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Abstract. We undertake here a more detailed study of the structure
and basic properties of the symmetric enveloping algebra M ⊠

eN

Mop as-

sociated to a subfactor N ⊂ M , as introduced in [Po5]. We prove
a number of results relating the amenability properties of the stan-
dard invariant of N ⊂ M ,GN,M , its graph ΓN,M and the inclusion
M ∨ Mop ⊂ M ⊠

eN

Mop, notably showing that M ⊠
eN

Mop is amenable

relative to its subalgebra M ∨ Mop iff ΓN,M (or equivalently GN,M ) is
amenable, i.e., ‖ΓN,M‖2 = [M : N ]. We then prove that the hyperfinite-
ness of M ⊠

eN

Mop is equivalent to M being hyperfinite and ΓN,M being

amenable. We derive from this a hereditarity property for the amenabil-
ity of graphs of subfactors showing that if an inclusion of factors Q ⊂ P is
embedded into an inclusion of hyperfinite factors N ⊂M with amenable
graph, then its graph ΓQ,P follows amenable as well. Finally, we use the
symmetric enveloping algebra to introduce a notion of property T for in-
clusions N ⊂M , by requiring M ⊠

eN

Mop to have the property T relative

to M ∨Mop. We prove that this property doesn’t in fact depend on the
inclusion N ⊂ M but only on its standard invariant GN,M , thus defining
a notion of property T for abstract standard lattices G.

1991 Mathematics Subject Classification: Primary: 46L37, secondary:
46L40

0. Introduction

LetN ⊂M be an inclusion of type II1 factors with finite Jones index, [M : N ] <
∞, and extremal. In short, its symmetric enveloping von Neumann algebra
M ⊠

eN

Mop is the unique (up to isomorphism) type II1 factor S, generated by

mutually commuting copies of M , Mop that satisfy M ′∩S = Mop, Mop′∩S =
M and by a projection eN which implements, at the same time, both the trace
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preserving expectation EN of M onto N and the trace preserving expectation
ENop of Mop onto Nop.

One can construct this factor by first taking the C∗-algebra S0 generated on
the Hilbert space L2(M) by the operators of left and right multiplication by
elements in M and by the orthogonal projection of L2(M) onto L2(N), then
proving that there exists a unique trace τ on this C∗-algebra and then defining
M ⊠

eN

Mop to be the type II1 von Neumann factor obtained via the Gelfand-

Naimark-Segal representation for (S0, τ), i.e., M ⊠
eN

Mop def
= πτ (S0). This con-

struction doesn’t in fact depend on the (binormal) representation of the triple
(N ⊂M, eN ,M

op ⊃ Nop) that one starts with: any M −M bimodule with an
eN -type projection on it, instead of L2(M), will do, provided certain obvious
compatibility conditions for the commutants are satisfied.

The following exemple of symmetric enveloping algebras is quite relevant: if
N ⊂ M is an inclusion associated to a finitely generated discrete group G
and an outer action σ of G on a type II1 factor P (see e.g., 5.1.5 in [Po2])
then (M ∨Mop ⊂ M ⊠

eN

Mop) is isomorphic to (P ⊗̄P op ⊂ P ⊗̄P op ⋊σ⊗σop G).

In general, one has an interpretation of the symmetric enveloping inclusion
M ∨ Mop ⊂ M ⊠

eN

Mop that is very much the same as this crossed product

situation.

The symmetric enveloping algebra M ⊠
eN

Mop and the inclusions M ∨Mop ⊂
M ⊠

eN

Mop were introduced in ([Po5]) in order to provide an additional tool

for studying subfactors of finite index. It proved to be particularily useful for
relating the analysis aspects of the theory of subfactors to its combinatorial
features.

We undertake here a more detailed study of these objects and use them to
get more insight into the structure of subfactors, notably proving a number of
results on the amenability and the property T for subfactors N ⊂ M and for
their associated combinatorial invariants: the standard graph ΓN,M and the
standard invariant GN,M .

Thus, we prove that GN,M is amenable (by definition this means that its graph
ΓN,M is amenable, i.e., it satisfies the Kesten-type condition ‖ΓN,M‖2 = [M :
N ]) if and only if M ⊠

eN

Mop is amenable relative to M ∨Mop in the sense of

[Po8]. In fact, we establish a few more additional equivalent characterizations of
the amenability for ΓN,M : a Følner type condition; a local Shannon-McMillan-
Breiman type condition; a local bicommutation condition; a characterization
in terms of the representations of N ⊂M .

We then study the amenability in the special case of subfactors N ⊂ M for
which the algebras N,M involved are assumed amenable (or, equivalently, by
Connes theorem [C1], hyperfinite) type II1 factors. The key result along this
line shows that the algebra M ⊠

eN

Mop is itself amenable if and only if both

GN,M and the single algebras N,M are amenable.
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Again, some other characterizations of this situation are proved, notably an
”injectivity”-type condition requiring N ⊂ M to be the range of a norm
one projection from its standard representation, or, equivalently, to be the
range of a norm one projection from any of its (smooth) representations.
Also, it is proved equivalent to an Effros-Lance type condition, requiring
S0 = C∗(M, eN ,M

′) ⊂ B(L2(M)) to be a simple C∗-algebra . We call an
inclusion of factors N ⊂M satisfying any of these conditions an amenable in-
clusion. While proving all these results we also show that if N ⊂M is amenable
(i.e., N,M are hyperfinite and ΓN,M is amenable) then there exists a choice of
a tunnel of subfactors M ⊃ N ⊃ P1 ⊃ P2..., obtained by taking downward ba-
sic constructions for certain induced-reduced algebras in the Jones tower (the
choice being dictated by information contained in the standard invariant GN,M )
such that the relative commutants P ′

k ∩ N ⊂ P ′
k ∩M exhaust N ⊂ M . This

shows in particular that amenable subfactors are completely classified by their
standard invariants GN,M (see also [Po16]).
Next we derive the result that we regard as the most significant application
of the methods developed in this paper, showing that the amenability in the
category of inclusions of factors with finite Jones index N ⊂ M , with ”mor-
phisms” given by commuting square embeddings between such inclusions, is a
hereditarity property. In the case one takes degenerate inclusions N = M we
recover Connes’ hereditarity result for single hyperfinite type II1 factors ([C1]).
In terms of graphs, the result states that if an extremal inclusion of hyperfinite
factors N ⊂M has amenable graph then any of its sub-inclusions Q ⊂ P (i.e.,
Q ⊂ P is embedded in N ⊂ M as a commuting square) has amenable graph.
It should be noted that the embedding of Q ⊂ P into N ⊂M does not require
[P : Q] = [M : N ], nor that [M : P ] < ∞ ! This hereditarity property for
the amenability of graphs is somewhat surprising and there is little that could
appriorically predict it. It only holds true within the class of hyperfinite subfac-
tors, as if we drop the amenability assumption on the ambient single algebras
M involved it is no longer valid, in general.

Indeed, it is proved in ([Po7]) that given any abstract standard λ- lattice G and
any of its sublattices G0 ⊂ G, there exist subfactorsN ⊂M and N0 ⊂M0 and a
commuting square inclusion of N0 ⊂M0 into N ⊂M , such that GN,M = G and
GN0,M0

= G0. But any standard λ-lattice G contains the Temperley-Lieb-Jones
standard λ-lattice with graph A∞, which is never amenable if λ−1 > 4. Thus
if G is taken to be amenable, for instance to have finite depth, then N ⊂ M
has amenable graph while N0 ⊂ M0, which is embedded into it, doesn’t. The
reason is, of course, that in the examples of subfactors N ⊂M constructed in
([Po7]) the algebras N,M involved are not hyperfinite.
One consequence of the hereditarity result is that, for instance, one cannot
embed subfactors Q ⊂ P of index α > 4 that are contructed by commuting
squares of finite dimensional algebras like in ([Sc], [We]) and having graph

ΓQ,P equal to A∞ (note that by [H1] ΓQ,P = A∞ if α < (5 +
√

13)/2) into
hyperfinite subfactors of finite depth and index > α. Also, by ([H2]) there

exists a subfactor of index α = (5 +
√

13)/2, constructed from commuting
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squares of finite dimensional algebras and having graph A∞, which thus, by
our result, cannot be embedded into Haagerup’s finite depth subfactor of same
index (5 +

√
13)/2 ([H1]).

Our last application to the symmetric enveloping algebra approach is the con-
sideration of a notion of property T for standard lattices. Thus, we prove that
if a standard lattice G is given then M ⊠

eN

Mop has the property T relative to

M∨Mop, in the sense of ([A-D],[Po8]), for some N ⊂M for which GN,M = G, if
and only if it has this property for any subfactor N ⊂M for which GN,M = G.
If G satisfies these conditions then we say that G has the property T. Note
that this definition does not require the ambient factors involved to have the
property T in the sense of Connes ([C4,5]). On the other hand, if G is a stan-
dard lattice coming from a discrete group G as described above, then G has
the property T if and only if the group G has the property T in the classi-
cal sense of Kazhdan. Thus, our notion generalizes this notion, from discrete
groups to the larger class of group-like objects G. Our main result in this di-
rection shows that if a sublattice G0 of a standard lattice G has the property
T then G has the property T. As a consequence it follows that, generically,
the Temperley-Lieb-Jones standard lattices with graph A∞ do not have the
property T.

Although we only work with type II1 factors, many of the considerations in this
paper can be suitably carried over to subfactors of type III (see the remarks
1.10.3◦, 2.2.2◦, 2.5.2◦). The corresponding symmetric enveloping type III fac-
tors may prove to be a useful tool in the analysis of the Jones-Wassermann
subfactors coming from representations of loop groups ([Wa], [Xu]). In a dif-
ferent direction, it would be interesting to relate the symmetric enveloping
algebra associated to an extremal II1 subfactor to Jones’ affine Hecke algebra
associated with that subfactor ([J3,4]). An explicit description of the symmet-
ric enveloping algebras coming from certain special classes of subfactors ([BiH],
[BiJ]) would certainly be most illuminating for getting some insight on this and
other related problems.

The paper is organized in 9 Sections. In the first section we introduce the
C∗-analogues of the symmetric enveloping algebras, needed in order to obtain
the necessary universality properties and the functoriality of the von Neumann
construction. A key ingredient for these considerations is the relative Dixmier
property for subfactors of finite index, that we prove in the Appendix A.1.

In Sec. 2 we define the actual symmetric enveloping type II1 factors (2.1, 2.2)
and symmetric enveloping inclusions and prove their basic properties (2.6, 2.7,
2.9, 2.10). Also, we define a more general class of enveloping inclusions, in which
to two given subfactors N ⊂ M and Q ⊂ P having the same higher relative
commutant picture one associates their concatenation inclusion M ∨ P op ⊂
M ⊠P op (2.5.1◦). We end that section by introducing a notion of index [G : G0]
for sublattices G0 of standard lattices G (2.11, 2.12).

In Sec. 3 we discuss the example of symmetric enveloping algebras associated
to subfactors coming from discrete groups acting outerly on factors, case in
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which it becomes an actual crossed-product algebra. In Sec. 4 we prove that
even for general inclusions N ⊂ M the corresponding symmetric enveloping
algebras look very much like crossed products (4.5). Also, we prove some
decomposition properties for such algebras, showing for instance that when
N,M are hyperfinite then, regardless of whether M ⊠

eN

Mop is hyperfinite or

not, it is a thin factor, i.e., M ⊠
eN

Mop = spR1R2, for some suitable hyperfinite

subfactors R1, R2 (4.3). Also, we prove a general ergodicity property for the
higher relative commutants of a subfactor which is quite useful in applications
(4.8, 4.9).
In Sec. 5 and 6 we relate the amenability properties of GN,M ,ΓN,M and (M ∨
Mop ⊂ M ⊠

eN

Mop), obtaining a number of equivalent characterizations of the

amenability for standard lattices and graphs (5.3, 6.1, 6.3, 6.4).
In Sec. 7 we discuss the case when M ⊠

eN

Mop is hyperfinite, proving this equiv-

alent to the amenability of N ⊂ M and to various other properties of the
representation theory of N ⊂ M (7.1). For instance, we show that for hy-

perfinite subfactors it is enough that the universal graph Γu,rfN,M be amenable

for ΓN,M to follow amenable (7.6). We also prove here the hereditarity prop-
erty for amenable inclusions (7.5). The proof uses the characterization of the
amenability for N ⊂ M by the hyperfiniteness condition on M ⊠

eN

Mop, a fact

that roughly reduces the argument to Connes’ hereditarity of hyperfiniteness
for single type II1 factors. Sec.8 contains the proof of the Effros-Lance type
characterization of amenability (8.1).
Finally, in Sec. 9 we introduce the property T for standard lattices and prove
some results about this notion.
For most notations and general technical background we refer the reader to
([Po2,4,7]). More specific references are made in the text. For the reader’s
convenience we included an Appendix which, besides the already mentioned
relative Dixmier property for subfactors of finite index, contains a generalized
version of Connes’ joint distribution trick needed in the proof of the Følner
condition for graphs.
The results on amenability in this paper were presented by the author in lec-
tures and seminars, during 1991-1997. A more formal announcement of these
results, with sketches of proofs, appeared in [Po5], while a couple of statements
on the equivalence of the definition of amenability with representations and
the Kesten condition, respectively Følner condition, were already announced
in [Po2], resp. [Po4]. A rather complete discussion of the role of amenability
within the overall classification of subfactors, with a presentation of most of
the results in this paper (including the ones on the property T) appeared in
[Po11].
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1. Symmetric Enveloping C∗-Algebras

In this and the next section we discuss the definition and basic properties of
the symmetric enveloping algebras (C∗ in this section and von Neumann in
the next) associated to an extremal inclusion of factors with finite index, as
introduced in [Po5]. The statements below are similar to the ones in §1 of [Po5],
but the proofs, that are only briefly sketched there, are given here in details.

So let N ⊂M be an inclusion of type II1 factors with finite Jones index, [M :
N ] < ∞, which we assume to be extremal, i.e., [pMp : Np] = [M : N ]τ(p)2,
∀ p ∈ P(N ′ ∩M).

We denote byM ⊂M1 = 〈M, eN 〉 the (abstract) basic construction forN ⊂M ,
eN being the projection implementing the trace preserving conditional expec-
tation EN of M onto N .

We first construct the universal C∗-algebra generated by mutually commuting
copies of M , Mop and an eN -like projection implementing the expectations
EN , ENop on them.

A representation (π, π′) of (N ⊂ M, eN ,M
op ⊃ Nop) is a pair of uni-

tal ∗-representations π : M1 → B(H), π′ : Mop
1 → B(H) such that

[π(M), π′(Mop)] = 0, π(eN ) = π′(eopN ). Two such representations, (π1, π
′
1)

on H1 and (π2, π
′
2) on H2, are equivalent if there exists a unitary U : H1 → H2

such that Uπ1(x)U
∗ = π2(x), Uπ

′
1(x)U

∗ = π′
2(x), ∀ x ∈M1. A representation

(π, π′) on H is cyclic if ∃ξ ∈ H such that Alg(π(M1), π′(Mop
1 ))ξ = H.

Note that if (π, π′) is a representation on H then there exists a representation

(π̄, π̄′) on the conjugate Hilbert space H̄ defined by π̄(x) = π′(x∗op), π̄′(xop) =

π(x∗), x ∈M1, where T 7→ T̄ denotes the antiisomorphism from B(H) to B(H̄)
implemented by the conjugation H ∋ ξ 7→ ξ̄ ∈ H̄.

We denote by Ĉ the set of all equivalence classes of cyclic representants of
(N ⊂ M, eN ,M

op ⊃ Nop) and by C a set of chosen representations for Ĉ such
that if (π, π′) ∈ C then (π̄, π̄′) ∈ C.

1.1. Proposition. There exists a unital C∗-algebra U with unital embeddings
j : M1 →֒ U , j′ : Mop

1 →֒ U such that

a) [j(M), j′(Mop)] = 0,

b) j(eN ) = j′(eopN ).

and such that given any other unital C∗-algebra U0 with unital embeddings
j0 : M1 →֒ U0, j

′
0 : Mop

1 →֒ U0 satisfying a), b) (with (j′, j′0) instead of (j, j′)),
there exists a unital ∗-algebra morphism π : U → U0 such that

(∗) π(j(x)) = j0(x), π(j′(xop)) = j′0(x
op), ∀ x ∈M1.

Moreover, U is unique (up to an isomorphism (∗)) with these properties. Also,
U is generated as a C∗-algebra by j(M), j′(Mop), j(eN ) (= j′(eopN )) and it has
a unique antiautomorphism op such that j(x)op = j′(xop), (j′(xop))op = j(x),
∀ x ∈M1 (so in particular j(eN )op = j′(eopN )op = j(eN )).
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Proof. Put

U def
= C∗

({
⊕

(π,π′)∈C

π(x),
⊕

(π,π′)∈C

π′(yop) | x, y ∈M1

})
,

j(x)
def
=

⊕
(π,π′)∈C

π(x), j′(xop)
def
=

⊕
(π,π′)∈C

π′(xop), x ∈M1.

U , j, j′ this way defined clearly satisfy a), b), and (∗) and the uniqueness is
then trivial. Then we can define op on U by:

U ∋ ⊕
(π,π′)∈C

π(x) 7→ ⊕
(π,π′)∈C

π̄′(x∗op) ∈ U

U ∋ ⊕
(π,π′)∈C

π′(xop) 7→ ⊕
(π,π′)∈C

π̄(x∗) ∈ U

Q.E.D.

1.2. Definition. We denote by C∗
u,max(M, eN ,M

op) the C∗-algebra U con-
structed in 1.1 and call it the universal symmetric enveloping C∗-algebra. Also

we denote by C∗
u,bin(M, eN ,M

op)
def
= C∗

max(M, eN ,M
op)/ ∩ kerπ, where the

intersection is over all representations π of C∗
max(M, eN ,M

op) for which π(M),
π(Mop) are von Neumann algebras and call it the universal binormal sym-
metric enveloping C∗-algebra associated with N ⊂ M (and the trace pre-
serving expectation). We still denote by j, j′ the embeddings of M1, M

op
1

into C∗
u,bin(M, eN ,M

op) resulting from the composition of the embeddings into

C∗
u,max(M, eN ,M

op) with the quotient map. Note that, with the notations in
the proof of 1.1, if we let Cubin = {(π, π′) ∈ C | π(M), π′(Mop) are von Neumann
algebras}, then C∗

u,bin(M, eN ,M
op) can alternatively be defined as

C∗

({
⊕
Cu
bin

π(x),
⊕
Cu
bin

π′(yop) | x, y ∈M1

})

with
j(x) =

⊕
Cu
bin

π(x), j′(xop) =
⊕
Cu
bin

π′(xop).

Since (π, π′) ∈ Cubin implies (π̄, π̄′) ∈ Cubin, it follows that op implements an
antiautomorphism on C∗

u,bin(M, eN ,M
op), still denoted op, satisfying j′(xop) =

j(x)op, j′(xop)op = j(x).

In addition, C∗
u,bin(M, eN ,M

op) satisfies the following universality property:

1.3. Proposition. Given any binormal representation (πo, π
′
0) of (N ⊂

M, eN , M
op ⊃ Nop) on a Hilbert space H0 there exists a unital ∗-representation

π : C∗
u,bin(M, eN ,M

op) → B(H0) such that π(j(x)) = π0(x), π
′(j′(xop)) =

π′
0(x

op), ∀ x ∈ M1. Moreover, C∗
u,bin(M, en,M

op) has a faithful repre-

sentation π̃ such that π̃(M), π̃(Mop) are von Neumann algebras. Also,
C∗
u,bin(M, eN ,M

op) with the embeddings j, j′ is unique (up to isomorphism)
satisfying these properties.

Proof. Trivial. Q.E.D.
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1.4. Lemma. Let N ⊂ M
e1⊂ M1

e2⊂ M2 ⊂ · · · be the Jones tower for N ⊂ M ,

with e1 = eN , and M
e0⊃ N

e−1⊃ N1 ⊃ · · · be a choice of a tunnel. Let S0 be
a unital C∗-algebra with unital ∗-embeddings j0 : M1 → S0, j

′
0 : Mop

1 → S0,
such that [j0(M), j′0(M

op)] = 0, j0(eN ) = j′0(eN ). Then j0, j
′
0 extend uniquely

to ∗-embeddings of
⋃
n≥1

Mn,
⋃
n≥1

Mop
n into S0, still denoted by j0, j

′
0, such that

j0(en+2) = j′0(e
op
−n), j

′
0(e

op
n+2) = j0(e−n), n ≥ 0.

Proof. Trivial by the abstract characterization of the basic contruction in
([PiPo2]. [Po2]). Q.E.D.

1.5. Lemma. Let · · ·
e−1⊂ N

e0⊂ M
e1⊂ M1 ⊂ · · · , S0, j0, j

′
0 be like in 1.4. Then

we have

Alg(j0(M1), j
′
0(M

op
1 )) = Alg(j0(M), j0(eN) = j′0(eN ), j′0(M

op))

=
⋃
n

sp j′0(M
op)j0(Mn)j

′
0(M

op)

=
⋃
n

sp j0(M)j′0(M
op
n )j0(M)

=
⋃
n

sp j′0(M
op)j0(M)j0(f

n
−n)j0(M)j′0(M

op),

where fn−n is the Jones projection for Nn−1 ⊂ M ⊂ Mn obtained as a
scalar multiple of the word of maximal length in e−n+2, . . . , e0, e1, . . . , en (cf.
[PiPo2]) and it satisfies j0(f

n
−n) = j′0((f

n
−n)

op). Similarly, for any i ∈ Z we
have

Alg(j0(M), j0(eN ), j′0(M
op)) =

⋃
n

sp j′0(M
op
i )j0(Mn)j

′
0(M

op
i ),

where Mi = N−i−1 for i ≤ −1, M0 = M , M−1 = N .

Proof. It is sufficient to show that
⋃
n

sp j′(Mop)j(M)j(fn−n)j(M)j(Mop)

is an algebra. If we denote by f0
−2n the Jones projection for N2n−1 ⊂ Nn−1 ⊂

M and by f2n
0 the one for M ⊂ Mn ⊂ M2n, as in [PiPo2], then we have

Mn = spMfn−nM , M = spNn−1f
0
−2nNn−1 so that we get:

j′(Mop)j(M)j(fn−n)j(M)j′(Mop)j(fn−n)j(M)j′(Mop)

⊂ sp j′(Mop)j(M)j(fn−n)(j(f
0
−2n)j(Nn−1))(j

′(Nop
n−1)j

′((f0
−2n)

op)j′(Nop
n−1))

· j(fn−n)j(M)j′(Mop)

= sp(j′(Mop)j′(Nop
n−1))(j(M)j(Nn−1))(j(f

n
−n)j(f0

−2n)j
′((f0

−2n)
op)j(fn−n))

· (j(Nn−1)j(M))(j′(Nop
n−1)j

′(Mop))

= sp j′(Mop)J(M)j(f2n
−2n)j(M)j′(Mop)

in which we used that [j(Nn−1), j(f
n
−n)] = 0, [j′(Nop

n−1), j(f
n
−n)] = 0 and f2n

−2n =

λ−nfn−nf
2n
0 f0

−2nf
n
−n, j(f

2n
0 ) = j′((f0

−2n)
op), λ = [M : N ]−1. Q.E.D.
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1.6. Corollary. Let · · · ⊂ N1

e−1⊂ N
e0⊂ M

e1⊂ M1 ⊂ · · · , fn−n be as
in 1.5. Then C∗

u,max(M, eN ,M
op) (respectively C∗

u,bin(M, en,M
op)) is gener-

ated, as a C∗-algebra, by j(M), j(fn−n) = j′(fn−n), j
′(Mop) and there exists a

natural isomorphism of C∗
u,max(M, eN ,M

op) (respectively C∗
u,bin(M, eN ,M

op))

onto C∗(M, eNn−1
,Mop) (respectively C∗

bin(M, eNn−1
,Mop)), taking the canon-

ical images of the elements in M , Mop in one algebra into the corresponding
canonical images in the other algebra and j(fn−n) onto j(eNn−1

).

Proof. Trivial by definitions and 1.5. Q.E.D.

1.7. Lemma. With the notations of 1.4 and 1.5, assume in addition that
j0(M), j0(eN ) = j′0(eN), j′0(M

op) generate S0 as a C∗-algebra, and that the
following condition is satisfied:

(∗) j0(M
′ ∩Mk) ⊂ j′0(M

op), ∀k ≥ 1

Then j0(Mi)
′ ∩S0 = j′0(M

op
−i), (j′0(M

op
i

))′ ∩S0 = j0(M−i), ∀ i ∈ Z, and for all

k, i in Z one has j0(M
′
i ∩Mk) = j0(Mi)

′ ∩ j0(Mk) = j′0(M
op
−i) ∩ (j′0(M

op
−k))

′ =

j′0((M
op
−k)

′ ∩Mop
−i). Also, if x ∈ M ′

−n ∩Mn and x′ denotes the canonical con-
jugate of x (= Jx∗J) ([Po2]), then j0(x

′) = j′(xop). Moreover, for each i ∈ Z

there exist unique conditional expectations E+
i : S0 → j0(Mi)

′ ∩ S0 = j′0(M
op
−i),

E−
i : S0 → j′0(M

op
i )′ ∩ S0 = j0(M−i) such that E+

i (j0(x)) = j0(EM ′
i∩Mn

(x)),

E−
i (j′0(x

op)) = j′0(EM ′
i∩Mn

(x)op), ∀ x ∈ Mn, n ≥ i, which satisfy E+
i =

E+
i (j0(u) · j0(u∗)), E−

i = E−
i (j′0(u

op) · j′0(uop)∗), ∀ u ∈ U(Mi).

Proof. Since j0(M
′ ∩Mk) ⊂ Mop and [j0(Mk), j

′
0(M

op
−k] = 0, it follows that

j0(M
′ ∩Mk) ⊂ j′0(M

op
−k)

′ ∩ j′0(M
op) = j′0(M

op
−k

′ ∩Mop). But the two finite
dimensional algebras involved in this inclusion have the same dimension, so
they actually follow equal. By averaging over unitaries in Mi it then follows
that j0(M

′
i ∩Mk) ⊂ j′0(M

op), ∀i ≥ 1, giving in a similar way j0(M
′
i ∩Mk) =

j′0(M
op
−k

′ ∩ Mop
−i). Then by duality isomorphisms these equalities follow for

arbitrary i, k ∈ Z.

By the relative Dixmier property for subfactors of finite index (see the Appen-
dix, A.1), if for x ∈Mn we denote CMi(x) = con{uxu∗ | u ∈ U(Mi)}∩M ′

i∩Mn

then CMi(x) = {EM ′
i∩Mn

(x)} and ∀ x1, . . . , xk ∈Mn, ∀ ε > 0, ∃ u1, . . . , um ∈
U(Mi) such that

∥∥∥∥∥
1

m

m∑

l=1

ulxju
∗
l − EM ′

i∩Mn
(xj)

∥∥∥∥∥ < ε, j = 1, 2, . . . , k.

Since, by 1.5 we have

Alg(j0(M1), j
′
0(M

op
1 )) =

⋃
n

sp j′0(M
op
−i)j0(Mn)j

′
0(M

op
−i),
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which is dense in S0, it follows that

j0(Mi)
′ ∩ S0 =

⋃
n
j′0(M

op
−i)j0(M

′
i ∩Mn)j

′
0(M

op
−i)

=
⋃
n
j′0(M

op
−i)j

′
0((M

op
−n)

′ ∩ (Mop
−i))j

′
0(M

op
−i)

= j′0(M
op
−i).

Also, it follows that if T =
∑
l j

′
0(y

op
1,l)j0(xl)j

′
0(

op
2,l), for some y1,l, y2,l ∈ M−i,

xl ∈ Mn, and we denote by Ci,S0
(T ) = con{j0(u)T j0(u∗) | u ∈ U(Mi)} ∩

(j0(Mi))
′ ∩ S0, then

Ci,S0
(T ) =

{
∑

l

j′0(y
op
1,l)j0(EM ′

i∩Mn
(xl))j

′
0(y

op
2,l)

}

is a single point set. Also, Ci,S0
(αT1 + βT2) ⊂ αCi,S0

(T1) + βCi,S0
(T2) and

1 ≥ T ≥ 0 implies 1 ≥ T ′ ≥ 0, ∀ T ′ ∈ Ci,S0
(T ). It follows that

Alg{j0(M1), j
′
0(M

op
1 )} ∋ T =

∑

l

j′0(y
op
1,l)j0(xl)j

′
o(y

op
2,l)

7→
∑

l

j′0(y
op
1,l)j0(EM ′

i∩Mn
(xl))j

′
0(y

op
2,l) ∈ (j0(Mi))

′ ∩ S0 = j′0(M
op
−i)

is a well defined positive linear norm one projection onto j′0(M
op
−i) and the rest

of the statement is then clear by continuity. Q.E.D.

1.8. Definition. We denote C∗
max(M, eN ,M

op)
def
= C∗

u,max(M, eN ,M
op)/ ∩

kerπ, where the intersection is over all smooth representations π of
C∗
u,max(M, eN ,M

op), i.e., representations satisfying the following smooth-
ness condition (or axiom):

(∗) π(j(M ′ ∩Mi)) ⊂ π(j′(Mop)), i ∈ N.

Note that by 1.7 this condition actually implies π(j(M ′
k ∩Mi)) = π(j′(Mop

−i
′ ∩

Mop
−k)), ∀i, k ∈ Z.

