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ABSTRACT. Let P be the set of all probability measures on R possess-
ing moments of every order. Consider P as a semigroup with respect
to convolution. After topologizing P in a natural way, we determine
all continuous homomorphisms of P into the unit circle and, as a
corollary, those into the real line. The latter are precisely the finite
linear combinations of cumulants, and from these all the former are
obtained via multiplication by i and exponentiation.

We obtain as corollaries similar results for the probability mea-
sures with some or no moments finite, and characterizations of con-
stant multiples of cumulants as affinely equivariant and convolution-
additive functionals. The “no moments”-case yields a theorem of
Haldsz. Otherwise our results appear to be new even when specialized
to yield characterizations of the expectation or the variance.

Our basic tool is a refinement of the convolution quotient representa-
tion theorem for signed measures of Ruzsa & Székely.
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602 LuTrz MATTNER
1 INTRODUCTION, RESULTS, AND EASY PROOFS

1.1 Am. Cumulants are certain functionals of probability measures. This
paper attempts to explain more precisely what they are by characterizing them
through their most useful properties. For simplicity, only the one-dimensional
case of probability measures on R is treated. There the most familiar exam-
ples of cumulants are the expectation and the variance. Our results yield, in
particular, new descriptions of the roles played by these latter two functionals
in probability theory.

1.2 GUIDE. The definition of cumulants is recalled in Subsection 1.4 below,
as formula (4). The useful properties of cumulants, referred to above, are the
homomorphism property (5) and their transformation behaviour under affine
mappings, (14). The relation between cumulants and moments is recalled in
Subsection 1.5.

Subsection 1.6 introduces topologies on the domains of definition of the cumu-
lants, with the aim of formulating regularity assumptions in our theorems and
corollaries. That some regularity assumptions are actually necessary, at least
in the results 1.8 — 1.12, is demonstrated in 1.20.

Theorem 1.8, characterizing the continuous characters of the semigroup
Probs(R), is the main result of the present paper. Its natural forerunner
from the literature, namely the theorem of Haldsz, is recalled in 1.10 below as
a special case of Corollary 1.9.

Another corollary of Theorem 1.8, and perhaps the most interesting result
of this paper, is the characterization of the finite linear combinations of cu-
mulants as the continuous, R-valued, and convolution-additive functionals of
probability measures, stated in Theorem 1.11 and Corollary 1.12. Such results
were conjectured by Kemperman (1972). By restricting the functionals to be
[0, oo -valued, we arrive at a characterization of the variance in 1.14. [A related
result of Martin Diaz (1977) is discussed in 1.22.]

Our next results, 1.17 and 1.18, are spezializations of 1.8 and 1.11 to scale
equivariant functionals, the definition of which being recalled in 1.16.

As a further corollary, we obtain in 1.19 a characterization of the expectation as
the only nontrivial continuous functional homomorphic with respect to additive
and multiplicative convolutions.

Historical and etymological remarks on cumulants are given in Subsection 1.21.
Subsection 1.22 discusses some further references related to the present work.

Easy proofs are given immediately after the statement of a result in Section
1. The only difficult proof of this paper, needed for the “only if” part of our
main result 1.8, is the content of Section 2. Its basic technical tool, refining
the convolution quotient representation theorem for signed measures of Ruzsa
& Székely (1983, 1985, 1988), is supplied in Subsection 2.5.
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WHAT ARE CUMULANTS ? 603

1.3 SOME NOTATION AND CONVENTIONS. The positive integers are denoted
by N, the nonnegative ones by Ny.

If X is a set equipped with a o-algebra A, we let Prob(X) denote the set
of all probability measures defined on A. The real line R is understood to
be equipped with its Borel o-algebra. The convolution of P,Q € Prob(R) is
denoted by P x (). We write §, for the Dirac measure concentrated at a € R,
and & := §p for the one concentrated at zero. For the image measure of a
probability measure P under a measurable function f, we use the notation
foP. We write supp P for the support [= minimal closed set of probability
one| of a P € Prob(R).

Prob(R) will mainly be considered as a semigroup with respect to convolution.
Homomorphisms of a semigroup [below always a sub-semigroup of Prob(R)]
into the multiplicative group T of complex numbers of absolute value one will
be called characters, homomorphisms into the additive group R will be called
additive functions.

1.4  CuMULANTS. We present below the usual introduction of cumulants and
their most important properties. For P € Prob(R), let P denote its Fourier
transform or characteristic function, defined by

P@t) = /e’“ dP(z) (t € R). (1)

The most important reason for considering Fourier transforms of probability
measures is multiplicativity with respect to convolution:

(P+QV(H) = P)-Qt) (P,Q e Prob(R), t € R). (2)

Let log denote the usual logarithm defined on, say, {z € C : |z — 1| < 1}. Let
P € Prob(R). Then P is continuous with P(0) = 1, so that logoP is defined
in some P-dependent neighbourhood of zero. Now put

Prob,.(R) := {P € Prob(R) : /|ac|’" dP(z) < oo} (reNo), (3)
and assume that r € N and P € Prob,(R). Then P and thus log oP is r times

continuously differentiable in the neighbourhood of zero introduced above, and
the number

kn(P) = i 7 (D" log oﬁ) (0) (4)

is called the rth cumulant of P. [Readers wondering about this strange name
are referred to Subsection 1.21.] It is easy to show that the cumulants are real-
valued functionals. Their most important property, which obviously follows
from (2) and (4), is additivity with respect to convolution:

[5:(P+Q) = 5, (P)+5:(Q)  (r€N, P,Q € Prob,(R)) | (5)
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604 LuTrz MATTNER

In other words: For each r € N, (Prob,(R), ) is a semigroup on which &, is an
additive function.

