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ABSTRACT. Let X be a compact complex threefold with the integral
homology of S® and let Aut(X) be its holomorphic automorphism
group. By [HKP] and [CDP] the dimension of Aut(X) is at most 2.
We prove that Aut(X) cannot be isomorphic to the complex affine

group.
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A classical problem in the theory of complex manifolds concerns the existence
of complex structures on the six-dimensional sphere S®. Using octonions one
can construct almost-complex structures on S°, but they are not integrable,
and in fact no integrable almost-complex structure is known; it is generally
believed that they do not exist, and therefore that S® provides an example of
almost-complex but non-complex manifold. Examples of this kind are abundant
in (real) dimension 4 (as a consequence of our rather good understanding of
complex surfaces) but are still lacking in higher dimension (as a manifestation
of our rather poor understanding of higher dimensional complex manifolds,
except, of course, algebraic or Kihler ones). The case of S% is perhaps of
particular interest because a complex structure on S® would give, by blowing
up a point, an exotic complex structure on the familiar CP3. Moreover, it was
proved by Borel and Serre in the fifties that S? and S® are the only spheres
which admit an almost-complex structure.

Recently, two papers add new insights into this problem. Campana, Demailly
and Peternell prove in [CDP] that a complex threefold X diffeomorphic to S°
has no nonconstant meromorphic function. Huckleberry, Kebekus and Peter-
nell prove in [HKP] that a complex threefold X diffeomorphic to S® is not
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almost-homogeneous. Due to [CDP], this last result can be reformulated as:
the automorphism group Aut(X) of X has dimension less than or equal to 2
(recall that the automorphism group of a compact complex manifold is a finite
dimensional complex Lie group [Huc]).

Our aim is to pursue the study of Aut(X). Let Auto(X) be the connected
component of the identity: it is a connected complex Lie group of dimension
< 2, and if it is not abelian then it is isomorphic to Aff*¥(C) for some k €
Nt U {oc}, where Af f*(C) denotes the k-fold covering of the complex affine
group Aff(C). The Lie algebra of Aff*(C) is generated by two vectors &,
n satisfying [€,n] = n, and if k& # oo then & is the generator of a subgroup
isomorphic to C* (more precisely, C/2nwikZ). We shall prove that Auto(X)
cannot be isomorphic to Af f*(C), k € N*t; equivalently, if Auty(X) contains
a C*-action then Auto(X) is abelian.

More generally, we shall work under the hypothesis that X is a compact com-
plex threefold with the Z-homology of S%; we shall call such an X a complex
homology sphere. The results of [CDP] and [HKP] are still valid for any com-
plex homology sphere: this is explicit in [CDP] and can be easily checked in
[HKP].

THEOREM. Let X be a complex homology sphere. Then the groups Aff*(C),
k € N*t, do not act faithfully on X.

The main step of the proof is a “reduction” of the fixed point set of a C*-
action on a complex sphere (incidentally, this furnishes also some simplifications
of sections 7-8 of [HKP]). It has been observed in [HKP] that such a fixed
point set is either a pair of points or a smooth rational curve. We shall prove
that, if the former case occurs, one can find a bimeromorphic transformation
¢: X — — —= Y, where Y is still a complex homology sphere, which maps
Auto(X) isomorphically onto Auto(Y) and moreover maps the C*-action on X
to a C*-action on Y whose fixed point set is a rational curve. The argument
is the following. Using index type considerations [Bot] we find smooth rational
curves joining the two fixed points, invariant by the C*-action, and whose
normal bundle is O(—1)®O(—1). We perform a bimeromorphic transformation
(a flop [Kol]) centered on one of these curves, giving a new complex homology
sphere and a new C*-action. A combinatorial argument shows that after a finite
number of steps we arrive at a C*-action whose fixed point set is a rational
curve, as desired.

