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ABSTRACT. We undertake here a more detailed study of the structure
and basic properties of the symmetric enveloping algebra M X M°P as-
€

N
sociated to a subfactor N C M, as introduced in [Po5]. We prove
a number of results relating the amenability properties of the stan-
dard invariant of N C M,Gny m, its graph I'ny s and the inclusion
MV M° C M K M°P, notably showing that M X M°P is amenable

en

eN
relative to its subalgebra M vV M°P iff 'y pr (or equivalently Gy ar) is
amenable, i.e., |[[n a||> = [M : N]. We then prove that the hyperfinite-

ness of M X M°P is equivalent to M being hyperfinite and I' »s being
en

amenable. We derive from this a hereditarity property for the amenabil-

ity of graphs of subfactors showing that if an inclusion of factors @ C P is

embedded into an inclusion of hyperfinite factors N C M with amenable

graph, then its graph I'g p follows amenable as well. Finally, we use the

symmetric enveloping algebra to introduce a notion of property T for in-

clusions N C M, by requiring M X M°P to have the property T relative
en

to M VvV M°P. We prove that this property doesn’t in fact depend on the
inclusion N C M but only on its standard invariant Gy as, thus defining
a notion of property T for abstract standard lattices G.

1991 Mathematics Subject Classification: Primary: 46L37, secondary:
46140

0. INTRODUCTION

Let N C M be an inclusion of type II; factors with finite Jones index, [M : N] <
0o, and extremal. In short, its symmetric enveloping von Neumann algebra
M X M°P is the unique (up to isomorphism) type II; factor S, generated by

en
mutually commuting copies of M, M°P that satisfy M’'NS = M°P, M°P'NS =
M and by a projection ey which implements, at the same time, both the trace
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preserving expectation En of M onto N and the trace preserving expectation

FEpnov of M°P onto N°P,

One can construct this factor by first taking the C*-algebra Sy generated on

the Hilbert space L?(M) by the operators of left and right multiplication by

elements in M and by the orthogonal projection of L?(M) onto L?(N), then

proving that there exists a unique trace 7 on this C*-algebra and then defining

M X M°P to be the type II; von Neumann factor obtained via the Gelfand-

en
Naimark-Segal representation for (So, 7), i.e., M X M°P = 7+ (So). This con-
en

struction doesn’t in fact depend on the (binormal) representation of the triple

(N C M,en, M°" D N°P) that one starts with: any M — M bimodule with an

en-type projection on it, instead of L?(M), will do, provided certain obvious

compatibility conditions for the commutants are satisfied.

The following exemple of symmetric enveloping algebras is quite relevant: if

N C M is an inclusion associated to a finitely generated discrete group G

and an outer action o of G on a type II; factor P (see e.g., 5.1.5 in [Po2])

then (M Vv M°P C M X M°P) is isomorphic to (PQPP C PP Xygq0e G).
EN

In general, one has an interpretation of the symmetric enveloping inclusion
MV M° C M X M°P that is very much the same as this crossed product
EN

situation.

The symmetric enveloping algebra M X M°P and the inclusions M V M°P C
EN

M K M°P were introduced in ([Po5]) in order to provide an additional tool

en
for studying subfactors of finite index. It proved to be particularily useful for

relating the analysis aspects of the theory of subfactors to its combinatorial
features.

We undertake here a more detailed study of these objects and use them to
get more insight into the structure of subfactors, notably proving a number of
results on the amenability and the property T for subfactors N C M and for
their associated combinatorial invariants: the standard graph I'ny as and the
standard invariant Gy, as.

Thus, we prove that Gy s is amenable (by definition this means that its graph
[y is amenable, i.e., it satisfies the Kesten-type condition ||y a||? = [M :
N)) if and only if M X M°P is amenable relative to M V M°P in the sense of

EN

[Po8]. In fact, we establish a few more additional equivalent characterizations of
the amenability for I'y as: a Fglner type condition; a local Shannon-McMillan-
Breiman type condition; a local bicommutation condition; a characterization
in terms of the representations of N C M.

We then study the amenability in the special case of subfactors N C M for
which the algebras N, M involved are assumed amenable (or, equivalently, by
Connes theorem [C1], hyperfinite) type II; factors. The key result along this
line shows that the algebra M X M°P is itself amenable if and only if both

en

Gn,m and the single algebras N, M are amenable.
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Again, some other characterizations of this situation are proved, notably an
”injectivity”-type condition requiring N C M to be the range of a norm
one projection from its standard representation, or, equivalently, to be the
range of a norm one projection from any of its (smooth) representations.
Also, it is proved equivalent to an Effros-Lance type condition, requiring
Sy = C*(M,en,M') C B(L*(M)) to be a simple C*-algebra . We call an
inclusion of factors N C M satisfying any of these conditions an amenable in-
clusion. While proving all these results we also show that if N C M is amenable
(i.e., N, M are hyperfinite and 'y, s is amenable) then there exists a choice of
a tunnel of subfactors M D N D P D P,..., obtained by taking downward ba-
sic constructions for certain induced-reduced algebras in the Jones tower (the
choice being dictated by information contained in the standard invariant Gy, ar)
such that the relative commutants P, "N C P, N M exhaust N C M. This
shows in particular that amenable subfactors are completely classified by their
standard invariants Gy, ar (see also [Pol6]).

Next we derive the result that we regard as the most significant application
of the methods developed in this paper, showing that the amenability in the
category of inclusions of factors with finite Jones index N C M, with "mor-
phisms” given by commuting square embeddings between such inclusions, is a
hereditarity property. In the case one takes degenerate inclusions N = M we
recover Connes’ hereditarity result for single hyperfinite type II; factors ([C1]).
In terms of graphs, the result states that if an extremal inclusion of hyperfinite
factors N C M has amenable graph then any of its sub-inclusions @ C P (i.e.,
@ C P is embedded in N C M as a commuting square) has amenable graph.
It should be noted that the embedding of @ C P into N C M does not require
[P: Q] =[M : NJ, nor that [M : P] < oo ! This hereditarity property for
the amenability of graphs is somewhat surprising and there is little that could
appriorically predict it. It only holds true within the class of hyperfinite subfac-
tors, as if we drop the amenability assumption on the ambient single algebras
M involved it is no longer valid, in general.

Indeed, it is proved in ([PoT7]) that given any abstract standard \- lattice G and
any of its sublattices Gy C G, there exist subfactors N C M and Ny C My and a
commuting square inclusion of Ny C My into N C M, such that Gy pr = G and
GNo, M, = Go. But any standard A-lattice G contains the Temperley-Lieb-Jones
standard A-lattice with graph A.., which is never amenable if A™! > 4. Thus
if G is taken to be amenable, for instance to have finite depth, then N C M
has amenable graph while Ny C My, which is embedded into it, doesn’t. The
reason is, of course, that in the examples of subfactors N C M constructed in
([PoT]) the algebras N, M involved are not hyperfinite.

One consequence of the hereditarity result is that, for instance, one cannot
embed subfactors Q C P of index a > 4 that are contructed by commuting
squares of finite dimensional algebras like in ([Sc], [We]) and having graph
I p equal to A, (note that by [H1] T'g p = Aw if @ < (54 1/13)/2) into
hyperfinite subfactors of finite depth and index > «. Also, by ([H2]) there
exists a subfactor of index a = (5 + v/13)/2, constructed from commuting
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squares of finite dimensional algebras and having graph A.,, which thus, by
our result, cannot be embedded into Haagerup’s finite depth subfactor of same
index (5 + v/13)/2 ([H1]).

Our last application to the symmetric enveloping algebra approach is the con-
sideration of a notion of property T for standard lattices. Thus, we prove that
if a standard lattice G is given then M X M°P has the property T relative to

EN
MV M°P, in the sense of (JA-D],[Po8]), for some N C M for which Gy ar = G, if
and only if it has this property for any subfactor N C M for which Gy i = G.
If G satisfies these conditions then we say that G has the property T. Note
that this definition does not require the ambient factors involved to have the
property T in the sense of Connes ([C4,5]). On the other hand, if G is a stan-
dard lattice coming from a discrete group G as described above, then G has
the property T if and only if the group G has the property T in the classi-
cal sense of Kazhdan. Thus, our notion generalizes this notion, from discrete
groups to the larger class of group-like objects G. Our main result in this di-
rection shows that if a sublattice Gy of a standard lattice G has the property
T then G has the property T. As a consequence it follows that, generically,
the Temperley-Lieb-Jones standard lattices with graph A., do not have the
property T.
Although we only work with type I1; factors, many of the considerations in this
paper can be suitably carried over to subfactors of type III (see the remarks
1.10.3°, 2.2.2°, 2.5.2°). The corresponding symmetric enveloping type III fac-
tors may prove to be a useful tool in the analysis of the Jones-Wassermann
subfactors coming from representations of loop groups ([Wal, [Xu]). In a dif-
ferent direction, it would be interesting to relate the symmetric enveloping
algebra associated to an extremal II; subfactor to Jones’ affine Hecke algebra
associated with that subfactor ([J3,4]). An explicit description of the symmet-
ric enveloping algebras coming from certain special classes of subfactors ([BiH],
[BiJ]) would certainly be most illuminating for getting some insight on this and
other related problems.
The paper is organized in 9 Sections. In the first section we introduce the
C*-analogues of the symmetric enveloping algebras, needed in order to obtain
the necessary universality properties and the functoriality of the von Neumann
construction. A key ingredient for these considerations is the relative Dixmier
property for subfactors of finite index, that we prove in the Appendix A.1.
In Sec. 2 we define the actual symmetric enveloping type II; factors (2.1, 2.2)
and symmetric enveloping inclusions and prove their basic properties (2.6, 2.7,
2.9, 2.10). Also, we define a more general class of enveloping inclusions, in which
to two given subfactors N C M and () C P having the same higher relative
commutant picture one associates their concatenation inclusion M V P°P C
M X P°P (2.5.1°). We end that section by introducing a notion of index [G : Go]
for sublattices Gy of standard lattices G (2.11, 2.12).
In Sec. 3 we discuss the example of symmetric enveloping algebras associated
to subfactors coming from discrete groups acting outerly on factors, case in
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which it becomes an actual crossed-product algebra. In Sec. 4 we prove that
even for general inclusions N C M the corresponding symmetric enveloping
algebras look very much like crossed products (4.5). Also, we prove some
decomposition properties for such algebras, showing for instance that when
N, M are hyperfinite then, regardless of whether M X M°P is hyperfinite or

EN
not, it is a thin factor, i.e., M X M°P = SpR; Rs, for some suitable hyperfinite
EN

subfactors R, Re (4.3). Also, we prove a general ergodicity property for the

higher relative commutants of a subfactor which is quite useful in applications

(4.8, 4.9).

In Sec. 5 and 6 we relate the amenability properties of Gy ar, 'y, v and (M V

M°P C M K M°P), obtaining a number of equivalent characterizations of the
€

N
amenability for standard lattices and graphs (5.3, 6.1, 6.3, 6.4).
In Sec. 7 we discuss the case when M X M°P is hyperfinite, proving this equiv-
eN

alent to the amenability of N C M and to various other properties of the
representation theory of N C M (7.1). For instance, we show that for hy-
perfinite subfactors it is enough that the universal graph FX,TAZ be amenable
for 'y ar to follow amenable (7.6). We also prove here the hereditarity prop-
erty for amenable inclusions (7.5). The proof uses the characterization of the
amenability for N C M by the hyperfiniteness condition on M X M°P, a fact

en
that roughly reduces the argument to Connes’ hereditarity of hyperfiniteness
for single type II; factors. Sec.8 contains the proof of the Effros-Lance type
characterization of amenability (8.1).

Finally, in Sec. 9 we introduce the property T for standard lattices and prove
some results about this notion.

For most notations and general technical background we refer the reader to
([Po2,4,7]). More specific references are made in the text. For the reader’s
convenience we included an Appendix which, besides the already mentioned
relative Dixmier property for subfactors of finite index, contains a generalized
version of Connes’ joint distribution trick needed in the proof of the Fglner
condition for graphs.

The results on amenability in this paper were presented by the author in lec-
tures and seminars, during 1991-1997. A more formal announcement of these
results, with sketches of proofs, appeared in [Po5], while a couple of statements
on the equivalence of the definition of amenability with representations and
the Kesten condition, respectively Fglner condition, were already announced
in [Po2], resp. [Po4]. A rather complete discussion of the role of amenability
within the overall classification of subfactors, with a presentation of most of
the results in this paper (including the ones on the property T) appeared in
[Pol1].
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1. SYMMETRIC ENVELOPING C*-ALGEBRAS

In this and the next section we discuss the definition and basic properties of
the symmetric enveloping algebras (C* in this section and von Neumann in
the next) associated to an extremal inclusion of factors with finite index, as
introduced in [Po5]. The statements below are similar to the ones in §1 of [Po5],
but the proofs, that are only briefly sketched there, are given here in details.
So let N C M be an inclusion of type II; factors with finite Jones index, [M
N] < oo, which we assume to be extremal, i.e., [pMp : Np| = [M : N]7(p)?,
VpeP(N' NM).

We denote by M C My = (M, en) the (abstract) basic construction for N C M,
en being the projection implementing the trace preserving conditional expec-
tation En of M onto N.

We first construct the universal C'*-algebra generated by mutually commuting
copies of M, M°P and an ey-like projection implementing the expectations
En, Enor on them.

A representation (m,7w’) of (N C M,en,M°® D N°P) is a pair of uni-
tal s-representations m : M; — B(H), o : M®* — B(H) such that
[r(M),n'(M°P)] = 0, w(en) = 7'(e}’). Two such representations, (m,7})
on H; and (g, 7h) on Ha, are equivalent if there exists a unitary U : Hy — Ho
such that Umy (2)U* = ma(x), Uny(x)U* = wh(x), ¥V x € M7. A representation
(m,7') on H is cyclic if 3¢ € H such that Alg(w(M), 7' (M;?))E = H.

Note that if (7, 7’) is a representation on H then there exists a representation
(7,7') on the conjugate Hilbert space H defined by 7 (z) = 7/ (z*°P), 7/ (x°P) =
m(x*), © € My, where T +— T denotes the antiisomorphism from B(H) to B(H)
implemented by the conjugation H 3 & — & € H.

We denote by C the set of all equivalence classes of cyclic representants of
(N C M,en,M° D N°) and by C a set of chosen representations for C such
that if (7, 7") € C then (7,7") € C.

1 1. PROPOSITION There ezists a unital C*-algebra U with unital embeddings
My — U, j: M{P — U such that

a) (M), j (M°p)] =0,

b) j(en) = j'(e¥)-

and such that given any other unital C*-algebra Uy with unital embeddings

Jo: My = U, jb : M{® — Uy satisfying a), b) (with (j', j) instead of (5,5')),

there exists a unital x-algebra morphism 7 : U — Uy such that

(*) ﬂ(](l‘)) = jO(x)v Tr(j/(zop» = j(l)(l'Op), Ve Ml.

Moreover, U is unique (up to an isomorphism (%)) with these properties Also,
U is generated as a C*-algebra by j(M), j'(M°P), jlen) (= j'(e¥)) and it has
a unique antiautomorphism °P such that j(x)°P = j'(x°P), (j'(= 0p))Op = j(x),
V x € My (so in particular j(en)°P = j'(eW)°P = j(en)).
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Proof. Put
u def o P 7)), P WP |xyeM ,
(mw,m")eC (mw,m’)eC
i@ @ ), jenY @ ), wem
(mw,m")eC (mw,m")eC

U, j, 7' this way defined clearly satisfy a), b), and (%) and the uniqueness is
then trivial. Then we can define °® on U by:

Us @ nlx)— @ n@Pr)el

(m,m")ecC (m,m")eC
Us @ 7@@P)— @ 7" )el
(mw,m")eC (m,m")eC
Q.E.D.
1.2. DEFINITION. We denote by Cy .. (M,ex, M°P) the C*-algebra U con-

structed in 1.1 and call it the universal symmetric enveloping C*-algebra. Also

we denote by Cy . (M, en, M°P) wf Crox(M,en, M°P)/ N ker m, where the
intersection is over all representations 7 of C} . (M, en, M°P) for which 7(M),
w(M°P) are von Neumann algebras and call it the universal binormal sym-
metric enveloping C*-algebra associated with N C M (and the trace pre-
serving expectation). We still denote by j, j' the embeddings of My, M7
into C* . (M, en, M°P) resulting from the composition of the embeddings into

u,bin

Cr max (M, en, M°P) with the quotient map. Note that, with the notations in

the proof of 1.1, if we let Cf,, = {(m,7’") € C | m(M), n'(M°P) are von Neumann
algebras}, then Cy (M, en, M°P) can alternatively be defined as

C* (D7), D' (YP)|zyedh
Chin Chin
with
j@) = D w(x), Jj(a°F)= D ().
Chin Chin
Since (m,n') € CY, implies (7,7") € C,, it follows that °P implements an
antiautomorphism on C7; 1, (M, ey, M°P), still denoted °P, satisfying j'(z°P) =
J@)P, PP = ()
In addition, C7 \;, (M, en, M°P) satisfies the following universality property:

1.3. PROPOSITION. Given any binormal representation (m,,m,) of (N C
M,en, M°P > N°P) on a Hilbert space Ho there exists a unital x-representation
m o Cp (M, en, M°P) — B(Ho) such that 7(j(x)) = mo(x), 7'(j'(z°P)) =
mo(z°P), YV & € Mi. Moreover, Cy (M, en, MP) has a faithful repre-
sentation T such that (M), 7(M°P) are von Neumann algebras. Also,
Cr pin(M, en, M°P) with the embeddings j, j' is unique (up to isomorphism)
satisfying these properties.

Proof. Trivial. Q.E.D.
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1.4. LEMMA. Let N C M eC1 M, eC2 My C -+ be the Jones tower for N C M,

with e; = ey, and M eDO N 651 Ny D -+ be a choice of a tunnel. Let Sy be
a unital C*-algebra with unital x-embeddings jo : M1 — So, j{ + M7 — So,
such that [jo(M), j,(M°P)] =0, jo(en) = ji(en). Then jo, j, extend uniquely

to x-embeddings of U My, U M2 into Sy, still denoted by jo, jf, such that
n>1 n>1

Jo(en+2) = JO( 5 Jo(e n+2) = jo(e-n), n > 0.
Proof. Trivial by the abstract characterization of the basic contruction in
([PiPo2]. [Po2]). Q.E.D.

1.5. LEMMA. Let - C N CM E My C -+, So, jou 7 be like in 1.4. Then
we have

Alg(jo (M), jo(M7P)) = Alg(jo(M), jo(en) = Jolen), jo(MP))
= Usp o (MP)jo(My)jo(MeP)
= Uspjo(M)jo(MgP)jo (M)
= Usp jo(M°P)jo(M)jo(f2,,)jo(M)jo(M°P),

where f, is the Jones projection for N,_1 C M C M, obtained as a
scalar multiple of the word of maximal length in e_p4o,... ,€0,€1,... s (cf.
[PiPo2]) and it satisfies jo(f",,) = 30((f™,)°F). Similarly, for any i € Z we
have

Alg(jo(M), jo(en), jo(M°P)) = USpJo(M ")do (M) jo (M),

where M; = N_;_1 fori < —1, My=M, M_, = N.
Proof. 1t is sufficient to show that
Usp " (MP)j(M)j(f2,,)5(M)j(MeP)

is an algebra. If we denote by f92n the Jones projection for No, 1 C Np_1 C
M and by f3" the one for M C M, C May,, as in [PiPo2], then we have
M, =spMf" M, M =spN,_1f°, N,_1 so that we get:
31 (MP)F (M) (f2,,)3(M)5 (MP)5(f2,,)5 (M) (M°P)
C sp " (M) (M) (f2) (G (2203 (Na—1)) G (N2 )5 (F220)°P)5 (N2 1)
3 (f20)3 (M) (MP)
= sp(j'(M°P)j'(N21))(j ( )J(Nn—1)) (G (2003 (FL20)5" (F220) )3 (F20))
+(F(Nn—1)3 (M) (5" (NR21)5 (MOF))
= sp j' (M?)J(M)j(f23,) (M) (M°P)
in which we used that [j(N,—1),5(f n)] 0, [5'(N:®4),75(f™,)] = 0and 23, =
NN L P 0 ) 3'((f20)°P), A= [M : N]~L. Q.E.D.
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1.6. COROLLARY. Let - C Ny C N & M & My C -, f* be as
in 1.5. Then Cy . (M, en, M°P) (respectively C;; bm(M, en, M°P)) is gener-
ated, as a C*-algebra, by j(M), J0fr) =3 (f1), 3/ (M°P) and there exists a
natural isomorphism of C; .. (M, en, M°P) (Tespectively Co pin(M,en, M°P))
onto C*(M,en,, _,, M°P) (respectively Ciin(M,en, ., M°P)), taking the canon-
ical images of the elements in M, M°P in one algebra into the corresponding

canonical images in the other algebra and j(f™,) onto j(en,_,)-
Proof. Trivial by definitions and 1.5. Q.E.D.

1.7. LEMMA. With the notations of 1.4 and 1.5, assume in addition that
Jo(M), jo(en) = jolen), jo(M°P) generate Sy as a C*-algebra, and that the
following condition is satisfied:

(*) Jo(M" N My) C jo(M°P),Vk > 1

Then jo(M;)' N So = jo(M?%), (jo(MOP)) NSy = jo(M_;), ¥V i € Z, and for all
ki in Z one has jo(M! N M) = jo(M;) ﬁ]O(Mk) = jo(M™) N (jO(MOP)) =
Jo((MR)Y N M?P). Also, if x € M’ ,, N M, and 2’ denotes the canonical con-
Jugate of x (= Ja*J) ([Po2]), then jo(z') = j'(x°P). Moreover, for each i € Z
there exist unique conditional expectations E; : Sy — jo(M;)' N So = jo (M),
E 8o — Jp(M®) NSy = jo(M—;) such that & (jo(x)) = jo(Enrinm, (%)),

3

E (Go(x®)) = Jo(Eyvrnm, (£)P), ¥ @ € My, n > i, which satisfy £
& (o(w) - jo(u")), & = &7 (jo(u®) - jo(uP)*), ¥ u € U(M;).

Proof. Since jo(M' N M) C M and [jo(My),jo(M?] = 0, it follows that
Jo(M'' N My) C §5(M) N jo(M) = jo(M>" N M°P). But the two finite
dimensional algebras involved in this inclusion have the same dimension, so
they actually follow equal. By averaging over unitaries in M; it then follows
that jo(M! N M) C jh(M°P),¥i > 1, giving in a similar way jo(M; N My) =
Jo(M®% N M°P). Then by duality isomorphisms these equalities follow for
arbltrary i,k € Z.

By the relative Dixmier property for subfactors of finite index (see the Appen-
dix, A.1), if for x € M,, we denote Cyy, () = T0" {uzu* | v € U(M;)}NM/NM,
then Cyy, (x) = {EMZ(QMH(:E)} andV x1,..., 2, € M,,Ve>0,3uy,... ,un€
U(M;) such that

1 & . .
Ezuﬂjul — Envenm, (75)]| <e, i=12,... k.

Since, by 1.5 we have

Alg(jo (M), jo (M7®)) = Usp i (M) jo (M) jg (M),

n
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which is dense in Sy, it follows that
Jo(M;)' NSy = Ujé(MgP;)jo(Mi’ N M,,)jo (M)
= UJo(MOp) o((M27) N (M) 5o (M)
= JO(MOP)

Also, it follows that if T = >, j5(y1")jo(1)7(5), for some y11,y21 € M—;,
x, € M,, and we denote by C%SO(T) = co”{jo( YTjo(u*) | uw € U(M;)} N
(Jo(M;))" N So, then

l

Cis(T) = {Zjé(y?ﬁ)jo(EM;mMn (ﬂﬂz))jé(ygﬁ)}

is a single point set. Also, C; s, (aT1 + 8T2) C aCis,(T1) + BCi.s,(T2) and
1>T>0implies1 >T" >0,V T € C;5,(T). It follows that

Alg{jo(M1), jo(M7®)} 5T = chl)(y%)jo(xl)jé(ygﬁ)
]

=Y 360 (Easzraa, (1)) (45h) € (jo(M:))' N So = jo(MP)
l

is a well defined positive linear norm one projection onto jj(M°?) and the rest

of the statement is then clear by continuity. Q.E.D.
1.8. DEFINITION. We denote Ciho (M, e, MoP) 0 G (M, en, MP)/ 1

kerm, where the intersection is over all smooth representations w of
Cr max(M,en, M°P), ie., representations satisfying the following smooth-

ness condition (or axiom):

(%) m(j(M' N M;)) C w(j'(M°P)), i€N.

