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Abstract. Starting from Kirchberg’s theorems announced at the
operator algebra conference in Genève in 1994, namely O2 ⊗A ∼= O2

for separable unital nuclear simple A and O∞ ⊗ A ∼= A for separable
unital nuclear purely infinite simple A, we prove that KK-equivalence
implies isomorphism for nonunital separable nuclear purely infinite
simple C∗-algebras. It follows that if A and B are unital separable
nuclear purely infinite simple C∗-algebras which satisfy the Universal
Coefficient Theorem, and if there is a graded isomorphism fromK∗(A)
to K∗(B) which preserves the K0-class of the identity, then A ∼= B.

Our main technical results are, we believe, of independent in-
terest. We say that two asymptotic morphisms t 7→ ϕt and t 7→ ψt

from A to B are asymptotically unitarily equivalent if there exists
a continuous unitary path t 7→ ut in the unitization B+ such that
‖utϕt(a)u

∗
t − ψt(a)‖ → 0 for all a in A. We prove the following two

results on deformations and unitary equivalence. Let A be separable,
nuclear, unital, and simple, and let D be unital. Then any asymptotic
morphism from A to K ⊗O∞ ⊗D is asymptotically unitarily equiv-
alent to a homomorphism, and two homotopic homomorphisms from
A to K⊗O∞⊗D are necessarily asymptotically unitarily equivalent.
We also give some nonclassification results for the nonnuclear case.

1991 Mathematics Subject Classification: Primary 46L35; Secondary
19K99, 46L80.

0 Introduction

We prove that the isomorphism class of a separable nuclear unital purely infi-
nite simple C∗-algebra satisfying the Rosenberg-Schochet Universal Coefficient
Theorem is completely determined by its K-theory. More precisely, let A and

Documenta Mathematica 5 (2000) 49–114



50 N. Christopher Phillips

B be separable nuclear unital purely infinite simple C∗-algebras which satisfy
the Universal Coefficient Theorem, and suppose that there is a graded isomor-
phism α : K∗(A) → K∗(B) such that α([1A]) = [1B] in K0(B). Then there
is an isomorphism ϕ : A → B such that ϕ∗ = α. This theorem follows from
a result asserting that whenever A and B are separable nuclear unital purely
infinite simple C∗-algebras (not necessarily satisfying the Universal Coefficient
Theorem) which are KK-equivalent via a class in KK-theory which respects
the classes of the identities, then there is an isomorphism from A to B whose
class in KK-theory is the given one.

As intermediate results, we prove some striking facts about homomor-
phisms and asymptotic morphisms from a separable nuclear unital simple C∗-
algebra to the tensor product of a unital C∗-algebra and the Cuntz algebra
O∞. If A and D are any two C∗-algebras, we say that two homomorphisms
ϕ, ψ : A → D are asymptotically unitarily equivalent if there is a continuous
unitary path t 7→ ut in D̃ such that limt→∞ utϕ(a)ut∗ = ψ(a) for all a ∈ A.

(Here D̃ = D if D is unital, and D̃ is the unitization D+ if D is not unital.)
Note that asymptotic unitary equivalence is a slightly strengthened form of
approximate unitary equivalence, and is an approximate form of unitary equiv-
alence. Our results show that if A is separable, nuclear, unital, and simple,
and D is separable and unital, then KK0(A,D) can be computed as the set
of asymptotic unitary equivalence classes of full homomorphisms from A to
K ⊗ O∞ ⊗D, with direct sum as the operation. Note that we use something
close to unitary equivalence, and that there is no need to use asymptotic mor-
phisms, no need to take suspensions, and (essentially because O∞ is purely
infinite) no need to form formal differences of classes. We can furthermore
replace A by K ⊗ O∞ ⊗ A, in which case the Kasparov product reduces ex-
actly to composition of homomorphisms. These results can be thought of as
a form of unsuspended E-theory. (Compare with [16], but note that we don’t
even need to use asymptotic morphisms.) There are also perturbation results:
any asymptotic morphism is in fact asymptotically unitarily equivalent (with
a suitable definition) to a homomorphism.

We also present what is now known about how badly the classification fails
in the nonnuclear case. There are separable purely infinite simple C∗-algebrasA
with O∞⊗A 6∼= A (Dykema–Rørdam), there are infinitely many nonisomorphic
separable exact purely infinite simple C∗-algebras A with O∞ ⊗ A ∼= A and
K∗(A) = 0 (easily obtained from results of Haagerup and Cowling–Haagerup),
and for given K-theory there are uncountably many nonisomorphic separable
nonexact purely infinite simple C∗-algebras with that K-theory.

Classification of C∗-algebras started with Elliott’s classification [19] of AF
algebras up to isomorphism by their K-theory. It received new impetus with
his successful classification of certain C∗-algebras of real rank zero with non-
trivial K1-groups. We refer to [21] for a recent comprehensive list of work in
this area. The initial step toward classification in the infinite case was taken in
[8], and was quickly followed by a number of papers [48], [49], [33], [34], [22],
[50], [35], [7], [51], [32], [36]. In July 1994, Kirchberg announced [27] a break-
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through: proofs that if A is a separable nuclear unital purely infinite simple
C∗-algebra, then O2⊗A ∼= O2 and O∞⊗A ∼= A. (The proofs, closely following
Kirchberg’s original methods, are in [29].) This quickly led to two more papers
[44], [52]. Here, we use Kirchberg’s results to nearly solve the classification
problem for separable nuclear unital purely infinite simple C∗-algebras; the
only difficulty that remains is the Universal Coefficient Theorem. The method
is a great generalization of that of [44], in which we replace homomorphisms
by asymptotic morphisms and approximate unitary equivalence by asymptotic
unitary equivalence. We also need a form of unsuspended E-theory, as alluded
to above. The most crucial step is done in Section 2, where we show that, in
a particular context, homotopy implies asymptotic unitary equivalence. We
suggest reading [44] to understand the basic structure of Section 2.

Kirchberg has in [28] independently derived the same classification theorem
we have. His methods are somewhat different, and mostly independent of the
proofs in [29]. He proves that homotopy implies a form of unitary equivalence
in a different context, and does so by eventually reducing the problem to a
theorem of this type in Kasparov’s paper [26]. By contrast, the main machinery
in our proof is simply the repeated use of Kirchberg’s earlier results as described
above.

This paper is organized as follows. In Section 1, we present some im-
portant facts about asymptotic morphisms, and introduce asymptotic unitary
equivalence. In Section 2, we prove our main technical results: under suit-
able conditions, homotopic asymptotic morphisms are asymptotically unitarily
equivalent and asymptotic morphisms are asymptotically unitarily equivalent
to homomorphisms. These results are given at the end of the section. In
Section 3, we prove the basic form (still using asymptotic morphisms) of our
version of unsuspended E-theory. Finally, Section 4 contains the classification
theorem and some corollaries, as well as the nicest forms of the intermediate
results discussed above. It also contains the nonclassification results.

Most of this work was done during a visit to the Fields Institute for Re-
search in Mathematical Sciences during Fall 1994, and I would like to thank
the Institute for its support and for the stimulating research environment it
provided. I would also like to thank a number of people for useful discussions,
either in person or by electronic mail, including Marius Dǎdǎrlat, George El-
liott, Uffe Haagerup, Eberhard Kirchberg, Alex Kumjian, Huaxin Lin, Mikael
Rørdam, Jonathan Samuel, Claude Schochet, and Shuang Zhang. These discus-
sions have led me to considerable simplification of the arguments and improve-
ment of the terminology. I am also grateful to the referee for a careful reading
of the paper and useful suggestions. In addition, the participants of a semi-
nar on an earlier version, including Siegfried Echterhof, Ralf Meyer, Bernhard
Neubüser, Christian Valqui, and Wilhelm Winter, made a number of helpful
comments.

Throughout this paper, U(D) denotes the unitary group of a unital C∗-
algebra D, and U0(D) denotes the connected component of U(D) contain-
ing 1. We will use repeatedly and without comment Cuntz’s result that
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K1(D) = U(D)/U0(D) for a unital purely infinite simple C∗-algebra D, as
well as his corresponding result that K0(D) is the set of Murray-von Neumann
equivalence classes of nonzero projections [14]. We similarly use Kasparov’s
KK-theory [26], and we recall here (and do not mention again) that every
separable nonunital purely infinite simple C∗-algebra has the form K ⊗D for
a unital purely infinite simple C∗-algebra D [61].

1 Asymptotic morphisms and asymptotic unitary equivalence

The basic objects we work with in this paper are asymptotic morphisms. In
the first subsection, we state for convenient reference some of the facts we need
about asymptotic morphisms, and establish notation concerning them. In the
second subsection, we define and discuss full asymptotic morphisms; fullness
is used as a nontriviality condition later in the paper. In the third subsection,
we introduce asymptotic unitary equivalence of asymptotic morphisms. This
relation is the appropriate version of unitary equivalence in the context of
asymptotic morphisms, and will play a fundamental role in Sections 2 and 3.

1.1 Asymptotic morphisms and asymptotic unitary equivalence

Asymptotic morphisms were introduced by Connes and Higson [11] for the
purpose of defining E-theory, a simple construction of KK-theory (at least if
the first variable is nuclear). In this subsection, we recall the definition and
some of the basic results on asymptotic morphisms, partly to establish our
notation and partly for ease of reference. We also prove a few facts that are
well known but seem not to have been published. We refer to [11], and the
much more detailed paper [54], for the details of the rest of the development of
E-theory.

IfX is a compact Hausdorff Hausdorff space, then C(X,D) denotes the C∗-
algebra of all continuous functions from X to D, while if X is locally compact
Hausdorff Hausdorff, then C0(X,D) denotes the C∗-algebra of all continuous
functions from X to D which vanish at infinity, and Cb(X,D) denote the C∗-
algebra of all bounded continuous functions from X to D.

We begin by recalling the definition of an asymptotic morphism.

1.1.1 Definition. Let A and D be C∗-algebras, with A separable. An asymp-
totic morphism ϕ : A→ D is a family t→ ϕt of functions from A to D, defined
for t ∈ [0,∞), satisfying the following conditions:

(1) For every a ∈ A, the function t 7→ ϕt(a) is continuous from [0,∞) to D.

(2) For every a, b ∈ A and α, β ∈ C, the limits

lim
t→∞

(ϕt(αa+ βb) − αϕt(a) − βϕt(b)),
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lim
t→∞

(ϕt(ab) − ϕt(a)ϕt(b)), and lim
t→∞

(ϕt(a
∗) − ϕt(a)

∗)

are all zero.

1.1.2 Definition. ([11]) Let ϕ and ψ be asymptotic morphisms from A to D.
(1) We say that ϕ and ψ are asymptotically equal (called “equivalent” in

[11]) if for all a ∈ A, we have limt→∞(ϕt(a) − ψt(a)) = 0.
(2) We say that ϕ and ψ are homotopic if there is an asymptotic morphism

ρ : A → C([0, 1], D) whose restrictions to {0} and {1} are ϕ and ψ respectively.
In this case, we refer to α 7→ ρ(α) = evα ◦ ρ (where evα : C([0, 1], D) → D
is evaluation at α) as a homotopy from ϕ to ψ, or as a continuous path of
asymptotic morphisms from ϕ to ψ.

The set of homotopy classes of asymptotic morphisms from A to D is de-
noted [[A,D]], and the homotopy class of an asymptotic morphism ϕ is denoted
[[ϕ]].

It is easy to check that asymptotic equality implies homotopy ([54], Re-
mark 1.11).

1.1.3 Definition. Let ϕ, ψ : A → K⊗D be asymptotic morphisms. The direct
sum ϕ⊕ψ, well defined up to unitary equivalence (via unitaries in M(K⊗D)),
is defined as follows. Choose any isomorphism δ : M2(K) → K, let δ : M2(K⊗
D) → K ⊗D be the induced map, and define

(ϕ⊕ ψ)t(a) = δ

((
ϕt(a) 0

0 ψt(a)

))
.

Note that any two choices for δ are unitarily equivalent (and hence homotopic).

The individual maps ϕt of an asymptotic morphism are not assumed
bounded or even linear.

1.1.4 Definition. Let ϕ : A → D be an asymptotic morphism.
(1) We say that ϕ is completely positive contractive if each ϕt is a linear

completely positive contraction.
(2) We say that ϕ is bounded if each ϕt is linear and supt ‖ϕt‖ is finite.
(3) We say that ϕ is selfadjoint if ϕt(a

∗) = ϕt(a)
∗ for all t and a.

Unless otherwise specified, homotopies of asymptotic morphisms from A
to D satisfying one or more of these conditions will be assumed to satisfy the
same conditions as asymptotic morphisms from A to C([0, 1], D).

Note that if ϕ is bounded, then the formula ψt(a) = 1
2 (ϕt(a) + ϕt(a

∗)∗)
defines a selfadjoint bounded asymptotic morphism which is asymptotically
equal to ϕ. We omit the easy verification that ψ is in fact an asymptotic
morphism.

1.1.5 Lemma. ([54], Lemma 1.6.) Let A and D be C∗-algebras, with A sepa-
rable and nuclear. Then every asymptotic morphism from A to D is asymptot-
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ically equal to a completely positive contractive asymptotic morphism. More-
over, the obvious map defines a bijection between the sets of homotopy classes
of completely positive contractive asymptotic morphisms and arbitrary asymp-
totic morphisms. (Homotopy classes are as in the convention in Definition
1.1.4.)

1.1.6 Lemma. Let ϕ : A→ D be an asymptotic morphism. Define ϕ+ : A+ →
D+ by ϕt(a + λ · 1) = ϕt(a) + λ · 1 for a ∈ A and λ ∈ C. Then ϕ+ is an
asymptotic morphism from A+ to D+, and is completely positive contractive,
bounded, or selfadjoint whenever ϕ is.

The proof of this is straightforward, and is omitted.
The following result is certainly known, but we know of no reference.

1.1.7 Proposition. Let A be a C∗-algebra which is given by exactly stable
(in the sense of Loring [37]) generators and relations (G,R), with both G and
R finite. Let D be a C∗-algebra. Then any asymptotic morphism from A to
D is asymptotically equal to a continuous family of homomorphisms from A
to D (parametrized by [0,∞)). Moreover, if ϕ(0) and ϕ(1) are two homotopic

asymptotic morphisms from A to D, such that each ϕ
(0)
t and each ϕ

(1)
t is a

homomorphism, then there is a homotopy α 7→ ϕ(α) which is asymptotically

equal to the given homotopy and such that each ϕ
(α)
t is a homomorphism.

Note that it follows from Theorem 2.6 of [38] that exact stability of (G,R)
depends only on A, not on the specific choices of G and R.

Proof of Proposition 1.1.7: Theorem 2.6 of [38] implies that the algebra A is
semiprojective in the sense of Blackadar [4]. (Also see Definition 2.3 of [38].)
We will use semiprojectivity instead of exact stability.

We prove the first statement. Let ϕ : A → D be an asymptotic morphism.
Then ϕ defines in a standard way (see Section 1.2 of [54]) a homomorphism
ψ : A → Cb([0,∞), D)/C0([0,∞), D). Let

In(D) = {f ∈ Cb([0,∞), D) : f(t) = 0 for t ≥ n}.

Then C0([0,∞), D) =
⋃∞

n=1 In(D). Semiprojectivity of A provides an n and
a homomorphism σ : A → Cb([0,∞), D)/In(D) such that the composite of σ
and the quotient map

Cb([0,∞), D)/In(D) → Cb([0,∞), D)/C0([0,∞), D)

is ψ. Now σ can be viewed as a continuous family of homomorphisms σt from
A to D, parametrized by [n,∞). Define σt = σn for 0 ≤ t ≤ n. This gives the
required continuous family of homomorphisms.

The proof of the statement about homotopies is essentially the same. We
use Cb([0, 1] × [0,∞), D) in place of Cb([0,∞), D),

J = {f ∈ C0([0, 1] × [0,∞), D) : f(α, t) = 0 for α = 0, 1}
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in place of C0([0,∞), D), and J ∩ In([0, 1], D) in place of In(D). We obtain

ϕ
(α)
t for all t greater than or equal to some t0, and for all t when α = 0 or 1.

We then extend over (0, 1) × [0, t0) via a continuous retraction

[0, 1] × [0,∞) → ([0, 1] × [t0,∞)) ∪ ({0} × [0,∞)) ∪ ({1} × [0,∞)).

We refer to [11] (and to [54] for more detailed proofs) for the definition
of E(A,B) as the abelian group of homotopy classes of asymptotic morphisms
from K⊗SA to K⊗SB, for the construction of the composition of asymptotic
morphisms (well defined up to homotopy), and for the construction of the
natural map KK0(A,B) → E(A,B) and the fact that it is an isomorphism if
A is nuclear. We do state here for reference the existence of the tensor product
of asymptotic morphisms. For the proof, see Section 2.2 of [54].

1.1.8 Proposition. ([11]) Let A1, A2, B1, and B2 be separable C∗-algebras,
and let ϕ(i) : Ai → Bi be asymptotic morphisms. Then there exists an asymp-
totic morphism ψ : A1 ⊗ A2 → B1 ⊗ B2 (maximal tensor products) such that

ψt(a1 ⊗ a2) − ϕ
(1)
t (a1) ⊗ ϕ

(2)
t (a2) → 0 as t → ∞, for all a1 ∈ A1 and a2 ∈ A2.

Moreover, ψ is unique up to asymptotic equality.

1.2 Full asymptotic morphisms

In this subsection, we define full asymptotic morphisms. Fullness will be used
as a nontriviality condition on asymptotic morphisms in Section 3. It will also
be convenient (although not, strictly speaking, necessary) in Section 2.

We make our definitions in terms of projections, because the behavior of
asymptotic morphisms on projections can be reasonably well controlled. We
do not want to let the asymptotic morphism ϕ : C0(R) → C0(R), defined by
ϕt(f) = tf, be considered to be full, since it is asymptotically equal to the zero
asymptotic morphism, but in the absence of projections it is not so clear how
to rule it out. Fortunately, in the present paper this issue does not arise.

We start with a useful definition and some observations related to the
evaluation of asymptotic morphisms on projections.

1.2.1 Definition. Let A and D be C∗-algebras, with A separable. Let p ∈ A
be a projection, and let ϕ : A → D be an asymptotic morphism. A tail
projection for ϕ(p) is a continuous function t 7→ qt from [0,∞) to the projections
in D which, thought of as an asymptotic morphism ψ : C → D via ψt(λ) = λqt,
is asymptotically equal to the asymptotic morphism ψ′

t(λ) = λϕt(p).

1.2.2 Remark. (1) Tail projections always exist: Choose a suitable t0, apply
functional calculus to 1

2 (ϕt(p) + ϕt(p)
∗) for t ≥ t0, and take the value at t for

t ≤ t0 to be the value at t0. (Or use Proposition 1.1.7.)
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(2) If ϕ is an asymptotic morphism from A to D, then a tail projection for
ϕ(p), regarded as an asymptotic morphism from C to D, is a representative of
the product homotopy class of ϕ and the asymptotic morphism from C to A
given by p.

(3) A homotopy of tail projections is defined in the obvious way: it is a

continuous family of projections (α, t) → q
(α)
t with given values at α = 0 and

α = 1.
(4) If ϕ is an asymptotic morphism, then it makes sense to say that a tail

projection is (or is not) full (that is, generates a full hereditary subalgebra),
since fullness depends only on the homotopy class of a projection.

1.2.3 Lemma. Let A and D be C∗-algebras, with A separable. Let ϕ : A →
D be an asymptotic morphism, and let p1 and p2 be projections in A. If
p1 is Murray-von Neumann equivalent to a subprojection of p2, then a tail
projection for ϕ(p1) is Murray-von Neumann equivalent to a subprojection of
a tail projection for ϕ(p2).

Proof: Let t 7→ q
(1)
t and t 7→ q

(2)
t be tail projections for ϕ(p1) and ϕ(p2)

respectively. Let v be a partial isometry with v∗v = p1 and vv∗ ≤ p2. Using
asymptotic multiplicativity and the definition of a tail projection, we have

lim
t→∞

(
ϕt(v)

∗ϕt(v) − q
(1)
t

)
= 0 and lim

t→∞

(
q
(2)
t ϕt(v)ϕt(v)

∗q
(2)
t − q

(2)
t

)
= 0.

It follows that for t sufficiently large, q
(1)
t is Murray-von Neumann equivalent to

a subprojection of q
(2)
t , with the Murray-von Neumann equivalence depending

continuously on t. It is easy to extend it from an interval [t0,∞) to [0,∞).

1.2.4 Lemma. Let A and D be as in Definition 1.2.1, let α 7→ ϕ(α) be a
homotopy of asymptotic morphisms from A to D, and let p0, p1 ∈ A be homo-
topic projections. Let q(0) and q(1) be tail projections for ϕ(0)(p0) and ϕ(1)(p1)
respectively. Then q(0) is homotopic to q(1) in the sense of Remark 1.2.1 (3).

Proof: This can be proved directly, but also follows by combining Remark
1.2.2 (2), Proposition 1.1.7, and the fact that products of homotopy classes of
asymptotic morphisms are well defined.

1.2.5 Definition. Let A be a separable C∗-algebra which contains a full
projection, and let D be any C∗-algebra. Then an asymptotic morphism ϕ :
A → D is full if there is a full projection p ∈ A such that some (equivalently,
any) tail projection for ϕ(p) is full in D.

This definition rejects, not only the identity map of C0(R), but also the
identity map of C0(Z). (The algebra C0(Z) has no full projections.) However,
it will do for our purposes.

Note that, by Lemma 1.2.3, if a tail projection for ϕ(p) is full, then so is
a tail projection for ϕ(q) whenever p is Murray-von Neumann equivalent to a
subprojection of q.
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We now list the relevant properties of full asymptotic morphisms. We
omit the proofs; they are mostly either immediate or variations on the proof of
Lemma 1.2.3.

1.2.6 Lemma. (1) Fullness of an asymptotic morphism depends only on its
homotopy class.

(2) If ϕ, ψ : A → D are asymptotic morphisms, and if ϕ is full, then so is
the asymptotic morphism ϕ⊕ ψ : A →M2(D).

(3) Let B be separable, and have a full projection, and further assume
that given two full projections in B, each is Murray-von Neumann equivalent
to a subprojection of the other. Then any asymptotic morphism representing
the product of full asymptotic morphisms from A to B and from B to D is
again full.

The extra assumption in part (3) is annoying, but we don’t see an easy
way to avoid it. This suggests that we don’t quite have the right definition.
However, in this paper B will almost always have the form K ⊗O∞ ⊗D with
D unital. Lemma 2.1.8 (1) below will ensure that the assumption holds in this
case.

1.3 Asymptotic unitary equivalence

Approximately unitarily equivalent homomorphisms have the same class in
Rørdam’sKL-theory (Proposition 5.4 of [51]), but need not have the same class
in KK-theory. (See Theorem 6.12 of [51], and note that KL(A,B) is in general
a proper quotient of KK0(A,B).) Since the theorems we prove in Section 3
give information about KK-theory rather than about Rørdam’s KL-theory, we
introduce and use the notion of asymptotic unitary equivalence instead. We
give the definition for asymptotic morphisms because we will make extensive
technical use of it in this context, but, for reasons to be explained below, it is
best suited to homomorphisms.