We call C∗
max(M, eN ,M

op) the symmetric enveloping C∗-algebra associated

with N ⊂ M . Similarly, we put C∗
bin(M, eN ,M

op)
def
= C∗

u,bin(M, eN ,M
op)/ ∩

kerπ, where the intersection is over all representations π of C∗
u,bin(M, eN ,M

op)

such that π(j(M)), π(j′(Mop)) are von Neumann algebras and such that ax-
iom (∗) is satisfied. We call it the binormal symmetric enveloping C∗-algebra
associated with N ⊂ M . Note that, since B(L2(M)), with the representation
of M and Mop as operators of left and right multiplication by elements in M
and eN = projL2(N) ∈ B(L2(M)), does satisfy the condition (∗), both these
symmetric enveloping C∗-algebras are non-degenerate.
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We still denote by j, j′ the canonical embeddings of M1, Mop
1 in

C∗
max(M,eN,M

op) and C∗
bin(M, eN ,M

op). Note that the same argument
as in 1.2 shows that the antiautomorphism op on C∗

u,max(M, eN ,M
op) (re-

spectively op on C∗
u,bin(M, eN ,M

op)) implements an antiautomorphism, still

denoted by op, on C∗
max(M, eN ,M

op) (resp. op on C∗
bin(M, eN ,M

op)).
Also, by universality properties of C∗

u,max(M, eN ,M
op) and C∗

u,bin(M, eN ,M
op)

and the definitions, it follows that given any C∗-algebra S0 generated by copies
of M , Mop, eN satisfying 1.1 a), b), such that the corresponding tunnel-towers
{Mi}i, {Mop

j }j (cf. 1.4) satisfy the smoothness axiom 1.8 (∗), there exists

a natural ∗-morphism of C∗
max(M, eN ,M

op) onto S0 carrying j(Mi), j
′(Mop

j )

onto the corresponding images of Mi, M
op
j (⊂ S0). If in addition S0 ⊂ B(H0)

is so that the images of M , Mop are weakly closed, then this morphism factors
to a ∗-morphism of C∗

bin(M, eN ,M
op).

The above can be regarded as the universality property satisfied by
C∗

max(M, eN , Mop) and C∗
bin(M, eN ,M

op). Moreover, as a consequence of
the prior results and definitions, if we denote by S either of these two algebras,
then the following properties hold true:
1.9.1. j(Mi)

′ ∩ S = j′(Mop
−i), j

′(Mop
−i)

′ ∩ S = j(Mi), ∀ i ∈ Z.
1.9.2. If x ∈M ′

−n ∩Mn and x′ denotes the canonical conjugate of x (= Jx∗J)
then j(x′) = j′(xop).
1.9.3. There exist unique conditional expectations E−

i : S → j(M−i),
E+
i : S → j′(Mop

−i) such that E−
i (j′(xop)) = j′(EM ′

i∩Mn
(x)op), E+

i (j′(x)) =

j(EM ′
i∩Mn

(x)), ∀ x ∈ Mn, n ≥ i. Also, these expectations satisfy E−
i =

E−
i (j′(uop) · j′(uop∗)), E+

i = E+
i (j(u) · j(u∗)), ∀ u ∈ U(Mi).

1.9.4. C∗
max(M, eNn−1

,Mop) (resp. C∗
bin(M, eNn−1

,Mop)) naturally identifies
with C∗

max(M, eN ,M
op) (resp. C∗

bin(M, eN ,M
op)), as in 1.6.

1.10. Remarks. 1◦. Note that the smoothness condition 1.8 (∗) is redundant
if M ′ ∩Mn = Alg{1, e1, e2, ..., en}, ∀n, i.e., in the case the graph of N ⊂ M is
of the form ΓN,M = An for some n ≤ ∞.
2◦. In the case S0 ⊂ B(H) is so that j0(M), j′0(M

op) are von Neumann
algebras (e.g., if S0 = C∗

bin(M, eN ,M
op)) then one can give another proof to

Lemma 1.7, which doesn’t use the relative Dixmier property, as follows: if M
is weakly separable (i.e., M has separable predual) then take R ⊂ M to be
a hyperfinite subfactor such that R′ ∩M∞ = M ′ ∩M∞ (cf. [Po2,9]), so in

particular R′∩Mn = M ′∩Mn, ∀ n (here M∞ = ∪Mn
w

as usual). Then denote
by Φ the conditional expectation of B(H) onto j0(R)′ ∩ B(H), obtained by
averaging over a suitable amenable subgroup of U(R). Then clearly Φ|S0

= E+
0

and the other expectations are obtained similarly. IfM is not separable one can
still apply [Po2,9] to get that ∀ B ⊂ ∪j(Mn) countably generated, ∃ R ⊂ M
such that ER′∩Mn(B) = EM ′∩Mn(B), ∀ n, and the rest of the proof is then
similar.
3◦. The considerations in this section are easily seen to cary over to the case
when instead of an extremal inclusion of type II1 factors N ⊂ M (with trace
preserving expectation) we take an extremal inclusion of factors of type III,

Documenta Mathematica 4 (1999) 665–744



676 Sorin Popa

N ⊂ M ([Po3]). However, in this more general case, some adjustements of the
argument in 1.7 are needed, depending on the nature of the inclusion. Then,
if E denotes the expectation of minimal index of M onto N , an argument
similar to 2◦ above can be used to prove the existence of a unique conditional
expectation E0 from C∗

bin(M, eN ,Mop) onto its C∗-subalgebra generated by
M and Mop.

2. Symmetric Enveloping type II1 Factors

2.1. Theorem. There exists a unique trace state tr on C∗
max(M, eN ,M

op)
and the corresponding ideal trace Itr = {x ∈ C∗

max(M, eN ,M
op) | tr(x∗x) = 0}

is the unique maximal ideal in C∗
max(M, eN ,M

op). In particular, there exists
a unique state τ0 on each quotient C∗-algebra S0 of C∗

max(M, eN ,M
op) (in

particular on C∗
bin(M, eN ,M

op)) and its ideal is the unique maximal ideal of
S0.

Proof. By the uniqueness properties of the expectations E+
i , i ∈ Z, of a C∗-

algebra S0 generated by j0(M1), j
′
0(M

op
1 ) onto j′0(M

op
−i) like in 1.6, it follows

that E+
i = E

j′0(Mop)

j′0(Nop

i−1
)
◦ E+

0 . Let τ be the trace on j0(M) and τ ′ the trace on

j′0(M
op) and define τ0 = τ ′ ◦ E+

0 on S0. Since E
j′0(Mop)

j′0(Nop

i−1
)

is τ ′ preserving, we

have for i ≥ 0, x ∈ S0:

τ0(x) = τ ′(E+
0 (x)) = τ ′

(
E
j′0(Mop)

j′0(Nop

i−1
)
(E+

0 (x))
)

= τ ′ ◦ E+
i (x).

If k ≥ i, u ∈ U(j0(Mi)), x ∈ j0(Mk), y
′, y′′ ∈ j′0(N

op
i−1) then we have:

τ0(uy
′xy′′u∗) = τ0(y

′uxu∗y′′) = τ ′(E+
i (y′uxu∗y′′)) = τ ′(y′E+

i (uxu∗)y′′)

= τ ′(y′Ej0(M ′
i∩Mk)(uxu

∗)y′′) = τ ′(y′E+
i (x)y′′) = τ ′(E+

i (y′xy′′))

= τ0(y
′xy′′).

Thus, by 1.6 it follows that τ0(uTu
∗) = τ0(T ), ∀ T ∈ S0, ∀ u ∈ U(Mi). Also,

if u′ ∈ j′0(M
op) is a unitary element and x ∈ j0(Mk), y

′, y′′ ∈ j′0(M
op) then we

get:

τ0(u
′y′xy′′u′

∗
) = τ ′(E+

0 (u′
∗
y′xy′′u′)) = τ ′(u′y′E+

0 (x)y′′u′
∗
)

= τ ′(y′E+
0 (x)y′′) = τ ′(E ′

0(y
′xy′′)) = τ0(y

′xy′′).

This shows that τ0(u
′Tu′

∗
) = τ0(T ), ∀ T ∈ S0, ∀ u′ ∈ U(j′0(M

op)), by virtue
of 1.6. Since the centralizer of τ0 is an algebra and it contains both U(j0(Mi)),
U(j′0(M

op)), with i ≥ 1, τ0 has all S0 = C∗(j0(Mi), j
′
0(M

op)) in its centralizer,
thus, it is a trace.
If τ1 is another trace on S0 and (πτ1 ,Hτ1 , Eτ1) is the corresponding GNS con-

struction, then let S0 = πτ1(S0)
w
. Since the unit ball of πτ1(Mk) is complete
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in the norm given by ‖πτ1(x)ξτ1‖ (because the unit ball of j0(Mk) is complete
in the norm τ1(x

∗x)1/2, by the uniqueness of the trace on the factor Mk) it

follows that πτ1(Mk) = πτ1(Mk). Thus, for x ∈ j0(Mk), y
′, y′′ ∈ j′0(M

op) we
get:

τ1(y
′xy′′) = 〈Eπτ1

(j0(M))′∩S0
(πτ1(y

′xy′′))ξτ1 , ξτ1〉
= 〈(πτ1 (y′)Eπτ1

(j0(M))′∩S0
(πτ1(j0(x))πτ1 (y

′′)ξτ1 , ξτ1〉
= 〈πτ1(y′Ej0(M ′∩Mk)(x)y

′′)ξτ1 , ξτ1〉
= τ ′(y′Ej0(M ′∩Mk)(x)y

′′)

= τ0(y
′xy′′).

with the last part following from the uniqueness of the trace on j′0(M
op).

This shows that S0 has a unique trace τ0 and also that if I0 ⊂ S0 is a two sided
closed proper ideal then S1 = S0/I0 has a trace, which thus composed with
the quotient map gives the trace on S0. Thus, I0 ⊂ Iτ0 , so Iτ0 is the unique
maximal ideal of S0. Q.E.D.

2.2. Remarks. 1◦. Let

C∗
min(M, eN ,M

op)
def
= C∗

max(M, eN ,M
op)/Itr (≃ πtr(C

∗
max(M, eN ,M

op))),

where Itr is the trace ideal (= maximal ideal) of C∗
max(M, eN ,M

op) corre-
sponding to the unique trace tr, as given by 2.1. From the previous theo-
rem and its proof if follows that C∗

min(M, eN ,M
op) is simple, has a unique

trace, still denoted tr, and has the Dixmier property, i.e., con{uxu∗ | u ∈
U(C∗

min(M, eN ,M
op))} ∩ C1 = {tr(x)1}, ∀ x ∈ C∗

min(M, eN ,M
op). In fact, by

2.1 any C∗-algebra S0 generated by mutually commuting copies of M , Mop

and a projection eN such that N ⊂ M
eN⊂ Alg(M, eN ) and Nop ⊂ Mop

eN⊂
Alg(Mop, eN) are basic constructions and such that the smoothness condition
1.8 (∗) is satisfied, has a unique trace tr, Itr is its unique maximal ideal and
S0/Itr = C∗

min(M, eN ,M
op).

Also it should be noted that if N = M then C∗
max(M, eN ,M

op) coincides with
M ⊗

max
Mop, C∗

bin(M, eN ,M
op) with M ⊗

bin
Mop (as considered in [EL]) and

C∗
min(M , eN ,M

op) with M ⊗
min

Mop.

2◦. Let N ⊂ M be an extremal inclusion of von Neumann factors of type
III, with the conditional expectation of minimal index E , as in 1.10.3◦. The
construction analoguous to 2.1 is then as follows: one first considers the expec-
tation E0 given by 1.10.3◦; one takes a normal faithful state ϕ on M such that
ϕ ◦ E = ϕ; instead of the trace tr, one defines a state ψ on C∗

bin(M, eN ,Mop)
by ψ = (ϕ⊗ ϕop) ◦ E0.

2.3. Corollary.

S = πtr(C
∗
max(M, eN ,Mop))

w ≃ πtr(C
∗
bin(M, eN ,Mop))

w

Documenta Mathematica 4 (1999) 665–744



678 Sorin Popa

is a type II1 factor with embeddings πtr ◦ j : M1 → S, πtr ◦ j′ : Mop
1 → S and

an antisymmetry op such that
a) [πtr(j(M)), πtr(j

′(Mop))] = 0
b) πtr(j(eN )) = πtr(j

′(eN ))
c) S = vN(πtr(j(M)), πtr(j(eN )), πtr(j

′(Mop)))
d) πtr(j(x))

op = πtr(j
′(xop)), ∀ x ∈M , πtr(j(eN ))op = πtr(j(eN )).

Moreover, if S0 is another type II1 factor with embeddings j0 : M1 → S0,
j′0 : Mop

1 → S0 satisfying conditions a), b) (with j0 instead of πtr ◦ j and
j′0 instead of πtr ◦ j′) and such that j0(M

′ ∩ Mn) ⊂ j′0(M
op), ∀n ≥ 1, then

there exists a unique isomorphism σ of S into S0 such that j0 = σ ◦ πtr ◦ j,
j′0 = σ ◦ πtr ◦ j′. And if in addition S0 = vN(j0(M), j0(eN ), j′0(M

op)), then σ
is onto.

Proof. Trivial by 2.1. Q.E.D.

2.4. Definition. We denote by M ⊠
eN

Mop the type II1 factor S =

πtr(C
∗
max(M, eN , Mop)) in the previous corollary and call it the symmetric

enveloping type II1 factor associated with N ⊂ M . Also, we call M ∨Mop ⊂
M ⊠

eN

Mop the symmetric enveloping inclusion associated with N ⊂M . We will

identify M , eN , Mop with their corresponding canonical images in M ⊠
eN

Mop,

more generally we will identify Mn, M
op
n , en with their canonical images via

πtr ◦ j, πtr ◦ j′ (cf 1.4), whenever some tunnel for N ⊂M is chosen. We’ve seen
in 2.3 that M ⊠

eN

Mop has an antisymmetry op and that it satisfies a universality

and uniqueness property. Also, from now on we will use the notation τ for the
unique trace on the factor M ⊠

eN

Mop (as in fact for any generic factor).

2.5. Remarks. 1◦. As one can see from 2.1-2.3, the symmetric enveloping type
II1 factor M ⊠

eN

Mop associated to an inclusion N ⊂M can be constructed out

of any C∗-algebra S0 generated by copies of M and Mop, satisfying M ′ ∩S0 =
Mop, and by a projection eN , implementing the expectations EN on M and
ENop on Mop: just put M ⊠

eN

Mop to be the completion of the algebra S0/I0

in the strong topology given by its unique trace, I0 being the maximal ideal
of S0 or, alternatively, the ideal corresponding to the unique trace on S0. In
particular, M ⊠

eN

Mop = C∗(M, eN , JMMJM )/I0. But one can also construct

M ⊠
eN

Mop by defining directly the Hilbert space of its standard representation.

In order to show this, we will in fact consider a more general construction. Thus,
let N ⊂ M and Q ⊂ P be extremal inclusions with the same extended higher
relative commutant picture (or extended standard invariant), i.e., →̃GN,M =
tilde→ GQ,P = {Aij}i,j∈Z. The concatenation algebra associated to these two
inclusions is then the unique (up to isomorphism) type II1 factor S generated
by commuting copies of M , P op and by a projection e, implementing both EN
and EQop , such that M ′ ∩ S = P op. This algebra is denoted by M ⊠

eN =eQ

P op
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(or simply M ⊠P op, when no confusion is possible). Its uniqueness follows the
same way as the uniqueness of M ⊠

eN

Mop above. To prove its existence, we

consider the following construction: Take {mj}j∈J to be be an orthonormal
basis of A−∞,∞ over A−∞,0 ∨A0,∞ and identify A−∞,0 ∨A0,∞ with its image
in M⊗̄P op (through the choice of tunnels in M and P ); note that the mj ’s can
be chosen of bounded norm and such that the set of indices J can be written as
∪nJn, where each Jn is finite and such that

∑
j∈Jn

mjM ∨Mop is a M ∨Mop-

bimodule of finite dimension (equivalently,
∑

j∈Jn
mjP ∨ P op is a P ∨ P op-

bimodule of finite dimension) See 4.5 below for how to get these mj ’s. Then

let Hn
def
=
∑

j∈Jn
mjL

2(M ∨ P op) and H def
= ∨nHn, the scalar product on H

being defined by 〈mjξ,miη〉 = 〈EA−∞,0∨A0,∞(m∗
imj)ξ, η〉, ∀ξ, η ∈ L2(M∨P op).

Finally, we letM,P op and e = eN = eP op act on H as follows: M (and similarily
P op) acts on each Hn by multiplication to the left, according to the relations
Mmi ⊂ ∑

j∈Jn
mj(M ∨ A0,∞), ∀i ∈ Jn, with the latter vector space being

identified with a subset of Hn; e acts also by multiplication to the left, by
regarding H as a left A−∞,∞ module in the obvious way and letting e = e1.
Then M ⊠

eN =eQ

P op is simply the von Neumann algebra generated byM,P op, e1

on H.

It is easy to check that these actions of M,P op, e on H are well defined, that
they satisfy M ′ ∩ C∗(M, e, P op) = P op, exe = EN (x)e, eye = EP op (y)e, for

x ∈M, y ∈ P op, and that 〈 · 1̂, 1̂〉 defines a trace on C∗(M, e, P op). This shows
the existence of the concatenation algebra.

Note that, by using the same proofs as for M ⊠
eN

Mop, it follows that the con-

catenation algebra has similar properties as the ones the symmetric enveloping
algebras are shown to have in this section and in Sec. 4. Obviously, when
(Q ⊂ P ) ≃ (N ⊂ M) this algebra coincides with the symmetric enveloping
type II1 factor associated with N ⊂M .

Note that any extremal hyperfinite subfactor N ⊂ R gives rise to a canonical
non-separable concatenation algebra as follows: Let ω be a free ultrafilter on
N and denote by Rω the corresponding ultrapower algebras associated to the
hyperfinite factor R. Then (R′ ∩ Rω)′ ∩ Rω = R and more generally (N ′

k ∩
Rω)′ ∩Rω = Nk, ∀k, where R ⊃ N ⊃ N1 ⊃ ... is a tunnel for R ⊃ N (cf. [C1]).
Thus, if we denote P 0 = R′∩Rω and Q0 to be the downward basic construction
for P 0

1 = N ′∩Rω ⊃ R′∩Rω = P 0 and put (Q ⊂ P ⊂ P1) ≃ (Q0 ⊂ P 0 ⊂ P 0
1 )op

then N ⊂ M and Q ⊂ P have the same higher relative commutant pictute
(extended standard invariant) and the von Neumann algebra S generated by
R and P op

1 = N ′ ∩ Rω is isomorphic to the concatenation of (N ⊂ R) and
(Q ⊂ P ) (see also Remark 2.11, 1◦ in [Po3], with caution to the obvious typos
there...).

2◦. For an extremal inclusion of type III factors N ⊂ M like in
1.10.3◦, 2.2.2◦, one defines its symmetric enveloping von Neumann algebra
as πψ(C∗

bin(M, eN ,Mop)). It is easy to see that this algebra does not in fact
depend on the normal faithful state ϕ, with ϕ = ϕ ◦ E , taken on M.
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The next proposition summarizes the main properties of the factor M ⊠
eN

Mop

and its canonical subalgebras:

2.6. Proposition. M ⊠
eN

Mop with its subalgebras Mi, M
op
i projections ek,

i, j, k ∈ Z, and antisymmetry op satisfy the conditions:
a) [M,Mop] = 0;

b) eop1 = e1 = eN , eopn = e−n+2, n ∈ Z, and · · · ⊂ N1

e−1⊂ N
e0⊂ M

e1⊂ M1

e2⊂
M2 ⊂ · · · is a Jones tower-tunnel for N ⊂ M , where M0 = M , M−1 = N ,
M−n = Nn−1, n ≥ 2.
c)
⋃
n≥1

MiM
op
n Mi =

⋃
n≥1

Mop
j MnM

op
j = Alg(M, eN = e1,M

op), ∀ i, j ∈ Z and

it is a dense ∗-subalgebra in M ⊠
eN

Mop.

d) M ′
j ∩M ⊠

eN

Mop = Mop
−j and (Mop

j )′ ∩M ⊠
eN

Mop = M−j, ∀ j ∈ Z.

Proof. Clear by 1.9 and the definition of M ⊠
eN

Mop. Q.E.D.

The bicommutant relations in d) above can actually be taken as an abstract
characterization of the symmetric enveloping algebra:

2.7. Proposition. Let N ⊂ M be an extremal inclusion and S be a type II1
von Neumann algebra containing M . If (M ′∩S ⊂ N ′∩S) ≃ (Mop ⊂Mop

1 ), and
S is generated by M and N ′ ∩ S then M ∨M ′ ∩ S ⊂ S is naturally isomorphic
to M ∨Mop ⊂M ⊠

eN

Mop

Proof. Let e0 ∈M be a Jones projection forN ⊂M and {mj}j an orthonormal
basis of N over N1 = {e0}′ ∩N such that one of the mj ’s equals 1. For x ∈ S
define E(x) = Σjmje0xe0m

∗
j ∈ S. Note that if x ∈ M ′ ∩ S then mj and e0

commute with x so E(x) = x. Also, if x ∈ N ′∩S then for each y ∈M we have

yE(x) = y
∑

j

mje0xe0m
∗
j = λ−1

∑

i,j

mie0E
M
N (e0m

∗
i ymje0)xe0m

∗
j

= λ−1
∑

i,j

mie0xE
M
N (e0m

∗
i ymje0)e0m

∗
j =

∑

i

mie0xe0m
∗
i y = E(x)y

showing that [E(x), y] = 0. Thus E(x) ∈ M ′ ∩ S. This shows that E is a
norm one projection of N ′ ∩ S onto M ′ ∩ S so by Tomiyama’s theorem it is a
conditional expectation. Also, if x ∈ N ′ ∩ S then we have

τ(E(x)) = τ(Σjmje0xe0m
∗
j ) = τ(xe0Σjm

∗
jmje0)

= Σjτ(xe0E
N
N1

(m∗
jmj)) = Σjτ(EN ′

1∩S
(xe0E

N
N1

(m∗
jmj))) = λ−1τ(xe0) = τ(x)

Thus E is trace preserving as well, so it must coincide with the unique trace
preserving expectation of N ′∩S onto M ′∩S. Also, from the definition of E(x),
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if x ∈ N ′ ∩ S then e0xe0 = E(x)e0. Thus, if e1 ∈ N ′ ∩ S is a Jones projection
for (M ′ ∩ S ⊂ N ′ ∩ S) = (Mop ⊂Mop

1 ) then e0e1e0 = λe0. But

τ(e0)
−1 = [M : N ] = [Mop : Nop] = [Mop

1 : Mop] = τ(e1)
−1,

so that τ(e0) = τ(e1). Together with e0e1e0 = λe0, this implies that e1e0e1 =
λe1. Thus, if x, y ∈ N then e1(xe0y)e1 = λxye1 = EMN (xe0y)e1, showing that
e1 implements the conditional expectation EMN . But, by its definition, e1 also
implements the conditional expectation of M ′ ∩ S onto {e1}′ ∩ (M ′ ∩ S).
Since we also have the isomorphism (M ′∩S ⊂ N ′∩S) ≃ (Mop ⊂Mop

1 ), which in
turn implements an isomorphism ({e1}′∩M ′∩S ⊂M ′∩S ⊂ N ′∩S) ≃ (Nop ⊂
Mop ⊂Mop

1 ), 2.3 applies to yield (M ∨M ′∩S ⊂ S) ≃ (M ∨Mop ⊂M ⊠
eN

Mop)

. Q.E.D.

Note that from the above proposition and [Po2] it follows that if M is hyper-
fnite and the graph ΓN,M of N ⊂ M is strongly amenable (see [Po2] for the
definitions) then the inclusion M ∨Mop ⊂ M ⊠

eN

Mop is isomorphic to the in-

clusion M ∨M ′∩M∞ ⊂M∞. The inclusions M ∨M ′∩M∞ ⊂M∞ for N ⊂M
hyperfinite with finite depth, i.e., with finite (thus strongly amenable) graph,
were considered and extensively studied by Ocneanu ([Oc], see also [EvKa]).
Note that if M is an arbitrary type II1 factor and N ⊂ M is a subfactor of
finite depth and we denote by Q ⊂ P the standard model N st ⊂ M st then
GQ,P = GN,M and M ∨M ′ ∩M∞ ⊂M∞ naturally identifies with the ”concate-
nation” inclusion considered in 2.5.1◦, i.e., with M ∨ P op ⊂M ⊠P op.
The next lemma provides some useful localization properties relating the Jones
projections, the relative commutants and the antiisomorphism op. They are
reminiscent of some well known facts (see e.g., [PiPo1] page 83, [Bi1] page
205).

2.8. Lemma. Let N ⊂ M be an extremal inclusion, N ⊂ M
eN⊂ M1 its basic

construction and op the canonical antiautomorphism of N ′ ∩M onto M ′ ∩M1

(so xop = JMx
∗JM , x ∈ N ′ ∩M).

a) If x ∈ N ′∩M then xeN = xopeN and xop is the unique element y′ ∈M ′∩M1

such that y′eN = xeN .
b) eNxy

opeN = τ(xy)eN and τ(xyopeN) = λτ(xy), ∀ x, y ∈ N ′ ∩M , where
λ = [M : N ]−1.
c) If q ∈ P(N ′ ∩M), q 6= 0, then Nqqop ⊂ qMqqop ⊂ qqopM1qq

op is a basic
construction with Jones projections equal to

τ(q)−1qqopeNqq
op = τ(q)−1qeNq = τ(q)−1qopeNq

op.

d) EM∨M ′∩M1
(eN ) = λ

∑
i,j,k τ(f

k
jj)

−1fkijf
k
ji

op
, where {fkij} is a matrix unit for

N ′ ∩M .

Proof. a) If y ∈ M̂ then eN (ŷ) = ÊN (y) so that

xeN (ŷ) = ̂xEN (y) = ÊN (y)x = xopeN (ŷ).
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The uniqueness is clear because y′eN = 0 implies eNy
′∗y′eN = 0 so that

ENop(y′∗y′) = 0, thus y′ = 0.
b) By a) we have

eNxy
opeN = eNxyeN = EN (xy)eN = EN ′∩N (xy) = τ(xy)eN ,

whenever x, y ∈ N ′ ∩M . The second part is then trivial.
c) Since

qqopB(L2(M))qqop = B(L2(qMq))

and

(Nqqop) ∩ qqopB(L2(M))qqop = qqopM1qq
op,

it follows that

Nqqop ⊂ qMqqop ⊂ qqopM1qq
op

is a basic construction. Also, if e = τ(q)−1qqopeNqq
op then by a) we have

e = τ(q)−1qeNq = τ(q)−1qopeNq
op.

Also, the range of e = τ(q)−1qqopeNqq
op is clearly

L2(Nq) = L2(qNq) = qL2(N)q = L2(N)q

and so, since e is a projection we get e = projL2(N)q = projL2(Nqqop) as an

element in B(L2(qMq)).
d) To prove this it is sufficient to show that τ(xyopeN ) = τ(xyopa), ∀ x, y ∈
N ′ ∩M , where a = λ

∑
i,j,k τ(f

k
jj)

−1fkijf
k
ji

op
. It is then enough to check this

for x = fk
′

rs , y = fk
′′

s′r′ . For the left hand side, by b) we have:

τ(fk
′

rsf
k′′

s′r′
op
eN) = λδk′k′′δss′δrr′τ(f

k′

rr).

For the right hand side we have:

τ(fk
′

rsf
k′′

s′r′
op
a) = λ

∑

i,j,k

τ(fkjj)
−1τ(fkijf

k
ji

op
fk

′

rsf
k′′

s′r′
op

)

= λ
∑

i,j,k

τ(fk
′

rr)
−1δkk′δkk′′δjrδjr′τ(f

k
is)τ(f

k
is′ )

= λτ(fk
′

rr)
−1δk′k′′δrr′δss′τ(f

k′

ss )
2

= λδk′k′′δss′δrr′τ(f
k′

rr).

Q.E.D.
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2.9. Proposition. Let N ⊂ M be an extremal inclusion of type II1 factors.
Then we have
a) M ⊠

eNn−1

Mop naturally identifies with M ⊠
eN

Mop, by letting eNn−1
7→ fn−n.

b) The inclusion M1∨Nop ⊂M ⊠
eN

Mop naturally identifies with the reduced by

eop1 of the symmetric enveloping inclusion of M ⊂M1, M1∨Mop
1 ⊂M1 ⊠

eM

Mop
1 .

More generally, Mn∨Nop
n−1 ⊂M ⊠

eN

Mop is isomorphic to the reduced by (fn−n)
op

of Mn ∨Mop
n ⊂Mn ⊠

eM

Mn.

c) If p ∈ P(N ′ ∩M) and we denote by L ⊂ K the inclusion Np ⊂ pMp then
K ⊠

eL

Kop is naturally embedded in M ⊠
eN

Mop as the weakly closed ∗-subalgebra

generated by ppop(M ∨Mop)ppop and by

e′L
def
= σ(p)−1ppopeNpp

op.

Also, the ientity of this algebra is ppop.
d) If T ⊂ S denotes the symmetric enveloping inclusion associated with N ⊂M
and T0 ⊂ S0 the symmetric enveloping inclusion associated with some other
extremal inclusion of type II1 factors N0 ⊂M0, then the symmetric enveloping
inclusion associated with N⊗̄N0 ⊂M⊗̄M0 is naturally isomorphic to T ⊗̄T0 ⊂
S⊗̄S0.

Proof. a) Is clear by 1.6, 1.9.4 and 2.4.
b) follows then immediately, from 2.1, 2.3 and the fact that
(fn−n)

opMop
n (fn−n)

op = Nop
n−1(f

n
−n)

op ≃ Nop
n−1.

To prove c) note that if π is the canonical representation of C∗(M, eN , JMJ)
into M ⊠

eN

Mop then the C∗-algebra generated by ppop(M ∪ Mop)ppop and

e′L is the image under π of C∗(pJpJ(M ∪ JMJ)pJpJ, pJpJeNpJpJ) which
naturally identifies with the C∗-algebra generated by K, JKKJK and
eL in B(L2(K)), where L = Np ⊂ pMp = K. Since this repre-
sentation of C∗

u,max(K, eL,K
op) is smooth, it follows that π implements

a smooth representation of C∗
u,max(K, eL,K

op) into ppop(M ⊠
eN

Mop)ppop.

Since the latter has a trace, it follows by 2.1, 2.2 that K ⊠
eL

Kop =

(C∗(ppopMppop, e′L, pp
opMopppop))

w ⊂M ⊠
eN

Mop.

d) follows trivially from any of the characterizing universality properties of the
symmetric enveloping algebras (e.g., from 2.7). Q.E.D.

