

be de�ned by formula (3:1), but restri
ted to

A � Af(S(A)). Then

L

�

L

= L:

Theorem 4.1 is an immediate 
onsequen
e of the following theorem, sin
e we

saw that lower semi
ontinuity 
oin
ides with L

1

being norm 
losed.

4.2 Theorem. Let L be any Lips
hitz seminorm on an order-unit spa
e A,

and let �

L

denote the 
orresponding metri
 on S(A). Let L

�

L

be de�ned by

formula (3:1), but restri
ted to A � Af(S(A)). Then fa 2 A : L

�

L

(a) � 1g


oin
ides with the norm 
losure,

�

L

1

, of L

1

in A. In parti
ular, L

�

L

is the

largest lower semi
ontinuous seminorm smaller than L, and �

L

�

L

= �

L

.

Proof. (An idea leading to this proof, whi
h is simpler than my original proof,

was suggested to me by Nik Weaver.) On A

0

we de�ne the seminorm, L

0

, dual

to L, by

L

0

(�) = supfj�(a)j : L(a) � 1g:

Note that L

0

takes value +1 on any � for whi
h �(e) 6= 0, and very possibly

on some elements of A

0

0

as well. But at any rate we have the following key

relationship:

4.3 Lemma. For �; � 2 S(A) we have �

L

(�; �) = L

0

(�� �).

Proof.

L

0

(�� �) = supfj(�� �)(a)j : L(a) � 1g

= supfj�(a)� �(a)j : L(a) � 1g = �

L

(�; �):

�

Be
ause L

1

is already 
onvex and balan
ed, the bipolar theorem [Cw℄ says

that

�

L

1

is exa
tly the bipolar of L

1

. Thus we just need to show that fa 2

A : L

�

L

(a) � 1g is the bipolar of L

1

. Now it is 
lear that the unit L

0

-ball

in A

0

is exa
tly the polar [Cw℄ of L

1

. This provides the last of the following

equivalen
es. Let a 2 A. Then:

L

�

L

(a) � 1 exa
tly if j�(a)� �(a)j � �

L

(�; �) for all �; � 2 S(A) ,

exa
tly if j�(a)j � L

0

(�) for all � 2 D

2

(by Lemma 4.3 and Lemma 2.1),

exa
tly if j�(a)j � 1 for all � 2 A

0

with L

0

(�) � 1,
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exa
tly if a is in the prepolar of f� : L

0

(�) � 1g (by de�nition [Cw℄),

exa
tly if a is in the bipolar of L

1

.

It is 
lear that L

�

L

is lower semi
ontinuous, that it is the largest su
h seminorm

smaller than L, and that it gives the same metri
. �

Note in parti
ular that if L gives S(A) �nite diameter, or the weak-� topology,

then so does L

�

L

.

We remark that a sort of dual version of Theorem 4:1 
an be found later in

Theorem 9:7.

We have the following related 
onsiderations. Suppose again that L is a Lip-

s
hitz seminorm on an order-unit spa
e A. Let

�

A denote the 
ompletion of

A for k k, and let

�

L

1

denote now the 
losure of L

1

in

�

A rather than just in

A. Let

�

L denote the 
orresponding \Minkowski fun
tional" on

�

A obtained by

setting, for b 2

�

A,

�

L(b) = inffr 2 R

+

: b 2 r

�

L

1

g:

Sin
e there may be no su
h r, we must allow the value +1. With this under-

standing,

�

L will be a seminorm on

�

A. It is easily seen that

�

L(b) � 1 exa
tly if

b 2

�

L

1

, and that

�

L is lower semi
ontinuous be
ause

�

L

1

is 
losed.

Up to this point we did not require lower semi
ontinuity of L. It's import is

given by:

4.4 Proposition. Let L be a lower semi
ontinuous Lips
hitz seminorm on an

order-unit spa
e A. Let

�

L on

�

A be de�ned as above. Then

�

L is an extension

of L, that is, for a 2 A we have

�

L(a) = L(a). Furthermore, �

�

L

= �

L

.

Proof. Suppose that a 2 A and L(a) = 1. Then a 2 L

1

�

�

L

1

and so 
learly

�

L(a) � 1. Conversely, if

�

L(a) � 1, then a 2

�

L

1

. Thus there is a sequen
e

fa

n

g in L

1

whi
h 
onverges to a, with L(a

n

) � 1 for every n. From the lower

semi
ontinuity of L it follows that L(a) � 1. Finally, for �; � 2 S(A) we have

�

�

L

(�; �) = supfj�(a)��(a)j : a 2

�

L

1

g = supfj�(a)��(a)j : a 2 L

1

g = �

L

(�; �):

�

Note in parti
ular that if L gives S(A) �nite diameter, or the weak-� topology,

then so does

�

L. However, in general

�

L need not be a Lips
hitz seminorm. For

example, let A be the algebra of real polynomials viewed as fun
tions on the

interval [0; 2℄, and let L be the usual Lips
hitz seminorm but de�ned using only

points in [0; 1℄.

4.5 Definition. We will 
all

�

L the 
losure of L. We will say that a Lips
hitz

seminorm is 
losed if L =

�

L (on the subspa
e where

�

L is �nite), or equivalently,

if L

1

is 
omplete for the metri
 from k k.

Then Proposition 4.4 says that for most purposes we 
an assume that L is


losed if 
onvenient.
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Suppose now that L is a Lips
hitz seminorm on A whi
h is 
losed. On A we


an de�ne a new norm, jk kj, by

jkakj = kak+ L(a):

It is easily veri�ed that A is 
omplete for this new norm. Suppose that A is a

�-algebra and k k is a C

�

-norm (this 
an be weakened). Suppose further that

L is a 
losed Lips
hitz seminorm on A whi
h satis�es the Leibniz inequality.

Then the new norm is a normed-algebra norm, and so A be
omes a Bana
h

algebra for the new norm. In Se
tions 10 and 11 we will indi
ate many examples

of Lips
hitz seminorms satisfying the Leibniz inequality. This provides a ri
h


lass of examples of Bana
h algebras whi
h merit study (even in the 
ases when

they are 
ommutative) along the lines 
onsidered in [BCD, J, W1℄.

5. The pre-dual of (

~

A;

~

L)

It has been shown in an in
reasing variety of situations that the spa
e of Lip-

s
hitz fun
tions with a suitable Lips
hitz norm is isometri
ally isomorphi
 to

the dual of some Bana
h spa
e. Some of the history of this phenomenon is

sket
hed in the notes at the end of 
hapter 2 of [W1℄, or more brie
y in [W2℄.

Within the non-
ommutative setting, Weaver shows in Proposition 2 of [W2℄

that the domains of W

�

-derivations (as de�ned there) are dual spa
es. How-

ever, his W

�

-derivations 
an have large null spa
es, and they need not give

the weak-� topology on S(A). Nevertheless, Weaver's approa
h applies to the

non-
ommutative tori, and gives them the same spa
e of Lips
hitz elements as

the approa
h of the present paper (when 
ombined with [Rf℄). In fa
t, Weaver

shows in [W3℄ that for the non-
ommutative tori one 
an also de�ne Lip

�

, and

that Lip

�

is a
tually the se
ond dual of lip

�

when � < 1.

To show within our setting that the spa
e of Lips
hitz elements is the dual of a

Bana
h spa
e, we need to assume that �

L

gives the weak-� topology on S(A).

As before, let L

1

= fa : L(a) � 1g. From theorem 1:8 of [Rf℄ we know that

�

L

will give the weak-� topology on S(A) exa
tly if the image of L

1

in

~

A is

totally bounded for k k

�

. Equivalently, by theorem 1:9 of [Rf℄, L must give

S(A) �nite radius, and for one, hen
e all, t 2 R with t > 0, the set

B

t

= fa : L(a) � 1 and kak � tg

must be totally bounded in A for k k. We remark that this implies that if

fa

n

g is a sequen
e (or net) in A 
onverging pointwise on S(A) to a 2 A, and

if there is a 
onstant k su
h that ka

n

k � k and L(a

n

) � k for all n, then a

n


onverges to a in norm. This is be
ause fa

n

g is 
ontained in kB

1

whose 
losure

in the 
ompletion

�

A of A is 
ompa
t. Let b be any norm limit point of fa

n

g in

�

A. Then a subsequen
e of fa

n

g 
onverges in norm to b. But it still 
onverges

pointwise on S(A) to a. Consequently b = a, and a is the only norm limit point

of fa

n

g.

We now have in view all the requirements on Lips
hitz seminorms whi
h we

need for our present purposes. So we now de�ne what we expe
t is the 
orre
t

way to spe
ify metri
s on 
ompa
t non-
ommutative spa
es:
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5.1 Definition. Let A be an order-unit spa
e. By a Lip-norm on A we mean

a seminorm, L, on A (taking �nite values) with the following properties:

1) For a 2 A we have L(a) = 0 if and only if a 2 Re.

2) L is lower semi
ontinuous.

3) fa 2 A : L(a) � 1g has image in

~

A whi
h is totally bounded for k k

�

.

We remark that it is easily 
he
ked that the 
losure (De�nition 4.5) of a Lip-

norm is again a Lip-norm.

Within the present setting the fa
t that the spa
e of Lips
hitz elements is a

dual Bana
h spa
e takes the following form (whi
h requires the Lip-norm to be


losed).

5.2 Theorem. Let A be an order-unit spa
e, and let L be a Lip-norm on A

whi
h is 
losed. Let K = f~a 2

~

A :

~

L(~a) � 1g, so that K is a 
ompa
t (
onvex)

set for k k

�

. Then (

~

A;

~

L) is naturally isometri
ally isomorphi
 to the dual

Bana
h spa
e of Af

0

(K), the Bana
h spa
e of 
ontinuous aÆne fun
tions on

K whi
h take value 0 at 0 2

~

A, with the supremum norm.

Proof. Let L

1

and B

t

be as de�ned as above. Be
ause L is 
losed, the totally

bounded sets B

t

are 
omplete for k k, and so are 
ompa
t. From the �nite

radius 
onsiderations of Se
tion 2 the image of L

1

in

~

A will 
oin
ide with the

image of B

t

for suÆ
iently large t. Hen
e the image of L

1

in

~

A is 
ompa
t for

k k

�

, not just totally bounded. But the image of L

1

is exa
tly K as de�ned

in the statement of the theorem.

We 
an now argue as in the proof of proposition 1 of [W4℄. We in
lude the

argument here in a form spe
i�
 to our parti
ular situation.