Once that reduction of fixed points has been done, the commutativity of
Auto(X) in presence of C*-subgroups will be proved by a somewhat algebraic
argument. Assuming (by contradiction) that Auto(X) is not commutative, we
show that X contains a rational irreducible (singular) surface, invariant by the
C*-action and containing the stable and unstable manifolds of the fixed point
set. This turns out to be impossible. We notice that one can prove the existence
of such a rational surface even if Auty(X) is commutative and bidimensional;
however we are not able, in that case, to produce a contradiction and therefore
we do not present here that partial result.
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1. REDUCTION OF FIXED POINTS OF C*-ACTIONS

Let p: C* x X — X be a C*-action on a complex homology sphere. We will
assume, without loss of generality, that p is faithful: p; # id for t # 1. We
denote by v = %|t:1 pt its infinitesimal generator. It is a holomorphic vector
field, whose flow is 2mi-periodic, and its zero set coincides with the fixed point
set Fiz(p) of p. Tt is a classical fact [Huc] that v is linearizable near each point
of Fiz(p); in particular Fiz(p) is a smooth complex submanifold of X.
LeMMA 1 [HKP]. Fiz(p) is either a pair of points or a smooth rational curve.
Proof. The set Fiz(p) coincides with the fixed point set of the S'-action con-
tained in the C*-action. Therefore, and because X is a Z-homology sphere, we
have that the Z-homology of Fiz(p) is that of S° or S? or S* [Bor,IV.5.9]. The
first case gives Fiz(p) = {a,b}, the second one Fiz(p) = CP', and the third
one is excluded because no compact complex surface has the Z-homology of S*
(by the signature formula, for instance). An alternative way to exclude the third
case is the following [HKP]: the adjunction formula and b2(X) = b4(X) = 0 im-
ply that the Euler characteristic of a smooth compact complex surface S C X
is zero:

c2(S) =c2(X) - S —c1(S) - e1(Ox(S)|s) =0
and so S cannot have the Z-homology of S*. g.e.d.

Let p € Fiz(p) and let py, p2, ps be the eigenvalues of (the linear part of) v at
p. They are integers, and the faithfulness of p implies that

GCD(plap2ap3) =1

LEMMA 2. For every i,j € {1,2,3}, i # j, we have

GCD(pi,pj) =1.

Proof. Suppose by contradiction that GCD(p;,p2) = n > 2 and let w be a
primitive n-root of 1. Then the periodic biholomorphism p,, is not the identity
but its fixed point set contains a smooth compact complex surface S with p € S
and T,S = E,, ® E,,, where E, is the eigenspace corresponding to p;. As
observed in the proof of lemma 1, the Euler characteristic of S is zero. The
action p restricts to S to a nontrivial (and nonfaithful) action whose fixed point
set is Fiz(p) N S. This set is nonempty (it contains p) and it is either discrete
or a rational curve. In both cases the Poincaré - Hopf formula gives ¢2(S) > 0,
contradiction. g.e.d.

In particular, if Fiz(p) = CP! (that is, one of the eigenvalues is zero) then
there are only two possibilities for (p1,p2,p3) (up to renumbering and up to
reversing the action): (0,1,1) and (0,1, —1). Let us exclude the first one.
LEMMA 3. If Fiz(p) = CP! then the two nonvanishing eigenvalues of v along
Fixz(p) have opposite sign.

DOCUMENTA MATHEMATICA 4 (1999) 451-462



454 MARCO BRUNELLA

Proof. This can be proved using the Bott formula [Bot]. However, that formula
is rather complicated in the case of nonisolated fixed points, and so we prefer
to give the following elementary proof. Suppose, by contradiction, that the
eigenvalues of v along Fiz(p) are (0,1,1). Take the quotient of X by the
S!-action contained in the C*-action. It is easy to see that it is a topological
compact manifold M of dimension 5, and Fiz:(p) projects on M to an embedded
2-sphere N: near a point of Fiz(p) the S'-action is the product of the trivial
action on C and the action on C? tangent to each 3-sphere and inducing there
the Hopf fibration, so that the quotient of each 3-sphere is S? and the quotient
of the C? factor is a cone over S2, that is R3. More explicitely, near a point
of Fiiz(p) we can choose local holomorphic coordinates (z,y, z) so that v is
expressed by aca% -I-ya%, and then the quotient map is C* — R?*x C, (z,v, 2) —
(VI1zl* + |y[?, §,2), where R? is coordinatized by polar coordinates (r,8) €
RT x CP!. The 2-sphere N is locally given by {r = 0}. The R*-action
contained in the C*-action projects on M to an action generated by a vector
field V' vanishing on N, and only there. Up to changing V' to —V, the sphere
N is an attractor: locally, in the same coordinates (7,6, z) as before, we have
V= —r%. We see that the Poincaré - Hopf index of v at N is equal to 2, hence
the Euler characteristic of M is also equal to 2. Since M is odd-dimensional,
this is an absurd. g.e.d.