2.10. Proposition. Let N ⊂M be an extremal inclusion of type II1 factors.
a) If Q ⊂ N is an extremal subfactor of N then M ⊠

eN

Mop is unitally embedded

as a subfactor of M ⊠
eQ

Mop, by taking eN 7→∑
jmjeQm

∗
j (=

∑
jm

∗
j
opeQm

op
j ),

where {mj}j is a orthonormal basis of N over Q. Moreover, if there exists a
tunnel M ⊃ N ⊃ N1 ⊃ · · · for N ⊂M such that Nk ⊂ Q for some k, then this
unital embedding is in fact an equality.
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b) If Q ⊂ P is an extremal inclusion of factors embedded in N ⊂ M as a
commuting square, such that [P : Q] = [M : N ] and P ′∩Pn ⊂M ′∩Mn, ∀ n then
P ⊠
eQ

P op is unitally embedded in M ⊠
eN

Mop, by taking P →֒ M , P op →֒ Mop

and eQ 7→ eN . Also, P ⊠
eQ

P op ⊂ M ⊠
eN

Mop has finite index iff P ⊂ M has

finite index, with the estimate [M ⊠
eN

Mop : P ⊠
eQ

P op] ≤ [M : P ]2. Moreover,

if P ′ ∩ Pn = M ′ ∩ Mn, then this embedding implements the nondegenerate
commuting square:

M ∨Mop ⊂ M ⊠
eN

Mop

∪ ∪
P ∨ P op ⊂ P ⊠

eQ

P op.

Proof. a) It is easy to check by direct computation that

eN =
∑

j

mjeQm
∗
j =

∑

j

(JmjJ)eQ(Jm∗
jJ)

in B(L2(M)), so a) follows from 2.2-2.6. The last part of a) then follows from
2.7 a) and the first part.
b) To prove the first part we only need to show that the representation of
C∗
u,bin(P, eQ, P

op) in M ⊠
eN

Mop satisfies the faithfulness condition 1.8 (∗), i.e.,

we need to show that P ′ ∩ Pn = Qop
n−1

′ ∩ P op, ∀ n. By 2.1–2.4, it is suffi-
cient to check this equality in a representation of C∗

bin(M, eN ,M
op), and we’ll

choose C∗(M, eN , JMJ) ⊂ B(L2(M)) to do this. Let eMP ∈ B(L2(M)) be the
orthogonal projection of L2(M) onto L2(P ). Note that all the elements in
C∗(P, eN , JMPJM ) ⊂ B(L2(M)) commute with eMP and that if x ∈ JMJ then
x ∈ JPJ iff [x, eMP ] = 0. Now, if x ∈ P ′ ∩ Pn then x ∈M ′ ∩ Pn by hypothesis,
so x ∈ JMJ ∩ Pn. Also, [x, eMP ] = 0, because Pn ⊂ C∗(P, eN , JPJ). Thus,
x ∈ JPJ ∩ Pn. But Pn ⊂ Mn = JNn−1J

′ ∩ B(L2(M)) ⊂ JQn−1J
′. Thus,

x ∈ JPJ ∩ (JQn−1J)′. This proves the first part of b).
Further on, assume [M : P ] < ∞ and take {mj}j to be a finite orthonor-
mal basis of M over P . Note that M ⊠

eN

Mop = sp(M ∨Mop)vN{ej}j∈Z and

P ⊠
eQ

P op = sp(P ∨ P op)vN{ej}j∈Z, with {ej}j ⊂ P∞ being the Jones projec-

tions for a tower-tunnel for Q ⊂ P (see 4.1, 4.2), and thus for N ⊂ M as
well. Since M ∨Mop = Σi,jmim

∗op
j P ∨ P op it thus follows that M ⊠

eN

Mop =

Σi,jmim
∗op
j P ⊠

eQ

P op, showing that M ⊠
eN

Mop is a finitely generated left module

over P ⊠
eQ

P op, with the estimate [M ⊠
eN

Mop : P ⊠
eQ

P op] ≤ [M : P ]2 as a bonus.

For the last part, we have that
⋃
n

spP opPnP
op is so-dense in P ⊠

eQ

P op

and writing Pn as spPfn−nP we get EM∨Mop (P ⊠
eQ

P op) = sp
⋃
n
((P ∨

P op)EM∨Mop (fn−n)(P ∨P op)). But since P ′ ∩Pn = M ′ ∩Mn and Q′
n−1 ∩P =
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N ′
n−1 ∩ M , ∀ n, it follows that EM∨Mop (fn−n) = EP∨P op(fn−n), proving the

desired commuting square condition. Q.E.D.

Let us end this section by considering a notion of index for sublattices of stan-
dard λ-lattices (see [Po7] for the definition of abstract standard lattices and
for the notations and results used hereafter). We relate this notion with the
content of this section by showing that the index of a sublattice coincides with
the index of a certain canonically associated inclusion of symmetric enveloping
type II1 factors. This latter result will be used in Sections 5 and 8.

2.11. Definition. Let G = (Aij)0≤i≤j be a standard λ-lattice and G0 =

(A0
ij)0≤i≤j a sublattice. We define the index of G0 in G by [G : G0]

def
=

limn→∞ IndEA0n

A0
0n

= IndE
A0,∞

A0
0,∞

, where Ind(E) denotes as usual the index

([PiPo1]) of the conditional expectation E and Ai,∞ = ∪nAin, A0
i,∞ = ∪nAin.

Let us make right away some comments on this definition. By (1.1.6 in [Po3]),
if {mj}j is an orthonormal basis of A0,∞ over A0

0,∞ (apriorically made up of

square summable operators) then ‖Σjmjm
∗
j‖ = IndE

A0,∞

A0
0,∞

. But both A1,∞ ⊂
A0,∞ and A0

1,∞ ⊂ A0
0,∞ are λ-Markov inclusions (see 1.1.5 in [Po2] for the

definition), so the commuting square embedding of the latter into the former
is nondegenerate (1.5,1.6 in [Po2]). Thus, by (1.6 in [Po2]) any orthonormal
basis of A1,∞ over A0

1,∞ is an orthonormal basis of A0,∞ over A0
0,∞. Thus,

in the above we may assume that {mj}j lies in A1,∞. On the other hand, if
bounded, Σjmjm

∗
j belongs to the center of A0,∞ (see e.g. 1.1.5 in [Po3]), thus

Σjmjm
∗
j ∈ Z(A0,∞) ∩ A1,∞ = Z(A0,∞) ∩ Z(A1,∞). But by (Corollary 1.4.2

in [Po2]) this latter intersection is in fact equal to the scalar multiples of the
identity. Thus, Σjmjm

∗
j ∈ C1. Altogether, this shows that we may as well

take [G : G0]
def
= ‖Σjmjm

∗
j‖ = Σjmjm

∗
j , {mj}j being an arbitrary orthonormal

basis of Ai,∞ over A0
i,∞, for some i ≥ 0. The next proposition gives more ways

to look at this index.

2.12. Proposition. Let G be a standard λ-lattice with a sublattice G0. Let
Q0 be a non-atomic finite von Neumann algebra with a faithful trace and
NG(Q0) ⊂ MG(Q0), respectively NG0(Q0) ⊂ MG0(Q0) be the associated ex-
tremal inclusions of type II1 factors having G, respectively G0 as standard in-
variants, given by the universal construction in ([Po7]). Let

NG(Q0) ⊂ MG(Q0)

∪ ∪
NG0(Q0) ⊂ MG0(Q0).

be the corresponding commuting square like in ([Po7]). Then we have

[G : G0] = [MG(Q0) : MG0(Q0)] = [S : S0],
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where S and respectively S0 denote the symmetric enveloping algebras of
NG(Q0) ⊂MG(Q0) and respectively NG0(Q0) ⊂MG0(Q0).

Proof. Recall from [Po7] that MG
∞(Q0) identifies with the free product with

amalgamation Q0⊗̄A1,∞ ∗A1,∞A0,∞, with MG0
∞ (Q0) identifying with the subal-

gebra generated by Q0 and A0
0,∞. By the resulting commuting square relations

for these inclusions (see [Po7], pages 435 and 438), it follows that any orthonor-
mal basis of A1,∞ over A0

1,∞ is an orthonormal basis of Q0⊗̄A1,∞ ∗A1,∞ A0,∞

over Q0⊗̄A0
1,∞∗A0

1,∞
A0

0,∞, thus of MG
∞(Q0) overMG0

∞ (Q0). But the commuting

square embedding of MG0(Q0) ⊂MG(Q0) into MG0
∞ (Q0) ⊂MG

∞(Q0) is nonde-
genarate (cf. [Po7]), so that in the end, if {mj} denotes an orthonormal basis
of A1,∞ over A0

1,∞, we get [MG(Q0) : MG0(Q0)] = [MG
∞(Q0) : MG0

∞ (Q0)] =
Σjmjm

∗
j = [G : G0].

Finally, from the universality properties of the symmteric enveloping algebras
and the definition of NG(Q0) ⊂ MG(Q0) and NG0(Q0) ⊂ MG0(Q0), we see
that, if we denote by N ⊂ M and N0 ⊂ M0 these two inclusions then S0 ⊂ S
identifies with the inclusion Q0⊗̄Nop

0 ∗Nop
0
Mop

0 ⊂ Q0⊗̄Nop ∗Nop Mop. But

from the above we have that any orthonormal basis of Nop over Nop
0 will be

an orthonormal basis of S over S0. Q.E.D.

3. A Class of Examples

Let Q be a type II1 factor and σ1, . . . , σn a n-tuple of automorphisms of Q. Let
N ⊂M be the locally trivial inclusion of factors associated with σ1, . . . , σn (see
e.g. [Po2] ), i.e., M = Q⊗Mn+1(C), N = {∑n

i=0 σi(x)⊗eii | x ∈ Q ≃ Q⊗C1},
where σ0 = idQ and {eij}0≤i,j≤n is a matrix unit for Mn+1(C).
We still denote by σi the automorphism of M = Q ⊗ Mn+1(C) defined by
σi(x ⊗ ekl) = σi(x) ⊗ ekl, ∀ x ∈ Q, 0 ≤ k, l ≤ n. Denote by G the
discrete group generated by σ1, . . . , σn in Aut(M)/Int(M). Also, we let
σ : G → Aut(M)/Int(M) be the corresponding faithful G-kernel. Then note
that the faithful G-kernel σ⊗σop on M⊗̄Mop has vanishing H3(G,T) cohomol-
ogy obstruction ([J5]), so that it can be viewed as a (properly outer) cocycle
action of G on M⊗̄Mop.
In this section we show that, with the above notations, we have

(M ∨Mop ⊂M ⊠
eQ

Mop) ≃ (M⊗̄Mop ⊂ (M⊗̄Mop) ⋊σ⊗σop G),

in which the cross product is associated with the cocycle action σ ⊗ σop as
in (4.1 of [J5]). Since by the previous sections M ∨Mop ⊂ M ⊠

eQ

Mop is the

(weak closure of the) quotient of C∗(M,JMJ) ⊂ C∗(M, eN , JMJ), it will be
sufficient to study this latter inclusion of algebras.
So let Ui be the unitary element acting on L2(M, τ), defined on the dense subset

M̂ ⊂ L2(M, τ) by Ui(x̂) = σ̂i(x), x ∈M , 0 ≤ i ≤ n. Note that UixU
∗
i = σi(x),

∀ x ∈ M , 0 ≤ i ≤ n, and [J, Ui] = 0. In particular, since σi(ekl) = ekl,
0 ≤ k, l ≤ n, we also have [Ui, ekl] = 0, [Ui, JeklJ ] = 0, ∀ i, k, l.
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3.1. Lemma.

a) eN =
1

n+ 1

n∑

i,j=0

UjU
∗
i ejiJejiJ .

b) Uj = (n+ 1)

n∑

k,l=0

JeljJekjeNe0kJe0lJ .

Proof. a) If x =
∑
xij ⊗ eij ∈ Q⊗Mn+1(C) = M , then

ÊN (x) =
1

n+ 1

∑

i,j

(σjσ
−1
i (xii) ⊗ ejj )̂ =

1

n+ 1

n∑

i,j=0

UjU
∗
i ejiJejiJ(x̂)

proving the first formula.

b) By a) we have ejjeNJe00J =
1

n+ 1
Ujej0Jej0J , so that Uje00Je00J = (n+

1)e0jJe0jJejjeNJe00J . Thus we get

Uj =

n∑

k,l=0

ek0Jel0J(Uje00Je00J)Je0lJe0k = (n+ 1)

n∑

k,l=0

ekjJeljJeNJe0lJe0k.

Q.E.D.

3.2. Corollary. C∗(M, eN , JMJ) = C∗(M, {Ui}i≤n, JMJ). In fact,

C∗(Mn+1(C), eN , JMn+1(C)J) = C∗(Mn+1(C), {Ui}0≤i≤n, JMn+1(C)J).

Proof. Trivial by the previous lemma. Q.E.D.

Describing M ∨ Mop ⊂ M ⊠
eN

Mop as a cross product is now an imme-

diate consequence of the previous lemma and of 2.1, once we notice that
Uj(xJy

∗J)U∗
j = σi(x)Jσi(y

∗)J . To write the corresponding isomorphism in

more specific terms, denote by ui the image of Ui in M ⊠
eN

Mop (cf. 2.1) and

by gi the image of σi as an element of the group G.

3.3 Theorem. There exists a unique isomorphism γ, of (M ∨ Mop ⊂
M ⊠

eN

Mop) onto (M⊗̄Mop ⊂M⊗̄Mop ⋊σ⊗σop G), satisfying:

a) γ(xyop) = x⊗ yop, x, y ∈M .

b) ugi

def
= γ(ui) are unitary elements in the cross product M⊗̄Mop ⋊σ⊗σop G

which implement the automorphism σ ⊗ σop(gi), 0 ≤ i ≤ n.

c) γ(eN ) =
1

n+ 1

n∑

i,j=0

ugju
∗
gi
eji ⊗ eopij .

d) γ−1(ugj ) = uj = (n+ 1)

n∑

k,l=0

ekje
op
jl eNe0ke

op
l0 , 0 ≤ j ≤ n.

Proof. Trivial by 2.1 and 3.1. Q.E.D.
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In the next section we will see that even for arbitrary extremal subfactors
N ⊂ M the resulting inclusion M ∨Mop ⊂ M ⊠

eN

Mop can be interpreted as a

’cross-product’-type structure.

3.4 Remarks. 1◦. As one knows (see e.g. 5.1.5 in [Po2]), the standard invari-
ant GN,M of the above locally trivial subfactor N ⊂ M only depends on the
cohomology obstruction in H3(G,T) ([J5]) of the corresponding G-kernel σ on
Q. Thus, if we take another G-kernel σ′, on another type II1 factor Q′ but
with the same H3(G,T)-obstruction as σ, and denote the similar locally triv-
ial inclusion (corresponding to the same generators of G) by N ′ ⊂ M ′, then
GN ′,M ′ = GN,M and we can thus consider the concatenation algebra 2.5.1◦ as-
sociated with these two inclusions. Then M ∨M ′op ⊂M ⊠M ′op is isomorphic
to a cocycle cross product M⊗̄M ′op ⊂ (M⊗̄M ′op) ⋊σ⊗σ′op G.
2◦. Let G = (Aij)0≤i≤j be the standard λ-lattice associated to the locally
trivial subfactor N ⊂M , constructed from the automorphisms σ1, ..., σn acting
on the factor Q as above, with G denoting the group generated by the σi’s in
Aut(Q)/Int(Q) (and with the corresponding generators denoted hereafter by
g1, ..., gn). Let G0 = (A0

ij)i,j be a sublattice of G with the property that A0
01 is

a maximal abelian subalgebra of A01. Note that this amounts to saying that G0

has same ”generators” but possibly lesser ”relations” than G. Now take Q0 to
be an arbitrary finite von Neumann algebra without atoms. With Q0 as ”initial
data”, do the universal construction [Po7] of subfactors NG(Q0) ⊂ MG(Q0)
and NG0(Q0) ⊂ MG0(Q0) with higher relative commutants picture given by G
respectively G0, like at the end of Sec. 2, thus obtaining the non-degenerate
commuting square of inclusions:

NG(Q0) ⊂ MG(Q0)

∪ ∪
NG0(Q0) ⊂ MG0(Q0).

One can then show that the above algebras and the inclusions involved can be
alternatively described in terms of the following objects:
a). A type II1 factor Q′ with a faithful G kernel σ′ on it such that if N ⊂ M
denotes the locally trivial subfactor constructed out of this G-kernel and the
generators g1, ..., gn, like at the beginning of this section, then (N ⊂ M) ≃
(NG(Q0) ⊂MG(Q0));
b). An irreducible regular (in the sense of [D1]) subfactor Q′

0 ⊂ Q′, a group
G0 with generators g′1, ..., g

′
n and a G0-kernel σ′

0 on Q′
0 such that if N0 ⊂ M0

denotes the associated locally trivial subfactor, constructed from this G0-kernel
and the generators g′1, ..., g

′
n, like at the beginning of this section, then (N0 ⊂

M0) ≃ (NG0(Q0) ⊂MG0(Q0));
c). A group morphism ρ of G0 onto G such that ρ(g′i) = gi and such that if
H = ker(ρ) denotes the corresponding kernel group then H is isomorphic to
NQ′(Q′

0)/U(Q′
0) (so that Q′ is a cocycle cross-product of Q′

0 by H), in such
a way that if we denote by {uh}h∈H a set of unitaries in NQ′(Q′

0) that give
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a cross-section for H then, modulo perturbations by inner automorphisms,
σ′ and σ′

0 are related as follows: σ′(ρ(g′))(uha
′
0) = uhgh−1σ′

0(g
′)(a′0), ∀a′0 ∈

Q′
0, h ∈ H, g′ ∈ G0.

Moreover, through these identifications, N0 ⊂ M0 is embedded in N ⊂ M by
the inclusion M0 = Q′

0 ⊗Mn+1(C) ⊂ Q′⊗Mn+1(C) = M , and the correspond-
ing commuting square is isomorphic to the above commuting square.
Thus, in this exemple the sublattice G0 of the lattice G (which was associated
to the group G) corresponds to a ”covering” group G0 of the group G. Note
that, with these identifications, we have that the index of G0 in G equals the
order of the group H , [G : G0] = |H |.
Finally, let us see what the symmetric enveloping algebras become in this case:
if we extend the atomorphisms σ′(g), σ′

0(g
′) to M,M0 by putting them to act

as the identity on Mn+1(C), then the symmetric enveloping algebras S, S0 of
N ⊂ M respectively N0 ⊂ M0, and the corresponding inclusion S0 ⊂ S (cf.
2.10, b)), are given by

S0 = M0⊗̄Mop
0 ⋊σ′

0⊗σ
′
0
op G0 ⊂M⊗̄Mop ⋊σ′⊗σ′op G = S

with the inclusion being described similarily to c).

4. Thinness and Quasi-Regularity Properties

We’ve already seen that sp
⋃
n
MMop

n M = sp
⋃
n
MopMnM

op is a ∗-subalgebra

which is dense in M ⊠
eN

Mop in the weak (or strong) operator topology. Let

{en}n∈Z be the Jones projections for the Jones tunnel-tower · · ·N1 ⊂ N ⊂
M ⊂ M1 ⊂ · · · , with eN = e1, as in Sections 1–2, and denote by P the
von Neumann algebra they generate in M ⊠

eN

Mop. Fix n ≥ 0 and choose an

orthonormal basis {mj}j of M over Nn−1 that belongs to vN{ek}k≤0 ⊂ P and
an orthonormal basis {mn

k}k of Mn over M that belongs to vN{ek}k≤n ⊂ P .
Thus we have

MMop
n M ⊂M

(
∑

k

Mopmn
k

op

)


∑

j

Nn−1m
∗
j



 =
∑

j,k

MMopNn−1m
n
k

opm∗
j

=
∑

j,k

MMopmn
k

opm∗
j ⊂ spMMopP.

Thus we obtain sp
⋃
n
MMop

n M ⊂ sp(M ∨ Mop)P . Similarly, since
∑

j,kMmn
k

opm∗
j ⊂ M∞, we get sp

⋃
n
MMop

n M ⊂ spMopM∞, giving us

the following:

4.1. Proposition. With the above notations we have:

S
def
= M ⊠

eN

Mop = sp(M ∨Mop)P = spM∞M
op

= sp(M ∨Mop)(Alg{fn−n}n)(M ∨Mop)

Documenta Mathematica 4 (1999) 665–744



690 Sorin Popa

the closure being taken in either of the wo, so or ‖ ‖2 topologies in S.

Proof. Since sp(M∨Mop)P , M∞M
op and sp(M∨Mop)(Alg{fn−n}n)(M∨Mop)

contain sp
⋃
n
MMop

n M , which is a dense ∗-subalgebra in S = M ⊠
eN

Mop, we are

done. Q.E.D.

Note that if M is hyperfinite then M ∨Mop, Mop, M∞ are all hyperfinite.
Thus, in this case M ⊠

eN

Mop can be written as a “product” of two hyperfi-

nite subfactors. Recall from ([Po5]) that such situation is singled out by the
following:

4.2. Definition. A type II1 factor S for which there exist two hyperfinite
type II1 subfactors R1, R2 ⊂ S such that S = spR1R2, the closure being taken
in ‖ ‖2, is called a thin type II1 factor.

With this terminology the above observation takes the form:

4.3. Corollary. If N ⊂ M is a extremal inclusion of hyperfinite type II1
factors then S = M ⊠

eN

Mop is a thin type II1 factor.

From the above, the previous section and Connes’ fundamental theorem ([C1])
we can already conclude:

4.4. Corollary. If N ⊂M is an inclusion of factors associated to a faithful
G-kernel σ on a hyperfinite type II1 factor R like on Section 3, where G is a
finitely generated discrete group, then M ⊠

eQ

Mop ≃ R ⊗ Rop ⋊σ⊗σop G is thin

but it is hyperfinte iff G is amenable.

More precise statements along these lines will be obtained in Sec.5 and 7. Let
us note now that the Hilbert space Kn obtained as the closure of

(spMopMnM
op)̂ = (spMMop

n M )̂

in L2(M ⊠
eN

Mop, τ) is invariant to multiplication from left and right by both

M and Mop, thus by T = M ∨Mop. Thus Kn is a T -T bimodule.
Since spMMop

n M = sp
∑
j,kmkm

∗
j
opfn−n MMop = sp

∑
j,kMMopfn−nm

op
j m

∗
k,

it follows that Kn has finite dimension both as a left and as a right T module.
Thus, if pn is the orthogonal projection of L2(S, τ) onto Kn the pn commutes
with the operators of left and right multiplication by elements in T , i.e., pn ∈
T ′ ∩ 〈S, T 〉. Also, since

⋃
n
Kn = L2(S, τ), we have pn ր 1 and the above shows

that Tr pn < ∞, ∀ n, where Tr = Tr〈S,T 〉 denotes the unique trace on 〈S, T 〉
satisfying Tr(eT ) = 1.
Thus, T ′∩〈S, T 〉 is generated by finite projections of 〈S, T 〉 and the inclusion of
factors Tpn ⊂ pn〈S, T 〉pn has finite index for all n. Since T ′∩S = C1 (cf. 2.3),
by (1.8 in [PiPo1]) we can already conclude that Tr p ≥ 1, ∀ p ∈ T ′ ∩ 〈S, T 〉 (so
in particular T ′ ∩ 〈S, T 〉 is atomic) and that the multiplicity of any minimal
projection p in T ′ ∩ 〈S, T 〉 is ≤ Tr p.
In fact we have the following more precise statement:

Documenta Mathematica 4 (1999) 665–744



Symmetric Enveloping Algebras 691

4.5. Theorem. Let N ⊂ M be an extremal inclusion of type II1 factors and
denote S = M ⊠

eN

Mop, T = M ∨Mop ⊂ S.

a) If {Hk}k∈K denotes the set of irreducible M -M bimodules corresponding to
the set of even vertices of the standard graph ΓN,M of N ⊂M then L2(S, τ) is

isomorphic as a T -T bimodule with
⊕
k∈K

Hk⊗̄H̄k
op

and Kn with
⊕
k∈Kn

Hk⊗̄H̄k
op

(in which T ≃M⊗̄Mop).
b) If L2(S, τ) is identified with

⊕
k∈K

Hk⊗̄H̄k
op

as in a) and sk denotes the

orthogonal projection of L2(S, τ) onto its direct summand Hk⊗̄H̄k
op

then sk
is a minimal projection in T ′ ∩ 〈S, T 〉, pn =

∑
k∈Kn

sk and T ′ ∩ 〈S, T 〉 =

vN{sk}k∈K ≃ ℓ∞(K). Moreover, (Tr sk)
2 = [sk〈S, T 〉sk : Tsk] = v4

k, where
~v = (vk)k∈K is the standard vector giving the weights at the even vertices of
ΓN,M .
c) The antiautomorphism op on S leaves T invariant and thus implements an
antiautomorphism on 〈S, T 〉, still denoted by op. We have (T ′ ∩ 〈S, T 〉)op =
T ′ ∩ 〈S, T 〉, the projection sopk coincides with JSskJS and the corresponding

bimodule is (Hk⊗̄H̄k
op

)− = H̄k⊗̄Hop
k .

Proof. Let k ∈ K1 and choose q = qk ∈ N ′
1 ∩M to be a minimal projection

in the direct summand labeled by k. Denote v′q = (λτ(q))1/2qqope1e0e
op
0 and

vq = λ−2EN ′∩M1
(v′q). Note that f = v′qv

′
q
∗ is the Jones projection for the

irreducible inclusion qopqN1 ⊂ qopqMq ⊂ qopqM2qq
op (cf. 2.8.b) and 2.8.c)).

Note also that by applying twice the ”push down lemma” (1.2 in [PiPo1]) and
using the above definitions we get:

vqe
op
0 e0 = λ−2EN ′∩M1

(v′q)e
op
0 e0

= λ−1EN ′∩M2
(λ−1EN ′

1
∩M1

(v′q)e
op
0 )e0 = λ−1EN ′∩M2

(v′q)e0 = v′q,

implying that:

vqe0e
op
0 v∗q = v′qe0e

op
0 v′q

∗
= v′qv

′
q
∗

= f ≤ qopq.

Step I. We first prove that L2(spMvqM) ≃ Hk and that L2(spMopvqM
op) ≃

H̄op
k . Indeed, since eop0 = e2, by the definition of Hk we have Hk =

L2(
∑

jmjM), where {mj}j ⊂ M1 = 〈M, e1〉 (⊂ M ⊠
eN

Mop) are so that

{mje
op
0 m

∗
j}j are mutually orthogonal projections with

∑
jmje

opm∗
j = qop ∈

M ′ ∩M2. Since vq ∈ M1 and vqe
op
0 = qopvqe

op
0 , it follows that vq ∈ ∑mjM .

Thus MvqM ⊂ ∑
jmjM , so that L2(spMvqM) ⊂ Hk. Since Hk is irre-

ducible and L2(spMvqM) is a M -M bimodule, we actually have the equality
L2(spMvqM) = Hk.
To prove the second isomorphism, note that given any T − T (resp. M −M)
bimodule H ⊂ L2(S, τ), its conjugate T − T (resp. M − M) bimodule H̄
can be identified with (H)∗ = {ξ∗ | ξ ∈ H} and its opposite T op − T op (resp.
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Mop−Mop) bimodule Hop can be identified with (H)op = {ξop | ξ ∈ H} (all this
is trivial by the definitions). As a consequence, we also have H̄op ≃ ((H)∗)op.
By taking into account that (v∗q )

op = vq and that M∗ = M , from the iso-

morphism L2(spMvqM) ≃ Hk and the above remark it thus follows that
L2(spMopvqM

op) ≃ H̄op
k as well.

Step II. We now prove that Hk⊗̄H̄op
k ≃ L2(spMMopvqMMop). To see this,

by Step I it is sufficient to prove that there exists α ∈ C such that:

〈x1x
op
2 vqy1y

op
2 , x3x

op
4 vqy3y

op
4 〉 = α〈x1vqy1, x3vqy3〉〈xop

2 vqy
op
2 , xop

4 vqy
op
4 〉,

∀ xi, yj ∈M , 1 ≤ i, j ≤ 4. By denoting a = x∗3x1, b = y1y
∗
3 , c = x2x

∗
4, d = y∗4y2,

it follows that it is sufficient to prove that

〈avqb, c∗opvqd∗op〉 = α〈avqb, vq〉〈copvqdop, vq〉,

∀ a, b, c, d ∈ M . Writing b = b1e0b2, d = d1e0d2 for b1,2, d1,2 ∈ N and using
that

〈avqb, c∗opvqd∗op〉 = 〈b2ab1vqe0, d∗op2 c∗opd∗op1 vqe
op
0 〉,

〈avqb, vq〉 = 〈b2ab1vqe0, vq〉,
〈copvqdop, vq〉 = 〈dop

1 copdop
2 vqe

op
0 , vq〉,

by putting a for b2ab1 and c for d2cd1, it follows that we only need to check
that:

〈avqe0, c∗opvqeop0 〉 = α〈avqe0, vq〉〈copvqeop0 , vq〉,
∀ a, c ∈M . But

〈avqe0, c∗opvqeop0 〉 = τ(acopvqe0v
∗
q ) = τ(acopf)

and also

〈avqe0, vq〉 = 〈avqe0, vqe0〉 = τ(avqe0v
∗
q ) = λ−1τ(avqe0e

op
0 v

∗
q )

= λ−1τ(af),

and similarily 〈copvqeop0 , vq〉 = λ−1τ(copf), where f = vqe0e
op
0 v∗q is the Jones

projection for the irreducible inclusion N1qq
op ⊂ qMqqop ⊂ qopqM2qq

op. Since
EM∨Mop (f) = v−2

k qqop (where ~v = (vk)k∈K is the standard vector as usual),
we have τ(acopf) = α0τ(aq)τ(c

opqop), ∀ a, c ∈M , for some constant α0 ∈ R+.
Also, we have τ(af) = α1τ(aq), τ(c

opf) = α1τ(c
opqop), ∀ a, c ∈ M for some

constant α1 ∈ R+. This ends the proof.