Note that by 1.7 this condition actually implies 7(j (M} N M;)) = 7(j'(M*®" N
M), Vi k € Z.

We call Cf (M, en, M°P) the symmetric enveloping C*-algebra associated

with N C M. Similarly, we put C}; (M, en, M°P) ef Cr pin(M,en, M°?)/ N

ker 7, where the intersection is over all representations 7 of C; 1 (M, en, M°P)
such that 7(j(M)), w(j'(M°P)) are von Neumann algebras and such that ax-
iom (x) is satisfied. We call it the binormal symmetric enveloping C*-algebra
associated with N C M. Note that, since B(L?(M)), with the representation
of M and M°P as operators of left and right multiplication by elements in M
and ey = projre(ny € B(L*(M)), does satisfy the condition (x), both these
symmetric enveloping C*-algebras are non-degenerate.
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We still denote by j,j' the canonical embeddings of M;, M in
Chax(Men, M°P) and Cf, (M,en,MP). Note that the same argument
as in 1.2 shows that the antiautomorphism °® on Cj .. (M, en, M°P) (re-
spectively ° on Cy (M, en, M°P)) implements an antiautomorphism, still
denoted by °P, on C% . (M, en, M°P) (resp. °P on Cf; (M, en, M°P)).

Also, by universality properties of Cy; ... (M, en, M°P) and C;; 1, (M, en, M°P)
and the definitions, it follows that given any C*-algebra Sy generated by copies
of M, M°P, ey satisfying 1.1 a), b), such that the corresponding tunnel-towers
{M;}i, {M7P}; (cf. 1.4) satisfy the smoothness axiom 1.8 (), there exists
a natural s-morphism of Cy,, (M, en, M) onto Sy carrying j(M;), j'(M;®)
onto the corresponding images of M;, M;® (C Sp). If in addition Sy C B(Ho)
is so that the images of M, M°P are weakly closed, then this morphism factors
to a s-morphism of C}; (M, en, M°P).

The above can be regarded as the universality property satisfied by
Croax(M,en, M) and C%,,(M,en, M°P). Moreover, as a consequence of
the prior results and definitions, if we denote by S either of these two algebras,
then the following properties hold true:

1.9.1. j(M;)' NS =5/ (M), 7/ (M%) NS = j(M;),V i€ Z.

1.9.2. If x € M’ , N M,, and 2’ denotes the canonical conjugate of x (= Jz*.J)
then j(a') = j/(x°P).

1.9.3. There exist unique conditional expectations £ : & — j(M_;),
& S — /(M) such that & (j'(x°P)) = 3 (Eran, (2)°P), EF('(z) =

j(EMi’ﬂMn (x)), Vo € M,, n > i. Also, these expectations satisfy & =
E (7' (woP) - j'(uP)), & = EF(j(u) - j(u*)), ¥V u € U(M;).

1.94. Cy.«(M,en, ,,M°P) (resp. C}; (M, en,_,, M°P)) naturally identifies
with C} . (M, en, M°P) (resp. Cf;, (M, en, M°P)), as in 1.6.

1.10. Remarks. 1°. Note that the smoothness condition 1.8 (x) is redundant
it M' N M, = Alg{1,e1,ea,...,e,},Vn, i.e., in the case the graph of N C M is
of the form I'y pr = A,, for some n < oco.

2°. In the case Sy C B(H) is so that jo(M), ji(M°P) are von Neumann
algebras (e.g., if So = C};, (M, en, M°P)) then one can give another proof to
Lemma 1.7, which doesn’t use the relative Dixmier property, as follows: if M
is weakly separable (i.e., M has separable predual) then take R C M to be
a hyperfinite subfactor such that R’ N My = M' N My (cf. [P02,9]), so in
particular R"'NM,, = M'NM,,V n (here My, = UM," as usual). Then denote
by ® the conditional expectation of B(H) onto jo(R) N B(H), obtained by
averaging over a suitable amenable subgroup of U(R). Then clearly ®|s, = 50+
and the other expectations are obtained similarly. If M is not separable one can
still apply [P02,9] to get that V B C Uj(M,,) countably generated, 3 R C M
such that Ernn, (B) = Epmrnm, (B), V n, and the rest of the proof is then
similar.

3°. The considerations in this section are easily seen to cary over to the case
when instead of an extremal inclusion of type II; factors N C M (with trace
preserving expectation) we take an extremal inclusion of factors of type III,
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N C M ([Po3]). However, in this more general case, some adjustements of the
argument in 1.7 are needed, depending on the nature of the inclusion. Then,
if £ denotes the expectation of minimal index of M onto N, an argument
similar to 2° above can be used to prove the existence of a unique conditional
expectation £° from Cf; (M, en, M°P) onto its C*-subalgebra generated by
M and M°P.

2. SYMMETRIC ENVELOPING TYPE II; FACTORS

2.1. THEOREM. There exists a unique trace state tr on C} . (M, en, M°P)
and the corresponding ideal trace I, = {x € C}

max(Mv EN, MOp) | tI‘(ZL'*SC) = 0}
is the unique mazimal ideal in CF (M, en, M°P). In particular, there exists

a unique state 79 on each quotient C*-algebra Sy of Cf . (M, en, M°P) (in

particular on Cp (M, en, M°P)) and its ideal is the unique mazimal ideal of
So.

Proof. By the uniqueness properties of the expectations &, i € Z, of a C*-
algebra Sy generated by jo(My), jo(M7®) onto j{(M°?) like in 1.6, it follows

that £ = EJO((]]\V[IOP )) o &F. Let 7 be the trace on jo(M) and 7’ the trace on
Jo

§o(M°P) and define 19 = 7’/ 0 & on Sp. Since EJO((N:p )) is 7/ preserving, we
Jo
have for i > 0, z € Sp:

mo(@) = 7' (€F (@) = 7 (B v ) (& (@))) = 7' 0 EF (@),
If k> i, u € U(jo(M;)), z € jo(My), v',y" € j,(N7P)) then we have:

mo(uy'zy"u") = ro(y'uzu’y”) = 7(EF (Y uau'y")) = 7' (y € (uru”)y”)
= 7'y Bjo (g (uzw”)y”) = 7' (y' & (2)y") = 7' (& (v zy"))
=7o(y'zy").
Thus, by 1.6 it follows that o (uTu*) = 70(T), VT € Sy, ¥V u € U(M;). Also,

if w' € j{(M°P) is a unitary element and x € jo(My), ¥/, y"” € j{(M°P) then we
get:

wyWW>=ﬂxwwwww=< VES (@)
— e @) = T E ay") = Tolyay").

This shows that 7o(w/'Tu'™) = 70(T), VT € S, ¥V u’ € U(j)(M°P)), by virtue
of 1.6. Since the centralizer of 7y is an algebra and it contains both U (jo (M;)),
U (G (MOP)), with ¢ > 1, 79 has all So = C*(jo(M;), j,(M°P)) in its centralizer,
thus, it is a trace.

If 71 is another trace on Sy and (7, , Hr,,Er, ) is the corresponding GNS con-

struction, then let Sy = 7, (SO)W. Since the unit ball of 7., (M}) is complete
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in the norm given by ||7,, ()&, || (because the unit ball of jo (M) is complete
in the norm 71 (x*x)l/Q, by the uniqueness of the trace on the factor Mjy) it
follows that m, (M) = mr, (My). Thus, for z € jo(My), ', y" € jo(M°P) we
get:

Ty 2y") = (Er,, Go(aryynse (Tr (Y'2y"))r s &m)

(7 (Y) B, Go(a)y S0 (T (G0 (2)) 07, (47)Ery 5 6y )
T (Y Ejo (vronny) ()Y éry, 7))

7'/( 0(M'ka)( ) ”)

=710y xy").

(E
(

with the last part following from the uniqueness of the trace on jj(M°P).

This shows that Sy has a unique trace 79 and also that if Zo C Sy is a two sided
closed proper ideal then S; = Syp/Zy has a trace, which thus composed with
the quotient map gives the trace on Sg. Thus, Zy C Z,,, so Z,, is the unique
maximal ideal of Sp. Q.E.D.

2.2. Remarks. 1°. Let

Cro (M, ey, MP) o

min max

(Ma EN, Mop)/Itr (2 7rtr(cv

max

(M, ex, M°P)),
where I, is the trace ideal (= maximal ideal) of C¥, (M, en, M°P) corre-
sponding to the unique trace tr, as given by 2.1. From the previous theo-
rem and its proof if follows that C¥. (M,en, M°P) is simple, has a unique
trace, still denoted tr, and has the Dixmier property, i.e., co"{uzu® | u €

(C’;m(M, en, M°P))} NCl = {tr(x)1}, V & € C¥;, (M, en, M°P). In fact, by
2.1 any C*-algebra Sy generated by mutually commuting copies of M, M°P

EN

and a projection ey such that N ¢ M & Alg(M,en) and N°P C M°P C
Alg(MP°P, en) are basic constructions and such that the smoothness condition
1.8 (*) is satisfied, has a unique trace tr, I;, is its unique maximal ideal and
SO/Itr = mm(M eN,MOp)

Also it should be noted that if N = M then C} .. (M, en, M°P) coincides with

M ® M, C, (M,en, M°P) with M ® M°P (as considered in [EL]) and

max bin
Chrin(M, en, M°P) with M ® M°P.
2°. Let N C M be an extremal inclusion of von Neumann factors of type
ITI, with the conditional expectation of minimal index &, as in 1.10.3°. The
construction analoguous to 2.1 is then as follows: one first considers the expec-
tation £° given by 1.10.3°; one takes a normal faithful state ¢ on M such that

p o & = ¢; instead of the trace tr, one defines a state ¢ on C}; (M, epr, MP)
by 1 = (p @ ¢°P) 0 £°.

2.3. COROLLARY.

S = 1 (CF (M, e, MOP)) o~ e (Cf (M, e, MOP))

max(
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is a type 11y factor with embeddings my 0 j : My — S, w0 j' + M{¥ — S and
an antisymmetry °P such that

a) [ (j(M)), mer (5 (M°P))] = O

b) mer(jen)) = T (5’ (en))

¢) § = vN(m:(§(M)), Wtr(j(eN)) e (5 (M°P)))

Q) 1 (@) = 7 (" (@%P), ¥ 2 € M, mui(en))*® = mae (i (en)).

Moreover, if Sy is another type I factor with embeddings jo : My — Sp,
Jo o M® — Sy satisfying conditions a), b) (with jo instead of iy o j and
Jo instead of my o j') and such that jo(M' N M,) C jo(M°),¥n > 1, then
there ezists a unique isomorphism o of S into Sy such that jo = o o my 0 j,
Jjo = o omyoj . And if in addition Sy = vN(jo(M), jo(en), jo(M°P)), then o
18 onto.

Proof. Trivial by 2.1. Q.E.D.
2.4.  DEFINITION. We denote by M X M°P the type II; factor S =
eN

Tr (Crax (M, en, M©P)) in the previous corollary and call it the symmetric
enveloping type 11y factor associated with N C M. Also, we call M VvV M°P C
M K M°P the symmetric enveloping inclusion associated with N C M. We will

en
identify M, ey, M°P with their corresponding canonical images in M X M°P,
en
more generally we will identify M,,, MSP, e, with their canonical images via
Tty 0§, mer 0§’ (cf 1.4), whenever some tunnel for N C M is chosen. We've seen

in 2.3 that M X M°P has an antisymmetry °P and that it satisfies a universality

EN
and uniqueness property. Also, from now on we will use the notation 7 for the
unique trace on the factor M X M°P (as in fact for any generic factor).
en
2.5. Remarks. 1°. As one can see from 2.1-2.3, the symmetric enveloping type

II; factor M X M°P associated to an inclusion N C M can be constructed out
EN

of any C*-algebra Sy generated by copies of M and MP°P, satisfying M’ NSy =

MP°P, and by a projection ey, implementing the expectations En on M and

Epnepr on M°P: just put M X M°P to be the completion of the algebra Sy /Iy

en
in the strong topology given by its unique trace, Iy being the maximal ideal
of Sy or, alternatively, the ideal corresponding to the unique trace on Sy. In

particular, M & MeP = C*(M,en, JpMJar)/Ip. But one can also construct

M & M°P by deﬁmng directly the Hilbert space of its standard representation.

In order to show this, we will in fact consider a more general construction. Thus,
let N C M and Q C P be extremal inclusions with the same extended higher
relative commutant picture (or extended standard invariant), i.e., >Gy p =
tilde — Gg,.p = {Aij}ijez. The concatenation algebra associated to these two
inclusions is then the unique (up to isomorphism) type II; factor S generated
by commuting copies of M, P°P and by a projection e, implementing both Ey
and Egor, such that M’ N S = P°P. This algebra is denoted by M X P°P

eN=eqQ
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(or simply M X P°P, when no confusion is possible). Its uniqueness follows the

same way as the uniqueness of M X M°P above. To prove its existence, we
EN

consider the following construction: Take {m;};cs to be be an orthonormal
basis of A_o,00 OVer A_o 0V Ap,co and identify A_ oV Ag,oc with its image
in M@P°P (through the choice of tunnels in M and P); note that the m;’s can
be chosen of bounded norm and such that the set of indices J can be written as
UnJn, where each J,, is finite and such that ZjeJn m; MV M is a MV M°P-
bimodule of finite dimension (equivalently, >°,c; m;PV P°P is a PV P°P-

bimodule of finite dimension) See 4.5 below for how to get these m;’s. Then

let M, ' > e, m;L?(M vV P°P) and H def Vi Hn, the scalar product on H

being defined by (m;&, min) = (Ea__ gva,... (mim;)€,n), V&, n € L2(MVPP).
Finally, we let M, P°P and e = ey = epopr act on H as follows: M (and similarily
P°P) acts on each H,, by multiplication to the left, according to the relations
Mm; C ZjeJn m;j(M V Ao,), Vi € Jy,, with the latter vector space being
identified with a subset of H,; e acts also by multiplication to the left, by
regarding H as a left A_, o module in the obvious way and letting e = e;.
Then M X P°P issimply the von Neumann algebra generated by M, P°P, e

eN=eqQ
on H.

It is easy to check that these actions of M, P°P,e on ‘H are well defined, that
they satisfy M’ N C*(M,e, P°P?) = P°P, exe = En(x)e,eye = Epon(y)e, for
x € M,y € P°P, and that (-1,1) defines a trace on C*(M, e, P°P). This shows
the existence of the concatenation algebra.

Note that, by using the same proofs as for M X M°P, it follows that the con-

eN
catenation algebra has similar properties as the ones the symmetric enveloping

algebras are shown to have in this section and in Sec. 4. Obviously, when
(Q C P) ~ (N C M) this algebra coincides with the symmetric enveloping
type II; factor associated with N C M.

Note that any extremal hyperfinite subfactor N C R gives rise to a canonical
non-separable concatenation algebra as follows: Let w be a free ultrafilter on
N and denote by R“ the corresponding ultrapower algebras associated to the
hyperfinite factor R. Then (R’ N R*)' N R¥ = R and more generally (] N
R¥) N RY = Ny, Vk, where R D N D Ny D ... is a tunnel for R D N (cf. [C1]).
Thus, if we denote P° = R'NR* and Q° to be the downward basic construction
for P) = N'NR* D R'NRY = P’ and put (Q C P C P) ~ (Q° C P° C PY)°p
then N C M and Q C P have the same higher relative commutant pictute
(extended standard invariant) and the von Neumann algebra S generated by
R and P/ = N’ N R¥ is isomorphic to the concatenation of (N C R) and
(Q C P) (see also Remark 2.11, 1° in [Po3], with caution to the obvious typos
there...).

2°.  TFor an extremal inclusion of type III factors NN C M like in
1.10.3°, 2.2.2°, one defines its symmetric enveloping von Neumann algebra
as my (O (M, ear, MOP)). Tt is easy to see that this algebra does not in fact
depend on the normal faithful state ¢, with ¢ = ¢ o £, taken on M.
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The next proposition summarizes the main properties of the factor M X M°P
EN
and its canonical subalgebras:

2.6. PROPOSITION. M & M°P with its subalgebras M;, M;® projections ey,

1,5,k € Z, and antzsymmetry P satisfy the conditions:

a) [M, M| = 0;
b) 1p:elfeN, P = ¢ g n€Z and---C Ny C NEMEM
Ms C -+ is a Jones tower-tunnel for N C M, where My = M, M_1 = N,
M_, = Np_1,n2>2.
c) U M;MPM; = U M;’pMnM;)p = Alg(M,ey = e1, M°P), ¥V i,j € Z and

n>1 n>1
it is a dense x-subalgebra in M X M°P.

EN
d) MJ’ NMKX MP = Mﬁ? and (M;’p)’ﬁM KMP=M_; VjecZ.
enN EN
Proof. Clear by 1.9 and the definition of M X M°P. Q.E.D.
EN

The bicommutant relations in d) above can actually be taken as an abstract
characterization of the symmetric enveloping algebra:

2.7. PROPOSITION. Let N C M be an extremal inclusion and S be a type I
von Neumann algebra containing M. If (M'NS C N'NS) ~ (M°P C M7?), and
S is generated by M and N' NS then MV M'NS C S is naturally isomorphic
to MV M° C M X M°P

EN

Proof. Let ey € M be a Jones projection for N C M and {m,}; an orthonormal
basis of N over N1 = {eg}’ N N such that one of the m;’s equals 1. For z € S
define E(z) = Xjmjeqregm} € S. Note that if x € M’ N S then m; and eg
commute with z so E(z) = z. Also, if z € N'N S then for each y € M we have

yE(x) =y Z mjeoregm; = A~ ! Z mieo BN (eom ymjeq)reom;
j i,

=\ ZmleozEN (eomjymjeo)eom; = Zmleozeom y=Ex)y

9,7 %

showing that [E(z),y] = 0. Thus E(z) € M’ N S. This shows that E is a
norm one projection of N’ NS onto M’ NS so by Tomiyama’s theorem it is a
conditional expectation. Also, if z € N’ NS then we have

7(E(z)) = T(Ejmjeosceom;) = T(xeoEjm;mjeo)

= ZjT(xeoE%I (m;mj)) = EjT(ENmS(erE%I (m;mj))) = )\_17(9060) =7(x)

Thus FE is trace preserving as well, so it must coincide with the unique trace
preserving expectation of N'NS onto M'NS. Also, from the definition of E(z),
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if z € N’ NS then eqzey = E(x)eg. Thus, if e; € N’ NS is a Jones projection
for (M'NS C N'NS)= (M C M;?) then epereg = Aeg. But

7(eo) ' =[M : N] = [M°P : N°P] = [M{P : M°P] = 7(e;) "},

so that 7(eg) = 7(e1). Together with egejeq = Aeg, this implies that ejege; =
Xe1. Thus, if z,y € N then e;(zeoy)er = Arye; = EM (zepy)er, showing that
e1 implements the conditional expectation E4!. But, by its definition, e; also
implements the conditional expectation of M’ N S onto {e1} N (M’ N S).
Since we also have the isomorphism (M’NS C N'NS) ~ (M°P C M;®), which in
turn implements an isomorphism ({e;}'NM'NS C M'NS C N'NS) ~ (N°P C
MP°P C M;P), 2.3 applies to yield (M VM'NS C S) ~ (MV M C M K M°P)
EN

Q.E.D.

Note that from the above proposition and [Po2] it follows that if M is hyper-
fnite and the graph I'y as of N C M is strongly amenable (see [Po2] for the
definitions) then the inclusion M v M°P cM & MP°P is isomorphic to the in-

clusion MV M' N My, C My ThelnclusmnsM\/M'ﬂM C My for NCcM
hyperfinite with finite depth, i.e., with finite (thus strongly amenable) graph,
were considered and extensively studied by Ocneanu ([Oc], see also [EvKa]).
Note that if M is an arbitrary type II; factor and N C M is a subfactor of
finite depth and we denote by @Q C P the standard model N C M5® then
Go,p =Gn,m and MV M' N My C My naturally identifies with the ”concate-
nation” inclusion considered in 2.5.1°, i.e., with M VvV P°P C M X P°P.

The next lemma provides some useful localization properties relating the Jones
projections, the relative commutants and the antiisomorphism °P. They are
reminiscent of some well known facts (see e.g., [PiPol] page 83, [Bil] page
205).

2.8. LEMMA. Let N C M be an extremal inclusion, N C M eév My its basic
construction and °P the canonical antiautomorphism of N' N M onto M' N M,
(so x°P = Jyax*Jpy, x € N'NM).

a) If v € N'NM then xey = 2°Pey and x°P is the unique element y’ € M'NM;
such that y'eny = zey.

b) eyxyPeny = T(ay)ey and T(zy°Pey) = Ar(zy), V 2,y € N' N M, where
A=[M: Nt

c) Ifge P(N'NM), g #0, then Nqq°® C qMqq°® C qq°°M1qq°? is a basic
construction with Jones projections equal to

-1

7(q) " qq*Penqq®™ = 7(q) 'qeng = 7(q) ' ¢°Peng®®

d) Expvmrnas (en) = )\Z” e T( k) L fjfﬁ()p, where { Z} i a matriz unit for
N'NnM.

Proof. a) If y € M then ey (j) = En(y) so that

—_—

zen(9) = zEn(y) = En(y)z = 2"Pen(9).
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The uniqueness is clear because y'exy = 0 implies enxy’ “y'exy = 0 so that
Enor (y'""y') = 0, thus v/ = 0.
b) By a) we have

enzyPen = eyxyen = En(zy)eny = Enan(zy) = 7(2y)en,

whenever x,y € N’ N M. The second part is then trivial.
¢) Since
qq°* B(L*(M))qq® = B(L*(¢Mq))
and
(Ngq°P) N qq°PB(L*(M))qq°® = qq°° M19q°®
it follows that
Nqq®® C qMqq®® C qq°® M1qq®®

is a basic construction. Also, if e = 7(¢) "1qq°Penqq°P then by a) we have

-1

e=1(q) 'qeng = 7(q) ' ¢°Peng®

Also, the range of e = 7(q) "1qq°Penqq°P is clearly
L*(Nq) = L*(gNq) = qL*(N)g = L*(N)q

and so, since e is a projection we get € = projrz(nyq = Projrz(ngeer) as an
element in B(L?(¢Mgq)).

d) To prove this it is sufficient to show that 7(zy°Pen) = 7(xy°Pa), V x,y €
N'NM, where a=A> ( ) fk P Tt is then enough to check this
for x = fk y= fs’r’ For the 1eft hand side, by b) we have:

(f ff/:/op ) = A(Sk/k//éss/éTT/T(f,’]i,i).

For the right hand side we have:

/11 Op /1 Op
TR fE a) =AY EIE R

.5,k

= A>T T ke Ornr 000 (FE)T ()
1,7,k

= AT(ff;)715k/k’/5rr/5ss’7_(f§s )2
= Aék’k”éss’éTT’T(ff’;)'

Q.E.D.
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2.9. PROPOSITION. Let N C M be an extremal inclusion of type 111 factors.

Then we have

a) M X M°P naturally identifies with M & M°P, by letting en,, _, — f",,.
eN

eNn—l

b) The inclusion M1V N°P C M X M°P naturally identifies with the reduced by
EN
e}’ of the symmetric enveloping inclusion of M C My, M1VM;{® C My X My".

EM

More generally, M,VN,”, C M K M°P is isomorphic to the reduced by (f™,,)°P
EN
of M, V M¥ C M, K M,.

emM

c) If pe P(N'N M) and we denote by L C K the inclusion Np C pMp then
K X K°P is naturally embedded in M X M°P as the weakly closed x-subalgebra

er, EN
generated by pp°® (M vV M°P)pp°P and by

¢, = o(p) " ppPenpp™.
Also, the ientity of this algebra is pp°P.
d) If T C S denotes the symmetric enveloping inclusion associated with N C M
and Ty C Sy the symmetric enveloping inclusion associated with some other
extremal inclusion of type II; factors Nog C My, then the symmetric enveloping
inclusion associated with NQNy C M QDM is naturally isomorphic to T®Ty C
S®Sp.