Let V = Af

0

(K), as de�ned in the statement of the theorem. Then from lemma

4:1 of [K3℄ ea
h element of V extends to a linear fun
tional (not ne
essarily


ontinuous for k k

�

) on

~

A. But we still view V as equipped with the uniform

norm k k

1

from C(K), for whi
h V is 
omplete. Then for any f 2 V we have

kfk

1

= supff(~a) : ~a 2 Kg = supff(~a) :

~

L(~a) � 1g:

Consequently k k

1

is just the dual norm to the norm

~

L on

~

A. But V will

usually be mu
h smaller than the entire dual Bana
h spa
e of (

~

A;

~

L) be
ause

of the requirement that if f 2 V then f is 
ontinuous on K.

We let V

0

denote the dual Bana
h spa
e to V . We have the evident mapping

� from

~

A to V

0

de�ned by �(~a)(f) = f(~a). Use of the Hahn{Bana
h theorem

shows that Af

0

(K) separates the points of K, and from this we see that � is

inje
tive. Furthermore j�(~a)(f)j = jf(~a)j � kfk

1

~

L(~a), and so k�k � 1 for

the norm

~

L on

~

A. In parti
ular, �(K) � (V

0

)

1

, the unit ball of V

0

. From

the de�nitions of � and V we see immediately that � is 
ontinuous from K

to (V

0

)

1

with its weak-� topology from V . Sin
e K is 
ompa
t, �(K) must be


ompa
t for the weak-� topology. If �(K) were not all of (V

0

)

1

, there would

be a '

0

2 (V

0

)

1

and a weak-� 
ontinuous linear fun
tional separating '

0

from
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�(K). But every weak-� linear fun
tional 
omes from V . Thus there would be

an f 2 V su
h that

f(~a) � 1 < '

0

(f)

for every ~a 2 K. But the �rst inequality means that kfk

1

� 1, and so the

se
ond inequality means that k'

0

k > 1, 
ontradi
ting the assumption that

'

0

2 (V

0

)

1

. Thus �(K) = (V

0

)

1

. Consequently � is an isometri
 isomorphism

of (

~

A;

~

L) with V

0

. �

We remark that, if desired, we 
an make A itself into the dual of a Bana
h

spa
e, in a non-
anoni
al way, as follows. Let r be the radius of (A; L), and let

� be any �xed state of A. De�ne an a
tual norm, L

�

, on A by

L

�

(a) = maxfj�(a)j=r; L(a)g:

Let

~

L

�

be the quotient of L

�

on

~

A. It is 
lear that

~

L

�

�

~

L. But for any given

a 2 A we 
an �nd � 2 R su
h that ka��k � r

~

L(~a), by the de�nition of radius.

Then

j�(a� �)j � ka� �k � r

~

L(~a);

while L(a� �) =

~

L(~a). Consequently

~

L

�

(~a) �

~

L(~a), so that, in fa
t,

~

L

�

=

~

L.

Thus (A; L

�

) has (

~

A;

~

L) as quotient spa
e. The quotient map splits by the

isometri
 map ~a 7! a��(a). Sin
e (

~

A;

~

L) is isometri
ally isomorphi
 to a dual

Bana
h spa
e, it follows easily that (A; L

�

) is also.

See also se
tion 2 of [H℄, whi
h gives a slightly di�erent approa
h be
ause the

norm on Lip

�

is slightly di�erent from that impli
it here.

Let K and V = Af

0

(K) be as in the statement of Theorem 5:2. As in Se
tion 2,

the dual of (

~

A; k k

�

) is A

0

0

. By the �nite diameter 
ondition and Proposition

2:2 ea
h � 2 A

0

0

de�nes a 
ontinuous linear fun
tional on (

~

A;

~

L). Ea
h su
h

fun
tional is 
learly 
ontinuous on K for its topology from k k

�

. Thus ea
h

� 2 A

0

0

de�nes an element of V , and so we obtain a linear map from A

0

0

into

V . From Theorem 5:2 the norm k k

1

on V from C(K) 
oin
ides with the

dual norm L

0

from (

~

A;

~

L). We have the following addition to Theorem 5.2.

5.3 Proposition. The image of A

0

0

in Af

0

(K) is dense in Af

0

(K) for its

norm k k

1

= L

0

.

Proof. Let ' be any 
ontinuous linear fun
tional on V whi
h is 0 on the image

of A

0

0

. From Theorem 5:2 every 
ontinuous linear fun
tional on V 
omes from

an element of

~

A. If ~a is the element of

~

A 
orresponding to ', we then have

�(~a) = 0 for all � 2 A

0

0

, whi
h implies that ~a = 0 so that ' � 0. It follows

from the Hahn{Bana
h theorem that the image of A

0

0

is norm dense in V . �

6. Extreme points

Let L be a Lips
hitz seminorm on an order-unit spa
e A, and let �

L

be the


orresponding metri
 on S(A). Let E denote the set of extreme points of S(A).
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Then E need not be a 
losed subset of S(A), but S(A) is the 
losed 
onvex

hull of E by the Krein{Milman theorem. Of 
ourse �

L

restri
ts to a metri


on E. We will give expli
it examples in the next se
tion to show that even

when L is a Lip-norm the restri
tion of �

L

to E does not determine �

L

or L.

Nevertheless, we 
an try to use the restri
tion of �

L

to de�ne a new Lips
hitz

seminorm, L

e

, on A, by

L

e

(a) = supfj"(a)� �(a)j=�

L

("; �) : "; � 2 E; " 6= �g:

6.1 Proposition. With the above de�nition, L

e

is a lower semi
ontinuous

Lips
hitz seminorm on A, and it is the smallest su
h on A whose metri
 on

S(A) agrees on E with that of L. If L is a Lip-norm then so is L

e

.

Proof. From Theorem 4.2 it is 
lear that we 
an assume that L is lower semi-


ontinuous. From Theorem 4:1 we know that any lower semi
ontinuous Lip-

s
hitz seminorm, say L

1

, is re
overed from its metri
 by a supremum as above,

but ranging over all of S(A) rather than just over E. Thus if the metri
 for

L

1

agrees with �

L

on E, we must have L

e

� L

1

. By using the argument in

the proof of Proposition 3:4 it is easily seen that L

e

is lower semi
ontinuous.

Suppose that L

e

(a) = 0 for some a 2 A. Re
all that D

2

= f� 2 A

0

0

: k�k � 2g.

6.2 Lemma. The 
onvex hull of f"� � : "; � 2 E; " 6= �g is dense in D

2

for

the weak-� topology.

Proof. From Lemma 2:1 we know that any element of D

2


an be expressed

as � � � for �; � 2 S(A). By the Krein{Milman theorem ea
h of �; � 
an be

approximated arbitrary 
losely in the weak-� topology by 
onvex 
ombinations

from E, say

P

�

j

"

j

and

P

�

k

�

k

. But the di�eren
e of su
h 
ombinations 
an

be expressed as

X

(�

j

�

k

)("

j

� �

k

):

�

From this lemma it is 
lear that if L

e

(a) = 0 then L(a) = 0, and thus a 2 Re.

Also, it is easy to see that �

L

e

agrees with �

L

on E.

Finally, we must show that if L is a Lip-norm then the image of K

0

= fa :

L

e

(a) � 1g in

~

A is totally bounded for k k

�

. Noti
e that this image is larger

than that for L, so we 
an not immediately apply the 
orresponding fa
t for L.

Let

�

E denote the 
losure of E in S(A). It is 
lear that the supremum de�ning

L

e


ould just as well be taken over

�

E, and so L

e

on A is just the Lips
hitz

norm for the metri
 �

L

restri
ted to

�

E. Thus K

0


an be viewed as 
ontained

in ff 2 C(

�

E) : L

e

(f) � 1g, and the latter has totally bounded image in

C(

�

E)=Re sin
e it 
onsists of Lips
hitz fun
tions for a metri
 and

�

E is 
ompa
t.

Thus K

0

has totally bounded image in C(

�

E)=Re. But the restri
tion map

from Af(S(A)) to C(

�

E) is isometri
 for k k

1

sin
e

�

E 
ontains the extreme

points. (See Theorem II.1.8 of [Al℄. We are dealing here with Kadison's smallest

separating representation.) It follows easily that K

0

has totally bounded image

in

~

A as needed. �
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We remark that if F is any subset of S(A) whi
h 
ontains E, then we 
an use

F instead of E to de�ne a Lip-norm L

F

just as we de�ned L

e

above. Then we

will have

L

e

� L

F

� L

in the evident sense, with reverse inequalities for the 
orresponding metri
s.

Suppose that A is a dense �-subalgebra of a C

�

-algebra,

�

A, and that L is a Lip-

norm on A, with 
orresponding metri
 �

L

on S(A). As above let E denote the

set of extreme points of S(A). Assume �rst that A is 
ommutative. Then E is


ompa
t and

�

A

�

=

C(E). Assume that L = L

e

. Then L is the usual Lips
hitz

norm 
oming from the metri
 on the 
ompa
t set E obtained by restri
ting �

L

to E. But in this 
ase we know that L must then satisfy the Leibniz rule

L(ab) � L(a)kbk+ kakL(b):

It is thus natural to ask the general question:

6.3 Question. What 
onditions on a Lip-norm L on a general unital C

�

-

algebra imply that L satis�es the Leibniz rule?

In the next se
tion we will see examples of Lip-norms whi
h do not satisfy

L = L

e

and yet satisfy the Leibniz rule.

7. Dira
 operators and ordinary finite spa
es

Connes has shown [C1, C2, C3℄ that for a 
ompa
t Riemannian (spin) man-

ifold all the metri
 information is 
ontained in the Dira
 operator. This led

him to suggest that for \non-
ommutative spa
es", metri
s should be spe
i�ed

by some analogue of Dira
 operators. We explore here some aspe
ts of this

suggestion for �nite-dimensional 
ommutative C

�

-algebras, i.e. ordinary �nite

spa
es. This will 
larify some of the 
onsiderations of the previous se
tions.

Here and throughout all the rest of this paper, when we say that an operator D

is a \ Dira
" operator, this is not meant to indi
ate any parti
ular properties

of D, but rather is meant to indi
ate how D is employed, namely to de�ne a

Lips
hitz seminorm.

Let X be a �nite set, and let A = C(X). In order to remain fully in the setting

of the previous se
tions we take C(X) to 
onsist only of real-valued fun
tions.

But in the present 
ommutative situation this is not so important be
ause,

unlike the non-
ommutative 
ase, if one does not know the algebra stru
ture,

the norm for 
omplex-valued fun
tions is still given by a simple formula in

terms of the norm for real-valued fun
tions. (See e.g. lemma 14 of [W2℄.)

Consequently we will be a bit 
areless here about this distin
tion.