1.5 EXAMPLES, EXPRESSION IN TERMS OF MOMENTS. The two most familiar
examples of cumulants are the mean ; and the variance o2, since

k1(P)y = wu(P) := /ach(x) (P € Prob;(R)),
ka(P) = o*(P) := /(ac — n(P))? dP(x) (P € Proby(R)).

These formulas are special cases of the relation between cumulants and the
moments

ur(P) := [a"dP(z) = i""(D"P)(0)  (r € Ny, P € Prob,(R)).

One possibility of expressing this relation is to use the recursion

r

Prt1 = Z C)erﬂlﬂ (r € No), (6)

=0

which is easily proved using the Leibniz rule for the differentiation of a product
and the representation of the moments as derivatives: For P € Prob,11(R) put
Q= P and ¢ = logp, in a neighbourhood of zero, and compute D™ty =
D"(p-Dy) =3, (1)(D" ') - (D'14)), evaluate the extreme left and right
hand sides at zero, and divide by i"*!, to arrive at (6). Since the coefficients
of pr41 and k41 in (6) are both one, it follows by induction that

Kr = pr + polynomial without constant term in py,...,u.—1 (r € N), (7)
and that corresponding relations hold when p and & are interchanged. Various
explicit fomulas derived from these relations and some examples of actual com-
putations of cumulants may be found in Chapter 3 of Kendall, Stuart & Ord

(1987). We merely note here two further examples, for convenience rewritten
in terms of centered moments,

kg(P) = / (z — u(P))? dP(z) (P € Probs(R)),

I<.34(P)

/(m W) dP(z) — 3 (6*(P))> (P € Proby(R)).

As one might suspect on seeing these formulas, the variance ko is the only
nonnegative cumulant. [This fact follows easily from 1.13 below, as can be seen
from the proof of 1.14.]
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WHAT ARE CUMULANTS ? 605

1.6 TOPOLOGIES ON SOME SUBSETS OF Prob(R). One of our aims is to
show that every “reasonable” homomorphism from (Prob,.(R), ) into (R, +)
is a linear combination of cumulants of order at most . This is the content
of Corollary 1.12, where “reasonable” is specified to mean “continuous”. To
this end we introduce here on each Prob,.(R) a topology. In order to make
the continuity assumption in Corollary 1.12 weak, we have to choose a strong
topology on Prob,.(R). We take the one induced by the weighted total variation
metric d, defined by

0, (P.Q) = / (1412 diP—Q|(x)  (P.Q € Proby(R).  (8)
We further consider

Proby(R) := (7] Prob,(R),
rENg

which is the largest set of probability measures on which every cumulant is
defined. We topologize Probe, (R) by the family of metrics (d, : r € Ny).

1.7 LEMMA. a) Each ,|Prob,.(R) is continuous with respect to d,.

b) Let r € N and ¢ € |0,00[. Then there exists a sequence (P,) in Probs(R)
with

ILm dr—1(Pn,0) = 0, 9)
lim x(P,) = 0 I=1,...,r=1), (10)
n—oo
nan;O k.(P,) = ec (11)
ProoOF. a) The functionals (u; : [ = 1,...,r) are obviously continuous with

respect to d,., and (7) shows in particular that x, is a polynomial function of
them.

b) We may restrict attention to those n € N with ¢en™ < 1 and put P, :=
(1 =cn™")0 + cn™"0p. Then P, € Probe(R), and dr—i(P,,d) = = yields
(9). By part a), (9) implies (10). Finally, (11) follows from s, (P,) = en!™"
(I=1,...,r) and (7). i

1.8 THEOREM (CONTINUOUS CHARACTERS OF Prob.(R)). A function
X|Probo (R) is a continuous character iff

X(P) =exp(i »_cri(P)) (P € Probe(R)) (12)
leN

holds for some finitely supported sequence of real numbers (¢; : | € N). The
latter, if existent, is uniquely determined by x.
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606 LuTrz MATTNER

ProOF. The proof of the “only if” part is the content of Section 2. The “if”
part follows trivially from 1.7 a) and (5).

Finally suppose that we have (12) and an analogous representation of y in-
volving another finitely supported sequence (¢ : I € N). Then the sequence
(di) := (¢; — &) yields an analogous representation of the constant character 1.
Suppose that not all d; vanish. Put r := min {l : d; # 0} and apply 1.7 b) with
c:=7/|dy]. Then 1 = exp(iy.,_, diri(P,)) = exp(+im) = —1 for n — oo.
This contradiction shows that we must have d; = 0 for every [ € N, as was to
be proved. ]

1.9 COROLLARY. Letr € Ny. A function x|Prob,(R) is a continuous char-
acter iff (12) holds with ¢; = 0 for | > r, and with Prob,(R) in place of
Probe (R).