Proof. a) Is clear by 1.6, 1.9.4 and 2.4.

b) follows then immediately, from 2.1, 2.3 and the fact that
(f2)PMEP(f2,)°P = N2y (f7,)°P ~ N2y

To prove c) note that if 7 is the canonical representation of C*(M, ey, JMJ)

into M X M°P then the C*-algebra generated by pp°P(M U M°P)pp°P and
EN
€ is the image under = of C*(pJpJ(M U JMJ)pJpd, pJpJenpJpJ) which
naturally identifies with the C*-algebra generated by K, JxKJg and
er, in B(L?*(K)), where L = Np C pMp = K. Since this repre-
sentation of Cy . (K, er, K°?) is smooth, it follows that 7 implements
a smooth representation of CZ* (K,er, K°P) into pp°P(M X M°P)pp°P.
eN

u,max

Since the latter has a trace, it follows by 2.1, 2.2 that KX K =
er
(C* (pp°® Mpp°®, €', , pp°® MPpp°P))" C M X MOP.
EN

d) follows trivially from any of the characterizing universality properties of the
symmetric enveloping algebras (e.g., from 2.7). Q.E.D.

2.10. PROPOSITION. Let N C M be an extremal inclusion of type 111 factors.
a) If @ C N is an extremal subfactor of N then M K M°P is unitally embedded
EN

as a subfactor of M & M°P, by taking ex — 3 mjeqm; (=3, m;Peqm;®),
€Q

where {m;}; is a orthonormal basis of N over Q. Moreover, if there exists a
tunnel M D N D N1 D --- for N C M such that Ny C Q for some k, then this
unital embedding is in fact an equality.
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b) If Q@ C P is an extremal inclusion of factors embedded in N C M as a
commuting square, such that [P : Q] = [M : N] and P'NP,, C M'NM,,, V n then

P X P°P 4s unitally embedded in M & M°P by taking P — M, P°P — M°P
€Q
and eg — en. Also, P& pPeP C M & M°P has finite index iff P C M has

finite index, with the estlmate MK MOp : PR P°?] < [M : P]?>. Moreover,
eN €Q

if PPN P, = M' N M,, then this embedding implements the nondegenerate
commuting square:
MV M°P C M X M°P
EN
U

PV P® C PKX P°P.
eQ

Proof. a) It is easy to check by direct computation that

eN = ijeQm; = Z(ijJ)eQ(Jm;J)

J J

in B(L?*(M)), so a) follows from 2.2-2.6. The last part of a) then follows from
2.7 a) and the first part.

b) To prove the first part we only need to show that the representation of
Cr i (Preg, P°P) in M & M°P satisfies the faithfulness condition 1.8 (x), i.

u,bin

we need to show that P’ NP, = Q% ,'NPP ¥ n By?2124, it is suffi-
cient to check this equality in a representation of Cin(M,en, M 0p), and we’ll
choose C*(M,en, JMJ) C B(L?*(M)) to do this. Let e¥ € B(L?(M)) be the
orthogonal projection of L?(M) onto L?(P). Note that all the elements in
C*(P,en, JpPJy) C B(L?(M)) commute with e and that if z € JMJ then
z € JPJ iff [z,e}] = 0. Now, if z € P'N P, then z € M’ N P, by hypothesis,
sox € JMJNP,. Also, [z,eM¥] = 0, because P, C C*(P,ex, JPJ). Thus,
2 € JPJO Py. But Py C My = JNn_1J' 0 B(LA(M)) C JQu_1J'. Thus,
x € JPJN (JQn-1J)". This proves the first part of b).

Further on, assume [M : P] < co and take {m;}; to be a finite orthonor-
mal basis of M over P. Note that M K M° = sp(M VvV M°P)vN{e,}, ez and

en
P X P°P =5p(P V P°P)vN{e,;} ez, with {e;}; C P being the Jones projec-
€Q

tions for a tower-tunnel for @ C P (see 4.1, 4.2), and thus for N C M as
well. Since M V M°P =%, jm;m *OpP V P°P it thus follows that M & MoP =

¥ jmim;°P P & P°P, showing that M & M°P is a finitely generated left module

over P & PepP, W1th the estimate [M & MOp P & P°P] < [M : P]? as a bonus.

For the last part, we have that U spP°P P, POp is so-dense in P X P°P
eQ

and writing P, as spPf", P we get EMvMop(P®P°p) = @U((P \Y
P°PYEpryagor (f7,,) (P V P°P)). But since PN P, = M'ﬂM and Q',_ 1ﬂP—
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N/ N M,V n, it follows that Epryarer (f7,,) = Epvpor(f™,), proving the
desired commuting square condition. Q.E.D.

Let us end this section by considering a notion of index for sublattices of stan-
dard A-lattices (see [Po7] for the definition of abstract standard lattices and
for the notations and results used hereafter). We relate this notion with the
content of this section by showing that the index of a sublattice coincides with
the index of a certain canonically associated inclusion of symmetric enveloping
type II; factors. This latter result will be used in Sections 5 and 8.

2.11. DEFINITION. Let G = (A;;)o<i<; be a standard A-lattice and Gy =
def

(A?j>0§i§j a sublattice. We define the index of Gy in G by [G : Go] =
lim,,— o0 IndEﬁS" = IndEjS’“’, where Ind(E) denotes as usual the index
Oon 0,00

([PiPol]) of the conditional expectation E and A; oo = UpAi, AY o = UnAip.

Let us make right away some comments on this definition. By (1.1.6 in [Po3]),
if {m;}; is an orthonormal basis of Ag o over Af ., (apriorically made up of

‘9. But both A C
0,00

Ap,eo and AV C Af , are A-Markov inclusions (see 1.1.5 in [Po2] for the
definition), so the commuting square embedding of the latter into the former
is nondegenerate (1.5,1.6 in [Po2]). Thus, by (1.6 in [Po2]) any orthonormal
basis of Aj . over Af  is an orthonormal basis of Ag o over Aj . Thus,
in the above we may assume that {m;}; lies in A; .. On the other hand, if
bounded, ¥;m;m} belongs to the center of Ag  (see e.g. 1.1.5 in [Po3]), thus
Yjmgm; € Z(A0,00) N A1 0o = Z(Ap,00) N Z(A1,00). But by (Corollary 1.4.2
in [Po2]) this latter intersection is in fact equal to the scalar multiples of the

identity. Thus, Xjm;m; € Cl. Altogether, this shows that we may as well

square summable operators) then [|¥;m;m}|| = IndE

d . .
take [G : Go] =) [3;m m}| = X;m;m}, {m;}; being an arbitrary orthonormal
basis of A; o, over A?,Oo, for some ¢ > 0. The next proposition gives more ways
to look at this index.

2.12. PROPOSITION. Let G be a standard \-lattice with a sublattice Gy. Let
Qo be a mon-atomic finite von Neumann algebra with o faithful trace and
N9 (Qo) € M9(Qy), respectively N9°(Qo) C M9 (Qq) be the associated ex-
tremal inclusions of type I, factors having G, respectively Gy as standard in-
variants, given by the universal construction in ([Po7]). Let

N9(Qo) € M9 Qo)
U U

N9 (Qo) C M9(Qo).

be the corresponding commuting square like in ([Po7]). Then we have
[G : Go] = [M9(Qo) : M (Qo)] = [S : So,
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where S and respectively Sy denote the symmetric enveloping algebras of
N9 (Qo) € M9(Qo) and respectively N9 (Qq) C M9 (Qo).

Proof. Recall from [Po7] that MY (Qo) identifies with the free product with
amalgamation Qo®A1 o0 * 4, .. Ao,00, With ME0(Qo) identifying with the subal-
gebra generated by Qg and Agm. By the resulting commuting square relations
for these inclusions (see [Po7], pages 435 and 438), it follows that any orthonor-
mal basis of A; o, over A?m is an orthonormal basis of Qo®A41,c *A; o A0,00
over QoRAY A0 Af o, thus of MY (Qo) over M9°(Qo). But the commuting
square embedding of M9 (Qg) C M9(Qo) into MZ°(Qo) C ME,(Qo) is nonde-
genarate (cf. [Po7]), so that in the end, if {m,} denotes an orthonormal basis
of At over A ., we get [M9(Qo) : M%(Qo)] = [ME(Qo) : MZ(Qo)] =
ijjm;‘ = [g : go]

Finally, from the universality properties of the symmteric enveloping algebras
and the definition of N9(Q) C M9(Qo) and N9 (Qo) C M9 (Qy), we see
that, if we denote by N C M and Ny C Mj these two inclusions then Sy C S
identifies with the inclusion Qo@Ny" *yor My C Qo@NP %o MP. But
from the above we have that any orthonormal basis of N°P over Nj¥ will be
an orthonormal basis of S over Sj. Q.E.D.

3. A CLASS OF EXAMPLES

Let @ be a type II; factor and o1, ... ,0, a n-tuple of automorphisms of Q). Let
N C M be the locally trivial inclusion of factors associated with o1, ... , o, (see
e.g. [Po2]),ie, M = Q®Mu41(C), N ={>1" joi(z)®e; | 2 € Q ~ Qe C1},
where 09 = idg and {e;; }o<i,j<n I8 a matrix unit for M, ;(C).

We still denote by o; the automorphism of M = Q ® M,,+1(C) defined by
oi(x ®ep) = oi(x) e, Ve, 0< kIl < n Denote by G the
discrete group generated by o1,...,0, in Aut(M)/Int(M). Also, we let
o : G — Aut(M)/Int(M) be the corresponding faithful G-kernel. Then note
that the faithful G-kernel ¢ ®0°P on M &M °P has vanishing H3(G, T) cohomol-
ogy obstruction ([J5]), so that it can be viewed as a (properly outer) cocycle
action of G on M@M°P.

In this section we show that, with the above notations, we have

(M VM ¢ M & M) ~ (MEM®  (MEMP) X ygqen G),
€Q

in which the cross product is associated with the cocycle action ¢ ® o°P as
in (4.1 of [J5]). Since by the previous sections M V M°P C M K M°P is the

eQ
(weak closure of the) quotient of C*(M, JMJ) C C*(M,en, JMJ), it will be
sufficient to study this latter inclusion of algebras.
So let U; be the unitary element acting on L?(M, 7), defined on the dense subset
M c L*(M, 1) by Ui(2) = 03(x), € M, 0 < i < n. Note that U;zU? = 0:(z),
Vaee M, 0<i<n,and [J,U;] = 0. In particular, since o;(ex) = ex,
0 < k,l <mn, we also have [U;,ep] =0, [U;, Jep J] =0,V i, k, L.
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3.1. LEMMA.
1 .
a) enN = ] Z UJUz ejiJejiJ.
1,7=0
b) U]‘ = (TL+ 1) Z JeljJekjeNeokJeolJ.

k,1=0
Proof. a)If x =) x;; ® e;j € Q ® My41(C) = M, then

— 1

En(@) = = D (g0 (@) @ ey =
i

SR . .
TL—+1 Z UJUz ejiJejiJ(x)

4,7=0

proving the first formula.
1
b) By a) we have e;jenJegod = ?UjejoJejoJ, so that UjegoJeood = (n +
n

1)60jJ60jJ€jj€NJ€00J. Thus we get

Uj = Z ekojeloJ(Uj@ooJ(’iooJ)JeOlJeOk = (7’L—|— 1) Z €ij€ljJ€NJ€01J€0k.
k,l=0 k,1=0

Q.ED.
3.2. COROLLARY. C*(M, ey, JMJ) = C*(M,{U;}i<n, JM.J). In fact,

C*(Mp11(C), en, M1 (C)J) = C* (Mpn11(C), {Usbo<i<n, S Mn41(C)J).

Proof. Trivial by the previous lemma. Q.E.D.
Describing M vV M°? C M X M°P as a cross product is now an imme-

EN
diate consequence of the previous lemma and of 2.1, once we notice that
Uj(xJy* J)U; = oi(x)Joi(y*)J. To write the corresponding isomorphism in
more specific terms, denote by u; the image of U; in M K M°P (cf. 2.1) and
eN

by g; the image of ¢; as an element of the group G.

3.3 THEOREM. There exists a unique isomorphism ~, of (M V M°P C
M X M°P) onto (MM C MRM°P X,gs00 G), satisfying:

EN
a) Y(zyP) =x @y, z,y € M.
b) ug, def ~v(u;) are unitary elements in the cross product MMCP X,gz00 G
which implement the automorphism o ® c°(g;), 0 <i <n.

1 n

* op

e E Ug, U, €i; Q€. .

n+41 &= 979 *
1,7=0

c) y(en) =

n

d) v Hug,) =u; = (n+1) Z ekje;’lpeNeoke%’, 0<j<n.
k,1=0

Proof. Trivial by 2.1 and 3.1. Q.E.D.

DOCUMENTA MATHEMATICA 4 (1999) 665-744



688 SORIN Popra

In the next section we will see that even for arbitrary extremal subfactors
N C M the resulting inclusion M V M°P C M X M°P can be interpreted as a
EN

"cross-product’-type structure.

3.4 Remarks. 1°. As one knows (see e.g. 5.1.5 in [Po2]), the standard invari-
ant Gy, a of the above locally trivial subfactor N C M only depends on the
cohomology obstruction in H3(G, T) ([J5]) of the corresponding G-kernel o on
Q. Thus, if we take another G-kernel ¢/, on another type II; factor Q' but
with the same H?(G,T)-obstruction as o, and denote the similar locally triv-
ial inclusion (corresponding to the same generators of G) by N’ C M’, then
Gn. v = Gn,m and we can thus consider the concatenation algebra 2.5.1° as-
sociated with these two inclusions. Then M V M’ ¢ M X M’ is isomorphic
to a cocycle cross product MRM'® C (MRM'P) X ygoror G.

2°. Let G = (Aij)o<i<; be the standard A-lattice associated to the locally
trivial subfactor N C M, constructed from the automorphisms o1, ..., o, acting
on the factor @ as above, with G denoting the group generated by the o;’s in
Aut(Q)/Int(Q) (and with the corresponding generators denoted hereafter by
g1, gn)- Let Go = (A?j)i,j be a sublattice of G with the property that A9 is
a maximal abelian subalgebra of Ag;. Note that this amounts to saying that G
has same ”generators” but possibly lesser "relations” than G. Now take Qg to
be an arbitrary finite von Neumann algebra without atoms. With Qg as "initial
data”, do the universal construction [Po7] of subfactors N9(Qo) € M9(Qo)
and N9 (Qg) C M9 (Qo) with higher relative commutants picture given by G
respectively G, like at the end of Sec. 2, thus obtaining the non-degenerate
commuting square of inclusions:

N9 Qo) € M9(Qo)
U U

N%(Qo) € M%(Qo).

One can then show that the above algebras and the inclusions involved can be
alternatively described in terms of the following objects:

a). A type II; factor @’ with a faithful G kernel ¢’ on it such that if N € M
denotes the locally trivial subfactor constructed out of this G-kernel and the
generators gi, ..., gn, like at the beginning of this section, then (N C M) ~
(N9(Qo) € M9 (Qo));

b). An irreducible regular (in the sense of [D1]) subfactor @y C Q’, a group
Go with generators ¢f, ..., g}, and a Go-kernel o, on Qf, such that if Nog C M,
denotes the associated locally trivial subfactor, constructed from this Gg-kernel
and the generators g1, ..., g.,, like at the beginning of this section, then (Ny C
Mp) = (N9 (Qo) € M9 (Qo));

¢). A group morphism p of Gy onto G such that p(g;) = ¢; and such that if
H = ker(p) denotes the corresponding kernel group then H is isomorphic to
No (Q6)/UQL) (so that Q' is a cocycle cross-product of Qf by H), in such
a way that if we denote by {up}ren a set of unitaries in N/ (Qf) that give
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a cross-section for H then, modulo perturbations by inner automorphisms,
o' and o(, are related as follows: o'(p(9'))(unag) = upgn-104(9")(ag), Vag €
Q6,h S H,g/ € Go.

Moreover, through these identifications, Ny C My is embedded in N C M by
the inclusion My = Q) ® My4+1(C) C Q' ® M, +1(C) = M, and the correspond-
ing commuting square is isomorphic to the above commuting square.

Thus, in this exemple the sublattice Gy of the lattice G (which was associated
to the group G) corresponds to a ”covering” group Gy of the group G. Note
that, with these identifications, we have that the index of Gy in G equals the
order of the group H, [G : Go] = |H|.

Finally, let us see what the symmetric enveloping algebras become in this case:
if we extend the atomorphisms o’(g),c((g") to M, My by putting them to act
as the identity on M, 1(C), then the symmetric enveloping algebras S, Sy of
N C M respectively Ny C My, and the corresponding inclusion So C S (cf.
2.10, b)), are given by

SO = M0®M(;)p NU&@G{)OP GO C M@Mop N o' @q’oP G=S
with the inclusion being described similarily to c).

4. THINNESS AND QUASI-REGULARITY PROPERTIES
We've already seen that spJ M MSPM = sp|J M°PM, M°P is a x-subalgebra
n n
which is dense in M K M°P in the weak (or strong) operator topology. Let

EN
{en}nez be the Jones projections for the Jones tunnel-tower ---N; C N C

M C My C ---, with ey = €1, as in Sections 1-2, and denote by P the
von Neumann algebra they generate in M X M°P. Fix n > 0 and choose an

EN
orthonormal basis {m;}; of M over N,,_; that belongs to vN{ey}r<o C P and
an orthonormal basis {m} }; of M, over M that belongs to vN{ey}r<n C P.
Thus we have

MMM c M <Z MOme(’p) > Naam | =" MMPN, _ympPm}
k j 4.k

— Z MMOmeOPm; C sp MM°PP.
j.k
Thus we obtain sp|JMMPM C sp(M vV M°P)P.  Similarly, since
Zj,k Mmy°Pm; C ]\ZOO, we get spJMMPM C spM°PM, giving us
the following: !

4.1. PROPOSITION. With the above notations we have:
S LM & MOP = Sp(M V M°P)P = 5p Moo M°P
EN

=5p(M v MP)(Alg{f",}»)(M vV M°P)

DOCUMENTA MATHEMATICA 4 (1999) 665-744



690 SORIN Popra

the closure being taken in either of the wo, so or || ||2 topologies in S.

Proof. Since sp(MVM®P)P, MM and sp(MVM°P)(Alg{f™, }n)(MVM°P)
contain sp | J M M?2P M, which is a dense *-subalgebra in S = M K M°P, we are

n EN
done. Q.E.D.

Note that if M is hyperfinite then M VvV M°P, M°P, M., are all hyperfinite.
Thus, in this case M X M°P can be written as a “product” of two hyperfi-

eN
nite subfactors. Recall from ([Po5]) that such situation is singled out by the
following:

4.2. DEFINITION. A type II; factor S for which there exist two hyperfinite
type II; subfactors Ry, Ry C S such that S = 5p Ry Rs, the closure being taken
in || ||2, is called a thin type II; factor.

With this terminology the above observation takes the form:

4.3. COROLLARY. If N C M is a extremal inclusion of hyperfinite type 11y
factors then S = M R M°P is a thin type 111 factor.
EN

From the above, the previous section and Connes’ fundamental theorem ([C1])
we can already conclude:

4.4. COROLLARY. If N C M is an inclusion of factors associated to a faithful

G-kernel o on a hyperfinite type 111 factor R like on Section 3, where G is a

finitely generated discrete group, then M K M°P ~ R ® R°P X,goor G is thin
€Q

but it is hyperfinte iff G is amenable.

More precise statements along these lines will be obtained in Sec.5 and 7. Let
us note now that the Hilbert space KC,, obtained as the closure of

(SPMOP M, MOPY = (spM MCP M)
in L?2(M & MP°P 7) is invariant to multiplication from left and right by both

M and ]\4Op thus by T'= M Vv M°P. Thus K, is a T-T bimodule.

Since sp MM,({F’M =sp Y p M fr, MM =sp ., MMPfr' miPm,
it follows that /C,, has finite dimension both as a left and as a right T module.
Thus, if p, is the orthogonal projection of L2(S,7) onto K,, the p, commutes
with the operators of left and right multiplication by elements in T, i.e., p, €

"M {S,T). Also, since |JK,, = L?(S,7), we have p,, / 1 and the above shows

that Trp, < oo, V n, where Tr = Tr(g 7y denotes the unique trace on (S,T’)
satisfying Tr(er) = 1.

Thus, 7'N (S, T) is generated by finite projections of (S, T) and the inclusion of
factors Tp, C pn(S,T)p, has finite index for all n. Since TN S = C1 (cf. 2.3),
by (1.8 in [PiPol]) we can already conclude that Trp > 1,V p € T'N{S,T) (so
in particular 77 N (S, T is atomic) and that the multiplicity of any minimal
projection p in T N (S, T) is < Trp.

In fact we have the following more precise statement:
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4.5. THEOREM. Let N C M be an extremal inclusion of type 111 factors and
denote S = M X M°P, T =MV M°? C S.

EN
a) If {Hr}rex denotes the set of irreducible M-M bimodules corresponding to
the set of even vertices of the standard graph Ty n of N C M then L*(S,7) is
isomorphic as a T-T bimodule with @ Hp@H"" and IC,, with @ Hp@H:"
keK keKy
(in which T ~ M&M°P).
b) If L?(S,7) is identified with @ Hip®Hi " as in a) and s, denotes the
keK
orthogonal projection of L?(S,T) onto its direct summand H@Hi " then sy,
is a minimal projection in T N (S,T), pp = D ek, Sk and T' N (S, T) =
vN{strex ~ €2(K). Moreover, (Trsy)? = [sx(S,T)si : T'si] = v}, where
U = (vk)kek 1S the standard vector giving the weights at the even wvertices of
I'no.
¢) The antiautomorphism °P on S leaves T invariant and thus implements an
antiautomorphism on (S,T), still denoted by °P. We have (T' N (S,T))°P =
T' N (S,T), the projection s;° coincides with JssiJs and the corresponding
bimodule is (Hp@Hy ")~ = Hi@H,P.
Proof. Let k € Ky and choose ¢ = ¢ € N{ N M to be a minimal projection
in the direct summand labeled by k. Denote v}, = (At(q))!/2qq°Pe1eoeg? and
vy = A 2ENia (vy). Note that f = wvjv," is the Jones projection for the
irreducible inclusion ¢°PgN; C ¢°PqMq C ¢°PqM2qq°® (cf. 2.8.b) and 2.8.c)).
Note also that by applying twice the ”push down lemma” (1.2 in [PiPol]) and
using the above definitions we get:

op _ )2 /Y ,0p
vgeq o = A" Envan, (vg)eg eo

= A" Enn, (A Engaan (vV))eg)eo = A Enia, (vg)eo = vy,

implying that:

*

o op 1k gy g% op
g = Ugoeq vy =vu, = [ < ¢%q.

vgepest v
q“0%0 q q%q

STEP 1. We first prove that L?(spMuv,M) ~ Hj, and that L?(spM P, MP) ~

HpP.  Indeed, since eg’ = ez, by the definition of Hj we have Hj =
L2(32,;m;M), where {m;}; C My = (M,e1) (C MgMOp) are so that

{mjegpm;}j are mutually orthogonal projections with Zj m;e’Pm; = ¢°P €
M' N Ms. Since v, € My and vgze)” = ¢°Pugeg, it follows that v, € Y m; M.
Thus Mv,M C 37, m;M, so that L*(spMv,M) C Hy. Since Hy is irre-
ducible and L?(spMuv,M) is a M-M bimodule, we actually have the equality
L2 (spMuv, M) = Hy.

To prove the second isomorphism, note that given any T'— T (resp. M — M)
bimodule H C L2(S,7), its conjugate T — T (vesp. M — M) bimodule H
can be identified with (H)* = {{* | £ € H} and its opposite T°P — T°P (resp.
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M°P — M°P) bimodule H°P can be identified with (H)°P = {£€°P | £ € H} (all this
is trivial by the definitions). As a consequence, we also have H°P ~ ((H)*)°P.
By taking into account that (v;)°® = v, and that M* = M, from the iso-
morphism L2(spMvyM) ~ 'Hj and the above remark it thus follows that
L2(spM°Pu,M°P) ~ H,® as well.

