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Abstract. We compute the cohomology algebras of spaces of or-
dered point configurations on spheres, F (Sk, n), with integer coeffi-
cients. For k = 2 we describe a product structure that splits F (S2, n)
into well-studied spaces. For k > 2 we analyze the spectral sequence
associated to a classical fiber map on the configuration space. In both
cases we obtain a complete and explicit description of the integer co-
homology algebra of F (Sk, n) in terms of generators, relations and
linear bases. There is 2-torsion occuring if and only if k is even. We
explain this phenomenon by relating it to the Euler classes of spheres.

Our rather classical methods uncover combinatorial structures at the
core of the problem.
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1 Introduction

The space of configurations of n pairwise distinct labelled points in a topological
space X ,

F (X, n) := {(x1, . . . , xn) ∈ Xn |xi 6= xj for i 6= j} ⊆ Xn ,

is called the n-th (ordered) configuration space of X .
A systematic study of these spaces started with work by Fadell & Neu-
wirth [FaN] and Fadell [Fa] in the sixties. They introduced sequences of
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fibrations for configuration spaces and mainly concentrated on describing their
homotopy groups for various instances of X . In 1969 Arnol′d [Ar] derived the
integer cohomology algebra of F (C, n) — the group cohomology of the colored
braid group — and thereby initiated still ongoing research on the cohomology
algebras of complements of linear subspace arrangements.
Broader interest in the cohomology algebras of configuration spaces came up
in the seventies: The cohomology of F (X, n) for a manifold X appeared as
a basic ingredient in the E2-terms of spectral sequences for the Gelfand-Fuks
cohomology of the manifold [GF] and for the homology of certain function
spaces [An]. Cohen [C1, C2] studied various aspects of the cohomology of
configuration spaces of Euclidean spaces in view of its relation to homology op-
erations for iterated loop spaces [C3]. Cohen & Taylor [CT1, CT2] described
the cohomology algebras of configuration spaces of spheres with coefficients in
a field of characteristic different from 2. Recently, compactifications of con-
figuration spaces of algebraic varieties have been constructed by Fulton and
MacPherson [FM]. As an application, they determine the rational homotopy
type of configuration spaces of non-singular compact complex algebraic vari-
eties F (X, n) in terms of invariants of X. Compare also work of Kriz [Kr] and
Totaro [T], where alternative minimal models for F (X, n) are used.
In contrast to these results on the rational homotopy type of configuration
spaces, it seems that so far Arnol′d’s computation of the integer cohomology
algebra of F (C, n) remained the only instance where the integer cohomology
algebra of an ordered configuration space was fully described.

Recently, Raoul Bott asked about the integer cohomology algebra of the ordered
configuration space of the 2-sphere. We are able to answer his question by
describing a product decomposition for F (S2, n):

F (S2, n) ∼= PSL(2, C) × M0,n,

where M0,n, the moduli space of n-punctured complex projective lines, is ho-
motopy equivalent to the complement of an affine complex hyperplane arrange-
ment. We deduce that H∗(F (S2, n), Z) has (only) 2-torsion that can be traced
back to H2(PSL(2, C), Z) ∼= Z2 (Section 2).
For spheres of higher dimension we use spectral sequences to obtain an analo-
gous decomposition on the level of cohomology algebras:

H∗(F (Sk, n), Z) ∼= (Z ⊕ Z) ⊗ H∗(M(A
(k)
n−2), Z) for odd k ,

H∗(F (Sk, n), Z) ∼= (Z ⊕ Z2 ⊕ Z) ⊗ H∗(M(AΠ3
), Z) for even k ,

where M(A
(k)
n−2) is the complement of a certain arrangement of real linear

subspaces A
(k)
n−2 and M(AΠ3

) is the complement of an arrangement of affine

subspaces that is naturally related to the linear arrangement A
(k)
n−2. For both

arrangement complements the integer cohomology algebra is torsion-free and
we have explicit descriptions in terms of generators, relations and linear bases.
In the following all (co)homology is taken with Z-coefficients.
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The key for our approach is a family of locally trivial fiber maps on configuration
spaces that appears already in the work by Fadell & Neuwirth [FaN] and
Fadell [Fa]. The maps are given by “projection to the last r points” of a
configuration. For configuration spaces of spheres F (Sk, n) and 1 ≤ r < n the
projection Πr reads as follows:

Πr = Πr(S
k, n) : F (Sk, n) −→ F (Sk, r)

(x1, . . . , xn) 7−→ (xn−r+1, . . . , xn) .