We shall prove the following result.

ProPoOSITION 1. Let X be a complex homology sphere and let p : C* x X — X
be a C*-action whose fized point set Fixz(p) is a pair of points {a,b}. Then there
ezists a complex homology sphere Y and a bimeromorphism ¢ : X — — =Y
such that:

i) ¢ conjugates Auto(X) to Auto(Y);

it) ¢ conjugates p to a C*-action 7 on Y whose fixed point set is a smooth
rational curve.

The bimeromorphism ¢ will be a composition of elementary bimeromorphisms
that we now describe.

Suppose that X contains a smooth rational curve R whose normal bundle
Ng.x is O(=1)® O(~1). Let X & X be the blow-up of X with center R. The
exceptional divisor D C X is a rational ruled surface over R, more precisely
D = P(Ngx) = CP! x CP!. Hence there are two rulings on D: the ruling
over R, given by 7|p, and a second ruling D % CP"! whose fibres are transverse
to the fibres of |p. The normal bundle of D in X has degree -1 on the fibres
of m|p and also on the fibres of 0. Hence [Moi] we can contract each fibre
of o to a point: the result is a smooth complex threefold Y and a morphism
7' : X = Y. The image of D by n' is a smooth rational curve S with normal
bundle Ngy = O(—1) @ O(—1), and #' is nothing else than the blow-up of ¥’
with center S. The bimeromorphism 7' om~! : X — — — Y will be called a
flop with center R. Tt is in fact the simplest example of a flop [Kol].

LEMMA 4. Y is a complex homology sphere.
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Proof. Tt follows from
Hk(Yaz):Hk(Xaz):Hk(Xaz) if k#2,4

H.(Y,Z)3Z=H,(X,Z)=H,(X,Z)®»Z if k=24
q.e.d.

It should be possible to prove also that Y is diffeomorphic to X. In fact, there
should exist a smooth (non holomorphic!) diffeomorphism of X, whose support
is localized on a neighbourhood of D, which exchanges the two rulings 7|p and
o, proving the diffeomorphicity of X and Y. Remark that the fundamental
groups of X and Y are isomorphic. If X is diffeomorphic to S® then it is easy
to see that Y also is diffeomorphic to S®, by classical results in differential
topology (Smale, Kervaire - Milnor,...).

LEMMA 5. The flop m' o' : X — — — Y realizes an isomorphism between
Auto(X) and Auto(Y).

Proof. We simply have to check that for every holomorphic vector field on X
(resp. on Y') its transform on Y (resp. on X) is still holomorphic. This follows
from the negativity of Ng x and Ngy: every holomorphic vector field on X
(resp. on Y) is tangent to R (resp. to S). g.e.d.

In order to do flops, we have to find rational curves with normal bundle O(—1)®
O(—1). This will be based on the following remarks.

Let Fiz(p) = {a,b} and let aj,a2,a3 be the eigenvalues of v at a, by, bs, b3
those at b. Suppose that |aj| > 2, for some j: then by the same argument
of the proof of lemma 2 there is a p-invariant smooth complex curve R C X,
with @ € R and T,R = E,; (observe that, by lemma 2, this eigenspace is one-
dimensional). Clearly R is rational and contains a second fixed point, that is
b € R. Moreover, for some i we have T,R = Ej,, and b; = —a;. To fix ideas,
suppose j = ¢ = 1. The normal bundle of R will be computed by the following
formula.

LEMMA 6.

NR,X = O(TL) D O(m)

a2—bs az— bz

where n = %2 1b2 m = %i— b2 orn = - -
Proof. We consider the restriction of p to R and its natural extension to Vg x,
via the differential. We therefore are in the situation of [Bot]: a holomorphic
vector field (on R) which acts on a vector bundle. Hence the characteristic
numbers of that bundle are localized at zeroes of the vector field, that is at a
and b.