SteP II. We now prove that Hi@H," ~ L?(spM M°Pv,MM°P). To see this,
by Step I it is sufficient to prove that there exists a € C such that:

op op op op\ __ op, ,op _op, 6 op
(175" 0Y1Ys ", T35 VYY) = (T1V4Y1, T3VeY3) (TS Vgls > Ty VgYy' ),

Va,y; € M,1 <15 <4. Bydenoting a = z5z1, b = 1193, ¢ = 222}, d = Y, yo,
it follows that it is sufficient to prove that

(avgh, c*Pugd*°P) = a(avgb, vg) (c°Pqd°P, vg),

YV a,b,c,d € M. Writing b = biegbs, d = diepds for b1 2,d1 2 € N and using
that

{avgb, ¢*Pu,d*°P) = (boabivgeg, dy P c*Pd P el?),
(avgh, vq) = (baabivgep, vg),

(€°Pvgd®, vg) = (di"c™Pd3 vgeq”, vg),

by putting a for boab; and ¢ for docdy, it follows that we only need to check
that:
{avgeq, *Pogeg’) = alavgen, vg)(cPugeg, vg),

YV a,ce M. But
(avgeo, c*Pugeg”) = T(acPv eqvy) = T(ac f)
and also

(avgeo, vq) = (avqeq, vgeo) = T(avqeov;) = A_lT(avqeoegpv;)
= A" '7(af),

and similarily (c®Pvgeg”, vy) = A717(c°P f), where f = vgeoeq’ v} is the Jones
projection for the irreducible inclusion N1qq°? C gM qq°® C ¢°PqM2qq°P. Since
Enrvner (f) = vy, 2qq°P (where ¥ = (vg)kex is the standard vector as usual),
we have 7(ac®® f) = ap7(aq)7T(c°P¢°P), ¥ a,c € M, for some constant ap € Ry.
Also, we have 7(af) = a17(aq), 7(c°?f) = a17(c°P¢°?), V¥ a,c € M for some
constant a; € Ry. This ends the proof.

STEP III. We next show that

L?(spM MPe; MM®) = Y L*(spMMPvy MM°P).
keKy
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To see this let ¢ € N{ N M be a minimal projection in the same simple di-
rect summand as ¢ and v € U(N; N M) such that u*qu = ¢'. Let v/ =
A" B, (u®Pout©P) € N’ N M; and note that v”egPv* = u"p(vqegpv;) w*oP <
¢°?. By the same reasoning as in Step I, it follows that L2?(spMv”"M) =
L*(3; m’M) where {m}}; C M; is an orthonormal system such that
Yomleg?m = ¢°P. But v € spMM%Puv,M°PM, because uPvgu*P €
spMOpquOp and Ear, (uPvgu*P) = X375 b7 (uPugu*P)bi*" € spM Py MOP
as well, where {7 }; is an orthonormal ba51s of N over Nj.

Thus we have spMM°Py,M°PM > spMM°PuyMM°P, V ¢ chosen this
way. Thus, if {mk}; C M, is a orthonormal system such that )= m¥egPm’
is the central support of ¢°° in M’ N My then spM"p(zj m;“M)MOID =
spM M°Pvg M°PM. Summing up over k and using that 7, >, miM = M, =
spMey M, the statement follows.

STEP IV. We now derive that

L2 (spMM°P f* MM°P) ~ @ Hp@H;"
keK,

and then
L? (M X MOP) = @ HiOHP.
eN keK

To see this, note first that Hk®7:{2p ~ Hk/®7:{25’ if and only if Hj, ~ Hj,. This
fact follows immediately by interpreting Hj as irreducible representation of
M ® M°P, according to Connes’ alternative view on correspondences (see [C4],
[Pog]). B

Since by Steps IT and ITI we have Vyex, Hy®H," = L*(spM M°Pe; MM®P),
with Hx®H;" mutually nonisomorphic, the first part of the statement follows

for n = 1. By using this fact for N,—1 € M fC M,, n > 1, we get it for
any n > 1. The last part is now clear, since UnspMMOpfﬁnMMOp is dense in
M X M°P.

EN
STEP V. We finally show that if s;, denotes the minimal projection in T/N{S, T
labeled by k € K then Trsj, = vi. This fact can be checked directly by using a

similar strategy as in Step III. Instead, we will use the following more elegant
argument: Since

’Ué = (TI“<S7T>S]€)(TI‘T/S]€) = (TI‘<S7T>S]€)(TI‘<S7T>JSSkJS)

(cf. [J1]), we only need to show that 77 N (S, T) > s — JssgJs € T' N (S, T)
is Tr(g )-preserving.

To see this note that since °P acts on S leaving T invariant, it implements
a Trig r)-preserving anti-automorphism on (S,T’), thus a Tr g 7y-preserving
automorphism on the commutative algebra 77 N (S, T). Moreover, if we put
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s L?(S,7) = L*(spTv,T) as in Steps I and IT and use that v® = v}, then we
have
sPPL*(S, 1) = (L*(spTw,T))°P

_ 72 712 T2 *
= L*(spT°PvPT°P) = L*(spTwyPT) = L*(spT'v,T')
= L*(spT*v;T*) = L*(spTw T)* = JsspJsL*(S, 7)
Thus, s, = JgsiJg so that Tr(sg) = Tr(sy") = Tr(JsskJs). Q.E.D.

Note that the above theorem agrees with the exemples in Section 3. Indeed, if
o € Aut(P) is an automorphism of a type II; factor P and H, = L?(c) denotes
the P— P bimodule associated with o as in [Po8] then an easy calculation shows
that ﬂa—op == HO—OP.

4.6. COROLLARY. Let N C M be an extremal inclusion. Then N C M has
finite depth if and only if [M X M° : M VvV M°P] < oco. Moreover if these

EN
conditions are satisfied then M NV M°P has finite depth in M X M°P.
EN

Proof. With the notations used in 4.5 and its proof, if we assume that N C M
has finite depth then K is finite so that by 4.5 we have dim(S' N (S,T)) < oo
and each of the local indices is finite. But then, by Jones’ formula ([J1]), it
follows that [S: T < oo.

Conversely, if [S : T] < oo then dim(S' N (S, T)) < oo, so that K follows finite,
i.e., N C M has finite depth.

Moreover, we see from 4.5 that if [S : T] < oo then the set of all T—T irreducible
bimodules generated by L?(S,7) under Connes’ tensor product (fusion) are
contained in the set of bimodules {Hk®7{k/0p}k7k/€1( and is thus finite, i.e.,
T C S has finite depth. Q.E.D.

4.7. Remark. As mentioned before, if M is hyperfinite and N C M is a
subfactor of finite depth then by ([Pol5]) we have M VvV M°P C M K M°P

N
is isomorphic to the inclusion M V M’ N My C My of [Oc]. This latter
inclusion was already shown to have finite depth in [Oc] and in fact all its
standard invariant (paragroup) has been calculated ([Oc]|, see also [EvKal). In
particular, for this class of symmetric enveloping inclusions, part b) of 4.5 can
be recovered from ([Oc]). If N C M is a finite depth subfactor with M not
necessarily hyperfinite, then it is imediate to see that M vV M°? C M X M°P

EN
has the same standard invariant (paragroup) as PV P°? C P X P°P where
(&

Q
@ C P denotes the standard model for N C M, which is thus an inclusion
of hyperfinite factors. Thus, for any N C M with finite depth the standard
invariant (paragroup) of M V M°P C M KX M°P can be recovered from these

EN
results.

Theorem 4.5 shows that in the case (T' C S) = (M VvV M°P C M X M°P) then
en

L?(S, 1) is spanned by T'—T bimodules which are finitely generated both as left
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and right T-modules. Equivalently, T C S is such that 77N (S, T is generated
by finite projections of (S, T). Inclusions T' C S verifying this latter condition
are called discrete in [ILP]. We’ll introduce here a new terminology for such
subfactors based on the former, more intrinsic characterization.

4.8. DEFINITION. Let T' C S be an irreducible inclusion of type II; factors. We

denote by gNs(T) def {x €S |3 z1,29,...,2, € Ssuch that 2T C Y." | Tx;
and Tz C >, 2;T}. We call gNg(T') the quasi-normalizer of T in S.

Note that the condition “zT C > Tx;, Tz C > z;T” is equivalent to “T'zT C
>k Tai) N (O, ;T)” and also to “spT'zT is finitely generated both as
left and as a right T-module.” Tt then follows readily that sp(gNs(T)) is a

x-algebra. Thus P d:ef@(qj\/s (T)) = gNs(T)" is a subfactor of S containing 7T
Note also that L?(P) = V{H | H C L*(P), H is a T-T bimodule, dim(7H) <
oo, dim(Hr) < oo} and that the orthogonal projection ep, of L?(S) onto
L2(P), satisfies ep = V{f € T'N{S,T) | Trf < 0o, TrJsfJs < co}. All these
facts are just reformulations of some results in [PiPol] and [ILP], but can also
be proved as exercises.

The terminology we wanted to introduce is then as follows:

4.9. DEFINITION. Let T C S be an irreducible inclusion. If gNg(T)” = S,
we say that T is quasi-regular in S. From the above remarks we see that an
irreducible inclusion T' C S is discrete (as defined in [ILP)) iff T is quasi-regular
in S.

Thus, from 4.5 it follows that if N C M is an extremal inclusion of type Iy
factors then M VvV M°P is quasi-regular in M X M°P. Note that, even more,
eN

we showed that each irreducible 7-T' bimodule in L?(S) (where T = M V
MeP, S = M K M°P) has multiplicity 1 and its (finite) dimension as a left T
EN

module coincides with its dimension as a right T-module. Thus, our symmetric
enveloping inclusions have very similar properties to the inclusions given by
cross-products of factors by outer actions of discrete groups.

We wanted to emphasize even more this aspect by choosing the terminology
“quasi-normalizer”, “quasi-regular” in analogy with Dixmier’s notions of “nor-
malizer” and “regularity” for an irreducible subfactor ([D1]). This is particu-
larily justified by noticing that exemples of quasi-regular subfactors 7' C S can
be obtained by requiring S to be generated by unitary elements u such that
uT'v* is included in T" and has finite index in it (see the Appendix in [ILP] for
a concrete exemple of such a situation).

Let us end this section with a result showing that the extended sequence of
Jones projections in a tunnel-tower associated to a subfactor N C M has a cer-
tain general ergodicity property with respect to the higher relative commutants
that is very useful in applications (see e.g. 2.2 and 2.3 in [GePo]). We'll refer
to this result as the Ergodicity Theorem for Higher Relative Commutants.

4.10. THEOREM. Let N C M be a subfactor with finite index (but not
necessarily extremal). Let {M,;},cz be a tunnel-tower for N C M, where
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My =M,M_1 =N, and {e;} ez be its corresponding Jones projections. De-
note Aj; = M N M; and A_; = U, <; Ani, A—oso,00 = U; A—c,i- Then we
have: a
a) {ej}_/jEZ NA_s,00 =C. In particular, A_ ~ is a factor.
b) If M has separable predual then the tunnel {M;}j<o can be chosen such that
{ej}g-gk NM, CA_con, Yk <ninZ.
c) If N C M is extremal and its tunnel is chosen to satisfy condition b) then
{ejtiecz N M R M°P =C.

EN

Proof. a). Let @ be the trace preserving automorphism on A_ o imple-
mented by the duality isomorphism (1.5 of [PiPol] or 1.3.3 of [Po2]), i.e.,
0 satisfies Q(AU) = Ai+27j+2,9(6k) = ept+2,Vi, 5,k € 7Z, with G\Aij be-
ing defined as the restriction to M; N M; = M N M of aj; : (M; C
Mi+1 c ... C Mj)o‘ — (Mi_;’_Q c ... C Mj+2), where O’Qj((m,ns)r,s)
NI+l D s Mr€it2€i13..€j42Trs€j42...Ci42M 5, in which {m,}, is an orthonor-
mal basis of vN{e, }n<i+1 over vN{e, }n<; and A=t = [M : N].

We first show that this automorphism satisfies the identity 6(z)ej12 = zeji0
for all z € {ek};c<j NA_ . To this end let € > 0 and ¢ < j be so that
|Ea,, () — 2|2 < . Put 29 = Ea,,(2) € {€i42,....e;}' N A;;. From the above
local formula for 6 we have

1 *
€j+2( E mrei+2...ej+2zoej+2...ei+2mT)ej+2

T

ejr2b(z0)ejr2 = N TIT

— \i—J+3 E *
=\J mr€i42...€45 (Zoej+2)€j...6i+2mr
T

= me(z0eitaejra)mi = (Y me(z0€iy2)my)ej o
T

T

By taking into account that the orthonormal basis {m,.}, can be taken to be
made up of no more than [M : N|+ 1 elements, we thus get the estimates:

10(2)ej+2 — zej1all2
<10(2) = 0(z0)l|l2 + ||z — 202 + [les+20(20)€jt+2 — z0€jt2ll2
< 2e + ||E,my(20€i+2)myejr2 — zo€j42l2

< 2+ Z [[[m-€ita; o] |2
s

<2+ ([M: N +1)%.

Letting € tend to 0, we get the desired identity.

Now to prove part a) of the statement let z € vN{e,}! c,NA_c o0 With 7(2) = 0

and take 2o = Ea__, ,(2) for some j. Note that 7(29) = 0 as well. For such a

29, and in fact for any zg in vN{en};lSj N A_w ;, we then have the estimates:
I(z = 20)ej+213 = 7((2 = 20)* (= — 20)ej+2)
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= T(Efe}), ;2N A- . (2 = 20)" (2 = 20)€j12))
=7((z = 20)" (2 = 20) Bfer}; ,,,nA- e (€542)) = Allz = 203,

in which we wused that by Jones ergodicity theorem we have
E{el}£2j+2mAfoo,oo(ej+2) = )\1
Since zpejr2 = 0(20)ej+2, we get similarily:

I(z = 20)ej42l13 = I (= — 0(20))ej+213
=7((z = 6(20)"(z — 0(20))e;+2)
= T(Efe}) ;20 A- .o (2 = 0(20))7 (2 = 0(20))e;12))
= 7((z = 0(20))" (2 = 0(20)) Ee,};_, ;04 oo (€542))
= Az = 0(=0)|I3,

in which we used the fact that 6(zp) commutes with vN{e;};<;12 and that by
Jones ergodicity theorem we have E{ez}QSHZF\Afw,w (ej42) = AL

Altogether, the above shows that ||z — zoll2 = ||z — 6(20)]|2 and by applying
this recursively n times we get ||z — 2zo|l2 = ||z — 0" (20) |2, Vn > 1.

On the other hand 0™(A;;) = Ait2n,j+2n» and so, if n is so that 2n > j — 1
then 7(210"(21)) = 7(21)%,Vz1 € A;j;, showing that 0 is mixing on A_og 00 =
Ui,j A;;. Thus, for zp € A_ ; With 7(29) = 0 we have

lim |[20 — 0" (20) 15 = 2|20]l3-
n—oo

Since ||z0 — 0™ (20)]2 < ||z0 — z||2 + ||z — 6™ (20) |2 and since for z € vN{e, }; ;N
A_o,00 we proved that ||z — zgll2 = ||z — 0™(20)]]2,Vn > 1, in which zy =
E_ (), it follows that for each j we have the estimate:

2|20l = lim 120 — 6" (20) 3 < 4]}z — z0l13

Now, letting j tend to infinity we get ||z — zp||2 tend to 0 and ||zo]|2 tend to
lz||2, which from the above estimate forces z = 0. This ends the proof of a).
b). Let {z,}n>1 C M be a sequence of elements dense in the unit ball of M
in the so-topology. We construct recursively a sequence of integers 0 < k; <
ko < ...and a tunnel M D N D Nj... D Nig; D ... D N, D ...for NC M
such that if {e, }<o are the corresponding Jones projections and we denote by
B, = Alg{e;}_k,+1<j<—k,_,—1 then we have:

||EB;lﬁM(1'j) — ENLH,IHM(zj)||2 < 27n,Vj S n

Assume we have this up to some n. By ([Pol]) there exists a hyperfinite
subfactor R C N, such that Ernp(z) = Eny Am(x), Yz € M. On the other
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hand, by Jones ergodicity theorem, we can regard R as being generated by
a sequence of Jones A-projections e; indexed over the integers < —k, — 1.
Thus, there will exist a sufficiently large k, 11 such that if we denote B, 411 =
Alg{e;} -, 1+1<j<—k, -1 then

1Bs;, ,~m(@;) = Eny anr(z))lla <2771 V5 <m+ 1.

Now choose a Jones projection e_g, for Nj, C Ni,_1 such that it commutes
with e; € B4 for j < —k,, —2 and such that it satisfies the Jones-Temperley-
Lieb relation for j = —k,, — 1 (see the proof of 4.4 on page 33 of [Pol5]), i.e.,
€_k,€—k,—1€6—k, = Ae_g, , and then simply define the corresponding tunnel
Ni, D Ng,41 D ... D N, ., as given by these newly chosen Jones projections
€4 with 7kn+1 + 1 S ] S 7]{3”

Thus, if we take A, = Up>nBm C vN{e;}j<—k,—1 then it follows from the
above that Earnar(z) € UgN, N M for all x € {z;}; and thus by density for
all z € M. Thus even more so vN{e;} NM C UpN, N M for m =k, and
thus in fact for all m > 0.

Finally, if x € M, for some n > 0 then for any ¢ > 0 there exists £k < 0
and z’ € sp((Alg{e;}tr<j<n)M) such that ||z — 2'||]2 < e. But then 2" =
By, ,nm, (@") belongs to sp((Alg({e; }r<j<n)UiN] N M) which in turn is

icluded into U; N/ N M,, and we have:

/
j<—m

1B ey, pnnr, (@) = 2" ll2 = [ Egeryy_, yom, (@ —2)|l2 < o — 'l <e.
Letting € go to 0 and j to —oo we get

lim E{el}£§j72mMn (:C) = EA*oo,TL (:L'),VZL' e M,

j——o0

This ends the proof of b) and ¢) follows then imediately, by taking into account
that (J,, spMMZPM is dense in M X M°P and applying a) and b). Q.E.D.
EN
4.11. COROLLARY. Let N C M be an extremal inclusion of type I, factors
with separable preduals. There exists a choice of a tunnel {M;};j<o for N C M
such that if we denote M, = (M_n)"p/ NMXM®, n>1, M = U, M,,
en

M® = U, M® and A—o 0o = U,M", N M, then My, MP C M K M
eEN

satisfy the conditions:
a) SpMooMSP = M X M°P.
EN
b) Mo N Mgg = A—oo,oo and E]MOCEM;? = EAfoo,oo'
c) A NMKX M°P =Cl.
en

—00,00

Proof.. Conditions a) and b) are actually valid for any choice of the tunnel
while 4.9 clearly implies c). Q.E.D.
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5. RELATING THE AMENABILITY PROPERTIES
OF T'n.ar, Gy AND (M V M°P C M KX M°P)
eN

In [Po8] one considers a notion of relative amenability for inclusions of finite von
Neumann algebras T' C S by requiring the existence of norm one projections
from (S, T) onto S, equivalently of Connes-type S-hypertraces on (S,T). In
the case S =T x G for some discrete group G this condition on the inclusion
T C S is equivalent to the amenability of the group G.

As we have seen in the previous section, when T'= M V M°? ¢ M & M°P =5,

for N C M a locally trivial subfactor associated to some falthful G kernel o,
with G a finitely generated discrete group, then (T C S) ~ (T C T Xygqop
G). Thus, the relative amenability of the inclusion T' C S is equivalent in
this case to the amenability of G. On the other hand, one of the equivalent
characterizations of the amenability of GG is Kesten’s condition requiring that
the Cayley graph of G, I', corresponding to some finite, self-adjoint set of
generators go = 1,91, ... , gn, satisfies ||T'|| =n + 1.

Recalling from [Po2,5] that the standard graph of a subfactor I'y as is called
amenable if it satisfies the Kesten-type condition [Ty |2 = [M : N] and
that its standard invariant Gy s is called amenable if T'y s is amenable, and
noticing that for the locally trivial subfactor N C M corresponding to the
above (G;go, ... ,gn; o) the Cayley graph I' coincides with the standard graph
Ty, while [M : N] = (n + 1)2, it follows that in this case the amenability of
G (thus, the relative amenability of T C S) is equivalent to the amenability of
gN.M-

We prove in this section that in fact even for arbitrary extremal subfactors of
finite index N C M the relative amenability condition on T' = M VvV M°P C
M & MP°P = S is equivalent to the amenability of the standard lattice Gy as.

Along the lines, we will obtain some other related characterizations of the
amenability of Gy ar, thus of I'y .

Before stating the result, recall some terminology and notations from [Po2].

£ Eid)""
So let (N C M) = @((N @ PoP)** ( C’ (M ®P°P)**), the sum being taken

over all isomorphism classes of type II; factors P that can be embedded with
finite index in some amplification of M, i.e., factors P that are weakly stably
equivalent to M in the sense of 1.4.3 in [Po8] (like for instance P = M). Then

3
take first the atomic part of this inclusion, (N C M)at, and next the binormal

£
part of the latter inclusion, (N C M)at)bin (i-e., the largest direct summand
in which both M and P°P sit as von Neumann algebras), which we denote by

gu
N® C M*, and call the universal atomic (binormal) representation of N C M.
Also, the inclusion graph (or matrix) of N'* C M" is denoted by '\ and
called the universal graph ( or matrix) of N C M.

Finally one defines (A st MSt) to be the minimal direct summand of N
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£
M (or, equivalently, of (N C M),¢) containing the standard representation
of M ® M°P, B(L?*(M)) and call it the standard representation of N C M. It
is easy to see (cf. e.g., [Po2]) that the commuting square embedding

gst
Nst C Mst
@] @]

op FEId op
NeM C MM

can be identified with the embedding

gst
@D B(Ky) C D B(Hx)
&L KR |

E®id
N@M®» C MgM°P

in which {Hj}rex (respectively, {K¢}ocr) is the list of all irreducible M-
M (resp. N-M) bimodules appearing as direct summands in L*(M;), j =
0,1,2,..., and M ® M°P (resp, N ® M°P) is represented on each Hj, (resp.
K¢) by operators of left and right multiplication by elements in M (respectively,

right multiplication by elements in N and right multiplication by elements in
M). Moreover, the inclusion matrix (or graph) for

N C @ B(K) C @ B(Hy) = M

LeL keK

(which is thus a direct summand of the universal graph I'y ) is given

by (Cn.a)', while £ is the unique expectation that preserves the trace

Tr on M3 = @ B(Hi) given by the weight vector 7 = (vg)ker, with
keK

v = dim(y Hear) /2.
Finally, note that N C M is in fact embedded in the smaller inclusion

st.f . def

e &
Nst,f d:f (1 ® M0p>/ ﬁNSt C (1 ®]\401;))/ A MSt = MSt’f

where £%%f is the restriction of £ to Mt
5.1. DEFINITION. The commuting square embedding:

Nst,f SSCM Mst,f
U U

En

N Cc M

is called the finite (or reduced) standard representation of N C M.
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5.2. LeMMA. NS MU are finite type II, von Newmann algebras with
atomic centers Z(NSHH) = Z(N®Y) ~ (°(L), Z(MH) = Z(MS*) ~ (*(K).
Moreover, the inclusion N9 ¢ M5 is a matricial inclusion having inclusion
matriz (or graph) (Un ar)t. Also, £ is the unique conditional expectation of
M onto N3UE preserving the trace Tr on MYt given by the weights {U,%}keK
on the center Z(MSH) ~ (>°(K).

Proof. The first part is trivial, by the definition of N3%f c M>%f and the
properties of N5* C M>3'. Then the last part is an immediate consequence of
the first part and of 2.7 in [PiPo2]. Q.E.D.

5.3. THEOREM. Let N C M be an extremal inclusion of type 111 factors. The
following conditions are equivalent:

1) Gn,m is amenable.

1") T'n.ar is amenable, i.e., Uy ar satisfies the Kesten type condition ||Uy ar]]? =
[M : NJ.

2) (T'n, a1, 0) satisfies the Folner-type condition: ¥ ¢ > 0, 3F C K finite such

that
Z vi < EZvﬁ,

kEOF keF

where
OF ={ke K\ F |3 ko €F such that (FN,MFS\LM)W% #0}.

