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Abstra
t. Let X be a 
ompa
t 
omplex threefold with the integral

homology of S

6

and let Aut(X) be its holomorphi
 automorphism

group. By [HKP℄ and [CDP℄ the dimension of Aut(X) is at most 2.

We prove that Aut(X) 
annot be isomorphi
 to the 
omplex aÆne

group.
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A 
lassi
al problem in the theory of 
omplex manifolds 
on
erns the existen
e

of 
omplex stru
tures on the six-dimensional sphere S

6

. Using o
tonions one


an 
onstru
t almost-
omplex stru
tures on S

6

, but they are not integrable,

and in fa
t no integrable almost-
omplex stru
ture is known; it is generally

believed that they do not exist, and therefore that S

6

provides an example of

almost-
omplex but non-
omplex manifold. Examples of this kind are abundant

in (real) dimension 4 (as a 
onsequen
e of our rather good understanding of


omplex surfa
es) but are still la
king in higher dimension (as a manifestation

of our rather poor understanding of higher dimensional 
omplex manifolds,

ex
ept, of 
ourse, algebrai
 or K�ahler ones). The 
ase of S

6

is perhaps of

parti
ular interest be
ause a 
omplex stru
ture on S

6

would give, by blowing

up a point, an exoti
 
omplex stru
ture on the familiar CP

3

. Moreover, it was

proved by Borel and Serre in the �fties that S

2

and S

6

are the only spheres

whi
h admit an almost-
omplex stru
ture.

Re
ently, two papers add new insights into this problem. Campana, Demailly

and Peternell prove in [CDP℄ that a 
omplex threefold X di�eomorphi
 to S

6

has no non
onstant meromorphi
 fun
tion. Hu
kleberry, Kebekus and Peter-

nell prove in [HKP℄ that a 
omplex threefold X di�eomorphi
 to S

6

is not
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almost-homogeneous. Due to [CDP℄, this last result 
an be reformulated as:

the automorphism group Aut(X) of X has dimension less than or equal to 2

(re
all that the automorphism group of a 
ompa
t 
omplex manifold is a �nite

dimensional 
omplex Lie group [Hu
℄).

Our aim is to pursue the study of Aut(X). Let Aut

0

(X) be the 
onne
ted


omponent of the identity: it is a 
onne
ted 
omplex Lie group of dimension

� 2, and if it is not abelian then it is isomorphi
 to Aff

k

(C) for some k 2

N

+

[ f1g, where Aff

k

(C) denotes the k-fold 
overing of the 
omplex aÆne

group Aff(C). The Lie algebra of Aff

k

(C) is generated by two ve
tors �,

� satisfying [�; �℄ = �, and if k 6= 1 then � is the generator of a subgroup

isomorphi
 to C

�

(more pre
isely, C=2�ikZ). We shall prove that Aut

0

(X)


annot be isomorphi
 to Aff

k

(C), k 2 N

+

; equivalently, if Aut

0

(X) 
ontains

a C

�

-a
tion then Aut

0

(X) is abelian.

More generally, we shall work under the hypothesis that X is a 
ompa
t 
om-

plex threefold with the Z-homology of S

6

; we shall 
all su
h an X a 
omplex

homology sphere. The results of [CDP℄ and [HKP℄ are still valid for any 
om-

plex homology sphere: this is expli
it in [CDP℄ and 
an be easily 
he
ked in

[HKP℄.

Theorem. Let X be a 
omplex homology sphere. Then the groups Aff

k

(C),

k 2 N

+

, do not a
t faithfully on X.