Step III. We next show that

L2(spMMope1MMop) =
∑

k∈K1

L2(spMMopvqk
MMop).
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To see this let q′ ∈ N ′
1 ∩M be a minimal projection in the same simple di-

rect summand as q and u ∈ U(N ′
1 ∩ M) such that u∗qu = q′. Let v′′ =

λ−1EM1
(uopvqu

∗op) ∈ N ′ ∩M1 and note that v′′eop0 v
′′∗ = uop(vqe

op
0 v∗q )u

∗op ≤
q′op. By the same reasoning as in Step I, it follows that L2(spMv′′M) =
L2(
∑

jm
′
jM), where {m′

j}j ⊂ M1 is an orthonormal system such that∑
m′
je

op
0 m

′∗
j = q′op. But v′′ ∈ spMMopvqM

opM , because uopvqu
∗op ∈

spMopvqM
op and EM1

(uopvqu
∗op) = λ

∑
j b

op
j (uopvqu

∗op)b∗opj ∈ spMopvqM
op

as well, where {b∗j}j is an orthonormal basis of N over N1.

Thus we have spMMopvqM
opM ⊃ spMMopvq′MMop, ∀ q′ chosen this

way. Thus, if {mk
j }j ⊂ M1 is a orthonormal system such that

∑
jm

k
j e

op
0 m

k
j

is the central support of qop in M ′ ∩ M2 then spMop(
∑

jm
k
jM)Mop =

spMMopvqM
opM . Summing up over k and using that

∑
k

∑
jm

k
jM = M1 =

spMe1M , the statement follows.

Step IV. We now derive that

L2(spMMopfn−nMMop) ≃ ⊕
k∈Kn

Hk⊗̄H̄op
k

and then

L2

(
M ⊠

eN

Mop

)
=
⊕
k∈K

Hk⊗̄H̄op
k .

To see this, note first that Hk⊗̄H̄op
k ≃ Hk′⊗̄H̄op

k′ if and only if Hk ≃ H′
k. This

fact follows immediately by interpreting Hk as irreducible representation of
M ⊗Mop, according to Connes’ alternative view on correspondences (see [C4],
[Po8]).
Since by Steps II and III we have ∨k∈K1

Hk⊗̄H̄op
k = L2(spMMope1MMop),

with Hk⊗̄H̄op
k mutually nonisomorphic, the first part of the statement follows

for n = 1. By using this fact for Nn−1 ⊂ M
fn
−n⊂ Mn, n ≥ 1, we get it for

any n ≥ 1. The last part is now clear, since ∪nspMMopfn−nMMop is dense in
M ⊠

eN

Mop.

Step V. We finally show that if sk denotes the minimal projection in T ′∩〈S, T 〉
labeled by k ∈ K then Tr sk = v2

k. This fact can be checked directly by using a
similar strategy as in Step III. Instead, we will use the following more elegant
argument: Since

v4
k = (Tr〈S,T 〉sk)(TrT ′sk) = (Tr〈S,T 〉sk)(Tr〈S,T 〉JSskJS)

(cf. [J1]), we only need to show that T ′ ∩ 〈S, T 〉 ∋ sk 7→ JSskJS ∈ T ′ ∩ 〈S, T 〉
is Tr〈S,T 〉-preserving.
To see this note that since op acts on S leaving T invariant, it implements
a Tr〈S,T 〉-preserving anti-automorphism on 〈S, T 〉, thus a Tr〈S,T 〉-preserving
automorphism on the commutative algebra T ′ ∩ 〈S, T 〉. Moreover, if we put
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skL
2(S, τ) = L2(spTvqT ) as in Steps I and II and use that vop

q = v∗q , then we
have

sopk L
2(S, τ) = (L2(spTvqT ))op

= L2(spT opvop
q T

op) = L2(spTvop
q T ) = L2(spTv∗qT )

= L2(spT ∗v∗qT
∗) = L2(spTvqT )∗ = JSskJSL

2(S, τ)

Thus, sopk = JSskJS so that Tr(sk) = Tr(sopk ) = Tr(JSskJS). Q.E.D.

Note that the above theorem agrees with the exemples in Section 3. Indeed, if
σ ∈ Aut(P ) is an automorphism of a type II1 factor P and Hσ = L2(σ) denotes
the P−P bimodule associated with σ as in [Po8] then an easy calculation shows
that H̄σ

op
= Hσop .

4.6. Corollary. Let N ⊂ M be an extremal inclusion. Then N ⊂ M has
finite depth if and only if [M ⊠

eN

Mop : M ∨ Mop] < ∞. Moreover if these

conditions are satisfied then M ∨Mop has finite depth in M ⊠
eN

Mop.

Proof. With the notations used in 4.5 and its proof, if we assume that N ⊂M
has finite depth then K is finite so that by 4.5 we have dim(S′ ∩ 〈S, T 〉) < ∞
and each of the local indices is finite. But then, by Jones’ formula ([J1]), it
follows that [S : T ] <∞.
Conversely, if [S : T ] <∞ then dim(S′ ∩ 〈S, T 〉) <∞, so that K follows finite,
i.e., N ⊂M has finite depth.
Moreover, we see from 4.5 that if [S : T ] <∞ then the set of all T−T irreducible
bimodules generated by L2(S, τ) under Connes’ tensor product (fusion) are
contained in the set of bimodules {Hk⊗̄H̄k′

op}k,k′∈K and is thus finite, i.e.,
T ⊂ S has finite depth. Q.E.D.

4.7. Remark. As mentioned before, if M is hyperfinite and N ⊂ M is a
subfactor of finite depth then by ([Po15]) we have M ∨ Mop ⊂ M ⊠

eN

Mop

is isomorphic to the inclusion M ∨ M ′ ∩ M∞ ⊂ M∞ of [Oc]. This latter
inclusion was already shown to have finite depth in [Oc] and in fact all its
standard invariant (paragroup) has been calculated ([Oc], see also [EvKa]). In
particular, for this class of symmetric enveloping inclusions, part b) of 4.5 can
be recovered from ([Oc]). If N ⊂ M is a finite depth subfactor with M not
necessarily hyperfinite, then it is imediate to see that M ∨Mop ⊂ M ⊠

eN

Mop

has the same standard invariant (paragroup) as P ∨ P op ⊂ P ⊠
eQ

P op where

Q ⊂ P denotes the standard model for N ⊂ M , which is thus an inclusion
of hyperfinite factors. Thus, for any N ⊂ M with finite depth the standard
invariant (paragroup) of M ∨Mop ⊂ M ⊠

eN

Mop can be recovered from these

results.
Theorem 4.5 shows that in the case (T ⊂ S) = (M ∨Mop ⊂ M ⊠

eN

Mop) then

L2(S, τ) is spanned by T−T bimodules which are finitely generated both as left
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and right T -modules. Equivalently, T ⊂ S is such that T ′ ∩ 〈S, T 〉 is generated
by finite projections of 〈S, T 〉. Inclusions T ⊂ S verifying this latter condition
are called discrete in [ILP]. We’ll introduce here a new terminology for such
subfactors based on the former, more intrinsic characterization.

4.8. Definition. Let T ⊂ S be an irreducible inclusion of type II1 factors. We

denote by qNS(T )
def
= {x ∈ S | ∃ x1, x2, . . . , xn ∈ S such that xT ⊂ ∑n

i=1 Txi
and Tx ⊂∑n

i=1 xiT }. We call qNS(T ) the quasi-normalizer of T in S.

Note that the condition “xT ⊂∑Txi, Tx ⊂∑ xiT ” is equivalent to “TxT ⊂
(
∑n

i=1 Txi) ∩ (
∑n

i=1 xiT )” and also to “spTxT is finitely generated both as
left and as a right T -module.” It then follows readily that sp(qNS(T )) is a

∗-algebra. Thus P
def
= sp(qNS(T )) = qNS(T )′′ is a subfactor of S containing T .

Note also that L2(P ) = ∨{H | H ⊂ L2(P ), H is a T -T bimodule, dim(TH) <
∞, dim(HT ) < ∞} and that the orthogonal projection eP , of L2(S) onto
L2(P ), satisfies eP = ∨{f ∈ T ′ ∩ 〈S, T 〉 | Trf < ∞, TrJSfJS <∞}. All these
facts are just reformulations of some results in [PiPo1] and [ILP], but can also
be proved as exercises.
The terminology we wanted to introduce is then as follows:

4.9. Definition. Let T ⊂ S be an irreducible inclusion. If qNS(T )′′ = S,
we say that T is quasi-regular in S. From the above remarks we see that an
irreducible inclusion T ⊂ S is discrete (as defined in [ILP]) iff T is quasi-regular
in S.

Thus, from 4.5 it follows that if N ⊂ M is an extremal inclusion of type II1
factors then M ∨Mop is quasi-regular in M ⊠

eN

Mop. Note that, even more,

we showed that each irreducible T -T bimodule in L2(S) (where T = M ∨
Mop, S = M ⊠

eN

Mop) has multiplicity 1 and its (finite) dimension as a left T

module coincides with its dimension as a right T -module. Thus, our symmetric
enveloping inclusions have very similar properties to the inclusions given by
cross-products of factors by outer actions of discrete groups.
We wanted to emphasize even more this aspect by choosing the terminology
“quasi-normalizer”, “quasi-regular” in analogy with Dixmier’s notions of “nor-
malizer” and “regularity” for an irreducible subfactor ([D1]). This is particu-
larily justified by noticing that exemples of quasi-regular subfactors T ⊂ S can
be obtained by requiring S to be generated by unitary elements u such that
uTu∗ is included in T and has finite index in it (see the Appendix in [ILP] for
a concrete exemple of such a situation).
Let us end this section with a result showing that the extended sequence of
Jones projections in a tunnel-tower associated to a subfactor N ⊂M has a cer-
tain general ergodicity property with respect to the higher relative commutants
that is very useful in applications (see e.g. 2.2 and 2.3 in [GePo]). We’ll refer
to this result as the Ergodicity Theorem for Higher Relative Commutants.

4.10. Theorem. Let N ⊂ M be a subfactor with finite index (but not
necessarily extremal). Let {Mj}j∈Z be a tunnel-tower for N ⊂ M , where
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M0 = M,M−1 = N , and {ej}j∈Z be its corresponding Jones projections. De-

note Aij = M ′
i ∩Mj and A−∞,i =

⋃
n≤iAni, A−∞,∞ =

⋃
iA−∞,i. Then we

have:
a) {ej}′j∈Z

∩A−∞,∞ = C. In particular, A−∞,∞ is a factor.

b) If M has separable predual then the tunnel {Mj}j≤0 can be chosen such that
{ej}′j≤k ∩Mn ⊂ A−∞,n, ∀k ≤ n in Z.

c) If N ⊂ M is extremal and its tunnel is chosen to satisfy condition b) then
{ej}′j∈Z

∩M ⊠
eN

Mop = C.

Proof. a). Let θ be the trace preserving automorphism on A−∞,∞ imple-
mented by the duality isomorphism (1.5 of [PiPo1] or 1.3.3 of [Po2]), i.e.,
θ satisfies θ(Aij) = Ai+2,j+2, θ(ek) = ek+2, ∀i, j, k ∈ Z, with θ|Aij

be-

ing defined as the restriction to M ′
i ∩ Mj = Mα

i
′ ∩ Mα

j of σ′
ij : (Mi ⊂

Mi+1 ⊂ ... ⊂ Mj)
α → (Mi+2 ⊂ ... ⊂ Mj+2), where σ′

ij((xrs)r,s) =

λi−j+1
∑

r,smrei+2ei+3...ej+2xrsej+2...ei+2m
∗
s, in which {mr}r is an orthonor-

mal basis of vN{en}n≤i+1 over vN{en}n≤i and λ−1 = [M : N ].
We first show that this automorphism satisfies the identity θ(z)ej+2 = zej+2

for all z ∈ {ek}′k≤j ∩ A−∞,j . To this end let ε > 0 and i ≤ j be so that

‖EAij (z) − z‖2 < ε. Put z0 = EAij (z) ∈ {ei+2, ..., ej}′ ∩ Aij . From the above
local formula for θ we have

ej+2θ(z0)ej+2 = λi−j+1ej+2(
∑

r

mrei+2...ej+2z0ej+2...ei+2m
∗
r)ej+2

= λi−j+3
∑

r

mrei+2...ej(z0ej+2)ej ...ei+2m
∗
r

=
∑

r

mr(z0ei+2ej+2)m
∗
r = (

∑

r

mr(z0ei+2)m
∗
r)ej+2.

By taking into account that the orthonormal basis {mr}r can be taken to be
made up of no more than [M : N ] + 1 elements, we thus get the estimates:

‖θ(z)ej+2 − zej+2‖2

≤ ‖θ(z) − θ(z0)‖2 + ‖z − z0‖2 + ‖eJ+2θ(z0)ej+2 − z0ej+2‖2

≤ 2ε+ ‖Σrmr(z0ei+2)m
∗
rej+2 − z0ej+2‖2

≤ 2ε+
∑

r

‖[mrei+2, z0]‖2

≤ 2ε+ ([M : N ] + 1)2ε.

Letting ε tend to 0, we get the desired identity.
Now to prove part a) of the statement let z ∈ vN{en}′n∈Z

∩A−∞,∞ with τ(z) = 0
and take z0 = EA−∞,j (z) for some j. Note that τ(z0) = 0 as well. For such a
z0, and in fact for any z0 in vN{en}′n≤j ∩A−∞,j , we then have the estimates:

‖(z − z0)ej+2‖2
2 = τ((z − z0)

∗(z − z0)ej+2)
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= τ(E{el}′
l≥j+2

∩A−∞,∞
((z − z0)

∗(z − z0)ej+2))

= τ((z − z0)
∗(z − z0)E{el}′

l≥j+2
∩A−∞,∞

(ej+2)) = λ‖z − z0‖2
2,

in which we used that by Jones ergodicity theorem we have
E{el}′

l≥j+2
∩A−∞,∞

(ej+2) = λ1.

Since z0ej+2 = θ(z0)ej+2, we get similarily:

‖(z − z0)ej+2‖2
2 = ‖(z − θ(z0))ej+2‖2

2

= τ((z − θ(z0)
∗(z − θ(z0))ej+2)

= τ(E{el}′
l≤j+2

∩A−∞,∞
((z − θ(z0))

∗(z − θ(z0))ej+2))

= τ((z − θ(z0))
∗(z − θ(z0))E{el}′

l≤j+2
∩A−∞,∞

(ej+2))

= λ‖z − θ(z0)‖2
2,

in which we used the fact that θ(z0) commutes with vN{el}l≤j+2 and that by
Jones ergodicity theorem we have E{el}′

l≤j+2
∩A−∞,∞

(ej+2) = λ1.

Altogether, the above shows that ‖z − z0‖2 = ‖z − θ(z0)‖2 and by applying
this recursively n times we get ‖z − z0‖2 = ‖z − θn(z0)‖2, ∀n ≥ 1.
On the other hand θn(Aij) = Ai+2n,j+2n and so, if n is so that 2n > j − i
then τ(z1θ

n(z1)) = τ(z1)
2, ∀z1 ∈ Aij , showing that θ is mixing on A−∞,∞ =⋃

i,j Aij . Thus, for z0 ∈ A−∞,j with τ(z0) = 0 we have

lim
n→∞

‖z0 − θn(z0)‖2
2 = 2‖z0‖2

2.

Since ‖z0−θn(z0)‖2 ≤ ‖z0−z‖2 +‖z−θn(z0)‖2 and since for z ∈ vN{en}′n∈Z
∩

A−∞,∞ we proved that ‖z − z0‖2 = ‖z − θn(z0)‖2, ∀n ≥ 1, in which z0 =
E−∞,j(z), it follows that for each j we have the estimate:

2‖z0‖2
2 = lim

n→∞
‖z0 − θn(z0)‖2

2 ≤ 4‖z − z0‖2
2.

Now, letting j tend to infinity we get ‖z − z0‖2 tend to 0 and ‖z0‖2 tend to
‖z‖2, which from the above estimate forces z = 0. This ends the proof of a).
b). Let {xn}n≥1 ⊂ M be a sequence of elements dense in the unit ball of M
in the so-topology. We construct recursively a sequence of integers 0 < k1 <
k2 < ... and a tunnel M ⊃ N ⊃ N1... ⊃ Nk1 ⊃ ... ⊃ Nkn ⊃ ... for N ⊂ M
such that if {en}n≤0 are the corresponding Jones projections and we denote by
Bn = Alg{ej}−kn+1≤j≤−kn−1−1 then we have:

‖EB′
n∩M (xj) − EN ′

kn−1
∩M (xj)‖2 < 2−n, ∀j ≤ n

Assume we have this up to some n. By ([Po1]) there exists a hyperfinite
subfactor R ⊂ Nkn such that ER′∩M (x) = EN ′

kn
∩M (x), ∀x ∈ M . On the other
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hand, by Jones ergodicity theorem, we can regard R as being generated by
a sequence of Jones λ-projections ej indexed over the integers ≤ −kn − 1.
Thus, there will exist a sufficiently large kn+1 such that if we denote Bn+1 =
Alg{ej}−kn+1+1≤j≤−kn−1 then

‖EB′
n+1

∩M (xj) − EN ′
kn

∩M (xj)‖2 < 2−n−1, ∀j ≤ n+ 1.

Now choose a Jones projection e−kn for Nkn ⊂ Nkn−1 such that it commutes
with ej ∈ Bn+1 for j ≤ −kn−2 and such that it satisfies the Jones-Temperley-
Lieb relation for j = −kn − 1 (see the proof of 4.4 on page 33 of [Po15]), i.e.,
e−kne−kn−1e−kn = λe−kn , and then simply define the corresponding tunnel
Nkn ⊃ Nkn+1 ⊃ ... ⊃ Nkn+1

as given by these newly chosen Jones projections
ej with −kn+1 + 1 ≤ j ≤ −kn.
Thus, if we take An = ∪m≥nBm ⊂ vN{ej}j≤−kn−1 then it follows from the

above that EA′
n∩M (x) ∈ ∪kN ′

k ∩M for all x ∈ {xj}j and thus by density for

all x ∈M . Thus even more so vN{ej}′j≤−m ∩M ⊂ ∪kN ′
k ∩M for m = kn and

thus in fact for all m ≥ 0.
Finally, if x ∈ Mn for some n ≥ 0 then for any ε > 0 there exists k ≤ 0
and x′ ∈ sp((Alg{ej}k≤j≤n)M) such that ‖x − x′‖2 < ε. But then x′′ =

E{el}′
l≤k−2

∩Mn
(x′) belongs to sp((Alg({ej}k≤j≤n)∪iN ′

i ∩M) which in turn is

icluded into ∪iN ′
i ∩Mn and we have:

‖E{el}′
l≤k−2

∩Mn
(x) − x′′‖2 = ‖E{el}′

l≤k−2
∩Mn

(x− x′)‖2 ≤ ‖x− x′‖2 ≤ ε.

Letting ε go to 0 and j to −∞ we get

lim
j→−∞

E{el}′
l≤j−2

∩Mn
(x) = EA−∞,n(x), ∀x ∈Mn

This ends the proof of b) and c) follows then imediately, by taking into account
that

⋃
n spMMop

n M is dense in M ⊠
eN

Mop and applying a) and b). Q.E.D.

4.11. Corollary. Let N ⊂ M be an extremal inclusion of type II1 factors
with separable preduals. There exists a choice of a tunnel {Mj}j≤0 for N ⊂M

such that if we denote Mn = (M−n)
op′ ∩M ⊠

eN

Mop, n ≥ 1, M∞ = ∪nMn,

Mop
∞ = ∪nMop

n and A−∞,∞ = ∪nM ′
−n ∩Mn then M∞,M

op
∞ ⊂ M ⊠

eN

Mop

satisfy the conditions:
a) spM∞M

op
∞ = M ⊠

eN

Mop.

b) M∞ ∩Mop
∞ = A−∞,∞ and EM∞

EMop
∞

= EA−∞,∞.
c) A′

−∞,∞ ∩M ⊠
eN

Mop = C1.

Proof.. Conditions a) and b) are actually valid for any choice of the tunnel
while 4.9 clearly implies c). Q.E.D.

Documenta Mathematica 4 (1999) 665–744



Symmetric Enveloping Algebras 699

5. Relating the Amenability Properties
of ΓN,M , GN,M and (M ∨Mop ⊂ M ⊠

eN

Mop)

In [Po8] one considers a notion of relative amenability for inclusions of finite von
Neumann algebras T ⊂ S by requiring the existence of norm one projections
from 〈S, T 〉 onto S, equivalently of Connes-type S-hypertraces on 〈S, T 〉. In
the case S = T ⋊G for some discrete group G this condition on the inclusion
T ⊂ S is equivalent to the amenability of the group G.

As we have seen in the previous section, when T = M ∨Mop ⊂M ⊠
eN

Mop = S,

for N ⊂ M a locally trivial subfactor associated to some faithful G-kernel σ,
with G a finitely generated discrete group, then (T ⊂ S) ≃ (T ⊂ T ⋊σ⊗σop

G). Thus, the relative amenability of the inclusion T ⊂ S is equivalent in
this case to the amenability of G. On the other hand, one of the equivalent
characterizations of the amenability of G is Kesten’s condition requiring that
the Cayley graph of G, Γ, corresponding to some finite, self-adjoint set of
generators g0 = 1, g1, . . . , gn, satisfies ‖Γ‖ = n+ 1.

Recalling from [Po2,5] that the standard graph of a subfactor ΓN,M is called
amenable if it satisfies the Kesten-type condition ‖ΓN,M‖2 = [M : N ] and
that its standard invariant GN,M is called amenable if ΓN,M is amenable, and
noticing that for the locally trivial subfactor N ⊂ M corresponding to the
above (G; g0, . . . , gn;σ) the Cayley graph Γ coincides with the standard graph
ΓN,M , while [M : N ] = (n+ 1)2, it follows that in this case the amenability of
G (thus, the relative amenability of T ⊂ S) is equivalent to the amenability of
GN,M .

We prove in this section that in fact even for arbitrary extremal subfactors of
finite index N ⊂ M the relative amenability condition on T = M ∨Mop ⊂
M ⊠

eN

Mop = S is equivalent to the amenability of the standard lattice GN,M .

Along the lines, we will obtain some other related characterizations of the
amenability of GN,M , thus of ΓN,M .

Before stating the result, recall some terminology and notations from [Po2].

So let (N E⊂ M) =
⊕

((N ⊗P op)∗∗
(E⊗id)∗∗

⊂ (M ⊗P op)∗∗), the sum being taken
over all isomorphism classes of type II1 factors P that can be embedded with
finite index in some amplification of M , i.e., factors P that are weakly stably
equivalent to M in the sense of 1.4.3 in [Po8] (like for instance P = M). Then

take first the atomic part of this inclusion, (N E⊂ M)at, and next the binormal

part of the latter inclusion, ((N E⊂ M)at)bin (i.e., the largest direct summand
in which both M and P op sit as von Neumann algebras), which we denote by

N u
Eu

⊂ Mu, and call the universal atomic (binormal) representation of N ⊂M .
Also, the inclusion graph (or matrix) of N u ⊂ Mu is denoted by ΓuN,M and

called the universal graph (or matrix) of N ⊂M .

Finally one defines (N st
Est

⊂ Mst) to be the minimal direct summand of N u ⊂
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Mu (or, equivalently, of (N E⊂ M)at) containing the standard representation
of M ⊗Mop, B(L2(M)) and call it the standard representation of N ⊂ M . It
is easy to see (cf. e.g., [Po2]) that the commuting square embedding

N st
Est

⊂ Mst

∪ ∪
N ⊗Mop

E⊗id⊂ M ⊗Mop

can be identified with the embedding

⊕
ℓ∈L

B(Kℓ)
Est

⊂ ⊕
k∈K

B(Hk)

∪ ∪
N ⊗Mop

E⊗id⊂ M ⊗Mop

in which {Hk}k∈K (respectively, {Kℓ}ℓ∈L) is the list of all irreducible M -
M (resp. N -M) bimodules appearing as direct summands in L2(Mj), j =
0, 1, 2, . . . , and M ⊗Mop (resp, N ⊗Mop) is represented on each Hk (resp.
Kℓ) by operators of left and right multiplication by elements in M (respectively,
right multiplication by elements in N and right multiplication by elements in
M). Moreover, the inclusion matrix (or graph) for

N st ⊂ ⊕
ℓ∈L

B(Kℓ) ⊂
⊕
k∈K

B(Hk) = Mst

(which is thus a direct summand of the universal graph ΓuN,M) is given

by (ΓN,M )t, while Est is the unique expectation that preserves the trace
Tr on Mst =

⊕
k∈K

B(Hk) given by the weight vector ~v = (vk)k∈K , with

vk = dim(MHkM )1/2.
Finally, note that N ⊂M is in fact embedded in the smaller inclusion

N st,f def
:= (1 ⊗Mop)′ ∩ N st Est,f

⊂ (1 ⊗Mop)′ ∩Mst def
=: Mst,f

where Est,f is the restriction of Est to Mst,f.

5.1. Definition. The commuting square embedding:

N st,f
Est,f

⊂ Mst,f

∪ ∪
N

EN⊂ M

is called the finite (or reduced) standard representation of N ⊂M .
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5.2. Lemma. N st,f, Mst,f are finite type II1 von Neumann algebras with
atomic centers Z(N st,f) = Z(N st) ≃ ℓ∞(L), Z(Mst,f) = Z(Mst) ≃ ℓ∞(K).
Moreover, the inclusion N st,f ⊂ Mst,f is a matricial inclusion having inclusion
matrix (or graph) (ΓN,M )t. Also, Est,f is the unique conditional expectation of
Mst,f onto N st,f preserving the trace Tr on Mst,f given by the weights {v2

k}k∈K
on the center Z(Mst,f) ≃ ℓ∞(K).

Proof. The first part is trivial, by the definition of N st,f ⊂ Mst,f and the
properties of N st ⊂ Mst. Then the last part is an immediate consequence of
the first part and of 2.7 in [PiPo2]. Q.E.D.

5.3. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent:
1) GN,M is amenable.
1′) ΓN,M is amenable, i.e., ΓN,M satisfies the Kesten type condition ‖ΓN,M‖2 =
[M : N ].
2) (ΓN,M , ~v) satisfies the Følner-type condition: ∀ ε > 0, ∃F ⊂ K finite such
that ∑

k∈∂F

v2
k < ε

∑

k∈F

v2
k,

where

∂F = {k ∈ K \ F | ∃ k0 ∈ F such that (ΓN,MΓt
N,M )kk0 6= 0}.

3) There exists a state ψ0 on ℓ∞(K) ≃ T ′ ∩ 〈S, T 〉 such that ψ0 ◦ E has S =
M ⊠

eN

Mop in its centralizer, where E is the unique Tr-preserving conditional

expectation of 〈S, T 〉 onto T ′ ∩ 〈S, T 〉.
4) M ⊠

eN

Mop is amenable relative to M ∨Mop.

5) There exists a norm one projection from (N st,f
Est,f

⊂ Mst,f) onto (N
EN⊂ M).

5′) There exists a (N ⊂M)-hypertrace on (N st,f
Est,f

⊂ Mst,f).

Proof. 1) ⇐⇒ 1′) is clear by the definitions.
To prove 1′) =⇒ 2) let Φ = λV −1ΓΓtV , where V is the diagonal matrix over K
with entries (vk)k∈K . Note that Φ defines a bounded positive linear operator

from P
def
= T ′ ∩ 〈S, T 〉 ≃ ℓ∞(K) into itself such that Φ(1) = 1. Note also that

the trace Tr on P inherited from 〈S, T 〉 has weights (v2
k)k∈K as a measure on

K, i.e., if b ∈ P ≃ ℓ∞(K) then

‖b‖1,Tr =
∑

k∈K

|bk|v2
k.

For a, b : K → C, at least one of which has finite support, we denote 〈a, b〉 =∑
k∈K ak b̄k. For each b ∈ P ≃ ℓ∞(K) with finite support we then have:

Tr(Φ(b)) = 〈Φ(b), V 2(1)〉 = 〈b, λV ΓΓtV −1V 2(1)〉
= 〈b, λV ΓΓtV (1)〉 = 〈b, V 2(1)〉 = Tr(b).
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Thus Tr ◦ Φ = Tr. In particular, by Kadison’s inequality, this implies
‖Φ(a)‖2,Tr ≤ ‖a‖2,Tr, ∀ a ∈ L2(T,Tr).
Since ‖λΓΓt‖ = 1, it follows that ∀ δ > 0 ∃ F0 ⊂ K finite such that T0 =

F0
(λΓΓt)F0

satisfies 1 ≥ ‖T0‖ ≥ 1 − δ2/2. By the classical Perron-Frobenius
theorem applied to T0 (which is a finite symmetric matrix with nonnegative
entries) it follows that there exists b0 ∈ ℓ∞(K) ≃ P , supported in the set F0,
with b0(k) ≥ 0, ∀ k, and 〈b0, b0〉 = 1, such that T0b0 ≥ (1 − δ2/2)b0. Thus,
λΓΓtb0 ≥ (1 − δ2/2)b0.

Let then b
def
= V −1(b0) ∈ ℓ∞(K) ≃ P and note that

‖b‖2
2,tr = 〈V −1(b0), V

2V −1(b0)〉 = 〈b0, b0〉 = 1.

Moreover, we have:

‖Φ(b) − b‖2
2,Tr ≤ 2 − 2Tr(Φ(b)b)

= 2 − 2〈λV −1ΓΓt(b0), V (b0)〉
= 2 − 2〈λΓΓt(b0), b0〉
≤ 2 − 2(1 − δ2/2) = 2δ2/2 = δ2.

Thus ‖b− Φ(b)‖2,Tr < δ and ‖Φ(b)‖2,Tr ≥ 1 − δ, while ‖b‖2,Tr = 1.
By Theorem A.2 it follows that if δ < 10−4 then there exists a finite spectral
projection e of b such that ‖Φ(e) − e‖2,Tr < δ1/4‖e‖2,Tr.
In particular we have:

‖(1 − e)Φ(e)‖2
2,Tr ≤ ‖(1 − e)Φ(e)‖2

2,Tr + ‖e− eΦ(e)‖2
2,Tr

= ‖e− Φ(e)‖2
2,Tr < δ1/4‖e‖2

2,Tr.