We will suppose that A has been faithfully represented on a �nite-dimensional


omplex Hilbert spa
e H. We suppose given on H an operator D (the \Dira
"

operator). It is usual to take D to be self-adjoint. But we �nd it slightly more


onvenient to take D to be skew-adjoint. The two 
hoi
es are related by a
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multipli
ation by i, and give the same metri
 results. Following Connes, we

de�ne a seminorm, L, on A by

L(a) = k[D; a℄k;

where [ ; ℄ denotes the usual 
ommutator of operators, and the norm is the

operator norm. We want L to be a Lip-norm. Thus we require that if [D; a℄ = 0

then a 2 C I . Be
ause we are in a �nite-dimensional setting, L is 
ontinuous

for k k

1

, and indeed is a Lip-norm on A.

From L we obtain a metri
, �

L

, on the spa
e S(A) of probability measures on

X , as well as on its set of extreme points, whi
h is identi�ed with X itself. We

now give a very simple example to show that �

L

on S(A) need not agree with

the metri
 obtained from �

L

on X .

7.1 Example. Consider a three-dimensional 
ommutative C

�

-algebra, A, rep-

resented faithfully on a three-dimensional Hilbert spa
e. Thus we 
an identify

A with the algebra of diagonal matri
es in the full matrix algebra M

3

= M

3

(C ).

We will 
onsider Dira
 operators of a spe
ial form whi
h fa
ilitates 
al
ulation,

namely matri
es D in M

3

(C ) of the form

D =

0

�

0 0 �

0 0 �

�� �� 0

1

A

where � > 0 and � > 0. We will also restri
t to those f 2 A whi
h are real,

and denote the three values (or diagonal entries) of f by (f

1

; f

2

; f

3

). Be
ause

D is skew-symmetri
, [D; f ℄ is a real symmetri
 matrix, whose eigenvalues thus

are real. In fa
t, we have

[D; f ℄ =

0

�

0 0 �(f

3

� f

1

)

0 0 �(f

3

� f

2

)

�(f

3

� f

1

) �(f

3

� f

2

) 0

1

A

:

Be
ause of this spe
ial form, the eigenvalues are easily 
al
ulated, and one �nds

that

L(f) = k[D; f ℄k = (�

2

(f

3

� f

1

)

2

+ �

2

(f

3

� f

2

)

2

)

1=2

:

It is 
lear from this that if L(f) = 0 then f is a 
onstant fun
tion. Thus L

de�nes a Lip-norm on A.

We now pro
eed to 
al
ulate the 
orresponding metri
 on S(A). We �rst 
al-


ulate the dual norm, L

0

, on A

0

0

, the dual spa
e of

~

A, with notation as in the

previous se
tions. We identify A

0

0

with real diagonal matri
es of tra
e 0, paired

with A via the tra
e. For � 2 A

0

0

we denote its 
omponents by � = (�

1

; �

2

; �

3

).

Of 
ourse

L

0

(�) = supfjhf; �ij : L(f) � 1g:

Now both jhf; �ij and L(f) are un
hanged if we add a 
onstant fun
tion to

f . Thus for the supremum de�ning L

0

(�) we 
an assume that f

3

= 0 always.
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Furthermore, we know that �

3

= �(�

1

+�

2

). Thus we need only deal with the

�rst two 
omponents of f and �. We do this without 
hanging notation. Then

we see that

L

0

(�) = supfjf

1

�

1

+ f

2

�

2

j : �

2

f

2

1

+ �

2

f

2

2

� 1g:

But this is just the norm of a fun
tional on a suitable Hilbert spa
e. Spe
i�
ally,

let l

2

(w) be the Hilbert spa
e of fun
tions on a 2-point spa
e with weight

fun
tion w given by (�

2

; �

2

). Then

f

1

�

1

+ f

2

�

2

= f

1

(�

1

=�

2

)�

2

+ f

2

(�

2

=�

2

)�

2

;

and in this form the norm of the fun
tional is the length of the ve
tor in l

2

(w)

de�ning it. This gives

L

0

(�) = ((�

1

=�

2

)

2

�

2

+ (�

2

=�

2

)

2

�

2

)

1=2

= (�

2

1

=�

2

+ �

2

2

=�

2

)

1=2

:

We now apply this to obtain the metri
 on S(A). If �; � 2 S(A), then for the

evident notation

�

L

(�; �) = L

0

(�� �) = ((�

1

� �

1

)

2

=�

2

+ (�

2

� �

2

)

2

=�

2

)

1=2

:

Let X denote the maximal ideal spa
e of A. We identify its 3 points with the

3 extreme points of S(A), and label them, 
orresponding to the 
oordinates in

A, by Æ

1

; Æ

2

; Æ

3

. Then from the above formula for �

L

we �nd that the metri


on X is given by:

�

L

(Æ

1

; Æ

2

) = (1=�

2

+ 1=�

2

)

1=2

�

L

(Æ

1

; Æ

3

) = 1=�

�

L

(Æ

2

; Æ

3

) = 1=�:

De�ne 
 by �

L

(Æ

1

; Æ

2

) = 1=
. Let L

e

denote the ordinary Lips
hitz norm on A


oming from this metri
 on X . Then

L

e

(f) = maxfjf

1

� f

2

j
; jf

1

� f

3

j�; jf

2

� f

3

j�g:

Clearly L

e

is quite di�erent from L. From Theorem 4:1 we know that the

metri
s on S(A) will thus be quite di�erent, even though they agree on the

extreme points. This is, of 
ourse, also easily seen by dire
t 
al
ulations.

We now make some observations in preparation for the next se
tion. It is well-

known [W1, W2℄ that the Lips
hitz seminorms L = L

�

from ordinary metri
s

on a metri
 spa
e X have a ni
e relation to the latti
e stru
ture of (real-valued)

C(X), namely

L(f _ g) � L(f) _ L(g):
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We remark that for the L of the above example this inequality fails. For

instan
e, with notation as above, let f = (1; 0; 0) and g = (0; 1; 0), so that

f _ g = (1; 1; 0). Then we see that

L(f) = �; L(g) = �; while L(f _ g) = (�

2

+ �

2

)

1=2

:

(This is related to the 
ounterexample following theorem 16 of [W2℄.)

However, it is not diÆ
ult to 
he
k that the above L does satisfy the weaker

inequality

L(f _ 0) � L(f):

In fa
t, one 
an prove that this holds for any 
hoi
e of skew-adjoint D for the

above A. To �nd a 
ounterexample for this weaker inequality one must take

A to be 4-dimensional. I have not found a systemati
 way of 
onstru
ting

a 
ounterexample there, but some examination of what is needed, followed

by some experimentation with MATLAB yields the following (and related)

example:

D =

0

B

�

0 4 �1 0

�4 0 2 �2

1 �2 0 �4

0 2 4 0

1

C

A

and f = (4; 2; 0;�1).

We remark that ordinary Lips
hitz norms on 
ompa
t metri
 spa
es 
an all be

easily obtained by means of Dira
 operators. I pointed this out in a le
ture in

1993, and the details are indi
ated after the proof of proposition 8 of [W2℄. See

also the dis
ussion for graphs whi
h we will give toward the end of Se
tion 11.

8. A 
hara
terization of ordinary Lips
hitz seminorms

Let X be a 
ompa
t spa
e, let � be a metri
 on X (giving the topology of X),

and let L denote the 
orresponding ordinary Lip-norm on C(X) (permitted to

take value +1). As just mentioned in the last se
tion, it is well-known [W1,

W2℄ and easy to prove that L relates ni
ely to the latti
e stru
ture of C(X) by

means of the inequality

L(f _ g) � L(f) _ L(g):

In Weaver's more general setting of domains of W

�

-derivations he proves this

inequality for W

�

-derivations of Abelian stru
ture. (See lemma 12 of [W2℄.)

We show here that the above inequality exa
tly 
hara
terizes the Lip-norms

whi
h are the ordinary Lips
hitz seminorms 
oming from ordinary metri
s on

X .

We remark that we never assume here that our Lip-norms satisfy the Leibniz

inequality for the algebra stru
ture, namely

L(fg) � L(f)kgk+ kfkL(g):
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But ordinary Lips
hitz seminorms do satisfy this inequality. Thus one 
onse-

quen
e of this se
tion is that the above latti
e inequality implies the Leibniz

inequality. On the other hand, the Lip-norm from any \Dira
" operator will

satisfy the Leibniz inequality, but 
an easily fail to satisfy the latti
e inequality,

as we saw by examples in the previous se
tion. Thus the latti
e inequality is

mu
h stronger than the Leibniz inequality.

However we should point out that for Dira
 operators on 
ompa
t spin Rie-

mannian manifolds, in spite of their being de�ned by means of various partial

derivatives and spinors, the 
orresponding Lip-norms do satisfy the latti
e in-

equality. This is be
ause Connes shows [C1, C2, C3℄ that the Lip-norms whi
h

those Dira
 operators de�ne 
oin
ide with the ordinary Lip-norms for the or-

dinary metri
s on the manifolds determined by the Riemannian metri
s.

Re
all that for us C(X) 
onsists of real-valued fun
tions.

8.1 Theorem. Let X be a 
ompa
t spa
e, let A be a dense subspa
e of C(X)


ontaining the 
onstant fun
tions, and let L be a Lip-norm on A. Let

�

L denote

the 
losure of L, viewed as de�ned on all of C(X) as in the dis
ussion before

Proposition 4:4, and thus permitted to take value +1. Then the following


onditions are equivalent:

1. The Lip-norm L is the restri
tion to A of the usual Lips
hitz seminorm


orresponding to a metri
 on X (namely the metri
 �

L

).

2. For every f; g 2 C(X) we have

�

L(f _ g) �

�

L(f) _

�

L(g):

The following lemma is somewhat parallel to lemma 13 of [W2℄. For later use

we state it in slightly greater generality than needed immediately.

8.2 Lemma. Let A be a dense subspa
e of C(X) 
ontaining the 
onstant fun
-

tions, and 
losed under the �nite latti
e operations (i.e. if f; g 2 A then

f _ g 2 A). Let L be a Lip-norm on A whi
h satis�es the inequality

L(f _ g) � L(f) _ L(g)

for all f; g 2 A. Let

�

L be the 
losure of L, de�ned on all of C(X), permitted to

take value +1. Let F be a bounded subset of A for whi
h there is a 
onstant,

k, su
h that L(f) � k for all f 2 F . Let g = supff 2 Fg. Then g 2 C(X)

and

�

L(g) � k.