The main step of the proof is a \redu
tion" of the �xed point set of a C

�

-

a
tion on a 
omplex sphere (in
identally, this furnishes also some simpli�
ations

of se
tions 7-8 of [HKP℄). It has been observed in [HKP℄ that su
h a �xed

point set is either a pair of points or a smooth rational 
urve. We shall prove

that, if the former 
ase o

urs, one 
an �nd a bimeromorphi
 transformation

� : X � � ! Y , where Y is still a 
omplex homology sphere, whi
h maps

Aut

0

(X) isomorphi
ally onto Aut

0

(Y ) and moreover maps the C

�

-a
tion on X

to a C

�

-a
tion on Y whose �xed point set is a rational 
urve. The argument

is the following. Using index type 
onsiderations [Bot℄ we �nd smooth rational


urves joining the two �xed points, invariant by the C

�

-a
tion, and whose

normal bundle is O(�1)�O(�1). We perform a bimeromorphi
 transformation

(a 
op [Kol℄) 
entered on one of these 
urves, giving a new 
omplex homology

sphere and a newC

�

-a
tion. A 
ombinatorial argument shows that after a �nite

number of steps we arrive at a C

�

-a
tion whose �xed point set is a rational


urve, as desired.

On
e that redu
tion of �xed points has been done, the 
ommutativity of

Aut

0

(X) in presen
e of C

�

-subgroups will be proved by a somewhat algebrai


argument. Assuming (by 
ontradi
tion) that Aut

0

(X) is not 
ommutative, we

show that X 
ontains a rational irredu
ible (singular) surfa
e, invariant by the

C

�

-a
tion and 
ontaining the stable and unstable manifolds of the �xed point

set. This turns out to be impossible. We noti
e that one 
an prove the existen
e

of su
h a rational surfa
e even if Aut

0

(X) is 
ommutative and bidimensional;

however we are not able, in that 
ase, to produ
e a 
ontradi
tion and therefore

we do not present here that partial result.
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1. Redu
tion of fixed points of C

�

-a
tions

Let � : C

�

�X ! X be a C

�

-a
tion on a 
omplex homology sphere. We will

assume, without loss of generality, that � is faithful: �

t

6= id for t 6= 1. We

denote by v =

d

dt

j

t=1

�

t

its in�nitesimal generator. It is a holomorphi
 ve
tor

�eld, whose 
ow is 2�i-periodi
, and its zero set 
oin
ides with the �xed point

set Fix(�) of �. It is a 
lassi
al fa
t [Hu
℄ that v is linearizable near ea
h point

of Fix(�); in parti
ular Fix(�) is a smooth 
omplex submanifold of X .

Lemma 1 [HKP℄. Fix(�) is either a pair of points or a smooth rational 
urve.

Proof. The set Fix(�) 
oin
ides with the �xed point set of the S

1

-a
tion 
on-

tained in the C

�

-a
tion. Therefore, and be
ause X is a Z-homology sphere, we

have that the Z-homology of Fix(�) is that of S

0

or S

2

or S

4

[Bor,IV.5.9℄. The

�rst 
ase gives Fix(�) = fa; bg, the se
ond one Fix(�) = CP

1

, and the third

one is ex
luded be
ause no 
ompa
t 
omplex surfa
e has the Z-homology of S

4

(by the signature formula, for instan
e). An alternative way to ex
lude the third


ase is the following [HKP℄: the adjun
tion formula and b

2

(X) = b

4

(X) = 0 im-

ply that the Euler 
hara
teristi
 of a smooth 
ompa
t 
omplex surfa
e S � X

is zero:




2

(S) = 


2

(X) � S � 


1

(S) � 


1

(O

X

(S)j

S

) = 0

and so S 
annot have the Z-homology of S

4

. q:e:d:

Let p 2 Fix(�) and let p

1

; p

2

; p

3

be the eigenvalues of (the linear part of) v at

p. They are integers, and the faithfulness of � implies that

GCD(p

1

; p

2

; p

3

) = 1:

Lemma 2. For every i; j 2 f1; 2; 3g, i 6= j, we have

GCD(p

i

; p

j

) = 1:

Proof. Suppose by 
ontradi
tion that GCD(p

1

; p

2

) = n � 2 and let ! be a

primitive n-root of 1. Then the periodi
 biholomorphism �

!