Let F ⊂ K be the support set of e ∈ ℓ∞(K) ≃ P . By the first 3 lines of the
proof of Lemma 3.2 on page 281 of [Po3], we have v−1

k vk0 ≥ λ for all k0, k ∈ K
for which (ΓΓt)kk0 6= 0. Thus we have

(Φ)kk0 = λv−1
k vk0

∑

l∈L

aklak0l ≥ λ2,

forall k, k0 ∈ K for which the entry (k, k0) of Φ is nonzero. In particular, this
shows that Φ(e)(1 − e) ≥ λ2χ∂F , where χ∂F ∈ ℓ∞(K) is the characteristic
function of ∂F ⊂ K. Thus we have

λ4
∑

k∈∂F

v2
k = ‖λ2χF ‖2

2,Tr

≤ ‖(1 − e)Φ(e)‖2
2,Tr < δ1/4‖e‖2

2,Tr

= δ1/4
∑

k∈F

v2
k.
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Thus, if ε > 0 was given and we take δ = (λ4ε)4 then

∑

k∈∂F

v2
k < ε

∑

k∈F

v2
k

thus proving 1′) =⇒ 2).
Proof of 2) =⇒ 3). By 2), for each ε = 2−n there exisits a finite subset Fn ⊂ K
such that ∑

k∈∂Fn

v2
k < 2−n

∑

k∈Fn

v2
k

or, equivalently,




∑

k∈ΓΓtFn

v2
k −

∑

k∈Fn

v2
k



 < 2−n
∑

k∈Fn

v2
k.

Let fn ∈ T ′ ∩ 〈S, T 〉 ≃ ℓ∞(K) be the support projection of Fn. Let ω be a free
ultrafilter on N ≃ K and define ψ0 on ℓ∞(K) ≃ T ′ ∩ 〈S, T 〉 by

ψ0 = lim
n→ω

Tr(·fn)/Trfn.

Let ψ
def
= ψ0 ◦ E and note that ψ = limn→ω Tr(·fn)/Trfn on 〈S, T 〉 as well.

Note that for each n we have that Tr(·fn)/Trfn has T in its centralizer and it
is a normal state on 〈S, T 〉. Since T ′ ∩ S = C this implies that Tr(·fn)/Trfn
coincides with the trace τ when restricted to S. Thus, ψ|S = τ and ψ has T in
its centralizer. Let us show that ψ also has eN in its centralizer. To do this, it
is sufficient to prove that

lim
n→∞

(‖fneN − eNfn‖1,Tr/Trfn) = 0.

Let f ′
n ∈ T ′ ∩ 〈S, T 〉 ≃ ℓ∞(K) be the support projection of Fn ∪ ∂Fn and note

that we have

lim
n→∞

(‖f ′
n − fn‖1,Tr/Trfn) = lim

n→∞

(
∑

k∈∂Fn

v2
k/
∑

k∈Fn

v2
k

)
= 0.

Also, we have

‖fneN − eNfn‖1,Tr ≤ ‖eNfn − f ′
neNfn‖ + 2‖f ′

n − fn‖1,Tr.

So, to prove that [eN , ψ] = 0, it is in fact sufficient to prove that f ′
neNfn =

eNfn, ∀ n. We will show that, more generally, we have sF ′eNsF = eNsF ,
∀ F ⊂ K, where F ′ = F ∪ ∂F and sF =

∑
k∈F sk, sF ′ =

∑
k∈F ′ sk. To this

end, it is clearly sufficient to do it for single element sets F = {k1}. It then
amounts to show that if k2 ∈ K \ F ′, then sk2eNsk1 = 0. By the proof of 4.5
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we thus need to show that if k1, k2 ∈ Kn−1 for some n, with k2 /∈ {k1} ∪ ∂{k1}
and we take a minimal projection qi in the direct summand labeled by ki in
N ′

2n−1 ∩M , for each i = 1, 2, then we have MMopvq2 ⊥ e1MMopvq1MMop,
where e1 = eN and vqi = EN ′

n−1
∩Mn

(qiq
op
i f

n
−nf

0
−2nf

2n
0 ), i = 1, 2.

Before proving this, note that for such q1, q2 we have q2eNq1 = 0 and in fact
q2(N

′
2n−1 ∩M1)q1 = 0. Now, if we take x1,2 ∈ M , y1,2 ∈ Mop, x, x0 ∈ Nn−1,

y, y0 ∈ Nop
n−1, then we get

τ(v∗q2y
op
0 yop

2 xx2e1x1y
op
1 vq1x0f

0
−2nxy

opf2n
0 yop

0 )

= τ(EN ′
n−1

∩Mn
(f2n

0 f0
−2nf

n
−nq2q

op
2 )yop

0 yop
2 xx2e1x1x0y

op
1 yop

·EN ′
n−1

∩Mn
(q1q

op
1 fn−nf

2n
0 f0

−2n)f
0
−2nf

2n
0 ).

Taking the conditional expectation onto N ′
2n−1 ∩ (M ⊠

eN

Mop) and denoting

Y op
1 = yop

0 yop
2 ∈ Mop, Y op

2 = yop
1 yop ∈ Mop, X ′ = EN ′

2n−1
(xx2e1x1x0) ∈

N ′
2n−1 ∩M1, we thus obtain that the above is equal to:

τ(f2n
0 f0

−2nf
n
−nq

op
2 q2Y

opX ′Y op
2 q1q

op
1 fn−nf

2n
0 f0

−2n)

= τ(f2n
0 f0

−2nf
n
−nq

op
2 Y op

1 (q2X
′q1)Y

op
2 qop1 fn−n)

= 0

in which we first used that vqif
0
−2nf

2n
0 = qiq

op
i f

n
−nf

2n
0 f0

−2n and then we used
that q2X

′q1 = 0.
Since the elements of the form x0f

0
−2nx with x, x0 ∈ Nn−1 span all M , this

finishes the proof of the fact that eN is in the centralizer of ψ. Since ψ is
equal to the trace on S = M ⊠

eN

Mop and has in its centralizer the weakly dense

∗-subalgebra generated by T = M ∨Mop and eN in S, by [C3] it follows that
ψ has all S in its centralizer. This ends the proof of 2) =⇒ 3).
The proof of 3) =⇒ 4) is then trivial, since the relative amenability of T =
M ∨Mop ⊂ M ⊠

eN

Mop = S merely requires the existence of a state on 〈S, T 〉
which has S in its centralizer, while condition 3) provides very special such
states.
To prove 4) =⇒ 5) we need the following lemma.

5.4. Lemma. Let M0 = vN(M ∪ JSMJS), N0 = vN(N ∪ JSMJS) and Φ0 :
B(L2(S)) → B(L2(S)) be defined by Φ0(T ) = λ

∑
jm

op
j Tm

op
j

∗
, where {mop

j }j
is an orthonormal basis of Mop

1 over Mop and λ = [M : N ]−1 as usual. Then
Φ0(M0) = N0, E0 = Φ0|M0

is a conditional expectation and in fact

N0

E0⊂ M0

∪ ∪
N

EN⊂ M
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is a commuting square embedding of N ⊂ M , which is isomorphic to the
standard representation of N ⊂ M . Moreover, if N f

0 = JSMJ ′
S ∩ N0 ⊂

JSMJ ′
S ∩M0 = Mf

0, then

N f
0

Ef
0⊂ Mf

0

∪ ∪
N ⊂ M

is a commuting square embedding isomorphic to the finite standard representa-
tion of N ⊂M .

Proof. By construction, we see that N0 ⊂ M0 is a direct summand of (N ⊗
Mop)∗∗

(E⊗id)∗∗

⊂ (M⊗Mop)∗∗. Also, since N0 ⊂ (Mop
1 ∪JSMopJS)′∩B(L2(S)),

we have

M′
0 ∩N0 ⊂ (M ∪ JSMJS)′ ∩ (Mop

1 ∪ JSMopJS)′

= vN(M ∪Mop
1 ∪ JSMJS ∪ JSMopJS)′ ∩ B(L2(S))

= (M ⊠
eN

Mop ∪ JS(M ∨Mop)JS)′

= JS((M ∨Mop)′ ∩M ⊠
eN

Mop)JS = C1.

Thus Z(M0) ∩ Z(N0) = C. But if p0 denotes the projection of L2(S) onto
L2(M) then clearly p0M0p0 = M0p0 is isomorphic to B(L2(M)) as a M⊗Mop

representation. Thus, N0 ⊂ M0 must in fact coincide with N st ⊂ Mst. The
last part is now clear, since this isomorphism sends 1 ⊗ Mop onto JSMJS .
Q.E.D.

Proof of 4) =⇒ 5) ⇐⇒ 5′). The equivalence of 5) and 5′) was proved in [Po2],
the argument being identical to Connes’ single algebra analogue statement.
Let us then prove 4) =⇒ 5′). So let ψ be a S-hypertrace on 〈S, T 〉 = JSTJ

′
S ∩

B(L2(S)). Since T = M ∨Mop and M0 ⊂ JSM
opJ ′

S ∩B(L2(S)) (we’ve already
noticed this in the above lemma) it follows that

Mf
0 = (JSMJS)′ ∩M0 ⊂ (JS(vN(M ∪Mop))JS)′ ∩ B(L2(S))

= (JSTJS)′ ∩ B(L2(S)) = 〈S, T 〉.

Thus ψ restricts to a state φ on Mf
0 which has M in its centralizer (since ψ

has S in its centralizer and S contains M).

Note now that if T ∈ Mf
0 then

ψ(eNT ) = ψ(uop(eNT )uop∗) = ψ((uopeNu
op∗)T ), ∀ uop ∈ U(Mop).

Averaging by unitaries in U(Mop) and using that con{uopeNu
op∗ | uop ∈

U(Mop)} ∩ C1 = {λ1} (see the Appendix A.1), it follows that

ψ(eNT ) = λψ(T ) = λφ(T ).
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But eN ∈ S is in the centralizer of ψ so

ψ(eNT ) = ψ(eNTeN) = ψ(E0(T )eN).

By the same argument as above, the latter equals

λψ(E0(T )) = λφ(E0(T )).

Thus φ = φ ◦ E f
0 showing that φ is a (N ⊂ M)-hypertrace on N f

0

Ef
0⊂ Mf

0 thus

on N st,f
0

Est,f
0⊂ Mst,f

0 , proving 5′).

Proof of 5′) =⇒ 1). Since N stf
0

Estf
0⊂ Mst,f

0 has inclusion matrix (ΓN,M )t and
the trace Tr on Mst,f defined in 5.2 is preserved by Est,f , it follows by the
general result in [Po13] that ‖ΓN,M‖2 = ‖Γt

N,M‖2 = [M : N ].
This ends the proof of the theorem. Q.E.D.

5.5 Remarks. 1◦. Of all the equivalent characterisations of amenability for
standard graphs, the Kesten-type amenability condition ‖ΓN,M‖2 = [M : N ]
seems to remain the easiest to check in practice. For instance, it immediately
implies that if [M : N ] ≤ 4 then ΓN,M is amenable, and it is the condition
that was used by Bisch and Haagerup to construct many examples of infi-
nite depth subfactors with amenable graphs, by taking compositions between
a fixed point algebra inclusion and a cross product inclusion, corresponding to
actions of finite groups ([BiH]). Nevertheless, each of the other equivalent char-
acterizations of amenability provided in [Po2-5] and in this paper has its own
role in understanding various combinatorial and functional analytical aspects
of this concept. The main interest in this notion of amenability comes from the
fact that the hyperfinite subfactors having amenable graphs are precisely those
that can be recovered from their standard invariants and are thus, in particu-
lar, completely classified by this invariant (see 7.1, 7.2 later in this paper, and
also [Po16]).
2◦. Note that in the proof of the Følner condition 5.3.2 for ΓN,M , from the
Kesten-type condition ‖ΓN,M‖2 = [M : N ] (taken as the definition of the
amenability for a graph) we do not actually use the fact that ΓN,M is stan-
dard, i.e., the fact that it comes from a subfactor. Indeed, the proof goes the
same for any weighted bipartite graph (see [Po14] for more comments on this).
However, by using the ergodicity property 4.8 of the standard invariant and of
its subalgebra generated by the Jones projections, one can prove an interesting
sharper Følner type condition for standard graphs. This will be discussed in a
forthcoming paper.

5.6 Corollary. (a). Let G be a standard λ-lattice and G0 a sublattice. If G0

is amenable then G is amenable. Conversely, if [G : G0] <∞ and G is amenable
then G0 is amenable.
(b). Let Gk = {Akij}i,j≥0 be standard λk-lattices with corresponding graphs
ΓGk

= Γk, k = 1, 2. Let G denote the system of finite dimensional algebras
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Aij
def
= A1

ij ⊗A2
ij , i, j ≥ 0, with the tensor product trace. Then G is a standard

λ1λ2- lattice, its graph Γ is naturally identified with the tensor product of the
graphs Γk (regarded as matrices) and we have that G is amenable if and only
if both G1 and G2 are amenable.

Proof. (a). The first part follows trivially from the (Kesten-type) definition of
amenability, since G0 ⊂ G implies ‖ΓG‖ ≥ ‖ΓG0

‖. The second part follows from
2.11, 5.3.4 and [Po8].
(b). The first part follows imediately from the axiomatization of standard
lattices in [Po7]. The second part follows from the definition of the amenability,
because we have ‖Γ‖ = ‖Γ1‖‖Γ2‖, so that (λ1λ2)

−1 = ‖Γ‖2 iff λ−1
1 = ‖Γ1‖2

and λ−1
2 = ‖Γ2‖2. Note that, by using 2.9.d) and [Po8], this part is an imediate

consequence of 5.3.1 as well. Q.E.D.

6. Some More Characterizations of
the Amenability for ΓN,M and GN,M

In this section we prove several more equivalent characterizations of the
amenability for standard graphs and lattices, which clarify some of the re-
sults and ideas of the approach to amenability in [Po2,12]. We mention that,
while related in spirit with the rest of the paper, the present section will not
make explicit use of the symmetric enveloping algebras. So, in this respect, it
can be regarded as a digression.
To state the first result, recall that if B ⊂ A is an inclusion of von Neumann
subalgebras of an ambient type II1 factor then H(A | B) denotes its Connes-
Størmer relative entropy. By [PiPo1], if N ⊂ M is an extremal inclusion of
type II1 factors then H(M | N) = ln([M : N ]). Also, if N ⊂M ⊂M1 ⊂ · · · is
the Jones tower associated to N ⊂M then

H(M ′ ∩Mk+1 |M ′ ∩Mk) ≤ H(Mk+1 |Mk) = ln([Mk+1 : Mk]) = ln([M : N ]),

for all k ≥ 0. More generally, if p is a projection in M ′ ∩Mk then by [PiPo1]
we have

H(p(M ′ ∩Mk+1)p |p(M ′ ∩Mk)p)

≤ H(pMk+1p | pMkp) = ln([pMk+1p : pMkp])

= ln([Mk+1 : Mk]) = ln([M : N ]) = H(M | N).

Similarly, if N st ⊂ M st denotes as usual the “model” inclusion generated by
the higher relative commutants, as in [Po2], then the same remark as above
shows that H(pM stp | pN stp) ≤ H(M | N), ∀ p ∈ P(N st).
The result that follows states that this “upper bound” for the “local relative
entropies” is attained precisely when GN,M (equivalently ΓN,M) is amenable.
Since H(pM ′ ∩Mk+1p | pM ′ ∩Mkp) also represents the conditional entropy
from step k to step k + 1 of the restriction to the support set of p (in K or
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L) of the random walk on the graph Γ ◦ Γt ◦ Γ ◦ Γt · · · , for Γ = ΓN,M , with
transition probabilities determined by v = (vk)k∈K , this maximality condition
on the entropy can be interpreted as a local Shanon-McMillan-Breimann type
condition, in the same spirit as 5.3.5 in [Po2].

6.1. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent.
1) GN,M is amenable.
2) ∀ ε > 0, ∃ n ≥ 1 and p ∈ P(M ′ ∩Mn) such that

‖E(pM ′∩Mn+1p)′∩(pM ′∩Mn+2p)(en+2p) − λp‖2 < ε‖p‖2.

3) ∀ ε > 0, ∃ p ∈ P(N st
1 ) such that

‖EpNstp′∩pMstp(e0p) − λp‖2 < ε‖p‖2.

4)
lim
k

sup
p∈P(M ′∩Mk)

H(pM ′ ∩Mk+1p | pM ′ ∩Mkp)

= H(M | N) = ln([M : N ]).

5)
sup

p∈P(Nst)

H(pM stp | pN stp) = H(M | N).

Proof. First of all, note that since by [Po2] we have that ΓN,M is amenable if
and only if ΓM,M1

is amenable, it is suficient to prove the above equivalences
in the case n is even in condition 2) and the k’s are taken odd in condition 4).
1) =⇒ 2). If GN,M is amenable then by 5.3 its graph ΓN,M verifies the Følner
condition 5.3.2). Thus, ∀ ε > 0, ∃ F ⊂ K finite non-empty such that

∑

k∈∂F

v2
k < (ε/2)

∑
v2
k.

Let n0 ≥ 1 be such that F ′ def
= F ∪ ∂F is included in Kn, ∀ n ≥ n0.

For each n ≥ n0 let {pnk}k∈Kn be the list of minimal central projections of
M ′ ∩M2n. Note that ∀ k ∈ K we have

lim
n→∞

dim(M ′ ∩M2np
n
k ) = ∞.

Let δ > 0. Let {mk}k∈F ′ be positive integers such that

(∗)
∣∣∣∣
mk

mk′
− vk
vk′

∣∣∣∣ < δmin{vr/v′r | r, r′ ∈ F ′}, ∀ k, k′ ∈ F ′.

Fix n ≥ n0 large enough such that

dim(M ′ ∩M2np
n
k ) ≥ m2

k, ∀ k ∈ F ′.
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Then for each k ∈ F ′ choose qk ∈ P(M ′ ∩ M2np
n
k ) such that dim(qkM

′ ∩
M2nqk) = m2

k. Let p
def
=
∑

k∈F ′ qk. We will show that, for δ > 0 small enough,
p satisfies condition 2).
To this end denote by G = ΓtF ′ the set of simple summands of pM ′ ∩M2n+1p
and by {q̄l}l∈G the corresponding minimal central projections. Let also
{sk}k∈F ′ , {tl}l∈G denote the traces of the minimal projections in pM ′ ∩M2np
and respectively pM ′ ∩M2n+1p.
Thus, if Γ = (akl)k∈K,l∈L then for each k ∈ F , l ∈ G with akl 6= 0 we have
tl = λ

∑
k′∈K ak′lsk′ = λ

∑
k′∈F ′ ak′lsk′ . Also, if we denote by n2

l = dim(q̄lM
′∩

M2n+1q̄l) and m′2
k = dim(q′kM

′ ∩M2n+2q
′
k), where {q′k}k∈F ′′ , F ′′ = F ′ ∪ ∂F ′,

are the minimal central projections of pM ′∩M2n+2p, then nl =
∑

k′∈F ′ ak′lmk′

and m′
k =

∑
k′′∈F ′ bkk′′mk′′ , where (bkk′ )k,k′∈K = ΓΓt.

From (∗) it follows that for k ∈ F and l ∈ G with akl 6= 0 we have the estimates:

∣∣∣∣
tl
sk

− nl
m′
k

∣∣∣∣ =

∣∣∣∣∣λ
∑

k′∈F ′

ak′lsk′/sk −
∑

k′∈F ′

ak′lmk′

/ ∑

k′′∈F ′

bkk′′mk′′

∣∣∣∣∣

≤
∣∣∣∣∣λ
∑

k′∈F ′

ak′lsk′/sk −
∑

k′∈F ′

ak′lsk′
/ ∑

k′′∈F ′

bkk′′sk′′

∣∣∣∣∣+ f(δ)

=

∣∣∣∣∣λ
∑

k′∈F ′

ak′lsk′/sk −
∑

k′∈F ′

ak′lsk′/λ
−1sk

∣∣∣∣∣+ f(δ)

= f(δ)

where f(δ) → 0 as δ → 0 and in which we used that for k ∈ F we have

(ΓΓt(sk′′)k′′∈F ′)k = λ−1sk.

With these estimates in mind recall that, with the above notations, we have
(see e.g. Sec.6 in [PiPo1]):

E(pM ′∩M2n+1p)′∩(pM ′∩M2n+2p)(e2n+2p) =
∑

k∈F ′′, l∈G

(τ(q′k q̄l)
2/a2

klτ(q
′
k)τ(q̄l))q̄lq

′
k

=
∑

k∈F ′′, l∈G

(λsknl/m
′
ktl)q̄lq

′
k.

But from the above estimates we see that for all k ∈ F and l ∈ G with akl 6= 0
we have:

|λsknl/m′
ktl − λ| < f ′(δ)

where f ′(δ) → 0 as δ → 0.
This would finish the proof if we could show that the trace of the sum of the
projections q̄lq

′
k for l ∈ G and k ∈ F ′′ \ F is small with respect to the trace
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of p. To show this, it is sufficient to show that
∑

k∈F ′′−F τ(q
′
k) is small with

respect to τ(p). To this end, note first that we have

∑

k∈F

τ(q′k) =
∑

k∈F

λm′
ktk = λ

∑

k∈F

(
∑

k′′∈F ′

bkk′′mk′′

)
tk

≥ λ
∑

k∈F

∑

k′′∈F ′

bkk′′mktk′′ − λδ
∑

k∈F, k′′∈F ′

bkk′′mktk

≥
∑

k∈F

τ(qk) − λ−2δ
∑

k∈F

τ(qk)

in which we first used (∗) and then the fact that
∑

k′′∈K bkk′′ ≤ λ−3, ∀ k ∈ K
(see e.g., [Po3], page 281). Thus we get:

∑

k∈F ′′−F

τ(q′k) =
∑

k∈F ′′

τ(q′k) −
∑

k∈F

τ(q′k)

= τ(p) −
∑

k∈F

τ(q′k) ≤ τ(p) −
∑

k∈F

τ(qk) + λ−2δ
∑

k∈F

τ(qk)

≤
∑

k′∈∂F

τ(qk′ ) + λ−2δτ(p).

But by applying (∗) again we also have

∑

k′∈∂F

τ(qk′ )
/
τ(p) =

∑

k′∈∂F

τ(qk′ )
/ ∑

k∈F ′

τ(qk) ≤
∑

k′∈∂F

τ(qk′ )
/∑

k∈F

τ(qk)

=
∑

k′∈∂F

mk′sk′
/∑

k∈F

mksk =
∑

k′∈∂F

(
sk′
/∑

k∈F

mk

mk′
sk

)

≤ (1 − δ)−1
∑

k′∈∂F

(
sk′
/∑

k∈F

vk
vk′

· sk
)

= (1 − δ)−1
∑

k′∈∂F

v2
k′

/∑

k∈F

v2
k < (1 − δ)−1ε/2.

Altogether we get:

‖E(pM ′∩M2n+1p)′∩(pM ′∩M2n+2p)(e2n+2p) − λp‖2
2

≤ f ′(δ)2τ(p) + λ−2δτ(p) + ((1 − δ)−1ε2/2)τ(p)

= (f ′′(δ) + ε2/2)τ(p).

Thus, if δ is chosen sufficiently small to make f ′′(δ) < ε2/2 then the above is
majorized by ε2τ(p), thus finishing the proof of 1) =⇒ 2).
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Now, 2) ⇐⇒ 3) is trivial by the definition of N st ⊂M st. Also 4 ⇐⇒ 5) is clear
from the continuity properties of the relative entropy under commuting square
conditions ([PiPo1]).
Then 2) =⇒ 4) follows from (4.2 in [PiPo1]).
Finally, to prove 4) =⇒ 1), recall from [PiPo2] that if B ⊂ A is an inclusion
of finite dimensional algebras with inclusion matrix T then Ind(EBA ) ≥ ‖T ‖2 ≥
exp(H(B | A)). Since the inclusion matrix T of pM ′∩M2n+1p ⊂ pM ′∩M2n+2p
is a restriction of ΓN,M , we have

‖ΓN,M‖2 ≥ ‖T ‖2 ≥ exp(H(pM ′ ∩M2n+2p | pM ′ ∩M2n+1p)).

Thus, if the right hand side term can be made arbitrarily close to exp(H(M |
N)) = [M : N ] then we obtain ‖ΓN,M‖2 = [M : N ], i.e., GN,M follows
amenable. Q.E.D.

6.2. Notation. We denote by M̃ the bicommutant of M in its enveloping
algebra M∞, i.e., M̃ = (M ′∩M∞)′∩M∞. Similarily we put Ñ = (N ′∩M∞)′∩
M∞ and more generally M̃i = (M ′

i∩M∞)′∩M∞, i ∈ Z, {Mi}i∈Z being as usual
a Jones tunnel-tower for N ⊂M and M0 = M,M−1 = N,M−n = Nn−1, n ≥ 2.

Note that there exists a unique conditional expectation Ẽ from M̃ onto Ñ
defined by Ẽ(X) = λΣjmjXm

∗
j , for X ∈ M̃ , {mj}j being any orthonormal

basis of N ′ ∩M∞ over M ′ ∩ M∞ (e.g., an orthonormal basis of vN{ek}k≥1

over vN{ek}k≥2 will do, as the definition of Ẽ is anyway easily seen to be

independent of the choice of {mj}j) and that Ẽ is implemented by e1, i.e.,

e1Xe1 = Ẽ(X)e1 (see Sec. 2.2 in [Po2] or 6.9 in [Po6]). The inclusion Ñ
Ẽ⊂ M̃

is in fact homogeneous λ-Markov in the sense of (1.2.3 and 1.2.11 of [Po3]) and
we have a non-degenerate commuting square

Ñ
Ẽ⊂ M̃

∪ ∪
N

EN⊂ M

It should also be noted that, while Ẽ(Y1e0Y2) = λY1Y2, ∀Y1,2 ∈ Ñ (this relation

can in fact be taken as the definition of Ẽ), in general Ẽ is not trace preserving.
In fact, one can easily show (see the proof of 6.4 hereafter) that it is trace

preserving if and only if M̃ = M , i.e., when the bicommutant relation holds
true, (M ′ ∩M∞)′ ∩M∞ = M , equivalently when ΓN,M is strongly amenable
(cf. 5.3.1 in [Po2]).
The Jones tower-tunnel of the above commuting square is obtained by defining
the conditional expectations Ẽi from M̃i−1 onto M̃i−2 in a similar manner with

Ẽ.

Recalling from ([Po2]) that a representation N E⊂ M of N ⊂ M is smooth if

N ′ ∩Mn ⊂ N ′ ∩Mn, ∀n, note that by its construction, Ñ ⊂ M̃ is obviously a
smooth representation of N ⊂M .
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6.3. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent:
1) ΓN,M is amenable.

2) There exists a (possibly singular) trace ψ on M̃ such that ψ ◦ Ẽ = ψ.

3) There exists a norm one projection of Ñ
Ẽ⊂ M̃ onto N ⊂M .

4) If
N ⊂ M
∪ ∪
N ⊂ M

is a smooth representation of N ⊂ M such that there exists a norm one pro-
jection of M onto M (equivalently, a M -hypertrace on M), then there exists

a norm one projection of N E⊂ M onto N ⊂ M (equivalently, a N ⊂ M -

hypertrace on N E⊂ M).
5) For any smooth representation of N ⊂ M into an inclusion of type II1 von

Neumann algebras N E⊂ M, there exists a norm one projection of N E⊂ M onto

N ⊂M (equivalently, a N ⊂M -hypertrace on N E⊂ M).

Proof. 1) =⇒ 2) By Theorem 6.1 (see condition 6.1.3) applied to M ⊂M1 and

the anti-isomorphism between N st
1 ⊂ N st

e0⊂M st and M ′ ∩M∞ ⊂ N ′ ∩M∞
e0⊂

N ′
1 ∩M∞, it follows that there exist projections pn ∈M ′ ∩M∞ such that

‖E(pnN ′∩M∞pn)′∩(pnN ′
1∩M∞pn)(e0pn) − λpn‖2/‖pn‖2 ≤ 2−n, ∀ n.

We then define on M∞ the state ϕ
def
= limn→ω τ(pn)

−1τ( · pn). Note that, since

pn ∈M ′∩M∞, we have [pn, (M
′∩M∞)′∩M∞] = 0, in other words [pn, M̃ ] = 0.

Thus, [ϕ, M̃ ] = 0, in particular ϕ|M̃ is a trace. Moreover, by noting that
τ( · pn) = τ(EpnBpn( · )pn) for any von Neumann subalgebra B ⊂ M∞ with
pn ∈ B, taking B = (pnN

′ ∩M∞pn)
′ ∩ pnM∞pn and using the above and the

Cauchy-Schwartz inequality it follows that for all x, y ∈ Ñ we have:

|τ(xe0ypn)/τ(pn) − λτ(xypn)/τ(pn)|
= |τ(pnyxe0pn)/τ(pn) − τ(pnxyλpn)/τ(pn)|
= |τ(EpnBpn(pnyxe0pn)/τ(pn) − τ(pnxyλpn)/τ(pn)|
= τ(pnyx(EpnBpn(e0pn) − λpn))/τ(pn))

≤ ‖p‖2‖yx‖ ‖EpnBpn(e0) − λpn‖2/τ(pn)

≤ 2−n‖yx‖.

Since Ẽ(xe0y) = λxy, ∀ x, y ∈ Ñ , and spÑe0Ñ = M̃ , it follows that

lim
n→∞

‖τ(Xpn)/τ(pn) − τ(Ẽ(X)pn)/τ(pn)| = 0 ∀ X ∈ M̃.
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Thus, ϕ(X) = ϕ(Ẽ(X)), ∀ X ∈ M̃ . All this shows that ψ
def
= ϕ|M̃ is both a

trace and satisfies ψ = ψ ◦ Ẽ.

2) =⇒ 3). Since ψ is a trace on M̃ , it is in particular a M -hypertrace and ψ =

ψ ◦ Ẽ implies it is actually a (N ⊂ M)-hypertrace on (Ñ
Ẽ⊂ M̃); equivalently,

there exists a conditional expectation of Ñ ⊂ M̃ onto N ⊂M .