3) There exists a state 1y on £°(K) ~ T' N (S,T) such that Yoo E has S =
M X M°P in its centralizer, where E is the unique Tr-preserving conditional

EN
expectation of (S, T) onto T' N (S, T).
4) M X M°P is amenable relative to M V M°P.
EN
En

gst,f
5) There exists a norm one projection from (N "C M%t) onto (N 'C M).

st,f

&
5') There exists a (N C M)-hypertrace on (NS%f C M),

Proof. 1) <= 1') is clear by the definitions.
To prove 1') = 2) let ® = AV ~!I'T*V, where V is the diagonal matrix over K

with entries (vg)rex. Note that ® defines a bounded positive linear operator

from P %' 7' n (S, T) ~ ¢°°(K) into itself such that ®(1) = 1. Note also that

the trace Tr on P inherited from (S,T’) has weights (vi)rex as a measure on
K,ie.,ifbe P ~{>(K) then

Ibllze = Y [biloi.
keK

For a,b: K — C, at least one of which has finite support, we denote (a,b) =
> kex akby. For each b € P ~ (*°(K) with finite support we then have:

Tr(®(b)) = (®(b), V(1)) = (b, \VIT*V1V2(1))
= (b, \VIT*V (1)) = (b, V3(1)) = Tr(b).
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Thus Tr o ® = Tr. In particular, by Kadison’s inequality, this implies
12 (a)ll2x < llall2r, ¥ @ € L*(T, Tr).

Since [|AI'T*|| = 1, it follows that V § > 0 3 Fy C K finite such that Ty =
7 (AIT) g, satisfies 1 > [|Tp|| > 1 — 62/2. By the classical Perron-Frobenius
theorem applied to T (which is a finite symmetric matrix with nonnegative
entries) it follows that there exists by € £>°(K) ~ P, supported in the set Fp,
with bo(k) > 0, v k, and <b0,b0> = 1, such that Tobo > (1 - 52/2)1)0 Thus,
ATy > (1 — §2/2)bo.

Let then b %' V=1(by) € £°°(K) ~ P and note that

18113, = (V™ (b0), V2V~ (bo)) = (bo. bo) = 1.
Moreover, we have:

|®(b) = blI3 7 < 2 — 2Tw(®(b)b)
=2 2(AVITT(by), V (bo))
=2 — 2(AI'T"(by), bo)
<2-2(1-6%/2) =20%/2 = 5°.

Thus [|[b — @(b)|l2,1x < 0 and ||P(b)|l2, v > 1 — ¢, while ||b]|2mx = 1.

By Theorem A.2 it follows that if § < 10™* then there exists a finite spectral
projection e of b such that ||®(e) — ell2 1 < 0/4(|e||2.1-
In particular we have:

11 = e)@(e)l5 e < (1 = e)@(e)3me + lle — eP(e) 5 m

= lle = @(e)]5 1 < 8V ell3 -

Let F C K be the support set of e € £*°(K) ~ P. By the first 3 lines of the
proof of Lemma 3.2 on page 281 of [Po3], we have v ‘v, > A for all kg, k € K
for which (I'T*)gg, # 0. Thus we have

-1 2
(P ko = Avy Vi Zaklakol > A%,
leL

forall k, kg € K for which the entry (k, ko) of @ is nonzero. In particular, this
shows that ®(e)(1 —e) > A\xar, where ypr € (°°(K) is the characteristic
function of F C K. Thus we have

MY =1
kedF

<I(1 = e)@(e)]

— Y 0

keF

%,Tr < 51/4 Heng,Tr
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Thus, if ¢ > 0 was given and we take § = (\*¢)* then

Z vi<€Zv,€

ke€oF keF

thus proving 1') = 2).
Proof of 2) = 3). By 2), for each ¢ = 27" there exisits a finite subset F,, C K

such that
do<2 Yo
kEOF, keF,

or, equivalently,

Z vi—Zvi <27”Zv,€.

keTTFy, kEFy keF,

Let f,, € T'N{S,T) ~ £>°(K) be the support projection of F,,. Let w be a free
ultrafilter on N ~ K and define ¢y on £>°(K) ~T'N(S,T) by

Yo = lim Te(-f,)/Trfy.

Let 9 def 1o o E and note that ¢ = lim,_,, Tr(-f,,)/Trf, on (S,T) as well.
Note that for each n we have that Tr(-f,)/Trf, has T in its centralizer and it
is a normal state on (S,T). Since 7’ NS = C this implies that Tr(-f,)/Trf,
coincides with the trace 7 when restricted to S. Thus, ¥|s = 7 and ¢ has T in
its centralizer. Let us show that ¢ also has ey in its centralizer. To do this, it
is sufficient to prove that

nlirrgo(||fneN —en fallime/Trfrn) = 0.

Let f! € T'N (S, T) ~ £>°(K) be the support projection of F,, U9F, and note
that we have

T (1, — Fullun/Tefo) = T ( DS ) “o
kEOF, keF,

Also, we have

”fneN - eanHl,Tr < Hean - fylleanH + 2||f7/z - fn”l,Tr-

So, to prove that [en,®] = 0, it is in fact sufficient to prove that fenfn =
enfn, V n. We will show that, more generally, we have spenysp = ensp,
V F C K, where F' = FUOF and sp = ), . Sk, SF/ = D pcpr Sk- To this
end, it is clearly sufficient to do it for single element sets F' = {k1}. It then
amounts to show that if ks € K \ F’, then s,ensi, = 0. By the proof of 4.5
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we thus need to show that if k1, ke € K,,—1 for some n, with ko ¢ {k1} U0{k1}
and we take a minimal projection ¢; in the direct summand labeled by k; in
Nj,,_1 N M, for each i = 1,2, then we have M M°Pv,, L eqMM°Puv, MMP°P,
where e; = ey and vy, = Env nr,, (065" f, 1o, fEm), i=1,2.

Before proving this, note that for such q1, g2 we have geng; = 0 and in fact
q2(N4,,_1 N M1)g1 = 0. Now, if we take z12 € M, y12 € M°P, z,29 € Ny_1,
y,yo € N, then we get

% Op_ Op op 0 op f£2n, 0p
T(quyO Yo' TT2€121Y7" Vgy To f 0,0y £ Y0")

N T(EN;*QM"(fgnfg%fnnqwz o' Yo rrzerzy oy y°P
'ENL,men(%q(fpf’l "f02n)f02n zn)_

Taking the conditional expectation onto N5, _; N (M & M°P) and denoting

Y7 = yoPys® € MoP, YoP = yPy°P € MP, X' = ENr _ (zzoeizimo) €
NJ,,_1 N M, we thus obtain that the above is equal to:

T om0t Y P X Yy P P 7 £5" o)
:T(fgnfgmfnn‘bpyop( 2X/‘11) 2Op‘hpfn )
—0

in which we first used that vy, f,, f&" = ¢ig;" f" 0 f3" [, and then we used
that g2 X'qy = 0.

Since the elements of the form zof%,,z with z, 29 € N,_1 span all M, this
finishes the proof of the fact that ey is in the centralizer of . Since 1 is

equal to the trace on S = M X M°P and has in its centralizer the weakly dense
eN

x-subalgebra generated by T = M V M°P and ey in S, by [C3] it follows that
¥ has all S in its centralizer. This ends the proof of 2) = 3).

The proof of 3) = 4) is then trivial, since the relative amenability of T' =
M v M°P C M K M°P = S merely requires the existence of a state on (S, T)

en
which has S in its centralizer, while condition 3) provides very special such
states.

To prove 4) = 5) we need the following lemma.

5.4. LEMMA. Let Mg = vN(M U JsMJs), No = vN(N U JsM Jg) and Py :
B(L?(S)) — B(L*(S)) be defined by ®o(T) = XY_, m"Tmi"", where {mj"};
is an orthonormal basis of M{® over M°P and A\ = [M : N|~! as usual. Then
D(My) = No, & = Po|m, 15 a conditional expectation and in fact

&
Ny & My
U U

EN

N C M
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is a commuting square embedding of N C M, which is isomorphic to the
standard representation of N C M. Moreover, if N§ = JsMJy NNy C
JsMJ5 N Mo = ME, then
f

NEE M

U U

N Cc M
is a commuting square embedding isomorphic to the finite standard representa-

tion of N C M.

Proof. By construction, we see that Ny C My is a direct summand of (N ®

(E@id)**
MeP)** = C (M®MP°P)**. Also, since Ny C (M{PUJsM°PJs)' NB(L3(S)),

we have
M6 NNy C (M U Jijs)l n (pr U J5M0pJ5)I
=vN(M UM U JsMJs U JsM°PJg) NB(L*(S))
=(M X M°PUJg(MV MP)Jg)
en

=Js((MV M°®)Y N M K M°)Js = Cl.
EN

Thus Z(Mg) N Z(Ny) = C. But if pg denotes the projection of L?(S) onto
L?(M) then clearly pgMopg = Mopg is isomorphic to B(L?(M)) as a M @ M°P
representation. Thus, Ny C Mg must in fact coincide with N5* € M*'. The
last part is now clear, since this isomorphism sends 1 ® M°P onto JgM Jg.
Q.E.D.

Proof of 4) = 5) <= 5). The equivalence of 5) and 5') was proved in [Po2],
the argument being identical to Connes’ single algebra analogue statement.
Let us then prove 4) = 5'). So let 9 be a S-hypertrace on (S,T) = JsT'Jg N
B(L*(S)). Since T = MV M°P and My C JsM°PJSNB(L*(S)) (we've already
noticed this in the above lemma) it follows that
M{ = (JsMJs)' 0 My C (Js(vN(M U M®P)).Js)' N B(L*(S))
= (JsTJs) NB(IX(S)) = (S, T).
Thus v restricts to a state ¢ on ./\/lf) which has M in its centralizer (since 1

has S in its centralizer and S contains M).
Note now that if T € M{j then

P(enT) = (P (enT)u?") = ((uPenu®)T),  Vu®™ e UMP).

Averaging by unitaries in U(M°P) and using that co"{uPenyu’®* | u°P €
U(M°P)} NC1 = {A1} (see the Appendix A.1), it follows that

PenT) = Mp(T) = Ap(T).
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But ey € S is in the centralizer of ¢ so
Y(enT) = (enTen) = (& (T)en).

By the same argument as above, the latter equals

A(E(T)) = Ap(Eo(T))-

Ef
Thus ¢ = ¢ o £ showing that ¢ is a (N C M)-hypertrace on N(Jf c M{j thus

gst,f ]
on N3 & MM proving 5).

et

Proof of 5') = 1). Since N5/ & M/ has inclusion matrix (Dy )" and
the trace Tr on M®%f defined in 5.2 is preserved by £%%f, it follows by the
general result in [Pol3] that |[Tn al]* = ([Tl o[> = [M : NJ.

This ends the proof of the theorem. Q.E.D.

5.5 Remarks. 1°. Of all the equivalent characterisations of amenability for
standard graphs, the Kesten-type amenability condition ||I'y (> = [M : N]
seems to remain the easiest to check in practice. For instance, it immediately
implies that if [M : N] < 4 then I'y a is amenable, and it is the condition
that was used by Bisch and Haagerup to construct many examples of infi-
nite depth subfactors with amenable graphs, by taking compositions between
a fixed point algebra inclusion and a cross product inclusion, corresponding to
actions of finite groups ([BiH]). Nevertheless, each of the other equivalent char-
acterizations of amenability provided in [Po2-5] and in this paper has its own
role in understanding various combinatorial and functional analytical aspects
of this concept. The main interest in this notion of amenability comes from the
fact that the hyperfinite subfactors having amenable graphs are precisely those
that can be recovered from their standard invariants and are thus, in particu-
lar, completely classified by this invariant (see 7.1, 7.2 later in this paper, and
also [Po16]).

2°. Note that in the proof of the Fglner condition 5.3.2 for I'y a7, from the
Kesten-type condition |[|[Tn a2 = [M : N] (taken as the definition of the
amenability for a graph) we do not actually use the fact that I'y as is stan-
dard, i.e., the fact that it comes from a subfactor. Indeed, the proof goes the
same for any weighted bipartite graph (see [Po14] for more comments on this).
However, by using the ergodicity property 4.8 of the standard invariant and of
its subalgebra generated by the Jones projections, one can prove an interesting
sharper Fglner type condition for standard graphs. This will be discussed in a
forthcoming paper.

5.6 COROLLARY. (a). Let G be a standard A-lattice and Gy a sublattice. If Gy
is amenable then G is amenable. Conversely, if |G : Go] < oo and G is amenable
then Gy is amenable.

(b). Let Gp = {Al}ij>0 be standard \i-lattices with corresponding graphs
Ig, =Tk, k=1,2. Let G denote the system of finite dimensional algebras
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Aij def Azlj ® A?j, 1,7 > 0, with the tensor product trace. Then G is a standard
A1 As- lattice, its graph T is naturally identified with the tensor product of the
graphs Ty, (regarded as matrices) and we have that G is amenable if and only

if both G1 and Gs are amenable.

Proof. (a). The first part follows trivially from the (Kesten-type) definition of
amenability, since Gy C G implies ||T'g|| > ||T'g,||- The second part follows from
2.11, 5.3.4 and [PoS).

(b). The first part follows imediately from the axiomatization of standard
lattices in [Po7]. The second part follows from the definition of the amenability,
because we have |T|| = ||Tq||[|T2], so that (A Ae)~! = ||T||? iff A7t = [T
and \;' = ||[T'2]|%. Note that, by using 2.9.d) and [Po8], this part is an imediate
consequence of 5.3.1 as well. Q.E.D.

6. SOME MORE CHARACTERIZATIONS OF
THE AMENABILITY FOR 'y pr AND Gy v

In this section we prove several more equivalent characterizations of the
amenability for standard graphs and lattices, which clarify some of the re-
sults and ideas of the approach to amenability in [Po2,12]. We mention that,
while related in spirit with the rest of the paper, the present section will not
make explicit use of the symmetric enveloping algebras. So, in this respect, it
can be regarded as a digression.

To state the first result, recall that if B C A is an inclusion of von Neumann
subalgebras of an ambient type II; factor then H(A | B) denotes its Connes-
Stgrmer relative entropy. By [PiPol], if N C M is an extremal inclusion of
type II; factors then H(M | N) = 1In([M : N]). Also, f NC M C My C --- is
the Jones tower associated to N C M then

H(M’ N Mp41 | M’ ﬂMk) < H(MkJrl | Mk> = ln([MkJrl : Mk]) = ln([M : N]),

for all £ > 0. More generally, if p is a projection in M’ N M}, then by [PiPol]
we have

H(p(M' 0 Mgy1)p [p(M" 0 My)p)

< H(pMy+1p | pMgp) = In([pMj11p : pMyp])
— I ([Myyr : My]) = In([M : N]) = H(M | N).

Similarly, if N3t C M®* denotes as usual the “model” inclusion generated by
the higher relative commutants, as in [Po2], then the same remark as above
shows that H(pM®'p | pN3'p) < H(M | N), V¥ p € P(N®).

The result that follows states that this “upper bound” for the “local relative
entropies” is attained precisely when Gy s (equivalently I'y ar) is amenable.
Since H(pM’' N My41p | pM' N Myp) also represents the conditional entropy
from step k to step k + 1 of the restriction to the support set of p (in K or
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L) of the random walk on the graph ToT* o oT'*-.- for I' = Iy as, with
transition probabilities determined by v = (v)rek, this maximality condition
on the entropy can be interpreted as a local Shanon-McMillan-Breimann type
condition, in the same spirit as 5.3.5 in [Po2].

6.1. THEOREM. Let N C M be an extremal inclusion of type 11y factors. The
following conditions are equivalent.

1) Gn,m is amenable.

2)Ve>0,3n>1andpe P(M NM,) such that

HE(p]\/f’ﬂMn+1p)’F‘|(pM’ﬂ]\/fn+2;D) (€n+2p) - )\pHQ < €||p||2
3)Ve>0,3pe P(N;*) such that

| Epnetp parscp(€op) — Apll2 < ellpll2.

lim sup H(pM' N Myi1p | pM' N Mp)
k peP(M'nMy)

= H(M | N) = In([M : N)).

sup  H(pM™>p|pN*>*p)=H(M|N).
pEP(Ns?)

Proof. First of all, note that since by [Po2] we have that I'x as is amenable if
and only if I'az ar, is amenable, it is suficient to prove the above equivalences
in the case n is even in condition 2) and the k’s are taken odd in condition 4).
1) = 2). If Gn i is amenable then by 5.3 its graph I'y as verifies the Fglner
condition 5.3.2). Thus, V ¢ > 0, 3 F' C K finite non-empty such that

Z vi < (5/2)21}%.

keoF

Let no > 1 be such that F' &' F UAF is included in K, ¥ n > no.
For each n > ng let {p}}rek, be the list of minimal central projections of
M’ N Ms,,. Note that V k € K we have

lim dim(M' N Ma,p}) = oc.

n—oo
Let § > 0. Let {my }rer be positive integers such that

mi 3

(%) < dmin{v, /vl | r,r" € F'}, V kK eF.

mis Vg
Fix n > ng large enough such that

dim(M' N Ma,pf) >mi, VkeF.
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Then for each k € F' choose g € P(M' N Ma,p}t) such that dim(grzM' N

Monqr) = m2. Let p def > ke Qk- We will show that, for 6 > 0 small enough,
p satisfies condition 2).

To this end denote by G = I'*F” the set of simple summands of pM’' N Ma,, 1 1p
and by {g@i}icc the corresponding minimal central projections. Let also
{sk}rerr, {ti}iec denote the traces of the minimal projections in pM’ N Ma,p
and respectively pM' N Mo, 1p.

Thus, if I' = (ag)kex,icr then for each k € F, | € G with ax; # 0 we have
tr =AY pek OISk = A D cpr Grnsk . Also, if we denote by n? = dim(qM’'N
Msp4+1q1) and m’i = dim(g;, M' N Man42q},), where {q} }ker~, F"' = F' UOF’,
are the minimal central projections of pM' M May, 1 2p, then ng = 7, b apimp
and mj, = >, ¢ pr bk myr, where (b ) wrex =TT

From (x) it follows that for k € F and | € G with aj; # 0 we have the estimates:

tl n
— ==\ E apiSk [ Sk — g ak/lmk// g ik M
Sk My K EF k' €F' S
<A E ar1Sk [ Sk — E ak’lsk’/ E bk sk | + f(6)
k'€ F’ k'eF’ k' eF’
= (A E ak/lsk//sk* E ak/lsk///\ilsk +f(5)
ke F k' CeF'
= f(0)

where f(0) — 0 as § — 0 and in which we used that for k € F we have
(Fl—‘t(skn)kuepr)k = )\_ISk.

With these estimates in mind recall that, with the above notations, we have
(see e.g. Sec.6 in [PiPol]):

B(pM/OMarnsap) 0(oM (Mo sap) (€2n42D) = Y (7(04@)* /037 (41)7(@)) @udi,
keF', leG

= Z (/\sknl/m%tl)(jlq;.
keF', leG

But from the above estimates we see that for all k € F' and [ € G with ag; # 0
we have:

|)\sknl/m§ctl — )\| < fl((S)

where f/(§) - 0as d — 0.
This would finish the proof if we could show that the trace of the sum of the
projections giqj, for I € G and k € F” \ F is small with respect to the trace
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of p. To show this, it is sufficient to show that }, . _ 5 7(q;) is small with
respect to 7(p). To this end, note first that we have

Z T(q;v) = Z )\m%tk = Z < Z bkk//mk//> tk

keF keF keF \k""e€F’
> A Z Z b mitpr — A0 Z brprrmyty
keF ke F"’ keF, k'""eF’
> rlge) = A0 (k)
keF keF

in which we first used (x) and then the fact that Y, cp brr <A, VEke K
(see e.g., [Po3], page 281). Thus we get:

Soorla) =D ) - > g

keF!" —F keF" keF
=7(p) = > _ (@) <7(0) = Y 7la) + A6 m(ax)
keF keF keF
< > Tlaw) + A6 (p).
k'€oF

But by applying (%) again we also have

> @) 1) = > tla) ) D ra) < D wlaw) /D rla)

k'€0F k'€0F keF’ k'€OF keF
my
SORTEY) LSS o () SE
k'€OF kEF k' €OF ker T
_ Vk
<(1-0)"" / :
<o 3 (o S )
k'€dF keF
=(1-0"" Z vi,/ Z v < (1-06)"te/2.
k'€0F keF

Altogether we get:

| E (oM Man 1 p) O(pM/OMan s 2p) (€2n42D) — AD|13
< f1(8)%7(p) + A 267 (p) + (1 = 6)~'%/2)7(p)
= (f"(8) +£°/2)7(p).

Thus, if § is chosen sufficiently small to make f”(5) < £2/2 then the above is
majorized by 27(p), thus finishing the proof of 1) = 2).
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Now, 2) <= 3) is trivial by the definition of N5 C M*'. Also 4 <= 5) is clear
from the continuity properties of the relative entropy under commuting square
conditions ([PiPol]).

Then 2) = 4) follows from (4.2 in [PiPo1]).

Finally, to prove 4) = 1), recall from [PiPo2] that if B C A is an inclusion
of finite dimensional algebras with inclusion matrix T then Ind(E%) > ||T||? >
exp(H (B | A)). Since the inclusion matrix T of pM’'NMa, 11p C pM' N Moy op
is a restriction of I'y as, we have

TN )2 > | TN > exp(H(pM' N Mayiop | pM' 0 Mayi1p)).

Thus, if the right hand side term can be made arbitrarily close to exp(H (M |
N)) = [M : N] then we obtain ||[I'yp||*> = [M : NJ, ie., Gn,u follows
amenable. Q.E.D.

6.2. NOTATION. We denote by M the bicommutant of M in its enveloping
algebra M, i.e., M = (M’ N M)’ N M. Similarily we put N = (N'NM,)'N
M. and more generally M; = (M!NMs)'NMs, @ € Z, {M,;};cz being as usual
a Jones tunnel-tower for N C M and Mo =M, M_1=N,M_,, = Np_1,n > 2.
Note that there exists a unique conditional expectation F from M onto N
defined by E(X) = AYjm;Xmj, for X € M, {m;}; being any orthonormal
basis of N’ N Mo, over M’ N My (e.g., an orthonormal basis of vN{ey}r>1
over vN{ex}r>2 will do, as the definition of F is anyway easily seen to be
independent of the choice of {m;};) and that E is implemented by e, i.e.,

~ ~ FE ~
e1Xe; = E(X)ey (see Sec. 2.2 in [Po2] or 6.9 in [Po6]). The inclusion N C M
is in fact homogeneous A-Markov in the sense of (1.2.3 and 1.2.11 of [Po3]) and
we have a non-degenerate commuting square

It should also be noted that, while E(Y1 eoY2) = \Y1Ys, VY15 € N (this relation
can in fact be taken as the definition of E), in general E is not trace preserving.
In fact, one can easily show (see the proof of 6.4 hereafter) that it is trace
preserving if and only if M = M, i.e., when the bicommutant relation holds
true, (M’ N M)’ N Mo = M, equivalently when I'y 5 is strongly amenable
(cf. 5.3.1 in [Po2]).

The Jones tower-tunnel of the above commuting square is obtained by defining
the conditional expectations E~i from Mi—l onto Mi_g in a similar manner with
E.

Recalling from ([Po2]) that a representation A é M of N C M is smooth if
N'Nn M, c N'NM,,Vn, note that by its construction, N C M is obviously a
smooth representation of N C M.
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6.3. THEOREM. Let N C M be an extremal inclusion of type 111 factors. The
following conditions are equivalent:

1) 'y s is amenable.

2) There exists a (possibly singular) trace ¥ on M such that o FE = .

~ FE ~
3) There exists a norm one projection of N C M onto N C M.
4)

If
N cM

U U
NCcM

is a smooth representation of N C M such that there exists a norm one pro-
jection of M onto M (equivalently, a M-hypertrace on M), then there exists

£
a norm one projection of N C M onto N C M (equivalently, a N C M-

£
hypertrace on N'C M).
5) For any smooth representation of N C M into an inclusion of type Iy von

£ £
Neumann algebras N C M, there exists a norm one projection of N C M onto
15
N C M (equivalently, a N C M -hypertrace on N C M ).

Proof. 1) = 2) By Theorem 6.1 (see condition 6.1.3) applied to M C M; and

the anti-isomorphism between N§' C NS E M and M' N My, € N' N My,
N{ N My, it follows that there exist projections p, € M’ N My, such that

| Ep N'OMecpn) Ao NI AMocpn) (€0PR) = APull2/l[Pnll2 £ 277, V n.

