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Abstra
t. Let P be the set of all probability measures on R possess-

ing moments of every order. Consider P as a semigroup with respe
t

to 
onvolution. After topologizing P in a natural way, we determine

all 
ontinuous homomorphisms of P into the unit 
ir
le and, as a


orollary, those into the real line. The latter are pre
isely the �nite

linear 
ombinations of 
umulants, and from these all the former are

obtained via multipli
ation by i and exponentiation.

We obtain as 
orollaries similar results for the probability mea-

sures with some or no moments �nite, and 
hara
terizations of 
on-

stant multiples of 
umulants as aÆnely equivariant and 
onvolution-

additive fun
tionals. The \no moments"-
ase yields a theorem of

Hal�asz. Otherwise our results appear to be new even when spe
ialized

to yield 
hara
terizations of the expe
tation or the varian
e.

Our basi
 tool is a re�nement of the 
onvolution quotient representa-

tion theorem for signed measures of Ruzsa & Sz�ekely.
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602 Lutz Mattner

1 Introdu
tion, results, and easy proofs

1.1 Aim. Cumulants are 
ertain fun
tionals of probability measures. This

paper attempts to explain more pre
isely what they are by 
hara
terizing them

through their most useful properties. For simpli
ity, only the one-dimensional


ase of probability measures on R is treated. There the most familiar exam-

ples of 
umulants are the expe
tation and the varian
e. Our results yield, in

parti
ular, new des
riptions of the roles played by these latter two fun
tionals

in probability theory.

1.2 Guide. The de�nition of 
umulants is re
alled in Subse
tion 1.4 below,

as formula (4). The useful properties of 
umulants, referred to above, are the

homomorphism property (5) and their transformation behaviour under aÆne

mappings, (14). The relation between 
umulants and moments is re
alled in

Subse
tion 1.5.

Subse
tion 1.6 introdu
es topologies on the domains of de�nition of the 
umu-

lants, with the aim of formulating regularity assumptions in our theorems and


orollaries. That some regularity assumptions are a
tually ne
essary, at least

in the results 1.8 { 1.12, is demonstrated in 1.20.

Theorem 1.8, 
hara
terizing the 
ontinuous 
hara
ters of the semigroup

Prob

1

(R), is the main result of the present paper. Its natural forerunner

from the literature, namely the theorem of Hal�asz, is re
alled in 1.10 below as

a spe
ial 
ase of Corollary 1.9.

Another 
orollary of Theorem 1.8, and perhaps the most interesting result

of this paper, is the 
hara
terization of the �nite linear 
ombinations of 
u-

mulants as the 
ontinuous, R-valued, and 
onvolution-additive fun
tionals of

probability measures, stated in Theorem 1.11 and Corollary 1.12. Su
h results

were 
onje
tured by Kemperman (1972). By restri
ting the fun
tionals to be

[0;1[ -valued, we arrive at a 
hara
terization of the varian
e in 1.14. [A related

result of Martin Diaz (1977) is dis
ussed in 1.22.℄

Our next results, 1.17 and 1.18, are spezializations of 1.8 and 1.11 to s
ale

equivariant fun
tionals, the de�nition of whi
h being re
alled in 1.16.

As a further 
orollary, we obtain in 1.19 a 
hara
terization of the expe
tation as

the only nontrivial 
ontinuous fun
tional homomorphi
 with respe
t to additive

and multipli
ative 
onvolutions.

Histori
al and etymologi
al remarks on 
umulants are given in Subse
tion 1.21.

Subse
tion 1.22 dis
usses some further referen
es related to the present work.

Easy proofs are given immediately after the statement of a result in Se
tion

1. The only diÆ
ult proof of this paper, needed for the \only if" part of our

main result 1.8, is the 
ontent of Se
tion 2. Its basi
 te
hni
al tool, re�ning

the 
onvolution quotient representation theorem for signed measures of Ruzsa

& Sz�ekely (1983, 1985, 1988), is supplied in Subse
tion 2.5.
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What Are Cumulants ? 603

1.3 Some notation and 
onventions. The positive integers are denoted

by N, the nonnegative ones by N

0

.

If X is a set equipped with a �-algebra A, we let Prob(X ) denote the set

of all probability measures de�ned on A. The real line R is understood to

be equipped with its Borel �-algebra. The 
onvolution of P;Q 2 Prob(R) is

denoted by P �Q. We write Æ

a

for the Dira
 measure 
on
entrated at a 2 R,

and Æ := Æ

0

for the one 
on
entrated at zero. For the image measure of a

probability measure P under a measurable fun
tion f , we use the notation

f�P . We write supp P for the support [= minimal 
losed set of probability

one℄ of a P 2 Prob(R).

Prob(R) will mainly be 
onsidered as a semigroup with respe
t to 
onvolution.

Homomorphisms of a semigroup [below always a sub-semigroup of Prob(R)℄

into the multipli
ative group T of 
omplex numbers of absolute value one will

be 
alled 
hara
ters, homomorphisms into the additive group R will be 
alled

additive fun
tions.

1.4 Cumulants. We present below the usual introdu
tion of 
umulants and

their most important properties. For P 2 Prob(R), let

b

P denote its Fourier

transform or 
hara
teristi
 fun
tion, de�ned by

b

P (t) :=

Z

e

itx

dP (x) (t 2 R): (1)

The most important reason for 
onsidering Fourier transforms of probability

measures is multipli
ativity with respe
t to 
onvolution:

(P �Q)b(t) =

b

P (t) �

b

Q(t) (P;Q 2 Prob(R); t 2 R): (2)

Let log denote the usual logarithm de�ned on, say, fz 2 C : jz � 1j < 1g. Let

P 2 Prob(R). Then

b

P is 
ontinuous with

b

P (0) = 1, so that log Æ

b

P is de�ned

in some P -dependent neighbourhood of zero. Now put

Prob

r

(R) :=

�

P 2 Prob(R) :

Z

jxj

r

dP (x) <1

�

(r 2 N

0

); (3)

and assume that r 2 N and P 2 Prob

r

(R). Then

b

P and thus log Æ

b

P is r times


ontinuously di�erentiable in the neighbourhood of zero introdu
ed above, and

the number

�

r

(P ) := i

�r

�

D

r

log Æ

b

P

�

(0) (4)

is 
alled the rth 
umulant of P . [Readers wondering about this strange name

are referred to Subse
tion 1.21.℄ It is easy to show that the 
umulants are real-

valued fun
tionals. Their most important property, whi
h obviously follows

from (2) and (4), is additivity with respe
t to 
onvolution:

�

r

(P �Q) = �

r

(P ) + �

r

(Q) (r 2 N; P;Q 2 Prob

r

(R)) : (5)
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604 Lutz Mattner

In other words: For ea
h r 2 N, (Prob

r

(R); �) is a semigroup on whi
h �

r

is an

additive fun
tion.