PROOF. Again, the “if” part follows from from 1.7 a) and (5). To prove “only
if?: Let x|Prob,.(R) be a continuous character. Then, by 1.8, its restriction
X|Probs (R) fulfils (12) for some finitely supported sequence (¢;). Assume
that ¢ # 0 for some | > r. Put # := min{l € N: ¢ #0}. Choose (P,)
according to 1.7 b) with 7 in place of r and with ¢ := n/|cz|. Then, since
r < ¥, we have P, — § with respect to d.. On the other hand, we have
X(P,) = —1# 1 = x(8). This contradiction to the continuity of y shows that
we must have ¢ = 0 for | > r. It follows that the right hand side of (12)
is defined and continuous on Prob,(R). Since Prob.,(R) is obviously dense in
Prob,.(R), this implies that (12) also holds with Prob,.(R) in place of Probs, (R).

O

1.10 THEOREM OF HALASz. The last corollary yields in particular a theorem
of Haldsz, presented on page 132 of Ruzsa & Székely (1988), which reads:

1 is the only character of Prob(R) continuous with respect to weak
convergence.

In fact, the special case r = 0 of our Corollary 1.9 is slightly stronger, since our
continuity assumption refers to a stronger topology on Prob(R).

1.11 THEOREM (ADDITIVE FUNCTIONS ON Prob.(R)). A function
k|Probo (R) — R is continuous and additive iff

K(P)=> akri(P) (P €Proby(R) (13)
leN

holds for some finitely supported family of real numbers (¢; : 1 € N). The latter,
if existent, is uniquely determined by k.
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WHAT ARE CUMULANTS ? 607

ProoF. The “if” part and the uniqueness of (¢;) follows via multiplication by
i and subsequent exponentiation from the corresponding statements in 1.8.

To prove the “only if” part, let k|Proby,(R) — R be continuous and additive.
Put
x(P) := exp(ik(P)) (P € Prob (R)).

Then x satisfies the hypothesis of Theorem 1.8, and hence can be represented
as in (12). This implies

R(P) = n(P)+ Y am(P) (P € Probu(R),
l

where n|Probs(R) — 27Z. Since n must be additive, n(§) = 0. Since 5
must be continuous and Probe,(R) is convex, n(Probs, (R)) must be connected.
[Here we have used the obvious fact that for P,Q € Prob.(R) the function
[0,1] 2t~ tP + (1 — t)Q € Probs(R) is continuous.] Thus n = 0. i

1.12 COROLLARY. Let r € Ny. A function k|Prob,.(R) — R is continuous
and additive iff (13) holds with ¢; =0 for 1 > r and with Prob,(R) in place of
Probs (R).

ProOOF. Deduce 1.12 from 1.9, by arguing as in the proof of 1.11. Alternatively,
deduce 1.12 from 1.11 by arguing as in the proof of 1.9. o

1.13 LEMMA (CUMULANTS OF BERNOULLI DISTRIBUTIONS). Forr € N, let
f[0,1] = R be defined by

frp) = ke ((1=p)do+pd)  (pel0,1]).
Then, for each r, f. is a polynomial function of degree r with r simple zeros in
[0,1].

ProoF. It is known [for example, from Kendall, Stuart & Ord (1987), exercise
5.1] that

fraalp) = p-(1=p)-fi(p) (reN pel0,1]),

where the prime denotes differentiation with respect to p. Since fi(p) = p for
p € [0,1], the claim follows by an induction argument, using Rolle’s theorem
and the fact that f, has at most r — 1 zeros, counting multiplicity. O

1.14 A CHARACTERIZATION OF THE VARIANCE. A function £|Probs (R) —
[0, 00[ is continuous and additive iff k = cka for some c € [0, 0.

ProOOF. The “if” claim is trivial. To prove “only if”, we may by Theorem
1.11 start from the representation (13). Inserting there P = §, with a € R, we
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608 LuTrz MATTNER

see that the assumption & > 0 forces ¢; = 0. Thus, except for the trivial case
k = 0, we have

K(P) =Y ari(P) (P € Probu(R))
=2

for some r > 2 with ¢, # 0. Suppose now that » > 3. Then we may, by
the lemma 1.13, choose a Bernoulli distribution Py = (1 — p)dg + pd; with
erkr(Po) < 0. Tt follows that k(P) < 0 for P := (z + az)oPy with a > 0
sufficiently large, using (14) below. This contradiction proves our claim. ]

1.15 AFFINE EQUIVARIANCE OF CUMULANTS. The second most important

property of the cumulants is their behaviour under affine transformations: For
r €N, P € Prob,(R) and a,b € R, we have

{ ar (P)+b  (r=1),

kr((z = az + b)oP) a" iy (P) (r >2).

(14)
In particular, each cumulant is affinely equivariant in the sense of the following
definition and, by a trivial specialization, also scale equivariant.