1.3.1 Definition. Let A and D be C∗-algebras, with A separable. Let ϕ, ψ :
A → D be two asymptotic morphisms. Then ϕ is asymptotically unitarily
equivalent to ψ if there is a continuous family of unitaries t 7→ ut in D̃, defined
for t ∈ [0,∞), such that

lim
t→∞

‖utϕt(a)u
∗
t − ψt(a)‖ = 0

for all a ∈ A. We say that two homomorphisms ϕ, ψ : A → D are asymptotically
unitarily equivalent if the corresponding constant asymptotic morphisms with
ϕt = ϕ and ψt = ψ are asymptotically unitarily equivalent.

1.3.2 Lemma. Asymptotic unitary equivalence is the equivalence relation on
asymptotic morphisms generated by asymptotic equality and unitary equiva-
lence in the exact sense (that is, utϕt(a)u

∗
t = ψt(a) for all a ∈ A).
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Proof: The only point needing any work at all is transitivity of asymptotic
unitary equivalence, and this is easy.

1.3.3 Lemma. Let A and D be C∗-algebras, with A separable.

(1) Let ϕ, ψ : A → K ⊗D be asymptotically unitarily equivalent asymp-
totic morphisms. Then ϕ is homotopic to ψ.

(2) Let ϕ, ψ : A → K ⊗ D be asymptotically unitarily equivalent homo-
morphisms. Then ϕ is homotopic to ψ via a path of homomorphisms.

Proof: (1) Let t 7→ ut ∈ (K ⊗ D)+ be an asymptotic unitary equivalence.
Modulo the usual isomorphism M2(K) ∼= K, the asymptotic morphisms ϕ and
ψ are homotopic to the asymptotic morphisms ϕ ⊕ 0 and ψ ⊕ 0 from A to
M2(K ⊗ D). Choose a continuous function (α, t) 7→ vα,t from [0, 1] × [0,∞)
to U(M2((K ⊗ D)+)) such that v0,t = 1 and v1,t = ut ⊕ u∗t for all t. Define

a homotopy of asymptotic morphisms by ρ
(α)
t (a) = vα,t(ϕt(a) ⊕ 0)v∗α,t. Then

ρ(0) = ϕ⊕ 0 and ρ(1) is asymptotically equal to ψ⊕ 0. So ϕ is homotopic to ψ.

(2) Apply the proof of part (1) to the constant paths t 7→ ϕ and t 7→ ψ.

Putting t = 0 gives homotopies of homomorphisms from ϕ to ρ
(1)
0 and from

ψ to ψ ⊕ 0. The remaining piece of our homotopy is taken to be defined for

t ∈ [0,∞], and is given by t 7→ ρ
(1)
t for t ∈ [0,∞) and ∞ 7→ ψ ⊕ 0.

1.3.4 Corollary. Two asymptotically unitarily equivalent asymptotic mor-
phisms define the same class in E-theory.

If the domain is nuclear, this corollary shows that asymptotically uni-
tarily equivalent asymptotic morphisms define the same class in KK-theory.
Asymptotic unitary equivalence thus rectifies the most important disadvantage
of approximate unitary equivalence for homomorphisms. Asymptotic unitary
equivalence, however, also has its problems, connected with the extension to
asymptotic morphisms. The construction of the product of asymptotic mor-
phisms requires reparametrization of asymptotic morphisms, as in the following
definition.

1.3.5 Definition. Let A and D be C∗-algebras, and let ϕ : A → D be an
asymptotic morphism. A reparametrization of ϕ is an asymptotic morphism
from A to D of the form t 7→ ϕf(t) for some continuous nondecreasing function
f : [0,∞) → [0,∞) such that limt→∞ f(t) = ∞.

Other versions are possible: one could replace “nondecreasing” by “strictly
increasing”, or omit this condition entirely. The version we give is the most
convenient for our purposes.

It is not in general true that an asymptotic morphism is asymptotically uni-
tarily equivalent to its reparametrizations. (Consider, for example, the asymp-
totic morphism ϕ : C(S1) → C given by ϕt(f) = f(exp(it)).) The product
is thus not defined on asymptotic unitary equivalence classes of asymptotic
morphisms. (The product is defined on asymptotic unitary equivalence classes
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when one factor is a homomorphism. We don’t prove this fact because we don’t
need it, but see the last part of the proof of Lemma 2.3.5.) In fact, if an asymp-
totic morphism is asymptotically unitarily equivalent to its reparametrizations,
then it is asymptotically unitarily equivalent to a homomorphism, and this will
play an important role in our proof. The observation that this is true is due
to Kirchberg. It replaces a more complicated argument in the earlier version
of this paper, which involved the use throughout of “local asymptotic mor-
phisms”, a generalization of asymptotic morphisms in which there is another
parameter. We start the proof with a lemma.

1.3.6 Lemma. Let A and D be C∗-algebras, and let ϕ : A → D be an
asymptotic morphism. Suppose ϕ is asymptotically unitarily equivalent to all
its reparametrizations. Then for any ε > 0 and any finite set F ⊂ A there
is M ∈ [0,∞) such that for any compact interval I ⊂ R and any continuous
nondecreasing functions f, g : I → [M,∞), there is a continuous unitary path

t 7→ vt in D̃ satisfying ‖vtϕf(t)(a)v
∗
t − ϕg(t)(a)‖ < ε for all t ∈ I and a ∈ F.

Proof: Suppose the lemma is false. We can obviously change I at will by
reparametrizing, so there are ε > 0 and F ⊂ A finite such that for all M ∈
[0,∞) and all compact intervals I ⊂ R there are continuous nondecreasing
functions f, g : I → [M,∞) for which no continuous unitary path t 7→ vt

in D̃ gives ‖vtϕf(t)(a)v
∗
t − ϕg(t)(a)‖ < ε for t ∈ I and a ∈ F. Choose f1

and g1 for M = M1 = 1 and I = I1 = [1, 1 + 1
2 ]. Given fn and gn, choose

fn+1 and gn+1 as above for M = Mn+1 = 1 + max(fn(n + 1
2 ), gn(n+ 1

2 )) and
I = In+1 = [n + 1, n + 1 + 1

2 ]. By induction, we have Mn ≥ n. Let f, g :
[0,∞) → [0,∞) be the unique continuous functions which are linear on the
intervals [n+ 1

2 , n+1] and satisfy f |[n,n+ 1
2 ] = fn and g|[n,n+ 1

2 ] = gn. Since f and

g are nondecreasing and satisfy f(t), g(t) ≥ n for t ≥ n, the functions t 7→ ϕf(t)

and t 7→ ϕg(t) are asymptotic morphisms which are reparametrizations of ϕ. By
hypothesis, both are asymptotically unitarily equivalent to ϕ, and are therefore
also asymptotically unitarily equivalent to each other. Let t 7→ vt be a unitary
path in D̃ which implements this asymptotic unitary equivalence. Choose T
such that for a ∈ F and t > T we have ‖vtϕf(t)(a)v

∗
t − ϕg(t)(a)‖ < ε/2.

Restricting to [n, n+ 1
2 ] for some n > T gives a contradiction to the choice of

M and ε. This proves the lemma.

1.3.7 Proposition. Let A be a separable C∗-algebra, and let ϕ : A → D be
a bounded asymptotic morphism. Suppose that ϕ is asymptotically unitarily
equivalent to all its reparametrizations. Then ϕ is asymptotically unitarily
equivalent to a homomorphism. That is, there exist a homomorphism ω : A →
D and a continuous path t 7→ vt of unitaries in D̃ such that for every a ∈ A,
we have limt→∞ vtϕt(a)v

∗
t = ω(a).

Recall from Definition 1.1.4 (2) that bounded asymptotic morphisms are
assumed in particular to be linear.
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Proof of Proposition 1.3.7: Choose finite sets F0 ⊂ F1 ⊂ · · · ⊂ A whose union
is dense in A. Choose a sequence t0 < t1 < · · · , with tn → ∞, such that

‖ϕt(ab) − ϕt(a)ϕt(b)‖, ‖ϕt(a
∗) − ϕt(a)

∗‖ < 1/2n

for a, b ∈ Fn and t ≥ tn, and also such that, as in the previous lemma, for any
compact interval I ⊂ R and any continuous nondecreasing functions f, g : I →
[tn,∞), there is a continuous unitary path t 7→ vt in D̃ satisfying ‖vtϕf(t)(a)v

∗
t −

ϕg(t)(a)‖ < 2−n−1 for all t ∈ I and a ∈ Fn. For n ≥ 0 let t 7→ u
(n)
t be the unitary

path associated with the particular choices I = [tn, tn+1], f(t) = t, and g(t) =

tn. Set ũ
(n)
t = (u

(n)
tn

)∗u
(n)
t . We have ‖(u

(n)
tn

)∗ϕtn
(a)u

(n)
tn

− ϕtn
(a)‖ < 2−n−1 for

a ∈ Fn, so ‖ũ
(n)
t ϕt(a)(ũ

(n)
t )∗ − ϕtn

(a)‖ < 2−n for t ∈ [tn, tn+1] and a ∈ Fn.

Also note that ũ
(n)
tn

= 1. Now define a continuous unitary function [0,∞) → D̃
by

vt = ũ
(0)
t1 · ũ

(1)
t2 · · · ũ

(n−1)
tn

· ũ
(n)
t

for tn ≤ t ≤ tn+1.
We claim that ω(a) = limt→∞ vtϕt(a)v

∗
t exists for all a ∈ A. Since

supt∈[0,∞) ‖ϕt‖ < ∞, it suffices to check this on the dense subset
⋃∞

k=0 Fk.
So let a ∈ Fk. We prove that the net t 7→ vtϕt(a)v

∗
t is Cauchy. Let m ≥ k, and

let t ≥ tm. Choose n such that tn ≤ t ≤ tn+1. Then

‖vtϕt(a)v
∗
t − vtm

ϕtm
(a)v∗tm

‖

=
∥∥∥
[
ũ

(m)
tm+1

· ũ
(m+1)
tm+2

· · · ũ
(n−1)
tn

· ũ
(n)
t

]

ϕt(a)
[
ũ

(m)
tm+1

· ũ
(m+1)
tm+2

· · · ũ
(n−1)
tn

· ũ
(n)
t

]∗
− ϕtm

(a)
∥∥∥

≤
∥∥∥
(
ũ

(n)
t

)
ϕt(a)

(
ũ

(n)
t

)∗
− ϕtn

(a)
∥∥∥

+

n−1∑

j=m

∥∥∥
(
ũ

(j)
tj+1

)
ϕtj+1 (a)

(
ũ

(j)
tj+1

)∗
− ϕtj

(a)
∥∥∥

≤
n∑

j=m

1

2j
<

1

2m−1
.

Therefore, if r, t ≥ tm, we obtain

‖vrϕr(a)v
∗
r − vtϕt(a)v

∗
t ‖ < 1/2m−2.

So we have a Cauchy net, which must converge. The claim is now proved.
Since ϕt is multiplicative and *-preserving to within 2−n on Fn for t ≥ tn,

it follows that ω is exactly multiplicative and *-preserving on each Fn. Since
‖ω‖ ≤ supt∈[0,∞) ‖ϕt‖ <∞, it follows that ω is a homomorphism.

In the rest of this section, we prove some useful facts about asymptotic
unitary equivalence.
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1.3.8 Lemma. Let ϕ : A → D be an asymptotic morphism, with A unital.
Then there is a projection p ∈ D and an asymptotic morphism ψ : A → D
which is asymptotically unitarily equivalent to ϕ and satisfies ψt(1) = p and
ψt(a) ∈ pDp for all t ∈ [0,∞) and and a ∈ A.

Proof: Let t 7→ qt be a tail projection for ϕ(1), as in Definition 1.2.1. Standard

results yield a continuous family of unitaries t 7→ ut in D̃ such that u0 = 1 and
utqtu

∗
t = q0 for all t ∈ [0,∞). Define p = q0 and define ρt(a) = utqtϕt(a)qtu

∗
t

for t ∈ [0,∞) and a ∈ A. Note that the definition of an asymptotic morphism
implies that (t, a) 7→ qtϕt(a)qt is asymptotically equal to ϕ, and hence is an
asymptotic morphism. Thus ρ is an asymptotic morphism which is asymptot-
ically unitarily equivalent to ϕ.

The only problem is that ρt(1) might not be equal to p. We do know that
ρt(1) → p as t→ ∞. Choose a closed subspace A0 of A which is complementary
to C · 1, and for a ∈ A0 and λ ∈ C define ψt(a+ λ · 1) = ρt(a) + λp.

1.3.9 Lemma. Let ϕ, ψ : A → K ⊗D be asymptotic morphisms, with A and
D unital. Suppose that there is a continuous family of unitaries t 7→ ut in the
multiplier algebra M(K⊗D) such that limt→∞ ‖utϕt(a)u

∗
t −ψt(a)‖ = 0 for all

a ∈ A. Then ϕ is asymptotically unitarily equivalent to ψ.

Proof: We have to show that ut can be replaced by vt ∈ (K ⊗D)+.
Applying the previous lemma twice, and making the corresponding mod-

ifications to the given ut, we may assume that ϕt(1) and ψt(1) are projec-
tions p and q not depending on t, and that we always have ϕt(a) ∈ pDp and
ψt(a) ∈ qDq.

We now want to reduce to the case p = q. The hypothesis implies that
there is t0 such that ‖ut0pu

∗
t0 − q‖ < 1/2. Therefore there is a unitary w in

(K ⊗ D)+ such that wut0pu
∗
t0w

∗ = q. Now if p, q ∈ K ⊗ D are projections
which are unitarily equivalent in M(K ⊗ D), then standard arguments show
they are unitarily equivalent in (K ⊗ D)+. Therefore conjugating ϕ by wut0

changes neither its asymptotic unitary equivalence class nor the validity of the
hypotheses. We may thus assume without loss of generality that p = q.

Now choose t1 such that t ≥ t1 implies ‖utpu
∗
t−p‖ < 1. Define a continuous

family of unitaries by

ct = 1 − p+ putp(pu
∗
tputp)

−1/2 ∈ (K ⊗D)+

for t ≥ t1. (Functional calculus is evaluated in p(K ⊗ D)p.) For any d ∈
p(K ⊗D)p, we have

‖ctdc
∗
t − utdu

∗
t ‖ = ‖pdp− c∗tutpdpu

∗
t ct‖

≤ 2‖d‖ ‖p− c∗tutp‖ ≤ 2‖d‖(‖utp− put‖ + ‖p− c∗t putp‖).

The first summand in the last factor goes to 0 as t → ∞. Substituting defini-
tions, the second summand becomes ‖p− (pu∗t putp)

1/2‖, which does the same.
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Since ϕt(a) ∈ p(K ⊗D)p for all a ∈ A, and since (using Lemma 1.2 of [54] for
the first)

lim sup
t→∞

‖ϕt(a)‖ ≤ ‖a‖ and lim
t→∞

‖utϕt(a)u
∗
t − ψt(a)‖ = 0,

it follows that limt→∞ ‖ctϕt(a)c
∗
t − ψt(a)‖ = 0 as well. This is the desired

asymptotic unitary equivalence.

2 Asymptotic morphisms to tensor products with O∞.

The purpose of this section is to prove two things about asymptotic morphisms
from a separable nuclear unital simple C∗-algebraA to a C∗-algebra of the form
K⊗O∞⊗D with D unital: homotopy implies asymptotic unitary equivalence,
and each such asymptotic morphism is asymptotically unitarily equivalent to
a homomorphism. The basic method is the absorption technique used in [35]
and [44], and in fact this section is really just the generalization of [44] from ho-
momorphisms and approximate unitary equivalence to asymptotic morphisms
and asymptotic unitary equivalence.

There are three subsections. In the first, we collect for reference various
known results involving Cuntz algebras (including in particular Kirchberg’s
theorems on tensor products) and derive some easy consequences. In the second
subsection, we replace approximate unitary equivalence by asymptotic unitary
equivalence in the results of [48] and [35]. In the third, we carry out the
absorption argument and derive its consequences.

The arguments involving asymptotic unitary equivalence instead of ap-
proximate unitary equivalence are sometimes somewhat technical. However,
the essential outline of the proof is the same as in the much easier to read
paper [44].

2.1 Preliminaries: Cuntz algebras and Kirchberg’s stability the-
orems

In this subsection, we collect for convenient reference various results related to
Cuntz algebras. Besides Rørdam’s results on approximate unitary equivalence
and Kirchberg’s basic results on tensor products, we need material on unstable
K-theory and hereditary subalgebras of tensor products with O∞ and on exact
stability of generating relations of Cuntz algebras.

We start with Rørdam’s work [48]; we also use this opportunity to establish
our notation. The first definition is used implicitly by Rørdam, and appears
explicitly in the work of Ringrose.

We will generally let s1, s2, . . . , sm be the standard generators of Om, and
analogously for O∞.
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2.1.1 Definition. ([47], [46]) Let A be a unital C∗-algebra. Then its (C∗)
exponential length cel(A) is

sup
u∈U0(A)

inf

{
n∑

k=1

‖hk‖ : n ∈ N, h1, . . . , hn ∈ A selfadjoint,

u = exp(ih1) exp(ih2) · · · exp(ihn)

}
.

In preparation for the following theorem, and to establish notation, we
make the following remark, most of which is in [48], 3.3.

2.1.2 Remark. Let B be a unital C∗-algebra, and let m ≥ 2.
(1) If ϕ, ψ : Om → B are unital homomorphisms, then the element u =∑m

j=1 ψ(sj)ϕ(sj)
∗ is a unitary in B such that uϕ(sj) = ψ(sj) for 1 ≤ j ≤ m.

(2) If ϕ : Om → B is a unital homomorphism, then the formula

λϕ(a) =

m∑

j=1

ϕ(sj)aϕ(sj)
∗

defines a unital endomorphism λϕ (or just λ when ϕ is understood) of B.
(3) If ϕ and λ are as in (2), and if u ∈ B has the form u = vλ(v∗) for some

unitary v ∈ B, then vϕ(sj)v
∗ = uϕ(sj) for 1 ≤ j ≤ m.

2.1.3 Theorem. Let B be a unital C∗-algebra such that cel(B) is finite and
such that the canonical map U(B)/U0(B) → K1(B) is an isomorphism. Let
m ≥ 2, and let ϕ, ψ : Om → B, λ : B → B, and u ∈ U(B) be as in Remark
2.1.2 (1) and (2). Then the following are equivalent:

(1) [u] ∈ (m− 1)K1(B).

(2) For every ε > 0 there is v ∈ U(B) such that ‖u− vλ(v∗)‖ < ε.

(3) [ϕ] = [ψ] in KK0(Om, B).

(4) The maps ϕ and ψ are approximately unitarily equivalent.

Proof: For m even, this is Theorem 3.6 of [48]. In Section 3 of [48], it is also
proved that (1) is equivalent to (3) and (2) is equivalent to (4) for arbitrary m,
and Theorem 4.2 of [44] implies that (3) is equivalent to (4) for arbitrary m.

We will not actually need to use the equivalence of (3) and (4) for odd m.
That cel(D) is finite for purely infinite simple C∗-algebras D was first

proved in [42]. We will, however, apply this theorem to algebras D of the form
O∞ ⊗ B with B an arbitrary unital C∗-algebra. Such algebras are shown in
Lemma 2.1.7 (2) below to have finite exponential length. Actually, to prove
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the classification theorem, it suffices to know that there is a universal upper
bound on cel(C(X) ⊗ B) for B purely infinite and simple. This follows from
Theorem 1.2 of [62].

We now state the fundamental results of Kirchberg on which our work
depends. These were stated in [27]; proofs appear in [29].

2.1.4 Theorem. ([27]; [29], Theorem 3.8) Let A be a separable nuclear unital
simple C∗-algebra. Then O2 ⊗A ∼= O2.

2.1.5 Theorem. ([27]; [29], Theorem 3.15) Let A be a separable nuclear unital
purely infinite simple C∗-algebra. Then O∞ ⊗A ∼= A.

We now derive some consequences of Kirchberg’s results.

2.1.6 Corollary. Every separable nuclear unital purely infinite simple C∗-
algebra is approximately divisible in the sense of [6].

Proof: It suffices to show that O∞ is approximately divisible. Let ϕ : O∞ ⊗
O∞ → O∞ be an isomorphism, as in the previous theorem. Define ψ : O∞ →
O∞ by ψ(a) = ϕ(1⊗a). Then ψ is approximately unitarily equivalent to idO∞

by Theorem 3.3 of [35]. That is, there are unitaries un ∈ O∞ such that unϕ(1⊗
a)u∗n → a for all a ∈ O∞. Let B ⊂ O∞ be a unital copy of M2 ⊕M3. Then for
large enough n, the subalgebra unϕ(B⊗1)u∗n of O∞ commutes arbitrarily well
with any finite subset of O∞.

2.1.7 Lemma. Let D be any unital C∗-algebra. Then:
(1) The canonical map U(O∞ ⊗ D)/U0(O∞ ⊗ D) → K1(O∞ ⊗ D) is an

isomorphism.
(2) cel(O∞ ⊗D) ≤ 3π.

Proof: We first prove surjectivity in (1). Let η ∈ K1(O∞ ⊗D). Choose n and
u ∈ U(Mn ⊗O∞ ⊗D) such that [u] = η. Let eij be the standard matrix units
in Mn. Define (nonunital) homomorphisms

ϕ : O∞ ⊗D →Mn ⊗O∞ ⊗D and ψ : Mn ⊗O∞ ⊗D → O∞ ⊗D

by
ϕ(a) = e11 ⊗ a and ψ(eij ⊗ b) = (si ⊗ 1)b(s∗j ⊗ 1).

Then ϕ∗ is the standard stability isomorphism

K1(O∞ ⊗D) → K1(Mn ⊗O∞ ⊗D).

Also, ψ ◦ϕ(a) = (s1 ⊗ 1)a(s∗1 ⊗ 1) for a ∈ O∞ ⊗D. Since s1 ⊗ 1 is an isometry,
this implies that ψ ◦ ϕ is the identity on K-theory. Therefore ψ∗ = ϕ−1

∗ .
Consequently

η = ϕ−1
∗ ([u]) = ψ∗([u]) = [ψ(u) + 1 − ψ(1)],

showing that η is the class of a unitary in O∞ ⊗D.
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Now let u ∈ U(O∞ ⊗D) satisfy [u] = 0 in K1(O∞ ⊗D). We prove that u
can be connected to the identity by a path of length at most 3π + ε. This will
simultaneously prove (2) and injectivity in (1).

Using approximate divisibility of O∞ and approximating u by finite sums
of elementary tensors, we can find nontrivial projections e ∈ O∞ with ‖u(e⊗
1) − (e ⊗ 1)u‖ arbitrarily small. If this norm is small enough, we can find a
unitary v ∈ K ⊗O∞ ⊗D which commutes with e⊗ 1 and is connected to u by
a unitary path of length less than ε/2. Write v = v1 + v2 with

v1 ∈ U(eO∞e⊗D) and v2 ∈ U((1 − e)O∞(1 − e) ⊗D).