is not the identity

but its �xed point set 
ontains a smooth 
ompa
t 
omplex surfa
e S with p 2 S

and T

p

S = E

p

1

� E

p

2

, where E

p

j

is the eigenspa
e 
orresponding to p

j

. As

observed in the proof of lemma 1, the Euler 
hara
teristi
 of S is zero. The

a
tion � restri
ts to S to a nontrivial (and nonfaithful) a
tion whose �xed point

set is Fix(�) \ S. This set is nonempty (it 
ontains p) and it is either dis
rete

or a rational 
urve. In both 
ases the Poin
ar�e - Hopf formula gives 


2

(S) > 0,


ontradi
tion. q:e:d:

In parti
ular, if Fix(�) = CP

1

(that is, one of the eigenvalues is zero) then

there are only two possibilities for (p

1

; p

2

; p

3

) (up to renumbering and up to

reversing the a
tion): (0; 1; 1) and (0; 1;�1). Let us ex
lude the �rst one.

Lemma 3. If Fix(�) = CP

1

then the two nonvanishing eigenvalues of v along

Fix(�) have opposite sign.
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Proof. This 
an be proved using the Bott formula [Bot℄. However, that formula

is rather 
ompli
ated in the 
ase of nonisolated �xed points, and so we prefer

to give the following elementary proof. Suppose, by 
ontradi
tion, that the

eigenvalues of v along Fix(�) are (0; 1; 1). Take the quotient of X by the

S

1

-a
tion 
ontained in the C

�

-a
tion. It is easy to see that it is a topologi
al


ompa
t manifoldM of dimension 5, and Fix(�) proje
ts onM to an embedded

2-sphere N : near a point of Fix(�) the S

1

-a
tion is the produ
t of the trivial

a
tion on C and the a
tion on C

2

tangent to ea
h 3-sphere and indu
ing there

the Hopf �bration, so that the quotient of ea
h 3-sphere is S

2

and the quotient

of the C

2

fa
tor is a 
one over S

2

, that is R

3

. More expli
itely, near a point

of Fix(�) we 
an 
hoose lo
al holomorphi
 
oordinates (x; y; z) so that v is

expressed by x

�

�x

+y

�

�y

, and then the quotient map isC

3

! R

3

�C, (x; y; z) 7!

(

p

jxj

2

+ jyj

2

;

x

y

; z), where R

3

is 
oordinatized by polar 
oordinates (r; �) 2

R

+

� CP

1

. The 2-sphere N is lo
ally given by fr = 0g. The R

�

-a
tion


ontained in the C

�

-a
tion proje
ts on M to an a
tion generated by a ve
tor

�eld V vanishing on N , and only there. Up to 
hanging V to �V , the sphere

N is an attra
tor: lo
ally, in the same 
oordinates (r; �; z) as before, we have

V = �r

�

�r

. We see that the Poin
ar�e - Hopf index of v at N is equal to 2, hen
e

the Euler 
hara
teristi
 of M is also equal to 2. Sin
e M is odd-dimensional,

this is an absurd. q:e:d:

We shall prove the following result.

Proposition 1. Let X be a 
omplex homology sphere and let � : C

�

�X ! X

be a C

�

-a
tion whose �xed point set Fix(�) is a pair of points fa; bg. Then there

exists a 
omplex homology sphere Y and a bimeromorphism � : X � � ! Y

su
h that:

i) � 
onjugates Aut

0

(X) to Aut

0

(Y );

ii) � 
onjugates � to a C

�

-a
tion � on Y whose �xed point set is a smooth

rational 
urve.

The bimeromorphism � will be a 
omposition of elementary bimeromorphisms

that we now des
ribe.

Suppose that X 
ontains a smooth rational 
urve R whose normal bundle

N

R;X

is O(�1)�O(�1). Let

~

X

�

! X be the blow-up of X with 
enter R. The

ex
eptional divisor D �

~

X is a rational ruled surfa
e over R, more pre
isely

D = P (N

R;X

) = CP

1

� CP

1

. Hen
e there are two rulings on D: the ruling

over R, given by �j

D

, and a se
ond ruling D

�

! CP

1

whose �bres are transverse

to the �bres of �j

D

. The normal bundle of D in

~

X has degree -1 on the �bres

of �j

D

and also on the �bres of �. Hen
e [Moi℄ we 
an 
ontra
t ea
h �bre

of � to a point: the result is a smooth 
omplex threefold Y and a morphism

�

0

:

~

X ! Y . The image of D by �

0

is a smooth rational 
urve S with normal

bundle N

S;Y

= O(�1) �O(�1), and �

0

is nothing else than the blow-up of Y

with 
enter S. The bimeromorphism �

0

Æ �

�1

: X � � ! Y will be 
alled a


op with 
enter R. It is in fa
t the simplest example of a 
op [Kol℄.