We derive the integer cohomology algebra of F (Sk, n) for k > 2 by a complete
discussion of the Leray-Serre spectral sequence associated to the fiber map
Π1(S

k, n). Our success with this rather classical approach depends on the fact
that the fibers of Π1(S

k, n) are complements of linear subspace arrangements.
Their cohomology algebras are well-studied objects both from topological and
combinatorial viewpoints [GM, BZ, Bj, DP]. The fibers of Π1(S

k, n) are in fact
the complements of codimension k versions of the classical braid arrangements,
and thus they are particularly prominent examples of arrangement comple-
ments. This paves the way for a complete discussion of the associated spectral
sequence (Section 3).
A distinction between the configuration spaces of spheres of odd and even
dimension emerges from the only possibly non-trivial differential of the spectral
sequence. We present two methods to compute this differential (Section 4).

(1) It can be derived from one particular cohomology group of F (Sk, n). To
obtain the latter we use an independent, rather elementary approach to
the cohomology of configuration spaces, which may be of interest on its
own right.

(2) We show that the differential can be interpreted as a map that is induced
by “multiplication with the Euler class of Sk.” It is well-known that the
Euler class depends on the parity of k.

To get the final tableau of the spectral sequence, and to derive the integer
cohomology algebra of the configuration space F (Sk, n), we use combinatorially
constructed Z-linear bases for the cohomology of the fiber (Section 5).
In the last section of this paper we consider the bundle structures on F (Sk, n)
given by the fiber maps Πr(S

k, n), 1 < r < n. We show that the associated
spectral sequences collapse in their second terms unless k is even and r equals 1
or 2. For some parameters we can decide the triviality of the bundle structure,
which in general is a difficult question.

For configuration spaces of closed manifolds other than spheres, in principle
one can attempt to follow the approach taken in this paper. However, with
the cohomology of the manifold (i.e., of the base space of the considered fiber
map) getting more complicated, the corresponding spectral sequence will be
less sparse, and thus more non-trivial differentials will have to be considered.
Even more importantly, if the manifold is not simply connected, then it is not
straightforward, and not true in general, that the system of local coefficients
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on the manifold induced by the fiber map is simple. Already the entries of the
second sequence tableau thus will be much harder to compute.

Acknowledgment: We are grateful for discussions with Ezra Getzler that
influenced the course of these investigations. Also, we wish to thank Raoul
Bott who asked us about connections to the Euler classes of spheres.

2 Configuration spaces of the 2-sphere

We first comment on some special cases for small values of n and on the con-
figuration space of the 1-sphere. For n = 1, we see from the definition that
F (X, 1) = X for all spaces X . For n = 2, we consider the projection Π1, send-
ing a configuration in F (Sk, 2) to its second point. We obtain a fiber bundle
with contractible fiber Π−1

1 (x2) = F (Sk \{x2}, 1) ∼= R
k, hence F (Sk, 2) ' Sk.

In fact, F (Sk, 2) is equivalent to the tangent bundle over Sk.
For the configuration space of the 1-sphere, F (S1, n), we state an explicit triv-
ialization of the fiber bundle given by Π1, the projection to the last point of
a configuration. Using the group structure on S1 we define a homeomorphism
which shows that Π1(S

1, n) is a trivial fiber map:

ϕ1 : F (S1 \ {e}, n− 1) × S1 −→ F (S1, n)

((x1, . . . , xn−1) , y) 7−→ (yx1, . . . , yxn−1, y) .

For r > 1, the fiber of Πr(S
1, n) is homeomorphic to the space of configura-

tions of n − r points on r disjoint copies of the unit interval. We obtain a
homeomorphism

ϕr : F (
⊎

r (0, 1) , n− r) × F (S1, r) −→ F (S1, n)

that trivializes the bundle by “inserting” the points x1, . . . , xn−r from
⊎

r (0, 1)
into the r open segments in which the points of the configuration (y1, . . . , yr)
in F (S1, r) separate S1.