Choose a partial isometry s ∈ O∞ with s∗s = 1 − e and ss∗ ≤ e. The proof of
Corollary 5 of [42] shows that v can be connected to the unitary

w = v

[
(e− ss∗) ⊗ 1 + (s⊗ 1)v2(s⊗ 1)∗ + v∗2

]

= 1 − e⊗ 1 + v1

[
(s⊗ 1)v2(s⊗ 1)∗ + (e− ss∗) ⊗ 1

]

by a path of length π.
Since O∞ is purely infinite, there is an embedding of K ⊗ eO∞e in O∞

which extends the obvious identification of e11 ⊗ eO∞e with eO∞e. It extends
to a unital homomorphism ϕ : (K ⊗ eO∞e ⊗ D)+ → O∞ ⊗ D whose range
contains w, and such that [ϕ−1(w)] = 0 in K1(K⊗eO∞e⊗D). Thus ϕ−1(w) ∈
U0((K ⊗ eO∞e ⊗ D)+). Theorem 3.8 of [43] shows that the C∗ exponential
rank of any stable C∗-algebra is at most 2 + ε. An examination of the proof,
and of the length of the path used in the proof of Corollary 5 of [42], shows
that in fact any stable C∗-algebra has exponential length at most 2π. Thus, in
particular, ϕ−1(w) can be connected to 1 by a unitary path of length 2π+ ε/2.
It follows that u can be connected to 1 by a unitary path of length at most
3π + ε.

A somewhat more complicated argument shows that in fact cel(O∞⊗D) ≤
2π. Details will appear elsewhere [45].

2.1.8 Lemma. Let D be a unital C∗-algebra. Then:
(1) Given two full projections inK⊗O∞⊗D, each is Murray-von Neumann

equivalent to a subprojection of the other.
(2) If two full projections in K ⊗ O∞ ⊗ D have the same K0-class, then

they are homotopic.

Proof: Taking direct limits, we reduce to the case that D is separable. Then
O∞ ⊗D is approximately divisible by Corollary 2.1.6. It follows from Propo-
sition 3.10 of [6] that two full projections in K ⊗ O∞ ⊗ D with the same
K0-class are Murray-von Neumann equivalent. Now (2) follows from the fact
that Murray-von Neumann equivalence implies homotopy in the stabilization
of a unital C∗-algebra.
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Part (1) requires slightly more work. Let P be the set of all projections
p ∈ O∞ ⊗ D such that there are two orthogonal projections q1, q2 ≤ p, both
Murray-von Neumann equivalent to 1. One readily verifies that P is nonempty
and satisfies the conditions (Π1)-(Π4) on page 184 of [14]. Therefore, by [14],
the group K0(O∞ ⊗D) is exactly the set of Murray-von Neumann equivalence
classes of projections in P . Since projections in P are full, Proposition 3.10
of [6] now implies that every full projection is in P . Clearly (1) holds for
projections in P . We obtain (1) in general by using the pure infiniteness of
O∞ to show that every full projection in K⊗O∞⊗D is Murray-von Neumann
equivalent to a (necessarily full) projection in O∞ ⊗D.

Next, we turn to exact stability. For Om, we need only the following
standard result:

2.1.9 Proposition. ([35], Lemma 1.3 (1)) For any integer m, the defining
relations for Om, namely s∗jsj = 1 and

∑m
k=1 sks

∗
k = 1 for 1 ≤ j ≤ m, are

exactly stable.

We will also need to know about the standard extension Em of Om by the
compact operators. Recall from [13] that Em is the universal C∗-algebra on
generators t1, . . . , tm with relations t∗j tj = 1 and (tjt

∗
j )(tkt

∗
k) = 0 for 1 ≤ j, k ≤

m, j 6= k. Its properties are summarized in [35], 1.1. In particular, we have
lim
−→

Em
∼= O∞ using the standard inclusions.

Exact stability of the generating relations for Em is known, but we need the
following stronger result, which can be thought of as a finite version of exact
stability for O∞. Essentially, it says that if elements approximately satisfy
the defining relations for Em, then they can be perturbed in a functorial way
to exactly satisfy these relations, and that the way the first k elements are
perturbed does not depend on the remaining m− k elements.

Recently, Blackadar has proved that in fact O∞ is semiprojective in the
usual sense [5].

2.1.10 Proposition. For each δ ≥ 0 and m ≥ 2, let Em(δ) be the universal

unital C∗-algebra on generators t
(m)
j,δ for 1 ≤ j ≤ m and relations

‖(t
(m)
j,δ )∗t

(m)
j,δ − 1‖ ≤ δ and

∥∥∥∥
(
t
(m)
j,δ (t

(m)
j,δ )∗

)(
t
(m)
k,δ (t

(m)
k,δ )∗

)∥∥∥∥ ≤ δ

for j 6= k, and let κ
(m)
δ : Em(δ) → Em be the homomorphism given by send-

ing t
(m)
j,δ to the corresponding standard generator t

(m)
j of Em. Then there are

δ(2) ≥ δ(3) ≥ · · · > 0, nondecreasing functions fm : [0, δ(m)] → [0,∞) with

limδ→0 fm(δ) = 0 for each m, and homomorphisms ϕ
(m)
δ : Em → Em(δ) for

0 ≤ δ ≤ δ(m), satisfying the following properties:

(1) κ
(m)
δ ◦ ϕ

(m)
δ = idEm

.

(2) ‖ϕ
(m)
δ (t

(m)
j ) − t

(m)
j,δ ‖ ≤ fm(δ).
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(3) If 0 ≤ δ ≤ δ′ ≤ δ(m), then the composite of ϕ
(m)
δ′ with the canonical map

from Em(δ′) to Em(δ) is ϕ
(m)
δ .

(4) Let ι
(m)
δ : Em(δ) → Em+1(δ) be the map given by ι

(m)
δ (t

(m)
j,δ ) = t

(m+1)
j,δ

for 1 ≤ j ≤ m. Then for 0 ≤ δ ≤ δ(m + 1) and 1 ≤ j ≤ m, we have

ι
(m)
δ (ϕ

(m)
δ (t

(m)
j )) = ϕ

(m+1)
δ (t

(m+1)
j ).

Proof: The proof of exact stability of Em, as sketched in the proof of Lemma
1.3 (2) of [35], is easily seen to yield homomorphisms satisfying the conditions
demanded here.

2.1.11 Proposition. Let D be a unital purely infinite simple C∗-algebra.
Then any two unital homomorphisms from O∞ to D are homotopic. Moreover,
if ϕ, ψ : O∞ → D are unital homomorphisms such that ϕ(sj) = ψ(sj) for
1 ≤ j ≤ m, then there is a homotopy t 7→ ρt such that ρt(sj) = ϕ(sj) for
1 ≤ j ≤ m and all t.

Proof: We prove the second statement; the first is the special case m = 0.
We construct a continuous path t 7→ ρt of unital homomorphisms from

O∞ to D, defined for t ∈ [m,∞) and satisfying the following conditions:

(1) For k ≥ m, for t ∈ [k,∞), and for 1 ≤ j ≤ k, we have ρt(sj) = ψ(sj).

(2) ρm = ϕ.

Given such a path, ρt(sj) → ψ(sj) for all j. Since the sj generate O∞ as a
C∗-algebra, standard arguments show that ρt(a) → ψ(a) for all a ∈ O∞. We
have therefore constructed the required homotopy.

It remains to carry out the construction. We construct the paths t 7→ ρt,
for t ∈ [m,n], by induction on n. The initial step is thus simply to take ρm = ϕ.
For the induction step, it suffices to do the following. Assume we are given
t 7→ ρt, for t ∈ [m,n], and satisfying ρn(sj) = ψ(sj) for 1 ≤ j ≤ n. We then
extend t 7→ ρt over t ∈ [n, n + 1] so that ρt(sj) = ψ(sj) for 1 ≤ j ≤ n and
t ∈ [n, n+ 1], and in addition ρn+1(sn+1) = ψ(sn+1).

Let p =
∑n

j=1 ρn(sj)ρn(sj)
∗, which is a projection in D. Then define

e0 = ρn(sn+1)ρn(sn+1)
∗ and e1 = ψ(sn+1)ψ(sn+1)

∗.

Both e0 and e1 are proper projections in the purely infinite simple C∗-algebra
(1 − p)D(1 − p) with K0-class equal to [1D], so they are homotopic. It follows
that there is a unitary path s 7→ us in (1 − p)D(1 − p) such that u0 = 1 − p
and u1e0u

∗
1 = e1. For s ∈ [0, 1/3], define ρn+s(sj) = ρn(sj) for 1 ≤ j ≤ n

and ρn+s(sj) = u3sρn(sj) for j ≥ n + 1. This yields a homotopy of homomor-
phisms ρn+s : O∞ → D, with ρn as already given, and such that the isometries
ρn+1/3(sn+1) and ψ(sn+1) have the same range projection, namely e1, although
they themselves are probably not equal.
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By a similar argument, we extend the homotopy over [n+ 1/3, n+ 2/3] in
such a way that ρn+s(sj) is constant for s ∈ [n+1/3, n+2/3] and 1 ≤ j ≤ n+1,
and so that ρn+2/3(sn+2) and ψ(sn+2) also have the same range projection,
say f.

Now e1 and f are Murray-von Neumann equivalent, so we can identify
(e1 + f)D(e1 + f) with M2(e1De1). Since

w1 =

(
ψ(sn+1)ρn+2/3(sn+1)

∗ 0
0 [ψ(sn+1)ρn+2/3(sn+1)

∗]∗

)
∈ U0(M2(e1De1)),

there is a continuous path of unitaries s 7→ ws in M2(e1De1), with w0 = 1
and w1 as given. For s ∈ [2/3, 1], we now define ρn+s(sj) = ρn(sj) for j 6=
n+1, n+2, and ρn+s(sj) = w3s−2ρn+2/3(sj) for j = n+1, n+2. This is again
a homotopy, and gives ρn+1(sj) = ψ(sj) for 1 ≤ j ≤ n + 1, as desired. The
induction step is complete.

2.1.12 Corollary. Let D be any unital C∗-algebra, and let p ∈ K⊗O∞⊗D
be a projection. Then O∞ ⊗ p(K ⊗O∞ ⊗D)p ∼= p(K ⊗O∞ ⊗D)p.

Proof: We may replace p by any Murray-von Neumann equivalent projection.
So without loss of generality p ≤ e⊗1⊗1 for some projection e ∈ K. Using the
pure infiniteness of O∞, we can in fact require that e be a rank one projection.
That is, we may assume p ∈ O∞ ⊗D.

By Theorem 2.1.5, there is an isomorphism δ : O∞⊗O∞ → O∞. Using it,
we need only consider projections p ∈ O∞⊗O∞ ⊗D. By the previous proposi-
tion and Theorem 2.1.5, a 7→ 1⊗δ(a) is homotopic to idO∞⊗O∞

. Therefore such
a projection p is homotopic to q = 1⊗ (δ⊗ idD)(p), and hence also Murray-von
Neumann equivalent to q. Now

q(O∞ ⊗O∞ ⊗D)q ∼= O∞ ⊗ [(δ ⊗ idD)(p)][O∞ ⊗D][(δ ⊗ idD)(p)],

which is unchanged by tensoring with O∞ by Theorem 2.1.5.

2.1.13 Corollary. Let D be a unital C∗-algebra. Then the hypotheses on
B in Theorem 2.1.3 are satisfied for any unital corner of K ⊗O∞ ⊗D.

Proof: Combine the previous corollary and Lemma 2.1.7.

2.2 Asymptotic unitary equivalence of homomorphisms from
Cuntz algebras

In this subsection, we strengthen the main technical theorems of [48] (restated
here as Theorem 2.1.3) and of [35], replacing approximate unitary equivalence
by asymptotic unitary equivalence in the conclusions. We use the strong ver-
sions to obtain variants of several other known results in which we replace
sequences of homomorphisms by continuous paths.
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The first lemma contains the essential point in the strengthening of Theo-
rem 2.1.3. Its proof uses the original theorem in a sort of bootstrap argument.
The remaining results lead up to the strengthening of the main theorem of [35].
They are proved by modifying the proofs there.

The first two lemmas are stated together, because the proofs are very
similar.

2.2.1 Lemma. (Compare with Theorem 2.1.3.) Let D0 be a unital C∗-algebra,
and let D = O∞ ⊗D0. Let m ≥ 2, and let t 7→ ϕt and t 7→ ψt, for t ∈ [0,∞),
be two continuous paths of unital homomorphisms from Om to D. Suppose
that the unitary u0 =

∑m
j=1 ψ0(sj)ϕ0(sj)

∗ satisfies [u0] ∈ (m− 1)K1(D). Then
ϕ and ψ are asymptotically unitarily equivalent.

2.2.2 Lemma. (Compare with Proposition 1.7 of [35].) Let D be a unital
purely infinite simple C∗-algebra, with [1] = 0 in K0(D). Let t 7→ ϕt and
t 7→ ψt, for t ∈ [0,∞), be two continuous paths of unital homomorphisms from
O∞ to D. Then t 7→ ϕt and t 7→ ψt are asymptotically unitarily equivalent.

We will actually only need Lemma 2.2.1 for m = 2.

The two lemmas are actually valid for unital asymptotic morphisms (with
a suitable modification of the definition of u0 in Lemma 2.2.2), as can be seen
by applying Proposition 1.1.7. We don’t need this generality, so we don’t state
it formally.

The proofs of the two lemmas are rather technical. We do the first (which
is easier) in detail, and then describe the modifications needed for the second.
Before proving them, we outline the basic idea. Given two continuous paths as
in Lemma 2.2.1, we can start by applying Theorem 2.1.3 to the homomorphisms
from Om to C([0, 1]) ⊗D obtained by restricting the paths to t ∈ [0, 1], with

a certain error tolerance. The result is a continuous unitary path t 7→ v
(1)
t ,

for t ∈ [0, 1], such that (v
(n)
t )∗ψt(sj)v

(n)
t is close to ϕt(sj). Extend t 7→ v

(1)
t

over [0,∞) by taking it to be constant on [1,∞). Now replace t 7→ ψt by

t 7→ γ
(1)
t = (v

(1)
t )∗ψt(·)v

(1)
t . Next, we want to repeat this over [1, 2], with a

smaller error tolerance. Because there will be infinitely many steps, requiring in
the end a product of infinitely many unitaries, there is a potential convergence

problem. Thus, we insist here that the new unitary v
(1)
t be equal to 1 for

t ∈ [0, 1]. In order to arrange this, we must have homomorphisms from Om

to C([1, 2]) ⊗ D which agree when restricted to {1} ⊂ [1, 2]. But γ
(1)
1 is only

close to ϕ1. However, if γ
(1)
1 is close enough to ϕ1 on the generators, then

we can use exact stability of the relations to construct a new homomorphism

σ : Om → C([1, 2]) ⊗D which is close to t 7→ γ
(1)
t for t ∈ [1, 2] and does agree

with ϕ1 at t = 1. We apply Theorem 2.1.3 to this homomorphism, and proceed
as before. Now repeat on [2, 3], etc.

In the actual proof, it is technically convenient to reduce to the case in
which t 7→ ϕt is constant, and to start over {0} rather than over [0, 1].
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The proof of Lemma 2.2.2 is essentially the same, but it is complicated by
the fact that there are infinitely many generators. We deal with only finitely
many of them over each interval [n, n+ 1], but more and more as n increases.

Proof of Lemma 2.2.1: Corollary 2.1.13 shows that both D and C([0, 1], D)
satisfy the hypotheses of Theorem 2.1.3.

By transitivity of asymptotic unitary equivalence, it suffices to show that
t 7→ ϕt and t 7→ ψt are both asymptotically unitarily equivalent to some con-
stant path. Thus, without loss of generality t 7→ ϕt is a constant path ϕt = ϕ
for all t. Let λ : D → D be λϕ as in Remark 2.1.2 (2).

Let f : [0, δ] → [0,∞) be a function associated with the exact stability of
Om (Proposition 2.1.9) in the same way the functions fm of Proposition 2.1.10
are associated with the exact stability of Em.

Choose ε′0 > 0 with f(ε′0) < 1. Choose ε0 > 0 with ε0 < 1/2, and also
so small that if ω : Om → A is a unital homomorphism, and a1, . . . , am ∈ A
satisfy ‖aj −ω(sj)‖ < ε0, then the aj satisfy the relations for Om to within ε′0,
that is,

‖a∗jaj − 1‖ < ε′0 and

∥∥∥∥∥

m∑

k=1

aka
∗
k − 1

∥∥∥∥∥ < ε′0

for 1 ≤ j ≤ m. Set u0 =
∑m

j=1 ψ0(sj)ϕ(sj)
∗; this is the same as the u0 in the

statement of the lemma, so its K1-class is in (m − 1)K1(D). Theorem 2.1.3

therefore yields a unitary v
(0)
0 ∈ D such that ‖u0 − v

(0)
0 λ(v

(0)
0 )∗‖ < ε0. Define

v
(0)
t = v

(0)
0 for all t, and define γ

(0)
t : Om → D by γ

(0)
t (a) = (v

(0)
t )∗ψt(a)v

(0)
t .

Using Remark 2.1.2, we calculate:

‖ϕ(sj) − γ
(0)
0 (sj)‖ = ‖v

(0)
0 ϕ(sj)(v

(0)
0 )∗ − ψ0(sj)‖

= ‖v
(0)
0 λ(v

(0)
0 )∗ϕ(sj) − u0ϕ(sj)‖ < ε0

for 1 ≤ j ≤ m.
We now construct, by induction on n, numbers εn, ε

′
n > 0 and continuous

paths t 7→ v
(n)
t of unitaries in D and t 7→ γ

(n)
t of unital homomorphisms from

Om to D, for t ∈ [0,∞), such that ε0, ε
′
0, v

(0)
t , and γ

(0)
t are as already chosen,

and:

(1) γ
(n)
t (a) = (v

(n)
t )∗γ

(n−1)
t (a)v

(n)
t for a ∈ Om and t ∈ [0,∞).

(2) If n ≥ 1, then v
(n)
t = 1 for t ≤ n− 1.

(3) If n ≥ 1, then ‖ϕ(sj) − γ
(n)
t (sj)‖ < 2−n+1 for t ∈ [n− 1, n], and if n ≥ 0

then ‖ϕ(sj) − γ
(n)
t (sj)‖ < εn for t = n.

(4) f(ε′n) < 2−n.

(5) Whenever ω : Om → A is a unital homomorphism, and a1, . . . , am ∈ A
satisfy ‖aj − ω(sj)‖ < εn, then the aj satisfy the relations for Om to
within ε′n.
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(6) εn < 2−(n+1).

Suppose that εn, ε
′
n, v

(n)
t , and γ

(n)
t have been chosen. Choose ε′n+1 and

then εn+1 as in (4), (5), and (6).
For α ∈ [0, 1], define

aj(α) = (1 − α)(ϕ(sj ) − γ(n)
n (sj)) + γ

(n)
n+α(sj).

Then ‖aj(α)−γ
(n)
n+α(sj)‖ < εn for 1 ≤ j ≤ m and α ∈ [0, 1]. Conditions (4) and

(5), and the choice of f, provide a unital homomorphism σ : Om → C([0, 1], D)
such that ‖σ(sj) − aj‖ < 2−n for 1 ≤ j ≤ m. Define σα : Om → D by
σα(a) = σ(a)(α) for α ∈ [0, 1] and a ∈ Om. Then

‖σα(sj) − γ
(n)
n+α(sj)‖ < εn + 2−n.

Functoriality of the approximating homomorphisms (the analog of (3) of Propo-

sition 2.1.10) guarantees that σ0 = ϕ and σ1 = γ
(n)
n+1.

Define a unitary z ∈ C([0, 1], D) by zα =
∑m

j=1 σα(sj)ϕ(sj)
∗ for α ∈ [0, 1].

Note that z0 = 1, so z ∈ U0(C([0, 1], D)). Theorem 2.1.3 provides a unitary
α 7→ yα in C([0, 1], D) such that ‖zα − yαλ(yα)∗‖ < εn+1/2 for α ∈ [0, 1].
Putting α = 0, using z0 = 1, and rearranging terms, we obtain ‖y∗0λ(y0)−1‖ <
εn+1/2. Now define

v
(n+1)
t =





1 t ≤ n
yt−ny

∗
0 n ≤ t ≤ n+ 1

y1y
∗
0 n+ 1 ≤ t

and define γ
(n+1)
t (a) = (v

(n+1)
t )∗γ

(n)
t (a)v

(n+1)
t .

It remains only to verify condition (3) in the induction hypothesis. For
α ∈ [0, 1],

‖zα − v
(n+1)
n+α λ(v

(n+1)
n+α )∗‖ ≤ ‖zα − yαλ(yα)∗‖ + ‖yα‖ ‖1− y∗0λ(y0)‖ ‖λ(yα)∗‖

< εn+1/2 + εn+1/2 = εn+1.

Therefore, for t ∈ [n, n+ 1], Remark 2.1.2 yields

‖ϕ(sj) − γ
(n+1)
t (sj)‖ = ‖v

(n+1)
t ϕ(sj)(v

(n+1)
t )∗ − γ

(n)
t (sj)‖

≤ ‖v
(n+1)
t λ(v

(n+1)
t )∗ϕ(sj) − zt−nϕ(sj)‖ + ‖σt−n(sj) − γ

(n)
t (sj)‖

< εn+1 + εn + 2−n < 2−(n+2) + 2−(n+1) + 2−n < 2−n+1.

Furthermore, if t = n + 1, then actually σt−n(sj) = γ
(n)
t (sj), and we obtain

‖ϕ(sj) − γ
(n+1)
t (sj)‖ < εn+1. This completes the induction.

To complete the proof, we now define vt = limn→∞ v
(0)
t v

(1)
t · · · v

(n)
t for

t ∈ [0,∞). Note that the limit exists and defines a continuous unitary path
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t 7→ vt, since v
(n+1)
t , v

(n+2)
t , . . . are all equal to 1 on [0, n). Furthermore, for

t ∈ [n, n+ 1], we have

‖ϕ(sj) − v∗tψt(sj)vt‖ = ‖ϕ(sj) − γ
(n+1)
t (sj)‖ < 2−n+1.

This implies that ϕ and t 7→ ψt are asymptotically unitarily equivalent.

For the proof of Lemma 2.2.2, we need the following lemma.

2.2.3 Lemma. Let D be a unital purely infinite simple C∗-algebra with [1] = 0
in K0(D). Let m < n, and identify Em with the subalgebra of On generated by
s1, . . . , sm. Let ϕ : Em → D be an injective unital homomorphism. Then there
exists a unital homomorphism ϕ̃ : On → D such that ϕ̃|Em

= ϕ. Moreover,
if we are already given a unital homomorphism ψ : On → D, then ϕ̃ can be
chosen to satisfy [ϕ̃] = [ψ] in KK0(On, D).

Proof: This is essentially contained in the proof of Proposition 1.7 of [35], using
the equivalence of conditions (1) and (3) in Theorem 2.1.3.

Proof of Lemma 2.2.2: We describe how to modify the proof of Lemma 2.2.1
to obtain this result.

First, note that U(D)/U0(D) → K1(D) is an isomorphism because D is
purely infinite simple. Furthermore, cel(C([0, 1], D)) ≤ 5π/2 <∞ by Theorem
1.2 of [62]. (It turns out that we only need this result for D = O∞, so we could
use Corollary 2.1.13 here instead.) Thus, the conditions on D in Lemma 2.2.1
are satisfied.

As in the proof of Lemma 2.2.1, we may assume that t 7→ ϕt is a constant
path ϕt = ϕ for all t.

Let the functions fm be the ones associated with the exact stability of Em

as in Proposition 2.1.10.
The proof uses an induction argument similar to that of the proof of

Lemma 2.2.1, except that at the n-th stage we work with extensions to O2n of
ϕ|En

and ψt|En
. To avoid confusion, we let s1, s2, . . . be the standard genera-

tors of O∞, with the first n of them generating En, and we let s
(2n)
1 , . . . , s

(2n)
2n

be the standard generators of O2n, with Ek, for k < 2n, being identified with
the subalgebra generated by the first k of them.