Lemma 4. Y is a 
omplex homology sphere.
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Proof. It follows from

H

k

(Y;Z) = H

k

(

~

X;Z) = H

k

(X;Z) if k 6= 2; 4

H

k

(Y;Z)� Z = H

k

(

~

X;Z) = H

k

(X;Z)� Z if k = 2; 4:

q:e:d:

It should be possible to prove also that Y is di�eomorphi
 to X . In fa
t, there

should exist a smooth (non holomorphi
!) di�eomorphism of

~

X, whose support

is lo
alized on a neighbourhood of D, whi
h ex
hanges the two rulings �j

D

and

�, proving the di�eomorphi
ity of X and Y . Remark that the fundamental

groups of X and Y are isomorphi
. If X is di�eomorphi
 to S

6

then it is easy

to see that Y also is di�eomorphi
 to S

6

, by 
lassi
al results in di�erential

topology (Smale, Kervaire - Milnor,...).

Lemma 5. The 
op �

0

Æ �

�1

: X � � ! Y realizes an isomorphism between

Aut

0

(X) and Aut

0

(Y ).

Proof. We simply have to 
he
k that for every holomorphi
 ve
tor �eld on X

(resp. on Y ) its transform on Y (resp. on X) is still holomorphi
. This follows

from the negativity of N

R;X

and N

S;Y

: every holomorphi
 ve
tor �eld on X

(resp. on Y ) is tangent to R (resp. to S). q:e:d:

In order to do 
ops, we have to �nd rational 
urves with normal bundle O(�1)�

O(�1). This will be based on the following remarks.

Let Fix(�) = fa; bg and let a

1

; a

2

; a

3

be the eigenvalues of v at a, b

1

; b

2

; b

3

those at b. Suppose that ja

j

j � 2, for some j: then by the same argument

of the proof of lemma 2 there is a �-invariant smooth 
omplex 
urve R � X ,

with a 2 R and T

a

R = E

a

j

(observe that, by lemma 2, this eigenspa
e is one-

dimensional). Clearly R is rational and 
ontains a se
ond �xed point, that is

b 2 R. Moreover, for some i we have T

b

R = E

b

i

, and b

i

= �a

j

. To �x ideas,

suppose j = i = 1. The normal bundle of R will be 
omputed by the following

formula.

Lemma 6.

N

R;X

= O(n)�O(m)

where n =

a

2

�b

2

a

1

;m =

a

3

�b

3

a

1

or n =

a

2

�b

3

a

1

;m =

a

3

�b

2

a

1

.

Proof. We 
onsider the restri
tion of � to R and its natural extension to N

R;X

,

via the di�erential. We therefore are in the situation of [Bot℄: a holomorphi


ve
tor �eld (on R) whi
h a
ts on a ve
tor bundle. Hen
e the 
hara
teristi


numbers of that bundle are lo
alized at zeroes of the ve
tor �eld, that is at a

and b.

The bundle N

R;X

has a splitting F

1

� F

2

by line bundles whi
h are invariant

by the a
tion: this 
orresponds to the fa
t that a C

�

-a
tion on a rational ruled

surfa
e (in our 
ase P (N

R;X

)) has always two disjoint invariant se
tions. The

�bres (F

i

)

a

, (F

i

)

b

are invariant and their eigenvalues are a

2

; a

3

; b

2

; b

3

. Hen
e

there are two possibilities:
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2

R

F

F

F

R

F

1

2

1

2

a

a

a

b

b

b a

a

a b

b

b3

1

2 2

1

3 3

1

2 3

1

From Bott formula [Bot℄ we dedu
e in the �rst 
ase




1

(F

1

) =

a

2

a

1

+

b

2

b

1

=

a

2

� b

2

a

1

; 