1.5 Examples, expression in terms of moments. The two most familiar

examples of 
umulants are the mean � and the varian
e �

2

, sin
e

�

1

(P ) = �(P ) :=

Z

x dP (x) (P 2 Prob

1

(R));

�

2

(P ) = �

2

(P ) :=

Z

(x� �(P ))

2

dP (x) (P 2 Prob

2

(R)):

These formulas are spe
ial 
ases of the relation between 
umulants and the

moments

�

r

(P ) :=

R

x

r

dP (x) = i

�r

(D

n

b

P )(0) (r 2 N

0

; P 2 Prob

r

(R)):

One possibility of expressing this relation is to use the re
ursion

�

r+1

=

r

X

l=0

�

r

l

�

�

r�l

�

l+1

(r 2 N

0

); (6)

whi
h is easily proved using the Leibniz rule for the di�erentiation of a produ
t

and the representation of the moments as derivatives: For P 2 Prob

r+1

(R) put

' :=

b

P and  := log', in a neighbourhood of zero, and 
ompute D

r+1

' =

D

r

(' �D ) =

P

r

l=0

�

r

l

�

(D

r�l

') � (D

l+1

 ), evaluate the extreme left and right

hand sides at zero, and divide by i

r+1

, to arrive at (6). Sin
e the 
oeÆ
ients

of �

r+1

and �

r+1

in (6) are both one, it follows by indu
tion that

�

r

= �

r

+ polynomial without 
onstant term in �

1

; : : : ; �

r�1

(r 2 N); (7)

and that 
orresponding relations hold when � and � are inter
hanged. Various

expli
it fomulas derived from these relations and some examples of a
tual 
om-

putations of 
umulants may be found in Chapter 3 of Kendall, Stuart & Ord

(1987). We merely note here two further examples, for 
onvenien
e rewritten

in terms of 
entered moments,

�

3

(P ) =

Z

(x� �(P ))

3

dP (x) (P 2 Prob

3

(R));

�

4

(P ) =

Z

(x� �(P ))

4

dP (x)� 3

�

�

2

(P )

�

2

(P 2 Prob

4

(R)):

As one might suspe
t on seeing these formulas, the varian
e �

2

is the only

nonnegative 
umulant. [This fa
t follows easily from 1.13 below, as 
an be seen

from the proof of 1.14.℄
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What Are Cumulants ? 605

1.6 Topologies on some subsets of Prob(R). One of our aims is to

show that every \reasonable" homomorphism from (Prob

r

(R); �) into (R;+)

is a linear 
ombination of 
umulants of order at most r. This is the 
ontent

of Corollary 1.12, where \reasonable" is spe
i�ed to mean \
ontinuous". To

this end we introdu
e here on ea
h Prob

r

(R) a topology. In order to make

the 
ontinuity assumption in Corollary 1.12 weak, we have to 
hoose a strong

topology on Prob

r

(R). We take the one indu
ed by the weighted total variation

metri
 d

r

de�ned by

d

r

(P;Q) :=

Z

(1 + jxj

r

) djP �Qj(x) (P;Q 2 Prob

r

(R)): (8)

We further 
onsider

Prob

1

(R) :=

\

r2N

0

Prob

r

(R);

whi
h is the largest set of probability measures on whi
h every 
umulant is

de�ned. We topologize Prob

1

(R) by the family of metri
s (d

r

: r 2 N

0

).

1.7 Lemma. a) Ea
h �

r

jProb

r

(R) is 
ontinuous with respe
t to d

r

.

b) Let r 2 N and 
 2 ℄0;1[. Then there exists a sequen
e (P

n

) in Prob

1

(R)

with

lim

n!1

d

r�1

(P

n

; Æ) = 0; (9)

lim

n!1

�

l

(P

n

) = 0 (l = 1; : : : ; r � 1); (10)

lim

n!1

�

r

(P

n

) = 
: (11)

Proof. a) The fun
tionals (�

l

: l = 1; : : : ; r) are obviously 
ontinuous with

respe
t to d

r

, and (7) shows in parti
ular that �

r

is a polynomial fun
tion of

them.

b) We may restri
t attention to those n 2 N with 
n

�r

� 1 and put P

n

:=

(1 � 
n

�r

)Æ + 
n

�r

Æ

n

. Then P

n

2 Prob

1

(R), and d

r�1

(P

n

; Æ) =




n

yields

(9). By part a), (9) implies (10). Finally, (11) follows from �

l

(P

n

) = 
n

l�r

(l = 1; : : : ; r) and (7).

1.8 Theorem (
ontinuous 
hara
ters of Prob

1

(R)). A fun
tion

�jProb

1

(R) is a 
ontinuous 
hara
ter i�

�(P ) = exp(i

X

l2N




l

�

l

(P )) (P 2 Prob

1

(R)) (12)

holds for some �nitely supported sequen
e of real numbers (


l

: l 2 N). The

latter, if existent, is uniquely determined by �.
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606 Lutz Mattner

Proof. The proof of the \only if" part is the 
ontent of Se
tion 2. The \if"

part follows trivially from 1.7 a) and (5).

Finally suppose that we have (12) and an analogous representation of � in-

volving another �nitely supported sequen
e (~


l

: l 2 N). Then the sequen
e

(d

l

) := (


l

� ~


l

) yields an analogous representation of the 
onstant 
hara
ter 1.

Suppose that not all d

l

vanish. Put r := min fl : d

l

6= 0g and apply 1.7 b) with


 := �=jd

r

j. Then 1 = exp(i

P

r

l=1

d

l

�

l

(P

n

)) ! exp(�i�) = �1 for n ! 1.

This 
ontradi
tion shows that we must have d

l

= 0 for every l 2 N, as was to

be proved.

1.9 Corollary. Let r 2 N

0

. A fun
tion �jProb

r

(R) is a 
ontinuous 
har-

a
ter i� (12) holds with 


l

= 0 for l > r, and with Prob

r

(R) in pla
e of

Prob

1

(R).