We start the construction at n = 2 so as not to have to worry about E0

and E1.
In the preliminary step, we choose ε2 > 0 and ε′2 > 0 so that ε2 < 1/8,

f4(ε
′
2) < 1/4, and whenever ω : E2 → A is a unital homomorphism, and

a1, a2 ∈ A satisfy ‖aj − ω(sj)‖ < ε2, then the aj satisfy the relations for E2

to within ε′2. Use Lemma 2.2.3 to choose unital homomorphisms ϕ̃(2), ψ̃
(2)
2 :

O4 → D such that ϕ̃(2)|E2 = ϕ|E2 , ψ̃
(2)
2 |E2 = ψ2|E2 , and [ϕ̃(2)] = [ψ̃

(2)
2 ] in

KK0(O4, D). Set

u =

4∑

j=1

ψ̃
(2)
2 (s

(4)
j )ϕ̃(2)(s

(4)
j )∗.
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From (2) implies (3) in Theorem 2.1.3, we obtain a unitary v
(2)
2 ∈ D such that

‖u− v
(2)
2 λϕ(2) (v

(2)
2 )∗‖ < ε2.

Define v
(2)
t = v

(2)
2 for t ∈ [2,∞), and define γ

(2)
t : O∞ → D by γ

(2)
t (a) =

(v
(2)
t )∗ψt(a)v

(2)
t . As in the proof of Lemma 2.2.1, a calculation shows that

‖ϕ̃(2)(s
(4)
j ) − (v

(2)
2 )∗ψ̃

(2)
2 (s

(4)
j )v

(2)
2 ‖ < ε2

for 1 ≤ j ≤ 4. It follows that

‖ϕ(sj) − γ
(2)
2 (sj)‖ < ε2

for 1 ≤ j ≤ 2.

In the induction step, we now require that t ∈ [2,∞), that ε2, ε
′
2, γ

(2)
t , and

v
(2)
t be as already given, that γ

(n)
t : O∞ → D, and that:

(1) γ
(n)
t (a) = (v

(n)
t )∗γ

(n−1)
t (a)v

(n)
t for a ∈ O∞ and t ∈ [2,∞).

(2) If n ≥ 3, then v
(n)
t = 1 for t ≤ n.

(3) If n ≥ 3, then ‖ϕ(sj) − γ
(n)
t (sj)‖ < 2−n+1 for t ∈ [n− 1, n] and 1 ≤ j ≤

n− 1, and if n ≥ 2 then ‖ϕ(sj)− γ
(n)
t (sj)‖ < εn for t = n and 1 ≤ j ≤ n.

(4) fn(ε′n) < 2−n.

(5) Whenever ω : En → A is a unital homomorphism, and a1, . . . , an ∈ A
satisfy ‖aj − ω(sj)‖ < εn, then the aj satisfy the relations for En to
within ε′n.

(6) εn < 2−(n+1).

For the proof of the inductive step, we first choose ε′n+1 and εn+1 to satisfy
(4), (5), and (6). Then construct, as in the proof of Lemma 2.2.1, a continuous

path of homomorphisms σα : En → D such that σ0 = ϕ|En
, σ1 = γ

(n)
n+1|En

, and

‖σα(sj) − γ
(n)
n+α(sj)‖ < εn + 2−n

for 1 ≤ j ≤ n.
We now claim that there is a unitary path α 7→ wα in D such that w0 =

1, wασα(sj) = σ0(sj) for α ∈ [0, 1] and 1 ≤ j ≤ n, and w1γ
(n)
n+1(sn+1) =

ϕ(sn+1). To prove this, start by defining qα =
∑n

j=1 σα(sj)σα(sj)
∗. Then set

w′
α =

∑n
j=1 σ0(sj)σα(sj)

∗, which is a partial isometry from qα to q0 such that
w′

ασα(sj) = σ0(sj) for 1 ≤ j ≤ n. Next, define

p1 = γ
(n)
n+1(sn+1)γ

(n)
n+1(sn+1)

∗ and p0 = ϕ(sn+1)ϕ(sn+1)
∗.

Documenta Mathematica 5 (2000) 49–114



74 N. Christopher Phillips

Since γ
(n)
n+1|En

= σ1 and ϕ|En
= σ0, we see that p1 and p0 are proper subpro-

jections of 1 − q1 and 1 − q0 respectively, both with the same class (namely
[1] = 0) in K0(D). Standard methods therefore yield a unitary path α 7→ cα in

D such that c0 = 1, cαqαc
∗
α = q0, and c1p1c

∗
1 = p0. Then ϕ(sn+1)γ

(n)
n+1(sn+1)

∗c∗1
is a unitary in p0Dp0, so there is a unitary d ∈ (1− q0 − p0)D(1− q0 − p0) such
that

ϕ(sn+1)γ
(n)
n+1(sn+1)

∗c∗1 + d ∈ U0((1 − q0)D(1 − q0)),

and a unitary path α 7→ w′′
α in (1 − q0)D(1 − q0) such that

w′′
0 = 1 and w′′

1 = ϕ(sn+1)γ
(n)
n+1(sn+1)

∗c∗1 + d.

Set wα = w′
α + w′′

αcα; this is the path that proves the claim.
Use Lemma 2.2.3 to choose a unital homomorphism ϕ̃(n+1) : O2n+2 → D

such that ϕ̃(n+1)|En+1 = ϕ|En+1 . Define unital homomorphisms σ̃α : O2n+2 →
D by

σ̃α(s
(2n+2)
j ) = w∗

αϕ̃
(n+1)(s

(2n+2)
j )

for 1 ≤ j ≤ 2n+ 2. Then

σ̃0 = ϕ̃(n+1), σ̃α|En
= σα, and σ̃1|En+1 = γ

(n)
n+1|En+1 .

Define z and choose y as in the proof of Lemma 2.2.1, using O2n+2 in place

of Om, σ̃ in place of σ, ϕ̃(n+1) in place of ϕ, and λ = λ
ϕ̃(n+1) . Define v

(n+1)
t and

γ
(n+1)
t as there. The same computations as there show that

‖ϕ(sj) − γ
(n+1)
t (sj)‖

= ‖ϕ̃(n+1)(s
(2n+2)
j ) − (v

(n+1)
t )∗σ̃t−n(s

(2n+2)
j )v

(n+1)
t ‖ < 2−n+1

for 1 ≤ j ≤ n and t ∈ [n, n+ 1], and

‖ϕ(sj) − γ
(n+1)
n+1 (sj)‖ = ‖ϕ̃(n+1)(s

(2n+2)
j ) − (v

(n+1)
t )∗σ̃1(s

(2n+2)
j )v

(n+1)
t ‖ < εn+1

for 1 ≤ j ≤ n+ 1. This completes the induction step.

Define vt = limn→∞ v
(2)
t v

(3)
t · · · v

(n)
t . Calculations analogous to those in the

proof of Lemma 2.2.1 show that t 7→ vt is a continuous unitary path in D, and
that for n ≥ 2 we have

‖ϕ(sj) − v∗tψt(sj)vt‖ < 2−n+1

for t ∈ [n, n+ 1] and 1 ≤ j ≤ n. This implies that

lim
t→∞

(
ϕ(a) − v∗tψt(a)vt

)
= 0

for all a ∈ O∞.
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2.2.4 Lemma. There exists a continuous family t 7→ ϕt of unital endomor-
phisms of O∞, for t ∈ [0,∞), which is asymptotically central in the sense that

lim
t→∞

(
ϕt(b)a− aϕt(b)

)
= 0

for all a, b ∈ O∞.

Proof: Let An be the tensor product of n copies of O∞, and define µn : An →
An+1 by µn(a) = a⊗ 1. Set A = lim

−→
An, which is just

⊗∞
1 O∞. Theorem 2.1.5

implies that An
∼= O∞, so Theorem 3.5 of [35] implies that A ∼= O∞. (Actually,

that A ∼= O∞ is shown in the course of the proof of Theorem 2.1.5. See [29].)
It therefore suffices to construct a continuous asymptotically central inclusion
of O∞ in A rather than in O∞.

Let νn : An → A be the inclusion. Proposition 2.1.11 provides a homotopy
α 7→ ψα of unital homomorphisms ψα : O∞ → O∞⊗O∞ such that ψ0(a) = a⊗1
and ψ1(a) = 1⊗ a. For n ≥ 1 and t ∈ [n, n+ 1], we write t = n+ α and define

ϕt(a) = νn+2(1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ ψα(a)),

where the factor 1 appears n times in the tensor product. The two
definitions of ϕn(a) agree, so t 7→ ϕt is continuous. We clearly have
limt→∞ (ϕt(b)a− aϕt(b)) = 0 for b ∈ O∞ and a ∈

⋃∞
n=1 νn(An), and a stan-

dard argument then shows this is true for all a ∈ A.

The notation introduced in the following definition is the same as in [34],
[35], and [44].

2.2.5 Definition. Let A be any unital C∗-algebra, and let D be a purely
infinite simple C∗-algebra. Let ϕ, ψ : A → D be two homomorphisms, and
assume that ϕ(1) 6= 0 and [ψ(1)] = 0 in K0(D). We define a homomorphism
ϕ⊕̃ψ : A → D, well defined up to unitary equivalence, by the following con-
struction. Choose a projection q ∈ D such that 0 < q < ϕ(1) and [q] = 0 in
K0(D). Since D is purely infinite and simple, there are partial isometries v and
w such that

vv∗ = ϕ(1) − q, v∗v = ϕ(1), ww∗ = q, and w∗w = ψ(1).

Now define (ϕ⊕̃ψ)(a) = vϕ(a)v∗ + wψ(a)w∗ for a ∈ A.

The proof of the following lemma could be simplified considerably by using
semiprojectivity of O∞ ([5]) and Proposition 1.1.7. Since [5] remains (to our
knowledge) unpublished, we retain the original proof.

2.2.6 Lemma. (Compare with Proposition 2.3 of [35].) Let D be a unital
purely infinite simple C∗-algebra, and let q ∈ D be a projection with [q] = 0 in
K0(D). Let ϕ : O∞ → D and ψ : O∞ → qDq be unital homomorphisms. Then
ϕ is asymptotically unitarily equivalent to ϕ⊕̃ψ.
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Proof: Let t 7→ γt be a continuously parametrized asymptotically central in-
clusion of O∞ in O∞, as in Lemma 2.2.4. Let e ∈ O∞ be a nonzero projection
with [e] = 0 in K0(O∞), and set et = γt(e). Choose a continuous unitary path
t 7→ ut such that utetu

∗
t = e0.

Let the functions fm : [0, δ(m)] → [0,∞) be as in Proposition 2.1.10.
Choose numbers ε2 > ε3 > · · · 0 and ε′2 > ε′3 > · · · 0 such that:

(1) ε′m < δ(m) and fm(ε′m) < 1/m.

(2) Whenever ω : Em → A is a unital homomorphism, and a1, . . . , am ∈ A
satisfy ‖aj − ω(sj)‖ < εm, then the aj satisfy the relations for Em to
within ε′m.

(3) εm < 1/m.

Next, use the asymptotic centrality of t 7→ et to choose t2 < t3 < · · · , with
tm → ∞ as m→ ∞, such that

∥∥∥sj −
[
etsjet + (1 − et)sj(1 − et)

]∥∥∥ < εm

for 1 ≤ j ≤ m and t ≥ tm. Define

aj(t) = ut

[
etsjet + (1 − et)sj(1 − et)

]
u∗t ∈ e0O∞e0 ⊕ (1 − e0)O∞(1 − e0).

Conditions (1) and (2), and Proposition 2.1.10, then yield continuous paths

t 7→ σ
(m)
t of homomorphisms from Em to e0O∞e0⊕ (1−e0)O∞(1−e0), defined

for t ≥ tm, such that ‖σ
(m)
t (sj)−aj(t)‖ < 1/m for 1 ≤ j ≤ m, and σ

(m+1)
t |Em

=

σ
(m)
t for t ≥ tm+1.

Define

α
(m)
t : Em → e0O∞e0 and β

(m)
t : Em → (1 − e0)O∞(1 − e0)

by

α
(m)
t (a) = e0σ

(m)
t (a)e0 and β

(m)
t (a) = (1 − e0)σ

(m)
t (a)(1 − e0).

Note that α
(m)
tm

is homotopic to α
(m+1)
tm+1

|Em
; since α

(m+1)
tm+1

|Em
is injective, it

follows that α
(m)
tm

is injective. Since e0O∞e0 is purely infinite simple, it is easy

to extend α
(m)
tm

to a homomorphism αtm
: O∞ → e0O∞e0. Proposition 2.1.11

provides homotopies t 7→ αt of homomorphisms from O∞ to e0O∞e0, defined

for t ∈ [tm, tm+1], such that αt|Em
= α

(m)
t and such that αtm

and αtm+1 are
as already given. Putting these homotopies together, and defining αt = αt2

for t ∈ [0, t2], we obtain a continuous path t 7→ αt of unital homomorphisms

from O∞ to e0O∞e0, defined for t ∈ [0,∞), such that αt|Em
= α

(m)
t whenever

t ≥ tm. Similarly, there is a continuous path t 7→ βt of unital homomorphisms
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from O∞ to (1− e0)O∞(1− e0), defined for t ∈ [0,∞), such that βt|Em
= β

(m)
t

whenever t ≥ tm. Define σt : O∞ → O∞ by σt(a) = αt(a) + βt(a).

For t ≥ tm and 1 ≤ j ≤ m, we have u∗tσt(sj)ut = u∗tσ
(m)
t (sj)ut, and

‖u∗tσ
(m)
t (sj)ut−sj‖ ≤ ‖σ

(m)
t (sj)−aj(t)‖+‖u∗taj(t)ut−sj‖ < 1/m+εm < 2/m.

Therefore limt→∞ ‖u∗tσ
(m)
t (sj)ut − sj‖ = 0 for all j. Thus t 7→ σt is asymptoti-

cally unitarily equivalent to idO∞
. So ϕ is asymptotically unitarily equivalent

to t 7→ ϕ ◦ σt.
Let f < ϕ(e0) be a nonzero projection with [f ] = 0 in K0(D). Let w1, w2 ∈

D be partial isometries satisfying

w∗
1w1 = 1, w1w

∗
1 = 1 − f, and w1(1 − ϕ(e0)) = (1 − ϕ(e0))w1 = 1 − ϕ(e0)

and
w∗

2w2 = q and w2w
∗
2 = f.

The homomorphism ϕ⊕̃ψ is only defined up to unitary equivalence, and we can
take it to be

(ϕ⊕̃ψ)(x) = w1ϕ(x)w∗
1 + w2ψ(x)w∗

2 .

We make the same choices when defining (ϕ ◦σt)⊕̃ψ. Writing ϕ ◦σt = ϕ ◦αt +
ϕ ◦ βt, with

ϕ ◦ αt : O∞ → ϕ(e0)Dϕ(e0) and ϕ ◦ βt : O∞ → ϕ(1 − e0)Dϕ(1 − e0),

this choice gives
(ϕ ◦ σt)⊕̃ψ = [(ϕ ◦ αt)⊕̃ψ] + ϕ ◦ βt.

By Lemma 2.2.2, t 7→ (ϕ◦αt)⊕̃ψ is asymptotically unitarily equivalent to ϕ◦αt.
Therefore, with ∼ denoting asymptotic unitary equivalence, we have

ϕ⊕̃ψ ∼ (ϕ ◦ αt)⊕̃ψ + ϕ ◦ βt ∼ ϕ ◦ αt + ϕ ◦ βt ∼ ϕ.

This is the desired result.

2.2.7 Proposition. (Compare with Theorem 3.3 of [35].) Let D be a uni-
tal purely infinite simple C∗-algebra, and let ϕ, ψ : O∞ → D be two unital
homomorphisms. Then ϕ is asymptotically unitarily equivalent to ψ.

Proof: Let e = 1 − s1s
∗
1 − s2s

∗
2 ∈ O∞, and let f = ϕ(e) ∈ D. Define ϕ :

O∞ → fDf by ϕ(sj) = ϕ(sj+2)f. Let w ∈ M2(D) be a partial isometry with
w∗w = 1⊕ f and ww∗ = q⊕ 0 for some q ∈ D. We regard w(ϕ⊕ϕ)(−)w∗ and
w(ψ ⊕ ϕ)(−)w∗ as homomorphisms from O∞ to qDq. Furthermore, [q] = 0 in
K0(D), so

ϕ⊕̃w(ψ ⊕ ϕ)(−)w∗ and ψ⊕̃w(ϕ ⊕ ϕ)(−)w∗

are defined; they are easily seen to be unitarily equivalent. Using Lemma 2.2.6
for the other two steps, we therefore obtain asymptotic unitary equivalences

ϕ ∼ ϕ⊕̃w(ψ ⊕ ϕ)(−)w∗ ∼ ψ⊕̃w(ϕ⊕ ϕ)(−)w∗ ∼ ψ.
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2.2.8 Corollary. Let A be any unital C∗-algebra such that O∞ ⊗ A ∼= A.
Then there exists an isomorphism β : O∞ ⊗ A → A such that the homomor-
phism a 7→ β(1 ⊗ a) is asymptotically unitarily equivalent to idA.

Proof: We first prove this for A = O∞. Theorem 2.1.5 implies that O∞⊗O∞
∼=

O∞; let β0 : O∞⊗O∞ → O∞ be an isomorphism. Then a 7→ β0(1⊗a) and idO∞

are two unital homomorphisms from O∞ to O∞, so they are asymptotically
unitarily equivalent by Proposition 2.2.7. Let t 7→ ut be a unitary path such
that limt→∞(β0(1 ⊗ a) − utau

∗
t ) = 0 for all a ∈ O∞.

Now let A be as in the hypotheses. We may as well prove the result for
O∞ ⊗A instead of A. Take β = β0 ⊗ idA; then a 7→ β(1⊗ a) is asymptotically
unitarily equivalent to idO∞⊗A via the unitary path t 7→ ut ⊗ 1.

2.3 When homotopy implies asymptotic unitary equivalence

In this subsection, we will prove that if A is a separable nuclear unital simple
C∗-algebra and D0 is unital, then two homotopic asymptotic morphisms from
A to K⊗O∞⊗D0 are asymptotically unitarily equivalent. We will furthermore
prove that an asymptotic morphism from A to K⊗O∞⊗D0 is asymptotically
unitarily equivalent to a homomorphism. The method of proof of the first
statement will generalize the methods of [44]. We will obtain the second via a
trick.

The following two definitions will be convenient. The first is used, both
here and in Section 3, to simplify terminology, and the second is the analog of
Definition 2.1 of [44].

2.3.1 Definition. Let A, D, and Q be C∗-algebras, with A and Q separable
and withQ also unital and nuclear. Let ϕ : A→ D be an asymptotic morphism.
A standard factorization of ϕ through Q ⊗ A is an asymptotic morphism ψ :
Q⊗A → D such that ϕt(a) = ψt(1⊗ a) for all t and all a ∈ A. An asymptotic
standard factorization of ϕ through Q ⊗ A is an asymptotic morphism ψ :
Q⊗A → D such that ϕ is asymptotically unitarily equivalent to the asymptotic
morphism (t, a) 7→ ψt(1 ⊗ a).

2.3.2 Definition. Let A, D, and ϕ be as in the previous definition. An
(asymptotically) trivializing factorization of ϕ is a (asymptotic) standard fac-
torization with Q = O2. In this case, we say that ϕ is (asymptotically) trivially
factorizable.

2.3.3 Lemma. (Compare [44], Lemma 2.2.) Let A be separable, nuclear, unital,
and simple, let D0 be a unital C∗-algebra, and let D = O∞ ⊗D0. Then any
two full asymptotically trivially factorizable asymptotic morphisms from A to
K ⊗D are asymptotically unitarily equivalent.

Proof: It suffices to prove this for full asymptotic morphisms ϕ, ψ : A→ K⊗D
with trivializing factorizations ϕ′, ψ′ : O2⊗A→ K⊗D. Note that ϕ′ and ψ′ are
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again full, and it suffices to prove that ϕ′ is asymptotically unitarily equivalent
to ψ′. By Theorem 2.1.4, we have O2 ⊗ A ∼= O2, and Proposition 1.1.7 then
implies that ϕ′ and ψ′ are asymptotically equal to continuous families ϕ′′ and
ψ′′ of homomorphisms.

We now have two continuous families of full projections t 7→ ϕ′′
t (1) and

t 7→ ψ′′
t (1) in K ⊗ D, parametrized by [0,∞). Standard methods show that

each family is unitarily equivalent to a constant projection. Moreover, the pro-
jections ϕ′′

0 (1) and ψ′′
0 (1) have trivial K0 classes, so are homotopic by Lemma

2.1.8 (2). Therefore they are unitarily equivalent. Combining the unitaries in-
volved and conjugating by the result, we can assume ϕ′′

t (1) and ψ′′
t (1) are both

equal to the constant family t 7→ p for a suitable full projection p. Now replace
K ⊗D by p(K ⊗D)p, and apply Lemma 2.2.1; its hypotheses are satisfied by
Corollary 2.1.12.

2.3.4 Corollary. (Compare [44], Lemma 2.3.) Under the hypotheses of
Lemma 2.3.3, the direct sum of two full asymptotically trivially factorizable
asymptotic morphisms ϕ, ψ : A → K ⊗ D is again full and asymptotically
trivially factorizable.

Proof: Since asymptotic unitary equivalence respects direct sums, the previous
lemma implies we may assume ϕ = ψ. We may further assume that ϕ actually
has a trivializing factorization ϕ′ : O2 ⊗ A → K ⊗ D. Then ϕ ⊕ ψ has the
standard factorization idM2⊗ϕ

′ through (M2⊗O2)⊗A, and this is a trivializing
factorization because M2 ⊗O2

∼= O2.

Fullness follows from Lemma 1.2.6 (2).

We also need asymptotically standard factorizations through O∞⊗A. The
special properties required in the following lemma will be used in the proof of
Theorem 2.3.7.

2.3.5 Lemma. Let A be a separable unital nuclear C∗-algebra, let D0 be
unital, and let D = O∞⊗D0. Let ϕ : A→ K⊗D be an asymptotic morphism.
Then ϕ has an asymptotic standard factorization through O∞ ⊗A. In fact, ϕ
is asymptotically unitarily equivalent to an asymptotic morphism of the form
ψt(a) = δ ◦ (idO∞

⊗ ϕ̃t)(1 ⊗ a), in which δ : O∞ ⊗ K ⊗D → K ⊗ D is an
isomorphism, ϕ̃ is completely positive contractive and asymptotically equal to
ϕ, and idO∞

⊗ ϕ̃t is defined to be the tensor product of completely positive
maps and is again completely positive contractive.

Proof: Lemma 1.1.5 provides a completely positive contractive asymptotic mor-
phism ϕ̃ which is asymptotically equal to ϕ. Then idO∞

⊗ϕ̃t is the minimal ten-
sor product of two completely positive contractive linear maps, and is therefore
bounded and completely positive by Proposition IV.4.23 (i) of [58]. Looking
at the proof of that proposition and of Theorem IV.3.6 of [58], we see that
such a tensor product is in fact contractive. Thus, ‖idO∞

⊗ ϕ̃t‖ ≤ 1 for all t.
One checks that t 7→ (idO∞

⊗ ϕ̃t)(b) is continuous for b in the algebraic tensor
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product of O∞ and A. It follows that continuity holds for all b ∈ O∞ ⊗ A.
Similarly, one checks that t 7→ idO∞

⊗ ϕ̃t is asymptotically multiplicative, so is
an asymptotic morphism.