3) =⇒ 4). If there exists a conditional expectation Φ of M onto M then by am-
plification it follows that there exist conditional expectations Φ2n of M2n onto
M2n, ∀ n ≥ 0. Let F2n : ∪kMk → M2n be the conditional expectation imple-
mented by · · · ◦ E2n+2 ◦ E2n+1 and denote Ψ2n : ∪kMk → M∞ the aplications
defined by Ψ2n(X) = Φ2n ◦ F2n(X) ∈M2n ⊂M∞. Note that Ψ2n is M2n-M2n

linear. Finally, we put Ψ(X)
def
= limn→ω ψ2n(X), for X ∈ ∪kMk, where ω is

a free ultrafilter on N. Thus, Ψ(1) = 1 and Ψ is M2n-M2n linear ∀ n. Since
the representation of N ⊂ M into N ⊂ M is smooth, M ′ ∩Mj ⊂ M′ ∩Mj ,
∀ j. Thus, if X ∈ M then [X,M ′ ∩ Mj ] = 0 and by applying ψ we get

[Ψ(X),M ′ ∩Mj] = 0. Thus, ψ(X) ⊂ (∪jM ′ ∩Mj)
′ ∩M∞ = M̃ . Similarly,

we obtain that if X ∈ N then Ψ(X) ∈ Ñ . But by 3) we have a conditional

expectation of M̃ onto M , say Ψ0, such that Ψ0(Ñ ) = N .

We then define Ψ1 : M → M by Ψ1(X) = Ψ0(Ψ(X)), which is a conditional

expectation and satisfies Ψ1(N ) = Ψ0(ψ(N )) ⊂ Ψ0(Ñ) ⊂ N .

4) =⇒ 5). Since M has projections p ∈ Z(M) such that Mp is finite, it follows
that there is a conditional expectation of Mp onto Mp ≃ M , thus of M onto
M and so 4) applies.

5) =⇒ 1) If 5) holds true then in particular there exists a norm one projection
from the finite standard representation onto N ⊂ M , so by Theorem 5.3 we
have 1). Q.E.D.

Recall from [Po2] that a standard λ-graph (Γ, ~s) is called ergodic if ~s is the
unique ~s-bounded eigenvector for ΓΓt corresponding to the eigenvalue λ−1,
equivalently, if Z(A0,∞) = C, where A0,∞ is the finite von Neumann algebra
obtained as an inductive limit with the Bratteli diagram given by Γ,Γt,Γ, ...,
starting from the even vertex ∗ of Γ, and having trace given by ~s = (sk)k∈K .
Note that if N ⊂ M is a subfactor having standard graph (Γ, ~s) then the
algebra A0,∞ equals M ′ ∩M∞, where N ⊂ M = M0 ⊂ M1 ⊂ ... is the Jones
tower for N ⊂M and M∞ = (∪nMn)

− as usual.

In what follows we’ll call the standard λ-graph almost ergodic if dimZ(A0,∞) <
∞. This is equivalent to the fact that, up to scalar multiples, there are only
finitely many ~s-bounded eigenvectors for ΓΓt corresponding to the eigenvalue
λ−1 (see the proof of 1.4.2 in [Po2]). Note that Haagerup constructed extremal

hyperfinite subfactors of index λ−1 = 2 · 4cos2π/5 = 3 +
√

5 which have almost
ergodic, but not ergodic, standard graph. The following consequence of 6.3
shows that this cannot happen if Γ is amenable.

6.4. Corollary. If an amenable, extremal standard graph (Γ, ~s) is almost
ergodic then it is ergodic, and thus it is strongly amenable.
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Proof. Let N ⊂ M be a subfactor having (weighted) standard graph equal to

(Γ, ~s). Denote like in 6.2 by Ñ1 = (N ′
1 ∩ M∞)′ ∩ M∞, Ñ = (N ′ ∩ M∞)′ ∩

M∞, M̃ = (M ′ ∩ M∞)′ ∩ M∞ and by F̃ the expectation from M̃ onto Ñ1

defined as in 6.2 (so that in fact, with the notations there, we also have F̃ =

Ẽ−1 ◦ Ẽ0). Note that Z(M̃) = Z(M ′ ∩M∞). Since N1 ⊂ M has amenable

graph (= ΓΓt), by 6.3 there exists a trace τ ′ on M̃ such that τ ′ ◦ F̃ = τ ′. Since

dimZ(M̃) = dimZ(M ′ ∩M∞) < ∞, it follows that there exists a ∈ Z(M̃)+
such that τ ′(X) = τ(Xa), ∀X ∈ M̃ . Since Ẽ is τ ′-preserving, this implies that

a = F̃ (a) ∈ F̃ (Z(M̃)) = Z(Ñ1). Thus a ∈ Z(M̃) ∩ Z(Ñ1) = C1, so a = 1 and
τ ′ = τ .
Thus F̃ coincides with the trace preserving expectation F of M̃ onto Ñ .
In particular, this implies that E(N ′

1∩M∞)′∩M∞
(f) = F (f) = λ21, where

f ∈ M is the Jones projection for N1 ⊂ M . By duality it follows that
E(M ′

2j∩M∞)′∩M∞
(fj) = λ21 for any j ∈ Z, where fj is the Jones projec-

tion for the inclusion M2j ⊂ M2j+2. By (5.3 in [Po2]) it follows that
M = (M ′ ∩ M∞)′ ∩ M∞, so in particular M ′ ∩ M∞ is a factor, i.e., (Γ, ~s)
is ergodic. Q.E.D.

We now examine the effect of amenability on the universal graph ΓuN,M . To

this end, let us denote, like in [Po2], by N u,f
Eu,f

⊂ Mu,f the direct summand of
N u ⊂ Mu given by all the irreducible representations B(H) of M ⊗P op which,
when regarded as M−P bimodules, have finite dimension, dim(MHP ) <∞, P
denoting here a generic ”dummy” type II1 factor weakly stably equivalent to M
(in the sense of 1.4.3 in [Po8], i.e., P can be embedded with finite index in the

amplification by some α > 0 of M). Let Γu,fN,M denote its inclusion graph (or

matrix). Recall from [Po2] that Γu,fN,M is in a natural way a weighted bipartite

graph, the weights being given by the vector ((dimM,PH)1/2), which in fact
also gives the weights of an Eu,f -invariant trace on Mu,f .

6.5. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent:
1) The standard graph ΓN,M is amenable, i.e., ‖ΓN,M‖2 = [M : N ].

2) The graph Γu,fN,M is amenable, i.e., ‖Γu,fN,M‖2 = [M : N ].

3) Each irreducible component Γ of ΓuN,M satisfies ‖Γ‖2 = [M : N ].

4) For any ε > 0 there exists a subfactor Q ⊂ N , with [N : Q] <∞, such that
the inclusion matrix T0 = TQ′∩N⊂Q′∩M satisfies ‖T0‖2 ≥ [M : N ] − ε.
4′) For any ε > 0 there exists a factor P containing M with [P : M ] <∞, such
that ‖TM ′∩P⊂N ′∩P ‖2 ≥ [M : N ] − ε.

Proof. 3) =⇒ 2) is trivial.

2) =⇒ 1). For simplicity of notations, we let (N E⊂ M) = (N u,f
Eu,f

⊂ Mu,f).
Let K ′ be the set of simple summands of M and TT t be the inclusion matrix
of M ⊂ M2. It follows that ∀ ε > 0, ∃ k0 ∈ K ′ such that

lim
n→∞

‖(TT t)nδk0‖1/n ≥ ‖TT t‖ − ε = [M : N ] − ε.
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But if for each n ≥ 0 we denote by p2n the minimal central projection in M2n

corresponding to k0 ∈ K ′, then

‖(TT t)nδk0‖2 = dim(Mp′0 ∩ p0M2np0) = dim(Mp′2n ∩M2np2n).

Moreover, by using that if R ⊂ Q ⊂ P are inclusions of type II1 factors with
finite index then dimR′ ∩ P ≤ ([P : Q]) dimR′ ∩ Q (because the inclusion
matrix of R′ ∩ Q ⊂ R′ ∩ P has square norm ≤ [P : Q]), it follows that, with
the notations M0 = P ′ ∩M,M0

k = P ′ ∩Mk, k ≥ 0, we have:

dim(Mp′2n ∩M2np2n) ≤ dim(Mp′2n ∩M0
2np2n)

≤ ([M0
2np2n : M2np2n]) dim(Mp′2n ∩M2np2n)

= ([M0p0 : Mp0]) dim(M ′ ∩M2n)

= ([M0p0 : Mp0])‖(ΓN,MΓt
N,M )nδ∗‖2.

Thus,

lim
n→∞

‖(TT t)nδk0‖1/n ≤ lim
n→∞

([Mp0 : Mp0])
1/2n‖(ΓΓt)nδ∗‖1/n = ‖ΓΓt‖

showing that ‖Γ‖2 ≥ [M : N ] − ε. Since ε was arbitrary, ‖ΓN,M‖2 = [M : N ].
1) =⇒ 3). Let k′ be any of the labels corresponding to an even vertex of
Γ and let q ∈ Mu

2n be a minimal central projection corresponding to that
same label. Then dim((Muq)′ ∩Mu

2nq) = ‖(ΓΓt)nδk′‖2. But by smoothness,
(M ′ ∩M2n)q ⊂ (Muq)′ ∩Mu

2nq, thus ‖ΓΓt‖ ≥ ‖ΓN,MΓtN,M‖.
1) =⇒ 4). This is clear, by simply taking Q = Nk, a subfactor in a Jones
tunnel, with k large enough.
4) ⇐⇒ 4′). This follows immediately by taking into account that if Q ⊂ N(⊂
M) is a subfactor of finite index in N and we denote Q ⊂ N ⊂M ⊂M1 ⊂ Q1

its basic construction, then TQ′∩N⊂Q′∩M = TM ′
1
∩Q1⊂M ′∩Q1

.

4′) =⇒ 2). If P ⊃M is as in condition 4′) for some ε then let p ∈ Z(Mu,f) be
the central projection supporting all the N −M bimodules appearing as direct
summands in NL

2(P )M . Then clearly ‖Γ‖ ≥ ‖Γp‖ ≥ ‖TM ′∩P⊂N ′∩P ‖. Q.E.D.

6.6. Corollary. Let Q ⊂ N ⊂ M be inclusions of II1 factors with finite
index (not necessarily extremal). (i). If Q ⊂ M has amenable graph then
Q ⊂ N and N ⊂ M have amenable graphs. (ii). If N ⊂ M has amenable
graph and p ∈ N ′ ∩M is a projection, then Np ⊂ pMp has amenable graph.

Proof. By [L], there exist extremal inclusions Q0 ⊂ N0 ⊂ M0 such that:
a). The higher relative commutants of Q0 ⊂ N0, N0 ⊂ M0 and respec-
tively Q0 ⊂ M0 are algebraically isomorphic to those of Q ⊂ N , N ⊂ M
and respectively Q ⊂ M ; so, in particular, the graphs of the induced-reduced
algebras in the Jones towers of the corresponding subfactors are equa. b).

[N0 : Q0] = IndEQ,Nmin , [M0 : N0] = IndEN,Mmin and [M0 : Q0] = IndEQ,Mmin and
the local indices in the Jones tower for the inclusions Q0 ⊂ N0, N0 ⊂ M0,

Documenta Mathematica 4 (1999) 665–744



716 Sorin Popa

respectively Q0 ⊂M0 are the same as for the initial incusions Q ⊂ N,N ⊂M ,
respectively Q ⊂M . With these in mind, let us prove (i) and (ii).

(i). Let Γu,fQ,N , Γu,fN,M be as in [Po2] the inclusion matrices describing the inclu-

sions (Q ⊗Mop)∗∗at,f ⊂ (N ⊗Mop)∗∗at,f ⊂ (M ⊗Mop)∗∗at,f . Recall from ([Po2])

that Γu,fQ,M = Γu,fQ,N ◦ Γu,fN,M . Thus, if ‖Γu,fQ,M‖2 = IndEQ,Mmin then we get

IndEQ,Nmin · IndEN,Mmin = IndEQ,Mmin = ‖Γu,fQ,M‖2 ≤ ‖Γu,fQ,N‖2‖Γu,fN,M‖2

≤ IndEQ,Nmin · IndEN,Mmin ,

forcing the equalities ‖Γu,fQ,N‖2 = IndEQ,Nmin , ‖Γu,fN,M‖2 = IndEN,Mmin . But by the
above considerations and 6.5 this implies ΓQ,N and ΓN,M are amenable.
(ii). This can be easily deduced from 6.5, by using the universal graphs as
in the proof of (i) above. Instead, we’ll use the following simpler argument:
By the first part of the proof, we may assume N ⊂ M is extremal. Then by
2.9.c) it follows that the finite standard representation of Np ⊂ pMp is given

by N st,fp
E⊂ pMst,fp, where E is defined by E(pXp) = τ(p)−1Est,f(pXp), for

X ∈ Mst,f. But then, if Φ is a conditional expectation from Mst,f onto N st,f

sending M onto N then clearly Φ also sends pMst,fp onto pMp and N st,fp onto
Np. By 5.3, this implies that Np ⊂ pMp has amenable graph. Q.E.D.

We mention one last hereditarity property for the amenability of the graphs of
subfactors, which has a self-contained and rather elementary proof.

6.7. Proposition. Let
N ⊂ M

∪ ∪
Q ⊂ P

be a nondegenerate commuting square of inclusions of type II1 factors with finite
index (thus, [M : N ] = [P : Q] <∞, [M : P ] = [N : Q] <∞). Then we have:

a) ‖ΓN,M‖ = ‖ΓQ,P‖, H(M | N) = H(P | Q), IndEN,Mmin = IndEQ,Pmin and
EQ′∩P (e0) = EN ′∩M (e0), where e0 ∈ P is a Jones projection for Q ⊂ P (and
thus for N ⊂M as well).
b) N st ⊂M st has atomic centers iff Qst ⊂ P st has atomic centers.
c) GN,M is amenable (resp. strongly amenable, resp. has finite depth) iff GQ,P
is amenable (resp. strongly amenable, resp. has finite depth).

Proof. Let
. . . N1 ⊂ N ⊂ M

∪ ∪ ∪
. . . Q1 ⊂ Q ⊂ P

be a tunel for the given commuting square. Then dimN ′
k∩M ≤ dimQ′

k∩M ≤
[M : P ] dimQ′

k ∩ P , so that

‖ΓN,M‖2 = lim
k→∞

(dimN ′
k ∩M)1/k ≤ lim

k→∞
(dimQ′

k ∩ P )1/k = ‖ΓQ,P ‖2.
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Taking
〈N,Q〉 ⊂ 〈M,P 〉

∪ ∪
N ⊂ M

and using that 〈N,Q〉 ⊂ 〈M,P 〉 is an amplified of Q ⊂ P (so that
Γ〈N,Q〉,〈M,P 〉 = ΓQ,P ), by the first part we also get ‖ΓQ,P ‖ ≥ ‖ΓN,M‖, thus
‖ΓN,M‖ = ‖ΓQ,P ‖.
Now remark that EP (Q′

k ∩M) = Q′
k ∩ P and EP (Z(Q′

k ∩M)) ⊂ Z(Q′
k ∩ P ).

Also, we have

Ind(E
Q′

k∩M
Q′

k∩P
) ≤ [M : P ],

Ind(E
Q′

k∩M
N ′

k∩M
) ≤ [Q′

k : N ′
k] = [Nk : Qk] = [M : P ].

It follows that if we denote R = ∪kQ′
k ∩M then Ind(ERP st) ≤ [M : P ],

Ind(ERMst) ≤ [M : P ]. Thus, P st has atomic center iff R has atomic center
iff M st has atomic center.
Also, the above shows that

sup
n

dimZ(N ′
k ∩M) <∞ ⇐⇒ sup

n
dimZ(Q′

k ∩M) <∞

⇐⇒ sup
k

dimZ(Q′
k ∩ P ) <∞.

Thus, N ⊂M has finite depth iff Q ⊂ P has finite depth.
Since Q ⊂ P is embedded as a commuting square in N ⊂M , by the definition
of relative entropy we have H(P | Q) ≤ H(M | N) ≤ H(〈M,P 〉 | 〈N,Q〉) =
H(P | Q), thus, H(M | N) = H(P | Q).
Next, if e0 ∈ P is a Jones projection then

EN ′∩M (e0) = EN ′∩M (EQ′∩M (e0)) = EN ′∩M (EQ′∩P (e0))

so that ‖EN ′∩M (e0)‖2 ≤ ‖EQ′∩P (e0)‖2 with equality iff EN ′∩M (e0) =
EQ′∩P (e0). But N ⊂ M is embedded as a commuting square in 〈N,Q〉 ⊂
〈M,P 〉 which is an amplified of Q ⊂ P , so we get similarly ‖EQ′∩P (e0)‖2 ≤
‖EN ′∩M (e0)‖2 giving EN ′∩M (e0) = EQ′∩P (e0).
To prove the statemnt about the minimal index, note from the formula of the

Jones projection in ([PiPo1], page 83-84) that EN,Mmin = EMN (b1/2 ·b1/2) with b ∈
Alg{EN ′∩M (e0)} = Alg{EQ′∩P (e0)}. Thus, b ∈ P and EN,Mmin (P ) = Q, imply-

ing that Ind(EN,Mmin ) ≥ Ind(EQ,Pmin ). Similarily, Ind(EN,Mmin ) ≤ Ind(E
〈N,Q〉,〈M,P 〉
min )

Thus, IndEM,N
min =IndEP,Qmin .

From the above, it follows in particular that IndEN,Mmin = ‖ΓN,M‖2 iff

IndEQ,Pmin = ‖ΓQ,P ‖2 so ΓN,M is amenable iff ΓQ,P is amenable (without the
extremality assumtion required).
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If ΓN,M is amenable and M st is a factor (i.e., GN,M is strongly amenable) then
ΓQ,P is amenable and P st has finite dimensional center. Thus 6.4 applies to
get that ΓQ,P follows strongly amenable. Alternatively, and in order to keep
the proof of this Proposition elementary and self-contained, note that the same
proof as on (pages 235 and 183 of [Po2]) can be used to get the same conclusion,
i.e., that P st follows a factor and thus ΓQ,P strongly amenable. Q.E.D.

7. Hyperfiniteness of M ⊠
eN

Mop and Hereditarity

of the Amenability for Subfactors

Recall from [Po2] that an inclusion of factors N ⊂ M is called amenable if it
is the range of a norm one projection from any of its smooth representations,
equivalently, if the algebras N,M are themselves amenable (i.e., hyperfinite by

[C1]) and the graph ΓN,M is amenable ([Po2,3,4]), i.e., ‖ΓN,M‖2 = IndEN,Mmin .
In this section we will show that, in the case the inclusion N ⊂M is extremal,
the amenability of N ⊂ M is in fact equivalent to the hyperfiniteness of its
symmetric enveloping algebra. We will then derive that the amenability of an
inclusion is inherited by its ”sub-inclusions”

7.1. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent:
1) N ⊂M is amenable.
2) ΓN,M is amenable and M is hyperfinite.
3) ∀ x1, . . . , xm ∈ M , ∀ ε > 0, ∃ n, a projection f in N ′ ∩Mn, a subfactor
P ⊂ N such that Pf ⊂ Nf ⊂ fMnf is a basic construction and a finite
dimensional subfactor Q0 ⊂ P such that

xi ∈ε Q0 ∨ (P ′ ∩M), i = 1, 2, . . . ,m.

4) ∀ x1, . . . , xm ∈M , ∀ ε > 0, ∃ Q ⊂ N with [N : Q] <∞ such that

xi ∈ε Q′ ∩M, i = 1, 2, . . . ,m.

5) M ⊠
eN

Mop is isomorphic to the hyperfinite type II1 factor.

6) There exists a M ⊠
eN

Mop-hypertrace on B(L2(M ⊠
eN

Mop).

7) There exists a (N ⊂ M)-hypertrace on N st ⊂ Mst (equivalently, a norm
one projection of N st ⊂ Mst onto N ⊂M).

Proof. We will prove 1) =⇒ 7) =⇒ 2) =⇒ 3) =⇒ 4) =⇒ 5) =⇒ 6) =⇒ 7) and
2) =⇒ 1).
The implication 1) =⇒ 7) is trivial, as N st ⊂ Mst is just a particular case of a
smooth representation.
If 7) is satisfied then by [Po13] we have ‖ΓN,M‖2 = [M : N ] and N,M follow
amenable (as ranges of norm one projections from the amenable von Neumann
algebras N st, Mst). Thus we have 7) =⇒ 2).
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2) =⇒ 3). This is essentially (4.4.1 in [Po2]), or the proof of (4.1 in [Po4], up
to Step VI on page 291), with some changes and additional considerations that
we explain below.
Like in the proof of 1) =⇒ 2) in Theorem 6.1, we let F be an ε′-Følner set for
ΓN1,N (by 2) we have that ΓN,M is amenable, equivalently ΓN1,N is amenable),

then we choose a large n and some integers mk ≤ (dimN ′ ∩M2n+1p
n+1
k )1/2

such that

(1)
∣∣mk

mk′
− vk
vk′

∣∣ < δ ∀ k, k′ ∈ F,

where {pn+1
k }k is now the list of minimal central projections in N ′∩M2n+1 and

~v = (vk)k∈K is the standard vector of local indices (at even levels) for ΓN1,N .

We then take qk ∈ P(N ′ ∩M2n+1p
n+1
k ) such that dim(qkN

′ ∩M2n+1qk) = m2
k

and define p =
∑

k∈F qk.
Let then P0 ⊂ N be a downward basic construction for Np ⊂ pM2n+1p. By
the choice of F (i.e., satisfying

∑
k∈F∪∂F v

2
k ≤ (1+ ε′)

∑
k∈F v

2
k) it follows that

if {x̄j}j is an orthonormal basis of N over P0 ∨P ′
0 ∩N then {x̄j}j is almost an

orthonormal basis of M over P0 ∨ P ′
0 ∩M as well. Moreover, by the choice of

integers {mk}k∈F it follows that

(2)
∑

j

τ(EP∨P ′∩N (x̄∗j x̄j)p̄k0)/τ(p̄k0 ) ≈
∑

k∈F

v2
k, ∀ k0 ∈ F,

{p̄k}k∈F being the minimal central projections in P ′
0 ∩N . Also, since P0 is a

type II1 factor, we may assume EP0∨P ′
0
∩N (x̄∗j x̄j)p̄k ∈ P0p̄k, ∀ k ∈ F . But then,

by using first the approximate innerness of Np ⊂ pM2n+1p then the central
freeness of P0 ⊂ M , like in (Steps I, II, III in the proof of 4.1 in [Po4]), we
obtain a conjugate of P0 by a unitary element in N , say P1, such that we have
the type of estimates (a)–(f) on page 285 of [Po4] with P1 instead of Nm0

.
Then we go through Step IV on pages 286–288 of [Po4], noting that due to the
condition (2) above, we don’t need to take a further tunnel and that taking P1

for Nm will do.
Then Step V on page 289 can be taken unchanged. Altogether, after doing
all this we end up obtaining the following: ∀ x1, . . . , xl ∈ M , ∀ ε > 0, if
F ⊂ Even(ΓN1,N ) is a ε-Følner set, n is sufficiently large and {mk}k∈F satisfy
(1) with δ suficiently small, then there exists a choice of a downward basic
construction P1 ⊂ N for Np ⊂ pM2n+1p, where p =

∑
k∈F qk as above, and a

projection s0 ∈ P1, such that for all 1 ≤ i ≤ l we have

‖[s0, xi]‖2 < f(ε′)‖s0‖2,(3)

‖s0xis0 − Es0(P1∨P ′
1∩M)s0(s0xis0)‖2 < f(ε′)‖s0‖2

where f(ε′) → 0 as ε′ → 0.
Arguing like in Step VI on page 290 of [Po4] we obtain a family of such choices
of downward basic constructions (Pi)i∈I with projections (si)i∈I , si ∈ Pi, such
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that (Pi, si) satisfy (3) and
∑

i si = 1. But then there exists a downward
basic construction P ⊂ N for Np ⊂ pM2n+1p such that si ∈ P , ∀ i, and
siPsi = siPisi, ∀ i. Thus P will satisfy

‖EP∨P ′∩M (xi) − xi‖2 < f(ε′), 1 ≤ i ≤ n.

Since P is hyperfinite, by taking ε′ so that f(ε′) < ε we get 7.1.3).
3) =⇒ 4) is trivial, by simply taking Q = Q′

0 ∩ P in 3).
4) =⇒ 5). since Alg(M, eN ,M

op) is so-dense in M ⊠
eN

Mop it is sufficient to

prove that ∀ x1, x2, . . . , xn ∈ M , ∀ ε > 0, ∃ B ⊂ M ⊠
eN

Mop finite dimensional

such that

‖EB(xi) − xi‖2 < ε

‖EB(eN ) − eN‖2 < ε

‖EB(xop
i ) − xop

i ‖2 < ε.

By 4) there exists Q ⊂ N with [N : Q] <∞ such that xi ∈ε Q′ ∩M . But

[Qop′ ∩M ⊠
eN

Mop : Mop′ ∩M ⊠
eN

Mop] ≤ [Mop : Qop] <∞

and thus
[Qop′ ∩M ⊠

eN

Mop : Q] ≤ [M : Q]2 <∞,

implying that B
def
= Q′∩ (Qop′∩M ⊠

eN

Mop) has finite dimension. Since eN ∈ B

and Q′ ∩M , Qop′ ∩Mop ⊂ B, we are done.
5) =⇒ 6) is trivial, because hyperfinite algebras are amenable, so they have
hypertraces.
6) =⇒ 7) By 5.2 we have Mst = vN(M,JSMJS) ⊂ B(L2(S)), N st =
vN(N, JSMJS), where S = M ⊠

eN

Mop. Let then Φ : B(L2(S)) → S be a

conditional expectation. Since Φ is S-S linear and [Mst,Mop] = 0 it follows
that Φ(Mst) ⊂ Mop′ ∩ S = M . Similarly, since [Mst,Mop

1 ] = 0, we get

Φ(N st) ⊂Mop
1

′ ∩ S = N .
2 =⇒ 1). If

N ⊂ M
∪ ∪
N ⊂ M

is an arbitrary smooth representation of N ⊂M then, M being hyperfinite, it
follows that there exists a conditional expectation of M onto M . By Theorem

5.7 it then follows that there exists a conditional expectation of N E⊂ M onto
N ⊂M . Q.E.D.

7.2. Remarks. 1◦. Note that by using condition 7.1.3 one can easily proceed to
construct recursively a sequence of appropriate downward basic constructions
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for suitable local inclusions in the Jones tower-tunnel, say M ⊃ N ⊃ P ⊃
P1 ⊂ ..., such that if we let Q = ∩nPn and (N0,st ⊂ M0,st) = (∪nP ′

n ∩N ⊂
∪nP ′

n ∩M) then (N ⊂ M) = (Q⊗̄N0,st ⊂ Q⊗̄M0,st), with the isomorphism
class of N0,st ⊂M0,st only depending on GN,M .

Indeed, from the proof of 7.1.2) ⇒ 7.1.3) we see that, up to conjugacy by a
unitary in N , the choice of the subfactor P = P1 (equivalently, the choice
of the projection p ∈ N ′ ∩M2n+1) is determined by a choice of the ε-Følner
set F and by a choice of the integers {mk}k∈F , which in turn both depend
on ε. Similarily, each time one goes from step n to step n + 1, one uses the
Følner-type amenability condition for Pn ⊂ M and some ε = εn+1 to get the
next subfactor Pn+1 (up to conjugation by a unitary element in Pn), from
a downward basic construction that only depends on some choice of an εn+1-
Følner set Fn+1 and of some integers {mn+1

j }j∈Fn+1
. Thus, if we let for instance

ε = 2−n, ∀n, and make the choice of the Fn’s and mn
j ’s this way, once for all,

then the isomorphism class of {P ′
n ∩N ⊂ P ′

n ∩M}n will only depend on GN,M ,
as all the above choices can be ”read” from this object through its amenability
properties. In particular, the isomorphism class of N0,st ⊂ M0,st will only
depend on GN,M .

Thus, when complemented with this remark, we see that condition 7.1.3 in
the above theorem shows that hyperfinite subfactors with amenable graphs are
completely classified by their standard invariants (for more on this, see [Po16]).

2◦. Recently, F. Hiai and M. Izumi have further investigated our notion of
amenability for standard lattices and weighted graphs coming from subfactors
and obtained two more equivalent characterizations ([HiIz]): the first one re-
quires the existence of invariant means on the (weighted) fusion algebra of all
M −M bimodules in the Jones tower of N ⊂M ; the second one is a ratio limit
condition on the weight vector ~v, stating that the (weighted) graph (ΓN,M , ~v)
is amenable if and only if for every vertex k ∈ K one has

lim
n→∞

〈(ΓΓt)nδ∗, δk〉
〈(ΓΓt)nδ∗, δ∗〉

= vk,

where Γ = ΓN,M . This ”ratio limit” result for group-like objects coming from
subfactors, which generalizes in a non-trivial way a prior result of Avez for
discrete groups ([Av]), shows that in fact the projections qk ∈ (N ′∩M2n+1)p

n+1
k

in the proof of 2) =⇒ 3) of Theorem 7.1 can be taken equal to pn+1
k . It also

shows that the standard weight vector ~v of an amenable standard λ-lattice G
can be completely recovered from its graph Γ.

It should be noted however that there exist no known examples of standard
graphs Γ which admit two distinct standard weights, say ~v1, ~v2, for the same
value of the index, i.e., such that (Γ, ~v1) 6≃ (Γ, ~v2). Whether such examples
exist or not seems to be an interesting problem.

In order to prove the hereditarity result in its largest generality, namely without
assuming that the inclusions involved are extremal, we’ll need the following:
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7.3. Lemma. Let N ⊂ M be an inclusion of type II1 factors, of finite index
(but not necessarily extremal). Let B be a C∗-algebra containing M , such that
B = C∗(M,

⋃
k

N ′
k ∩ B) and such that B has a state φ with [ϕ,M ] = 0. Let

(πϕ,Hϕ, ξϕ) be the GNS representation for (B,ϕ). Then, as a M -M Hilbert
bimodule, Hϕ is a direct sum of irreducible bimodules Hϕ =

⊕
j

H′
j with each

H′
j isomorphic to a bimodule in the list {Hk}k∈K .