Proof. Again, the \if" part follows from from 1.7 a) and (5). To prove \only

if": Let �jProb

r

(R) be a 
ontinuous 
hara
ter. Then, by 1.8, its restri
tion

�jProb

1

(R) ful�ls (12) for some �nitely supported sequen
e (


l

). Assume

that 


l

6= 0 for some l > r. Put ~r := min fl 2 N : 


l

6= 0g. Choose (P

n

)

a

ording to 1.7 b) with ~r in pla
e of r and with 
 := �=j


~r

j. Then, sin
e

r < ~r, we have P

n

! Æ with respe
t to d

r

. On the other hand, we have

�(P

n

)! �1 6= 1 = �(Æ). This 
ontradi
tion to the 
ontinuity of � shows that

we must have 


l

= 0 for l > r. It follows that the right hand side of (12)

is de�ned and 
ontinuous on Prob

r

(R). Sin
e Prob

1

(R) is obviously dense in

Prob

r

(R), this implies that (12) also holds with Prob

r

(R) in pla
e of Prob

1

(R).

1.10 Theorem of Hal

�

asz. The last 
orollary yields in parti
ular a theorem

of Hal�asz, presented on page 132 of Ruzsa & Sz�ekely (1988), whi
h reads:

1 is the only 
hara
ter of Prob(R) 
ontinuous with respe
t to weak


onvergen
e.

In fa
t, the spe
ial 
ase r = 0 of our Corollary 1.9 is slightly stronger, sin
e our


ontinuity assumption refers to a stronger topology on Prob(R).

1.11 Theorem (additive fun
tions on Prob

1

(R)). A fun
tion

�jProb

1

(R) ! R is 
ontinuous and additive i�

�(P ) =

X

l2N




l

�

l

(P ) (P 2 Prob

1

(R)) (13)

holds for some �nitely supported family of real numbers (


l

: l 2 N). The latter,

if existent, is uniquely determined by �.
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What Are Cumulants ? 607

Proof. The \if" part and the uniqueness of (


l

) follows via multipli
ation by

i and subsequent exponentiation from the 
orresponding statements in 1.8.

To prove the \only if" part, let �jProb

1

(R) ! R be 
ontinuous and additive.

Put

�(P ) := exp(i�(P )) (P 2 Prob

1

(R)):

Then � satis�es the hypothesis of Theorem 1.8, and hen
e 
an be represented

as in (12). This implies

�(P ) = �(P ) +

X

l




l

�

l

(P ) (P 2 Prob

1

(R));

where �jProb

1

(R) ! 2�Z. Sin
e � must be additive, �(Æ) = 0. Sin
e �

must be 
ontinuous and Prob

1

(R) is 
onvex, �(Prob

1

(R)) must be 
onne
ted.

[Here we have used the obvious fa
t that for P;Q 2 Prob

1

(R) the fun
tion

[0; 1℄ 3 t 7! tP + (1� t)Q 2 Prob

1

(R) is 
ontinuous.℄ Thus � = 0.

1.12 Corollary. Let r 2 N

0

. A fun
tion �jProb

r

(R) ! R is 
ontinuous

and additive i� (13) holds with 


l

= 0 for l > r and with Prob

r

(R) in pla
e of

Prob

1

(R).

Proof. Dedu
e 1.12 from 1.9, by arguing as in the proof of 1.11. Alternatively,

dedu
e 1.12 from 1.11 by arguing as in the proof of 1.9.

1.13 Lemma (
umulants of Bernoulli distributions). For r 2 N, let

f

r

j[0; 1℄! R be de�ned by

f

r

(p) := �

r

((1� p)Æ

0

+ pÆ

1

) (p 2 [0; 1℄):

Then, for ea
h r, f

r

is a polynomial fun
tion of degree r with r simple zeros in

[0; 1℄.

Proof. It is known [for example, from Kendall, Stuart & Ord (1987), exer
ise

5.1℄ that

f

r+1

(p) = p � (1� p) � f

0

r

(p) (r 2 N; p 2 [0; 1℄);

where the prime denotes di�erentiation with respe
t to p. Sin
e f

1

(p) = p for

p 2 [0; 1℄, the 
laim follows by an indu
tion argument, using Rolle's theorem

and the fa
t that f

0

r

has at most r � 1 zeros, 
ounting multipli
ity.

1.14 A 
hara
terization of the varian
e. A fun
tion �jProb

1

(R) !

[0;1[ is 
ontinuous and additive i� � = 
�

2

for some 
 2 [0;1[.

Proof. The \if" 
laim is trivial. To prove \only if", we may by Theorem

1.11 start from the representation (13). Inserting there P = Æ

a

with a 2 R, we
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608 Lutz Mattner

see that the assumption � � 0 for
es 


1

= 0. Thus, ex
ept for the trivial 
ase

� = 0, we have

�(P ) =

r

X

l=2




l

�

l

(P ) (P 2 Prob

1

(R))

for some r � 2 with 


r

6= 0. Suppose now that r � 3. Then we may, by

the lemma 1.13, 
hoose a Bernoulli distribution P

0

= (1 � p)Æ

0

+ pÆ

1

with




r

�

r

(P

0

) < 0. It follows that �(P ) < 0 for P := (x 7! ax)�P

0

with a > 0

suÆ
iently large, using (14) below. This 
ontradi
tion proves our 
laim.

1.15 Affine equivarian
e of 
umulants. The se
ond most important

property of the 
umulants is their behaviour under aÆne transformations: For

r 2 N, P 2 Prob

r

(R) and a; b 2 R, we have

�

r

((x 7! ax+ b)�P ) =

�

a�

1

(P ) + b (r = 1);

a

r

�

r

(P ) (r � 2):

(14)

In parti
ular, ea
h 
umulant is aÆnely equivariant in the sense of the following

de�nition and, by a trivial spe
ialization, also s
ale equivariant.

1.16 Definition (equivarian
e). a) Let X be a set and T be a set of

fun
tions from X into X . A fun
tion 'jX is 
alled equivariant, with respe
t to

T , if we have the impli
ation

x; y 2 X ; '(x) = '(y); T 2 T =) '(T (x)) = '(T (y)): (15)

b) For a; b 2 R de�ne T

a;b

jProb(R) ! Prob(R) by

T

a;b

(P ) := (x 7! ax+ b)�P (P 2 Prob(R))

and put T := fT

a;b

: a; b 2 Rg. Let P � Prob(R) satisfy the impli
ation P 2

P ; T 2 T =) T (P ) 2 P . Then a fun
tion 'jP is 
alled aÆnely equivariant if

it is equivariant with respe
t to T , in the sense of part a).