Compared to configuration spaces of higher dimensional spheres we gain the
main structural advantage for the 2-dimensional case from the fact that the
2-sphere S2 is homeomorphic to the complex projective line CP 1. We will
freely switch between the resulting two viewpoints on the configuration space
in question.
The group of projective automorphisms PSL(2, C) of CP 1 acts freely on
the configuration space F (CP 1, n) by coordinatewise action, thus exhibiting
F (CP 1, n) as the total space of a principal PSL(2, C)-bundle for n ≥ 3 [Ge].
We identify the base space — the space of n-tuples of distinct points on the com-
plex projective line modulo projective automorphisms — as the moduli space
M0,n of n-punctured complex projective lines. Compactifications of M0,n and
their cohomology algebras are the focus of recent research; for a brief account
and further references see [FM, p.189].
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Theorem 2.1 The configuration space F (CP 1, n) of the complex projective
line is the total space of a trivial PSL(2, C)-bundle over M0,n for n ≥ 3; hence
there is a homeomorphism

F (CP 1, n) ∼= PSL(2, C) × M0,n .

Proof. The automorphism group PSL(2, C) acts sharply 3-transitive on CP 1.
In particular, we obtain a homeomorphism between the configuration space of
three distinct points on CP 1 and the automorphism group PSL(2, C):

φ : F (CP 1, 3) −→ PSL(2, C) .

Here (x1, x2, x3) ∈ F (CP 1, 3) is mapped to the unique automorphism that
transforms x1 to

(
1
0

)
, x2 to

(
0
1

)
, and x3 to

(
1
1

)
, i.e., to the “standard projective

basis” of CP 1.
Given a configuration x = (x1, . . . , xn) of n distinct points on CP 1, the group
element φ(x1, x2, x3) transforms x to a configuration on CP 1 that has the
standard projective basis in its first three entries. We describe the resulting
configuration by the columns of a (2 × n)-matrix:

φ(x1, x2, x3) ◦ x =

(
1 0 1 z3 . . . zn−1

0 1 1 1 . . . 1

)

,

where zi ∈ C\{0, 1} for 3 ≤ i ≤ n − 1, zi 6= zj for 3 ≤ i < j ≤ n − 1, and the
columns are understood as vectors in C2\{0} that represent elements in CP 1.
Lifting an element x̄ ∈ M0,n to its “normal form” φ(x1, x2, x3) ◦ x in the total
space F (CP 1, n) defines a section for the PSL(2, C)-bundle. Hence, the princi-
pal bundle is trivial [St, Part I, Thm. 8.3]. The resulting product decomposition
on F (CP 1, n) can be described explicitly by the homeomorphism

Φ : F (CP 1, n) −→ PSL(2, C) × M0,n

(x1, . . . , xn) 7−→ ( φ(x1, x2, x3) , x̄ ) . 2

Remark 2.2 An analogous argument is not possible for S4, since there are no
sharply 3-transitive group actions in the case of a non-commutative field such
as H. The structural reason for this can be traced back to a theorem by von
Staudt, see [P, Kap. 5.1.4].

In view of a description of the integer cohomology algebra of F (CP 1, n) we use
the intimate relation of the base space M0,n to a complex hyperplane arrange-
ment — the complex braid arrangement AC

n−2 of rank n − 2 in Cn−1 given by
the hyperplanes

zj − zi = 0 for 1 ≤ i < j ≤ n − 1 .

This arrangement is a key example in the theory of hyperplane arrange-
ments and initiated much of its development [Ar, OT]. Its complement,
M(AC

n−2) := C
n−1\

⋃
AC

n−2, coincides with F (C, n − 1), the configuration
space of the complex plane.
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The base space M0,n is homotopy equivalent to the complement of the affine
arrangement affAC

n−2, which is obtained from AC
n−2 by restriction to the affine

hyperplane {z2 − z1 = 1} ∼= Cn−2. A complete description of the integer
cohomology algebra of the complement M(affAC

n−2) := Cn−2\
⋃

affAC
n−2 is pro-

vided by general theory on the topology of complex hyperplane arrangements
[OS, BZ, OT]. The description depends only on combinatorial data of the
arrangement, i.e., on the semi-lattice of intersections L(affAC

n−2) which is cus-
tomarily ordered by reverse inclusion.

Proposition 2.3 The base space M0,n is homotopy equivalent to the comple-
ment of the affine complex braid arrangement of rank n − 2, since

M0,n × C ∼= M(affAC

n−2) .