Use Corollary 2.2.8 to find an isomorphism δ0 : O∞ ⊗D → D such that
d 7→ δ0(1 ⊗ d) is asymptotically unitarily equivalent to idD. This induces an

isomorphism δ : O∞ ⊗ K ⊗D → K ⊗ D, and a unitary path t 7→ u
(0)
t ∈

M(K⊗D) such that ‖u
(0)
t δ(1⊗d)(u

(0)
t )∗−d‖ → 0 for all d ∈ K⊗D. By Lemma

1.3.9, there is a unitary path t 7→ ut ∈ (K⊗D)+ such that ‖utδ(1⊗d)u∗t−d‖ → 0
for all d ∈ K ⊗D.

We prove that the ψ that results from these choices is in fact asymptotically
unitarily equivalent to ϕ̃; this will prove the lemma. Choose finite subsets
F1 ⊂ F2 ⊂ · · · whose union is dense in A. For each n, note that the set
Sn = {ϕ̃t(a) : a ∈ Fn, t ∈ [0, n]} is compact in D, so that there is rn with
‖utδ(1 ⊗ d)u∗t − d‖ < 2−n for all d ∈ Sn and t ≥ rn. For α ∈ [0, 1] define
f(n+α) = (1−α)rn+αrn+1. Then define unitaries vt ∈ (K⊗D)+ by vt = uf(t).
For t ∈ [n, n+ 1] and a ∈ Fn, this gives (using f(t) ≥ rn)

‖vtψt(a)v
∗
t − ϕ̃t(a)‖ = ‖uf(t)δ(1 ⊗ ϕ̃t(a))u

∗
f(t) − ϕ̃t(a)‖ < 2−n.

Thus ψ is in fact asymptotically unitarily equivalent to ϕ̃.

2.3.6 Lemma. (Compare [44], Proposition 3.3.) Assume the hypotheses of
Lemma 2.3.3. Let ϕ, ψ : A → K ⊗ D be full asymptotic morphisms with ψ
asymptotically trivially factorizable. Then ϕ ⊕ ψ is asymptotically unitarily
equivalent to ϕ.

Proof: By Lemma 2.3.5, we may assume that ϕ has a standard factorization
through O∞ ⊗A, say ϕ′ : O∞ ⊗A→ K ⊗D. Using Lemma 1.3.8 on ϕ′ and on
an asymptotically trivializing factorization for ψ, we may assume without loss
of generality that there are projections p, q ∈ K ⊗ D such that ϕ′ is a unital
asymptotic morphism from A to p(K⊗D)p and ψ is an asymptotically trivially
factorizable unital asymptotic morphism from A to q(K ⊗D)q.

Choose a nonzero projection e ∈ O∞ with trivial K0 class. Let t 7→ ft

be a tail projection for ϕ′(e ⊗ 1). Choose a continuous unitary family t 7→ ut

in p(K ⊗ D)p such that utftu
∗
t = f0 for all t. Define bounded asymptotic

morphisms

σ : (1 − e)O∞(1 − e) ⊗A → (p− f0)(K ⊗D)(p− f0)

and
τ : eO∞e⊗A → f0(K ⊗D)f0

by
σt(x) = ut(p− ft)ϕ

′
t(x)(p − ft)u

∗
t and τt(x) = utftϕ

′
t(x)ftu

∗
t .

These are in fact asymptotic morphisms, because limt→∞ ‖ft −ϕ′
t(e⊗ 1)‖ = 0.

Then define asymptotic morphisms

σ̃ : A → (p− f0)(K ⊗D)(p− f0) and τ̃ : A → f0(K ⊗D)f0
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by

σ̃t(a) = σt((1 − e) ⊗ a)) and τ̃t(a) = τt(e⊗ a).

It follows that

lim
t→∞

‖utϕ
′
t(1 ⊗ a)u∗t − σ̃t(a) − τ̃t(a)‖ = 0

for all a ∈ A, so ϕ is asymptotically unitarily equivalent to σ̃⊕ τ̃ . Since [e] = 0
in K0(O∞), there is a unital homomorphism ν : O2 → eO∞e, and the formula
τ̃t(a) = (τt ◦ (ν⊗ idA))(1⊗a) shows that τ̃ has a trivializing factorization. Fur-
thermore, τ̃ is full because ϕ′ is. So τ̃ ⊕ ψ is full and asymptotically trivially
factorizable by Corollary 2.3.4, and therefore asymptotically unitarily equiva-
lent to τ̃ by Lemma 2.3.3. The asymptotic unitary equivalence of ϕ and σ̃ ⊕ τ̃
now implies that ϕ⊕ ψ is asymptotically unitarily equivalent to ϕ.

We now come to the main technical theorem of this section.

2.3.7 Theorem. Let A be separable, nuclear, unital, and simple. Let D0 be a
unital C∗-algebra, and let D = O∞⊗D0. Then two full asymptotic morphisms
from A to K⊗D are asymptotically unitarily equivalent if and only if they are
homotopic.

This result is a continuous analog of Theorem 3.4 of [44], which gives a
similar result for approximate unitary equivalence. In the proof of that theo-
rem, to get approximate unitary equivalence to within ε on a finite set F, it
was necessary to approximately absorb a large direct sum of asymptotically
trivially factorizable homomorphisms—a direct sum which had to be larger for
smaller ε and larger F. In the proof of the theorem stated here, we must con-
tinuously interpolate between approximate absorption of ever larger numbers
of asymptotic morphisms. The resulting argument is rather messy. We try
to make it easier to follow by isolating two pieces as lemmas. For the first of
these, recall from Definition 1.1.4 (2) that bounded asymptotic morphisms are
assumed in particular to be linear.

2.3.8 Lemma. Let A and D be C∗-algebras, with A separable. Let α 7→ ϕ(α)

be a bounded homotopy of asymptotic morphisms from A to D. Then there
exists a continuous function f : [0,∞) → (0,∞) such that for every a ∈ A, we
have

lim
t→∞

(
sup

|α1−α2|≤1/f(t)

‖ϕ
(α1)
t (a) − ϕ

(α2)
t (a)‖

)
= 0.

Proof: Choose finite sets F0 ⊂ F1 ⊂ · · · ⊂ A whose union is dense in A.

For each n and each fixed a ∈ A, the map (t, α) 7→ ϕ
(α)
t (a) is uniformly

continuous on [0, n] × [0, 1]. So there is δn > 0 such that

sup{‖ϕ
(α1)
t (a) − ϕ

(α2)
t (a)‖ : t ∈ [0, n], |α1 − α2| ≤ δn, a ∈ Fn} < 2−n.
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We may clearly assume δ1 ≥ δ2 ≥ · · · . Let t 7→ δ(t) be a continuous function
such that 0 < δ(t) ≤ δn for t ∈ [n− 1, n].

We claim that if a ∈
⋃∞

n=0 Fn, then

lim
t→∞

(
sup

|α1−α2|≤δ(t)

‖ϕ
(α1)
t (a) − ϕ

(α2)
t (a)‖

)
= 0.

To see this, let a ∈ Fm. For n ≥ m+ 1, t ∈ [n− 1, n], and |α1 − α2| ≤ δ(t), we

have in particular |α1 − α2| ≤ δn, so that ‖ϕ
(α1)
t (a) − ϕ

(α2)
t (a)‖ ≤ 2−n.

The statement of the lemma, using f(t) = 1/δ(t), follows from the claim
by a standard argument, since ϕ is bounded and

⋃∞
n=0 Fn is dense in A.

2.3.9 Lemma. Let A and Q be C∗-algebras, with Q unital and nuclear. Let
N ≥ 2, let e0, e1, . . . , eN ∈ Q be mutually orthogonal projections which sum to
1, and let w ∈ Q be a unitary such that we0w

∗ ≤ e1, wejw
∗ ≤ ej + ej+1 for

1 ≤ j ≤ N − 1, and weNw
∗ ≤ eN + e0. Let a0, . . . , aN , b0, . . . , bN ∈ A. Then in

Q⊗A we have

∥∥∥∥∥∥
(w ⊗ 1)




N∑

j=0

ej ⊗ aj


 (w ⊗ 1)∗ −

N∑

j=0

ej ⊗ bj

∥∥∥∥∥∥
≤ max{‖aN − b0‖, ‖a0 − b1‖ + ‖a1 − b1‖, ‖a1 − b2‖ + ‖a2 − b2‖,

. . . , ‖aN−1 − bN‖ + ‖aN − bN‖}.

Proof: Let

x = (w ⊗ 1)




N∑

j=0

ej ⊗ aj


 (w ⊗ 1)∗ =

N∑

j=0

wejw
∗ ⊗ aj and y =

N∑

j=0

ej ⊗ bj .

Observe that if we take the indices mod N +1, then ek is orthogonal to wejw
∗

whenever k 6= j, j + 1, and also if j = k = 0. Therefore we can calculate

x− y =

(
N∑

i=0

ei ⊗ 1

)
(x− y)

(
N∑

k=0

ek ⊗ 1

)

=
N∑

j=0

[
(ej ⊗ 1)(wejw

∗ ⊗ aj + wej−1w
∗ ⊗ aj−1)(ej ⊗ 1) − ej ⊗ bj

]

+

N∑

j=0

[
ej(wejw

∗)ej+1 + ej+1(wejw
∗)ej

]
⊗ bj .

We now claim that the second term in the last expression is zero. The
projections wekw

∗ are orthogonal and add up to 1, and ej+1 is orthogonal to
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all of them except for k = j and k = j+1. Therefore ej+1 ≤ wejw
∗ +wej+1w

∗.
Also, ejwej+1w

∗ = 0, so we obtain

ej(wejw
∗)ej+1 = ej(wejw

∗ + wej+1w
∗)ej+1 = ejej+1 = 0.

Similarly, ej+1(wejw
∗)ej = 0. So the claim is proved.

It remains to estimate the first term. Since the summands are orthogo-
nal, the norm of this term is bounded by the maximum of the norms of the
summands. Using again ej ≤ wej−1w

∗ + wejw
∗, we obtain

‖(ej ⊗ 1)(wejw
∗ ⊗ aj + wej−1w

∗ ⊗ aj−1)(ej ⊗ 1) − ej ⊗ bj‖

≤ ‖aj−1 − aj‖ + ‖(ej ⊗ 1)(wejw
∗ ⊗ aj + wej−1w

∗ ⊗ aj)(ej ⊗ 1) − ej ⊗ bj‖

= ‖aj−1 − aj‖ + ‖ej ⊗ (aj − bj)‖ ≤ ‖aj−1 − aj‖ + ‖aj − bj‖.

If j = 0, then j − 1 = N. We then have also e0we0w
∗ = 0, so e0 ≤ weNw

∗,
whence

‖(e0 ⊗ 1)(we0w
∗ ⊗ a0 + weNw

∗ ⊗ aN )(e0 ⊗ 1) − e0 ⊗ b0‖

= ‖e0 ⊗ (aN − b0)‖ ≤ ‖aN − b0‖.

This proves the lemma.

Proof of Theorem 2.3.7: That asymptotic unitary equivalence implies homo-
topy is Lemma 1.3.3 (1). We therefore prove the reverse implication.

Using Lemma 2.3.5, we may without loss of generality assume our homo-

topy has the form ϕ̃
(α)
t (a) = δ(1O∞

⊗ϕ
(α)
t (a)), where δ : O∞⊗K ⊗D → K⊗D

is a homomorphism and ϕ is a completely positive contractive asymptotic mor-
phism from A to C([0, 1],K ⊗ D). It then suffices to prove the theorem for
the homotopy of asymptotic morphisms from A to O∞ ⊗ K ⊗D given by

ϕ
(α)
t (a) = 1 ⊗ ϕ

(α)
t (a). (We get an asymptotic unitary equivalence of ϕ̃(0) and

ϕ̃(1) by applying δ.)
The next step is to do some constructions in O∞ and O2. Choose a pro-

jection e ∈ O∞ with e 6= 1 and [e] = [1] in K0(O∞). Choose a unital homomor-
phism γ : O2 → (1−e)O∞(1−e). Define isometries s̃j ∈ O∞ by s̃j = γ(sj). Let
λ : O2 → O2 be the standard shift λ(c) = s1cs

∗
1+s2cs

∗
2. Since any two unital en-

domorphisms of O2 are homotopic (by Remark 2.1.2 (1) and the connectedness
of the unitary group of O2), there is a homotopy α 7→ ωα of endomorphisms of
O2 with ω0 = idO2 and ω1 = λ.

We will now suppose that we are given continuous functions

αn : [n− 1,∞) → [0, 1]

for n ≥ 1 such that

αn+1(n) = αn(n) (1)

for all n, and a continuous function F : [0,∞) → (0,∞). (These will be chosen
below.) Then we define ψt : O2 ⊗A→ O∞ ⊗K ⊗D by
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ψt(c⊗ a) =

n∑

k=1

s̃k−1
2 s̃1γ(c)(s̃

k−1
2 s̃1)

∗ ⊗ ϕ
(αk◦F (t))
t (a)

+ s̃n
2γ(ωF (t)−n(c))(s̃n

2 )∗ ⊗ ϕ
(αn+1◦F (t))
t (a) for F (t) ∈ [n, n+ 1]. (2)

(This is an orthogonal sum since the projections

s̃1s̃
∗
1, s̃2s̃1(s̃2s̃1)

∗, . . . , s̃n−1
2 s̃1(s̃

n−1
2 s̃1)

∗, s̃n
2 (s̃n

2 )∗

are mutually orthogonal.) As in the proof of Lemma 2.3.5, each ψt is well
defined, linear, and contractive, and t 7→ ψt(b) is continuous for b in the alge-
braic tensor product of O2 and A (using (1) when F (t) ∈ N), and so for all
b ∈ O2 ⊗A.

We now claim that ψ, as defined by (2), is actually an asymptotic mor-
phism from O2 ⊗ A to O∞ ⊗ K ⊗D. It only remains to prove asymptotic
multiplicativity. By linearity and finiteness of supt ‖ψt‖, it suffices to do this
on elementary tensors. Since γ, ωα, and the maps c 7→ s̃k−1

2 s̃1c(s̃
k−1
2 s̃1)

∗ and
c 7→ s̃n

2 c(s̃
n
2 )∗ are homomorphisms (and so contractive), a calculation gives, for

F (t) ∈ [n, n+ 1],

lim
t→∞

‖ψt((c1 ⊗ a1)(c2 ⊗ a2)) − ψt(c1 ⊗ a1)ψt(c2 ⊗ a2)‖

≤ lim
t→∞

‖c1c2‖

(
sup

α∈[0,1]

∥∥∥ϕ(α)
t (a1a2) − ϕ

(α)
t (a1)ϕ

(α)
t (a2)

∥∥∥
)

= 0.

Define ι : A→ O2⊗A by ι(a) = 1⊗a. Then ψ◦ι is an asymptotic morphism
from A to O∞ ⊗ K ⊗D. By definition, it has a trivializing factorization, so
Lemma 2.3.6 implies that ϕ(α) ⊕ (ψ ◦ ι) is asymptotically unitarily equivalent
to ϕ(α). The theorem will therefore be proved if we can choose the functions F
and αn in such a way that ϕ(0) ⊕ (ψ ◦ ι) is asymptotically unitarily equivalent
to ϕ(1) ⊕ (ψ ◦ ι).

Before actually choosing F and the αn, we construct, in terms of F, the
unitary path we will use for the desired asymptotic unitary equivalence. Let
τ be an automorphism of M2(O∞) which sends 1 ⊕ 0 to e ⊕ 0 and 0 ⊕ c to
c⊕ 0 for all c ∈ (1− e)O∞(1− e). Let τ̃ be the obvious induced automorphism
of M2(O∞ ⊗ K ⊗D). It suffices to prove asymptotic unitary equivalence of
τ̃ ◦ (ϕ(0) ⊕ (ψ ◦ ι)) and τ̃ ◦ (ϕ(1) ⊕ (ψ ◦ ι)). Furthermore, these two asymptotic
morphisms take values in O∞ ⊗K ⊗D, embedded as the upper left corner, so
we only work there. This results in the identification

τ̃ ◦ (ϕ(α) ⊕ (ψ ◦ ι)) = e⊗ ϕ(α)(−) + (ψ ◦ ι).

We further note that, by Lemma 1.3.9, it suffices to construct a continuous
family of unitaries in the multiplier algebra M(O∞ ⊗K ⊗D).
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With these identifications and reductions, our unitary path will take the
form ut = v(F (t)) ⊗ 1 for a suitable unitary path r 7→ v(r) in O∞, defined for
r ∈ [0,∞). The construction of v requires further notation.

Define projections in O∞ by pk = s̃k−1
2 s̃1(s̃

k−1
2 s̃1)

∗ and qn = s̃n
2 (s̃n

2 )∗.
Then

p1 + p2 + · · · + pn + qn + e = 1 and pn+1 + qn+1 = qn.

Choose projections fk < pk with [fk] = 1 in K0(O∞). Note that fn+1 < qn.
Then there are partial isometries vk with

v∗0v0 = e, v0v
∗
0 = f1, v∗kvk = fk, and vkv

∗
k = fk+1,

and wn with

w∗
nwn = fn+1 and wnw

∗
n = e.

Using the connectedness of the unitary group of (fn+1+fn+2)O∞(fn+1+fn+2),
choose a continuous path α 7→ yn(α) of partial isometries from fn+1 + fn+2 to
fn+2 + e such that yn(0) = wn + fn+2 and yn(1) = vn+1 + wn+1. Then define

v(n+α) = (p1−f1)+· · ·+(pn+1−fn+1)+(qn+1−fn+2)+v0+v1+· · ·+vn+yn(α)

for n ∈ N and α ∈ [0, 1]. There are two definitions at each integer, but they
agree, so v is a continuous path of unitaries. Furthermore, one immediately
verifies that for fixed r ∈ [n, n + 1], the unitary w = v(r) and sequence of
projections

e0 = e, e1 = p1, e2 = p2, . . . , en = pn, en+1 = qn (3)

satisfy the hypotheses in Lemma 2.3.9.
Now take f to be as in Lemma 2.3.8, and set F (t) = f(t) + 2. Define

α0 : [0,∞) → [0, 1] by α0(r) = 0 for all r, and choose the functions αn :
[n− 1,∞) → [0, 1] to be continuous, to satisfy (1), and such that αn+1(r) = 1
for r ∈ [n, n+ 1] and

|αk+1(r) − αk(r)| ≤ 1/(n− 1) for r ∈ [n, n+ 1] and 0 ≤ k ≤ n.

Take ψ and u to be defined using these choices of F and the αn. Let
t ∈ [0,∞). Set r = F (t) and choose n ∈ N such that r ∈ [n, n + 1]. Let
w = v(r) and let e0, . . . , en+1 be as in (3). For a ∈ A, we then have

∥∥∥ut

[
e⊗ ϕ(0)(a) + ψt(1 ⊗ a)

]
u∗t −

[
e⊗ ϕ(1)(a) + ψt(1 ⊗ a)

]∥∥∥

=

∥∥∥∥∥(w ⊗ 1)

[
n+1∑

k=0

ek ⊗ ϕ
(αk(r))
t (a)

]
(w ⊗ 1)∗

−

[
e0 ⊗ ϕ

(1)
t (a) +

n+1∑

k=1

ek ⊗ ϕ
(αk(r))
t (a)

]∥∥∥∥∥ .
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Apply Lemma 2.3.9 with ak = bk = ϕ
(αk(r))
t (a) for 1 ≤ k ≤ n + 1, and with

a0 = ϕ
(α0(r))
t (a) and b0 = ϕ

(1)
t (a) = ϕ

(αn+1(r))
t (a) = an+1. It follows that the

expression above is at most

max(0, ‖a0 − a1‖, . . . , ‖an − an+1‖)

= max{‖ϕ
(αk(r))
t (a) − ϕ

(αk+1(r))
t (a)‖ : 0 ≤ k ≤ n}

≤ sup{‖ϕ
(α1)
t − ϕ

(α2)
t ‖ : |α1 − α2| ≤ 1/(n− 1)}.

Since n−1 ≥ r−2 = f(t), we have 1/(n−1) ≤ 1/f(t), and this last expression
converges to 0 as t→ ∞. Thus we have shown that

e⊗ ϕ(0)(−) + (ψ ◦ ι) and e⊗ ϕ(1)(−) + (ψ ◦ ι)

are asymptotically unitarily equivalent. This completes the proof.

2.3.10 Corollary. Let A be separable, nuclear, unital, and simple, let D0

be unital, and let D = O∞ ⊗D0. Then any full asymptotic morphism ϕ : A →
K ⊗D is asymptotically unitarily equivalent to a homomorphism.

Proof: It is obvious that an asymptotic morphism is homotopic to all of
its reparametrizations. The result therefore follows from Theorem 2.3.7 and
Proposition 1.3.7.

2.3.11 Remark. The hypothesis of fullness can be removed in Theorem 2.3.7
(and in Corollary 2.3.10) in the following way. Let α 7→ ϕ(α) be a homotopy of
asymptotic morphisms from A to K⊗D, with D = O∞⊗D0. Applying Lemma
1.3.8, we can assume α 7→ ϕ(α) is a homotopy of unital (hence full) asymptotic
morphisms from A to D′ = p(K ⊗D)p for a suitable projection p. The algebra
D′ is stable under tensoring with O∞ by Corollary 2.1.12. So we can apply
the result already proved to asymptotic morphisms from A to K ⊗D′. Then
embed K ⊗D′ in K ⊗D.

3 Unsuspended E-theory for simple nuclear C∗-algebras

In [16], Dǎdǎrlat and Loring proved that for certain C∗-algebras A, one can
obtain the groups KK0(A,B) via “unsuspended E-theory”: KK0(A,B) ∼=
[[K ⊗A,K ⊗B]] (notation from Definition 1.1.2) for all separable B. The ter-
minology comes from the omission of the suspension that is normally required.
The conditions on A are quite restrictive, and in particular fail for trivial rea-
sons as soon as A has even one nonzero projection.

In this section, we want to take A to be separable, nuclear, unital, and
simple. To make enough room, we assume B is a tensor product O∞ ⊗D with
D unital. We then discard the class of the zero asymptotic morphism (the
source of the difficulty with projections). We are able to prove, with the help
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of Kirchberg’s results as stated in Section 2.1 and also using Theorem 2.3.7,
that we do in fact get KK0(A,B) as a set of suitable homotopy classes of
asymptotic morphisms from K⊗A to K⊗B. (Corollary 2.3.10 implies that we
can even use asymptotic unitary equivalence classes of homomorphisms. See
Section 4.1.)

In the first subsection, we construct for fixed A a middle exact homotopy
invariant functor from separable C∗-algebras to abelian groups in a manner
analogous to the definition of K0(D), but using asymptotic morphisms from A
to K ⊗O∞ ⊗D+ in place of projections in K ⊗D+. The fact that the target
algebra is infinite means that, as for K0 of a purely infinite simple C∗-algebra,
we do not need to take formal differences of classes. We do, however, need to
introduce the unitization of the target algebra for essentially the same reason
that it is necessary in the definition of K0. In the second subsection, we then
show that this functor is naturally isomorphic to KK0(A,−).