Proof. Let fg

�

g be the net of suprema of �nite subsets of F . Then fg

�

g is


ontained in A, and 
onverges up to f pointwise. By the hypothesis on L we

have L(g

�

) � k for all �. Thus we have

jg

�

(x)� g

�

(y)j � k�

L

(x; y)

for all � and all x; y 2 X ; that is, fg

�

g is equi
ontinuous. We 
an thus apply

the As
oli theorem [Ru℄ to 
on
lude that the net fg

�

g has a subnet whi
h
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onverges uniformly. But the limit of this subnet must be g, and so g must

be 
ontinuous. Furthermore, from the lower semi
ontinuity of

�

L we must have

�

L(g) � k. �

Proof of Theorem 8.1. As indi
ated above, it is basi
ally well-known, and not

hard to verify, that 
ondition 1 implies 
ondition 2. Suppose 
onversely that


ondition 2 holds. For any x 2 X let �

x

L

be the 
ontinuous fun
tion on X

de�ned by �

x

L

(y) = �

L

(x; y). Set S

x

= ff 2 A : f(x) = 0; L(f) � 1g. Sin
e

L(f) is un
hanged when a 
onstant fun
tion is added to f , or when f is repla
ed

by �f , the de�nition of �

L


an be rewritten as

�

x

L

(y) = supff(y) : f 2 S

x

g:

This means that �

x

L

= supS

x

. But S

x

is a bounded set in A by the �nite

radius 
onsiderations. Thus we 
an apply the above lemma to 
on
lude that

�

L(�

x

L

) � 1. Suppose that

�

L(�

x

L

) = 
 < 1. Then

�

L((1=
)�

x

L

) = 1, and so from

the de�nition of �

L

we obtain

(1=
)j�

x

L

(x)� �

x

L

(y)j � �

L

(x; y);

for all y 2 X , that is,

�

L

(x; y) � 
�

L

(x; y)

for all y 2 X , whi
h is impossible (unless X has only one point, whi
h we now

do not permit). Thus

�

L(�

x

L

) = 1.

Mu
h as in Se
tion 6, let L

e

denote the ordinary Lip-norm on C(X) (permitting

value +1) 
orresponding to the restri
tion of �

L

as metri
 on X . (Re
all that

X is identi�ed with the extreme points of S(A).) As seen in Proposition 6:1,

L

e

�

�

L. We now show that L

e

=

�

L be
ause of the inequality in the hypotheses

of our theorem (and its extension in Lemma 8:2). Let f 2 C(X), and suppose

that L

e

(f) � 1. Thus

jf(x)� f(y)j � �

L

(x; y)

for all x; y 2 X . In parti
ular

f(x)� �

L

(x; y) � f(y):

For ea
h x 2 X de�ne h

x

2 C(X) by

h

x

(y) = f(x)� �

L

(x; y):

Then the above inequality says that h

x

� f for ea
h x. But it is 
lear that

h

x

(x) = f(x). Thus f = supfh

x

: x 2 Xg. Then from the 
onsiderations of

the previous paragraph we see that

�

L(h

x

) = 1 for all x. Thus by Lemma 8:2

we have

�

L(f) � 1. It follows that

�

L = L

e

as desired. �
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8.3 Corollary. Let X be a 
ompa
t spa
e, and let A be a dense subspa
e

of C(X) whi
h 
ontains the 
onstant fun
tions and is 
losed under the �nite

latti
e operations. Let L be a Lip-norm on A, and suppose that

L(f _ g) � L(f) _ L(g)

for all f; g 2 A. Then L is the restri
tion to A of the ordinary Lip-norm on

C(X) 
orresponding to the metri
 �

L

on X.

Proof. Let f; g 2 C(X). Then from Lemma 8:2 we see immediately that

�

L(f _ g) �

�

L(f) _

�

L(g):

We 
an thus apply Theorem 8:1 to obtain the desired 
on
lusion. �

One way of viewing Theorem 8:1 is that it 
hara
terizes the Lip-norms on


ommutative C

�

-algebras whi
h 
ome from the 
orresponding metri
 on the

extreme points of S(A). It would be interesting to have a 
orresponding 
hara
-

terization for non-
ommutative C

�

-algebras, and for general order-unit spa
es.

9. Lip-norms from metri
s on S(A)

It is natural to ask whi
h metri
s on S(A) arise from Lip-norms on A. We

obtain here a 
hara
terization of su
h metri
s. Many of the steps work for

arbitrary 
onvex sets, and so at �rst we will work in that setting. Thus we let

V be any ve
tor spa
e over R, and we let K be any 
onvex set in V whi
h spans

V . Mu
h as above, let D

2

= K�K. Note that not only is D

2


onvex, but it is

also balan
ed, in the sense that if � 2 D

2

and if t 2 [�1; 1℄, then t� 2 D

2

. To

see this, note that if � 2 D

2

then 
learly �� 2 D

2

, so we only need 
onsider

t � 0. But

t(�� �) = �� (t� + (1� t)�);

whi
h is in D

2

by the 
onvexity of K. Let V

0

= RD

2

. Then V

0

is a ve
tor

subspa
e of V . In the setting where K = S(A) we know that V

0

is a proper

subspa
e of V . Let M be a norm on V

0

. Then we 
an de�ne a metri
, �, on

K by �(�; �) = M(�� �). We want to 
hara
terize the metri
s whi
h arise in

this way.

The most natural property to expe
t is that � be 
onvex (in ea
h variable),

that is:

9.1 Definition. We say that a metri
 � on K is 
onvex if for every �; �

1

; �

2

2

K and t 2 [0; 1℄ we have

�(�; t�

1

+ (1� t)�

2

) � t�(�; �

1

) + (1� t)�(�; �

2

):

The metri
s 
oming from norms on V

0

are 
onvex be
ause

�� (t�

1

+ (1� t)�

2

) = t(�� �

1

) + (1� t)(�� �

2

):
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Given a metri
 � on K, our strategy will be to try to use � to de�ne a norm,

M , on V

0

by �rst de�ning it on D

2

. Spe
i�
ally, for � 2 D

2

we would like to

set

M(�) = �(�; �)

for � = � � � with �; � 2 K. But we need to know that this is well-de�ned.

That is, we need to know that if �; �; �

0

; �

0

2 K and if � � � = �

0

� �

0

, then

�(�; �) = �(�

0

; �

0

). This 
an be rewritten in terms of midpoints so as to appear

a bit 
loser to 
onsiderations of 
onvexity, namely, that if

(9:2) (� + �

0

)=2 = (�

0

+ �)=2

then �(�; �) = �(�

0

; �

0

). This 
learly holds for the metri
s 
oming from norms.

One �nds an attra
tive geometri
al interpretation when one draws a pi
ture of

this relation.

9.3 Definition. We say that a metri
 � on K is midpoint-balan
ed if whenever

equation (9:2) above holds, it follows that �(�; �) = �(�

0

; �

0

).

Let us now assume that � is midpoint-balan
ed. Then M on D

2

is well-de�ned

as above. We wish to extend it to a norm on V

0

. For this to be possible we

�rst must have the property that if t 2 R, jtj � 1, and if � 2 D

2

, then M(t�) =

jtjM(�). Now from the de�nition of M it is 
lear that M(��) = M(�). Thus

it suÆ
es to treat the 
ase in whi
h t � 0. If � = �� �, then

t� = t(�� �) = �� (t� + (1� t)�);

so that by the de�nition of M we have M(t�) = �(�; t� + (1 � t)�). From


onvexity, �(�; t�+(1� t)�) � t�(�; �). But also t� = (t�+(1� t)�)��, whi
h

gives a similar inequality. Then from the triangle inequality and 
onvexity we

have

�(�; �) � �(�; t� + (1� t)�) + �(t� + (1� t)�; �)

� t�(�; �) + (1� t)�(�; �) = �(�; �):

Thus the inequalities must be equalities, and we obtain:

9.4 Lemma. Let � be a metri
 on K whi
h is 
onvex and midpoint balan
ed.

De�ne M on D

2

as above using �. Then for any �; � 2 S(A) and t 2 [0; 1℄ we

have

�(�; t� + (1� t)�) = t�(�; �);

and for any � 2 D

2

and t 2 [�1; 1℄ we have

M(t�) = jtjM(�):

Next, we need that M is subadditive on D

2

. This means that if �; �

0

2 D

2

and

if �+�

0

2 D

2

, then M(�+�

0

) �M(�)+M(�). Let � = ���, �

0

= �

0

��

0

. Then
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�+�

0

= (�+�

0

)� (�+�

0

). Assuming that � is 
onvex and midpoint-balan
ed,

we obtain from Lemma 9:4 that

M(� + �

0

) = 2M((� + �

0

)=2):

Now (� + �

0

)=2 = (� + �

0

)=2� (� + �

0

)=2, and (� + �

0

)=2; (� + �

0

)=2 2 S(A).

Thus

M((� + �

0

)=2) = �((� + �

0

)=2; (� + �

0

)=2);

and we see that what we need is:

9.5 Definition. We say that a metri
 � on K is midpoint 
on
ave if for any

�; �; �

0

; �

0

2 K we have

�((� + �

0

)=2; (� + �

0

)=2) � (1=2)(�(�; �) + �(�

0

; �

0

)):

Again one �nds an attra
tive geometri
al interpretation when one draws a

pi
ture of this inequality. From the dis
ussion above we now know that:

9.6 Lemma. Let � be a metri
 on K whi
h is 
onvex, midpoint balan
ed, and

midpoint 
on
ave. De�ne M on K as above. If �; �

0

2 D

2

and if � + �

0

2 D

2

,

then

M(� + �

0

) �M(�) + M(�

0

):

9.7 Theorem. Let � be a metri
 on the 
onvex subset K of V , and let V

0

=

RD

2

= R(K � K). Then there is a norm, M , on V

0

su
h that �(�; �) =

M(� � �) for all �; � 2 K, if and only if � is 
onvex, midpoint balan
ed, and

midpoint 
on
ave. The norm M is unique.

Proof. The uniqueness is 
lear sin
e V

0

= R(K �K). We have seen above that

the 
onditions on � are ne
essary. We now show that they are suÆ
ient. We

let M be de�ned on D

2

= K �K as above. For any � 2 V

0

there is a t > 0

su
h that t� 2 D

2

. We want to extend M to V

0

by setting

M(�) = t

�1

M(t�):

From Lemma 9:4 it is easily seen that M is well-de�ned, and furthermore that

M(s�) = jsjM(�) for all s 2 R and � 2 V

0

. The subadditivity of M then

follows easily from Lemma 9.6. �

We now want to apply the above ideas to S(A) for an order-unit spa
e A. Note

that the V

0

of just above is then the A

0

0

of earlier. We will need the following

theorem, whi
h does not involve the above ideas.
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9.8 Theorem. Let A be an order-unit spa
e, and let M be a norm on A

0

0

.

De�ne a metri
, �, on S(A) by

�(�; �) = M(�� �):

If the �-topology 
oin
ides with the weak-� topology on S(A), then

M = (L

�

)

0

on A

0

0

.

Proof. Sin
e Lip

�

is a subspa
e of C(S(A)), we 
an setA

L

= (Lip

�

)\Af(S(A)).