Proof. Note first that if {Kop
l }l∈L denotes the list of all irreducible M -N

bimodules contained in
⊕
k∈K

MHkN (see the beginning of Section 5) and

H′
0 ≃⊕

j

Kop
lj

is a M -N Hilbert bimodule contained in some M −M bimodule

H, (i.e., H′
0 ⊂ MHN ) then spMH′

0M ≃⊕
i

Hki .

Then note that ∪kspM(N ′
k ∩B)ξϕ is dense in Hϕ. Indeed, we have

spM(N ′
k ∩B)M(N ′

k ∩B)M = spM(N ′
k ∩B)Nkf

0
−k−1Nk

(N ′
k ∩B)M = spM(N ′

k ∩B)f0
−k−1(N

′
k ∩B)M

⊂ spM(N ′
2k+1 ∩B)M.

showing that

Alg(M,∪kN ′
k ∩B) = ∪kspM(N ′

k ∩B)M = ∪kspM(N ′
k ∩B)R,

where R = ∪kN ′
k ∩M , the closure being taken in the norm ‖ · ‖2 in M . But

∪k(N ′
k∩M)ξϕ is dense in Rξϕ (because ϕ implements τ on M), so ∪kspM(N ′

k∩
B)ξϕ is dense in ∪kspM(N ′

k ∩ B)Rξϕ = ∪kspM(N ′
k ∩ B)Mξϕ which is dense

in Hϕ.

Let then H′
ϕ

def
= ∨{H′ ⊂ Hϕ | ∃ k ∈ K such that H′ ≃ Hk as M -M bimodules}.

Assume H′
ϕ 6= Hϕ. Thus, there exists ξ ∈M(N ′

k ∩B)ξϕ such that ξ /∈ H′
ϕ. Let

ξ = X0Y
′
0ξϕ, for some X0 ∈M , Y ′

0 ∈ N ′
k ∩B. It follows that if x ∈M , y ∈ Nk

then
〈xξy, ξ〉 = 〈xX0Y

′
0ξϕy,X0Y

′
0ξϕ〉 = 〈X∗

0xX0yY
′
0ξϕ, Y

′
0ξϕ〉.

But the state on M defined by ψ(X) = 〈XY ′
0ξϕ, Y

′
0ξϕ〉, X ∈ M has Nk in its

centralizer so by A.1 it is automatically normal and of the form ψ(X) = τ(Xa)
for some a ∈ N ′

k ∩M . Thus we get

〈xξy, ξ〉 = τ(X∗
0xX0ya) = 〈x(X0a

1/2ξτ )y, (X0a
1/2ξτ )〉

so if we define ξ′ = X0a
1/2ξτ ∈Mξτ ⊂ L2(M) then the above shows that H′

0 =
spMξNk is a M -Nk bimodule isomorphic to a sub-bimodule of ML

2(M)Nk
. By

the first part applied to N = Nk it follows that spMH′
0M is a sub-bimodule

of (
⊕

k∈K Hk)
n for some multiplicity n ≤ ∞, giving a contradiction. Q.E.D.
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7.4. Corollary. Let N ⊂M be an inclusion of type II1 factors with finite in-
dex. Assume that for any ε > 0 there exists an amenable type II1 von Neumann
algebra B containing M such that

‖E(N ′∩B)′∩B(e0) − λ1‖2 < ε.

Then there exists a norm one projection from N st ⊂ Mst onto N ⊂M .

Proof. If B ⊃M satisfies the condition in the hypothesis for some ε, then there
exist some finite many unitary elements u1, . . . , un ∈ N ′ ∩B such that

∥∥∥∥∥
1

n

n∑

i=1

uie0u
∗
i − λ1

∥∥∥∥∥
2

< ε.

Thus, by taking instead of B the von Neumann algebra generated by M and
{u1, . . . , un}, it follows that we may assume B is separable in the norm ‖ ‖2.
Let then H be the M -M Hilbert bimodule obtained by summing up countably
many copies of each Hk, k ∈ K. By 7.3 we have L2(B) ⊂ H, for each B
as in the hypothesis, where L2(B) has the M -M bimodule structure given by
left-right multiplication by elements of M .
For each ε = 1/n we choose an algebra Bn satisfying the hypothesis. We let
Φn : B(L2(Bn)) → Bn be norm one projections and define the state ϕ on B(H)
by

ϕ(T ) = lim
n→ω

τn ◦ Φn(pnT |L2(Bn))

where pn = projL2(Bn), τn is the trace on Bn and ω is a free ultrafilter on N.
Since each τn◦Φn is a M -hypertrace, ϕ follows a M -hypertrace. Moreover, if we
identify Mst with the von Neumann algebra generated in B(H) by the operators
of left and right multiplication byM and N st with its von Neumann subalgebra
generated by the operators of left multiplication by N and right multiplication
by M , then Mst = spN ste0N . Let Y ∈ N st, y ∈ N . We want to show that
ϕ = ϕ ◦ Est on Mst, thus we need to show that ϕ(Y e0y) = λϕ(Y y). But
[pn,Mst] = 0 and [N stpn, N

′ ∩Bn] = 0, so that Φn(N stpn) ⊂ (N ′ ∩Bn)′ ∩Bn.
Thus Φn((Y e0y)pn) = Φn(Y pn)e0y = y′e0y, with y′ ∈ (N ′ ∩ Bn)′ ∩ Bn. Thus
τn(y′e0y) = τn(E(N ′∩Bn)′∩Bn

(y′e0y)) = τn(y′E(N ′∩Bn)′∩Bn
(e0)y). It follows

that

|τn ◦ Φn((Y e0y)pn)−λτn ◦ Φn((Y y)pn)|
= |τn(y′E(N ′∩Bn)′∩Bn

(e0)y) − λτn(y′y)|
≤ ‖y′‖ ‖y‖ ‖E(N ′∩Bn)∩Bn

(e0) − λ1‖2

≤ 1

n
‖Y ‖ ‖y‖.

This proves that indeed ϕ(Y e0y) = λϕ(Y y), so ϕ = ϕ ◦ Est on Mst. Q.E.D.

We can now prove the announced hereditarity property for amenable inclusions.
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7.5. Theorem. Let N ⊂ M be an extremal inclusion of hyperfinite type II1
factors with amenable graph (equivalently, with amenable standard invariant
GN,M), i.e., ‖ΓN,M‖2 = [M : N ]. Assume Q ⊂ P is an inclusion of factors
embedded in N ⊂ M as commuting squares (i.e., such that EN (P ) = Q), but
without necessarily being extremal and not necessarily having the same index
as N ⊂ M . Then ΓQ,P is amenable (equivalently, GQ,P is amenable), i.e.,
‖ΓQ,P ‖2 equals the minimal index of Q ⊂ P .

Proof. By Theorem 7.1, S = M ⊠
eN

Mop follows amenable so in particular the

von Neumann algebra B generated in S by P and Q′ ∩S is also amenable. Let
e0 ∈ P be a Jones projection for Q ⊂ P . Thus, EQ(e0) = EN (e0) = λ01 = [P :
Q]−11. Since (N ′ ∩ S)′ ∩ S = N it follows that E(N ′∩S)′∩S(e0) = λ01. Since
N ′ ∩ S ⊂ Q′ ∩ S = Q′ ∩B, this implies that E(Q′∩B)′∩B(e0) = λ01 as well.

Thus Q ⊂ P satisfies the conditions in the hypothesis of 7.4, so there exists a
norm one projection from the standard representation Qst ⊂ Pst onto Q ⊂ P .

By [Po13] this implies ‖ΓQ,P‖2 = ‖TQst⊂Pst‖2 = IndEQ,Pmin . Q.E.D.

In Sec. 6 we’ve seen that for extremal inclusions of arbitrary type II1 factors

N ⊂M the condition ‖Γu,fN,M‖2 = [M : N ] is sufficient to insure the amenability
of the standard graph ΓN,M . We now show that for inclusions of hyperfinite

factors the weaker condition ‖Γu,rfN,M‖2 = [M : N ] is enough, where Γu,rfN,M de-

notes the inclusion graph of the direct summand N u,rf ⊂ Mu,rf of N u ⊂ Mu,
in which Mu,rf consists of all irreducible representations B(H) of M ⊗Mop,
with H having finite right dimension over M , i.e., dim(HM ) <∞, but leaving
the left dimensions dim(MH) arbitrary.

7.6. Theorem. Let N ⊂ M be an extremal inclusion of hyperfinite type II1
factors. The following conditions are equivalent:

1) N ⊂M has amenable graph, i.e., ‖ΓN,M‖2 = [M : N ].

2) ∀ ε > 0, ∃ P a hyperfinite factor containing M , such that dimM ′ ∩ P <∞
and ‖TM ′∩P⊂N ′∩P ‖2 ≥ [M : N ] − ε.

3) ‖Γu,rfN,M‖2 = [M : N ].

Proof. 1) =⇒ 3) is trivial because Γu,rfN,M ⊃ ΓN,M .

3) =⇒ 2) By 3) there exists a direct summand N ⊂ M = ⊕l∈L′B(K′
l) ⊂

⊕k∈K′B(H′
k) of N u,rf ⊂ Mu,rf such that its inclusion graph Γ is connected

and ‖Γ‖2 > [M : N ]− ε. Take K ′
0 ⊂ K ′ finite and sufficiently large so that we

still have ‖ΓtK′
0
‖2 > [M : N ] − ε.

By the definition of the universal representation N u,rf ⊂ Mu,rf , if Q = M ′∩N
then Q is a factor of type II1, N = N ∨ Q ⊂ M ∨ Q = M and Q has finite
coupling constant in each direct summand B(H′

k) of M. But then, if one takes
P = Q′ ∩ B(⊕k∈K′

0
H′
k) then ‖TM ′∩P⊂N ′∩P ‖2 ≥ ‖ΓtK′

0
‖2 ≥ [M : N ] − ε.

2) =⇒ 3) follows by noticing that Mu,rf contains the von Neumann algebra
generated by the operators of left multiplication by M and right multiplication
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by P on L2(P ) as a direct summand (by taking Mop ≃ P op, both being

hyperfinite factors). Thus TM ′∩P⊂N ′∩P will be a restriction of the graph Γu,rfN,M

2) =⇒ 1). Let ε > 0 and choose P a hyperfinite II1 factor satisfying 2) for ε32.
Denote by T the bipartite graph describing the inclusions M ′ ∩ P ⊂ N ′ ∩ P ⊂
N ′

1 ∩ P ⊂ N ′
2 ∩ P ⊂ · · · . Thus ‖T ‖2 ≥ [M : N ] − ε32 and there is a positive

vector w = (wj)j∈J such that TT tw = λ−1w, giving the traces on {N ′
k∩P}k≥1.

But then A.2 applies the same way as in the proof of 1) =⇒ 2) in Theorem
5.3 to get a finite set F ⊂ J such that

∑
j∈∂F w

2
j < ε

∑
j∈F w

2
j (see 5.5.2◦ and

[Po14]). Arguing like in the proof of 1) =⇒ 2) in Theorem 6.1 it then follows
that there exist k ≥ 1 and a projection p ∈ N ′

2k ∩ P such that

‖E(pN ′
2k+1

∩Pp)′∩pPp(e−2k−1p) − λp‖2 < ε‖p‖2.

By taking an α = [M : N ]k+1-amplification of the inclusion N2k+2 ⊂ N2k+1 →֒
pPp and using that (N2k+2 ⊂ N2k+1)

α = (N ⊂M) it follows that there exists
a hyperfinite type II1 factor P0 ≃ (pPp)α such that N ⊂M ⊂ P0 and

‖E(N ′∩P0)′∩P0
(e0) − λ1‖2 < ε.

But then 7.3 applies to get that ΓN,M is amenable. Q.E.D

8. An Effros-Lance Type Characterization of Amenability

We will prove in this section yet another equivalent characterization for the
amenability of a subfactor N ⊂M , in terms of simplicity properties of the C∗-
algebra C∗

bin(M, eN ,M
op). In the case N = M our result reduces to the impli-

cation “C∗
bin(M,Mop) simple =⇒ ∃ conditional expectations of B(L2(M)) onto

M”, which is one of the well known results of Effros and Lance in [EL], relating
various amenability conditions for single von Neumann algebras (semidiscrete-
ness, injectivity, etc).

8.1. Theorem. Let N ⊂M be an extremal inclusion of type II1 factors. The
following conditions are equivalent:

1◦. N ⊂M is amenable.

2◦. C∗
bin(M, eN ,M

op) is simple.

3◦. C∗(M, eN , JMJ) is simple.

4◦. C∗
bin(M, eN ,M

op) ≃ C∗(M, eN , JMJ) ≃ C∗
min(M, eN ,M

op), with the iso-
morphisms being given by the natural quotient maps.

Proof. 1◦ =⇒ 2◦. Let C∗
bin(M, eN ,M

op) →֒ B(H) be a faithful representation
of C∗

bin(M, eN ,M
op) such that M and Mop are von Neumann algebras in B(H).

It is sufficient to prove that if

x ∈ Alg(M, eN ,M
op) =

⋃
k

spMopMkM
op ⊂ C∗

bin(M, eN ,M
op) ⊂ B(H),
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then ‖x‖B(H) ≤ ‖x‖min, where ‖x‖min is the norm of (the image of) x in
C∗

min(M, eN , Mop). For such x ∈ Alg(M, eN ,M
op) let k be large enough such

that

x =

n∑

i=n

yop
i zix

op
i ∈ spMopMkM

op,

for some xi, yi ∈ M, zi ∈ Mop, 1 ≤ i ≤ n. We will prove that x can be
approximated in the so topology on B(H) by elements x′ ∈ Alg(M, eN ,M

op)
such that ‖x′‖B(H) ≤ ‖x‖min. By the inferior semicontinuity of the norm
‖ ‖B(H) with respect to the so-topology on B(H), this will show that ‖x‖B(H) ≤
‖x‖min and will thus end the proof of 1◦ =⇒ 2◦.
To prove this approximation, let us first note that ∀ ξ1, . . . , ξp ∈ H, ∀ ε > 0,
∃ δ > 0 such that if z′i ∈Mk, with ‖z′i − zi‖2 < δ, ‖z′i‖ ≤ ‖zi‖ then

x′
def
=

n∑

i=1

yop
i z

′
ix

op
i

satisfies ‖(x− x′)ξj‖ < ε, ∀ 1 ≤ j ≤ p. Indeed we have:

‖(x− x′)ξj‖ ≤
n∑

i=1

‖yop
i ‖ ‖(zi − z′i)x

op
i ξj‖

and since the so-topology on the ball of radius ‖zi‖ (in the uniform norm) inMk

coincides with the topology given by the norm ‖ ‖2 on this ball, it follows that
there exists δ > 0 such that if ‖zi − z′i‖2 < δ then ‖(zi − z′i)x

op
i ξj‖ < ε/n‖yi‖,

∀ i. But then we have

‖(x− x′)ξj‖ <
n∑

i=1

‖yop
i ‖ε/n‖yop

i ‖ = ε.

Now, if we assume N ⊂M is amenable then M ⊂Mk follows amenable and by
[Po2] we get that ∀ δ > 0, ∃ finitely many tunnels {N r

k}1≤k≤nr , r = 1, . . . ,m,
and projections pr ∈ P(N r

nr

′ ∩M), r = 1, . . . ,m, such that {pr}r are mutually
orthogonal, Σrpr = 1 and

z′i
def
=

m∑

r=1

prE
Mk

Nr ′
nr

∩Mk
(zi)pr

satisfies ‖z′i − zi‖2 < δ. Also, by its definition, z′i checks ‖z′i‖ ≤ ‖zi‖. Further-
more, since pr ∈ M commute with xop

i , y
op
i ∈ Mop, ∀ r, i, it follows that if we

let x′ = Σiy
op
i z

′
ix

op
i as above, then ‖x′‖B(H) = sup

r
‖x′pr‖B(H). But since

x′pr =
∑

i

yop
i prENr

nr
′∩Mk

(zi)prx
op
i = pr

(
n∑

i=1

yop
i ENr

nr
′∩Mk

(zi)x
op
i

)
pr,
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each ‖x′pr‖B(H) is majorized by

∥∥∥∥∥

n∑

i=1

yop
i ENr

nr
′∩Mk

(zi)x
op
i

∥∥∥∥∥
B(H)

=

∥∥∥∥∥

n∑

i=1

yop
i ENr

nr
′∩Mk

(zi)x
op
i

∥∥∥∥∥
Mop

nr

=

∥∥∥∥∥

n∑

i=1

yop
i ENr

nr
′∩Mk

(zi)x
op
i

∥∥∥∥∥
C∗

min
(M,eN ,Mop)

≤ ‖x‖min,

with the last inequality following from the fact that, in the algebra
C∗

min(M, eN ,M
op), the element Σiy

op
i ENr

nr
′∩Mk

(zi)x
op
i is the image of x un-

der a conditional expectation.
Thus, from the the above remarks, if we take δ sufficiently small, we are done.
2◦ =⇒ 3◦ is trivial, since by the definition of C∗

bin(M, eN ,M
op),

C∗(M, eN , JMJ) is its quotient.
3◦ =⇒ 1◦. If C∗(M, eN , JMJ) is simple then there exists an isomorphism

ϕ : S0 def
= C∗

min(M, eN ,M
op) ≃ C∗(M, eN , JMJ) ⊂ B(L2(M)).

Since S0 ⊂ S ⊂ B(L2(S)), where S = M ⊠
eN

Mop as usual, by Arveson’s theo-

rem ϕ can be extended to a completely positive map Φ from all B(L2(S)) to
B(L2(M)). (Note that in fact we only use here a particular case of Arveson’s
theorem stating that if B ⊂ A are unital C∗-algebras and π0 : B → B(H0)
is a representation of B then there exists a Hilbert space H ⊃ H0 and a rep-
resentation π : A → B(H) such that π0(b) = projH0

π(b)|H0
, ∀ b ∈ B. See

2.10.2 in [D2]). Since Φ is a unital ∗-homomorphism when restricted to S0, it
follows that it is a S0-S0 bimodule map. In particular, if xop

1,2 ∈ Mop ⊂ S0

(⊂ B(L2(S))) then Φ(xop
1 Txop

2 ) = ϕ(xop
1 )Φ(T )ϕ(xop

2 ), ∀ T ∈ B(L2(S)). Thus,
if T satisfies Txop − xopT = 0, ∀ xop ∈ Mop, then Φ(T )ϕ(xop) = ϕ(xop)Φ(T ),
∀ xop ∈Mop.
Thus we have Φ((Mop)′ ∩ B(L2(S)) = ϕ(Mop)′ ∩ B(L2(M)). But ϕ(Mop) =
JMJ and JMJ ′ ∩B(L2(M)) = M , so that Φ((Mop)′ ∩B(L2(S))) = M . Simi-
larily we get

Φ((Mop
1 )′ ∩ B(L2(S))) = ϕ(Mop

1 )′ ∩ B(L2(M))

= JM1J
′ ∩ B(L2(M))

= N.

But from 5.3 we have that Mst ⊂ (Mop)′ ∩ B(L2(S)) and N st ⊂ (Mop
1 )′ ∩

B(L2(S)), so Φ implements a positive unital M -M bimodule map from Mst

onto M carrying N st onto N . This shows that there exists a conditional ex-
pectation of (N st ⊂ Mst) onto (N ⊂M), so N ⊂M follows amenable.
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All this shows that the conditions 1◦–3◦ are equivalent. Since clearly 4◦ ⇐⇒ 2◦,
all the conditions 1◦–4◦ follow equivalent. Q.E.D.

8.2. Remarks. 1◦. Note that when applied to the case N = M the above
proof of the implication 3◦ ⇒ 1◦ in Theorem 8.1 reduces to a very short and
elementary proof to one of the results in ([EL]).
2◦. Recall from ([Bi3]) that C∗(M, eN , JMJ) contains the ideal K of compact
operators over the Hilbert space L2(M, τ) if and only if N contains no non-
trivial central sequences of M . Thus, 8.1 implies that amenable inclusions
always have non-trivial cental sequences contained in the subfactor (because if
C∗(M, eN , JMJ) is simple then it cannot contain the ideal K). In fact, 7.1.4
shows that there even exist non-commuting such central sequences, so that
amenable inclusions split off the hyperfinite type II1 factor (this is, of course,
a consequence of the classification result 7.2.1◦ as well).

9. Property T for Subfactors and Standard Lattices

In this section we introduce a notion of property T for standard λ-lattices G
(or, equivalently, for paragroups). When restricted to the class of standard lat-
tices associated with subfactors coming from finitely generated discrete groups,
our notion coincides with the classical property T of Kazhdan, which it thus
generalizes, from discrete groups to the larger class of group-like objects G. In
order to define this notion, we will use a strategy similar to the approach to
amenability in Section 5. Thus, the property T for a standard λ-lattice G will
be defined by requiring M ⊠

eN

Mop to have the property T relative to M ∨Mop

in the sense of ([A-D], [Po8]), where N ⊂ M is an extremal subfactor with
GN,M = G. This definition however depends on proving that such a property
does not in fact depend on the subfactor N ⊂ M one takes. We do prove this
in the next few lemmas.
First of all, let us recall the definition of the relative property T, as introduced
in ([A-D], [Po8]):

(∗). Let U be a type II1 factor and B ⊂ U a von Neumann subalgebra of U .
Then we say that U has the property T relative to B if there exists ε > 0
and x1, x2, ..., xn ∈ U such that whenever H is a given U − U bimodule with a
vector ξ ∈ H satisfying ‖ξ‖ = 1, [ξ, B] = 0, ‖[ξ, xi]‖ < ε, it follows that H must
contain a non-zero vector ξ0 satisfying [ξ0, U ] = 0.

Note that in the case B = C the above definition reduces to Connes’ definition
of property T for single type II1 factors U . In general though, the definition
(∗) does not require the ambient algebra U to have the property T. Instead,
note that by ([A-D], [Po8]), if V is a type II1 factor and G is a discrete group
acting outerly on V , then U = V ⋊G has the property T relative to V if and
only if the group G has Kazhdan’s property T.
With this in mind, let us proceed with some technical results.

9.1. Lemma. Let V ⊂ U be an inclusion of type II1 factors with V ′ ∩U = C1.
Then U has the property T relative to V if and only if ∀ ε > 0 ∃ δ > 0
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and x1, . . . , xn ∈ U such that if ϕ : U → U is completely positive, unital, trace
preserving, with ϕ(v1xv2) = v1ϕ(x)v2, ∀ v1, v2 ∈ V , x ∈ U , and ‖ϕ(xi)−xi‖2 <
δ then ‖ϕ(x) − x‖2 < ε, ∀ x ∈ U , ‖x‖ ≤ 1.

Proof. If U has the property T relative to V then the condition on completely
positive maps holds true by 4.1.4 in [Po8].
Conversely, if this latter condition holds, then let H be a U -U bimodule with

ξ ∈ H, ‖ξ‖ = 1, vξ = ξv, ∀ v ∈ V , ‖xiξ − ξxi‖ < δ′
def
= δ/2

∑‖xi‖2. Let
ϕ : U → U be defined by τ(yϕ(x)) = 〈xξy, ξ〉, x, y ∈ V as in [C4] (see [Po8]).
Then ϕ is a well defined completely positive map and τ(ϕ(x)) = 〈xξ, ξ〉. Since
ξ = vξv∗, ∀ v ∈ U(V ), one gets

〈vxv∗ξ, ξ〉 = 〈vxξv∗, ξ〉 = 〈vxξ, ξv〉 = 〈vxξ, vξ〉
= 〈v∗vxξ, ξ〉 = 〈xξ, ξ〉

for all x ∈ U . Averaging by unitaries v ∈ U(V ) like in [Po1] and using that
V ′ ∩ U = C1 and EV ′∩U (x) = τ(x)1, it follows that

〈xξ, ξ〉 = 〈τ(x)ξ, ξ〉 = τ(x), ∀ x ∈ U.

Similarly, we obtain that

τ(yϕ(1)) = 〈ξy, ξ〉 = τ(y), ∀ y ∈ U.

Thus ϕ(1) = 1. Also, if x, y ∈ U , v1, v2 ∈ V then

τ(yϕ(v1xv2)) = 〈v1xv2ξy, ξ〉 = 〈xξv2y, v∗1ξ〉〈xξv2y, ξv∗1〉
= 〈xξv2yv1, ξ〉 = τ(v2yv1ϕ(x)) = τ(y(v1ϕ(x)v2)).

This shows that ϕ(v1xv2) = v1ϕ(x)v2.
Finally, since ‖xiξ − ξxi‖2 < δ′ we have

‖ϕ(xi) − xi‖2
2 = τ(ϕ(x∗i )ϕ(xi)) = τ(x∗i xi) − 2Re τ(x∗i ϕ(xi))

≤ τ(ϕ(x∗i xi)) + τ(x∗i xi) − 2Re τ(x∗iϕ(xi))

= 2τ(x∗i xi) − 2Re τ(x∗i ϕ(xi))

= 2〈ξxi, ξxi〉 − 2Re〈xiξ, ξxi〉
≤ 2‖xiξ − ξxi‖ ‖ξxi‖ ≤ 2δ′‖xi‖2 < δ2.

Thus, ϕ this way defined satisfies the required condition, so ‖ϕ(x) − x‖2 < ε,
∀ x ∈ U , ‖x‖ ≤ 1. In particular, we have

‖ϕ(u) − u‖2 < ε, ∀ u ∈ U(U).

Thus,

‖ξu− uξ‖2 = 2 − 2Re〈ξu, ξu〉 = 2 − 2Re〈u∗ξu, ξ〉
= 2 − 2Re τ(ϕ(u)u∗) = 2Re(τ((u − ϕ(u))u∗))

≤ 2‖ϕ(u) − u‖2 ≤ 2ε.

Thus, if ε < 1/2 then ‖u∗ξu − ξ‖ < 1, ∀ u ∈ U(U). But then ∃ ξ0 ∈ H,
‖ξ0 − ξ‖ < 1, such that uξ0 = ξ0u, ∀ u (see e.g., [Po1]). Thus H has a nonzero
vector commuting with U , showing that U has the property T relative to V
Q.E.D.
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9.2. Lemma. Let
V ⊂ U

∪ ∪
Q ⊂ P

be a nondegenerate commuting square of type II1 von Neumann algebras with a
countable set X = {fn}n ⊂ P such that spQXQ is ‖ ‖2-dense in P and spV XV
is ‖ ‖2-dense in U . Let ϕ : P → P be a unital, τ-preserving, completely positive
map such that

ϕ(q1xq2) = q1ϕ(x)q2, ∀ q1, q2 ∈ Q, x ∈ P

and assume that ∀ n ≥ 1, ∃ {mj}j ⊂ L2(V, τ) orthonormal basis of V over
Q such that [mj , fn] = 0, [mj , ϕ(fn)] = 0, ∀ j. Then there exists a unique
unital, τ-preserving, completely positive map ϕ̃ : U → U such that ϕ̃|P = ϕ
and ϕ̃(v1xv2) = v1ϕ(x)v2, ∀ v1, v2 ∈ V , x ∈ P .

Proof. Let e = eUP . Let {mj}j ⊂ L2(V ) be a fixed orthonormal basis of V over
Q and note that any element in 〈U,P 〉 can be written in the form Σi,jmipijem

∗
j ,

with pij ∈ P (see Ch.1 in [Po2]). We first define an application ϕ̃ : 〈U, e〉 →
〈U, e〉 by

ϕ̃




∑

i,j

mipijem
∗
j



 =
∑

i,j

miϕ(pij)em
∗
j , pij ∈ P.

It is easy to see that ϕ̃ this way defined is completely positive and Tr-preserving
and satisfies ϕ̃(1) = 1, ϕ̃(Y1XY2) = Y1ϕ̃(X)Y2, ∀ Y1, Y2 ∈ 〈V, e〉, X ∈ 〈U, e〉.
Let us next show that ϕ̃ does not depend on the choice of the orthonor-
mal basis {mj} of V over Q. So let {m′

j}j ⊂ L2(V, τ) be another such

orthonormal basis. Then mi =
∑
km

′
kE

U
P (m

′∗
k mi) so that if p ∈ P then

mipem
∗
j =

∑
k,lm

′
kE

U
P (m

′∗
k mi)pE(m∗

jm
′
l)em

′∗
l (note that the sums do make

sense in L2(U, τ), with convergence in ‖ ‖2, respectively so-topologies). By

definition we thus have ϕ̃(mipem
∗
j) =miϕ(p)em∗

j and since EUP (m
′∗
k mi) ∈ Q

and
ϕ(EUP (m′∗

kmi)pE
U
P (m∗

jm
′
l)) = EUP (m′∗

kmi)ϕ(p)EUP (m∗
jm

′
l),

we further get

miϕ(p)em∗
j =

∑

k,l

m′
k(E

U
P (m′∗

kmi)ϕ(p)EUP (m∗
jm

′
l))em

′∗
l

=
∑

k,l

m′
kϕ(EUP (m′∗

kmi)pE
U
P (m∗

jm
′
l))em

′∗
l .

Taking linear combinations and limits, this shows that if

∑

i,j

mipijem
∗
j =

∑

i,j

m′
ip

′
ijem

′∗
j
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then ∑

i,j

miϕ(pij)em
∗
j =

∑

i,j

m′
iϕ(p′ij)em

′∗
j ,

showing that ϕ̃ does not depend on {mj}j .
We will now show that ϕ̃(U) = U and that ϕ̃|P = ϕ. To this end, let us first
note that ϕ̃(fn) = ϕ(fn), ∀ n. Indeed, we have fn = fn1 = fn

∑
imiem

∗
i in

which we may assume [mj , fn] = 0, ∀ j ( by the hypothesis and the above).
Thus we get fn =

∑
imifnem

∗
i .

According to the definition of ϕ̃ we get ϕ̃(fn) =
∑

imiϕ(fn)em
∗
i . But

by the hypothesis we may also assume [mi, ϕ(fn)] = 0 so that we get∑
jmjϕ(fn)em

∗
j = ϕ(fn)

∑
jmjem

∗
j = ϕ(fn).