3.1 The groups [[A,K ⊗O∞ ⊗D]]+ and ẼA(D)

Let A be separable, nuclear, unital, and simple. In this subsection we construct
a functor [[A,K ⊗ O∞ ⊗ −]]+ on unital C∗-algebras and the corresponding

functor ẼA(−) on general C∗-algebras (obtained via the unitization). We then

prove that ẼA is a cohomology theory on separable C∗-algebras in the usual
sense. This information is needed in order to apply the uniqueness theorems
for KK-theory in the next subsection.

3.1.1 Definition. Let A be separable and unital, and assume each ideal of
A is generated by its projections. Let B have an approximate identity of pro-
jections. Then [[A,B]]+ denotes the set of homotopy classes of full asymptotic
morphisms from A to B.

3.1.2 Proposition. Let A be simple, separable, unital, and nuclear. For any
unital C∗-algebra D, give [[A,K ⊗ O∞ ⊗ D]]+ the addition operation that it
receives from being a subset of [[A,K ⊗O∞ ⊗D]]. Then [[A,K ⊗O∞ ⊗−]]+
is a functor from separable unital C∗-algebras and homotopy classes of unital
asymptotic morphisms to abelian groups. The zero element is the class of any
full asymptotic morphism from A to K⊗O∞⊗D with a standard factorization
(see Definition 2.3.1) through O2 ⊗A.

Proof: Lemma 1.2.6 (2) shows that [[A,K ⊗ O∞ ⊗ D]]+ is closed under the
addition in [[A,K ⊗ O∞ ⊗ D]]. Therefore [[A,K ⊗ O∞ ⊗ D]]+ is an abelian
semigroup, provided it is not empty.

According to Theorem 2.3.7, homotopy is the same relation as asymptotic
unitary equivalence in this set. So we can use them interchangeably.

For functoriality, let E be another unital C∗-algebra, and let ϕ : D → E
be a unital asymptotic morphism. Let ϕ = idK⊗O∞

⊗ϕ (see Proposition 1.1.8)
be the induced asymptotic morphism from K ⊗ O∞ ⊗D to K ⊗ O∞ ⊗ E. It
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is full because if e ∈ K is any nonzero projection, then e ⊗ 1 ⊗ 1 is a full
projection in K ⊗ O∞ ⊗ D which is sent to the full projection e ⊗ 1 ⊗ 1 in
K⊗O∞⊗E. Lemmas 1.2.6 (2) and 2.1.8 (1) now imply that η 7→ [[ϕ]] ·η sends
full asymptotic morphisms to full asymptotic morphisms.

We now construct an identity element. Theorem 2.1.4 provides an isomor-
phism ν : O2 ⊗ A → O2. Let τ : O2 → O∞ be an injective homomorphism
(sending 1 to a nonzero projection in O∞ with trivial K0-class), and define a
full homomorphism ζ : A → O∞ by ζ(a) = (τ ◦ ν)(1 ⊗ a). Composing it with
the full homomorphism x 7→ e⊗ x⊗ 1 from O∞ to K ⊗O∞ ⊗D, where e ∈ K
is any nonzero projection, we obtain a full asymptotic morphism from A to
K ⊗O∞ ⊗D which has a standard factorization through O2 ⊗A.

Lemma 2.3.3 implies that any other full asymptotic morphism with a triv-
ializing factorization is asymptotically unitarily equivalent to ζ. This class acts
as the identity by Lemma 2.3.6.

Finally, we must construct additive inverses. Let η ∈ [[A,K⊗O∞ ⊗D]]+.
By Lemma 2.3.5, we can take η = [[ϕ]], where ϕ has a standard factorization
through O∞ ⊗ A, say ϕt(a) = ψt(1 ⊗ a) for some asymptotic morphism ψ :
O∞⊗A→ K⊗O∞⊗D. Choose a projection f ∈ O∞ with [f ] = −1 inK0(O∞).
Define ψt = ψt|fO∞f⊗A, and define ϕ : A→ K⊗O∞⊗D by ϕt(a) = ϕt(f⊗a).
Choose a unital homomorphism

ν : O2 →

(
1 0
0 f

)
M2(O∞)

(
1 0
0 f

)
.

Then (idM2 ⊗ψ)◦ν provides a standard factorization of ϕ⊕ϕ through O2 ⊗A.
Note that ϕ⊕ϕ is full because ϕ is, so it is asymptotically unitarily equivalent
to ζ by Lemma 2.3.3. This shows that [[ϕ]] is the inverse of η.

3.1.3 Definition. If D is any C∗-algebra, then we denote by D# the C∗-
algebra K ⊗ O∞ ⊗ D+. We use the analogous notation for homomorphisms.
If D is separable, we define ẼA(D) to be the kernel of the map [[A,D#]]+ →
[[A,K ⊗O∞]]+ induced by the unitization map D+ → C.

3.1.4 Proposition. Let A be separable, nuclear, unital, and simple. Then
ẼA is a functor from separable C∗-algebras and homotopy classes of asymptotic
morphisms to abelian groups.

Proof: This follows from Proposition 3.1.2 and the fact that unitizations and
tensor products of asymptotic morphisms are well defined (Lemma 1.1.6 and
Proposition 1.1.8).

3.1.5 Remark. It is obvious that if D1 and D2 are unital, then there is a
natural isomorphism

[[A,K ⊗O∞ ⊗ (D1 ⊕D2)]]+ ∼= [[A,K ⊗O∞ ⊗D1]]+ ⊕ [[A,K ⊗O∞ ⊗D2)]]+.

It follows that for unital D, there is a natural isomorphism

ẼA(D) ∼= [[A,K ⊗O∞ ⊗D]]+.
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We will sometimes denote by ϕ∗ the map [[A,D1]]+ → [[A,D2]]+ or the

map ẼA(D1) → ẼA(D2) induced by a (full) homomorphism ϕ : D1 → D2.

3.1.6 Lemma. Let A be separable, nuclear, unital, and simple. Let

0 −→ J
µ

−→ D
π

−→ D/J −→ 0

be a short exact sequence of separable C∗-algebras. Then the sequence

ẼA(J)
µ∗

−→ ẼA(D)
π∗−→ ẼA(D/J)

is exact in the middle.

Proof: It is immediate that π∗ ◦ µ∗ = 0.
For the other half, we introduce the maps χD : D# → K ⊗ O∞ and

ιD : K ⊗ O∞ → D# associated with the unitization maps D+ → C and
C → D+. Define χD/J , ιD/J , etc. similarly. Now let η ∈ ker(π∗), and choose

a full asymptotic morphism ϕ : A → D# whose class is η. By definition, we
have [[π# ◦ ϕ]] = 0 in [[A, (D/J)#]]+. Choose a full homomorphism ζ : A →
K ⊗ O∞ with a standard factorization through O2 ⊗ A, as in the proof of
Proposition 3.1.2. Theorem 2.3.7 then implies that π# ◦ ϕ is asymptotically
unitarily equivalent to ιD/J ◦ ζ, so there is a unitary path t→ ut in ((D/J)#)+

such that ut(π
# ◦ ϕt)(a)u

∗
t → (ιD/J ◦ ζ)(a) for all a ∈ A.

Without changing homotopy classes, we may replace ϕ by ϕ⊕ 0 and ζ by
ζ ⊕ 0. This also replaces π# ◦ϕ and ιD/J ◦ ζ by their direct sums with the zero
asymptotic morphism. We then replace ut by ut ⊕ u∗t . We may thus assume
without loss of generality that u is in the identity component of the unitary
group of Cb([0,∞), ((D/J)#)+). Therefore there is v ∈ U0(Cb([0,∞), (D#)+))
whose image is u. Then π#(vt) = ut for all t, whence

lim
t→0

π#(vtϕt(a)v
∗
t − (ιD ◦ ζ)(a)) = 0

for all a ∈ A.
Let σ : (D/J)# → D# be a continuous (nonlinear) cross section for π#

satisfying σ(0) = 0. (See [1].) Define ψt : A→ D# by

ψt(a) = vtϕt(a)v
∗
t − (σ ◦ π#)

(
vtϕt(a)v

∗
t − (ιD ◦ ζ)(a)

)
.

This yields an asymptotic morphism asymptotically equal to t 7→ vtϕt(−)v∗t ,
and hence asymptotically unitarily equivalent to ϕ. Furthermore,
π#(ψt(a) − (ιD ◦ ζ)(a)) = 0 for all t and a. It follows that ψt(a) ∈ J#

and that χJ (ψt(a)) = ζ(a). So ψ is in fact a full asymptotic morphism from
A to J# such that [[χJ ◦ ψ]] = 0, from which it follows that ψ defines a class

[[ψ]] ∈ ẼA(J). Clearly µ∗([[ψ]]) = η. This shows that ker(π∗) ⊂ Im(µ∗).

3.1.7 Corollary. Let A be separable, nuclear, unital, and simple. Let

0 −→ J
µ

−→ D
π

−→ D/J −→ 0
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be a split short exact sequence of separable C∗-algebras. Then there is a natural
split exact sequence

0−→ẼA(J)
µ∗

−→ ẼA(D)
π∗−→ ẼA(D/J) −→ 0.

Proof: This is Proposition 4.1 (b) of [15], noting that the proof of Part (b) there

doesn’t use stability. Indeed, since ẼA is middle exact (the previous lemma)
and homotopy invariant, Lemma 5 in Section 7 of [26] provides a long exact
sequence

· · ·
(Sµ)∗
−→ ẼA(SD)

(Sπ)∗
−→ ẼA(S(D/J))−→ẼA(J)

µ∗

−→ ẼA(D)
π∗−→ ẼA(D/J).

The desired conclusion can now be immediately obtained using the splitting
map.

3.1.8 Remark. It should be pointed out that we need much less than the
full strength of Theorem 2.3.7 here. Only knowing that homotopy implies
asymptotic unitary equivalence for full asymptotic morphisms from A to K ⊗
O∞ ⊗C([0, 1]), it is possible to prove middle exactness in the first stage of the
Puppe sequence, namely

ẼA(Cπ) −→ ẼA(D) −→ ẼA(D/J).

This sequence can be extended to the left as in the proof of Proposition 2.6 of
[56]. Proposition 3.2 of [16] can then be used to show that ẼA is split exact.

We now prove stability of ẼA under formation of tensor products with
both K and O∞.

3.1.9 Lemma. Let A be separable, nuclear, unital, and simple, and let D be a
separable C∗-algebra. Then the map d 7→ 1 ⊗ d, from D to O∞ ⊗D, induces
an isomorphism ẼA(D) → ẼA(O∞ ⊗D).

Proof: By naturality, Proposition 3.1.7, and the Five Lemma, it suffices to
prove this for unital D. By Remark 3.1.5, we have to prove that d 7→ 1 ⊗ d
induces an isomorphism [[A,K ⊗ O∞ ⊗ D]]+ → [[A,K ⊗ O∞ ⊗ O∞ ⊗D]]+.
This follows from Theorem 2.1.5 and Proposition 2.1.11, since these results
imply that the map x 7→ x ⊗ 1, from O∞ to O∞ ⊗ O∞, is homotopic to an
isomorphism.

The other stability result requires the following lemma. We really want
an increasing continuously parametrized approximate identity of projections,
but of course such a thing does not exist. The quasiincreasing version in the
lemma is good enough.

3.1.10 Lemma. Let D be a unital purely infinite simple C∗-algebra, and let
e0 ∈ K ⊗ D be a nonzero projection. Then there exists a continuous family
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t 7→ et of projections in K ⊗D such that, for every b ∈ K ⊗D, we have

lim
t→∞

(etb− b) = lim
t→∞

(bet − b) = lim
t→∞

(etbet − b) = 0,

such that e0 is the given projection, and such that es ≥ et for s ≥ t+ 1.

Proof: Choose a nonzero projection p ∈ K⊗D such that [p] = 0 in K0(D). We
start by constructing a family t 7→ ft in K ⊗ pDp. Note that

[diag(1pDp, 0, 0)] = [diag(1pDp, 1pDp, 0)] = 0

in K0(M3(pDp)). Therefore there is a homotopy t 7→ qt of projections in
M3(pDp) such that

q0 = diag(1, 0, 0) and q1 = diag(1, 1, 0).

Now define
fn+s = 1Mn+1(pDp) ⊕ qs ⊕ 0 ∈ K ⊗ pDp

for n = 0, 1, . . . and s ∈ [0, 1]. The family ft is clearly continuous. It satisfies
f0 = p⊕p.We have ft ≥ 1Mn+1(pDp) for t ≥ n, so t 7→ ft really is an approximate
identity. Finally, ft ≤ 1Mn+3(pDp) for t ≤ n, so fs ≥ ft for s ≥ t + 4. We can
replace 4 by 1 in this last statement by a reparametrization.

To get the general case, choose a projection r ∈ pDp with [r] = −[e0] in
K0(D). Then ft ≥ p ≥ r for all t, so t 7→ ft − r is a continuously parametrized
approximate identity of projections for (1− r)(K ⊗ pDp)(1− r). (Here 1 is the
identity of (K ⊗ pDp)+.) There is an isomorphism

ϕ : K ⊗D → (1 − r)(K ⊗ pDp)(1 − r),

and since [f0 − r] = [e0] in K0(D), we can require that ϕ(e0) = f0 − r. Now set
et = ϕ−1(ft − r). Then clearly etb− b, bet − b→ 0 as t→ ∞. It follows that

‖etbet − b‖ ≤ ‖etb− b‖ ‖et‖ + ‖bet − b‖ → 0

as well.

3.1.11 Lemma. Let A be separable, nuclear, unital, and simple, let D be
separable, and let e ∈ K be a rank one projection. Then the map d 7→ e⊗ d,
from D to K ⊗D, induces an isomorphism ẼA(D) → ẼA(K ⊗D).

Proof: By Lemma 3.1.9, we may use O∞ ⊗D in place of D, and as in its proof
we may assume D is unital.

Let s ∈ O∞ be a proper isometry, and define γ : O∞ ⊗ D → O∞ ⊗ D
by γ(a) = (s ⊗ 1)a(s ⊗ 1)∗. We claim that γ∗ : ẼA(O∞ ⊗ D) → ẼA(O∞ ⊗
D) is an isomorphism. It follows from Remark 3.1.5 and Definition 3.1.3
that this map can be thought of as composition with idK⊗O∞

⊗ γ from
[[A,K ⊗O∞ ⊗O∞ ⊗D]]+ to itself, even though γ is not unital. (The discrep-
ancy is an orthogonal sum with an asymptotic morphism which up to homotopy
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has a trivializing factorization. Note that the composition with γ is still full.)
Now K ⊗ ss∗O∞ss

∗ and K ⊗ (1 − ss∗)O∞(1 − ss∗) are both isomorphic to
K ⊗O∞, so we may as well consider the map from [[A,K ⊗O∞ ⊗O∞ ⊗D]]+
to [[A,M2(K ⊗O∞ ⊗O∞ ⊗D)]]+ induced by inclusion in the upper right cor-
ner. Let τ : M2(K) → K be an isomorphism. Then a 7→ τ(a⊕ 0) is homotopic
to idK and b 7→ τ(b) ⊕ 0 is homotopic to idM2(K). So our map has an inverse
given by composition with τ ⊗ idO∞⊗O∞⊗D.

We next require a construction involving O∞ and K ⊗ O∞. Define ϕ :
O∞ → K ⊗ O∞ by ϕ(x) = e⊗ x. Let t 7→ et be a continuously parametrized
approximate identity for K⊗O∞ which satisfies the properties of the previous
lemma and has e0 = e ⊗ 1. Let t 7→ ut be a continuous family of unitaries

in (K ⊗ O∞)+ such that u0 = 1 and utetu
∗
t = e0 for all t. Define ψ

(0)
t :

K⊗O∞ → K⊗O∞ by ψ
(0)
t (a) = utetaetu

∗
t . One immediately checks that ψ(0)

is an asymptotic morphism whose values are in (e ⊗ 1)(K ⊗ O∞)(e ⊗ 1), so
that there is an asymptotic morphism t 7→ ψt from K ⊗O∞ to O∞ such that

ϕ ◦ ψt = ψ
(0)
t for all t.

The composite asymptotic morphisms ϕ ◦ ψ and ψ ◦ ϕ can be computed
without reparametrization, because ϕ is a homomorphism. Now ϕ ◦ ψ = ψ(0),
which is asymptotically unitarily equivalent to (t, a) 7→ etaet, which in turn
is asymptotically equal to idK⊗O∞

. So ϕ ◦ ψ is homotopic to idK⊗O∞
. Also,

ψ ◦ϕ is clearly homotopic to a map of the form x 7→ sxs∗ for a proper isometry
s ∈ O∞.

We now observe that idK⊗O∞
⊗ (ϕ ⊗ idD)+ and idK⊗O∞

⊗ (ψ ⊗ idD)+

define full asymptotic morphisms from (O∞ ⊗ D)# to (K ⊗ O∞ ⊗ D)# and
back. The composite from (K⊗O∞⊗D)# to itself is homotopic to the identity,

and therefore induces the identity map on ẼA(K ⊗O∞ ⊗D). Composition on
the right with the composite from (O∞ ⊗D)# to itself is a map of the form γ∗
as considered at the beginning of the proof, and is thus an isomorphism from
ẼA(O∞ ⊗D) to itself. It follows that ϕ∗ is an isomorphism.

3.2 The isomorphism with KK-theory

In this subsection, we prove that if A is separable, nuclear, unital, and simple,
and D is separable, then the natural map from ẼA(D) to KK0(A,D) is an
isomorphism. Combined with Remark 3.1.5, this gives for unital D a form of
“unsuspended E-theory” as in [16], in which we need only discard the zero
asymptotic morphism.

We will use the universal property of KK-theory with respect to split
exact, stable, and homotopy invariant functors on separable C∗-algebras [24].
(We use this instead of the related property of E-theory because it is more
convenient for the proof of Lemma 3.2.3 below.)

3.2.1 Notation. In this subsection, we denote by S the category of sep-
arable C∗-algebras and homomorphisms and by KK the category of sepa-
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rable C∗-algebras with morphisms KK0(A,B) for C∗-algebras A and B. If
η ∈ KK0(A,B) and λ ∈ KK0(B,C), we denote their product by λ × η ∈
KK0(A,C). We further denote by k the functor from S to KK which sends a
homomorphism to the class it defines in KK-theory.

3.2.2 Lemma. Let A be separable, nuclear, unital, and simple. Then there is a
functor ÊA from KK to the category of abelian groups such that ÊA ◦ k = ẼA.

This simply means that one can make sense of ẼA(η) : ẼA(D) → ẼA(F )
not only when η is an asymptotic morphism from D to F , but also when η is
merely an element of KK0(D,F ).

Proof of Lemma 3.2.2: The result is immediate from Theorem 4.5 of [24], since

ẼA is a stable (Lemma 3.1.11), split exact (Corollary 3.1.7), and homotopy
invariant (Proposition 3.1.4) functor from separable C∗-algebras to abelian
groups.

We want to show that ẼA(D) is naturally isomorphic to KK0(A,D). Our
argument is based on an alternate proof of the main theorem of [16] suggested
by the referee of that paper; we are grateful to Marius Dǎdǎrlat for telling us
about it. The argument requires the construction of certain natural transfor-
mations. (The argument used in Section 4 of [16] presumably also works.)

Before starting the construction, we prove a lemma on the functors F̂ of
Higson [24] (as used in the previous lemma).

3.2.3 Lemma. Let F and G be stable, split exact, and homotopy invariant
functors from S to the category of abelian groups, and let F̂ and Ĝ be the
unique extensions to functors from KK of Theorem 4.5 of [24]. (In particular,

F or G could be ẼA and F̂ or Ĝ could be ÊA, as in Lemma 3.2.2.) If α is a
natural transformation from F to G, then α is also a natural transformation
from F̂ to Ĝ.

Proof: Let µ ∈ KK0(A,B). By Lemma 3.6 of [24], we can choose a represen-
tative cycle (in the sense of Definition 2.1 of [24]) of the form Φ = (ϕ+, ϕ−, 1),
where ϕ+, ϕ− : A→M(K⊗B) are homomorphisms such that ϕ+(a)−ϕ−(a) ∈

K ⊗B for a ∈ A. The homomorphism F̂ (µ) is then the composite

F (A)
F (ϕ̂+)−F (ϕ̂−)

−→ F (AΦ)
F (π)
−→ F (K ⊗B)

F (ε)−1

−→ F (B),

for a certain C∗-algebra AΦ, certain homomorphisms π, ϕ̂+, and ϕ̂−, and with
ε(a) = 1 ⊗ a. (See Definition 3.4 and the proofs of Theorems 3.7 and 4.5
in [24].) From this expression, it is obvious that naturality with respect to
homomorphisms implies naturality with respect to classes in KK-theory.

3.2.4 Definition. Let A be separable, nuclear, unital, and simple. We regard
KK0(A,−) and ÊA as functors from KK to abelian groups. (On morphisms,
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the first of these sends η ∈ KK0(D1, D2) to Kasparov product with η.) We
now define natural transformations

α : KK0(A,−) → ÊA and β : ÊA → KK0(A,−).

To define αD, let e ∈ K be a rank one projection, let ιA : A→ K⊗O∞⊗A
be the map ιA(a) = e ⊗ 1 ⊗ a, and let [[ιA]] ∈ ẼA(A) denote its class in

[[A,K ⊗ O∞ ⊗ A]]+ ∼= ẼA(A). (Recall that A is unital, so that Remark 3.1.5

applies.) Now let η ∈ KK0(A,D). Then ÊA(η) is a homomorphism from

ẼA(A) to ẼA(D). Define

αD(η) = ÊA(η)([[ιA]]) ∈ ẼA(D).

To define βD, let χD : D# → K⊗O∞ be the standard map (as in the proof

of Lemma 3.1.6). Starting with η ∈ ẼA(D) ⊂ [[A,D#]], choose a full asymp-
totic morphism ϕ : A → D# with [[χD]] · [[ϕ]] = 0 which represents η. Now
recall (Corollary 9 (b) of [11]; Section 5 of [54]) that for A and B separable and
A (K-)nuclear, there is a canonical isomorphism E(A,B) ∼= KK0(A,B). Fur-
ther recall that there is a canonical isomorphism KK0(SA, SB) ∼= KK0(A,B)
(Theorem 7 of Section 5 of [26]). Form the second suspension

[[S2ϕ]] ∈ [[S2A,S2D#]] = E(SA, SD#)
∼= KK0(SA, SD#) ∼= KK0(A,O∞ ⊗D+),

and regard [[S2ϕ]] as an element ofKK0(A,O∞⊗D+). Since [[S2χD]]·[[S2ϕ]] =
0, split exactness ofKK0(A,−) implies that [[S2ϕ]] is actually inKK0(A,O∞⊗
D). In this last expression, we can use the KK-equivalence of O∞ and C,
given by the unital homomorphism C → O∞, to drop O∞. We thus obtain an
element βD(η) ∈ KK0(A,D).

3.2.5 Lemma. The maps αD and βD of the previous definition are in fact
natural transformations.

Proof: It is easy to check that both α and β are natural with respect to ho-
momorphisms, so naturality with respect to classes in KK-theory follows from
Lemma 3.2.3.

3.2.6 Theorem. Let A be separable, nuclear, unital, and simple. Then for
every separableD, the maps αD and βD of Definition 3.2.4 are mutually inverse
isomorphisms.