1.16 DEFINITION (EQUIVARIANCE). a) Let X" be a set and 7 be a set of
functions from X into X. A function ¢|X is called equivariant, with respect to
T, if we have the implication

y X, p@) =¢u), TeT = ¢T@)=eT(y).  (15)
b) For a,b € R define T, 3|Prob(R) — Prob(R) by
Top(P) = (x+— ax+b)oP (P € Prob(R))

and put 7 := {Thp: a,b € R}. Let P C Prob(R) satisfy the implication P €
P, T eT — T(P) € P. Then a function ¢|P is called affinely equivariant if
it is equivariant with respect to 7, in the sense of part a).

c) We define a function ¢|P to be scale equivariant if it satisfies the definition
given in b) above, but with b = 0 and a > 0 in the definition of 7.

1.17 THEOREM (EQUIVARIANT CONTINUOUS CHARACTERS OF Probs(R)).
A function x|Probs (R) is a scale equivariant continuous character iff

x(P) = exp(ick,(P)) (P € Probe(R)) (16)

for some r € N and some c € R.

Proor. The “if” part is trivial. To prove “only if”: Define S,(P) := (z —
ax)oP for P € Prob(R) and a € ]0,00[. For A € ]0,00[, let Py denote the
Poisson distribution with expectation A. Then

k1(Sa(Py) = a'\ (leN, a,\ €]0,00]). (17)
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Now let x|Probe(R) be a scale equivariant continuous character. Applying
1.8, we get (12) for some finitely supported sequence (¢; : I € N), and we have
to show that there is at most one [ € N with ¢; # 0. Using (17), (12) yields in
particular

X(Sa(Pr)) = exp(iAp(a))  (a, A €]0,00]) (18)

where p is the polynomial function defined by

pla) = chal (aeC).

leN

Now assume, to get a contradiction, that there are at least two I € N with
¢; # 0. Then for arbitrary aq, az € 0, 00[ with a1 # ag and arbitrary Ay, A # 0,
there exists a number b € 10, oo[ with

Alp(bal) — Agp(bag) ¢ 2. (19)

[Proof: Assume without loss of generality that a; < as. If our claim is false,
then the rational function C 5 z — R(z) := p(a12)/p(azz) is constant. But by
our assumption on p, 9 :=sup{|z|: z € C, p(z) =0} > 0. In view of 0 < a; <
as, it is obvious that R has a zero, namely on the circle {|z| = o/a;}. Hence
R =0 and thus p =0, a contradiction.]

Now choose specifically a1, a2 € ]0,00[ with a; # as in such a way that p(aq) -
p(az) > 0. Choose A1, Az € ]0, 0o[ with

Aip(ar) = Aap(az), (20)

choose b as in (19), and put Qf, := S, (P, ) for £ = 1,2. Then (18) and (20
yield x(Q1) = x(Q2), whereas (18) also yields x(S5(Qk)) = Xx(Sbay, (Pr,)) =
exp(iAgp(bag)) for k = 1,2, so that (19) implies x(Sp(Q1)) # x(Sp(Q2)), in
contradiction to the scale equivariance of y. ]

1.18 THEOREM (SCALE EQUIVARIANT ADDITIVE FUNCTIONS ON Proby, (R)).
A function k|Proby (R) — R is continuous, additive, and scale equivariant, iff
there exist r € N and ¢ € R such that k = ck,..

PROOF. Proceed as in the proof of the “only if” part of Theorem 1.11, but use
equivariance of xy and 1.17 in place of 1.8. m]

1.19 A CHARACTERIZATION OF THE EXPECTATION. Notation: In this sub-
section only, we write P& () for the usual convolution P %@ of P,Q € Prob(R),
and P @ for the multiplicative convolution of P,@ € Prob(R), that is, the
distribution of X -Y with X,Y being independent random variables with dis-
tributions P, Q.
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THEOREM. Let k|Proby (R) — R be continuous. Then we have both

R(PEQ) = r(P)+r(Q), (21)
K(PBQ) = K(P) K(Q) (22)

for P,Q € Proby,(R), iff either k = k1 or & = 0.

ProOF. The “if” part is obvious. So assume that & is continuous and satisfies
(21) and (22). By applying (22) to Q = d,, for every a € ]0, 00, we see that
k is scale equivariant. Hence (21) and Corollary 1.18 yield k = ck, for some
¢ € R and some r € N. Choose P € Probs(R) with ,(P) # 0, for example P
= Poisson distribution with parameter 1. Insert this P and @ = ¢; into (22),
use k = ck,, and divide by k,(P). The result is ¢ = ¢®k,(d;). If r > 2, then
kr(01) =0, hence ¢ = 0 and thus k = 0. If r = 1, then &,.(d1) = 1, hence either
again c =0 and k =0, or ¢ = 1 and thus K = k1. m]

1.20 “CoOUNTEREXAMPLES”. Examples a) and b) below show that the con-
tinuity assumptions in 1.8 — 1.12 can not be omitted without substitute. Both
a) and b) should be regarded as pathological. On the other hand, the examples
in ¢) show that not only 1.8 — 1.12, but also 1.14 and, using (23), also 1.17 and
1.18 receive non-pathological counterexamples if the continuity assumption is
dropped and if the domain of definition of the functionals is taken to be to
small. Concerning 1.8 — 1.12, we may also refer to example d), suggested to
me by I.Z. Ruzsa, where the domain of definition of x could be thought of as
being not much smaller than Prob., (R).

a) By the axiom of choice, there exists a discontinuous additive function
fIR = R Now k(P) := f(u(P)) defines a discontinuous additive function
k|Prob; (R) — R.

b) [Ruzsa & Székely (1988), pp. 122-123, 2.3 and 2.4] construct, using the axiom
of choice, a homomorphism & from (Prob(R), ) into (R, +) which extends the
expectation k1 defined on the subsemigroup Prob;(R). They also show that
each such x assumes negative values for some P with support in [0, 00[. Tt

follows that the k constructed is a discontinuous additive function from Prob(R)
into R.