Since ϕ̃ is V -bilinear (being 〈Q, e〉-bilinear) it follows that ϕ̃(V XV ) =
V ϕ̃(X )V = V ϕ(X )V ⊂ U . In particular ϕ̃|QXQ = ϕ.
The rest of the statement thus follows by continuity. Q.E.D.

9.3. Corollary. Let
N ⊂ M

∪ ∪
N0 ⊂ M0

be a nondegenerate commuting square of type II1 factors with N ⊂M , N0 ⊂M0

extremal and N ′ ∩Mj = N ′
0 ∩M0j, ∀ j. Let T = M ∨Mop ⊂ M ⊠

eN

Mop = S

and T0 = M0 ∨Mop
0 ⊂M0 ⊠

eN0

Mop
0 = S0. If S has the property T relative to T

then S0 has the property T relative to T0.

Proof. By 2.5 we have T ′
0 ∩ S0 = C, T ′ ∩ S = C. Also, by 2.8 S0 is naturally

included in S and we have a nondegenerate commuting square

T ⊂ S

∪ ∪
T0 ⊂ S0.

Let {N0,m}m be some tunnel for N0 ⊂ M0 and Nm be the corresponding
tunnel for N ⊂ M and denote by fn = fn−n ∈ M0,n the Jones projection for
N0,n−1 ⊂M0 ⊂M0,n. By 4.1.4 in [Po8], since S has the property T relative to
T and sp∪nTfnT contains the dense ∗-subalgebra ∪nMMop

n M in S (cf. 4.1), it
follows that ∀ ε > 0 there exists n and δ such that if ϕ : S → S is unital, trace
preserving, completely positive, T -T bimodule map with ‖ϕ(fn) − fn‖2 < δ
then ‖ϕ(x) − x‖2 < ε, ∀ x ∈ S, ‖x‖ ≤ 1. Since

fm ∈ (N0,m ∨Nop
0,m)′ ∩M0 ⊠

eN0

Mop
0 = (Nm ∨Nop

m )′ ∩M ⊠
eN

Mop, ∀ m,

it follows that ∀ k, ∃ {mk
j }j ⊂ Nk ∨ Nop

k an orthonormal basis of Nk ∨ Nop
k

over N0,k ∨Nop
0,k (which will therefore be an orthonormal basis of T over T0 as

well). Thus [mk
j , fk] = 0, ∀j.
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Let ϕ0 : S0 → S0 be a unital, trace preserving, completely positive, T0-T0

bimodule map satisfying ‖ϕ0(fn) − fn‖2 < δ. Since ϕ0 is T0 − T0 bilinear and
since [fk, N0,k ∨Nop

0,k] = 0, we get [ϕ0(fk), N0,k ∨Nop
0,k] = 0. Thus we also have:

ϕ0(fm) ∈ (N0,m ∨Nop
0,m)′ ∩M0 ⊠

eN0

Mop
0 = (Nm ∨Nop

m )′ ∩M ⊠
eN

Mop, ∀ m.

So we may apply Lemma 9.2 to get ϕ : S → S unital, τ -preserving, completely
positive T -T bimodule map with ϕ|S0

= ϕ0. Thus ‖ϕ(fn) − fn‖2 = ‖ϕ0(fn) −
fn‖2 < δ, implying that ‖ϕ(x) − x‖2 < ε, ∀ x ∈ S, ‖x‖ ≤ 1.
In particular, ‖ϕ0(x) − x‖2 < ε ∀ x ∈ S0. By Lemma 9.1, this is suficient to
ensure that S0 has the property T relative to T0. Q.E.D.

9.4. Proposition. Let
N ⊂ M

∪ ∪
N0 ⊂ M0

be a nondegenerate commuting square of type II1 factors with N0 ⊂M0, N ⊂M
extremal and N ′

0 ∩M0,j ⊂ N ′ ∩Mj, ∀ j (i.e., N0 ⊂ M0 is smoothly embedded
in N ⊂ M , in the sense of [Po2]). Let T0 ⊂ S0, T ⊂ S be the corresponding
symmetric enveloping inclusions. If S0 has the property T relative to T0, then
S has the property T relative to T .

Proof. By [Po8], ∀ ε > 0, ∃ δ > 0 and x1, . . . , xn ∈ S0 such that if H0 is a
S0-S0 bimodule with a unit vector ξ0 ∈ H0 satisfying [y, ξ0] = 0, ∀ y ∈ T0, and
‖[xi, ξ0]‖ < δ, ∀ i, then there exists ξ1 ∈ H0 satisfying [x, ξ1] = 0, ∀ x ∈ S0,
and ‖ξ1 − ξ0‖ < ε.
Let then H be a S-S bimodule with a unit vector ξ0 ∈ H such that [y, ξ0] = 0,
∀ y ∈ T , and ‖[xi, ξ0]‖ < δ, ∀ i. Regarding H as a S0-S0 bimodule it follows
that there exists ξ′0 ∈ H such that [x, ξ′0] = 0, ∀ x ∈ S0, and ‖ξ′0 − ξ0‖ < ε.
Denote

K = {ξ ∈ H | xξ = ξx, ∀ x ∈ S0},
K0 = {η0 ∈ H | [y, η0] = 0, ∀ y ∈ T = M ∨Mop},
K1 = {η1 ∈ H | [y, η1] = 0, ∀ y ∈M1 ∨Nop}.

With these notations, it follows that ξ0 ∈ K0 and ξ′0 ∈ K. We then need to
construct some positive contractions A,B ∈ B(H) such that 0 ≤ A,B ≤ 1,
Aξ = ξ = Bξ, ∀ ξ ∈ K, AK0 ⊂ K1, BK1 ⊂ K0. For if we have such A and B,
then

‖(BA)nξ0 − ξ′0‖ = ‖(BA)nξ0 − (BA)nξ′0‖ ≤ ‖ξ0 − ξ′0‖ < ε

so that if ξ′′0 is a weak limit point of {(1/n)
∑n
k=1(BA)kξ0}n then BAξ′′0 = ξ′′0 ,

ξ′′0 ∈ K0 (because all (BA)kξ0 belong to K0) and ‖ξ′′0 −ξ′0‖ < ε. But 0 ≤ A ≤ 1,
0 ≤ B ≤ 1, BAξ′′0 = ξ′′0 implies that Aξ′′0 = ξ′′0 , Bξ′′0 = ξ′′0 , so that ξ′′0 ∈ K0∩K1.
Thus e1ξ

′′
0 = ξ′′0 e1, yξ

′′
0 = ξ′′0 y, ∀ y ∈ T , and since T and e1 generate S we get
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xξ′′0 = ξ′′0x, ∀ x ∈ S. This shows that H has a nonzero vector commuting with
S.

Finally, in order to construct A,B with the required properties, let
{pnj }1≤j≤kn ⊂ M0,1 = 〈M0, e1〉, {qki }1≤i≤m ⊂ Mop

0 be partitions of the

identity such that if pn, respectively qk denote the spectral projection of
|∑j p

n
j e2p

n
j −λ1|, respectively |∑i q

k
i e1q

k
i −λ1|, corresponding to the interval

[ε,∞], where λ = [M0 : N0]
−1 = [M : N ]−1, then τ(pn) < (1/n)minj τ(p

n
j )

and τ(qk) < (1/k)mini τ(q
k
i ) (cf. the Appendix in [Po2], or [Po9]). We claim

that if A is a weak limit of the sequence of operators {∑j p
n
j ·pnj }n ⊂ B(H) and

B is a weak limit of {∑i q
k
i · qki }k ⊂ B(H) then A,B do satisfy the required

conditions. Indeed, since pnj , q
k
i ∈ S0 we have

∑

j

pnj ξp
n
j = ξ,

∑

i

qki ξq
k
i = ξ, ∀ ξ ∈ K, ∀ k, n.

Thus, Aξ = ξ = Bξ, ∀ ξ ∈ K. Since pnj ∈ 〈M0, eN〉 ⊂ Nop′ ∩ S it follows that

if [y, η0] = 0, ∀ y ∈ T = M ∨Mop, then



xop,
∑

j

pnj η0p
n
j



 = 0, ∀ xop ∈ Nop.

Thus,

[xop, Aη0] = 0, ∀ xop ∈ Nop, ∀ η0 ∈ K0.

Let η0 ∈ K0 with ‖η0‖ = 1 and note that, since η0 commutes with T and
T ′ ∩ S = C, η0 follows a trace vector for S. Let also ξ ∈ H, and x ∈ M1 =
〈M, e1〉 and note that

∥∥∥∥∥∥
λ−1

∑

j

pnjE
M1

M (pnj xp
n
i ) − xpni

∥∥∥∥∥∥
2

= λ−1/2

∥∥∥∥∥∥
λ−1

∑

j

pnj e2p
n
j xp

n
i e2 − xpni e2

∥∥∥∥∥∥
2

≤ λ−1/2

∥∥∥∥∥∥
(1 − pn)



λ−1
∑

j

pnj e2p
n
j − 1





∥∥∥∥∥∥
‖xpni e2‖2 + λ−1/2‖pn‖2

≤ 2λ−1/2(‖x‖/n)‖pni ‖2.
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Thus we get

∥∥∥∥∥∥
x
∑

i

pni η0p
n
i − λ−1

∑

i,j

pnjE
M1

M (pnj xp
n
i )η0p

n
i

∥∥∥∥∥∥

2

=
∑

i

∥∥∥∥∥∥
xpni η0p

n
i − λ−1

∑

j

pnjE
M1

M (pnj xp
n
i )η0p

n
i

∥∥∥∥∥∥

2

≤
∑

i

∥∥∥∥∥∥
xpni − λ−1

∑

j

pnjE
M1

M (pnj xp
n
i )

∥∥∥∥∥∥

2

2

≤ 4λ−1(‖x‖2/n2)
∑

j

‖pni ‖2
2 = 4λ−1‖x‖2/n2.

Similarly we get

∥∥∥∥∥∥

∑

i

pni η0p
n
i x− λ−1

∑

i,j

pnj η0E
M1

M (pnj xp
n
i )pni

∥∥∥∥∥∥

2

≤ 4λ−1‖x‖2/n2

as well.
But since yη0 = η0y, ∀ y ∈M ⊂M ∨Mop, we have

∑

i




∑

j

pnjE
M1

M (pnj xp
n
i )



 η0p
n
i =

∑

j

pnj η0

(
∑

i

EM1

M (pnj xp
n
i )pni

)

so by the above estimates we get

∥∥∥∥∥∥
x
∑

i

pni η0p
n
i −

∑

j

pnj η0p
n
j x

∥∥∥∥∥∥
< 8λ−1/2‖x‖/n→ 0.

Since A is a weak limit of {∑i p
n
i · pni }n it follows that [x,Aη0] = 0, thus

AK0 ⊂ K1. Similar calculations show that BK1 ⊂ K0 and A,B are thus
constructed. As we have previously shown, this was sufficient to ensure that H
has a nonzero vector commuting with S. Thus S has the property T relative
to T . Q.E.D.

We can now conclude with the following:

9.5. Theorem. Let N0 ⊂M0 be an extremal inclusion of type II1 factors such
that M0 ⊠

eN0

Mop
0 has the property T relative to M0∨Mop

0 . Then M ⊠
eN

Mop has
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the property T relative to M ∨Mop for any extremal inclusion N ⊂ M with
GN,M = GN0,M0

Proof. Since N0 ⊂ M0 is embedded smoothly in Nω
0 ⊂ Mω

0 and the two
subfactors have the same higher relative commutants, by 9.4 it follows that
Mω

0 ⊠
eNω

0

Mωop
0 has the property T relative to Mω

0 ∨Mωop
0 . But by [Po9], the in-

clusion of factors NG(R) ⊂MG(R), where G = GN0,M0
and R is the hyperfinite

II1 factors, is also embedded as a commuting square with same higher relative
commutants in Nω

0 ⊂ Mω
0 . Thus, by 9.2 it follows that MG(R)⊠(MG(R))op

has the property T relative to MG(R) ∨ (MG(R))op. But NG(R) ⊂ MG(R)
is included in Nω ⊂ Mω as well ([Po9]), so Mω

⊠
eNω

Mωop has the property T

relative to Mω ∨Mωop, by 9.4. Then, again by 9.2 it follows that M ⊠
eN

Mop

has the property T relative to M ∨Mop. Q.E.D.

9.6. Definition. We say that a standard λ-lattice G has the property T if
M ⊠

eN

Mop has the property T relative to M ∨Mop for some (and thus all!)

subfactor N ⊂M with GN,M = G.

The following class of examples shows that our notion of property T agrees
with Kazhdan’s classical notion for groups.

9.7. Proposition. Let G be the standard λ-lattice of a locally trivial subfactor
associated to some faithful G-kernel on some type II1 factor. Then G has the
property T if and only if the group G has the property T.

Proof. Let P be the factor on which G acts and σ be the G-kernel on P . By
Section 3 and 9.6, G has the property T iff P ⊗̄P op ⋊σ⊗σop G has the property
T relative to P ⊗̄P op. By ([A-D], [Po8]) this is equivalent to G having the
property T. Q.E.D.

Let us next note some simple properties of this notion.

9.8. Proposition. (i) G is both amenable and has the property T if and only
if it has finite depth.
(ii) If G = G1×G1 (see part (b) in 5.6 for the definition) then G has the property
T if and only if both G1 and G2 have the property T.
(iii) G has the property T if and only if Gop has it.
(iv) If N ⊂M is an extremal inclusion {Mi}i is its tower, then GN,M has the
property T iff GMi,Mj has the property T for some i < j iff GMi,Mj has the
property T for all i < j.

Proof. To prove (i), let N ⊂M be an extremal inclusion such that GN,M = G.
Then G is both amenable and has the property T iffM ⊠

eN

Mop is both amenable

and has the property T relative to M ∨Mop. And by (4.1.4 in [Po8]) this is
further equivalent to [M ⊠

eN

Mop : M ∨Mop] < ∞. But by 4.6, [M ⊠
eN

Mop :

M ∨Mop] <∞ is equivalent to N ⊂M having finite depth.
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To prove (ii) let Nj ⊂ Mj, j = 1, 2, be such that GNj ,Mj = Gj and note that
GN,M = G where G = G1 × G2, N = N1⊗̄N2 ⊂ M1⊗̄M2 = M . Then (T ⊂
S) = (T1⊗̄T2 ⊂ S1⊗̄S2), where T ⊂ S, T1 ⊂ S1, T2 ⊂ S2 are the symmetric
enveloping inclusions associated withN ⊂M , N1 ⊂M1, respectivelyN2 ⊂M2.
If T ⊂ S has the relative property T and {xi}1≤i≤n ⊂ S is its critical set for
some ε > 0, then by [Po8] we may assume xi are in the algebraic tensor product
S1 ⊗ S2, i.e., xi =

∑
j x

i
j ⊗ yij, x

i
j ∈ S1, y

i
j ∈ S2. Let H1 be a S1-S1 bimodule

with a unit vector ξ1 ∈ H1 commuting with T1 and δ1-commuting with {xij}i,j .
Denote by H = H1⊗̄L2(S2), ξ = ξ1 ⊗ 1̂ and note that if δ1 is sufficiently small
then ξ ε-commutes with {xi}i. It follows that there exists ξ′ ∈ H, commuting
with S at distance Kε from ξ (see [Po8]), where K is a universal constant. But
then, if Kε < 1, the projection ξ′′ of ξ′ onto H1 ⊗C1 ≃ H1 is a nonzero vector
commuting with S1. This shows that S1 has the property T relative to T1.
Similarly, S2 has the property T relative to T2.
Conversely, if Si has property T relative to Ti for i = 1, 2 and H is a S-
S bimodule with ξ ∈ H a unit vector commuting with {xi ⊗ yj}i,j , where
{xi}i ⊂ S1, {yj}j ⊂ S2 are the critical sets for T1 ⊂ S1, respectively T2 ⊂ S2

then it follows that

‖uξ − ξu‖ < ε, ∀ u ∈ U(S1 ⊗ 1) ∪ U(1 ⊗ S2).

Thus,
‖(u⊗ v)ξ − ξ(u⊗ v)‖ < 2ε, ∀ u ∈ U(S1), v ∈ U(S2).

A simple convexity argument in Hilbert space, or Ryll-Nardjewski’s fixed point
theorem then shows that there exists ξ′ ∈ H, ‖ξ′−ξ‖ < 2ε, commuting with all
elements in the group F = {u⊗v | u ∈ U(S1), v ∈ U(S2)}. Since spF ⊃ S1⊗S2

it follows that ξ′ commutes with S = S1⊗̄S2. Taking ε < 1/2, this shows that
H has a nonzero vector commuting with S, so S has the property T relative to
T .
To prove (iii) we only need to remark that the symmetric enveloping inclusions
associated to N ⊂ M and Nop ⊂ Mop are identical, so that 9.5 applies to get
that GN,M has T iff GNop,Mop (= (GN,M )op) has this property.
Finally, to prove (iv) recall from [Po8] that if V0 ⊂ V ⊂ U are inclusions of
factors and [V : V0] <∞ then U has the property T relative to V iff U has the
property T relative to V0. Thus, if N ⊂M is an extremal inclusion and we put
U = M ⊠

eN

Mop, V = M ∨Mop, V0 = M ∨Nop, V1 = M1 ∨Nop, it follows that

U has the property T relative to V iff U has the property T relative V1. But
V1 ⊂ U is a reduced of the symmetric enveloping inclusion for M ⊂ M1 (cf.
2.6) so, by [Po8] again, it has the relative property T iff M1∨Mop

1 ⊂M1 ⊠
eN

Mop
1

has relative propert T. Thus, GN,M has T iff GM,M1
has T. The rest follows

from 2.6 a). Q.E.D.

We do not have more examples of property T standard λ-lattices other than the
ones coming from groups (in 9.7) or the obvious ones that can be constructed
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by using jointly 9.7 and 9.8. For example, we do not know whether there exist
standard lattices with the property T that come from irreducible subfactors. As
for the minimal standard lattices generated by the Jones projections only, i.e.,
the so-called Temperley-Lieb-Jones standard lattices, we will prove below that
generically they do not have the property T. This will in fact be an imediate
corollary of the following more important consequence of 9.4:

9.9. Theorem. Let G be a standard λ-lattice and G0 be a sublattice of G. If
G0 has the property T then G has the property T. Conversely, if [G : G0] < ∞
and G has T then G0 has T.

Proof. By [Po7] there exists a commuting square

N ⊂ M

∪ ∪
N0 ⊂ M0

such that G0 = GN0,M0
and G = GN,M . By 9.4 and the definition of property

T for standard latices 9.6, it follows that if GN0,M0
has T then GN,M has this

property as well.

The last part is trivial, by [Po8], 2.7, 2.9 and 2.10. Q.E.D.

9.10. Corollary. If a standard λ-lattice G0 is a sublattice of an amenable
standard λ-lattice with infinite graph then G0 doesn’t have the property T. In
particular, if there exists an amenable subfactor of index λ−1 and infinite depth
then the Temperley-Lieb-Jones standard lattice of graph A∞ and index λ−1 does
not have the property T.

Proof. Trivial by 9.9. Q.E.D.

Let us end by mentioning a problem which at this point seems of interest:

9.11. Problem. Is it true that the property T for a standard lattice G only
depends on its graph, i.e., if G,G0 have the same (weighted) graph Γ and G has
T, does it follow that G0 has T ? Note that in all the examples of property T
standard lattices that we have in this paper (obtained by combining 9.7 with
9.8) this is indeed the case.

We strongly believe that this question has a positive answer. If this would
be indeed the case, then one would have a notion of property T for standard
graphs. We mention that in the combinatorial theory of groups there has been
a steady interest towards generalizing the property T from groups to more
general objects, in particular to (certain classes of) graphs. Since the standard
lattices do generalize discrete groups and certain classes of Kac algebras and
compact quantum groups ([Ba]), our definition of property T does provide a
generalization along these lines.
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Appendix

A.1. Relative Dixmier Property for Subfactors of Finite Index

We prove in this section a version for inclusions of type II1 factors with finite
Jones index of Dixmier’s classical result on the norm closure of ”averaging”
elements by unitaries, as follows:

Theorem. Let N ⊂M be an inclusion of factors of finite index. Then N ⊂M
has the relative Dixmier property, i.e., for any x ∈ M , we have con{uxu∗ | u
unitary element in N} ∩N ′ ∩M = {EN ′∩M (x)}.

Proof. For x ∈ M denote CN (x) = con{uxu∗ | u ∈ U(N)}. Since
EN ′∩M (uxu∗) = EN ′∩M (x), ∀u ∈ U(N), it follows that EN ′∩M (y) =
EN ′∩M (x), ∀y ∈ CN (x). Thus, if for some x ∈M we have CN (x)∩N ′ ∩M 6= ∅
then CN (x) ∩N ′ ∩M = {EN ′∩M (x)}.
By replacing if necessary x by x − EN ′∩M (x), it follows that it is sufficient to
check that 0 ∈ CN (x) for all x ∈M with EN ′∩M (x) = 0. Moreover, by arguing
like in the single algebra case ([D3]), it is sufficient to check this property for
selfadjoint such elements x.

We will proceed by contradiction, assuming there exists an element x = x∗ in
M , with EN ′∩M (x) = 0, such that 0 /∈ CN (x). By the Hahn-Banach theorem
there exists a functional Φ = Φ∗ ∈ M∗ and ε0 > 0 such that Φ(y) ≥ ε0, ∀y ∈
CN (x). It follows that Ψ(x) ≥ ε0, ∀Ψ ∈ co{Φ(u · u∗) | u ∈ U(N)} so that

Ψ(x) ≥ ε0, ∀Ψ ∈ CN (Φ)
def
= coσ(M∗,M){Φ(u · u∗) | u ∈ U(N)} and in fact

Ψ(y) ≥ ε0, ∀y ∈ CN (x) as well.

To get to a contradiction we first show that there exists Ψ in CN (Φ) which
can be written as Ψ = Ψ1 −Ψ2, with Ψ1,2 positive functionals on M which are
scalar multiples of the trace τ when restricted to N . To this end let Φ = Φ1−Φ2

be the polar decomposition of Φ, into its positive and negative parts.

Let V = {F ⊂ (N)1 | F finite}. By Dixmier’s classical Theorem ∀F ∈
V , ∃uF = (uF1 , ..., u

F
nF

) ⊂ U(N) such that ‖TuF (y) − τ(y)1‖ < 1/|F |, ∀y ∈ F ,

where for X ∈ M we denote TuF (X)
def
= (nF )−1Σju

F
j Xu

F∗
j . Then let ω be

a free ultrafilter majorizing the filter V and for each i = 1, 2 define Ψi(X) =
limF→ω Φi(TuF (X)), the limit being taken in the usual Banach sense. Then
we clearly have Ψi|N = ciτ|N , where ci = Φi(1), i = 1, 2. Also, if we let Ψ =
Ψ1 − Ψ2 then Ψ(X) = limF→ω Φ(TuF (X)), ∀X ∈ M and since Φ(TuF ( )) ∈
CN (Φ), ∀F , it follows that Ψ belongs to CN (Φ). Thus Ψ = Ψ1 − Ψ2 satisfies
the desired conditions.

But by [PiPo1] we have EN (X) ≥ λX, ∀X ∈M+, so by applying Ψ1,2 to both
sides we get ciτ(X) = ciτ(EN (X)) = Ψi(EN (X)) ≥ λΨi(X), implying that
Ψi ≤ λ−1ciτ , i = 1, 2. Thus Ψ1,2 actually follow normal on all M and so does
Ψ. By Sakai’s Radon-Nykodim type theorem there exists a = a∗ ∈ M such
that Ψ(X) = τ(aX), ∀X ∈ M . Putting this into the relation that Ψ satisfies
gives τ(ya) ≥ ε0, ∀y ∈ CN (x).
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In particular, from the last relation and the trace property we get τ(xu∗au) =
τ(uxu∗a) ≥ ε0. By taking convex combinations of elements of the form u∗au
and weak limits and using that cow{u∗au | u unitary element in N} ∩ N ′ ∩
M = {EN ′∩M (a)} (cf. [Po1]), we deduce that τ(xEN ′∩M (a)) ≥ ε0. But
τ = τ ◦ EN ′∩M and, since EN ′∩M (xEN ′∩M (a)) = EN ′∩M (x)EN ′∩M (a) and x
was assumed to satisfy EN ′∩M (x) = 0, we obtain 0 ≥ ε0 a contradiction which
ends the proof of the theorem. Q.E.D.

A.2. A generalized version of Connes’ perturbation theorem

In [C1] A. Connes proved a technical result about Hilbert norm perturbations
of square integrable operators in semifinite von Neumann algebras.

We will use here a slight modification of his argument (essentially, of his ”joint
distribution trick”) to derive the following version of his result, needed in the
proof of Theorem 5.4:

A.2.1. Theorem. Let P be a semifinite von Neumann algebra with a normal
semifinite faithful trace denoted by Tr. Let Φ be a positive map on P satisfying
the conditions:

(1) Φ(1) = 1, Tr ◦ Φ ≤ Tr.

(2) sup{‖Φ(x)‖2,Tr | x ∈ P, ‖x‖2,Tr ≤ 1} ≤ 1.

Let δ > 0 be such that δ < (5)−4 and b ∈ P+ satisfy the conditions:

(3) ‖b‖2,Tr = 1, ‖Φ(b)‖2,Tr ≥ 1 − δ.

(4) ‖b− Φ(b)‖2,Tr < δ.

Then there exists s > 0 such that ‖es(b) − Φ(es(b))‖2,Tr < δ1/4‖es(b)‖.

Proof. Like in [C1], let X = R2
+ \ {0} and H0(x, y) = x, H1(x, y) = y. As on

page 77 in [C1] it then follows that

µ(A0 ×A1)
def
= Tr(eA0

(b)Φ(eA1
(b)))

for Ai ⊂ R+ Borel sets such that either 0 6= Ā0 or 0 6= Ā1, defines a Radon
measure µ on X , which satisfies the properties:

a) ‖f(Hi)‖1,µ = Tr(Φi(|f |(b))) (respectively ‖f(Hi)‖2
2,µ = Tr(Φi(|f |2(b))) ≤

‖f(b)‖2
2,Tr), for all f : [0,∞) → C Borel function with f(0) = 0 and f(b) ∈

L1(P,Tr) (respectively f(b) ∈ L2(P,Tr)), i = 0, 1, where Φ0 = id,Φ1 = Φ.

b)

∫

X

f0(H0)f1(H1)dµ = Tr(f0(b))Φ(f̄1(b))), for all fi : [0,∞) → C Borel with

fi(0) = 0 and fi(b) ∈ L2(P,Tr), i = 0, 1.

c) ‖f0(H0) − f1(H1)‖2,µ ≥ ‖f0(b) − Φ(f1(b))‖2,Tr, ∀ fi as in b).

d) ‖H0 −H1‖2
2,µ = Tr(b2) + Tr(Φ(b2)) − 2Tr(bΦ(b)) ≤ 6δ.

Indeed, a) and b) are clear by the proof of I.1 in [C1] and the definition of µ.
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Further on, by a), b), (1), and Kadison’s inequality we get:

‖f0(H0) − f1(H1)‖2
2,µ = ‖f0(H0)‖2

2,µ + ‖f1(H1)‖2
2,µ

− 2Re

∫

X

f0(H0)f1(H1)dµ

= Tr(f0(b)
∗f0(b) + Tr(Φ(f1(b)

∗f1(b)))

− 2Re Tr(f0(b))Φ(f1(b)))

≥ Tr(f0(b)
∗f0(b0))

+ Tr(Φ(f1(b))
∗Φ(f1(b)))

− 2Re Tr(f0(b))Φ(f1(b))
∗)

= ‖f0(b0) − Φ(f1(b))‖2
2,Tr.

This proves c). Then d) is clear by noticing that the hypothesis and the Cauchy-
Schwartz inequality imply:

Tr(b2) + Tr(Φ(b2)) − 2Tr(bΦ(b))

≤ Tr(b2) + Tr(b2) − 2Tr(bΦ(b))

= 2 − 2Tr(bΦ(b))

≤ 2 − 2Tr(b2) + 2δ

≤ 2(1 − (1 − δ)2) + 2δ ≤ 6δ

Remark now that we have, like in proof of 1.2.6 in [C1], the estimate:

∫

R
∗
+

‖et1/2(H0) − et1/2(H1)‖2
2,µdt

= ‖H2
0 −H2

1‖1,µ ≤ ‖H0 −H1‖2,µ‖H0 +H1‖2,µ.

But d) implies ‖H0−H1‖2,µ ≤ (6δ)1/2 and a) implies ‖H0+H1‖2,µ ≤ ‖H0‖2,µ+
‖H1‖2,µ ≤ ‖b‖2,Tr + ‖b‖2,Tr = 2. Thus, by applying c) to the function f =
χ[t1/2,∞), for each t > 0, we obtain

∫

R
∗
+

‖et1/2(b) − Φ(et1/2(b))‖2
2,Trdt

≤ 2(6δ)1/2 = 2(6δ)1/2
∫

R
∗
+

‖et1/2(b0)‖2
2,Trdt.(∗)

This implies that if we denote by D the set of all t > 0 for which

g(t)
def
= ‖et1/2(b0) − Φ(et1/2(b))‖2

2,Trdt < δ1/4‖et1/2(b)‖2
2,Tr

Documenta Mathematica 4 (1999) 665–744



Symmetric Enveloping Algebras 741

then ∫

D

‖et1/(b)‖2
2,Trdt ≥ 1 − 5δ1/4.

Indeed, for if
∫
D ‖et1/2(b0)‖2

2,Trdt < 1 − 5δ1/4, by taking into account that

g(t) ≥ δ1/4‖et1/2(b0)‖2
2,Tr for t ∈ R∗

+ \D, we would get:

∫

R
∗
+

g(t)dt ≥
∫

R
∗
+
\D

g(t)dt

≥ δ1/4
∫

R
∗
+
\D

‖et1/2(b0)‖2
2,Trdt

≥ 5δ1/2 > 2(6δ)1/2.

which is in contradiction with (∗).
In particular, since δ < 5−4, we have 1 − 5δ1/4 > 0 so that D 6= ∅. Thus, any
s > 0 with s2 ∈ D will satisfy the condition in the conclusion. Q.E.D.
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