Proof: It is convenient to prove this first under the assumptions that O∞⊗A ∼=
A and O∞ ⊗ D ∼= D. It then follows that the map a 7→ 1 ⊗ a from A to
O∞ ⊗ A is homotopic to an isomorphism, and similarly for D. (This is true
for O∞ by Theorem 2.1.5 and Proposition 2.1.11. Therefore it is true for
O∞ ⊗A and O∞ ⊗D, hence for A and D.) Thus, A and O∞ ⊗A are naturally
homotopy equivalent, and therefore also naturally equivalent in KK as well.
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Similar considerations apply to D. Thus, ẼA(D) becomes just [[A,K ⊗D]]+.
The natural transformations above are then given by

αD(η) = ÊA(η)([[idA]])

(with idA being the obvious map from A to K ⊗A), and

βD([[ϕ]]) = [[S2ϕ]] ∈ [[S2A,K ⊗ S2D]] ∼= KK0(A,D).

Letting 1A denote the class in KK0(A,A) of the identity map, we then imme-
diately verify that

αA(1A) = [[idA]] and βA([[idA]]) = 1A.

We now show that these two facts imply the theorem for unital D. Let
η ∈ KK0(A,D). Then η = 1A × η, and naturality implies that

βD(αD(1A × η)) = βD(ÊA(η)(αA(1A))) = βA(αA(1A)) × η = 1A × η.

So βD ◦ αD = id. For the other direction, let µ ∈ ÊA(D). Using Corollary
2.3.10, represent µ as the class of a full homomorphism ϕ : A → K ⊗ D. Let
η = [[S2ϕ]] be the KK-class determined by [[ϕ]]. Then, identifying K⊗K with
K as necessary, we have

µ = ϕ∗([[idA]]) = ÊA(η)([[idA]]).

The same argument as above now shows that

(αD ◦ βD)

(
ÊA(η)([[idA]])

)
= ÊA(η)([[idA]]).

So αD ◦ βD = id also.
The result for nonunital algebras follows from naturality, split exactness,

and the Five Lemma.
To remove the assumption that O∞ ⊗D ∼= D, use Lemma 3.1.9.
Finally, we remove the assumption that O∞⊗A ∼= A. Let δ0 : O∞⊗O∞ →

O∞ be an isomorphism (from Theorem 2.1.5), and let δ : O∞ ⊗K ⊗O∞ →

K⊗O∞ be the obvious corresponding map. Define iD : ẼA(D) → ẼO∞⊗A(D)
by

iD([[η]]) = [[δ ⊗ idD+ ]] · [[idO∞
⊗ η]].

Let jD : KK0(A,D) → KK0(O∞ ⊗ A,D) be the isomorphism induced by
the KK-equivalence of C and O∞. Both i and j are natural transformations.
Using Theorem 2.1.5 and Proposition 2.1.11, we can rewrite jO∞⊗D(µ) as (δ0⊗
idD)∗(1O∞

⊗µ). This formula and Remark 3.1.5 imply that iD ◦αD = αD ◦ jD
when D is unital and O∞⊗D ∼= D. The previous paragraph and the definition
of ẼA(D) in terms of [[A,D#]]+ now imply that iD ◦ αD = αD ◦ jD for all D.
A related argument shows that also jD ◦ βD = βD ◦ iD for all D.
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It now suffices to prove that iD is an isomorphism for all D. By naturality,
split exactness, and the Five Lemma, it suffices to do so for unital D. In this
case, we have

iD : [[A,K ⊗O∞ ⊗D]]+ → [[O∞ ⊗A,K ⊗O∞ ⊗D]]+

given by iD([[η]]) = [[δ ⊗ idD ]] · [[idO∞
⊗ η]]. Define a map kD in the opposite

direction by restriction to 1 ⊗A ⊂ O∞ ⊗A. We prove that kD = i−1
D .

Let δ̃(x) = δ(1 ⊗ x). Proposition 2.1.11 implies that there is a homotopy

δ̃ ' idK⊗O∞
. It is easy to check directly that kD◦iD sends [[η]] to [[(δ̃⊗idD)◦η]],

so kD ◦ iD is the identity. For the reverse composition, let τA be the inclusion
of A = 1 ⊗ A in O∞ ⊗ A, and let ϕ : O∞ ⊗ O∞ → O∞ ⊗ O∞ be the flip
ϕ(x ⊗ y) = y ⊗ x. Then ϕ ' idO∞⊗O∞

by Proposition 2.1.11 and Theorem
2.1.5. Therefore, for [[η]] ∈ [[O∞ ⊗A,K ⊗O∞ ⊗D]]+, we have

(δ ⊗ idD) ◦ (idO∞
⊗ (η ◦ τA))

' (δ ⊗ idD) ◦ (idO∞
⊗ η) ◦ (ϕ ⊗ idA) ◦ (idO∞

⊗ τA) = (δ̃ ⊗ idD) ◦ η ' η.

This shows that iD ◦ kD is the identity.

3.2.7 Remark. We used Corollary 2.3.10 in this proof because we had it
available. It is, however, not necessary for the argument. Using methods
similar to, but a bit more complicated than, the proof of Lemma 3.2.3, one can
show that if F as there is in fact a functor on homotopy classes of asymptotic
morphisms, then F ([[ϕ]]) is equal to F̂ applied to the KK-theory class given
by ϕ.

3.2.8 Theorem. Let A be a separable unital nuclear simple C∗-algebra. Then
for separable unital C∗-algebras D, the set of homotopy classes of full asymp-
totic morphisms from A to K⊗O∞⊗D is naturally isomorphic to KK0(A,D)
via the map sending an asymptotic morphism to the KK-class it determines.

Proof: This follows from Theorem 3.2.6 and Remark 3.1.5.

4 Theorems on KK-theory and classification

In this section, we present our main results. The first subsection contains the
alternate descriptions of KK-theory in terms of homotopy classes and asymp-
totic unitary equivalence classes of homomorphisms, in case the first variable
is separable, nuclear, unital, and simple. We also give here a proof that homo-
topies of automorphisms of separable nuclear unital purely infinite simple C∗-
algebras can in fact be chosen to be isotopies. The second subsection contains
the classification theorem and its corollaries. The third subsection contains the
nonclassification results.
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4.1 Descriptions of KK-theory

Probably the most striking of our descriptions of KK-theory is the following:

4.1.1 Theorem. For a separable unital nuclear simple C∗-algebra A and a
separable unital C∗-algebra D, the obvious maps define natural isomorphisms
of abelian groups between the following three objects:

(1) The set of asymptotic unitary equivalence classes of full homomorphisms
from A toK⊗O∞⊗D, with the operation given by direct sum (Definition
1.1.3).

(2) The set of homotopy classes of full homomorphisms from A to K⊗O∞⊗
D, with the operation given by direct sum as above.

(3) The group KK0(A,D).

Proof: For the purposes of this proof, denote the set in (1) by KU(A,D) and
the set in (2) by KH(A,D). The map from KH(A,D) to KK0(A,D) is the
one from Theorem 3.2.8. By this theorem, we can use [[A,K ⊗O∞ ⊗D]]+ in
place of KK0(A,D).

Lemma 1.3.3 (2) implies that the map fromKU(A,D) toKH(A,D) is well
defined, and it is then clearly surjective. Injectivity is immediate from Theorem
2.3.7. Thus this map is an isomorphism. Theorem 3.2.8 implies that the map
fromKH(A,D) to [[A,K⊗O∞⊗D]]+ is injective, while Corollary 2.3.10 implies
that the map from KU(A,D) to [[A,K ⊗ O∞ ⊗D]]+ is surjective. Therefore
these maps are in fact both isomorphisms. It now follows that KU(A,D) and
KH(A,D) are both abelian groups.

We now want to give a stable version of this theorem, in which the Kas-
parov product will reduce exactly to composition of homomorphisms. We need
the following lemma. The hypotheses allow one continuous path of homomor-
phisms, and require unitaries in U0((K ⊗D)+), for use in the next subsection.

4.1.2 Lemma. Let A be separable, nuclear, unital, and simple, let D0 be
separable and unital, and let D = O∞ ⊗ D0. Let t 7→ ϕt, for t ∈ [0,∞),
be a continuous path of full homomorphisms from K ⊗ A to K ⊗D, and let
ψ : K ⊗ A → K ⊗ D be a full homomorphism. Assume that [ϕ0] = [ψ] in
KK0(A,D). Then there is an asymptotic unitary equivalence from ϕ to ψ
which consists of unitaries in U0((K ⊗D)+).

Proof: Let {eij} be a system of matrix units for K. Identify A with the subalge-

bra e11 ⊗A of K⊗A. Define ϕ
(0)
t and ψ(0) to be the restrictions of ϕt and ψ to

A. Then [ϕ
(0)
0 ] = [ψ(0)] in KK0(A,D). It follows from Theorem 4.1.1 that ϕ

(0)
0

is homotopic to ψ(0). Therefore ϕ(0) and ψ(0) are homotopic as asymptotic mor-
phisms, and Theorem 2.3.7 provides an asymptotic unitary equivalence t 7→ ut

in U((K ⊗ D)+) from ϕ(0) to ψ(0). Let c ∈ U((K ⊗ D)+) be a unitary with
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cψ(0)(1) = ψ(0)(1)c = ψ(0)(1) and such that c is homotopic to u−1
0 . Then c

commutes with every ψ(0)(a). Replacing ut by cut, we obtain an asymptotic
unitary equivalence, which we again call t 7→ ut, from ϕ(0) to ψ(0) which is in
U0((K ⊗D)+).

Define eij = eij ⊗ 1. Then in particular utϕt(e11)u
∗
t → ψ(e11) as

t → ∞. Therefore there is a continuous path t → z
(1)
t ∈ U0((K ⊗ D)+)

such that z
(1)
t → 1 and z

(1)
t utϕt(e11)u

∗
t (z

(1)
t )∗ = ψ(e11) for all t. We still have

z
(1)
t utϕt(e11 ⊗ a)u∗t (z

(1)
t )∗ → ψ(e11 ⊗ a) for a ∈ A.

For convenience, set fijt = z
(1)
t utϕt(eij)u

∗
t (z

(1)
t )∗, for all t and for 1 ≤

i, j ≤ 2. For each fixed t, the fijt are matrix units, and f11t = ψ(e11). Set wt =
ψ(e21)f12t + 1− f22t ∈ U((K ⊗D)+). Then one checks that wtfijtw

∗
t = ψ(eij)

for all t and for 1 ≤ i, j ≤ 2. Choose c ∈ U((K ⊗D)+) with

cψ(e11 + e22) = ψ(e11 + e22)c = ψ(e11 + e22) and cw1 ∈ U0((K ⊗D)+).

Set z
(2)
t = cwt for t ≥ 1 and extend z

(2)
t over [0, 1] to be continuous, unitary, and

satisfy z
(2)
0 = 1. This gives z

(2)
t = 1 for t = 0, z

(2)
t ψ(e11) = ψ(e11)z

(2)
t = ψ(e11)

for all t, and

z
(2)
t

[
z
(1)
t utϕt(eij)u

∗
t (z

(1)
t )∗

]
(z

(2)
t )∗ = ψ(eij)

for t ≥ 1 and 1 ≤ i, j ≤ 2.
We continue inductively, obtaining by the same method a sequence of

continuous paths t 7→ z
(n)
t such that z

(n+1)
t = 1 for t ≤ n− 1,

z
(n+1)
t




n∑

j=1

ψ(ejj)


 =




n∑

j=1

ψ(ejj)


 z

(n+1)
t =

n∑

j=1

ψ(ejj)

for all t, and

z
(n+1)
t

[(
z
(1)
t z

(2)
t · · · z

(n)
t

)
utϕt(eij)u

∗
t

(
z
(1)
t z

(2)
t · · · z

(n)
t

)∗]
(z

(n+1)
t )∗ = ψ(eij)

for t ≥ n and 1 ≤ i, j ≤ n+ 1.
Now define

zt =
(

lim
n→∞

z
(1)
t z

(2)
t · · · z

(n)
t

)
ut.

In a neighborhood of each t, all but finitely many of the z
(k)
t are equal to 1, so

this limit of products yields a continuous path of unitaries in U0((K ⊗D)+).
Moreover, ztϕt(eij)z

∗
t = ψ(eij) whenever t ≥ i, j, so that limt→∞ ztϕt(eij)z

∗
t =

ψ(eij) for all i and j, while

lim
t→∞

ztϕt(e11 ⊗ a)z∗t = lim
t→∞

z
(1)
t utϕt(e11 ⊗ a)u∗t (z

(1)
t )∗ = ψ(e11 ⊗ a)

for all a ∈ A. Since the eij and e11 ⊗ a generate K ⊗A, this shows that t 7→ zt

is an asymptotic unitary equivalence.
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4.1.3 Theorem. For a separable unital nuclear simple C∗-algebra A and
a separable unital C∗-algebra D, the obvious maps and the isomorphism
KK0(A,D) → KK0(K ⊗O∞ ⊗A,K ⊗O∞ ⊗D) define natural isomorphisms
of abelian groups between the following three objects:

(1) The set of asymptotic unitary equivalence classes of full homomorphisms
from K ⊗ O∞ ⊗ A to K ⊗ O∞ ⊗D, with the operation given by direct
sum (as in Theorem 4.1.1).

(2) The set of homotopy classes of full homomorphisms from K ⊗ O∞ ⊗ A
to K ⊗O∞ ⊗D, with the operation given by direct sum as above.

(3) The group KK0(A,D).

Moreover, if B is another a separable unital nuclear simple C∗-algebra, then
the Kasparov product KK0(A,B)×KK0(B,D) → KK0(A,D) is given in the
groups in (1) and (2) by composition of homomorphisms.

Proof: The last statement will follow immediately from the rest of the theorem,
since if two KK-classes are represented by homomorphisms, then their product
is represented by the composition.

For the rest of the theorem, first note that the map KK0(A,D) →
KK0(K⊗O∞⊗A,K⊗O∞⊗D) is a natural isomorphism because it is induced
by the KK-equivalence C → K ⊗ O∞, given by 1 7→ e⊗ 1 for some rank one
projection e ∈ K, in each variable.

Now observe that the previous lemma implies that the map from the set
in (1) to KK0(A,D) is injective. Moreover, the map from the set in (1) to the
set in (2) is well defined by Lemma 1.3.3 (2), and is then obviously surjective.
It therefore suffices to prove that the map from the set in (2) to KK0(A,D) is
surjective, that is, that every class in KK0(A,D) is represented by a homomor-
phism from K ⊗O∞ ⊗A to K ⊗O∞ ⊗D. It follows from Theorem 4.1.1 that
every such class is represented by a homomorphism from A to K⊗O∞⊗D, and
we obtain a homomorphism from K⊗O∞⊗A to K⊗O∞⊗D by tensoring with
idK⊗O∞

and composing with the tensor product of idD and an isomorphism
K ⊗O∞ ⊗K ⊗O∞ → K ⊗O∞ which is the identity on K-theory.

We finish this section with one other application. Following terminology
from differential topology, we define an isotopy to be a homotopy t 7→ ϕt in
which each ϕt is an isomorphism.

4.1.4 Theorem. Let A be a separable nuclear unital purely infinite simple
C∗-algebra.

(1) If U(A) is connected, then two automorphisms of A with the same
class in KK0(A,A) are isotopic.

(2) Any two automorphisms of K ⊗A with the same class in KK0(A,A)
are isotopic.
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Proof: For (2), take D = A in Lemma 4.1.2, note that O∞ ⊗ A ∼= A (Theo-
rem 2.1.5), and note that an asymptotic unitary equivalence with unitaries in
U0((K ⊗A)+) gives an isotopy, not just a homotopy.

For (1), let ϕ and ψ be automorphisms of A with the same class in
KK0(A,A). Let e ∈ K be a rank one projection. Apply (2) to idK ⊗ ϕ
and idK ⊗ ψ. Thus, there is a unitary path t 7→ ut in (K ⊗ A)+ with
utϕ(e ⊗ a)u∗t → ψ(e ⊗ a) for a ∈ A. In particular, ut(e ⊗ 1)u∗t → (e ⊗ 1).
Replacing ut by vtut for a suitable unitary path t 7→ vt, we may therefore as-
sume that ut(e ⊗ 1)u∗t = e⊗ 1 for all t. Cut down by e ⊗ 1, and observe that
the hypotheses imply that (e⊗ 1)u0(e⊗ 1) is homotopic to 1. Now finish as in
the proof of (2).

4.2 The classification theorem

The following theorem is the stable version of the main classification theorem.
Everything else will be an essentially immediate corollary.

In the proof, it is easy to get the existence of the isomorphism; this is just
the by now well known Elliott approximate intertwining argument. We need a
more complicated version of this argument to make sure that the isomorphism
we construct has the right class in KK-theory: we construct a suitable homo-
topy at the same time that we construct the isomorphism. One might hope
to prove that if A and B are separable C∗-algebras, and if ϕ0 : A → B and
ψ0 : B → A are homomorphisms such that ψ0 ◦ ϕ0 is asymptotically unitarily
equivalent to idA and ϕ0◦ψ0 is asymptotically unitarily equivalent to idB , then
there is an isomorphism ϕ : A→ B which is asymptotically unitarily equivalent
to ϕ0, or at least is homotopic to ϕ0. Unfortunately, we have not been able to
prove this; the arguments in the proof below don’t seem to quite give such a
result.

4.2.1 Theorem. Let A and B be separable nuclear unital purely infinite simple
C∗-algebras, and suppose that there is an invertible element η ∈ KK0(A,B).
Then there is an isomorphism ϕ : K⊗A→ K⊗B such [ϕ] = η in KK0(A,B).

Proof: Theorems 3.2.8 and 2.1.5 provide a full asymptotic morphism α : A →
K ⊗B whose class in KK0(A,B) is η. By Corollary 2.3.10, we may in fact take
α to be a homomorphism. Let µ : K ⊗K → K be an isomorphism, and set
ϕ0 = (µ⊗ idB) ◦ (idK ⊗ α). Then ϕ0 is a nonzero (hence full) homomorphism
from K ⊗ A to K ⊗B whose class in KK0(A,B) is also η. Similarly, there is
a full homomorphism ψ0 : K ⊗B → K ⊗A whose class in KK0(B,A) is η−1.
It follows from Theorems 4.1.3 and 2.1.5 that ψ0 ◦ ϕ0 is homotopic to idK⊗A

and ϕ0 ◦ ψ0 is homotopic to idK⊗B.

We now construct homomorphisms ϕ(n) : K⊗A→ K⊗B, ψ(n) : K⊗B →

K⊗A, homotopies α 7→ ϕ̃
(n)
α (for α ∈ [0, 1]) of homomorphisms from K⊗A to

K⊗B, and finite subsets Fn ⊂ K⊗A and Gn ⊂ K⊗B such that the following
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conditions are satisfied:

(1) ϕ(0) = ϕ0.

(2) Each ϕ(n) is of the form a 7→ vϕ0(a)v
∗ for some suitable v ∈ U0((K ⊗

B)+), and similarly each ψ(n) is of the form b 7→ uϕ0(b)u
∗ for some

suitable u ∈ U0((K ⊗A)+).

(3) F0 ⊂ F1 ⊂ · · · and
⋃∞

n=0 Fn is dense in K ⊗A, and similarly
G0 ⊂ G1 ⊂ · · · and

⋃∞
n=0Gn is dense in K ⊗B.

(4) ϕ(n)(Fn) ⊂ Gn and ψ(n)(Gn) ⊂ Fn+1.

(5) ‖ψ(n) ◦ ϕ(n)(a) − a‖ < 2−n for a ∈ Fn and ‖ϕ(n+1) ◦ ψ(n)(b) − b‖ < 2−n

for b ∈ Gn.

(6) ‖ϕ̃
(n+1)
α (a) − ϕ̃

(n)
α (a)‖ < 2−n for a ∈ Fn and α ∈ [0, 1].

(7) ϕ̃
(n)
α = ϕ0 for α ≥ 1 − 2−n and ϕ̃

(n)
0 = ϕ(n).

This will yield the following approximately commutative diagram:

A A A A

B B B B

- - · · · - - -

- - · · · - - -

idA idA idA idA idA

idB idB idB idB idB

? ? ? ?

ϕ(0)

ϕ(1)

ϕ(n−1)

ϕ(n)

�
�

�
�

�
��7

�
�

�
�

�
�7

�
�

�
�

�
�7

�
�

�
�

�
��7

�
�

�
�

�
�7

ψ(0) ψ(1) ψ(n−2)

ψ(n−1)

∩

∪

∩

∪

∩

∪

∩

∪

F0

G0

F1

G1

Fn−1

Gn−1

Fn

Gn

The diagram will remain approximately commutative if we replace each ϕ(n)

by ϕ̃
(n)
α (with α ∈ [0, 1] fixed) and delete the diagonal arrows.
The proof is by induction on n. We start by choosing finite sets

F
(0)
0 ⊂ F

(0)
1 ⊂ · · · ⊂ K ⊗A and G

(0)
0 ⊂ G

(0)
1 ⊂ · · · ⊂ K ⊗B

such that
⋃∞

n=0 F
(0)
n = K ⊗ A and

⋃∞
n=0G

(0)
n = K ⊗B. For the initial step of

the induction, we take F0 = F
(0)
0 , ϕ(0) = ϕ̃

(0)
α = ϕ0, and G0 = G

(0)
0 ∪ ϕ(0)(F0).

We then assume we are given Fk, ϕ
(k), Gk, and ϕ

(k)
α for 0 ≤ k ≤ n and ψ(k) for

0 ≤ k ≤ n − 1, and we construct ψ(n), Fn+1, ϕ
(n+1), Gn+1, and α 7→ ϕ̃

(n+1)
α .

That is, we are given the diagram above through the column containing Fn

and Gn, as well as the corresponding homotopies ϕ̃(k), and we construct the
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next rectangle (consisting of two triangles) and the corresponding homotopy
ϕ̃(n+1).

Define σ : K⊗A→ C([0, 1])⊗K⊗A by σ(a)(α) = ψ0(ϕ̃
(n)
α (a)). Note that

σ is homotopic to a 7→ 1⊗ψ0(ϕ0(a)), and so has the same class in KK-theory as
a 7→ 1⊗ a. Lemma 4.1.2 provides a unitary path (α, t) 7→ uα,t ∈ U0((K ⊗A)+)
such that

lim
t→∞

sup
α∈[0,1]

‖uα,tψ0(ϕ̃
(n)
α (a))u∗α,t − a‖ = 0

for all a ∈ K ⊗ A. Next, define an asymptotic morphism τ from K ⊗ B to
C([0, 1]) ⊗ K ⊗ B by τt(b)(α) = ϕ0(uα,tψ0(b)u

∗
α,t). Then τ is homotopic to

b 7→ 1⊗ϕ0(ψ0(b)), and so has the same class in KK-theory as b 7→ 1⊗b. Again
by Lemma 4.1.2, there is a unitary path (α, t) 7→ vα,t ∈ U0((K ⊗ B)+) such
that

lim
t→∞

sup
α∈[0,1]

‖vα,tϕ0(uα,tψ0(b)u
∗
α,t)v

∗
α,t − b‖ = 0

for all b ∈ K ⊗B.
Since G̃ = Gn ∪

⋃
α∈[0,1] ϕ̃

(n)
α (Fn) is a compact subset of K ⊗ B, we can

choose T so large that

‖vα,tϕ0(uα,tψ0(b)u
∗
α,t)v

∗
α,t − b‖ < 2−(n+1)

for all b ∈ G̃ and t ≥ T. Increasing T if necessary, we can also require

‖uα,tψ0(ϕ̃
(n)
α (a))u∗α,t − a‖ < 2−(n+1)

for all a ∈ Fn and t ≥ T. Now define

ψ(n)(b) = u0,Tψ0(b)u
∗
0,T and ϕ(n+1)(a) = v0,Tϕ0(a)v

∗
0,T ,

and

Fn+1 = F
(0)
n+1 ∪ Fn ∪ ψ(n)(Gn) and Gn+1 = G

(0)
n+1 ∪Gn ∪ ϕ(n+1)(Fn+1).