1

(F

2

) =

a

3

� b

3

a

1

and in the se
ond 
ase




1

(F

1

) =

a

2

� b

3

a

1

; 


1

(F

2

) =

a

3

� b

2

a

1

:

q:e:d:

Observe that by adjun
tion formula and 


1

(X) = 0 we have 


1

(N

R;X

) =

�


1

(R) = �2 and 
onsequently n+m = �2, i.e.

a

1

+ a

2

+ a

3

= b

1

+ b

2

+ b

3

:

2. Proof of proposition 1

Let a

1

; a

2

; a

3

(resp. b

1

; b

2

; b

3

) be the eigenvalues of v at a (resp. at b), with

ja

1

j � ja

2

j � ja

3

j.

First step: from ja

1

j � 2 to ja

1

j = 1.

If ja

1

j � 2 then, as explained before lemma 6, we have three smooth �-invariant

rational 
urves through a and b, ea
h one 
onne
ting a and b:

R

R

R

a

a

a b

b

2

b

2

1

3

1

2

3
3

1
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We have b

j

= �a

j

for every j = 1; 2; 3 (up to renumbering the eigenvalues at b).

Remark that ja

1

j � 2 implies ja

2

j; ja

3

j � 3 (lemma 2). By lemma 6, the normal

bundle N

R

2

;X

is either O(

2a

1

a

2

)�O(

2a

3

a

2

) or O(

a

1

+a

3

a

2

)�O(

a

1

+a

3

a

2

). The former


ase is ex
luded be
ause

2a

1

a

2

and

2a

3

a

2

are not integers. The latter 
ase is in fa
t

O(�1)�O(�1), be
ause 


1

(N

R

2

;X

) = �2. Similarly, N

R

3

;X

= O(�1)�O(�1).

Hen
e we 
an perform 
ops with 
enter R

2

or R

3

. Let us see how a 
op with


enter R

2

transforms the eigenvalues of the C

�

-a
tion. After a blow-up � with


enter R

2

we obtain a C

�

-a
tion with four �xed points on the ex
eptional

divisor, two over a and two over b. The rational 
urves �

�1

(a) and �

�1

(b) are

invariant by the a
tion and their eigenvalues are �(a

1

�a

3

). The blow-down �

0

maps these two 
urves onto a rational 
urve R

00

2

, with eigenvalues �(a

1

� a

3

):

R

R

R’

R’’
a

a
a

-a

-a-a
π π’

a
-a

-aa 3

a -a

a -a

a

-a
a -a

a -aa
-a

3

2

3

2

1
3

1

2

3

1

1
3

1 3

3 1

3

2

3

1
1 3

1 3 1

On the new 
omplex homology sphere we therefore have a new (faithful) C

�

-

a
tion with a �xed point whose eigenvalues are (a

1

; a

3

� a

1

;�a

3

). The stri
t

transform R

0

3

of R

3

has normal bundle O(�1) � O(�1), again by lemma 6.

Therefore we 
an perform a se
ond 
op with 
enter R

0

3

: we obtain a new


omplex homology sphere and a C

�

-a
tion with a �xed point whose eigenvalues

are (a

1

; a

1

� a

3

; a

3

� 2a

1

) = (a

1

; a

2

+ 2a

1

; a

3

� 2a

1

) (re
all that

a

1

+a

3

a

2

= �1,

i.e. a

1

+ a

2

+ a

3

= 0). Of 
ourse, we 
an reverse the order: a 
op with 
enter

R

3

followed by a 
op with 
enter R

0

2

produ
es a C

�

-a
tion with a �xed point

with eigenvalues (a

1

; a

2

� 2a

1

; a

3

+2a

1

). Remark that these new 
olle
tions of

eigenvalues still satisfy the GCD 
ondition of lemma 2.