¢) On the semigroup
Prob.(R) := {P € Prob(R) : supp P compact} C Probs(R)

we obtain an additive and nonnegative functional, normalized here as to satisfy
additionally condition i) from 1.22 below, by each of the following definitions:

k(P) := % - (max supp P — minsupp P) (P € Prob.(R)), (23)
k(P) logp(;ioz i‘;fip(_i) (P € Prob.(R)). (24)
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[In (24), we use of course the definition (1) with C in place of R.]

d) Consider the semigroup
P = {P € Prob (R) : P holomorphic near zero} C  Prob(R).

Let (a; : I € N) be any sequence of real numbers satisfying a; = O(e'), for every
€ > 0. Then

| ]

!lnl(P) (P e P) (25)

o~

K(P) =Y
=1

defines an additive function on P. [To see that the series in (25) always con-
verges, observe that log oP is now holomorphic in some P-dependent neigh-
bourhood of zero, so that its Taylor series Y ;= x;(P) - (iz)!/l! converges for
|z| sufficiently small.]

1.21 SOME EARLY HISTORY AND ETYMOLOGY. Cumulants were apparently
first introduced by T.N. Thiele [1838-1910] under the name of “half-invariants”.
Hald (1981) describes, on pages 7-10, Thiele’s contributions and their insuffi-
cient acknowledgement by K. Pearson and R.A. Fisher. According to Hald,
cumulants are first defined in the book Thiele (1889). [This I did not check.
Hald’s formula (4.1), claimed to be Thiele’s definition, is, up to an obvious
misprint, the now well-known recursion (6), determining x,11 as a polynomial
in the moments y;.] In a later and more accessible version of his book, Thiele
(1903) essentially gives definition (4). Hald (1998) contains a much more com-
prehensive early history of cumulants.

Later authors, such as Craig (1931) and Wishart (1929), refer to the cumu-
lants as “semi-invariants of Thiele”, while Fisher (1929-30), on page 200 of his
paper, simply calls them “semi-invariants”, without bothering to name Thiele.
But Wishart and Fisher, who obviously new about each others work before
publication, prefer to use the new term “cumulative moment functions” in-
stead. The reason for adopting this term is hinted at in Fisher’s paper: On
page 199, he gives an interesting although perhaps not quite precise defini-
tion of rather general “moment functions” of populations, roughly speaking
by polynomial estimability, which seems at any rate to be intended to include
polynomial functions of finitely many ordinary moments, and hence in partic-
ular cumulants. On page 202, Fisher then refers to a “cumulative property”
of the logarithm of the Laplace transform which, expressed in terms of the
cumulants, is just condition (5). Thus the the adjective “cumulative” refers,
in this context, to a homomorphism condition. In particular, it is not used
to distinguish a concept related to probability measures from a corresponding
concept related to probability densities, as would often be the case in the older
statistical literature.
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Finally, “cumulative moment function” was abbreviated to ”cumulant” by
Fisher & Wishart (1931-32) and Fisher (1932), with Hotelling (1933) claim-
ing to have suggested this name, which quickly became the standard one in the
english language literature. The first publication having the word “cumulant”
in its title seems to be the paper by Cornish & Fisher (1937), who repeat the
definition, but already Haldane (1937), page 136, uses “cumulants” without
definition or reference.

Readers generally interested in the history of probabilistic or statistical terms
are referred to David (1995, 1998) as a useful starting point.

1.22 RELATED WORK NOT DISCUSSED ABOVE. The following papers have
some relation with the present one.

Craig (1931) states on page 160 a forerunner of our Corollary 1.18. Where we
assume mere continuity of k, Craig assumes in particular that « is a polynomial
function of some finite number of moments y;. His treatment is not quite
rigorous: For example, no domain of definition of k is specified, his conclusion
is kK = K, for some r [instead of the correct conclusion k = ¢k, for some r and
c], and a proof is offered only for the case where & is a polynomial function of
[ 17

Savage (1971) characterizes moments and more general expectations of expo-
nential polynomials as functionals & satisfying, on the one hand, conditions like
k(P x Q) = T(k(P),x(Q)) with T unspecified and, on the other hand, having
a representation k(P) = [ fdP with f unspecified. His first assumption is
more liberal than our homomorphism assumptions, but his second assumption
is rather restrictive, excluding for example every cumulant k,. with » > 2. Thus
the work of Savage is incomparable to the present one.

Martin Diaz (1977), Teorema 4, states a characterization of the vari-
ance which may be formulated as follows. We temporarily put P :=
{P € Prob(R) : supp P finite}.