) We de�ne a fun
tion 'jP to be s
ale equivariant if it satis�es the de�nition

given in b) above, but with b = 0 and a > 0 in the de�nition of T .

1.17 Theorem (equivariant 
ontinuous 
hara
ters of Prob

1

(R)).

A fun
tion �jProb

1

(R) is a s
ale equivariant 
ontinuous 
hara
ter i�

�(P ) = exp(i
�

r

(P )) (P 2 Prob

1

(R)) (16)

for some r 2 N and some 
 2 R.

Proof. The \if" part is trivial. To prove \only if": De�ne S

a

(P ) := (x 7!

ax)�P for P 2 Prob(R) and a 2 ℄0;1[. For � 2 ℄0;1[, let P

�

denote the

Poisson distribution with expe
tation �. Then

�

l

(S

a

(P

�

)) = a

l

� (l 2 N; a; � 2 ℄0;1[): (17)
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What Are Cumulants ? 609

Now let �jProb

1

(R) be a s
ale equivariant 
ontinuous 
hara
ter. Applying

1.8, we get (12) for some �nitely supported sequen
e (


l

: l 2 N), and we have

to show that there is at most one l 2 N with 


l

6= 0. Using (17), (12) yields in

parti
ular

�(S

a

(P

�

)) = exp(i�p(a)) (a; � 2 ℄0;1[) (18)

where p is the polynomial fun
tion de�ned by

p(a) :=

X

l2N




l

a

l

(a 2 C ):

Now assume, to get a 
ontradi
tion, that there are at least two l 2 N with




l

6= 0. Then for arbitrary a

1

; a

2

2 ℄0;1[ with a

1

6= a

2

and arbitrary �

1

; �

2

6= 0,

there exists a number b 2 ℄0;1[ with

�

1

p(ba

1

)� �

2

p(ba

2

) =2 2�Z: (19)

[Proof: Assume without loss of generality that a

1

< a

2

. If our 
laim is false,

then the rational fun
tion C 3 z 7! R(z) := p(a

1

z)=p(a

2

z) is 
onstant. But by

our assumption on p, % := sup fjzj : z 2 C ; p(z) = 0g > 0. In view of 0 < a

1

<

a

2

, it is obvious that R has a zero, namely on the 
ir
le fjzj = %=a

1

g. Hen
e

R � 0 and thus p � 0, a 
ontradi
tion.℄

Now 
hoose spe
i�
ally a

1

; a

2

2 ℄0;1[ with a

1

6= a

2

in su
h a way that p(a

1

) �

p(a

2

) > 0. Choose �

1

; �

2

2 ℄0;1[ with

�

1

p(a

1

) = �

2

p(a

2

); (20)


hoose b as in (19), and put Q

k

:= S

a

k

(P

�

k

) for k = 1; 2. Then (18) and (20)

yield �(Q

1

) = �(Q

2

), whereas (18) also yields �(S

b

(Q

k

)) = �(S

ba

k

(P

�

k

)) =

exp(i�

k

p(ba

k

)) for k = 1; 2, so that (19) implies �(S

b

(Q

1

)) 6= �(S

b

(Q

2

)), in


ontradi
tion to the s
ale equivarian
e of �.

1.18 Theorem (s
ale equivariant additive fun
tions on Prob

1

(R)).

A fun
tion �jProb

1

(R) ! R is 
ontinuous, additive, and s
ale equivariant, i�

there exist r 2 N and 
 2 R su
h that � = 
�

r

.

Proof. Pro
eed as in the proof of the \only if" part of Theorem 1.11, but use

equivarian
e of � and 1.17 in pla
e of 1.8.

1.19 A 
hara
terization of the expe
tation. Notation: In this sub-

se
tion only, we write P �Q for the usual 
onvolution P �Q of P;Q 2 Prob(R),

and P �Q for the multipli
ative 
onvolution of P;Q 2 Prob(R), that is, the

distribution of X � Y with X;Y being independent random variables with dis-

tributions P;Q.
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Theorem. Let �jProb

1

(R) ! R be 
ontinuous. Then we have both

�(P �Q) = �(P ) + �(Q); (21)

�(P �Q) = �(P ) � �(Q) (22)

for P;Q 2 Prob

1

(R), i� either � = �

1

or � = 0.

Proof. The \if" part is obvious. So assume that � is 
ontinuous and satis�es

(21) and (22). By applying (22) to Q = Æ

a

, for every a 2 ℄0;1[, we see that

� is s
ale equivariant. Hen
e (21) and Corollary 1.18 yield � = 
�

r

for some


 2 R and some r 2 N. Choose P 2 Prob

1

(R) with �

r

(P ) 6= 0, for example P

= Poisson distribution with parameter 1. Insert this P and Q = Æ

1

into (22),

use � = 
�

r

, and divide by �

r

(P ). The result is 
 = 


2

�

r

(Æ

1

). If r � 2, then

�

r

(Æ

1

) = 0, hen
e 
 = 0 and thus � = 0. If r = 1, then �

r

(Æ

1

) = 1, hen
e either

again 
 = 0 and � = 0, or 
 = 1 and thus � = �

1

.

1.20 \Counterexamples". Examples a) and b) below show that the 
on-

tinuity assumptions in 1.8 { 1.12 
an not be omitted without substitute. Both

a) and b) should be regarded as pathologi
al. On the other hand, the examples

in 
) show that not only 1.8 { 1.12, but also 1.14 and, using (23), also 1.17 and

1.18 re
eive non-pathologi
al 
ounterexamples if the 
ontinuity assumption is

dropped and if the domain of de�nition of the fun
tionals is taken to be to

small. Con
erning 1.8 { 1.12, we may also refer to example d), suggested to

me by I.Z. Ruzsa, where the domain of de�nition of � 
ould be thought of as

being not mu
h smaller than Prob

1

(R).

a) By the axiom of 
hoi
e, there exists a dis
ontinuous additive fun
tion

f jR ! R. Now �(P ) := f(�(P )) de�nes a dis
ontinuous additive fun
tion

�jProb

1

(R) ! R.

b) [Ruzsa & Sz�ekely (1988), pp. 122-123, 2.3 and 2.4℄ 
onstru
t, using the axiom

of 
hoi
e, a homomorphism � from (Prob(R); �) into (R;+) whi
h extends the

expe
tation �

1

de�ned on the subsemigroup Prob

1

(R). They also show that

ea
h su
h � assumes negative values for some P with support in [0;1[. It

follows that the � 
onstru
ted is a dis
ontinuous additive fun
tion from Prob(R)

into R.