Note that A

L

need not be 
ontained in A unless A is 
omplete. Initially it is

not 
lear how big A

L

is. Parallel to our earlier notation, let V denote the

normed spa
e A

0

0

with norm M . Note that V need not be 
omplete. Let V

0

denote the Bana
h spa
e dual of V , with dual norm M

0

. Fix any �

0

2 S(A).

For any ' 2 V

0

de�ne a fun
tion, �('), on S(A) by

�(')(�) = '(�� �

0

):

Then for �; � 2 S(A) we have

j�(')(�) � �(')(�)j = j'(�� �)j �M

0

(')M(�� �) = M

0

(')�(�; �):

Thus �(') 2 Lip

�

and L

�

(�(')) �M

0

('). In parti
ular, �(') is 
ontinuous on

S(A) sin
e � gives the weak-� topology. Furthermore it is easily seen that �(')

is aÆne on S(A). Thus �(') 2 A

L

. Consequently � is a norm-non-in
reasing

linear map from (V

0

;M

0

) to (A

L

; L

�

). Let ~� denote � 
omposed with the map

from A

L

to

~

A

L

. Then it is easily seen that ~� does not depend on the 
hoi
e of

�

0

. We now need:

9.9 Lemma. Let

�

A = Af(S(A)), the 
ompletion of A for k k, so that A

L

�

�

A. Then A

L

is dense in

�

A.

Proof. Sin
e Re � A

L

, it suÆ
es to show that

~

A

L

is dense in

�

A

�

. Let � 2

D

2

� A

0

0

= (

�

A

�

)

0

. Suppose that �(A

L

) = 0. Let � = �� � with �; � 2 S(A).

For any ' 2 V

0

we have �(') 2 A

L

, so

0 = �(�(')) = �(�(')) � �(�(')) = '(�� �

0

)� '(� � �

0

) = '(�):

Sin
e this is true for all ' 2 V

0

, it follows that � = 0. Sin
e D

2

spans A

0

0

,

an appli
ation of the Hahn{Bana
h theorem now shows that A

L

is dense on

�

A. �

Now let f 2 A

L

. We seek to de�ne a linear fun
tional, �(f), on A

0

0

related to

the � in the proof of Theorem 5:2. We �rst try to de�ne � on D

2

by

�(f)(�) = f(�)� f(�);
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where � = � � � for �; � 2 S(A). But we need to show that �(f) is well-

de�ned. We argue mu
h as we did before De�nition 9:3. If also � = �

1

� �

1

for

�

1

; �

1

2 S(A), then (� + �

1

)=2 = (�

1

+ �)=2. But these are elements of S(A)

and so

f((� + �

1

)=2) = f((�

1

+ �)=2):

But from the fa
t that f is aÆne it now follows that

f(�)� f(�) = f(�

1

)� f(�

1

):

Thus �(f) is well-de�ned on D

2

. We now need to know that �(f) is \linear" on

D

2

. The proof that �(f)(t�) = t�(f)(�) for t 2 [�1; 1℄ is similar to the proof of

Lemma 9:4. The proof that �(f)(� + �

1

) = �(f)(�) + �(f)(�

1

) if � + �

1

2 D

2

is similar to the argument just before De�nition 9:5. The proof that �(f) then

extends to a linear fun
tional on A

0

0

is similar to the arguments in the proof

of Theorem 9:7. For � = �� � with �; � 2 S(A) we have

j�(f)(�)j = jf(�)� f(�)j � L

�

(f)�(�; �) = L

�

(f)M(�� �) = L

�

(f)M(�):

It follows that �(f) 2 V

0

and M

0

(�(f)) � L

�

(f). Thus � is a norm-non-

in
reasing linear map from (A

L

; L

�

) to (V

0

;M

0

). Note that the 
onstant fun
-

tions are in the kernel of �, so that � determines a norm-non-in
reasing linear

map from (

~

A

L

;

~

L

�

) to (V

0

;M

0

). But for f 2 A

L

we have

�(�(f))(�) = �(f)(�� �

0

) = f(�)� f(�

0

):

Consequently ~� (~�(

~

f)) =

~

f . Similarly, for ' 2 V

0

and � = �� � we have

~�(~� ('))(�) = �(')(�) � �(')(�) = '(� � �

0

)� '(� � �

0

) = '(�);

so that ~�(~� (')) = '. Thus ~� and ~� are inverses of ea
h other. Sin
e they are

norm-non-in
reasing, we obtain:

9.10 Lemma. The map ~� is an isometri
 isomorphism of (V

0

;M

0

) onto

(A

L

; L

�

), with inverse ~�.

We 
an now 
omplete the proof of Theorem 9:8. Sin
e A

L

is dense in

�

A by

Lemma 9:9, for any � 2 V

0

we have

(L

�

)

0

(�) = supf�(~� (')) : L

�

(~� (')) � 1g = supf'(�) : M

0

(') � 1g = M(�):

�

Putting together the various pie
es of this se
tion, we obtain:

9.11 Theorem. Let A be an order-unit spa
e, and let � be a metri
 on S(A)

whi
h gives the weak-� topology. Then � 
omes from a Lip-norm L on A via

the relation

�(�; �) = L

0

(�� �)

if and only if � is 
onvex, midpoint balan
ed, and midpoint 
onvex.

Nik Weaver has suggested to me the following alternative treatment of the

material of this se
tion. Let V , K, and V

0

be as at the beginning of this

se
tion.
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9.12 Definition. We say that a metri
 � on K is linear if for every �; � 2 K,

every v 2 V

0

, and every t 2 R

+

su
h that � + tv and � + v are in K we have

�(�; � + tv) = t�(�; � + v):

It is easily seen that if � 
omes from a norm on V

0

then � is linear. Conversely,

if � is linear, de�ne a norm, M , on V

0

by

M(v) = �(�; � + tv)=t

for any � 2 K and any t 2 R

+

su
h that � + tv 2 K. One 
he
ks that M is

well-de�ned and is indeed a norm. Furthermore, � 
omes from M .

Weaver also points out that if V is a lo
ally 
onvex topologi
al ve
tor spa
e

and if K is 
ompa
t, then for a suitable de�nition of � being 
ompatible with

the topology, one 
an show that when � is linear and 
ompatible, then K

is isometri
ally isomorphi
 to S(Af(K)) when the latter is given the metri



oming from the Lips
hitz seminorm on Af(K) 
oming from �.

It is not 
lear that examples will 
ome up where it is a
tually useful to apply

the 
onsiderations of this se
tion in order to obtain Lip-norms. Until su
h

examples arise, it will not be 
lear whether my version or Weaver's will be the

more useful.

10. Musings on metri
s

Sin
e the theory in the previous se
tions worked for order-unit spa
es, whi
h

need not be algebras, the Leibniz inequality played no signi�
ant role there.

Indeed, even when one has an algebra, I have not seen how to make e�e
tive

use of the Leibniz inequality. Nevertheless, most 
onstru
tions of Lips
hitz

seminorms whi
h I have seen in the literature seem to provide ones whi
h do

satisfy the Leibniz inequality. We will brie
y explore here a variety of su
h


onstru
tions, and the relationships between them. Our interest will be on

seeing general patterns, and we will not try to deal 
arefully with the many

te
hni
al issues whi
h arise. Thus we will be less pre
ise than in the previous

se
tions.

A very natural way to look for Lips
hitz seminorms, 
losely related to Weaver's

W

�

-derivations [W2℄, goes as follows. Let A be a unital algebra and let (
; d)

be a �rst-order di�erential 
al
ulus for A. Thus 
 (whi
h is also often denoted




1

) is an A-A-bimodule, and d is an 
-valued derivation on A, that is, a linear

map from A into 
 whi
h satis�es the Leibniz identity

d(ab) = (da)b + a(db):

We do not require that the range of d generates 
. Suppose now that A is in

fa
t a normed algebra, and that we have a bimodule norm, N , on 
 (for the

norm k k on A), that is, a norm su
h that

N(a!b) � kakN(!)kbk
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for a; b 2 A and ! 2 
. De�ne a seminorm L on 
 by

L(a) = N(da):

It is easily seen that L satis�es the Leibniz inequality. Sin
e d1 = 0, we have

L(1) = 0. Of 
ourse, without further hypotheses the null-spa
e of L may be

mu
h bigger. (We should mention that not all seminorms satisfying the Leibniz

inequality 
an be 
onstru
ted in this way|see the dis
ussion in [BC℄.)

There is a universal �rst-order di�erential 
al
ulus for any unital algebra A

[Ar, C2℄. We approa
h this in a way whi
h emphasizes more than usual those

di�erential 
al
uli whi
h are inner, sin
e at least 
on
eptually that is what

Dira
 operators give, as we will see shortly. We form the algebrai
 tensor

produ
t




u

1

= A
A;

with bimodule stru
ture de�ned as usual by a(b
 
)d = ab
 
d. We de�ne d

by

da = 1
 a� a
 1:

10.1 Definition. A �rst-order 
al
ulus (
; d) is inner if there is a !

0

2 


su
h that

da = !

0

a� a!

0

:

Then the 
al
ulus (


u

1

; d) de�ned above is inner, with !

0

= 1 
 1. Note that

here !

0

may not be in the sub-bimodule generated by the range of d. This is

an indi
ation of why we do not require this generation property. It is simple

to verify:

10.2 Proposition. The inner �rst-order 
al
ulus (


u

1

; d; 1 
 1) is univer-

sal among inner �rst-order di�erential 
al
uli over A, in the sense that if

(


0

; d

0

; !

0

0

) is any other inner �rst-order di�erential 
al
ulus, then there is a bi-

module homomorphism � : 


u

1

! 


0

su
h that �(da) = d

0

a and �(1
 1) = !

0

0

.

In parti
ular,

�(a
 b) = a!

0

0

b

for a; b 2 A. If 


0

is generated by !

0

0

as bimodule, then � is surje
tive, so that




0

is a quotient of 


u

1

.

10.3 Proposition. Any �rst-order di�erential 
al
ulus is 
ontained in an in-

ner �rst-order 
al
ulus.

Proof. Let (
; d) be a �rst-order 
al
ulus. Set

�


 = 
 � A as left A-module,

set

�

da = da� 0, and set �!

0

= 0� 1. We must extend the right a
tion of A on


 to a right a
tion on

�


 su
h that

�

da = �!

0

a � a�!

0

. Thus it is 
lear that we

must set (0� 1)a = �!

0

a = da� 0 + a�!

0

= da� a, and so

(!; b)a = (!a + bda; ba):

It is simple to 
he
k that this gives the desired stru
ture. �
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Now let 


u

denote the sub-bimodule of 


u

1

generated by the range of d, and so

spanned by elements of the form

adb = a
 b� ab
 1:

Let (


0

; d

0

) be a �rst-order di�erential 
al
ulus whi
h is not inner. Expand it

to an inner 
al
ulus by the 
onstru
tion of the previous proposition, and then

restri
t � of that proposition to 


u

. It is 
lear from the 
onstru
tion that �

will 
arry 


u

into 


0

, where 


0

is viewed as a sub-bimodule of its expansion.