THEOREM (MARTIN DI1AZ) Let |P — [0, 00 and assume:

i) For everyn € N, the map

R x {pE 10,1]" : Zpi = 1} > (z,p) HH(ZM%)

is partially continuous in the two variables x and p.
i) K(61) =0, k(301 +6)) =1

iii) If we put k(X) = &(P) for every random variable X with distribution
P € P, then

n n

() X)) = Z K (X;)

i=1 1=1
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whenever the X; are pairwise independent random variables, on a com-
mon probability space, with distributions belonging to P.

Then Kk = Ka.

We observe that the word “pairwise” renders the third assumption rather con-
fining. But without this word, a counterexample would be obtained by re-
stricting to P either x from (23) or (24). These examples may be regarded
as negative solutions to the problem stated in Martin Diaz (1977) on page 96,
while our result 1.14 may be regarded as a kind of positive solution.

Good (1979) speculates about the existence of a useful notion of “fractional
cumulants”, perhaps to be defined via fractional differentiation of log oP in
analogy to (4). Such a definition, if possible, should lead to an additive function
on Proby (R), and Theorem 1.11 could be taken as an indication that it will
not lead to anything new and useful.

Heyer (1981) reviews, among other topics, axiomatic approaches to expectation
and variances for probability measures on compact groups, referring to earlier
publications of himself and of Maksimov, in particular Maksimov (1980). Al-
though somewhat similar in spirit to the present paper, there is no overlap in
the results obtained.

Characterizations of the variance not referring to the semigroup structure of
Prob(R) have been provided by Bomsdorf (1974), by Gil Alvarez (1983), and
by Kagan & Shepp (1998). The former two are somewhat similar to the char-
acterization of the Shannon entropy by Fadeev’s axioms, as presented in Rényi
(1970), page 548.

2 THE MAIN PROOF

2.1 FURTHER NOTATION AND CONVENTIONS. The proof of the “only if” part
of Theorem 1.8, given in 2.8 below, is prepared by the introduction of an
auxiliary topological vector space H in 2.2 and the identification of its dual H’
in 2.3. We will use some tools from functional and Fourier analysis as explained
in Rudin (1991). In particular, we assume as known the spaces C*°(R), D(R),
D'(R) with their usual topologies. We depart from the conventions of Rudin
(1991) in that here a topological vector space is not necessarily assumed to be
Hausdorff.

We let U denote the set of all open symmetric neighbourhoods of 0 € R. For
U € U, a function h|U — C is called hermitean if

i) = (D (teD).

2.2 THE SPACE H OF GERMS OF HERMITEAN C® FUNCTIONS VANISHING AT
ZERO. We consider

X = {heC>®R) : h hermitean, h(0) = 0}
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as a topological vector space over R, with the topology inherited from the usual
topology of C*°(R). We further consider the vector subspace

N = {heX :3U €U with h|U = 0}
of X, and form the quotient topological vector space
H = X/N.

For h € X, we write [h] for the equivalence class H € H with h € H. Tt
easy to see, though for our purposes unnecessary to check, that N is not
closed, so that # is not Hausdorff. Since C*°(R) is metrizable, H is pseudo-
metrizable, and a sequence (H; : j € N) converges to 0 € # iff there exist
hj € H; with hj - 0 € X. [Proof: The discussion in Sections 1.40, 1.41
of Rudin (1991) applies with obvious changes, necessitated by the nonclosed-
ness of our N. In particular, if d is some tranlation-invariant metric for X,
the formula o([h1],[h2]) := inf {d(h1 — ha,g) : g € N} defines a translation-
invariant pseudo-metric ¢ for . And if ([h;]) : j € N) is a sequence in H with
lim o([h;],[0]) = 0, we may choose g; € N with d(h;,g;) < 20([h;],[0]) + 71,
yielding 77,]' = h]' —gj € [h]] with 77,]' — 0]

The value at zero of the derivatives D'H(0) of a H € H, occuring below, is
defined in the obvious way.

2.3 THE DUAL H' oF H. A function A|H is an R-valued, continuous, and R-
linear functional iff there exists an n € Ny and a finite sequence of real numbers
(¢ : 1 <1< n) such that

AH) = zn:c,-r’(D’H)(o) (H € H). (26)
=1

ProOF. The “if” claim is obviously true. To prove “only if”: Let A|H — R
be continuous and R-linear. Define S|D(R) — R by
1

S@) = Al (p-e@+9=¢0)) (v €D®),

where 1(t) := ¢)(—t). It is obvious that S is well-defined and R-valued, as well
as continuous and R-linear. It follows that the functional T'|D(R) — C defined
by

T(p) = S(p)—iS(iy) (p€D(R))

is continuous and C-linear, that is, a distribution € D'(R). It is easily checked
that T has support contained in {0}. Hence, by Rudin (1991), Theorem 6.24
d) and Theorem 6.25, there is an n € Ny and a sequence of complex numbers
(by : 0 <1< n)such that

T(p) = Y bi-(D'¢)(0) (p€D(R)).
=0
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Since S = Re T', we get for H = [h] € H, using the hermitean property of h
and h(0) =0,

AH) = S(h)
= ReT(h)

— 3 Re (b (D'h) (0))
=1

= Y Re (bi')-i~" (D'R) (0),
=1
and thus (26) with ¢; = Re (b;il). i

2.4 CONVERGENCE IN Prob.(R). Let P be an element of and (P;) be a net
in Prob (R). Then lim P; = P, in the topology of Prob.(R), iff im P; = P
with respect to total variation distance and

li]m / 2! dPj(z) = / #'dP(z) (I €N). (27)

PRrROOF. Let first w be any nonnegative measurable function on a measurable
space X. Let P,Q € Prob(X) with [wd(P + Q) < 00, and fix a > 0. Then

[war-a < [w-w<adr-Q+ [v-w>adr+a)
= [w-w<aar-ai+2 [v-@>aap

+ [wa@-P) - [w-w<ad@-r)

Q/w-(wga)d|P—Q|+2/w-(w>a)dp

+/wdQ—/de.