The bundle Ng, x has a splitting F; @ F5 by line bundles which are invariant
by the action: this corresponds to the fact that a C*-action on a rational ruled
surface (in our case P(Ng,x)) has always two disjoint invariant sections. The
fibres (F};),, (F;)p are invariant and their eigenvalues are as, as, bs, b3. Hence
there are two possibilities:

m_
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a, b, & bs

R

. e )
(F

4 E o, " F, 4
From Bott formula [Bot] we deduce in the first case
a2 by as — by asz — bz
F = — — = F =
c1(F1) P . c1(Fz) o
and in the second case
as — b3 as — bo
F = F =
c1(Fr) o c1(Fy) o

q-e.d.

Observe that by adjunction formula and ¢;(X) = 0 we have ¢;(Np,x) =
—c1(R) = —2 and consequently n +m = —2, i.e.

a1+a2+a3:bl+bg+bg.

2. PROOF OF PROPOSITION 1

Let a1, az2,as (resp. by, bs,b3) be the eigenvalues of v at a (resp. at b), with
|ar| < las| < as].

FIRST STEP: from |ai| > 2 to |ai| = 1.

If |a;| > 2 then, as explained before lemma 6, we have three smooth p-invariant
rational curves through a and b, each one connecting a and b:
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We have b; = —a; for every j = 1,2,3 (up to renumbering the eigenvalues at b).
Remark that |ai| > 2 implies |as|, |ag| > 3 (lemma 2). By lemma 6, the normal
bundle Ng, x is either (’)(%) ® (’)(%) or O(“ltj;%) P 0(“1:2“3). The former
case is excluded because % and % are not integers. The latter case is in fact
O(—l)EBO(—l), because ¢; (NR27)() = —2. Similarly, NRg,X = O(—l)@O(—l)

Hence we can perform flops with center Ry or R3. Let us see how a flop with
center R» transforms the eigenvalues of the C*-action. After a blow-up 7 with
center R» we obtain a C*-action with four fixed points on the exceptional
divisor, two over a and two over b. The rational curves 7~!(a) and 7= (b) are
invariant by the action and their eigenvalues are +(a; —a3). The blow-down 7’
maps these two curves onto a rational curve RY, with eigenvalues +(a; — a3):

On the new complex homology sphere we therefore have a new (faithful) C*-
action with a fixed point whose eigenvalues are (a1,as — a;,—ag). The strict
transform R} of Rz has normal bundle O(—1) & O(—1), again by lemma 6.
Therefore we can perform a second flop with center Rj: we obtain a new
complex homology sphere and a C*-action with a fixed point whose eigenvalues
are (ai,a; — az,az — 2a1) = (a1,as + 2a1,a3 — 2a;) (recall that %;3 = -1,
i.e. a1 + a2 + az = 0). Of course, we can reverse the order: a flop with center
R; followed by a flop with center R}, produces a C*-action with a fixed point
with eigenvalues (a1, as — 2a1, a3 + 2a1). Remark that these new collections of
eigenvalues still satisfy the GCD condition of lemma 2.

Iterating this process we arrive at a fixed point with eigenvalues (a1, a, 3) and
la| < |ai| (@ = a2 + 2na; or asz + 2na; for a suitable integer n). Because
GCD(a1,a) =1 and |a1| > 2, we have the strict inequalities 0 < |a| < |a1],
that is the eigenvalue with smallest modulus has modulus strictly smaller that
|a1|. Iterating again we finally arrive at an eigenvalue with modulus equal to
1.

SECOND STEP: from |ai| =1, |az| > 2 to |a1| = |a2| = 1.

Now we can guarantee only two p-invariant rational curves:
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=l

We have b; = —a; for j = 2,3. We also have |b;| = 1: otherwise |b;| > 2 and
there would be a third p-invariant rational curve tangent to F,, at a and to
Ey, at b, giving by = —ay, thus |b1| = |ai| = 1, a contradiction.