) On the semigroup

Prob




(R) := fP 2 Prob(R) : supp P 
ompa
tg � Prob

1

(R)

we obtain an additive and nonnegative fun
tional, normalized here as to satisfy

additionally 
ondition ii) from 1.22 below, by ea
h of the following de�nitions:

�(P ) :=

1

2

� (max supp P �min supp P ) (P 2 Prob




(R)); (23)

�(P ) :=

log

b

P (i) + log

b

P (�i)

2 log 
os i

(P 2 Prob




(R)): (24)
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[In (24), we use of 
ourse the de�nition (1) with C in pla
e of R.℄

d) Consider the semigroup

P :=

n

P 2 Prob

1

(R) :

b

P holomorphi
 near zero

o

� Prob

1

(R):

Let (a

l

: l 2 N) be any sequen
e of real numbers satisfying a

l

= O("

l

), for every

" > 0. Then

�(P ) :=

1

X

l=1

a

l

l!

�

l

(P ) (P 2 P) (25)

de�nes an additive fun
tion on P . [To see that the series in (25) always 
on-

verges, observe that log Æ

b

P is now holomorphi
 in some P -dependent neigh-

bourhood of zero, so that its Taylor series

P

1

l=1

�

l

(P ) � (iz)

l

=l! 
onverges for

jzj suÆ
iently small.℄

1.21 Some early history and etymology. Cumulants were apparently

�rst introdu
ed by T.N. Thiele [1838-1910℄ under the name of \half-invariants".

Hald (1981) des
ribes, on pages 7-10, Thiele's 
ontributions and their insuÆ-


ient a
knowledgement by K. Pearson and R.A. Fisher. A

ording to Hald,


umulants are �rst de�ned in the book Thiele (1889). [This I did not 
he
k.

Hald's formula (4.1), 
laimed to be Thiele's de�nition, is, up to an obvious

misprint, the now well-known re
ursion (6), determining �

r+1

as a polynomial

in the moments �

l

.℄ In a later and more a

essible version of his book, Thiele

(1903) essentially gives de�nition (4). Hald (1998) 
ontains a mu
h more 
om-

prehensive early history of 
umulants.

Later authors, su
h as Craig (1931) and Wishart (1929), refer to the 
umu-

lants as \semi-invariants of Thiele", while Fisher (1929-30), on page 200 of his

paper, simply 
alls them \semi-invariants", without bothering to name Thiele.

But Wishart and Fisher, who obviously new about ea
h others work before

publi
ation, prefer to use the new term \
umulative moment fun
tions" in-

stead. The reason for adopting this term is hinted at in Fisher's paper: On

page 199, he gives an interesting although perhaps not quite pre
ise de�ni-

tion of rather general \moment fun
tions" of populations, roughly speaking

by polynomial estimability, whi
h seems at any rate to be intended to in
lude

polynomial fun
tions of �nitely many ordinary moments, and hen
e in parti
-

ular 
umulants. On page 202, Fisher then refers to a \
umulative property"

of the logarithm of the Lapla
e transform whi
h, expressed in terms of the


umulants, is just 
ondition (5). Thus the the adje
tive \
umulative" refers,

in this 
ontext, to a homomorphism 
ondition. In parti
ular, it is not used

to distinguish a 
on
ept related to probability measures from a 
orresponding


on
ept related to probability densities, as would often be the 
ase in the older

statisti
al literature.
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Finally, \
umulative moment fun
tion" was abbreviated to "
umulant" by

Fisher & Wishart (1931-32) and Fisher (1932), with Hotelling (1933) 
laim-

ing to have suggested this name, whi
h qui
kly be
ame the standard one in the

english language literature. The �rst publi
ation having the word \
umulant"

in its title seems to be the paper by Cornish & Fisher (1937), who repeat the

de�nition, but already Haldane (1937), page 136, uses \
umulants" without

de�nition or referen
e.

Readers generally interested in the history of probabilisti
 or statisti
al terms

are referred to David (1995, 1998) as a useful starting point.

1.22 Related work not dis
ussed above. The following papers have

some relation with the present one.

Craig (1931) states on page 160 a forerunner of our Corollary 1.18. Where we

assume mere 
ontinuity of �, Craig assumes in parti
ular that � is a polynomial

fun
tion of some �nite number of moments �

l

. His treatment is not quite

rigorous: For example, no domain of de�nition of � is spe
i�ed, his 
on
lusion

is � = �

r

for some r [instead of the 
orre
t 
on
lusion � = 
�

r

for some r and


℄, and a proof is o�ered only for the 
ase where � is a polynomial fun
tion of

�

1

; : : : ; �

4

.

Savage (1971) 
hara
terizes moments and more general expe
tations of expo-

nential polynomials as fun
tionals � satisfying, on the one hand, 
onditions like

�(P �Q) = T (�(P ); �(Q)) with T unspe
i�ed and, on the other hand, having

a representation �(P ) =

R

f dP with f unspe
i�ed. His �rst assumption is

more liberal than our homomorphism assumptions, but his se
ond assumption

is rather restri
tive, ex
luding for example every 
umulant �

r

with r � 2. Thus

the work of Savage is in
omparable to the present one.

Martin Diaz (1977), Teorema 4, states a 
hara
terization of the vari-

an
e whi
h may be formulated as follows. We temporarily put P :=

fP 2 Prob(R) : supp P �niteg.

Theorem (Martin Diaz) Let �jP ! [0;1[ and assume:

i) For every n 2 N, the map

R

n

�

(

p 2 ℄0; 1℄

n

:

n

X

i=1

p

i

= 1

)

3 (x; p) 7! �(

n

X

i=1

p

i

Æ

x

i

)

is partially 
ontinuous in the two variables x and p.

ii) �(Æ

1

) = 0, �(

1

2

(Æ

�1

+ Æ

1

)) = 1.

iii) If we put �(X) := �(P ) for every random variable X with distribution

P 2 P, then

�(

n

X

i=1

X

i

) =

n

X

i=1

�(X

i

)
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whenever the X

i

are pairwise independent random variables, on a 
om-

mon probability spa
e, with distributions belonging to P.

Then � = �

2

.