Its integer cohomology algebra is torsion-free. It is generated by one-dimen-
sional classes ei,j for 1 ≤ i < j ≤ n − 1, (i, j) 6= (1, 2), and has a presentation
as a quotient of the exterior algebra on these generators:

H∗(M(affAC

n−2))
∼= Λ∗

Z(n−1

2 )−1 / I ,

where I is the ideal generated by elements of the form

ei,l ∧ ej,l − ei,j ∧ ej,l + ei,j ∧ ei,l for 1 ≤ i < j < l ≤ n − 1, (i, j) 6= (1, 2) ,

e1,i ∧ e2,i for 2 < i ≤ n − 1 .

Proof. We consider the homeomorphic image of M0,n under the section de-
fined in the proof of Proposition 2.1:

M0,n
∼=

{ (
1 0 1 z3 . . . zn−1

0 1 1 1 . . . 1

) ∣∣∣∣∣ zi ∈ C\{0, 1}, zi 6= zj for i 6= j

}

∼= { (z1, . . . , zn−1) | zi ∈ C, zi 6= zj for i 6= j, z1 = 0, z2 − z1 = 1} .

From this description we see that M0,n is homeomorphic to the complement
of the affine braid arrangement affAC

n−2 intersected with the hyperplane {z1 =
0}. This intersection operation is equivalent to a projection parallel to the
intersection of all the hyperplanes in AC

n−2,
⋂
AC

n−2 = {z1 = . . . = zn−1}. The
fibers of this projection map are contractible: they are translates of

⋂
AC

n−2.
Hence the projection does not alter the homotopy type, and we conclude that
M0,n is homotopy equivalent to M(affAC

n−2).
The presentation of the integer cohomology algebra follows from general re-
sults on the topology of the complements of complex hyperplane arrangements
(compare [OT]). 2

We have seen that the fiber PSL(2, C) is homeomorphic to F (CP 1, 3), resp.
F (S2, 3). By a result of Fadell [Fa, Thm. 2.4] there is a fiber homotopy
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equivalence between F (Sk, 3) and Vk+1,2, the Stiefel manifold of orthogonal
2-frames in Rk+1. The cohomology of the latter is well-known, see [Bd, Ch.
IV, Exp. 13.5].

Combining the product structure on F (CP 1, n) obtained in Theorem 2.1 with
the information on the cohomology algebras of base space and fiber we conclude:

Theorem 2.4 The cohomology algebra of F (S2, n) with integer coefficients is
given by

H∗(F (S2, n)) ∼= H∗(F (S2, 3)) ⊗ H∗(M(affAC

n−2))

∼=
(

Z(0) ⊕ Z2(2) ⊕ Z(3)
)

⊗ Λ∗
⊕

(n−1

2 )−1

Z(1) / I ,

where G(i) denotes a direct summand G in dimension i, and I is the ideal of
relations described in Proposition 2.3.

3 A spectral sequence for H∗(F (Sk, n))

Our approach for k > 2 uses the Leray-Serre spectral sequence associated with
the projection Π1:

Π1 : F (Sk, n) −→ Sk

(x1, . . . , xn) 7−→ xn .

For the construction and special features of Leray-Serre spectral sequences we
refer to Borel [Bo2, Sect. 2]. Since the base space of the considered fiber
bundle is a sphere we could equally work with the Wang sequence [Wh, Ch.
VII, Sect. 3], a long exact sequence connecting the cohomology of the total space
and of the fiber. However, the derivation of the multiplicative structure of the
cohomology algebra gets more transparent with spectral sequence tableaux.
Moreover, this approach extends to projections Πr for r > 1 (see Section 6).

We meet especially favorable conditions in the second tableau of the Leray-Serre
spectral sequence associated to the fiber map Π1(S

k, n): The base space Sk is
simply connected for k ≥ 2, hence the system of local coefficients on Sk induced
by Π1 for k ≥ 2 is simple. As the fiber over xn ∈ Sk we obtain:

Π−1
1 (xn) = {(x1, . . . , xn−1) ∈ (Sk)n−1 |xi 6= xj for i 6= j,

xi 6= xn for i = 1, . . . , n−1}
∼= {(x1, . . . , xn−1) ∈ (Rk)n−1 | xi 6= xj for i 6= j} .