Now let (P;) be a net in Prob(X) with [wdP; < oo for every j. The preceding
inequality shows that lim [wd|P — P;| = 0 if both lim [ 1d|P — P;| = 0 and
lim [wdP; < [wdP. Applied to X = R and w(z) = 1 + 2", for each n € N,
the “if” part follows. The “only if” part is trivial. m]

IN

2.5 QUOTIENTS OF CHARACTERISTIC FUNCTIONS. Let
ped® = {peDR) : ¢(0) =1, hermitean}.
a) There exist P,Q € Proby (R) with

~

Q = P. (28)
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b) Let (p;) be a net in & with lim p; = ¢ in the D(R)-topology. Then we may
choose Pj,Q; € Proby (R) with ¢;Q; = P; and

lim P; = P, limQ; =@ in Probo(R). (29)

REMARK. As said before in 1.2, this basic tool of the present paper is a
refinement of a theorem of Ruzsa & Székely. In particular, most of the following
proof of part a) is as in Ruzsa & Székely (1988), pages 126-127.

Proor. We will calculate in
M'(R) := set of all bounded complex measures on R,

which is well known to be a Banach algebra, with convolution * as multiplica-
tion and norm || - || defined by

lul = / Lyl (ue M'(R)), (30)

|| = total variation measure of p.

For a u € M*(R), its Fourier transform is the continuous function i defined by

a(t) = /em du(z) (teR).

We assume as known properties of the Fourier transform as explained, for ex-
ample, in Chapter 7 of Rudin (1991). All elements of M'(R) actually occuring
below will in fact belong to

ML® = {ue @ [laf dulie) <o @M},

For 1 € ML (R), we have i € C*°(R).

a) We have ¢ = i with u € ML (R), u real, u(R) = 1. [Apply Theorem 7.7 of
Rudin (1991).]

Choose «, 3 € [0,00[ and R € Probe (R) with
l(w=0)*Rl| =a < (31)
and
R > pBR. (32)

[For example, if R is any centered normal distribution, then (32) is true with
B =212 and for R sufficiently flat (31) is true as well. Alternatively, we may
take 3 = 27! and for R a sufficiently flat uniform distribution on an interval

[—a,a]]
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Put
S = B7Y(n—29) xRl (33)
Q = (1-2)R>+Y 5™, (34)
ﬂ k=0
P = uxQ. (35)

Since S is a sub-probability measure with ||S]| = S(R) = a/8 < 1, the series
in (34) is convergent in M (R), and @ € Prob(R). Also P(R) = 1 and, easily
verified,

o0

)—1P = M*R*Q*Zs*k

(-3
ﬂ k=0

_ R*2+R*2*(u—5+5)*25*k,
k=0

where, using (32) and (33),

RZx(u—0+8) Rx(Rx(u—20)+pS)

>
> 0.
Hence P > 0 and thus P € Prob(R).

By 0< S <8 '(ul+6)*R, S € ML (R). Hence S € C*(R). Since (34) shows
that
(0]

Q) = <1—5>-(1?z(t>>2-(1—§<t>>*1 (t € R), (36)

and since also B € C®(R), it follows that Q € C*°(R). Since (35) implies
(28), Pis C™® as well, at least in some neighbourhood of zero. Since P, Q are
probability measures, it follows that P, @ € Probs (R). [Compare, for example,
Feller (1971), page 528, problem 15.]

b) We continue to use the notation of the above proof of part a). Let, addi-
tionally, p; denote the element of M1 (R) with ¢; = fij, and

aj = |[(n; —9)*R|l.

By Theorem 7.7 of Rudin (1991), we have lim p; = p in the Schwartz space
S(R). It follows that

lim p; = p with respect to the norms || - || (k € Ny), (37)

where
Wl = /<1+|a:|k)d|u|<x) (k € Ny, v € ML(R)).
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The particular case k¥ = 0 implies lim y; = p with respect to the norm || - ||
from (30), hence lima; = a. We may and do assume that a; < 8 in what
follows. Put Sj := 87"|(1u; — 6) * R|, Q; := (1 — (o /B))R** % Y 12, S7*, and
Pj = ;i * Q]'. Then Q]', P]' € PI‘ObOO(R) with @j@j = f‘;j, and what remains to
be shown is (29).