We obtain in this way:

10.4 Proposition. The 
al
ulus (


u

; d) is universal among all �rst-order dif-

ferential 
al
uli over A, in the sense that if (


0

; d

0

) is any other �rst-order

di�erential 
al
ulus, then there is a bimodule homomorphism � : 


u

! 
 su
h

that �(da) = d

0

a. If 


0

is generated by the range of d

0

as bimodule, then � is

surje
tive, so that 


0

is a quotient of 


u

.

We noti
e that if (
; d) is any �rst-order di�erential 
al
ulus and ifN is any sub-

bimodule of 
, then we obtain a 
al
ulus (
=N ; d

0

) where d

0

is the 
omposition

of d with the 
anoni
al proje
tion of 
 onto 
=N . However, unlike the universal


al
ulus, there may now be many more elements a for whi
h da = 0 beyond

the s
alar multiples of 1.

Let us examine brie
y what the above looks like when A = C(X) for a 
ompa
t

spa
e X . Then 


u

1

(= A 
A) is naturally viewed as a dense sub-bimodule, in

fa
t subalgebra, of C(X �X). The bimodule a
tions are, of 
ourse,

(fF )(x; y) = f(x)F (x; y); (Ff)(x; y) = F (x; y)f(y);

and !

0

= 1
 1 is the 
onstant fun
tion 1, so that d is given by

(df)(x; y) = f(y)� f(x):

Then 


u

is spanned by the fdg, where

(fdg)(x; y) = f(x)(g(y)� g(x)):

Thus the elements of 


u

take value 0 on the diagonal, �, of X � X , and


onsequently 


u

� C

1

(X�Xr�). In fa
t it is easy to see that 


u

is a dense

subalgebra of C

1

(X �X r�).

Let � be an ordinary metri
 on X (giving the topology of X). View � as

a stri
tly positive fun
tion on X � X r �, and let 
 = �

�1

. Then 
 is a


ontinuous fun
tion on X �X r�, but 
 is unbounded if X is not �nite. Let

C(X �Xr�) denote the algebra of 
ontinuous possibly-unbounded fun
tions

on X�X r�. Then C(X �X r�) 
an be viewed as the algebra of operators

aÆliated with the C

�

-algebra C

1

(X�Xr�) in the sense studied by Baaj [Ba℄

and Woronowi
z [Wo℄. In an evident way C(X �X r�) is an A-A-bimodule,


ontaining 
.
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There are now two routes whi
h we 
an take. One is to 
onsider the inner-

derivation, d




, de�ned by 
. Thus

(d




f)(x; y) = 
(x; y)f(y)� f(x)
(x; y) = (f(y)� f(x))=�(x; y):

Then we 
an 
onsider bimodule norms, possibly taking value +1, on C(X �

X r �), as a way to obtain Lips
hitz norms on A. The other route is to use


 (or �) to dire
tly de�ne norms on C

1

(X �X r �). For the �rst route the

most obvious norm is the supremum norm, whi
h leads to the usual de�nition

of the Lips
hitz seminorm for a metri
 spa
e.

However, we 
hoose to explore further the se
ond route. (But most of what

we �nd will have a fairly evident reinterpretation in terms of the �rst route.)

There is a large variety of ways to obtain bimodule norms on C

1

(X�Xr�).

The one whi
h gives the usual de�nition of the Lips
hitz seminorm for a metri


is 
learly

N(F ) = k
Fk

1

;

permitted to take value +1. But here are some others. Let m be any positive

(�nite) measure on X , and assume that m �m restri
ted to X � X r � has

as support all of X �X r �. Then one 
an 
onsider all of the L

p

-norms for

m�m. If one wants to put 
 (or �) expli
itly into the pi
ture, one 
an 
onsider

the measure 
(m �m), although this just represents the 
hoi
e of a di�erent

measure. Note that if f is an ordinary Lips
hitz fun
tion for �, then 
df is

a bounded fun
tion on X � X r �, so that k
dfk

p;m�m

is �nite. Thus the

subalgebra of elements of A for whi
h this Lips
hitz seminorm is �nite is dense

in A.

To explore further possibilities, let us for simpli
ity assume that X is �nite.

Then 


u

1

= C(X�X) 
an be viewed as the algebra of all matri
es whose entries

are indexed by elements of X �X . The left and right a
tions of A on 


u

1


an

be viewed as 
oming from embedding A as the diagonal matri
es and using

left and right matrix multipli
ation. Then !

0

is the matrix with a 1 in ea
h

entry. On A we keep the supremum norm, but on the matrix algebra 


u

1

we 
an


onsider any A-A-bimodule norm. Let B denote 


u

1

viewed as matrix algebra,

and equipped with the usual C

�

-algebra norm. View 


u

1

as a B-B-bimodule in

the evident way. Then we 
an 
onsider B-B-bimodule norms on 


u

1

. Any su
h

will in parti
ular be an A-A-bimodule norm. But there has been extensive

study of the possible B-B-bimodule norms on 


u

1

. They are 
ommonly 
alled

\symmetri
 norms", and among the best known are the S
hatten p-norms,

whi
h in
lude the Hilbert{S
hmidt norm and the tra
e norm. These have,

of 
ourse, also been extensively studied for operators on in�nite dimensional

Hilbert spa
es, and play a fundamental role in Connes' theory of integration

on non-
ommutative spa
es. (See [C2℄ Chapter IV and its Appendix D. A

ni
e treatment of the �nite 
ase 
an be found in [Bh℄.) From every symmetri


norm we obtain a Lip-norm on A (sin
e A is �nite-dimensional). This does

not exhaust the possibilities, as there is no ne
essity to restri
t to symmetri


norms in order to get A-A-bimodule norms.
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All of the above dis
ussion has been for the universal di�erential 
al
ulus. We

get many more possibilities by using other di�erential 
al
uli. We 
ontinue

to 
on
entrate on the 
ase of A = C(X) with X 
ompa
t. Now sub-A-A-

bimodules of C(X �X), when 
losed in the supremum norm, will be ideals of

C(X�X), and the quotient 
an be identi�ed with C(W ) for some 
losed subset

W of X � X . We 
an restri
t df to W . But some 
ondition must be pla
ed

on W if we want to ensure that df j

W

= 0 only if f is a 
onstant fun
tion. For

this purpose it is 
onvenient to assume, to begin with, that W 
ontains the

diagonal � and is symmetri
 about �, that is, if (x; y) 2 W then (y; x) 2 W .

Given x 2 X we de�ne the W -neighborhood of x to be the (
losed) set of those

y 2 X su
h that (x; y) 2 W . By the W -
omponent of x we mean the smallest


losed subset of X whi
h 
ontains the W -neighborhood of ea
h of its points.

If df j

W

= 0, then f is 
onstant on the W -
omponent of ea
h point. Thus a

suÆ
ient 
ondition under whi
h df j

W

= 0 will imply that f is 
onstant, is that

the W -
omponent of ea
h point is all of X . If X is a �nite set, then W r� 
an

be viewed as 
onsisting of the dire
ted edges for a graph whose verti
es are the

points of X . Then the above 
ondition be
omes the 
ondition that this graph

is 
onne
ted in the usual sense. If X is not dis
rete, it is usual to require that

W is a neighborhood of �. Then ea
h W -neighborhood of a point will be an

ordinary (
losed) neighborhood, and so the W -
omponent of ea
h point will

be both 
losed and open. In parti
ular, if X is 
onne
ted it will be true that

df j

W

= 0 implies that f is 
onstant.

We remark that if W is a neighborhood of � and is symmetri
 about �, and

if we set 
 = C(W ), then the �rst order 
al
ulus (
; d) obtained as above

is the typi
al degree-one pie
e of the 
omplexes (


�

W

; d) used in de�ning the

Alexander{Spanier 
ohomology of X . The higher-degree pie
es are de�ned

similarly but in terms of X

n

for various n. The Alexander{Spanier 
ohomology

is then obtained by taking a limit of the homology of these 
omplexes as W

shrinks to �. Essentially this view 
an be seen in lemma 1:1 of [CM℄, where

smooth fun
tions on a manifold are used, and in Se
tion 1 of [MW℄, where


ontinuous fun
tions are used.

Suppose now that 
 = C(W ) as above, but assume now for simpli
ity that

W and � are disjoint (with W no longer required 
losed). Let d be de�ned

by df = df j

W

, and assume that if df = 0 then f is a s
alar multiple of 1. To

obtain a Lips
hitz seminorm on A we again just need to put a bimodule norm

on 
. The method whi
h is 
losest to the usual Lips
hitz norm is to spe
ify a

nowhere zero fun
tion 
 on W and set

L(f) = k
dfk

1

(on W , allowing value +1). In this 
ontext however, if we set � = 


�1

, it no

longer makes mu
h sense to ask that the triangle inequality hold for �. About

the most that is reasonable is to ask that �, hen
e 
, be positive, and that


(x; y) = 
(y; x) for (x; y) 2 W , x 6= y. This is a situation whi
h has been

widely studied. Entire books [Ra, RR℄ have been written about the problem
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of �nding the 
orresponding distan
e between two probability measure on X ,

often under the heading of \the mass transportation problem". The fun
tion

� is then often 
alled a \
ost fun
tion". We should 
larify that when � is not

a metri
 we are dealing here with mass transportation \with transshipment

permitted" [RR℄, not the original Monge{Kantorovi
h [KA℄ mass transporta-

tion problem, whi
h does not permit transshipment, and may well not yield a

metri
. When transshipment is permitted and � is not a metri
 on X , the 
or-

responding metri
 on S(X) is 
alled the Kantorovi
h{Rubenstein metri
 [KR1,

KR2℄. For a fas
inating survey of some re
ent developments 
on
erning the

original Monge{Kantorovi
h problem see [Ev℄.

When X is a �nite set and W is viewed as spe
ifying edges for a graph whi
h has

X as set of verti
es, the 
ost fun
tion � is naturally interpreted as assigning

lengths to the edges (though we will see a quite di�erent interpretation in

Se
tion 12). Then the metri
 on X 
oming from L

�

is the usual path-length

distan
e on the graph. There has been mu
h study of how to 
ompute this

path-length distan
e eÆ
iently for large graphs. We remark that if one prefers

to have � de�ned on all of X �X one 
an simply set it equal to +1 on any

(x; y), x 6= y, whi
h is not an edge.

We remark that in the 
ontext of 
ost fun
tions on 
ompa
t sets there may well

be no non-
onstant fun
tions for whi
h the Lips
hitz seminorm is �nite. As

one example let X be the unit interval [0; 1℄, and set �(x; y) = jx�yj

2

. This is,

in e�e
t, be
ause we permit transshipment | the original Monge{Kantorovi
h

problem is quite interesting for this parti
ular 
ost fun
tion, as shown in [Ev℄.