This is the complement of the real k-braid arrangement A
(k)
n−2 of rank n−2

which is formed by linear subspaces Ui,j in (Rk)n−1, 1 ≤ i < j ≤ n−1,

Ui,j = {(x1, . . . , xn−1) ∈ (Rk)n−1 |xi1 = xj1 , . . . , xik
= xjk

} .
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This arrangement, a direct generalization of the real and complex braid arrange-
ments, is a k-arrangement in the sense of Goresky & MacPherson [GM,
Part III, p. 239]: the subspaces have codimension k, and the codimensions of
their intersections are multiples of k. Such arrangements have combinatorial
properties analogous to those of complex hyperplane arrangements, which is
reflected by strong similarities in their topological properties: The cohomol-
ogy algebras of real k-arrangements are torsion-free [GM, Part III, Thm. B];
they are generated in dimension k − 1 by cohomology classes that naturally
correspond to the subspaces of the arrangement [BZ, Sect. 9].

The complement of the real k-braid arrangement A
(k)
n−2 is an ordered configu-

ration space: the space F (Rk, n−1) of configurations of n−1 pairwise distinct
points in Rk. The following thus complements work by Cohen [C1, C2], who
discussed the cohomology of F (Rk, n− 1) in connection with homology opera-
tions for iterated loop spaces.

Proposition 3.1 The integer cohomology algebra of M(A
(k)
n−2) is generated

by (k − 1)-dimensional cohomology classes ci,j , 1 ≤ i < j ≤ n − 1. It has a
presentation as a quotient of the exterior algebra on these generators:

H∗(M(A
(k)
n−2))

∼= Λ∗
Z(n−1

2 ) / I ,

where I is the ideal generated by the elements

(ci,l∧cj,l) + (−1)k+1(ci,j∧cj,l) + (ci,j∧ci,l) for 1 ≤ i < j < l ≤ n−1 .

Remark 3.2 The generating cohomology classes ci,j , 1≤ i < j ≤n−1, are de-
fined by restricting cohomology generators ĉi,j for the subspace complements
M({Ui,j}) ' Sk−1 to the complement of the arrangement. A canonical choice
of the generators ĉi,j results from fixing the natural “frame of hyperplanes” in
the sense of [BZ, Sect. 9].

Proof. Björner & Ziegler [BZ, Sect. 9] derived a presentation for the
cohomology algebras of real k-arrangements up to the signs in the relations.
For the real k-braid arrangement their presentation specializes up to signs to
the one stated above.
Consider the relation for a triple 1 ≤ i < j < l ≤ n − 1:

ε1(ci,l ∧ cj,l) + ε2(ci,j ∧ cj,l) + ε3(ci,j ∧ ci,l) = 0 , εr ∈ {±1} for r = 1, 2, 3 .

Transpositions of (i, j) and (i, l) and of (i, l) and (j, l) in the linear (lexico-

graphic) order of the subspaces in A
(k)
n−2 lead to similar relations among the

cohomology classes ci,l ∧ cj,l, ci,j ∧ cj,l, and ci,j ∧ ci,l:

ε1(ci,j ∧ cj,l) + ε2(ci,l ∧ cj,l) + ε3(ci,l ∧ ci,j) = 0

ε1(cj,l ∧ ci,l) + ε2(ci,j ∧ ci,l) + ε3(ci,j ∧ cj,l) = 0 .

Anti-commutativity of the exterior product yields the signs in the relations.
2
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We obtain the following tensor product decomposition on the E2-tableau of
the Leray-Serre spectral sequence associated with the fiber map Π1(S

k, n):

k − 1

0

0 k

H∗(M(A
(k)
n−2))

E∗,∗
2

3k − 3

2k − 2

dk

Ep,q
2

∼= Hp(Sk) ⊗ Hq(M(A
(k)
n−2)) ,

p, q ≥ 0 .

The location of non-zero entries shows that there is only one possibly non-trivial
differential on stage k of the sequence.

4 The k-th differential

The tableaux of a cohomological spectral sequence are bigraded algebras. The
differentials respect their multiplicative structure. In particular, the differen-
tials are determined by their action on multiplicative generators of the sequence
tableaux. Thus, it suffices in our case to describe dk on the multiplicative gen-

erators ci,j , 1 ≤ i < j ≤ n − 1, of E0,∗
k

∼= H∗(M(A
(k)
n−2)) in dimension k − 1.