We observe that the word \pairwise" renders the third assumption rather 
on-

�ning. But without this word, a 
ounterexample would be obtained by re-

stri
ting to P either � from (23) or (24). These examples may be regarded

as negative solutions to the problem stated in Martin Diaz (1977) on page 96,

while our result 1.14 may be regarded as a kind of positive solution.

Good (1979) spe
ulates about the existen
e of a useful notion of \fra
tional


umulants", perhaps to be de�ned via fra
tional di�erentiation of log Æ

b

P in

analogy to (4). Su
h a de�nition, if possible, should lead to an additive fun
tion

on Prob

1

(R), and Theorem 1.11 
ould be taken as an indi
ation that it will

not lead to anything new and useful.

Heyer (1981) reviews, among other topi
s, axiomati
 approa
hes to expe
tation

and varian
es for probability measures on 
ompa
t groups, referring to earlier

publi
ations of himself and of Maksimov, in parti
ular Maksimov (1980). Al-

though somewhat similar in spirit to the present paper, there is no overlap in

the results obtained.

Chara
terizations of the varian
e not referring to the semigroup stru
ture of

Prob(R) have been provided by Bomsdorf (1974), by Gil Alvarez (1983), and

by Kagan & Shepp (1998). The former two are somewhat similar to the 
har-

a
terization of the Shannon entropy by Fadeev's axioms, as presented in R�enyi

(1970), page 548.

2 The main proof

2.1 Further notation and 
onventions. The proof of the \only if" part

of Theorem 1.8, given in 2.8 below, is prepared by the introdu
tion of an

auxiliary topologi
al ve
tor spa
e H in 2.2 and the identi�
ation of its dual H

0

in 2.3. We will use some tools from fun
tional and Fourier analysis as explained

in Rudin (1991). In parti
ular, we assume as known the spa
es C

1

(R), D(R),

D

0

(R) with their usual topologies. We depart from the 
onventions of Rudin

(1991) in that here a topologi
al ve
tor spa
e is not ne
essarily assumed to be

Hausdor�.

We let U denote the set of all open symmetri
 neighbourhoods of 0 2 R. For

U 2 U , a fun
tion hjU ! C is 
alled hermitean if

h(t) = h(�t) (t 2 U):

2.2 The spa
e H of germs of hermitean C

1

fun
tions vanishing at

zero. We 
onsider

X := fh 2 C

1

(R) : h hermitean; h(0) = 0g
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as a topologi
al ve
tor spa
e over R, with the topology inherited from the usual

topology of C

1

(R). We further 
onsider the ve
tor subspa
e

N := fh 2 X : 9U 2 U with hjU = 0g

of X , and form the quotient topologi
al ve
tor spa
e

H := X=N:

For h 2 X , we write [h℄ for the equivalen
e 
lass H 2 H with h 2 H . It

easy to see, though for our purposes unne
essary to 
he
k, that N is not


losed, so that H is not Hausdor�. Sin
e C

1

(R) is metrizable, H is pseudo-

metrizable, and a sequen
e (H

j

: j 2 N) 
onverges to 0 2 H i� there exist

h

j

2 H

j

with h

j

! 0 2 X . [Proof: The dis
ussion in Se
tions 1.40, 1.41

of Rudin (1991) applies with obvious 
hanges, ne
essitated by the non
losed-

ness of our N . In parti
ular, if d is some tranlation-invariant metri
 for X ,

the formula %([h

1

℄; [h

2

℄) := inf fd(h

1

� h

2

; g) : g 2 Ng de�nes a translation-

invariant pseudo-metri
 % for H. And if ([h

j

℄) : j 2 N) is a sequen
e in H with

lim %([h

j

℄; [0℄) = 0, we may 
hoose g

j

2 N with d(h

j

; g

j

) � 2%([h

j

℄; [0℄) + j

�1

,

yielding

~

h

j

:= h

j

� g

j

2 [h

j

℄ with

~

h

j

! 0.℄

The value at zero of the derivatives D

l

H(0) of a H 2 H, o

uring below, is

de�ned in the obvious way.

2.3 The dual H

0

of H. A fun
tion �jH is an R-valued, 
ontinuous, and R-

linear fun
tional i� there exists an n 2 N

0

and a �nite sequen
e of real numbers

(


l

: 1 � l � n) su
h that

�(H) =

n

X

l=1




l

� i

�l

(D

l

H)(0) (H 2 H): (26)

Proof. The \if" 
laim is obviously true. To prove \only if": Let �jH ! R

be 
ontinuous and R-linear. De�ne SjD(R) ! R by

S(') := �([

1

2

�

'� '(0) +

�

'� '(0)

�

℄) (' 2 D(R));

where

�

 (t) :=  (�t). It is obvious that S is well-de�ned and R-valued, as well

as 
ontinuous and R-linear. It follows that the fun
tional T jD(R) ! C de�ned

by

T (') := S(')� iS(i') (' 2 D(R))

is 
ontinuous and C -linear, that is, a distribution 2 D

0

(R). It is easily 
he
ked

that T has support 
ontained in f0g. Hen
e, by Rudin (1991), Theorem 6.24

d) and Theorem 6.25, there is an n 2 N

0

and a sequen
e of 
omplex numbers

(b

l

: 0 � l � n) su
h that

T (') =

n

X

l=0

b

l

�

�

D

l

'

�

(0) (' 2 D(R)):
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Sin
e S = Re T , we get for H = [h℄ 2 H, using the hermitean property of h

and h(0) = 0,

�(H) = S(h)

= Re T (h)

=

n

X

l=1

Re (b

l

�

�

D

l

h

�

(0))

=

n

X

l=1

Re (b

l

i

l

) � i

�l

�

D

l

h

�

(0);

and thus (26) with 


l

= Re (b

l

i

l

).

2.4 Convergen
e in Prob

1

(R). Let P be an element of and (P

j

) be a net

in Prob

1

(R). Then limP

j

= P , in the topology of Prob

1

(R), i� limP

j

= P

with respe
t to total variation distan
e and

lim

j

Z

x

l

dP

j

(x) =

Z

x

l

dP (x) (l 2 N): (27)

Proof. Let �rst w be any nonnegative measurable fun
tion on a measurable

spa
e X . Let P;Q 2 Prob(X ) with

R

w d(P +Q) <1, and �x a > 0. Then

Z

w djP �Qj �

Z

w � (w � a) djP �Qj+

Z

w � (w > a) d(P +Q)

=

Z

w � (w � a) djP �Qj+ 2

Z

w � (w > a) dP

+

Z

w d(Q� P )�

Z

w � (w � a) d(Q� P )

� 2

Z

w � (w � a) djP �Qj+ 2

Z

w � (w > a) dP

+

Z

w dQ�

Z

w dP:

Now let (P

j

) be a net in Prob(X ) with

R

w dP

j

<1 for every j. The pre
eding

inequality shows that lim

R

w djP � P

j

j = 0 if both lim

R

1 djP � P

j

j = 0 and

lim

R

w dP

j

�

R

w dP . Applied to X = R and w(x) = 1 + x

2n

, for ea
h n 2 N,

the \if" part follows. The \only if" part is trivial.