We then define on M, the state ¢ def lim,, ., 7(pn)~17(- pn). Note that, since
P € M'NMy, we have [p,,, (M'NMy) NMs] = 0, in other words [p,,, M] = 0.

Thus, [p, M] = 0, in particular ¢|,; is a trace. Moreover, by noting that
T(-pn) = 7(Ep, Bp, (- )pn) for any von Neumann subalgebra B C My, with
pn € B, taking B = (pp,N' N Msopn)' N prMoopy, and using the above and the
Cauchy-Schwartz inequality it follows that for all 2,y € N we have:

|T(zeoypn)/T(Pn) — AT(zypn)/7(Pn)|
= [T(pnyzeopn)/T(Pn) — T(PrxyApn)/7(Pn)|
= |T(Ep, Bp, (Pnyzeopn)/T(pn) — T(PrxyApy)/T(Pn)
= 7(pny(Ep, Bp, (€0Pn) — APn))/T(pn))
< lIpllzllyz|l [ Ep, By, (€0) — Apnll2/7(Pn)
< 27"y

Since E(zeoy) = Azy, ¥ &,y € N, and spNegN = M, it follows that
T [[7(Xpa)/r(pa) — 7(E(Xpa)/T(pa) =0 ¥ X € 0L,
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Thus, ¢(X) = ¢(E(X)), V X € M. All this shows that ¢ = | is both a
trace and satisfies 1 = ¢ o E.
2) = 3). Since 1 is a trace on M, it is in particular a M-hypertrace and ¢ =

¥ o E implies it is actually a (N C M)-hypertrace on (N g M); equivalently,
there exists a conditional expectation of N C M onto N C M.

3) = 4). If there exists a conditional expectation ® of M onto M then by am-
plification it follows that there exist conditional expectations @, of Ms,, onto
Moy, ¥V n > 0. Let Fop, : Uy My — Ms, be the conditional expectation imple-
mented by - -0 &yt 0 Eapq1 and denote Yy, 1 UMy — My the aplications
defined by Ua, (X) = Py, 0 Fon(X) € May, C Mo. Note that Uy, is May,-Ma,
linear. Finally, we put U(X) def limy, ., on (X)), for X € Up My, where w is
a free ultrafilter on N. Thus, ¥(1) = 1 and ¥ is Ma,-Mas, linear V n. Since
the representation of N C M into N' C M is smooth, M’ N M; C M’ N M;,
V j. Thus, if X € M then [X,M’' N M;] = 0 and by applying ¢ we get
[U(X),M' N M;] = 0. Thus, ¢(X) C (UM’ N M;)' N My = M. Similarly,
we obtain that if X € A then W(X) € N. But by 3) we have a conditional
expectation of M onto M, say Ug, such that \IIO(N) =N.

We then define ¥y : M — M by U1(X) = ¥o(¥(X)), which is a conditional
expectation and satisfies W1 (N) = Wo((N)) C ¥o(N) C N.

4) = 5). Since M has projections p € Z(M) such that Mp is finite, it follows
that there is a conditional expectation of Mp onto Mp ~ M, thus of M onto
M and so 4) applies.

5) = 1) If 5) holds true then in particular there exists a norm one projection
from the finite standard representation onto N C M, so by Theorem 5.3 we
have 1). Q.E.D.

Recall from [Po2] that a standard A-graph (T',3) is called ergodic if § is the
unique 3-bounded eigenvector for I'T* corresponding to the eigenvalue A 71!,
equivalently, if Z(Ap ) = C, where Ag « is the finite von Neumann algebra
obtained as an inductive limit with the Bratteli diagram given by I, I, T, ...,
starting from the even vertex * of I', and having trace given by § = (sg)kek-
Note that if N C M is a subfactor having standard graph (T',5) then the
algebra Ap o equals M’ N My, where N C M = My C M; C ... is the Jones
tower for N C M and My, = (U, M,)~ as usual.

In what follows we’ll call the standard A-graph almost ergodic if dimZ(Ap,o0) <
oco. This is equivalent to the fact that, up to scalar multiples, there are only
finitely many 3-bounded eigenvectors for I'T? corresponding to the eigenvalue
A1 (see the proof of 1.4.2 in [Po2]). Note that Haagerup constructed extremal
hyperfinite subfactors of index A=' = 2-4cos?7/5 = 3 + /5 which have almost
ergodic, but not ergodic, standard graph. The following consequence of 6.3
shows that this cannot happen if I' is amenable.

6.4. COROLLARY. If an amenable, extremal standard graph (T',3) is almost
ergodic then it is ergodic, and thus it is strongly amenable.
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Proof. Let N C M be a subfactor having (weighted) standard graph equal to
(T',5). Denote like in 6.2 by N; = (N, N M) N Mso, N = (N’ N M) N
Moo, M = (M'N My) N My and by F the expectation from M onto N,
defined as in 6.2 (so that in fact, with the notations there, we also have F =
E_1 o Ey). Note that Z(M) = Z(M' N M,,). Since N; C M has amenable
graph (= I'T?), by 6.3 there exists a trace 7/ on M such that 7/ o F = 7/. Since
dimZ(M) = dimZ(M’ N M.,) < oo, it follows that there exists a € Z(M),
such that 7/(X) = 7(Xa),¥X € M. Since F is 7/-preserving, this implies that
a=F(a) € F(Z(M)) = Z(Ny). Thus a € Z(M)N Z(N;) = C1, s0 a =1 and
=T

Thus F coincides with the trace preserving expectation F' of M onto N.
In particular, this implies that Eninn.ynm. (f) = F(f) = A21, where
f € M is the Jones projection for Ny C M. By duality it follows that
Evynmynn (fj) = A1 for any j € Z, where f; is the Jones projec-
tion for the inclusion Ms; C Majre. By (5.3 in [Po2]) it follows that
M = (M' N My) N My, so in particular M’ N M, is a factor, i.e., (T, 5)
is ergodic. Q.E.D.

We now examine the effect of amenability on the universal graph I'y, ;. To

. f
this end, let us denote, like in [Po2], by N'%f gC M-S the direct summand of
N% C M* given by all the irreducible representations B(H) of M @ P°P which,
when regarded as M — P bimodules, have finite dimension, dim(;Hp) < oo, P
denoting here a generic ”dummy” type II; factor weakly stably equivalent to M
(in the sense of 1.4.3 in [Po8], i.e., P can be embedded with finite index in the
amplification by some « > 0 of M). Let Flji;fM denote its inclusion graph (or
matrix). Recall from [Po2] that T’ X,fM is in a natural way a weighted bipartite
graph, the weights being given by the vector ((dimas pH)'/?), which in fact
also gives the weights of an £%/-invariant trace on M™/.

6.5. THEOREM. Let N C M be an extremal inclusion of type II; factors. The
following conditions are equivalent:

1) The standard graph TN is amenable, i.e., |Una||? = [M : NJ.

2) The graph F;(,’fM is amenable, i.e., HF;(JMHQ =[M : NJ.

3) Each irreducible component T of T% ,, satisfies |T||> = [M : N].

4) For any € > 0 there exists a subfactor Q@ C N, with [N : Q] < oo, such that
the inclusion matriz To = To'anconm satisfies | To||* > [M : N] —e.

4") For any e > 0 there exists a factor P containing M with [P : M) < oo, such
that ||TM’HPCN’|’TPH2 Z [M : N] —£&.

Proof. 3) = 2) is trivial.

2) = 1). For simplicity of notations, we let (N é M) = (Nwf géf Mwf),
Let K’ be the set of simple summands of M and TT"* be the inclusion matrix
of M C Maj. It follows that V e > 0, 3 kg € K’ such that

lim [|[(TTY)"0k,||*/™ > | TT!| —e =[M : N] —e.
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But if for each n > 0 we denote by ps, the minimal central projection in My,
corresponding to kg € K', then

[(TT*)" 61, |1> = dim(Mpfy N poManpo) = dim(Mph,, N Maypan).

Moreover, by using that if R C @ C P are inclusions of type II; factors with
finite index then dimR' N P < ([P : Q])dim R’ N @ (because the inclusion
matrix of R’ N Q C R’ N P has square norm < [P : @Q]), it follows that, with
the notations M° = P'N M, Mp = P’ N My, k > 0, we have:

dim(Mpl,, N Mappa,) < dim(Mph, N M, pay)
< (M3, pan : Maypay)) dim(Mph, N Maypa,)
= ([M°po : Mpy)) dim(M’ N May,)
= ([M°po : Mpo))[|(Cn,mTy ar)" 611
Thus,

lim [[(TT)" 3y, ||"/™ < lim ([Mpo : Mpo])/*" | (FT*)"6.||"/™ = ||ITT|

showing that ||T'||> > [M : N] —e. Since ¢ was arbitrary, |[Tn am|? = [M : NJ.

1) = 3). Let k' be any of the labels corresponding to an even vertex of
I' and let ¢ € M5, be a minimal central projection corresponding to that
same label. Then dim((M%q)' N MY, q) = |[(TT*)"8x||?. But by smoothness,
(M’ 1 Man)q © (M) 1 MG,q, thus [T > [T aiT o

1) = 4). This is clear, by simply taking Q = N, a subfactor in a Jones
tunnel, with k large enough.

4) <= 4'). This follows immediately by taking into account that if @ C N(C
M) is a subfactor of finite index in N and we denote @ C N C M C M; C @
its basic construction, then Tonvconm = Tvin@,cM/nQ, -

4"y = 2). If P > M is as in condition 4’) for some ¢ then let p € Z(M™/) be
the central projection supporting all the N — M bimodules appearing as direct
summands in xL?(P). Then clearly ||T|| > [Tyl > | Tvnpenapl. Q.E.D.

6.6. COROLLARY. Let Q@ C N C M be inclusions of 111 factors with finite
index (not necessarily extremal). (1). If Q C M has amenable graph then
Q C N and N C M have amenable graphs. (ii). If N C M has amenable
graph and p € N' N M is a projection, then Np C pMp has amenable graph.

Proof. By [L], there exist extremal inclusions Qo C Ny C My such that:
a). The higher relative commutants of Qo C Ny, Ng C My and respec-
tively Qo C My are algebraically isomorphic to those of @ C N, N C M
and respectively Q C M; so, in particular, the graphs of the induced-reduced
algebras in the Jones towers of the corresponding subfactors are equa. b).
[No : Qo] = mdEZYN . [My : Nyl = mdENM and [My : Qo] = IndEZM and

the local indices in the Jones tower for the inclusions Qg C Ny, Ng C My,
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respectively Qo C My are the same as for the initial incusions Q@ C N, N C M,
respectively @ C M. With these in mind, let us prove (i) and (ii).

(i). Let F%];V, 'y f be as in [Po2] the inclusion matrices describing the inclu-
sions (Q ® ]\f’p)at + C (N ® MOP)ir C (M @ M°P)x i Recall from ([Po2])
that 5%, = Tily o T/, Thus, if D57, (12 = md B then we get

min

mdEZY - IndENY = Ind B = |TE%, 12 < TGP 12

min

< IndELY . Ind EN:M

min

forcing the equalities |T%57y (1> = IndEZ;Y, [T/, = IndEL;Y. But by the
above considerations and 6.5 this implies I'g n and T N,M are amenable.

(i1). This can be easily deduced from 6.5, by using the universal graphs as
in the proof of (i) above. Instead, we’ll use the following simpler argument:
By the first part of the proof, we may assume N C M is extremal. Then by

2.9.¢) it follows that the finite standard representation of Np C pMp is given
3

by Nst/p C pMstfp, where € is defined by £(pXp) = 7(p)~1&H(pXp), for

X € M5, But then, if ® is a conditional expectation from M3“f onto A/SHf

sending M onto N then clearly ® also sends pM>3%fp onto pMp and N4p onto

Np. By 5.3, this implies that Np C pMp has amenable graph. Q.E.D.

We mention one last hereditarity property for the amenability of the graphs of
subfactors, which has a self-contained and rather elementary proof.

6.7. PROPOSITION. Let
NCM

U U

QCP
be a nondegenerate commuting square of inclusions of type 11 factors with finite
index (thus, [M : N] =[P :Q] < oo, [M: P =[N :Q] < o0). Then we have:
a) vl = [Tq.ell, HQL | N) = H(P | Q), WdEYY = mdESY and

min min

Eqgnp(eo) = Ennnmleo), where eg € P is a Jones projection for Q C P (and
thus for N C M as well).

b) NS* C M** has atomic centers iff Q** C P** has atomic centers.

c) Gn,m is amenable (resp. strongly amenable, resp. has finite depth) iff Go.p
is amenable (resp. strongly amenable, resp. has finite depth).

Proof. Let
.NiC NCcM

@] @] @]
Q1 C Q CP
be a tunel for the given commuting square. Then dim N,NM < dim Q,NM <
[M : P]dim @), N P, so that

I a2 = Jim (dim N 0 M)Y* < lim (dim @) 0 P)Y* = [T, p]?
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Taking
(N, Q) C (M, P)
U U
N Cc M

and using that (N,Q) C (M,P) is an amplified of @ C P (so that
U'v.y.m,py = T'q.p), by the first part we also get |[I'g.p| > [|T'n, ], thus
ITxarl = [To.p

Now remark that Ep(Q) N M) = Q. NP and Ep(Z(Q, N M)) C Z(Q), N P).
Also, we have

Ind(EZY

QWP)g[M:P],

M
Ind(Ej@ZQM) <[Q): NJ]=[Ni: Qi =[M: Pl
It follows that if we denote R = U,Q, N M then Ind(EE,) < [M : P,
Ind(ER..) < [M : P]. Thus, P*' has atomic center iff R has atomic center

iff M** has atomic center.
Also, the above shows that

supdim Z(N;, N M) < 0o <= supdim Z(Q}, N M) < oo

<= supdim Z(Q}, N P) < oo.
k

Thus, N C M has finite depth iff @ C P has finite depth.

Since Q C P is embedded as a commuting square in N C M, by the definition
of relative entropy we have H(P | Q) < H(M | N) < H((M,P) | (N,Q)) =
H(P|Q), thus, HM | N)=H(P | Q).

Next, if eg € P is a Jones projection then

Ennam(eo) = Ennm(Egnm(eo)) = Eninm(Egnp(eo))

so that ||EN/QI\/[(€0)||2 < HEQ/mp(eo)HQ with equality iff EN/QM(G()) =
Egnp(eg). But N C M is embedded as a commuting square in (N, Q) C
(M, P) which is an amplified of @) C P, so we get similarly ||Egnp(eo)|l2 <
| Enran(eo)llz giving Enna(eo) = Eqnp(eo).

To prove the statemnt about the minimal index, note from the formula of the
Jones projection in ([PiPol], page 83-84) that EN:M = EM (b1/2.p1/2) with b €
Alg{Exrrar(eo)} = Alg{Egnp(eo)}. Thus, b € P and EN:M(P) = Q, imply-
ing that Ind(ENM) > Ind(E%Y). Similarily, Ind(EN;M) < Ind (BN MF)
Thus, mdEMY =Ind DS

min *
From the above, it follows in particular that IndEN:M = |[Dya)|? iff
IndE%" = T p||% so Ty is amenable iff ['g p is amenable (without the

extremality assumtion required).
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If T as is amenable and M*' is a factor (i.e., Gy as is strongly amenable) then
I'g p is amenable and P has finite dimensional center. Thus 6.4 applies to
get that I'g p follows strongly amenable. Alternatively, and in order to keep
the proof of this Proposition elementary and self-contained, note that the same
proof as on (pages 235 and 183 of [Po2]) can be used to get the same conclusion,
ie., that P5* follows a factor and thus I'q p strongly amenable. Q.E.D.

7. HYPERFINITENESS OF M X M° AND HEREDITARITY
enN

OF THE AMENABILITY FOR SUBFACTORS

Recall from [Po2] that an inclusion of factors N C M is called amenable if it
is the range of a norm one projection from any of its smooth representations,
equivalently, if the algebras N, M are themselves amenable (i.e., hyperfinite by
[C1]) and the graph I’y as is amenable ([P02,3,4]), i.e., [Ty |2 = Ind EN: M.
In this section we will show that, in the case the inclusion N C M is extremal,
the amenability of N C M is in fact equivalent to the hyperfiniteness of its
symmetric enveloping algebra. We will then derive that the amenability of an

inclusion is inherited by its ”sub-inclusions”

7.1. THEOREM. Let N C M be an extremal inclusion of type 11y factors. The
following conditions are equivalent:

1) N C M is amenable.

2) 'y, is amenable and M is hyperfinite.

)V x1,...,om € M,V e >0, 3n, a projection f in N' N M,, a subfactor
P C N such that Pf C Nf C fM,f is a basic construction and a finite
dimensional subfactor Qo C P such that

T € Qo V (P'NM), i=1,2,...,m.
)V x1,...,&m E M,V e>0,3QC N with [N : Q] < oo such that
x; €. Q' N M, i=1,2,...,m.

5) M &I M°P is isomorphic to the hyperfinite type 11y factor.
EN
6) There exists a M KX M°P-hypertrace on B(L?(M X M°P).
eEN EN

7) There exists a (N C M)-hypertrace on Nt C M® (equivalently, a norm
one projection of N** C M5 onto N C M ).

Proof. We will prove 1) = 7) = 2) = 3) = 4) = 5) = 6) = 7) and
2) =1).

The implication 1) = 7) is trivial, as N5t C M5 is just a particular case of a
smooth representation.

If 7) is satisfied then by [Po13] we have ||U'y ]| = [M : N] and N, M follow
amenable (as ranges of norm one projections from the amenable von Neumann
algebras A5t M5%). Thus we have 7) = 2).
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2) = 3). This is essentially (4.4.1 in [Po2]), or the proof of (4.1 in [Po4], up
to Step VI on page 291), with some changes and additional considerations that
we explain below.

Like in the proof of 1) = 2) in Theorem 6.1, we let F' be an ¢’-Fglner set for
I'n,,. v (by 2) we have that I'y as is amenable, equivalently I'n, n is amenable),
then we choose a large n and some integers my < (dim N’ N May,1pp )12
such that

(1)

mg Uk

<5 VkKEF

mp %

where {pZH} % is now the list of minimal central projections in N’ N Ms,1+1 and
¥ = (vk)kek is the standard vector of local indices (at even levels) for I'y, n-.
We then take g, € P(N'N Mgnﬂp};“) such that dim(gx N’ N May41qK) = mi
and define p =3,y qx.

Let then Py C N be a downward basic construction for Np C pMa,4+1p. By
the choice of F (i.c., satisfying >, c poop Vi < (14€') Y pep vi) it follows that
if {Z;}, is an orthonormal basis of N over Py V PN N then {Z,}, is almost an
orthonormal basis of M over Py V P; N M as well. Moreover, by the choice of
integers {my }rer it follows that

(2) > T (Bevean (T%)Pr,)/T(Pr) = Y v}, Y ko €F,
J keF

{Pr}rer being the minimal central projections in Pj N N. Also, since Py is a
type II; factor, we may assume Epovpém]\[(.i';.i'j)ﬁk € Popr, V k € F. But then,
by using first the approximate innerness of Np C pMy,+1p then the central
freeness of Py C M, like in (Steps I, II, IIT in the proof of 4.1 in [Po4]), we
obtain a conjugate of Py by a unitary element in IV, say P;, such that we have
the type of estimates (a)—(f) on page 285 of [Pod]| with P; instead of Np,.
Then we go through Step IV on pages 286-288 of [Po4], noting that due to the
condition (2) above, we don’t need to take a further tunnel and that taking Py
for N, will do.

Then Step V on page 289 can be taken unchanged. Altogether, after doing
all this we end up obtaining the following: V z1,...,2; € M, V¥V ¢ > 0, if
F C Even(T'n, n) is a e-Fglner set, n is sufficiently large and {mg}rer satisfy
(1) with ¢ suficiently small, then there exists a choice of a downward basic
construction Py C N for Np C pMa,,11p, where p = ), - qx as above, and a
projection sg € Py, such that for all 1 <: <[ we have

(3) Ils0, zilll2 < f(eIs0ll2,
llsowiso — Eq,(pvpinM)so (sowiso)ll2 < f(e)lIs0ll2

where f(¢') - 0 as e’ — 0.
Arguing like in Step VI on page 290 of [Po4] we obtain a family of such choices
of downward basic constructions (P;);er with projections (s;);er, $; € P;, such
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that (P;,s;) satisfy (3) and ), s; = 1. But then there exists a downward
basic construction P C N for Np C pMs,41p such that s; € P, V i, and
siPs; = s;P;s;, ¥V i. Thus P will satisfy

IEpvpanm(zi) —zilla < f(€), 1<i<n.

Since P is hyperfinite, by taking €’ so that f(¢’) < & we get 7.1.3).
3) = 4) is trivial, by simply taking Q@ = Q; N P in 3).
4) = 5). since Alg(M, ey, M°P) is so-dense in M X M°P it is sufficient to

en
prove that V x1,x2,... ,2, € M,V e > 0,3 BC M X M°P finite dimensional
en

such that

|Ep(zi) —zil2 <e
[Ep(en) —enll2 <e
[Ep(27") — 27P[l2 <e.

By 4) there exists Q@ C N with [N : Q] < oo such that z; €. @' N M. But
[Q°P' N M ® M°P : M°"' 0 M ® M°P] < [M°P : Q°°] < oo
enN EN

and thus
[QP'NM R M?: Q] <[M:QJ < oo,
EN

implying that B def Q' N(Q°P"NM KX M°P) has finite dimension. Since ey € B

eN
and Q' N M, Q°°' N M°P C B, we are done.
5) = 6) is trivial, because hyperfinite algebras are amenable, so they have
hypertraces.
6) = 7) By 5.2 we have M = vN(M,JsMJs) C B(L3*(S)), N5t =
vN(N, JsM Jg), where S = M K M°P. Let then ® : B(L?*(S)) — S be a

EN

conditional expectation. Since ® is S-S linear and [M>', M°P] = 0 it follows
that ®(M*) ¢ M°’ NS = M. Similarly, since [M5*, M*] = 0, we get
DN c MP' NS =N.
2 = 1). If

NcM

U U

NcM
is an arbitrary smooth representation of N C M then, M being hyperfinite, it
follows that there exists a conditional expectation of M onto M. By Theorem

£
5.7 it then follows that there exists a conditional expectation of N' C M onto
N C M. Q.E.D.

7.2. Remarks. 1°. Note that by using condition 7.1.3 one can easily proceed to
construct recursively a sequence of appropriate downward basic constructions
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for suitable local inclusions in the Jones tower-tunnel, say M D N D P D
Py C ..., such that if we let Q = N, P, and (N%* ¢ M%*) = (U, P, NN C
U, P, N M) then (N C M) = (QRN°s" C QRM"*"), with the isomorphism
class of N0t C M95t only depending on Gy -

Indeed, from the proof of 7.1.2) = 7.1.3) we see that, up to conjugacy by a
unitary in N, the choice of the subfactor P = P; (equivalently, the choice
of the projection p € N’ N Ms,41) is determined by a choice of the e-Fglner
set F' and by a choice of the integers {my}rer, which in turn both depend
on &. Similarily, each time one goes from step n to step n + 1, one uses the
Folner-type amenability condition for P, C M and some € = €,41 to get the
next subfactor P,41 (up to conjugation by a unitary element in P, ), from
a downward basic construction that only depends on some choice of an €,,41-
Fglner set F),4+1 and of some integers {m?“} j€F,4, - Thus, if we let for instance
e = 27",Vn, and make the choice of the Fj,’s and mJ’s this way, once for all,
then the isomorphism class of {P, NN C P, N M}, will only depend on G,
as all the above choices can be ”"read” from this object through its amenability
properties. In particular, the isomorphism class of N%t c M9t will only
depend on Gy .