From |as| > 2 it follows |az| > 3 and (lemma 6) the normal bundle Ng, x is
either O(%)@O(%) or O(%)@O(%) As before, the first possibility
is excluded because % is not an integer. Hence Ng, x = O(%)@O(“Zﬂ—*bl)
From ¢i (Ng,,x) = —2 it follows that a1 +2as —b1 = —2a3. Because |as| # Ta3|,
we cannot have by = a; and so we have by = —ay. This in turn implies
a1 +as + a3 =0 and Ng, x = O(—1) @ O(-1).

If |az| > 3 the same argument applies to Ry, and we obtain Ng, x = O(—1) ®
O(—1). Then we proceed as in the first step: a sequence of flops produces
a C*-action with a fixed point with eigenvalues (a1, q, 3), |a| < |ai]; that is
ol = o | = 1.

If |az| = 2, from a1 + a2 + a3 =0, |a1| =1 and |ag| > 3 we find a2 = 2a4,a3 =
—3a;. It is readily checked that a single flop along R3 produces a C*-action
with a fixed point with eigenvalues (a;, a1, —2ay).

THIRD STEP: the case |ai| = |az| = 1, |ag| > 2.

& b,
R,
3, b,
b,

&

We have b3 = —ag3. As before, |bi| = |b2] = 1. Up to exchanging b; and
by we obtain Np, x = O(%=1) & O(%2=2) and a) — by + az — by = —2as.
From |ag| > 2 it follows a1 = ay = —b; = —by and a3 = —2ay, therefore
Npr,x = O(—1) ® O(—1). A flop along R3 gives a C*-action with a rational
curve of fixed points (and eigenvalues (0,1, —1)).

LAST sTEP. To complete the proof of proposition 1 we need to show that the
case |ai| = |az| = |as| = 1 never happens. By the usual argument, if |a;| = 1
for every j then also |b;| = 1 for every j. We now take the Bott formula [Bot]
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for e3(X):
OETS OR NTS
(10203 b1b2bs ! -
If |a;| = 1 for every j then the residue % can take only two values:

3
27 and -1. The same for % Hence their sum cannot vanish. g.e.d.

Remark: we could use the Bott formula since the beginning of the proof and
not only in the last step, but it turns out that this would give only minor
simplifications (for instance, in the second step we can use the Bott formula
to deduce by = —ay from |by| = |az]). It also turns out that the analogous
formula for ¢; (X)) - ¢2(X) yields no further information. The formula for c3(X)
is equivalent to the Poincaré - Hopf formula and was already used, more or less,
in lemmata 1, 2 and 3. And, of course, all these formulae do not contradict the
existence of a C*-action with a rational curve of fixed points, with eigenvalues
(0,1,-1).

THE AUTOMORPHISM GROUP IS ABELIAN

From now on p : C* x X — X will denote a faithful C*-action on a complex
homology sphere with Fiz(p) = Zy a smooth rational curve. Around each
point of Zy we can choose local coordinates (z,y, z) such that the infinitesimal
generator v is expressed by :EE% - ya% (and Zy = {z =y = 0}). If we take a
sufficiently small tubular neighbourhood V' of Z; then the sets

W ={p e Vlp:(p) € V Vt,|t| > 1, and tli)rgopt(p) =0%(p) € Zy}
and

Wi = {p € Vipi(p) € V V4, [t] < 1, and lim py(p) = 67 (p) € Zo}

are smooth complex open surfaces, containing Zy and intersecting transversely
along Zj. In the above local coordinates, Wy, = {x = 0} and Wy} = {y = 0}.
Suppose now that

dim Auto(X) = 2.