2.5 Quotients of 
hara
teristi
 fun
tions. Let

' 2 � := f' 2 D(R) : '(0) = 1; ' hermiteang:

a) There exist P;Q 2 Prob

1

(R) with

'

b

Q =

b

P : (28)
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b) Let ('

j

) be a net in � with lim'

j

= ' in the D(R)-topology. Then we may


hoose P

j

; Q

j

2 Prob

1

(R) with '

j

b

Q

j

=

b

P

j

and

limP

j

= P; limQ

j

= Q in Prob

1

(R): (29)

Remark. As said before in 1.2, this basi
 tool of the present paper is a

re�nement of a theorem of Ruzsa & Sz�ekely. In parti
ular, most of the following

proof of part a) is as in Ruzsa & Sz�ekely (1988), pages 126-127.

Proof. We will 
al
ulate in

M

1

(R) := set of all bounded 
omplex measures on R;

whi
h is well known to be a Bana
h algebra, with 
onvolution � as multipli
a-

tion and norm k � k de�ned by

k�k :=

Z

1 dj�j (� 2M

1

(R)); (30)

j�j := total variation measure of �:

For a � 2M

1

(R), its Fourier transform is the 
ontinuous fun
tion b� de�ned by

b�(t) :=

Z

e

itx

d�(x) (t 2 R):

We assume as known properties of the Fourier transform as explained, for ex-

ample, in Chapter 7 of Rudin (1991). All elements of M

1

(R) a
tually o

uring

below will in fa
t belong to

M

1

1

(R) :=

�

� 2M

1

(R) :

Z

jxj

l

dj�j(x) <1 (l 2 N

0

)

�

:

For � 2M

1

1

(R), we have b� 2 C

1

(R).

a) We have ' = b� with � 2M

1

1

(R), � real, �(R) = 1. [Apply Theorem 7.7 of

Rudin (1991).℄

Choose �; � 2 [0;1[ and R 2 Prob

1

(R) with

k(�� Æ) �Rk = � < � (31)

and

R

�2

� �R: (32)

[For example, if R is any 
entered normal distribution, then (32) is true with

� = 2

�1=2

, and for R suÆ
iently 
at (31) is true as well. Alternatively, we may

take � = 2

�1

and for R a suÆ
iently 
at uniform distribution on an interval

[�a; a℄.℄
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Put

S := �

�1

j(�� Æ) �Rj; (33)

Q := (1�

�

�

)R

�2

�

1

X

k=0

S

�k

; (34)

P := � �Q: (35)

Sin
e S is a sub-probability measure with kSk = S(R) = �=� < 1, the series

in (34) is 
onvergent in M

1

(R), and Q 2 Prob(R). Also P (R) = 1 and, easily

veri�ed,

(1�

�

�

)

�1

P = � �R

�2

�

1

X

k=0

S

�k

= R

�2

+R

�2

� (�� Æ + S) �

1

X

k=0

S

�k

;

where, using (32) and (33),

R

�2

� (�� Æ + S) � R � (R � (�� Æ) + �S)

� 0:

Hen
e P � 0 and thus P 2 Prob(R).

By 0 � S � �

�1

(j�j+Æ)�R, S 2M

1

1

(R). Hen
e

b

S 2 C

1

(R). Sin
e (34) shows

that

b

Q(t) = (1�

�

�

) � (

b

R(t))

2

� (1�

b

S(t))

�1

(t 2 R); (36)

and sin
e also

b

R 2 C

1

(R), it follows that

b

Q 2 C

1

(R). Sin
e (35) implies

(28),

b

P is C

1

as well, at least in some neighbourhood of zero. Sin
e P;Q are

probability measures, it follows that P;Q 2 Prob

1

(R). [Compare, for example,

Feller (1971), page 528, problem 15.℄

b) We 
ontinue to use the notation of the above proof of part a). Let, addi-

tionally, �

j

denote the element of M

1

1

(R) with '

j

= b�

j

, and

�

j

:= k(�

j

� Æ) �Rk:

By Theorem 7.7 of Rudin (1991), we have lim�

j

= � in the S
hwartz spa
e

S(R). It follows that

lim�

j

= � with respe
t to the norms k � k

k

(k 2 N

0

); (37)

where

k�k

k

:=

Z

(1 + jxj

k

) dj�j(x) (k 2 N

0

; � 2M

1

1

(R)):
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The parti
ular 
ase k = 0 implies lim�

j

= � with respe
t to the norm k � k

from (30), hen
e lim�

j

= �. We may and do assume that �

j

< � in what

follows. Put S

j

:= �

�1

j(�

j

� Æ) � Rj, Q

j

:= (1� (�

j

=�))R

�2

�

P

1

k=0

S

�k

j

, and

P

j

= �

j

�Q

j

. Then Q

j

; P

j

2 Prob

1

(R) with '

j

b

Q

j

=

b

P

j

, and what remains to

be shown is (29).

By (37),

limS

j

= S with respe
t to the norms k � k

k

(k 2 N

0

): (38)

Using (38) and the de�nition of Q

j

; P

j

, we get limQ

j

= Q and limP

j

= P with

respe
t to k �k. From (38) we also get lim

b

S

j

=

b

S in C

1

(R). Sin
e we have (36)

with �

j

repla
ing �,

b

Q

j

repla
ing

b

Q, and

b

S

j

repla
ing

b

S, we may 
on
lude that

lim

b

Q

j

=

b

Q in C

1

(R). By '

j

b

P

j

=

b

Q

j

, we dedu
e lim

b

P

j

jU =

b

P jU in C

1

(U),

for some neighbourhood U of zero. Hen
e we have in parti
ular (27) and the


orresponding statement for (Q

j

), so that we rea
h (29) via 2.4.