By (37),
limS; =S with respect to the norms || - || (ke Ny). (38)

Using (38) and the definition of Q;, Pj, we get lim Q; = @ and lim P; = P with
respect to || -||. From (38) we also get lim §j =Sin C*(R). Since we have (36)
with a; replacing o, @ ;j replacing @ , and §]' replacing S , we may conclude that
limQ\j =Qin C>*(R). By @jﬁj = Qj, we deduce limﬁj|U = }3|U in C>=(U),
for some neighbourhood U of zero. Hence we have in particular (27) and the
corresponding statement for (Q;), so that we reach (29) via 2.4. o

2.6 LEMMA. Let x|Probs(R) be a character, not necessarily continuous. If
Py, Py, Q1,Q2 € Probs(R), and if there exists an U € U with

P()Q:(t) = B(t)Qi(t)  (tel),

then

= . (39)
PROOF. There exists an R € Probe(R) with supp R C U. Thus 131@21:2 =
P>@Q1 R everywhere, so that we successively get

Pl*QQ*R = PQ*Ql*R,
X(PO)x(@2)x(R) = x(P2)x(Q1)x(R),

and hence (39). =

2.7 FROM x TO A LINEAR FUNCTIONAL A. Let x|Probs(R) be a continuous
character. Then there exists a A € H' with
X(P) = exp(iA(logo[P])) (P € Probu(R)). (40)

Here log 0[}3] of course denotes the element of { containing the functions h € X
satisfying

h(t) = logP(t) (tel)

for some U € U with U C {te]R:|l3(t)—1| < 1}.
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Proor. Follows from Steps 1-5 below. m]

STEP 1: CONSTRUCTION OF A FUNCTION X|H. Let H € ‘H. Then we may
define X (H) € T by the construction leading to (42) below, and this definition
is independent of the choices of h, U, w, P, Q made along the way.

PRrOOF. Choose h € H. Define ¢y € C*(R) by

B(t) = exp(h(t)  (teR). (41)

Choose U € U with compact closure and choose w € D(R) real and symmetric
with w|U = 1. Define ¢ € D(R) by

o) = w-p,
Then ¢ is hermitean with ¢(0) = 1, and hence satisfies the assumptions of 2.5.
So we may choose P, Q) € Proby (R) satisfying (28), and put

) = XD (42)

x(Q)
To show that this definition is independent of the choices made along the
way, consider two choices (h;, U;,w;, P;, Q;), for i € {1,2}, yielding two val-
ues X;(H). There exists a V € U with ¢1|V = ¢3|V. Hence (28) applied to
i, P;, Q; implies ﬁl/él = }32/@2 on U :=VN{t:pi(t) #0}, so that Lemma
2.6 yields X, (H) = X»(H). o

STEP 2: THE RELATION BETWEEN X AND x. For P € Proby(R),

X(P) = X(logo[P]).

PRrROOF. Changing notation, let P; € Proby, (R). Put H := log 0[131]. Referring
to Step 1 and its notation, let us denote one choice for the computation of
X(H) by (h,U,w, Py,Q>), with (¢, ¢) accordingly defined. Then ¢ = P; in
some U € U. With Q, := § it follows that 131@\2 = 132@1 in U. Hence (42),
Lemma 2.6, and x(d) = 1, successively yield

X(H) = = = x(P1)-

O

STEP 3: The function X|H — T defined in Step 1 is a character, with respect
to addition in H.

ProOOF. We have to prove that

X(H, + Hy) = X(Hy)-X(H,) (Hy,Hy€™MH).
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So let Hy, Hy € H. Choose (U;, hi, V;,wi, P;,Q;) and define (¢;, ;) as in Step
1 to calculate X (H;) for i € {1,2}. Then we may use the choice

(h1 + ho, Ui MUz, wy - wa, P x Py, Q1 % Q2),
leading to ¢ = 11 -9 and ¢ = 1 - P2, to compute X (H; + Hs). The result is

X(Hy + Hy) = x(PixPy)-(x(Q1%Q2))""
= x(P1)-x(P2) - (x(Q1) - x(Q2))~"
= X(Hi)  X(H>).

STEP 4: CONTINUITY. X 18 continuous.

PROOF. Since H is pseudometrizable, it suffices to consider any given conver-
gent sequence (H; : j € N), with lim H; = H. There exist h € H, h; € Hj,
such that

limh; = h in C*°(R).

Starting from the present h, choose and define, respectively, ¥, U, and w as in
Step 1 around equation (41). Analogously, define +; and then ¢;, using the
same U and w as for ¢, . Then limp; = ¢ in D(R). Now apply part b) of
2.5 to choose P, @, P;, Q; with the properties stated there. Then, using Step 1
and the continuity of y,

I~

X(H;) = M55 - X2 = X(H).

|

STEP 5: There exists a A € H' with X = expo(iA).

Proor. This is always true whenever # is a topological R-vectorspace with
dual H', and X|H a continuous character, with respect to the additive group
of H. See section (23.32.a) on page 370 of Hewitt & Ross (1979) for a proof
assuming, and using, that H is additionally Hausdorff. For the general case,
needed here, apply the special case to the Hausdorff quotient space of H, ob-
tained by identifying points hy, he € H iff ho — hy belongs to the closure of {0}.

o

2.8 PROOF OF THE “ONLY IF” PART OF THEOREM 1.8. Let x|Probs (R) be
a continuous character. Then there exists a linear functional A as in 2.7. By
2.3, A has a representation as in (26). Inserting this representation into (40)
and applying the definition (4) yields (12). o
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