Iterating this pro
ess we arrive at a �xed point with eigenvalues (a

1

; �; �) and

j�j � ja

1

j (� = a

2

+ 2na

1

or a

3

+ 2na

1

for a suitable integer n). Be
ause

GCD(a

1

; �) = 1 and ja

1

j � 2, we have the stri
t inequalities 0 < j�j < ja

1

j,

that is the eigenvalue with smallest modulus has modulus stri
tly smaller that

ja

1

j. Iterating again we �nally arrive at an eigenvalue with modulus equal to

1.

Se
ond step: from ja

1

j = 1, ja

2

j � 2 to ja

1

j = ja

2

j = 1.

Now we 
an guarantee only two �-invariant rational 
urves:
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R

R

a

a

a b

b

3

b

3

2

3

2

1
1

2

We have b

j

= �a

j

for j = 2; 3. We also have jb

1

j = 1: otherwise jb

1

j � 2 and

there would be a third �-invariant rational 
urve tangent to E

a

1

at a and to

E

b

1

at b, giving b

1

= �a

1

, thus jb

1

j = ja

1

j = 1, a 
ontradi
tion.

From ja

2

j � 2 it follows ja

3

j � 3 and (lemma 6) the normal bundle N

R

3

;X

is

eitherO(

a

1

�b

1

a

3

)�O(

2a

2

a

3

) orO(

a

1

+a

2

a

3

)�O(

a

2

�b

1

a

3

). As before, the �rst possibility

is ex
luded be
ause

2a

2

a

3

is not an integer. Hen
e N

R

3

;X

= O(

a

1

+a

2

a

3

)�O(

a

2

�b

1

a

3

).

From 


1

(N

R

3

;X

) = �2 it follows that a

1

+2a

2

�b

1

= �2a

3

. Be
ause ja

2

j 6= ja

3

j,

we 
annot have b

1

= a

1

and so we have b

1

= �a

1

. This in turn implies

a

1

+ a

2

+ a

3

= 0 and N

R

3

;X

= O(�1)�O(�1).

If ja

2

j � 3 the same argument applies to R

2

, and we obtain N

R

2

;X

= O(�1)�

O(�1). Then we pro
eed as in the �rst step: a sequen
e of 
ops produ
es

a C

�

-a
tion with a �xed point with eigenvalues (a

1

; �; �), j�j � ja

1

j; that is

j�j = ja

1

j = 1.

If ja

2

j = 2, from a

1

+ a

2

+ a

3

= 0, ja

1

j = 1 and ja

3

j � 3 we �nd a

2

= 2a

1

; a

3

=

�3a

1

. It is readily 
he
ked that a single 
op along R

3

produ
es a C

�

-a
tion

with a �xed point with eigenvalues (a

1

; a

1

;�2a

1

).

Third step: the 
ase ja

1

j = ja

2

j = 1, ja

3

j � 2.

R

a

a

a b

3

b

b

2

3

1
1

3

2

We have b

3

= �a

3

. As before, jb

1

j = jb

2

j = 1. Up to ex
hanging b

1

and

b

2

we obtain N

R

3

;X

= O(

a

1

�b

1

a

3

) � O(

a

2

�b

2

a

3

) and a

1

� b

1

+ a

2

� b

2

= �2a

3

.

From ja

3

j � 2 it follows a

1

= a

2

= �b

1

= �b

2

and a

3

= �2a

1

, therefore

N

R

3

;X

= O(�1) � O(�1). A 
op along R

3

gives a C

�

-a
tion with a rational


urve of �xed points (and eigenvalues (0; 1;�1)).

Last step. To 
omplete the proof of proposition 1 we need to show that the


ase ja

1

j = ja

2

j = ja

3

j = 1 never happens. By the usual argument, if ja

j

j = 1

for every j then also jb

j

j = 1 for every j. We now take the Bott formula [Bot℄
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for 


3

1

(X):

(a

1

+ a

2

+ a

3

)

3

a

1

a

2

a

3

+

(b

1

+ b

2

+ b

3

)

3

b

1

b

2

b

3

= 


3

1

(X) = 0:

If ja

j

j = 1 for every j then the residue

(a

1

+a

2

+a

3

)

3

a

1

a

2

a

3


an take only two values:

27 and -1. The same for

(b

1

+b

2

+b

3

)

3

b

1

b

2

b

3

. Hen
e their sum 
annot vanish. q:e:d:

Remark: we 
ould use the Bott formula sin
e the beginning of the proof and

not only in the last step, but it turns out that this would give only minor

simpli�
ations (for instan
e, in the se
ond step we 
an use the Bott formula

to dedu
e b

1

= �a

1

from jb

1

j = ja

1

j). It also turns out that the analogous

formula for 


1

(X) � 


2

(X) yields no further information. The formula for 


3

(X)

is equivalent to the Poin
ar�e - Hopf formula and was already used, more or less,

in lemmata 1, 2 and 3. And, of 
ourse, all these formulae do not 
ontradi
t the

existen
e of a C

�

-a
tion with a rational 
urve of �xed points, with eigenvalues

(0; 1;�1).

The automorphism group is abelian

From now on � : C

�

�X ! X will denote a faithful C

�

-a
tion on a 
omplex

homology sphere with Fix(�) = Z

0

a smooth rational 
urve. Around ea
h

point of Z

0

we 
an 
hoose lo
al 
oordinates (x; y; z) su
h that the in�nitesimal

generator v is expressed by x

�

�x

� y

�

�y

(and Z

0

= fx = y = 0g). If we take a

suÆ
iently small tubular neighbourhood V of Z

0

then the sets

W

s

V

= fp 2 V j�

t

(p) 2 V 8t; jtj � 1; and lim

t!1

�

t

(p) = �

+

(p) 2 Z

0

g

and

W

u

V

= fp 2 V j�

t

(p) 2 V 8t; jtj � 1; and lim

t!0

�

t

(p) = �

�

(p) 2 Z

0

g

are smooth 
omplex open surfa
es, 
ontaining Z

0

and interse
ting transversely

along Z

0

. In the above lo
al 
oordinates, W

s

V

= fx = 0g and W

u

V

= fy = 0g.

Suppose now that

dim Aut

0

(X) = 2:

This means that there exists a se
ond holomorphi
 ve
tor �eld w on X , lin-

early independent of v. In fa
t, w 
annot be 
ollinear to v at a generi
 point

of X , be
ause X has no non
onstant meromorphi
 fun
tion [CDP℄. The 
om-

mutator [v; w℄ is a linear 
ombination av + bw, a; b 2 C, sin
e the Lie al-

gebra of holomorphi
 ve
tor �elds on X is two-dimensional, spanned by v

and w. Be
ause the 
ow of v is 2�i-periodi
, one easily sees that if b = 0

then also a = 0: when [v; w℄ = av, the 
ows �

t

(= �

exp t

) of v and  

t

of

w are related by  

s

Æ �

t

= �

t exp(as)

Æ  

s

for every t; s 2 C, in parti
ular
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�

2�i exp(as)

=  

s

Æ�

2�i

Æ 

�s

= id for every s 2 C, so that exp(as) is an integer

for every s and therefore a = 0. Hen
e, up to repla
ing w by w+

a

b

v (if b 6= 0),

we have

[v; w℄ = bw

where b 2 Z, again for the 2�i-periodi
ity of the 
ow of v. Up to 
hanging v

to �v, we may suppose that b 2 N.

In this se
tion we shall prove the 
ommutativity of Aut

0

(X), 
on
luding the

proof of the theorem stated in the introdu
tion.

Proposition 2. Let v; w be holomorphi
 ve
tor �elds on a 
omplex homology

sphere, where v generates a C

�

-a
tion. Then v and w 
ommute: [v; w℄ = 0.

Let us 
onsider the wedge produ
t v ^ w 2 H

0

(X;TX ^ TX), whose zero

set E � X is the analyti
 subset of X where v and w are 
ollinear. De�ne

O(v ^ w;W

s

V

), resp. O(v ^ w;W

u

V

), as the vanishing order of v ^ w along W

s

V

,

resp. W

u

V

. Of 
ourse, if W

s

V

is not 
ontained in E (for instan
e, if W

s

V

is not a

pie
e of a 
ompa
t analyti
 subset of X) then O(v ^ w;W

s

V

) = 0.