Thus, when complemented with this remark, we see that condition 7.1.3 in
the above theorem shows that hyperfinite subfactors with amenable graphs are
completely classified by their standard invariants (for more on this, see [Po16]).
2°. Recently, F. Hiai and M. Izumi have further investigated our notion of
amenability for standard lattices and weighted graphs coming from subfactors
and obtained two more equivalent characterizations ([Hilz]): the first one re-
quires the existence of invariant means on the (weighted) fusion algebra of all
M — M bimodules in the Jones tower of N C M; the second one is a ratio limit
condition on the weight vector ¥, stating that the (weighted) graph (I'y s, 0)
is amenable if and only if for every vertex k € K one has

rTHns,, s
b (T80
et (T, 3.,
where I' = I'y ps. This "ratio limit” result for group-like objects coming from
subfactors, which generalizes in a non-trivial way a prior result of Avez for

discrete groups ([Av]), shows that in fact the projections g, € (N'NMap41)pp ™t

in the proof of 2) = 3) of Theorem 7.1 can be taken equal to pZ‘H. It also
shows that the standard weight vector ¥ of an amenable standard A-lattice G
can be completely recovered from its graph I'.

It should be noted however that there exist no known examples of standard
graphs I' which admit two distinct standard weights, say 1, U2, for the same
value of the index, i.e., such that (T',7;) % (T, 7¥2). Whether such examples
exist or not seems to be an interesting problem.

In order to prove the hereditarity result in its largest generality, namely without
assuming that the inclusions involved are extremal, we’ll need the following:
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7.3. LEMMA. Let N C M be an inclusion of type 111 factors, of finite index

(but not necessarily extremal). Let B be a C*-algebra containing M, such that

B = C*(M,|UN, N B) and such that B has a state ¢ with [p, M] = 0. Let
k

(1, Hyp, &p) be the GNS representation for (B,¢). Then, as a M-M Hilbert
bimodule, H, is a direct sum of irreducible bimodules H, = @H; with each
J

H; isomorphic to a bimodule in the list {Hy}rex -

Proof. Note first that if {K;"}icr denotes the list of all irreducible M-N

bimodules contained in @  pHin (see the beginning of Section 5) and
kEK
L~ @ ICZP is a M-N Hilbert bimodule contained in some M — M bimodule
J

H, (ie., Ho C mHnN) then SpMH{M ~ P Hy, -
Then note that UgspM (N, N B)¢, is dense in ‘H,. Indeed, we have

spM (N, N B)M (N}, N B)M = spM (N, N B)Ny f°,_1 Nk
(N, N B)M =spM(N,NB)f°,_,(N,nB)M
C spM(Ngjy N B)M.

showing that
Alg(M,Up Ny, N B) = UpspM (N, N B)M = UspM (N;, N B)R,

where R = U, N/ N M, the closure being taken in the norm || - || in M. But
Uk (NN M)&, is dense in R, (because ¢ implements 7 on M), so UpspM (NN
B)¢, is dense in UpspM (N], N B)RE, = UkspM (N}, N B)ME, which is dense
in H,.

Let then H., “ V{H' C H, | Ik € K such that H' =~ H; as M-M bimodules}.
Assume H{, # H,. Thus, there exists § € M (N; N B)E, such that € ¢ H{,. Let
&= XoYjé&,, for some Xo € M, Yy € N;, N B. It follows that if z € M, y € N,
then

<z§ya§> = <1"X0Y0/§<Py7X0YO/§<P> = <X6<$XOyY0/§<p7Y0/§Lp>-

But the state on M defined by ¢(X) = (XY;&,,Yjé,), X € M has Ny, in its
centralizer so by A.1 it is automatically normal and of the form ¥ (X) = 7(Xa)
for some a € Nj, N M. Thus we get

(xy, &) = 7(XgaXoya) = (z(Xoa'/?& )y, (Xoa/2€,))

so if we define ¢’ = Xga'/?¢, € M&, C L?(M) then the above shows that Hj =
SpMENy is a M-Nj, bimodule isomorphic to a sub-bimodule of y;L?(M)y, . By
the first part applied to N = Ny, it follows that SpMH{,M is a sub-bimodule
of (B Hr)" for some multiplicity n < oo, giving a contradiction. Q.E.D.
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7.4. COROLLARY. Let N C M be an inclusion of type 11y factors with finite in-
dex. Assume that for any e > 0 there exists an amenable type I1; von Neumann
algebra B containing M such that

HE(N/HB)/OB(60> — )\1”2 <E.

Then there exists a norm one projection from N C M* onto N C M.

Proof. If B D M satisfies the condition in the hypothesis for some ¢, then there
exist some finite many unitary elements w1, ... ,u, € N’ N B such that

1 n
— E ujeou; — Al
n -

1=1

Thus, by taking instead of B the von Neumann algebra generated by M and
{u1,... ,un}, it follows that we may assume B is separable in the norm || ||2.

Let then H be the M-M Hilbert bimodule obtained by summing up countably
many copies of each Hy, k € K. By 7.3 we have L?(B) C H, for each B
as in the hypothesis, where L?(B) has the M-M bimodule structure given by
left-right multiplication by elements of M.

For each ¢ = 1/n we choose an algebra B,, satisfying the hypothesis. We let
®,, : B(L?(B,,)) — B, be norm one projections and define the state ¢ on B(H)
by

< €.

2

o(T) = il_lilu Tn © (I)n(pnT|L2(Bn))

where p, = projr2(p,), Tn is the trace on B, and w is a free ultrafilter on N.
Since each 7,0®,, is a M-hypertrace, @ follows a M-hypertrace. Moreover, if we
identify M5 with the von Neumann algebra generated in B(H) by the operators
of left and right multiplication by M and N with its von Neumann subalgebra
generated by the operators of left multiplication by /N and right multiplication
by M, then M5 = spNstegN. Let Y € N*, y € N. We want to show that
© = po& on M thus we need to show that p(Yegy) = Ap(Yy). But
[pr, M®] = 0 and [N®'p,,, N'N B,] = 0, so that ®,(N*'p,) C (N'NB,) N B,.
Thus @, ((Yeoy)pn) = 0 (Ypn)eoy = y'eoy, with v’ € (N' N B,)' N B,. Thus
T (Y'e0y) = Ta(ENnB,)nB, (Y'e0y) = (Y E(NnB,)nB, (€0)y). It follows
that

|Tn 0 @0 ((Yeoy)pn)—ATn 0 @, ((Yy)pn)|
= |Tn(y/E(N/ﬁBn)/ﬁBn (e0)y) — ATu(y'y)|
1911 1Yl 1 E(n'nB,)nB, (e0) — ALl|2

1
~[IY]] lyll-
Yyl

IN

IN

This proves that indeed ¢(Yegy) = Ap(Yy), so p = o E* on M. Q.E.D.

We can now prove the announced hereditarity property for amenable inclusions.
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7.5. THEOREM. Let N C M be an extremal inclusion of hyperfinite type I
factors with amenable graph (equivalently, with amenable standard invariant
Gn), e, |Tn o> = [M : N]. Assume Q C P is an inclusion of factors
embedded in N C M as commuting squares (i.e., such that En(P) = Q), but
without necessarily being extremal and not necessarily having the same index
as N C M. Then T'q p is amenable (equivalently, Gg p is amenable), i.e.,
ITq.pl|? equals the minimal index of Q C P.

Proof. By Theorem 7.1, S = M X M°P follows amenable so in particular the

EN

von Neumann algebra B generated in S by P and Q' NS is also amenable. Let
eo € P be a Jones projection for Q C P. Thus, Eg(eg) = En(eg) = Aol =[P
Q] '1. Since (N'NS)' NS = N it follows that E(ynsyns(eo) = Agl. Since
N'NS cQ'NS=Q N B, this implies that Egnpynp(eo) = Aol as well.

Thus @ C P satisfies the conditions in the hypothesis of 7.4, so there exists a
norm one projection from the standard representation Q% C P onto Q C P.
By [Po13] this implies ||[Tg p|2 = |Tgscpe|? = mdESY. QE.D.

min

In Sec. 6 we’ve seen that for extremal inclusions of arbitrary type II; factors
N C M the condition ||F]u\ffMH2 = [M : N] is sufficient to insure the amenability
of the standard graph I" N: M- We now show that for inclusions of hyperfinite
factors the weaker condition |\F§(,T1\f4|‘2 = [M : N] is enough, where F},T]{; de-
notes the inclusion graph of the direct summand N*“"f ¢ M®»"f of N* € MY,
in which M®"/ consists of all irreducible representations B(H) of M @ M®P,
with H having finite right dimension over M, i.e., dim(Hys) < oo, but leaving
the left dimensions dim(p;H) arbitrary.

7.6. THEOREM. Let N C M be an extremal inclusion of hyperfinite type 114
factors. The following conditions are equivalent:

1) N C M has amenable graph, i.e., |Un.m||*> = [M : NJ.

2) Ve >0, 3 P a hyperfinite factor containing M, such that dim M’ N P < oo
and HT]\J/QPCNIQPHQ Z [M : N] — €.

3) T2 = [M : N).

Proof. 1) = 3) is trivial because F]"\;TI{I pENNEYS

3) = 2) By 3) there exists a direct summand N’ C M = @/ B(K]) C
DrexB(H}) of N4/ < M*" such that its inclusion graph I' is connected
and ||T||*> > [M : N] —e. Take K}, C K’ finite and sufficiently large so that we
still have ||1"’}(6H2 >[M: N]—e.

By the definition of the universal representation N7/ ¢ M®»"f if Q = M'NN
then @ is a factor of type II;, N = NVQ C MV Q = M and Q has finite
coupling constant in each direct summand B(H},) of M. But then, if one takes
P = @ NB(@yeryHy) then | Tarnpcxnpl? 2 [Tl | > [M : N] —<.

2) = 3) follows by noticing that M*"/ contains the von Neumann algebra
generated by the operators of left multiplication by M and right multiplication
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by P on L?(P) as a direct summand (by taking M° ~ P°P_ both being
hyperfinite factors). Thus Thr/npcn/np Will be a restriction of the graph 1"}‘\,’2{[
2) = 1). Let ¢ > 0 and choose P a hyperfinite II; factor satisfying 2) for £32.
Denote by T' the bipartite graph describing the inclusions M'NP Cc N'NP C
N{NP CNy,NPC---. Thus |T||> > [M : N] — &3 and there is a positive
vector w = (w;) ey such that TT w = A~ 1w, giving the traces on {N]NP}j>1.
But then A.2 applies the same way as in the proof of 1) = 2) in Theorem
5.3 to get a finite set ' C J such that } . ,p w? < €D jer w? (see 5.5.2° and
[Pol4]). Arguing like in the proof of 1) = 2) in Theorem 6.1 it then follows
that there exist £ > 1 and a projection p € Nj, N P such that

1 E oy, ,nPpy nppple—26-10) — Apll2 < &[[p|2.

By taking an o = [M : N]¥*1l-amplification of the inclusion Nagyo C Nogiy <
pPp and using that (Nogt2 C Nogy1)® = (N C M) it follows that there exists
a hyperfinite type II; factor Py ~ (pPp)® such that N C M C P, and

| Evinpy)ynp, (€0) — Alll2 < e.

But then 7.3 applies to get that I'y s is amenable. Q.E.D

8. AN EFFROS-LANCE TYPE CHARACTERIZATION OF AMENABILITY

We will prove in this section yet another equivalent characterization for the
amenability of a subfactor N C M, in terms of simplicity properties of the C*-
algebra CY; (M, en, M°P). In the case N = M our result reduces to the impli-
cation “Cy; (M, M°P) simple = 3 conditional expectations of B(L?(M)) onto
M?, which is one of the well known results of Effros and Lance in [EL], relating
various amenability conditions for single von Neumann algebras (semidiscrete-
ness, injectivity, etc).

8.1. THEOREM. Let N C M be an extremal inclusion of type 111 factors. The
following conditions are equivalent:

1°. N C M is amenable.

2°. Cg,, (M, en, M°P) is simple.

3°. C*(M,en, JMJ) is simple.

4°. Cf (M, en, M°P) ~ C*(M,en, JMJ) ~ C}: (M, en, M°P), with the iso-
morphisms being given by the natural quotient maps.

Proof. 1° = 2°. Let C}; (M, en, M°P) — B(H) be a faithful representation
of C¥,, (M, en, M°P) such that M and M°P are von Neumann algebras in B(H).
It is sufficient to prove that if

x € Alg(M,en, M°P) = JspM°P M M°P C Cf,,, (M, en, M°P) C B(H),
k
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then [|2[|g) < [|2|lmin, Where [[2|/min is the norm of (the image of) z in
Crin(M,en, M°P). For such x € Alg(M,en, M°P) let k be large enough such

min

that .
= nypzix?p € spM°P My M°P,

for some x;,y; € M,z € M°P, 1 < i < n. We will prove that x can be
approximated in the so topology on B(H) by elements o’ € Alg(M,en, M°P)
such that ||2'||g) < [[Z[lmin- By the inferior semicontinuity of the norm
|l l3¢r) With respect to the so-topology on B(H), this will show that ||z <
||| min and will thus end the proof of 1° = 2°.

To prove this approximation, let us first note that ¥V &;,... ,&, € H, Ve > 0,
36 > 0 such that if 2] € My, with ||z} — 2|2 < 9, ||2}]| < ||z then

n
/def§ : op ./ op

satisfies ||(z — 2')&;]| <&,V 1 < j <p. Indeed we have:
n
Iz =21 < Y 1Pl (i = 2)25P )
i=1

and since the so-topology on the ball of radius ||z;|| (in the uniform norm) in M},
coincides with the topology given by the norm || ||2 on this ball, it follows that
there exists 6 > 0 such that if ||z; — 2[||2 < & then [|(z; — 2))x;P&;|| < e/nllyill
V i. But then we have

n
(e = 2"l < D lly:Plle/nllyi® ) = <.
i=1

Now, if we assume N C M is amenable then M C M, follows amenable and by
[Po2] we get that V 6 > 0, 3 finitely many tunnels {N] }i<p<n,, r =1,...,m,
and projections p, € P(N;, "N M), r =1,... ,m, such that {p,}, are mutually
orthogonal, ¥, p, = 1 and

m
def ]\/I
- Z Ext oo, (#0)pr

satisfies ||z} — z;||2 < d. Also, by its deﬁnition, 2 checks ||z|| < ||zi]]. Further-
more, since p, € M commute with 2, y?? € M°P, V r,4, it follows that if we
let o/ = X;y;Pzjx;® as above, then ||z’ g3 = sup ||2'pr||g(x). But since

T

2'pe =Y UPprEny o (2P = <Z Y;'Eny oy (20) 75 )pr,

7 =1
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each [|2'p,||5(x) is majorized by

n n
S B 27| = |3 g e

i=1 B(H) i=1 MP
n
= | D uEny, o ()2
=1 Cri(M,en , MoP)
< [[#/lmin,

with the last inequality following from the fact that, in the algebra
Crin (M, en, M°P), the element ZiyprN;Trka (z;)5P is the image of z un-
der a conditional expectation.

Thus, from the the above remarks, if we take § sufficiently small, we are done.
2° = 3° is trivial, since by the definition of Cf,, (M,en,M°P),
C*(M,en,JMJ) is its quotient.

3° = 1°. If C*(M,en, JMJ) is simple then there exists an isomorphism

p: 8"

m

(M, en, MP) ~ C*(M,en, JMJ) C B(L*(M)).

Since S C S C B(L*(S)), where S = M X M°P as usual, by Arveson’s theo-
en

rem ¢ can be extended to a completely positive map ® from all B(L?(S)) to
B(L?*(M)). (Note that in fact we only use here a particular case of Arveson’s
theorem stating that if B C A are unital C*-algebras and my : B — B(Hy)
is a representation of B then there exists a Hilbert space H D Hy and a rep-
resentation m : A — B(H) such that mo(b) = proju,m(b)|n,, V b € B. See
2.10.2 in [D2]). Since @ is a unital *-homomorphism when restricted to S°, it
follows that it is a S%-S° bimodule map. In particular, if 27% € M C S°
(C B(L%*(S))) then ®(zPTx5”) = p(z{P)®(T)p(x57), V T € B(L*(S)). Thus,
if T satisfies Ta®P — z°PT = 0, V 2°P € M°P, then ®(T)p(z°P) = @(z°P)P(T),
V 2P € M°P.

Thus we have ®((M°P)"' N B(L?(S)) = p(M°P)' N B(L?*(M)). But p(M°P) =
JM.J and JMJ' 0 B(LA(M)) = M, so that ®((M°P) N B(L2(S))) = M. Simi-
larily we get

O((M®) NB(L*(S))) = (M) N B(L*(M))

= JM,J' N B(L*(M))
=N.

But from 5.3 we have that M5 C (M°P) N B(L?*(S)) and N** C (M;P)' N
B(L%(S)), so ® implements a positive unital M-M bimodule map from M5
onto M carrying N onto N. This shows that there exists a conditional ex-
pectation of (N** C M5') onto (N C M), so N C M follows amenable.

DOCUMENTA MATHEMATICA 4 (1999) 665-744



728 SORIN Popra

All this shows that the conditions 1°—3° are equivalent. Since clearly 4° <= 2°,
all the conditions 1°—4° follow equivalent. Q.E.D.

8.2. Remarks. 1°. Note that when applied to the case N = M the above
proof of the implication 3° = 1° in Theorem 8.1 reduces to a very short and
elementary proof to one of the results in ([EL]).

2°. Recall from ([Bi3]) that C*(M, ey, JMJ) contains the ideal K of compact
operators over the Hilbert space L?(M,7) if and only if N contains no non-
trivial central sequences of M. Thus, 8.1 implies that amenable inclusions
always have non-trivial cental sequences contained in the subfactor (because if
C*(M,en,JMJ) is simple then it cannot contain the ideal K). In fact, 7.1.4
shows that there even exist non-commuting such central sequences, so that
amenable inclusions split off the hyperfinite type II; factor (this is, of course,
a consequence of the classification result 7.2.1° as well).

9. PROPERTY T FOR SUBFACTORS AND STANDARD LATTICES

In this section we introduce a notion of property T for standard A-lattices G
(or, equivalently, for paragroups). When restricted to the class of standard lat-
tices associated with subfactors coming from finitely generated discrete groups,
our notion coincides with the classical property T of Kazhdan, which it thus
generalizes, from discrete groups to the larger class of group-like objects G. In
order to define this notion, we will use a strategy similar to the approach to
amenability in Section 5. Thus, the property T for a standard A-lattice G will
be defined by requiring M X M°P to have the property T relative to M vV M°P
e

N

in the sense of ([A-D], [Po8]), where N C M is an extremal subfactor with
Gn,m = G. This definition however depends on proving that such a property
does not in fact depend on the subfactor N C M one takes. We do prove this
in the next few lemmas.

First of all, let us recall the definition of the relative property T, as introduced
in ([A-D], [Po8]):

(). Let U be a type I factor and B C U a von Neumann subalgebra of U.
Then we say that U has the property T relative to B if there exists € > 0
and T1,Ta,...,xy € U such that whenever H is a given U — U bimodule with a
vector £ € H satisfying ||E|l = 1,[€, B] = 0, ||[§, z:]|| < &, it follows that H must
contain a non-zero vector &y satisfying [&o, U] = 0.

Note that in the case B = C the above definition reduces to Connes’ definition
of property T for single type II; factors U. In general though, the definition
() does not require the ambient algebra U to have the property T. Instead,
note that by ([A-D], [Po8]), if V is a type II; factor and G is a discrete group
acting outerly on V', then U = V x G has the property T relative to V if and
only if the group G has Kazhdan’s property T.

With this in mind, let us proceed with some technical results.

9.1. LEMMA. LetV C U be an inclusion of type 11 factors with V' NU = C1.
Then U has the property T relative to V' if and only if Ve > 03§ > 0
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and x1,... ,xy € U such that if o : U — U is completely positive, unital, trace
preserving, with (v1zv2) = vip(z)ve, Vui,v2 €V, 2 € U, and ||p(z;)— 42 <
0 then ||p(x) —z|2 <e,VaxeU, |z| <1.

Proof. If U has the property T relative to V then the condition on completely
positive maps holds true by 4.1.4 in [Po8].
Conversely, if this latter condition holds, then let H be a U-U bimodule with

M €l =1, v6 =, Vo eV, |ut—cul <& € 6/25 [|zilla. Let
¢ : U — U be defined by 7(yp(z)) = (2€y, &), =,y € V as in [C4] (see [Po8]).
Then ¢ is a well defined completely positive map and 7(¢(x)) = (x£,£). Since
& =v&v*, Vv elU(V), one gets
(vav™g, &) = (vadv™, §) = (vzg, {v) = (vag, ve)
= (v'vzg, §) = (2§, €)

for all x € U. Averaging by unitaries v € U(V') like in [Pol] and using that
V'NU =C1 and Eyv/qy(x) = 7(x)1, it follows that

(2€,8) = (T(2)€,§) = 7(x), Vzel.
Similarly, we obtain that
T(yp(1) = €y, &) =7(y),  VyeU
Thus ¢(1) = 1. Also, if 2,y € U, v1,v2 € V then
T(yp(viave)) = (vizvady, §) = (wvay, vi&)(w€vay, {uy)
= (z€vayv1, &) = T(vayv1p(x)) = T(y(V1¢p(7)v2)).
This shows that ¢(vizve) = v1p(z)va.
Finally, since ||z;£ — &x;|l2 < 8" we have
() — 2l = m(p(a)plas) = 7(z 1) — 2Rer(ai p(z:))
< r(p(afz) + r(afz) — MRer(aio(z:))
= 27(zjzi) — 2Re7(zip(2:))
= 2({ws, xi) — 2Re(ws, L)
< 9lfa — il lxl < 20 Jaills < 62,
Thus, ¢ this way defined satisfies the required condition, so ||p(z) — z||2 < &,
V2 e U, ||z|| <1. In particular, we have
lo(u) —ull2 < &, YueclU).
Thus,
€ — ué|> = 2 — MRe(€u, €u) = 2 — 2Re(u"Eu, €)
=2 —2Re7(p(u)u’) = 2Re(7((u — ¢(u))u”))
< 2 (u) — ulla < 2.

Thus, if ¢ < 1/2 then [[u*¢u — €| < 1, ¥V u € U(U). But then 3 & € H,
I€o — &l < 1, such that u&y = &ou, V u (see e.g., [Pol]). Thus H has a nonzero
vector commuting with U, showing that U has the property T relative to V'
Q.E.D.
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9.2. LEMMA. Let
VcU

@] @]

QCP
be a nondegenerate commuting square of type I1; von Neumann algebras with a
countable set X = {fn}n C P such that sp QXQ is|| ||2-dense in P andsp VXV

is || ||2-dense in U. Let p : P — P be a unital, T-preserving, completely positive
map such that

o(q12q2) = q1p(z)q2, Vaq,2€Q, x€P

and assume that ¥V n > 1, 3 {m;}; C L*(V,7) orthonormal basis of V over
Q such that [mj, fn] = 0, [mj,o(fn)] = 0, ¥V j. Then there exists a unique
unital, T-preserving, completely positive map ¢ : U — U such that ¢|p = ¢
and p(vizve) = vip(x)ve, V v1,u3 €V, x € P.

Proof. Let e = e%. Let {m;}; C L*(V) be a fixed orthonormal basis of V' over

@ and note that any element in (U, P) can be written in the form ¥; ;m;p;jem,
with p;; € P (see Ch.1 in [Po2]). We first define an application ¢ : (U, e) —

(U,e) by
@ E mipijem; | = g mip(pij)ems, pij € P.
ij ij

It is easy to see that ¢ this way defined is completely positive and Tr-preserving
and satisfies p(1) =1, (Y1 XY2) = Y15(X)Ys,V Y1,Y2 € (V,e), X € (U,e).
Let us next show that ¢ does not depend on the choice of the orthonor-
mal basis {m;} of V over Q. So let {m}}; C L*(V,7) be another such
orthonormal basis. Then m; = >, m} EY (m;*m;) so that if p € P then
mipem; = 3, m%Eg(m;c*mi)pE(m;‘m;)emE* (note that the sums do make
sense in L?(U,7), with convergence in || ||2, respectively so-topologies). By
definition we thus have @(m;pem}) =m;p(p)em; and since EY (m/k*mi) € Q
and
(EY (rmfma)pEY (mmi) = EY (mieme)p(p) B (mimy),

we further get

mip(p)em = mi(Ep (mi ms)p(p)Ep (mm)))em;’
k,l

=Y mip(Ep (mjim)pEp (mfmi))em;”.
k.l
Taking linear combinations and limits, this shows that if

§ * E 1.7 /%
4] .3
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then
> mip(piy)ems = > mip(pl;)em’,
¥ ¥

showing that ¢ does not depend on {m;};.