It is just that the minimal 
ost of moving one probability measure dire
tly to

another does not then give a metri
 on probability measures, be
ause it may

be less 
ostly to use two or more moves.

There is a variety of other bimodule norms, su
h as L

p

-norms, whi
h one 
an

use for various di�erential 
al
uli, and these give a wide variety of metri
s on

probability measures [Ra℄. A parti
ularly deep appli
ation of su
h norms, for

the 
ase of graphs, and involving expli
itly Connes ideas of non-
ommutative

metri
s, appears in [Da℄. (I thank Nik Weaver for bringing this paper to my

attention.)

Let us now dis
uss brie
y the 
ase in whi
h we have A = M

n

, a full matrix

algebra. As mentioned mu
h earlier, one natural Lip-norm on A is just L =

k k

�

. Now A

0


an be identi�ed by means of the normalized tra
e, � , with A

itself, but equipped with the tra
e-norm. Then A

0

0

, as in our earlier notation,


onsists of the matri
es with tra
e 0. Of 
ourse, S(A) is identi�ed with the

positive matri
es of normalized tra
e 1. With this identi�
ation, we have

�

L

(�; �) = tra
e(j�� �j):

This is exa
tly one of the metri
s listed (with referen
es) in the introdu
tion

to [ZS℄. Another one listed there uses the Hilbert{S
hmidt norm instead of the

tra
e norm. Listed also is a variety of other metri
s on S(M

n

) whi
h have

appeared in various appli
ations. But I have not 
he
ked whether they 
ome
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from Lip-norms. There has also been mu
h study of the di�erential geometry of

S(M

n

) for a variety of Riemannian metri
s, espe
ially the \monotone metri
s",

whi
h are 
losely related to operator monotone fun
tions. Two very re
ent

arti
les whi
h 
ontain many referen
es to previous work on this topi
 are [Di,

S℄. But the emphasis of most of this work is not on the ordinary metri
 whi
h a

Riemannian metri
 indu
es on S(M

n

), but rather on the di�erential geometri


aspe
ts. There is also study of the volume form whi
h is indu
ed, and on

asso
iated probabilisti
 aspe
ts. For re
ent related study going in the dire
tion

of non-
ommutative entropy see [LR℄.

11. Dira
 operators and differential 
al
uli

We 
ontinue our 
omments of the previous se
tion, but here we fo
us on how

Dira
 operators �t into the pi
ture. Let A be a unital �-algebra equipped with

a C

�

-norm (perhaps not 
omplete), and let � be a faithful representation of A,

that is, an isometri
 �-homomorphism of A into the algebra B(H) of bounded

operators on a Hilbert spa
e H. Let D be an essentially self-adjoint, possibly

unbounded, operator on H, and assume that �(a) 
arries the domain of D into

itself for ea
h a 2 A, and that on this domain [D; �(a)℄ is a bounded operator,

and so extends uniquely to a bounded operator on H. Then, following Connes,

we set

L(a) = k[D; �(a)℄k:

As we did earlier, it is natural to require that [D; �(a)℄ = 0 only when a is a

s
alar multiple of 1. Many important examples of this situation are now known.

But in general it seems diÆ
ult to as
ertain whether the 
orresponding metri


on states gives the weak-� topology, though this has been shown for 
ertain

examples in [Rf℄. See also [W2, W3, W5℄, where the sets B

t

de�ned at the

beginning of Se
tion 3 are shown to be totally bounded, in fa
t 
ompa
t, for

various examples. We do not deal with this question here, but rather try to

relate the bimodule pi
ture to the Dira
 pi
ture. One dire
tion is apparent.

We view B(H) as an A-A-bimodule by setting

aTb = �(a)T�(b):

Then, although D is only aÆliated with B(H), 
on
eptually we use the inner

derivation whi
h D de�nes, so that

da = D�(a)� �(a)D = [D; �(a)℄:

(This, of 
ourse, is the starting point for Connes' non-
ommutative di�erential


al
ulus [C2℄.) We then note that the operator norm on B(H) is an A-A-

bimodule norm, and so upon setting

L(a) = k[D; �(a)℄k

we obtain a Lips
hitz norm, whi
h we showed to be lower semi
ontinuous in

Proposition 3:8.
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But suppose we are given instead some �rst order di�erential 
al
ulus (
; d)

and a bimodule norm on 
 so that we obtain the 
orresponding Lips
hitz norm

L. Can we also obtain L from a Dira
 operator? For this to be possible we

must have L(a

�

) = L(a), and L must be lower semi
ontinuous. As mentioned

earlier, L must also �t into a family of \matrix Lips
hitz seminorms". These


onditions are probably not enough in general, though I have not tried to �nd

a 
ounterexample. But the following super�
ial 
omments help to give some

perspe
tive. (In most of the 
onsiderations whi
h follow the algebra stru
ture

on A is only used in order to get the Leibniz inequality. Thus mu
h of what

follows a
tually works for order-unit spa
es.)

We saw in Proposition 10:3 that we 
an extend (
; d) to obtain an inner �rst-

order 
al
ulus. In analogy with this idea, suppose that we 
an realize 
 as

a subspa
e of B(H) for some Hilbert spa
e H, in su
h a way that the norm

on 
 is the operator norm, and the bimodule stru
ture is given by two �-

representations, �

1

and �

2

, of A on H, so that

a!b = �

1

(a)!�

2

(b)

for a; b 2 A and ! 2 
. Suppose further that there is a possibly-unbounded

essentially self-adjoint operator, D

0

, on H, su
h that �

1

(a) and �

2

(a) 
arry the

domain of D

0

into itself, and su
h that

da = D

0

�

2

(a)� �

1

(a)D

0

;

whi
h in parti
ular must be a bounded operator. Set L(a) = kdak. This is not

exa
tly the Dira
 operator setting, but it is not diÆ
ult to 
onvert it into that

setting. To arrange matters so that we have only one representation, we let

� = �

1

� �

2

on H�H and set

D

1

=

�

0 D

0

0 0

�

:

Then we �nd that

L(a) = k[D

1

; �(a)℄k:

But of 
ourse D

1

is not self-adjoint. We �x this in the traditional way by again

doubling the Hilbert spa
e, with representation � � � of A, and setting

D =

�

0 D

�

1

D

1

0

�

:

The 
orresponding Lips
hitz norm is L(a)_L(a

�

), but from the self-adjointness

of D one 
an 
he
k that we a
tually get ba
k L.

Anyway, we are left with

11.1 Question. For an order-unit spa
e A, or a �-algebra A with C

�

-norm,

how does one 
hara
terize those Lip-norms on A whi
h 
ome from the Dira


operator 
onstru
tion?
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Even for �nite-dimensional 
ommutative C

�

-algebras it is not 
lear to me what

the answer is.

As mentioned earlier, a Dira
 operator also gives seminorms on all of the matrix

algebras over A, so that one 
an speak of this family as a \matrix Lips
hitz

norm", in the spirit of [Ef℄. Thus a related problem is to 
hara
terize these

stru
tures.

Of 
ourse a given metri
 on S(A) may 
ome from several fairly di�erent Dira


operators. For example, suppose that we have a 
ompa
t spa
e X , and a 
losed

neighborhood W of the diagonal � of X � X , together with a 
ost fun
tion

� on W , just as in the previous se
tion. As dis
ussed there, we 
an use �

together with the �rst-order 
al
ulus determined by W to de�ne a Lips
hitz

norm on C(X). (Further hypotheses are needed for it to be a Lip-norm on

a dense subalgebra of C(X).) Then by the pro
edure dis
ussed earlier in the

present se
tion we 
an pass to a Dira
 operator. But that pro
edure enlarged

the Hilbert spa
e be
ause a �rst-order di�erential 
al
ulus usually involves two

representations rather than one. We will now show that there is an alternative

method whi
h does not enlarge the Hilbert spa
e. This is a mild generalization

of my le
ture 
omments for metri
 spa
es mentioned earlier, whose details

are indi
ated on page 274 of [W2℄. As earlier, let m be a measure on X of

full support, and 
onsider m � m on W r �. Form the Hilbert spa
e H =

L

2

(W r�;m�m). We 
onsider only the representation � of A = C(X) on H

de�ned by

(�

f

�)(x; y) = f(x)�(x; y):

(This is, of 
ourse, essentially the left a
tion on the bimodule for W .) De�ne

an operator, F , on H by the 
ip

(F�)(x; y) = �(y; x):

Be
ause we are using a produ
t measure, the operator F is self-adjoint and

unitary. De�ne an (unbounded) positive operator, P , on H by

(P�)(x; y) = �(x; y)=�(x; y):

Be
ause we assume that �(x; y) = �(y; x) for all (x; y) 2 W , the operators F

and P 
ommute. We de�ne the Dira
 operator by

D = PF;

so that F is the phase of D and P = jDj. Informal 
al
ulation shows that for

any f 2 C(X) we have

([D; �

f

℄�)(x; y) = ((f(y)� f(x))=�(x; y))�(y; x);

so that

L(f) = k[D; �

f

℄k = supfjf(y)� f(x)j=�(x; y) : (x; y) 2Wg:
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Of 
ourse, further hypotheses must be pla
ed on � in order for this to give a

Lip-norm. But the right-hand side of the above equality is the usual de�nition

of a Lips
hitz norm in this situation, espe
ially in 
ontexts su
h as graph theory.

It will 
oin
ide with what one obtains in the 
orresponding bimodule approa
h.

Noti
e that the resulting distan
e between two points x; y 2 X 
an easily be

stri
tly smaller than �(x; y) (if (x; y) happens to be in W ).

For an interesting alternative (but 
losely related) method of obtaining the

usual distan
e on a graph (in
luding in�nite graphs) from a 
ost fun
tion,

by means of Dira
 operators, see theorem 7:2 of [Da℄. Furthermore, in [Da℄

other very interesting and quite di�erent Dira
 operators asso
iated to 
ost

fun
tions on graphs are dis
ussed in some detail, and used to obtain improved

estimates for heat kernels on graphs. They 
an be des
ribed in terms of �rst-

order di�erential 
al
uli and Lapla
e operators along mu
h the same lines as we

used in Se
tion 10. Mu
h of this is expli
it in [Da℄, and we will not elaborate

on it here.

We should mention here that very interesting examples of Dira
 operators as-

so
iated with non-
ommutative variants of sub-Riemannian manifolds appear

in the se
ond example following axiom 4

0

of [C3℄, and in [W5℄.

12. Resistan
e distan
e

We 
on
lude with an appealing 
lass of examples whi
h do not �t into the

previous framework of di�erential 
al
uli, and for whi
h the Lip-norm does

not satisfy the Leibniz identity. These examples 
ome from graphs with \
ost

fun
tions" on the edges, but now the graph is interpreted as an ele
tri
al 
ir
uit

with resistan
es on the edges, whose values are given by the 
ost fun
tion.