Actually, we can restrict our attention even further to the action of dk on one
single generator, say on c1,2: The permutation of the first n − 1 points of a
configuration in F (Sk, n) by Sn−1 gives a group action on the considered fiber
bundle and hence induces a Sn−1-action on the spectral sequence. The group
Sn−1 acts transitively on the generators ci,j of E0,k−1

k , whereas it keeps Ek,0
k

fixed. We conclude that

dk(ci,j) = dk(c1,2) for 1 ≤ i < j ≤ n − 1 .

In the following we provide two independent ways to evaluate dk.

4.1 . . . via a homology group of the discriminant.

Here the key observation is that knowing Hk(F (Sk, n)) is sufficient to deter-
mine dk. To obtain this specific group, we use a “Vassiliev type” argument
that allows one to compute, in favorable situations, some cohomology groups
of configuration spaces. Using a smooth compactification, in our case given by
F (Sk, n) ⊆ (Sk)n, we set

F (Sk, n) = (Sk)n \ Γn = (Sk)n \
⋃

1≤i<j≤n

(Γn)i,j ,
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where

(Γn)i,j = {(x1, . . . , xn) ∈ (Sk)n |xi = xj} for 1 ≤ i < j ≤ n .

The idea is to use duality theorems in (Sk)n for transferring homology infor-
mation about the discriminant Γn to the cohomology of F (Sk, n). For this, we
proceed in three steps.

Step 1. Determine H∗(Γn) in dimensions (n − 1)k and (n − 1)k − 1.

The spaces (Γn)i,j are homeomorphic to (Sk)n−1; they intersect in spaces home-
omorphic to (Sk)n−2, hence in dimension k(n− 2). By a Mayer-Vietoris argu-
ment we obtain the top two homology groups of the discriminant:

H(n−1)k (Γn) ∼=
⊕

1≤i<j≤n

H(n−1)k((Γn)i,j) ∼= Z(n

2)

H(n−1)k−1 (Γn) = 0 .

Step 2. Determine the relative homology H∗((S
k)n, Γn) in dimension (n−1)k.

The relevant part of the long exact sequence in homology for the pair
((Sk)n, Γn) is the following:

→ H(n−1)k (Γn)
i∗→ H(n−1)k ((Sk)n) → H(n−1)k ((Sk)n

, Γn) → H(n−1)k−1 (Γn) →

We had computed that the last group is zero, and thus

H(n−1)k ((Sk)n, Γn) ∼= coker i∗ ,

where i∗ is induced by the inclusion i : Γn ↪→ (Sk)n. We intend to write i∗
as a (n ×

(
n
2

)
)-matrix over Z and to read the cokernel from its Smith normal

form [Mu, § 11]. For this we choose Z-bases for the homology groups that are
involved, and determine i∗ in terms of these bases.
According to the Künneth Theorem, H(n−1)k((Sk)n) has a basis that consists
of tensor products of k-dimensional classes ωj , j = 1, . . . , n, of the form

νi = ω1 ⊗ . . . ⊗ ω̂i ⊗ . . . ⊗ ωn , i = 1, . . . , n ,

where ωj is an orientation class for the j-th factor in (Sk)n, and ω̂i denotes
that we omit the i-th class.
Generating homology classes of Γn in dimension (n − 1)k are given by the

(
n
2

)

generating homology classes for the spaces (Γn)i,j , 1 ≤ i < j ≤ n. These spaces
are products of k-spheres,

(Γn)i,j
∼= Si,j × S1 × . . . × Ŝi × . . . × Ŝj × . . . × Sn ,

with Sl denoting the l-th k-sphere appearing as a factor in (Sk)n, whereas Si,j

denotes the k-sphere diagonally embedded in the i-th and j-th k-sphere. A
generating homology class for (Γn)i,j in dimension (n − 1)k can be described
as

νij = ωij ⊗ ω1 ⊗ . . . ⊗ ω̂i ⊗ . . . ⊗ ω̂j ⊗ . . . ⊗ ωn , 1 ≤ i < j ≤ n ,

where ωij is a homology generator for Si,j in dimension k.
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To understand how i∗ maps such generators νij we use the following lemma.
It tells how to describe the homology generator of the diagonal in Si × Sj in
terms of homology classes of the product.