The relevant parts of conditions (2)–(4) are then certainly satisfied. For (5),
we have in fact

‖ψ(n) ◦ ϕ(n)(a) − a‖ = ‖u0,Tψ0(ϕ̃
(n)
0 (a))u∗0,T − a‖ < 2−(n+1)

for a ∈ Fn by the choice of T, and similarly

‖ϕ(n+1) ◦ ψ(n)(b) − b‖ = ‖v0,Tϕ0(u0,Tψ0(b)u
∗
0,T )v∗0,T − b‖ < 2−(n+1)

for b ∈ Gn.
Now choose a continuous function f : [0, 1 − 2−(n+1)) → [T,∞) such that

f(α) = T for 0 ≤ α ≤ 1 − 2−n and f(α) → ∞ as α → 1 − 2−(n+1). Define

α 7→ ϕ̃
(n+1)
α by

ϕ̃(n+1)
α (a) =

{
vα,f(α)ϕ0(a)v

∗
α,f(α) 0 ≤ α < 1 − 2−(n+1)

ϕ0(a) 1 − 2−(n+1) ≤ α ≤ 1.
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We first have to show that the functions α 7→ ϕ̃
(n+1)
α (a) are continuous at

1−2−(n+1) for a ∈ K⊗A. Set α0 = 1−2−(n+1), and consider α with 1−2−n ≤

α < 1 − 2−(n+1). By the induction hypothesis, we then have ϕ̃
(n)
α (a) = ϕ0(a).

For a ∈ K ⊗A, set b = ϕ0(a); then

‖ϕ̃(n+1)
α (a) − ϕ̃(n+1)

α0
(a)‖

≤ ‖a− uα,f(α)ψ0(ϕ̃
(n)
α (a))u∗α,f(α)‖

+ ‖vα,f(α)ϕ0(uα,f(α)ψ0(b)u
∗
α,f(α))v

∗
α,f(α) − b‖.

The requirement that f(α) → ∞ as α → 1− 2−(n+1), together with the condi-
tion of uniformity in α in the limits used in the choices of uα,t and vα,t, implies
that both terms on the right converge to 0. So the required continuity holds.

The relevant part of condition (7) is satisfied by definition, so it remains
only to check (6). We may assume α < 1 − 2−(n+1). So let a ∈ Fn. Then

b = ϕ̃
(n)
α (a) ∈ G̃. So

‖ϕ̃(n+1)
α (a) − ϕ̃(n)

α (a)‖

≤ sup
α∈[0,1],t≥T

‖vα,tϕ0(a)v
∗
α,t − ϕ̃(n)

α (a)‖

≤ sup
α∈[0,1],t≥T

‖a− uα,tψ0(ϕ̃
(n)
α (a))u∗α,t‖

+ sup
α∈[0,1],t≥T

‖vα,tϕ0(uα,tψ0(b)u
∗
α,t)v

∗
α,t − b‖

< 2−(n+1) + 2−(n+1) = 2−n.

This proves (6), and finishes the inductive construction. Note that the set⋃∞
n=0 Fn is dense in K⊗A because it contains the dense subset

⋃∞
n=0 F

(0)
n , and

similarly
⋃∞

n=0Gn is dense in K ⊗B.
We now define ϕ : K ⊗ A → K ⊗ B by ϕ(a) = limn→∞ ϕ(n)(a), and

define ψ : K ⊗ B → K ⊗ A and the homotopy ϕ̃ : K ⊗ A → C([0, 1]) ⊗
K ⊗ B analogously. As in Section 2 of [20], these limits all exist and define
homomorphisms; moreover, ψ ◦ ϕ = idK⊗A, ϕ ◦ ψ = idK⊗B , ϕ̃0 = ϕ, and
ϕ̃1 = ϕ0. So ϕ is an isomorphism from K ⊗A to K ⊗B which is homotopic to
ϕ0 and therefore satisfies [ϕ] = η in KK0(A,B).

4.2.2 Corollary. Let A and B be separable nuclear unital purely infinite sim-
ple C∗-algebras, and suppose that there is an invertible element η ∈ KK0(A,B)
such that [1A]×η = [1B ]. Then there is an isomorphism ϕ : A→ B such [ϕ] = η
in KK0(A,B).

Proof: The previous theorem provides an isomorphism α : K ⊗ A → K ⊗
B such that [α] = η in KK0(A,B). Choose a rank one projection e ∈ K.
Then [α(e ⊗ 1A)] = [1A] × η = [e ⊗ 1B] in K0(B). Since K ⊗ B is purely
infinite simple, it follows that there is a unitary u ∈ (K ⊗ B)+ such that
uα(e⊗ 1A)u∗ = e⊗ 1B . Define ϕ(a) = uα(e⊗ a)u∗, regarded as an element of
(e⊗ 1B)(K ⊗B)(e⊗ 1B) = B.
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The remaining corollaries require some hypotheses on the Universal Coef-
ficient Theorem. (See [53].) The following terminology is convenient.

4.2.3 Definition. Let A and D be separable nuclear C∗-algebras. We say
that the pair (A,D) satisfies the Universal Coefficient Theorem if the sequence

0 −→ ExtZ1 (K∗(A),K∗(D)) −→ KK0(A,D) −→ Hom(K∗(A),K∗(D)) −→ 0

of Theorem 1.17 of [53] is defined and exact. (Note that the second map
is always defined, and the first map is the inverse of a map that is always
defined.) We further say that A satisfies the Universal Coefficient Theorem if
(A,D) does for every separable C∗-algebra D.

4.2.4 Theorem. Let A and B be separable nuclear purely infinite simple C∗-
algebras which satisfy the Universal Coefficient Theorem. Assume that A and
B are either both unital or both nonunital. If there is a graded isomorphism
α : K∗(A) → K∗(B) which (in the unital case) satisfies α∗([1A]) = [1B ], then
there is an isomorphism ϕ : A → B such that ϕ∗ = α.

Proof: The proof of Proposition 7.3 of [53] shows that there is aKK-equivalence
η ∈ KK0(A,B) which induces α. Now use Theorem 4.2.1 or Corollary 4.2.2 as
appropriate.

This theorem gives all the classification results of [48], [49], [34], [22], [35],
[51], [36], [44], and [52]. Of course, we have used the main technical theorem of
[48], as well as substantial material from [35], in the proof. We do not obtain
anything new about the Rokhlin property of [8]; indeed, our results show that
the C∗-algebras of [51] are classifiable as long as they are purely infinite and
simple, regardless of whether the Rokhlin property is satisfied. On the other
hand, the Rokhlin property has been verified in many cases; see [30] and [31].

We finish this section by giving some further corollaries. Let C be the
“classifiable class” given in Definition 5.1 of [22], and let N denote the bootstrap
category of [53], for which the Universal Coefficient Theorem was shown to hold
(Theorem 1.17 of [53]).

4.2.5 Theorem. Let G0 and G1 be countable abelian groups, and let g ∈ G0.
Then:

(1) There is a separable nuclear unital purely infinite simple C∗-algebra
algebra A ∈ N such that

(K0(A), [1A],K1(A)) ∼= (G0, g, G1).

(2) There is a separable nuclear nonunital purely infinite simple C∗-algebra
A ∈ N such that

(K0(A),K1(A)) ∼= (G0, G1).

Proof: The construction of Theorem 5.6 of [22] gives algebras which are easily
seen to be in N .
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4.2.6 Corollary. Every C∗-algebra in C is in N . Every purely infinite simple
C∗-algebra in N , and more generally every separable nuclear purely infinite
simple C∗-algebra satisfying the Universal Coefficient Theorem, is in C.

Proof: The first part follows immediately from the previous theorem, since it
follows from the definition of C that any A ∈ C must be isomorphic to the
C∗-algebra of that theorem with the same K-theory. The second part follows
from Theorem 4.2.4, since Theorem 1.17 of [53] states that every C∗-algebra in
N satisfies the Universal Coefficient Theorem.

4.2.7 Corollary. Let A ∈ C, and let B be a separable nuclear unital simple
C∗-algebra which satisfies the Universal Coefficient Theorem. (In particular,
B could be a unital simple C∗-algebra in N .) Then A⊗B ∈ C.

Proof: The C∗-algebra A ⊗ B is separable, nuclear, unital, and simple, and
Theorem 7.7 of [53] (and the remark after this theorem) shows that it satisfies
the Universal Coefficient Theorem. Furthermore, A is approximately divisible
by Corollary 2.1.6, and it follows from the remark after Theorem 1.4 of [6]
that A⊗B is approximately divisible. Clearly A⊗B is infinite, so it is purely
infinite by Theorem 1.4 (a) of [6]. The result now follows from the previous
corollary.

4.2.8 Corollary. The class C is closed under tensor products.

4.2.9 Corollary. For any m, n ≥ 2, we have Om ⊗On ∈ C. In particular, if
m− 1 and n− 1 are relatively prime, then Om ⊗On

∼= O2.

4.2.10 Corollary. Let A1 and A2 be two higher dimensional noncommu-
tative toruses of the same dimension, and let B be any simple Cuntz-Krieger
algebra. Then A1 ⊗B ∼= A2 ⊗B.

Proof: The Künneth formula [55] shows that A1⊗B and A2⊗B have the same
K-theory.

4.2.11 Theorem. Let A be a separable nuclear unital purely infinite simple
C∗-algebra satisfying the Universal Coefficient Theorem. Let Aop be the oppo-
site algebra, that is, A with the multiplication reversed but all other operations
the same. Then A ∼= Aop.

Proof: The identity map from A to Aop is an antiisomorphism which induces
an isomorphism on K-theory sending [1A] to [1Aop ]. Also, the pair (Aop, B) (for
any separable B) always satisfies the Universal Coefficient Theorem, because
(A,Bop) does.

By way of contrast, we note that Connes has shown [10] that there is a type
III factor not isomorphic to its opposite algebra. It is also known (although
apparently not published) that there are nonsimple separable nuclear (even
type I) C∗-algebras not isomorphic to their opposite algebras.
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4.3 Nonclassification

In this subsection, we give some results which show how badly the classifica-
tion theorem fails if the algebras are not nuclear. The results are mostly either
proved elsewhere or follow fairly easily from results proved by other people.
There are three main results. First, nonnuclear separable purely infinite simple
C∗-algebras need not be approximately divisible in the sense of [6], but when-
ever A is a purely infinite simple C∗-algebra, then O∞⊗A is an approximately
divisible purely infinite simple C∗-algebra with exactly the same K-theoretic
invariants. Second, there are infinitely many mutually nonisomorphic approx-
imately divisible separable exact unital purely infinite simple C∗-algebras A
satisfying K∗(A) = 0. Finally, given arbitrary countable abelian groups G0 and
G1, and g ∈ G0, there are uncountably many mutually nonisomorphic approxi-
mately divisible separable unital purely infinite simple C∗-algebras A satisfying
Kj(A) ∼= Gj with [1] 7→ g0. Unfortunately these algebras are not exact, and it
remains unknown whether the same is true with the additional requirement of
exactness.

The first result is taken straight from a paper of Dykema and Rørdam.

4.3.1 Theorem. ([18], Theorem 1.4) There exists a separable unital purely
infinite simple C∗-algebra which is not approximately divisible.

4.3.2 Remark. In fact, there exists a separable unital purely infinite simple
C∗-algebra A which is not approximately divisible and such that K∗(A) = 0.

One way to see this is to modify the proof of Proposition 1.3 of [18] so as
to ensure that K∗(An) → K∗(B) is injective for all n. This is done by enlarg-
ing the set Xn+1 in the proof so as to include appropriate partial isometries
(implementing equivalences between projections) and paths of unitaries (im-
plementing triviality of classes of unitaries in K1). See the proof of Theorem
4.3.11 below for this argument in a related context.

The second result is a fairly easy consequence of a computation of Cowl-
ing and Haagerup and of unpublished work of Haagerup. The key invariant
is described in the following definition. I am grateful to Uffe Haagerup for
explaining the properties of this invariant and where to find proofs of them.

4.3.3 Definition. (Haagerup [23]; also see Section 6 of [12].) Let A be a
C∗-algebra. Define Λ(A) to be the infimum of numbers C such that there is
a net of finite rank operators Tα : A → A for which ‖Tα(a) − a‖ → 0 for
all a ∈ A and the completely bounded norms satisfy supα ‖Tα‖cb ≤ C. Note
that Λ(A) = ∞ if no such C exists, that is, if A does not have the completely
bounded approximation property.

There is a similar definition for von Neumann algebras, in which Tα(a) is
required to converge to a in the weak operator topology. (See [23] and Section
6 of [12].) There is also a definition of Λ(G) for a locally compact group
G, using completely bounded norms of multipliers of G which converge to 1
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uniformly on compact sets; see [23] and Section 1 of [12]. We do not formally
state the definitions, but we recall the following theorems from [23] (restated
as Propositions 6.1 and 6.2 of [12]):

4.3.4 Theorem. Let Γ be a discrete group, and let C∗
r (Γ) and W ∗(Γ) be

its reduced C∗-algebra and von Neumann algebra respectively. Then Λ(Γ) =
Λ(C∗

r (Γ)) = Λ(W ∗(Γ)).

4.3.5 Theorem. Let G be a second countable locally compact group, and let
Γ be a lattice in G. Then Λ(Γ) = Λ(G).

In Section 6 of [12], Cowling and Haagerup exhibit type II1 factors Mn

with Λ(Mn) = 2n − 1. Using the same results on groups, we exhibit simple
C∗-algebras with the same values of Λ.

4.3.6 Proposition. Let Γ0
n be as in Corollary 6.6 of [12]. Then An = C∗

r (Γ0
n)

is a simple separable unital C∗-algebra which satisfies Λ(An) = 2n− 1.

We recall that Γ0
n is the quotient by its center of a particular lattice Γn in

the simple Lie group Sp(n, 1).

Proof of Proposition 4.3.6: It is shown in the proof of Corollary 6.6 of [12] that
Λ(Γ0

n) = 2n−1. (This follows from the computation Λ(Sp(n, 1)) = 2n−1, which
is the main result of [12], together with Theorem 4.3.5 above and Proposition
1.3 (c) of [12].) Therefore Λ(An) = 2n − 1 by Theorem 4.3.4. Clearly An is
separable and unital. Simplicity of An follows from Theorem 1 of [2], applied to
the quotient of Sp(n, 1) by its center, because (as observed in the introduction
to [2]) lattices satisfy the density hypothesis of that theorem.

The algebras An are not purely infinite, and their K-theory seems to be
unknown. So we will tensor them with O2. For this, we need the following
result.

4.3.7. Lemma. Let A be any C∗-algebra, and let B be unital and nuclear.
Then Λ(A⊗B) = Λ(A).

For von Neumann algebras, it is known [57] that Λ(M⊗N) = Λ(M)Λ(N).
We presume, especially in view of Remark 3.5 of [57], that the analogous state-
ment is true for C∗-algebras as well. However, the special case in the lemma is
sufficient here.

Proof of Lemma 4.3.7: If S : A1 → A2 and T : B1 → B2 are completely
bounded, then the map S ⊗min T : A1 ⊗min B1 → A2 ⊗min B2 is completely
bounded, and satisfies ‖S⊗minT‖cb = ‖S‖cb‖T‖cb by Theorem 10.3 of [40]. In
Definition 4.3.3, one need only consider elements a of a dense subset, and so
it follows that Λ(A⊗min B) ≤ Λ(A)Λ(B) for any C∗-algebras A and B. For B
nuclear, we have Λ(B) = 1, so Λ(A⊗B) ≤ Λ(A).

For the reverse inequality, let Rα : A⊗B → A⊗B be finite rank operators
such that ‖Rα(x) − x‖ → 0 for all x ∈ A ⊗ B. Choose any state ω on B, and
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define Tα : A → A by Tα(a) = (idB ⊗ ω) ◦ Rα(a ⊗ 1). Theorem 10.3 of [40]
implies that ‖Tα‖cb ≤ ‖Rα‖cb. Also, clearly ‖Tα(a) − a‖ → 0 for all a ∈ A. So
Λ(A) ≤ Λ(A⊗B).

4.3.8 Theorem. There exist infinitely many mutually nonisomorphic separa-
ble exact unital purely infinite simple C∗-algebras B satisfying K∗(B) = 0 and
O∞ ⊗ B ∼= B. In particular, these algebras are approximately divisible in the
sense of [6].

Proof: Let An = C∗
r (Γ0

n) as in Proposition 4.3.6. Set Bn = O2 ⊗ An. Clearly
Bn is separable and unital. Furthermore, Bn is purely infinite simple by the
proof of Corollary 4.2.7. We have O∞ ⊗ Bn

∼= Bn because O∞ ⊗ O2
∼= O2.

The algebras Bn are mutually nonisomorphic because Λ(Bn) = 2n− 1, by the
previous lemma and Proposition 4.3.6.

It remains to check exactness. The proof of Corollary 3.12 of [17] shows
that if Λ(A) is finite, then A has the slice map property (as defined, for example,
in Remark 9 of [59], where it is called Property S), and this property implies
exactness (see, for example, Section 2.5 of [60]).

Our third result is based on the theorem of Junge and Pisier that for
n ≥ 3 the collection of n-dimensional operator spaces is not separable in the
completely bounded analog of the Banach-Mazur distance.

4.3.9 Definition. ([25]) Let E and F be operator spaces of the same finite
dimension. Then

dcb(E,F ) = inf{‖T‖cb‖T
−1‖cb : T is a linear bijection from E to F},

and δcb(E,F ) = log(dcb(E,F )).

4.3.10 Theorem. (Theorem 2.3 of [25]) Let OSn be the set of all complete
isometry classes of n-dimensional operator spaces. Let n ≥ 3. Then (OSn, δcb)
is an inseparable metric space.

4.3.11 Theorem. Let G0 and G1 be countable abelian groups, and let g ∈ G0.
Then there exist uncountable many mutually nonisomorphic separable unital
purely infinite simple C∗-algebras A, each with K0(A) ∼= G0 in such a way that
[1] 7→ g and K1(A) ∼= G1, and each satisfying O∞ ⊗A ∼= A.

Proof: If A is a separable C∗-algebra, then the set of (complete isometry classes
of) n-dimensional operator subspaces of A is separable (by Proposition 2.6 (a)
of [25]). By the previous theorem, it therefore suffices to show that if E is a
finite dimensional operator space then there exists a C∗-algebra B having the
properties claimed in the theorem and such that E is completely isometric to
a subspace of B.

Since E is a finite dimensional operator space, it is a subspace of a sepa-
rable C∗-algebra A. Represent A on a separable Hilbert space H with infinite
multiplicity, and follow this representation with the quotient map from L(H)
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to the Calkin algebra Q. This gives a completely isometric embedding of E in
Q. For convenience, we identify E with its image. Let u ∈ Q be the image of
the unilateral shift; note that [u] generates K1(Q) and that K0(Q) = 0. Let
B0 = C∗(E, 1, u) ⊂ Q. We now construct by induction an increasing sequence
B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Q of separable C∗-algebras such that B2n+1 is sim-
ple and such that every nonzero projection in B2n−1 is Murray-von Neumann
equivalent to 1 in B2n, every selfadjoint element of B2n−1 is a limit of selfadjoint
elements of B2n with finite spectrum, and every unitary in U(B2n−1) ∩ U0(Q)
is homotopic to 1 in B2n.

Given B2n, we choose B2n+1 to be any separable simple C∗-algebra with
B2n ⊂ B2n+1 ⊂ Q. Such a subalgebra exists by Proposition 2.2 of [3] and
the simplicity of Q. Given B2n−1, we note that it suffices to have the required
elements of B2n only for countable dense subsets S1 of the nonzero projections
in B2n−1, S2 of the selfadjoint elements in B2n−1, and S3 of the unitaries in
U(B2n−1)∩U0(Q). For each p ∈ S1, since p is Murray-von Neumann equivalent
to 1 in Q, we can choose an isometry v ∈ Q such that v∗v = 1 and vv∗ = p. Let
T1 be the set of all these as p runs through S1. For each a ∈ S2, since Q has
real rank zero, there is a sequence (bn) in Q consisting of selfadjoint elements
with finite spectrum such that bn → a. Let T2 be the set of all terms of all
such sequences as a runs through S2. For each u ∈ S3, since u ∈ U0(Q), there
is a unitary path t 7→ v(t) in Q with v(0) = 1 and v(1) = u. Let T3 consist
of all v(t) for t ∈ [0, 1] ∩ Q as u runs through S3. Then take B2n to be the
C*-subalgebra of Q generated by B2n−1 and T1 ∪ T2 ∪ T3. This subalgebra is
separable because B2n−1 is separable and T1 ∪ T2 ∪ T3 is countable.

Now set B =
⋃∞

n=0Bn. Then B is simple because it is the direct limit of
the simple C∗-algebras B2n+1. From the construction of B2n, it is clear that B
is unital and separable, contains the operator space E, has real rank zero, that
all nonzero projections in B are Murray-von Neumann equivalent to 1, and
that U(B) ∩ U0(Q) ⊂ U0(B). The third and fourth properties imply that B is
purely infinite and K0(B) = 0. The last property implies that K1(B) → K1(Q)
is injective. But this map is also surjective, since B0 contains a unitary whose
class generates K1(Q). So K1(B) ∼= Z.

Taking A = O∞ ⊗ B (which has the same K-theory by the Künneth
formula [55]), we obtain the statement of the theorem for the special case
G0 = 0, g = 0, and G1 = Z. For the general case, choose (by Theorem 4.2.5)
a separable nuclear unital purely infinite simple C∗-algebra D satisfying the
Universal Coefficient Theorem and such that K0(D) ∼= G1 and K1(D) ∼= G0.
(We don’t actually need D to be purely infinite here, but it must be in the
bootstrap category of [55].) Then D ⊗ B is purely infinite and simple, and
has the right K-theory by the Künneth formula, except that [1] = 0. Choose a
projection p ∈ D⊗B such that the isomorphism K0(D⊗B) ∼= G0 sends [p] to
g. Then the C∗-algebra A = O∞ ⊗ p(D ⊗B)p satisfies all the conditions of the
theorem and contains the given operator space E.
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4.3.12 Remark. Simplicity and pure infiniteness of
⋃∞

n=0Bn in the proof
above can also be arranged by the method of the proof of Proposition 1.3 of
[18]. Versions of the construction here have been used many times before.

4.3.13 Remark. The invariant used here, the set of finite dimensional operator
spaces contained in A, does not distinguish between any two separable exact
purely infinite simple C∗-algebras. (Any separable exact C∗-algebra embeds
in O2 by Theorem 2.8 of [29], and O2 embeds in any purely infinite simple
C∗-algebra.) Therefore, for given K-theory, at most one of the C∗-algebras
proved above to be nonisomorphic can be exact.
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