2.6 Lemma. Let �jProb

1

(R) be a 
hara
ter, not ne
essarily 
ontinuous. If

P

1

; P

2

; Q

1

; Q

2

2 Prob

1

(R), and if there exists an U 2 U with

b

P

1

(t)

b

Q

2

(t) =

b

P

2

(t)

b

Q

1

(t) (t 2 U);

then

�(P

1

)

�(Q

1

)

=

�(P

2

)

�(Q

2

)

: (39)

Proof. There exists an R 2 Prob

1

(R) with supp

b

R � U . Thus

b

P

1

b

Q

2

b

R =

b

P

2

b

Q

1

b

R everywhere, so that we su

essively get

P

1

�Q

2

�R = P

2

�Q

1

�R;

�(P

1

)�(Q

2

)�(R) = �(P

2

)�(Q

1

)�(R);

and hen
e (39).

2.7 From � to a linear fun
tional �. Let �jProb

1

(R) be a 
ontinuous


hara
ter. Then there exists a � 2 H

0

with

�(P ) = exp(i�(log Æ[

b

P ℄)) (P 2 Prob

1

(R)): (40)

Here log Æ[

b

P ℄ of 
ourse denotes the element ofH 
ontaining the fun
tions h 2 X

satisfying

h(t) = log

b

P (t) (t 2 U)

for some U 2 U with U �

n

t 2 R : j

b

P (t)� 1j < 1

o

.
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Proof. Follows from Steps 1-5 below.

Step 1: Constru
tion of a fun
tion X jH. Let H 2 H. Then we may

de�ne X(H) 2 T by the 
onstru
tion leading to (42) below, and this de�nition

is independent of the 
hoi
es of h, U , !, P , Q made along the way.

Proof. Choose h 2 H . De�ne  2 C

1

(R) by

 (t) := exp(h(t)) (t 2 R): (41)

Choose U 2 U with 
ompa
t 
losure and 
hoose ! 2 D(R) real and symmetri


with !jU = 1. De�ne ' 2 D(R) by

'(t) := ! �  :

Then ' is hermitean with '(0) = 1, and hen
e satis�es the assumptions of 2.5.

So we may 
hoose P;Q 2 Prob

1

(R) satisfying (28), and put

X(H) :=

�(P )

�(Q)

: (42)

To show that this de�nition is independent of the 
hoi
es made along the

way, 
onsider two 
hoi
es (h

i

; U

i

; !

i

; P

i

; Q

i

), for i 2 f1; 2g, yielding two val-

ues X

i

(H). There exists a V 2 U with '

1

jV = '

2

jV . Hen
e (28) applied to

'

i

; P

i

; Q

i

implies

b

P

1

=

b

Q

1

=

b

P

2

=

b

Q

2

on U := V \ ft : '

1

(t) 6= 0g, so that Lemma

2.6 yields X

1

(H) = X

2

(H).

Step 2: The relation between X and �. For P 2 Prob

1

(R),

�(P ) = X(log Æ[

b

P ℄):

Proof. Changing notation, let P

1

2 Prob

1

(R). Put H := log Æ[

b

P

1

℄. Referring

to Step 1 and its notation, let us denote one 
hoi
e for the 
omputation of

X(H) by (h; U; !; P

2

; Q

2

), with ( ; ') a

ordingly de�ned. Then ' =

b

P

1

in

some

~

U 2 U . With Q

1

:= Æ it follows that

b

P

1

b

Q

2

=

b

P

2

b

Q

1

in

~

U . Hen
e (42),

Lemma 2.6, and �(Æ) = 1, su

essively yield

X(H) =

�(P

2

)

�(Q

2

)

=

�(P

1

)

�(Q

1

)

= �(P

1

):

Step 3: The fun
tion X jH ! T de�ned in Step 1 is a 
hara
ter, with respe
t

to addition in H.

Proof. We have to prove that

X(H

1

+H

2

) = X(H

1

) �X(H

2

) (H

1

; H

2

2 H):
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So let H

1

; H

2

2 H. Choose (U

i

; h

i

; V

i

; !

i

; P

i

; Q

i

) and de�ne ( 

i

; '

i

) as in Step

1 to 
al
ulate X(H

i

) for i 2 f1; 2g. Then we may use the 
hoi
e

(h

1

+ h

2

; U

1

\ U

2

; !

1

� !

2

; P

1

� P

2

; Q

1

�Q

2

);

leading to  =  

1

�  

2

and ' = '

1

� '

2

, to 
ompute X(H

1

+H

2

). The result is

X(H

1

+H

2

) = �(P

1

� P

2

) � (�(Q

1

�Q

2

))

�1

= �(P

1

) � �(P

2

) � (�(Q

1

) � �(Q

2

))

�1

= X(H

1

) �X(H

2

):

Step 4: Continuity. X is 
ontinuous.

Proof. Sin
e H is pseudometrizable, it suÆ
es to 
onsider any given 
onver-

gent sequen
e (H

j

: j 2 N), with limH

j

= H . There exist h 2 H , h

j

2 H

j

,

su
h that

limh

j

= h in C

1

(R):

Starting from the present h, 
hoose and de�ne, respe
tively,  , U , and ! as in

Step 1 around equation (41). Analogously, de�ne  

j

and then '

j

, using the

same U and ! as for  , '. Then lim'

j

= ' in D(R). Now apply part b) of

2.5 to 
hoose P;Q; P

j

; Q

j

with the properties stated there. Then, using Step 1

and the 
ontinuity of �,

X(H

j

) =

�(P

j

)

�(Q

j

)

!

�(P )

�(Q)

= X(H):

Step 5: There exists a � 2 H

0

with X = exp Æ(i�).

Proof. This is always true whenever H is a topologi
al R-ve
torspa
e with

dual H

0

, and X jH a 
ontinuous 
hara
ter, with respe
t to the additive group

of H. See se
tion (23.32.a) on page 370 of Hewitt & Ross (1979) for a proof

assuming, and using, that H is additionally Hausdor�. For the general 
ase,

needed here, apply the spe
ial 
ase to the Hausdor� quotient spa
e of H, ob-

tained by identifying points h

1

; h

2

2 H i� h

2

�h

1

belongs to the 
losure of f0g.

2.8 Proof of the \only if" part of Theorem 1.8. Let �jProb

1

(R) be

a 
ontinuous 
hara
ter. Then there exists a linear fun
tional � as in 2.7. By

2.3, � has a representation as in (26). Inserting this representation into (40)

and applying the de�nition (4) yields (12).
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