These examples have been extensively studied [DS, Kl, KlR, KZ℄, but I have

not seen earlier mention of the 
orresponding metri
 on probability measures

whi
h we will de�ne here. It is not 
lear to me whether this metri
 is more

than a 
uriosity.

All of the dis
ussion here 
an be 
arried out for in�nite graphs, along the lines

dis
ussed extensively in [DS℄, but for simpli
ity we only dis
uss �nite graphs

here. The examples also have a �ne alternative interpretation in terms of

random walks [DS℄. Our term \resistan
e distan
e" is taken from the title of

[KlR℄.

The set-up, as indi
ated above, is a �nite graph with set X of verti
es, together

with stri
tly positive real numbers r

xy

= r

yx

assigned to ea
h (undire
ted)

edge. We interpret these numbers as resistan
es. We assume throughout that

the graph is 
onne
ted. Given x; y 2 X , x 6= y, we 
an imagine putting a

voltage di�eren
e a
ross x and y, adjusted so that one unit of 
urrent 
ows

in at x and out at y. Then Ohm's law says that the \e�e
tive resistan
e" is

equal to the required voltage di�eren
e. We denote this e�e
tive resistan
e by

�(x; y). It is, in fa
t, a metri
 on X . The only referen
e I know for this is [KlR,

K, KZ℄, but my friends in probability theory tell me that within the 
ontext of

random walks rather than resistan
es this is well-known, even if no referen
e


omes to mind.
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Suppose now that � and � are general probability measures on X . Although it

does not seem so intuitively obvious, we will see shortly that we 
an establish

voltages on the points of X su
h that unit total 
urrent 
ows into the 
ir
uit,

with the amount 
owing in at ea
h point x given by �

x

, while unit total 
urrent


ows out of the 
ir
uit, with the amount at ea
h point given by � (with the

evident interpretation when the supports of � and � are not disjoint). For the

analysis of this situation it is useful to de�ne a fun
tion, 
, on the edges, by




xy

= 1=r

xy

. This is 
ommonly 
alled the \
ondu
tan
e". It is 
onvenient to

extend 
 to all of X�X by setting 


xy

= 0 if (x; y) is not an edge (or if y = x).

Let f 2 C(X), interpreted as voltages applied to the points of X . We let df be

de�ned as earlier for the universal 
al
ulus (or for the 
al
ulus 
orresponding

to the edges). We let rf denote the resulting 
ow inside the 
ir
uit. By Ohm's

law the 
ow (before ele
trons were dis
overed) from x to y is given by

(rf)(x; y) = (f(x) � f(y))


xy

= �
(df);

where by 
(df) we mean the pointwise produ
t of fun
tions. Note that rf is a

fun
tion on dire
ted edges, with

(rf)(x; y) = �(rf)(y; x)

(and value 0 if (x; y) is not an edge).

Suppose now that ! is any fun
tion on dire
ted edges su
h that !(x; y) =

�!(y; x). We interpret !(x; y) as giving the magnitude of a 
urrent from x to

y. (To be more realisti
 we should require 0 
ir
ulation, but we will have no

need to impose this requirement.) To sustain this 
urrent, we will in general

have to insert (or extra
t) 
urrent at various verti
es. We let div(!)(x) denote

the 
urrent whi
h must be inserted at x. By Kir
hho�'s laws we have

div(!)(x) =

X

y

!(x; y):

Note that be
ause !(x; y) = �!(y; x), we will have

X

x

div(!)(x) = 0;

whi
h a

ords with the fa
t that the total amount of 
urrent inserted must be

0.

Suppose now that f 2 C(X) and that we set ! = rf . We see from above that

the 
urrents whi
h must be inserted to sustain the voltages given by f must be

div(rf);

whi
h we denote by �f . To a

ord with our earlier notation, we let A

0

0

denote

the signed measures, �, on X for whi
h h1; �i = 0. The dis
ussion of the

previous paragraph 
an be interpreted as saying that �f 2 A

0

0

.
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Suppose now that we are given � 2 A

0

0

. Can we �nd f su
h that �f = �?

Note that sin
e �1 = 0, we know that f will not be unique, but rather that,

as usual with potential fun
tions, we 
an expe
t f to be unique only up to

a 
onstant fun
tion. To pro
eed further we must more 
arefully analyze the

operator � in the traditional way [DS, K℄. For f 2 C(X) we have

(�f)(x) =

X

y

(rf)(x; y)

=

X

y

(f(x)� f(y))


xy

= f(x)

X

y




xy

�

X

y

f(y)


xy

:

Let D denote the diagonal matrix with diagonal entries

D

xx

=

X

y




xy

:

If we view f as a 
olumn ve
tor, we see that

�f = (D � C)f:

From the Peron{Frobenius theorem and the fa
t that our graph is 
onne
ted,

it follows that the kernel of � 
onsists exa
tly of the 
onstant fun
tions. If we

permit ourselves to 
onfuse ve
tor spa
es a bit, we see that � is self-adjoint

with respe
t to the standard inner-produ
t on 
olumn ve
tors. Thus it 
arries

the orthogonal 
omplement, H, of the 
onstant fun
tions into itself, and it is

invertible on H. Consequently, for every � 2 A

0

0

we 
an �nd a unique f 2 H

su
h that �f = �. We will write this as f = �

�1

�, where we view � as

restri
ted to H so that it is invertible there.

Suppose now that x and y are �xed points of X , and that � = Æ

x

� Æ

y

, where

Æ

x

denotes the Æ-measure at x. Thus we are inserting one unit of 
urrent at x

and extra
ting it at y. Let f = �

�1

�. A

ording to our earlier 
omments, the

e�e
tive resistan
e from x to y, �(x; y), is given by f(x)� f(y) = (�

�1

�)(x)�

(�

�1

�)(y). It is now easy to see why � is a metri
, along the lines given in

[KlR℄. If z is any other point of X , let

g = �

�1

(Æ

x

� Æ

z

); h = �

�1

(Æ

z

� Æ

y

):

Clearly f = g + h, so

�(x; y) = g(x)� g(y) + h(x)� h(y):

But simple 
onsiderations show that g must take its maximum and minimum

values at x and z, so that

g(x)� g(y) � g(x)� g(z) = �(x; z):
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Similarly h(x) � h(y) � �(x; z). The triangle inequality for � follows.

But we are interested more generally in the e�e
tive resistan
e between � and

� where � and � are arbitrary probability measures, and it is not even 
lear

how this should be de�ned. (It does not seem natural just to use the Monge{

Kantorovi
h metri
 from �.) In view of our earlier 
onsiderations we should

form � = �� �, and so we need an appropriate norm on A

0

0

, and this should

be the dual norm of a Lip-norm, say L, on C(X), probably de�ned by means

of a norm on 


u

. The dual norm, L

0

, should be su
h that if � = Æ

x

� Æ

y

,

then L

0

(�) = (�

�1

�)(x)� (�

�1

�)(y). But as remarked above, �

�1

� takes its

maximum and minimum values at x and y. Thus a norm whi
h will meet this

requirement is

L

0

(�) = 2k�

�1

�k

�

1

;

where k k

�

1

is as de�ned in Se
tion 1. To �nd L on C(X) we use the self-

adjointness of � to 
al
ulate, for g 2 C(X) and any � 2 A

0

0

,

hg; �i = hg;��

�1

�i = h�g;�

�1

�i:

The supremum over � su
h that 2k�

�1

�k

�

1

� 1 is the same as the supremum

of

h(1=2)�g; hi

over h su
h that k

~

hk

�

1

� 1. But we saw earlier that this gives just the restri
tion

to A

0

0

of the dual norm for k k

1

on C(X), whi
h is the L

1

-norm. Thus we

see that we must set

L(g) = (1=2)k�gk

1

= (1=2)

X

x

j(�g)(x)j

= (1=2)

X

x

�

�

�

�

�

X

y

(g(x)� g(y))


xy

�

�

�

�

�

= (1=2)

X

x

�

�

�

�

�

X

y

dg(x; y)


xy

�

�

�

�

�

:

This is 
ertainly rather di�erent from the usual Lip-norms for metri
s on �nite

sets. The above expression suggests that we de�ne a seminorm, N , on 


u

by

N(!) = (1=2)

X

x

�

�

�

�

�

X

y

!(x; y)


xy

�

�

�

�

�

;

so that we have

L(g) = N(dg):

Reversal of the earlier 
al
ulation shows that the dual norm is the L

0


onsidered

above, so that we obtain the desired �(�; �). However N will not usually be a

bimodule norm, so that we are not fully in the 
ontext of the previous se
tions,

and L need not satisfy the Leibniz inequality.

I must admit that I see no parti
ularly natural interpretation for L(g), nor for

�(�; �), even if we 
all the latter \e�e
tive resistan
e". If g were interpreted as

Do
umenta Mathemati
a 4 (1999) 559{600



Metri
s on State Spa
es 597

giving voltages on X , then L(g) would be half the sum of the absolute values of

the 
urrents inserted or extra
ted from the 
ir
uit, and thus exa
tly the sum of

the 
urrents inserted into the 
ir
uit (disregarding the 
urrents extra
ted). But

I do not see why it is natural to give g su
h an interpretation as voltages. If one

goes ba
k to the e�e
tive resistan
e between two points, then it is easily seen

that this is equal to the energy dissipated by the 
ir
uit when one unit of 
urrent

is inserted. This suggests using the dissipated energy in the more general 
ase

of arbitrary probability measures � and �. But the energy dissipated along

any edge varies as the square of the 
urrent, and one 
an see by examples

that this 
auses the triangle inequality to fail. One does obtain a metri
 if

one uses the square-root of the dissipated energy, but this does not give the


orre
t value for the e�e
tive resistan
e between two points. These possibilities

are not far from the Lips
hitz norm used right after lemma 4:1 of [Da℄ to

de�ne the metri
 denoted there by d

3

. This Lips
hitz norm 
an be interpreted

as the supremum over the points x of X of the square roots of the energy

dissipations in all the edges beginning at x. Perhaps the dis
ussion of Diri
hlet

spa
es given in se
tion 6 of [W6℄, or the \twisted bimodule stru
ture" and


orresponding di�erential dis
ussed beginning on page 149 of [Me℄ in 
onne
tion

with Hudson's treatment of dis
rete 
ows and sto
hasti
 di�erential equations,


ould be used to shed more light on this. Or perhaps some of the stopping

rules or mixing times 
onsidered for Markov 
hains, as dis
ussed in [LW℄, are

relevant.

Finally, we remark that it would be interesting to study resistan
e distan
e in

the 
ontinuous 
ase, for example for thin plates of resistan
e metal of various

shapes.
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