This means that there exists a second holomorphic vector field w on X, lin-
early independent of v. In fact, w cannot be collinear to v at a generic point
of X, because X has no nonconstant meromorphic function [CDP]. The com-
mutator [v,w] is a linear combination av 4+ bw, a,b € C, since the Lie al-
gebra of holomorphic vector fields on X is two-dimensional, spanned by v
and w. Because the flow of v is 2wi-periodic, one easily sees that if b = 0
then also @ = 0: when [v,w] = av, the flows ¢; (= pexps) Of v and ¢, of
w are related by s 0 ¢y = Grexp(as) © Ys for every t,s € C, in particular
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Poriexplas) = Ps © Pari 0h_ s = id for every s € C, so that exp(as) is an integer
for every s and therefore @ = 0. Hence, up to replacing w by w + $v (if b # 0),
we have

[v, w] = bw

where b € Z, again for the 2mi-periodicity of the flow of v. Up to changing v
to —v, we may suppose that b € N.
In this section we shall prove the commutativity of Auty(X), concluding the
proof of the theorem stated in the introduction.
PROPOSITION 2. Let v,w be holomorphic vector fields on a complex homology
sphere, where v generates a C*-action. Then v and w commute: [v,w] = 0.
Let us consider the wedge product v Aw € HO(X,TX A TX), whose zero
set £ C X is the analytic subset of X where v and w are collinear. Define
O(v Aw, Wy), resp. O(v Aw, Wi}t), as the vanishing order of v A w along Wy,
resp. Wy, Of course, if W is not contained in E (for instance, if Wy is not a
piece of a compact analytic subset of X) then O(v A w, W) = 0.
LEMMA 7.

O(wAw, W) =0(wAw, W) +b.

Proof. We shall conclude by a local computation. Take p € Z; and local
coordinates (z,y,2) so that v = xa% — ya%, w = A% + Ba% + C’a%, W§ =
{z =0}, W¥ = {y = 0}. Hence

0 0

0
Ao —y¥Co- Ao

v/\w:(ar:B+yA)a 6+910C' "\ 82

9,9 .09
oxr Oy ox

and we see that
O(v Aw, W) = min{O(A4, W), 0(B, W) +1,0(C, W)}
O(w Aw, W) = min{O(A, W#) + 1,0(B, Wy3),0(C, W)}
From [v, w] = bw we obtain the following system of equations:

zA; —yA, = (b+ 1A

@B, —yB, = (b— 1)B

zCy —yCy = bC
Write A(z,y,2) = 2"y*a(z,y,2), h = O(A, W), k= O(A, W) (i.e., the func-
tions a(0,y, z) and a(zx,0, z) are not identically zero). From the first equation

we obtain:
zay —yay, = (b+1—-h+k)a

and restricting to {y = 0}:
zay(2,0,2) = (b+1—h+k)a(z,0,2)

DOCUMENTA MATHEMATICA 4 (1999) 451-462



ON THE AUTOMORPHISM GROUPOF A COMPLEX SPHERE 461

that is
a;(r,0,2) b+1—h+k

a(z,0,z) x

We deduce that b+ 1 — h + k > 0, because a(z,0,z) is holomorphic and
not identically zero. Restricting to {z = 0} we find the opposite inequality:
b+1—h+k<0. Hence b+ 1 —h + k =0, or more explicitely

O(A, W) =0(A,WH) +b+ 1.
In a similar way, from the second and the third equations we find
OB, W) =0(B,Wy)+b—1

and
O(C,Wy) =0(C,W¢) +b

from which it follows that
OwAw, W) =0wAw, W) +b.

q.e.d.

In order to prove proposition 2, suppose now by contradiction that b is strictly
positive. In particular O(v A w, Wy;) > 0, so that v A w does vanish on Wy.
In other words, there exists an irreducible component N C E, dim N = 2,
which contains W5,. Take the restriction of the C*-action p to N, and take an
equivariant resolution of singularities N — N, over which p can be lifted. On
N we therefore have a C*-action with a rational curve of fixed points (arising
from Zp). It follows from the classification of C*-actions on compact complex
surfaces [Hau] that N is algebraic (and even rational) and that the closure of
each orbit of the C*-action is a (possibly singular) rational curve. Returning
to X, we therefore see that for each p € W not only lim; ., p;(p) is a single
point on Zy (as the definition of W claims) but also lim;_,o pi(p) is a single
point, necessarily on Zp, and so the p-orbit through p cuts Wy;. Varying p on
Wy we also see that the full Wi} belongs to V. But this contradicts lemma, 7:
because O(v Aw, W) # O(v Aw, Wy}), the sets Wy, and Wy} cannot belong to
the same irreducible component of E. This contradiction proves proposition 2.
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