Lemma 7.

O(v ^ w;W

s

V

) = O(v ^ w;W

u

V

) + b:

Proof. We shall 
on
lude by a lo
al 
omputation. Take p 2 Z

0

and lo
al


oordinates (x; y; z) so that v = x

�

�x

� y

�

�y

, w = A

�

�x

+ B

�

�y

+ C

�

�z

, W

s

V

=

fx = 0g, W

u

V

= fy = 0g. Hen
e

v ^ w = (xB + yA)

�

�x

^

�

�y

+ xC

�

�x

^

�

�z

� yC

�

�y

^

�

�z

and we see that

O(v ^ w;W

s

V

) = minfO(A;W

s

V

); O(B;W

s

V

) + 1; O(C;W

s

V

)g

O(v ^ w;W

u

V

) = minfO(A;W

u

V

) + 1; O(B;W

u

V

); O(C;W

u

V

)g:

From [v; w℄ = bw we obtain the following system of equations:

8

>

<

>

:

xA

x

� yA

y

= (b+ 1)A

xB

x

� yB

y

= (b� 1)B

xC

x

� yC

y

= bC

Write A(x; y; z) = x

h

y

k

a(x; y; z), h = O(A;W

s

V

), k = O(A;W

u

V

) (i.e., the fun
-

tions a(0; y; z) and a(x; 0; z) are not identi
ally zero). From the �rst equation

we obtain:

xa

x

� ya

y

= (b+ 1� h+ k)a

and restri
ting to fy = 0g:

xa

x

(x; 0; z) = (b+ 1� h+ k)a(x; 0; z)
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that is

a

x

(x; 0; z)

a(x; 0; z)

=

b+ 1� h+ k

x

:

We dedu
e that b + 1 � h + k � 0, be
ause a(x; 0; z) is holomorphi
 and

not identi
ally zero. Restri
ting to fx = 0g we �nd the opposite inequality:

b+ 1� h+ k � 0. Hen
e b+ 1� h+ k = 0, or more expli
itely

O(A;W

s

V

) = O(A;W

u

V

) + b+ 1:

In a similar way, from the se
ond and the third equations we �nd

O(B;W

s

V

) = O(B;W

u

V

) + b� 1

and

O(C;W

s

V

) = O(C;W

u

V

) + b

from whi
h it follows that

O(v ^ w;W

s

V

) = O(v ^ w;W

u

V

) + b:

q:e:d:

In order to prove proposition 2, suppose now by 
ontradi
tion that b is stri
tly

positive. In parti
ular O(v ^ w;W

s

V

) > 0, so that v ^ w does vanish on W

s

V

.

In other words, there exists an irredu
ible 
omponent N � E, dim N = 2,

whi
h 
ontains W

s

V

. Take the restri
tion of the C

�

-a
tion � to N , and take an

equivariant resolution of singularities

~

N ! N , over whi
h � 
an be lifted. On

~

N we therefore have a C

�

-a
tion with a rational 
urve of �xed points (arising

from Z

0

). It follows from the 
lassi�
ation of C

�

-a
tions on 
ompa
t 
omplex

surfa
es [Hau℄ that

~

N is algebrai
 (and even rational) and that the 
losure of

ea
h orbit of the C

�

-a
tion is a (possibly singular) rational 
urve. Returning

to X , we therefore see that for ea
h p 2 W

s

V

not only lim

t!1

�

t

(p) is a single

point on Z

0

(as the de�nition of W

s

V


laims) but also lim

t!0

�

t

(p) is a single

point, ne
essarily on Z

0

, and so the �-orbit through p 
uts W

u

V

. Varying p on

W

s

V

we also see that the full W

u

V

belongs to N . But this 
ontradi
ts lemma 7:

be
ause O(v ^w;W

s

V

) 6= O(v ^w;W

u

V

), the sets W

s

V

and W

u

V


annot belong to

the same irredu
ible 
omponent of E. This 
ontradi
tion proves proposition 2.
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