We will now show that $(U) = U and that @|p = ¢. To this end, let us first
note that @(fn) = ¢(fn), V n. Indeed, we have f, = f,1 = fi, >, msem; in
which we may assume [m;, f,] = 0, ¥V j ( by the hypothesis and the above).
Thus we get f,, = Y, mifnem;.

According to the definition of ¢ we get @(fn) = >, mip(fn)ems. But
by the hypothesis we may also assume [m;,¢(f,)] = 0 so that we get
Zj mjcp(fn)em;f =¢(fn) Zj mjem} = @(fn)-

Since @ is V-bilinear (being (Q,e)-bilinear) it follows that G(VXV) =
Vo(X)V =Vep(X)V C U. In particular jgxg = ©-

The rest of the statement thus follows by continuity. Q.E.D.
9.3. COROLLARY. Let

N CcM

U U

Ny C My

be a nondegenerate commuting square of type Il factors with N C M, Nog C My
extremal and N' N M; = NN My;, ¥V j. Let T =MV MP C MRM®P=S

EN

and To = MoV MgP € My ® Mg® = So. If S has the property T relative to T

eNO

then Sy has the property T relative to Ty.

Proof. By 2.5 we have Tj NSy = C, TN S = C. Also, by 2.8 Sy is naturally
included in S and we have a nondegenerate commuting square

TCS
U U
To C So-

Let {Nom}m be some tunnel for Ny C My and N,, be the corresponding
tunnel for N C M and denote by f, = fI,, € My, the Jones projection for
Non—1 C My C My,,. By 4.1.4 in [Po8], since S has the property T relative to
T and spU,, T f,,T contains the dense *-subalgebra U, MMSPM in S (cf. 4.1), it
follows that V € > 0 there exists n and § such that if ¢ : § — S is unital, trace
preserving, completely positive, T-T bimodule map with |¢(fr) — fall2 < ¢
then [J¢(z) —z|l2 <&, Vz €S, ||z <1. Since

fm € (Nom V Ngb,)' N My ® Mg® = (N VNP N MK M,V m,
EN

(iNO

it follows that V k, 3 {m%}; C Ny V N;» an orthonormal basis of Ny V N.*
over No V Ng% (which will therefore be an orthonormal basis of T over T as
well). Thus [m¥, fi] = 0,Vj.
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Let wg : Sg — Sp be a unital, trace preserving, completely positive, Tp-Tp
bimodule map satisfying ||¢o(fr) — fnll2 < d. Since ¢ is To — Ty bilinear and
since [fr, Nox V Noh] = 0, we get [wo(fx), Nox V Ng] = 0. Thus we also have:

©0(fm) € (Nom V Ngb,)' N Mo R Mg® = (Nyy VNP)' N M R MO, m.

€Ng EN

So we may apply Lemma 9.2 to get ¢ : S — S unital, 7-preserving, completely
positive T-T bimodule map with ¢|s, = wo. Thus ||p(fn) — fullz = leo(frn) —
frll2 < 6, implying that ||¢(z) —z|la <&, Vz €S, |z| < 1.

In particular, ||po(x) — 2|2 < € V & € Sp. By Lemma 9.1, this is suficient to

ensure that Sy has the property T relative to Tj. Q.E.D.
9.4. PROPOSITION. Let

N cM

@] @]

Ny C My

be a nondegenerate commuting square of type Il factors with No C My, N C M
extremal and Ny N My ; C N'NM;, ¥V j (i.e., No C My is smoothly embedded
in N C M, in the sense of [Po2]). Let Ty C Sy, T C S be the corresponding
symmetric enveloping inclusions. If So has the property T relative to Ty, then
S has the property T relative to T.

Proof. By [Po8], Ve >0,36 >0 and x1,...,x, € Sp such that if Hy is a
So-Sp bimodule with a unit vector & € Hy satisfying [y, &) =0, V y € Tp, and
Ilzi, €]l < 0, V i, then there exists & € Ho satisfying [x,&] =0, V € Sp,
and [|& — &l <e.

Let then H be a S-S bimodule with a unit vector & € H such that [y, &] = 0,
VyeT,and |[z;&]] < d, Vi. Regarding H as a Sp-Sy bimodule it follows
that there exists &, € H such that [z,&)] =0, V = € Sp, and ||£) — &l < e.
Denote

K={¢eH|axt=¢, Ve S},
Ko={no€M|[y.n]=0 YyeT=MvMPT}
Ki={meM|[lym]=0, VyeMVNPT}

With these notations, it follows that { € Ky and &), € K. We then need to
construct some positive contractions A, B € B(H) such that 0 < A, B < 1,
AE=¢6=B¢,VEE K, AKy C Ky, BKy C Ky. For if we have such A and B,
then

I(BAY6 — & = [(BAY"6 — (BAY'€)]| < 6o — &) < <

so that if & is a weak limit point of {(1/n) Y }_,(BA)¥&}, then BAL) = &,

Y € Ko (because all (BA)*¢&, belong to Ko) and || —&)|| <e. But 0 < A <1,
0 < B <1, BA{] = & implies that AL = &, BE = &/, so that & € KoNK;.
Thus e1&] = fer, y&§ = &y, ¥V y € T, and since T and ey generate S we get
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x& = &z, ¥ x € S. This shows that H has a nonzero vector commuting with
S.

Finally, in order to construct A, B with the required properties, let
{Pfhe<j<k, © Mox = (Mo,er), {¢f}r<icm C MG® be partitions of the
identity such that if p”, respectively ¢* denote the spectral projection of
| 22, pjeap} — Al], respectively |, q¥e1q¥ — 1|, corresponding to the interval
e, 00], where A = [My : No]™" = [M : N]7', then 7(p™) < (1/n)min; 7(p})
and 7(¢*) < (1/k) min; 7(¢¥) (cf. the Appendix in [Po2], or [Po9]). We claim
that if A is a weak limit of the sequence of operators {3_, pi/ -p7}, C B(H) and
B is a weak limit of {3, ¢F - ¢F}r C B(H) then A, B do satisfy the required
conditions. Indeed, since pj, qf € Sy we have

dovpry =& Y ditdf =¢  VEEK, Vi
7 [

Thus, AS = £ = B¢,V € € K. Since p? € (Mo, en) C NP N S it follows that
if [y,mo] =0,V y €T =MV M°P, then

x"p,Zp?nop}‘ =0, V P € N°P.
J

Thus,
[z°P, Ang] = 0, YV a2 € N°P, ¥ g € K.
Let ng € Ko with ||| = 1 and note that, since 7y commutes with 7' and

T'NnS = C, ny follows a trace vector for S. Let also £ € H, and x € M, =
(M, e1) and note that

ATV pPEA (0 ap}) — apf
J 2

= A2 |\ Zp?egp?a:p?eg — xp;ies

J 2

<AV =) | WD ppean — 1 | llapfeslla + A7 "2
J
< 2272l /) ¥
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Thus we get

2
© Y pimopf —A7" ZP”EMI papi nopy
1 2
= \apinop? = X1 pFEA (0 ap} )nopy
’ 2
<D\t =AY i EN (0 ap?)
i J 2

<A (122 /n%) D lIpp 3 = 4A 2] /n.

Similarly we get

2

>_pimopiz =AY pimoBa (0 ap] e} < AT e /n®

A ]

as well.
But since yno = noy, Vy € M C M V M°P, we have

Z anEM1 prap}) | mopy = ij o (Z EM1 (pjxpi")p l)

so by the above estimates we get

prMopz Zp]nopjx <8ATV2|z||/n — 0.

Since A is a weak limit of {d_, p} - pi'}, it follows that [z, Ang] = 0, thus
AKy C Ki. Similar calculations show that BK; C Ky and A, B are thus
constructed. As we have previously shown, this was sufficient to ensure that H

has a nonzero vector commuting with S. Thus S has the property T relative
to T. Q.E.D.

We can now conclude with the following:
9.5. THEOREM. Let Ny C My be an extremal inclusion of type 111 factors such
that My & Mg® has the property T relative to MoV MgP. Then M X M°P has

No enN
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the property T relative to M vV M°P for any extremal inclusion N C M with
Gnom = OGNy, Mo

Proof. Since Ng C My is embedded smoothly in N§¢ C Mg and the two
subfactors have the same higher relative commutants, by 9.4 it follows that
Mg ® My°P has the property T relative to Mg V My°P. But by [Po9], the in-
eng
clusion of factors NY(R) C MY(R), where G = G, u, and R is the hyperfinite
IT; factors, is also embedded as a commuting square with same higher relative
commutants in N¢ C Mg. Thus, by 9.2 it follows that M9(R)X(MY(R))°P
has the property T relative to M9(R) Vv (M9(R))°P. But N9(R) c MY(R)
is included in N¥ C M as well ([Po9]), so M* K M<°P has the property T

enw

relative to M“ vV M“°P by 9.4. Then, again by 9.2 it follows that M X M°P
eN
has the property T relative to M Vv M°P. Q.E.D.

9.6. DEFINITION. We say that a standard A-lattice G has the property T if
M X M°P has the property T relative to M V M°P for some (and thus all!)

en
subfactor N C M with Gy pm = G.

The following class of examples shows that our notion of property T agrees
with Kazhdan’s classical notion for groups.

9.7. PROPOSITION. Let G be the standard A-lattice of a locally trivial subfactor
associated to some faithful G-kernel on some type 11y factor. Then G has the
property T if and only if the group G has the property T.

Proof. Let P be the factor on which G acts and o be the G-kernel on P. By
Section 3 and 9.6, G has the property T iff PQP°P X,gs00 G has the property
T relative to PQP°P. By (JA-D], [Po8]) this is equivalent to G having the
property T. Q.E.D.

Let us next note some simple properties of this notion.

9.8. PROPOSITION. (i) G is both amenable and has the property T if and only
if it has finite depth.

(il) If G = G1 X Gy (see part (b) in 5.6 for the definition) then G has the property
T if and only if both G and Go have the property T.

(iii) G has the property T if and only if G°P has it.

(iv) If N C M is an extremal inclusion {M;}; is its tower, then Gy am has the
property T iff G, v, has the property T for some i < j iff Gar,,m; has the
property T for all i < j.

Proof. To prove (i), let N C M be an extremal inclusion such that Gy p = G.
Then G is both amenable and has the property T iff M & M°®P is both amenable

and has the property T relative to M vV M°P. And by (4.1.4 in [Po8]) this is
further equivalent to [M X M°P : M V M°P] < co. But by 4.6, [M K M°P :
eN EN

M Vv M°P] < oo is equivalent to N C M having finite depth.
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To prove (ii) let N; C Mj, j = 1,2, be such that Gy, a; = G; and note that
gN7M = G where G = G; X gg, N = N1®N2 C M1®M2 = M. Then (T C
S) = (Th®Ty C S18S53), where T C S, Th C Sy, To C S are the symmetric
enveloping inclusions associated with N C M, Ny C M, respectively No C Mo.
If T C S has the relative property T and {z;}1<i<n C S is its critical set for
some € > 0, then by [Po8] we may assume z; are in the algebraic tensor product
S1® 8o, e, x; = Zj :L'; ® y;'», :L'; € 51, y; € Sy. Let Hqi be a S1-57 bimodule
with a unit vector & € H; commuting with 7} and é;-commuting with {x;}l -
Denote by H = H1®@L?*(S2), £ =& ® 1 and note that if 1 is sufficiently small
then & e-commutes with {x;};. It follows that there exists &' € H, commuting
with S at distance Ke from £ (see [Po8]), where K is a universal constant. But
then, if Ke < 1, the projection £ of £ onto Hy ® C1 ~ H; is a nonzero vector
commuting with S7. This shows that S; has the property T relative to 77.
Similarly, Se has the property T relative to Tb.

Conversely, if S; has property T relative to T; for ¢ = 1,2 and H is a S-
S bimodule with £ € H a unit vector commuting with {x; ® y;}: ;, where
{x;}: € S1, {y;}; C Sz are the critical sets for T} C Sy, respectively To C So
then it follows that

lug — &ul| < e, Vueld(S11)UU(l®Ss).

Thus,
[(u®@v)é —E(u®v)| < 2e, YV uelU(S), vel(Ssz).

A simple convexity argument in Hilbert space, or Ryll-Nardjewski’s fixed point
theorem then shows that there exists ¢’ € H, ||{' —£|| < 2e, commuting with all
elements in the group F = {u®uv | u € U(S1), v € U(S2)}. Sincesp F D S1®52
it follows that £’ commutes with S = S1®S. Taking e < 1/2, this shows that
‘H has a nonzero vector commuting with S, so S has the property T relative to
T.

To prove (iii) we only need to remark that the symmetric enveloping inclusions
associated to N C M and N°P C M°P are identical, so that 9.5 applies to get
that Gy ar has T iff Gnor pror (= (Gn,ar)°P) has this property.

Finally, to prove (iv) recall from [Po8] that if Vi € V C U are inclusions of
factors and [V : V] < oo then U has the property T relative to V iff U has the
property T relative to V. Thus, if N C M is an extremal inclusion and we put
U=MXM°P, V=MVM?® Vog=MV NP, Vi =MV NP, it follows that

en
U has the property T relative to V iff U has the property T relative Vi. But
V1 C U is a reduced of the symmetric enveloping inclusion for M C My (cf.
2.6) so, by [Po8] again, it has the relative property T iff My Vv MY C My K M;P

eEN
has relative propert T. Thus, Gy a has T iff Gas pr, has T. The rest follows
from 2.6 a). Q.E.D.

We do not have more examples of property T standard A-lattices other than the
ones coming from groups (in 9.7) or the obvious ones that can be constructed
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by using jointly 9.7 and 9.8. For example, we do not know whether there exist
standard lattices with the property T that come from irreducible subfactors. As
for the minimal standard lattices generated by the Jones projections only, i.e.,
the so-called Temperley-Lieb-Jones standard lattices, we will prove below that
generically they do not have the property T. This will in fact be an imediate
corollary of the following more important consequence of 9.4:

9.9. THEOREM. Let G be a standard A-lattice and Gy be a sublattice of G. If
Go has the property T then G has the property T. Conversely, if [G : Go] < 0o
and G has T then Gy has T.

Proof. By [Po7] there exists a commuting square

NcM
U U
Ng C My

such that Gy = Gn,,m, and G = Gy pr. By 9.4 and the definition of property
T for standard latices 9.6, it follows that if Gy, a, has T then Gy s has this
property as well.

The last part is trivial, by [Po8], 2.7, 2.9 and 2.10. Q.E.D.

9.10. COROLLARY. If a standard A-lattice Gy is a sublattice of an amenable
standard X-lattice with infinite graph then Gy doesn’t have the property T. In
particular, if there exists an amenable subfactor of index A~ and infinite depth
then the Temperley-Lieb-Jones standard lattice of graph Ao and index A~ does
not have the property T.

Proof. Trivial by 9.9. Q.E.D.
Let us end by mentioning a problem which at this point seems of interest:

9.11. Problem. Is it true that the property T for a standard lattice G only
depends on its graph, i.e., if G, Gy have the same (weighted) graph I" and G has
T, does it follow that Gy has T ? Note that in all the examples of property T
standard lattices that we have in this paper (obtained by combining 9.7 with
9.8) this is indeed the case.

We strongly believe that this question has a positive answer. If this would
be indeed the case, then one would have a notion of property T for standard
graphs. We mention that in the combinatorial theory of groups there has been
a steady interest towards generalizing the property T from groups to more
general objects, in particular to (certain classes of) graphs. Since the standard
lattices do generalize discrete groups and certain classes of Kac algebras and
compact quantum groups ([Ba]), our definition of property T does provide a
generalization along these lines.
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APPENDIX

A.1. RELATIVE DIXMIER PROPERTY FOR SUBFACTORS OF FINITE INDEX

We prove in this section a version for inclusions of type II; factors with finite
Jones index of Dixmier’s classical result on the norm closure of ”averaging”
elements by unitaries, as follows:

THEOREM. Let N C M be an inclusion of factors of finite index. Then N C M
has the relative Dizmier property, i.e., for any x € M, we have ¢o™{uzu* | u
unitary element in NYNN'NM = {Enxnm(x)}.

Proof. For # € M denote Cn(z) = c0*{uzu* | v € U(N)}. Since
EN/QI\/[(UJS’U,*) = E]\Vﬁ]\/[(l'),vu € U(N), it follows that EN/QM(’IJ) =
Eninn(2),Vy € Cy(x). Thus, if for some z € M we have Cy(x) "NN'NM # ()
then CN(ZE) N N’ NM = {ENIQM(ZE)}.

By replacing if necessary « by © — En'aam(2), it follows that it is sufficient to
check that 0 € Cn () for all x € M with En/qpr(2) = 0. Moreover, by arguing
like in the single algebra case ([D3]), it is sufficient to check this property for
selfadjoint such elements x.

We will proceed by contradiction, assuming there exists an element x = z* in
M, with Enx/ap(x) = 0, such that 0 ¢ Cn(z). By the Hahn-Banach theorem
there exists a functional ® = ®* € M™* and gy > 0 such that ®(y) > &g, Vy €
Cn(z). It follows that U(z) > g, V¥ € co{®(u-u*) | u € U(N)} so that
U(z) > g0, VU € On(®) & @™ M Dy u*) | u € UN)} and in fact
U(y) > e, Yy € Cn(x) as well.

To get to a contradiction we first show that there exists ¥ in Cnx(®) which
can be written as ¥ = W; — Wy, with ¥, 5 positive functionals on M which are
scalar multiples of the trace 7 when restricted to V. To this end let & = &1 — P,
be the polar decomposition of @, into its positive and negative parts.

Let V = {F C (N); | F finite}. By Dixmier’s classical Theorem VF €
V,Jup = (uf,...,ul,) C U(N) such that | T, (y) — 7(y)1|| < 1/|F|,Vy € F,

where for X € M we denote T, (X) % (np)~ 'S uf Xuf™. Then let w be

a free ultrafilter majorizing the filter V and for each ¢ = 1,2 define ¥;(X) =
limp_,, ®;(Tu. (X)), the limit being taken in the usual Banach sense. Then
we clearly have W; n = ¢;7|y, where ¢; = ®4(1),7 = 1,2. Also, if we let ¥ =
Uy — Uy then ¥(X) = limp_,, ®(Ty,(X)),VX € M and since ®(T,,.( )) €
Cn(®),VF, it follows that ¥ belongs to Cn(®). Thus ¥ = ¥y — U, satisfies
the desired conditions.

But by [PiPol] we have En(X) > AX,VX € M., so by applying ¥; 5 to both
sides we get ¢;7(X) = ¢;7(En(X)) = U, (En(X)) > AV,(X), implying that
U; < A leym, i =1,2. Thus ¥, o actually follow normal on all M and so does
V. By Sakai’s Radon-Nykodim type theorem there exists a = a* € M such
that ¥(X) = 7(aX),VX € M. Putting this into the relation that U satisfies
gives 7(ya) > e, Vy € Cn(x).

DOCUMENTA MATHEMATICA 4 (1999) 665-744



SYMMETRIC ENVELOPING ALGEBRAS 739

In particular, from the last relation and the trace property we get 7(zu*au) =
T(uzu*a) > £9. By taking convex combinations of elements of the form u*au
and weak limits and using that €6 {u*au | v unitary element in N} N N'N
M = {Ennm(a)} (cf. [Pol]), we deduce that T(zEnnpm(a)) > ep. But
T =TO EN/OM and, since EN/QM(:CEN/QM(G,)) = EN/QM(:L'>EN/QM((I> and =
was assumed to satisfy Ennap(z) = 0, we obtain 0 > g a contradiction which
ends the proof of the theorem. Q.E.D.

A.2. A GENERALIZED VERSION OF CONNES’ PERTURBATION THEOREM

In [C1] A. Connes proved a technical result about Hilbert norm perturbations
of square integrable operators in semifinite von Neumann algebras.

We will use here a slight modification of his argument (essentially, of his ”joint
distribution trick”) to derive the following version of his result, needed in the
proof of Theorem 5.4:

A.2.1. THEOREM. Let P be a semifinite von Neumann algebra with a normal
semifinite faithful trace denoted by Tr. Let ® be a positive map on P satisfying
the conditions:

(1) (1) =1, Tro® < Tr.

(2) sup{||®(z)|l2,x | z € P, ||z]2m <1} < 1.

Let § > 0 be such that § < (5)~* and b € Py satisfy the conditions:

(3) [Ibll2e = 1, [|[®(B)l|21r = 1 — 6.

(4) b= 2(b)[]2me < 6.

Then there exists s > 0 such that |les(b) — ®(es(b)) |21 < 5/ ||es(D)]|.

Proof. Like in [C1], let X = R3 \ {0} and Ho(z,y) = =, Hi(z,y) = y. As on
page 77 in [C1] it then follows that

1 Ao % Ar) € Tr(ea, (0)®(e, ()

for A; C R, Borel sets such that either 0 # Ay or 0 # Ay, defines a Radon
measure p on X, which satisfies the properties:

a) [|f(Hi)ll1u = Tr(@i(|£](b)) (vespectively || f(H:)[3, = Tr(®i(|f[(b)) <
[ £(®)II3 1), for all f :[0,00) — C Borel function with f(0) = 0 and f(b) €
LY (P, Tr) (respectively f(b) € L2(P,Tr)), i = 0,1, where ®q = id, ®; = .

b) / FolHo)Fr () = Tr( fo(B))B(Fi (b)), for all f; : [0, 00) — C Borel with
X

fi(0) =0 and f;(b) € L*(P, Tr), i = 0, 1.

) 1o(Ho) = F1(H) oo > Ifalt) = B0 acns ¥ i s in ).

d) [|Ho — Hyll3 ,, = Tr(b?) + Tr(®(b?)) — 2Tx(bP(b)) < 64.

Indeed, a) and b) are clear by the proof of I.1 in [C1] and the definition of u.

DOCUMENTA MATHEMATICA 4 (1999) 665-744



740 SORIN Popra

Further on, by a), b), (1), and Kadison’s inequality we get:

| fo(Ho) — f1(Hy)

5.0 = Io(Ho)II3 , + L F1(H)II3 0

9Re /X Fo(Ho)Fr(F)dp

= Tr(fo(b)* fo(b) + Tr(®(f1(b)* f1(D)))
— 2Re Tr(fo(b))@(f1(b)))

> Tr(fo(b)" fo(bo))
+ Tr(@(f1(b)"@(f1(b)))
— 2Re Tr(fo(b))2(f1(0))")

= [ fo(bo) = @(f1(D)I5 1y

This proves ¢). Then d) is clear by noticing that the hypothesis and the Cauchy-
Schwartz inequality imply:

Tr(b?) + Tr(®(b%)) — 2Tr(b® (b))
< Tr(b?) + Tr(b?) — 2Tr(b® (b))
=2 — 2Tr(b® (b))
<2 —2Tr(b?) + 20
<2(1—(1-6)?)+25<65

Remark now that we have, like in proof of 1.2.6 in [C1], the estimate:

/ lews (o) — ens (H)|2
Ry

= |HF — H |l < |[Ho — Hill2,ul|Ho + Hilla,p-

But d) implies ||H07H1||2”u S (65)1/2 and a) implies ||H0+H1||2”u S HH0||21#+
|Hill2,p < ||bl2, e + [|b]l2,+ = 2. Thus, by applying c) to the function f =
X[#1/2,00)+ for €ach ¢ > 0, we obtain

[ lews ) = @leas @) mat

+

(+) < 2(60)17% = 2(60)7* [ fewa(bo) [} .

]R+
This implies that if we denote by D the set of all ¢ > 0 for which

def
9(t) = lleps2(bo) = ®(eqa (D)5 et < 64 legr/2(0) 13 1
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[ lews B e = 1~ 557
D

Indeed, for if [, |le;1/2(bo)||3 rdt < 1 — 5674, by taking into account that
g(t) = 6Y4|egs2 (bo) I3 1, for t € R\ D, we would get:

J

g(t)dtZ/ g(t)dt
. R%\D
> 51/ / lers/a (bo) |12 et
R%\D

> 5612 > 2(60)"/2.

which is in contradiction with ().
In particular, since § < 5%, we have 1 — 56/ > 0 so that D # §. Thus, any

s > 0 with s? € D will satisfy the condition in the conclusion. Q.E.D.
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