Lemma 4.1 Let ω denote a generating homology class in dimension k for the
k-sphere. Under the diagonal map ∆ : Sk → Sk×Sk, ∆(x) = (x, x) for x ∈ Sk,
the homology class ω is mapped to

∆∗(w) = ω ⊗ 1 + 1 ⊗ ω .

Proof. By the Künneth Theorem the two summands form a basis of
Hk(Sk × Sk), so ∆∗(ω) is a Z-linear combination of those. Moreover, the di-
agonal map combined with one of the projections pri to the respective factor
is the identity map on Sk. Hence the result follows from (pri)∗ ◦ ∆∗(ω) = ω
for i = 1, 2. 2

We conclude that

i∗(νij) =
(
(ωi ⊗ 1) + (1 ⊗ ωj)

)
⊗

n⊗

l=1

l6=i,j

ωl , 1 ≤ i < j ≤ n .

To write this in terms of the generators νi for H(n−1)k ((Sk)n) we have to
permute the factors of the underlying product space to the order used above
in the definition of the classes νi. The tensor product of homology classes
is anti-commutative [FFG, Ch. II, §16]; i.e., under the transposition map τ :
X × X −→ X × X , (x1, x2) 7→ (x2, x1), a product of homology classes α ⊗ β,
α, β ∈ H∗(X), is mapped to

τ∗(α ⊗ β) = (−1)deg(α) deg(β)β ⊗ α.

This is the point where the distinction between odd and even dimensions comes
up:

i∗(νij) =

{
(−1)i−1νj + (−1)j−2νi for odd k ,
νj + νi for even k

(1 ≤ i < j ≤ n).

Writing i∗ as a (n ×
(
n
2

)
)-matrix M(n) we obtain the (unsigned) incidence

matrix of 2-element subsets of an n-set for even k, whereas for odd k a certain
sign pattern occurs on the matrix entries. For example,

M(3) =




12 13 23

1 1 (−1)k 0
2 1 0 (−1)k

3 0 1 (−1)k


 ,

M(4) =




12 13 14 23 24 34

1 1 (−1)k 1 0 0 0
2 1 0 0 (−1)k 1 0
3 0 1 0 (−1)k 0 1
4 0 0 1 0 (−1)k 1


 .
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We now derive the Smith normal forms of the matrices M(n) by describing
elementary row and column operations. Ordering the columns of M(n) – cor-
responding to the 2-element subsets of {1, . . . , n} – lexicographically, we see
that

M(n) =




1 · · · · · · · · · 1 0 · · · · · · · · · · · · · · · · · · 0
1

. . .
. . . M(n−1)

1




for even k, and

M(n) =




1 −1 · · · (−1)n 0 · · · · · · · · · · · · · · · · · · 0
1

. . .
. . . −M(n−1)

1




for odd k .

For even k, we subtract the i-th row from the first row for i = 2, . . . , n, and
thus create 0-entries in the left part of the first row and entries −2 on top of
the submatrix M(n−1). Note that the column sum in M(n−1) is 2.
Adding multiples of the first n−1 columns to the rest of the matrix, we trans-
form M(n−1) to 0. The remaining entries in the first row can be reduced to one
single entry 2, and after switching rows and columns we obtain the following
Smith normal form:

SNF( M(n) ) =




1
. . . 0

1
2


 for even k.

For odd k, we add the t-th row multiplied with (−1)t−1 to the first row for
i = 2, . . . , n. This creates 0-entries in the first row. This is obvious for the first
n−1 columns. For an entry on top of a column of the submatrix −M(n−1)
which contains entries in its i-th and j-th rows, we obtain

(−1)i · (−(−1)j−2) + (−1)j · (−(−1)i−1) = 0 .

As before, we transform the submatrix −M(n−1) to 0 by adding multiples of
the first n−1 columns. Thus, after switching rows, we obtain:

SNF( M(n) ) =




1
. . . 0

1
0


 for odd k.

We read off the cokernel of i∗ as

H(n−1)k ((Sk)n, Γn) ∼=

{
Z for odd k ,
Z2 for even k .
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Step 3. Apply Poincaré-Lefschetz duality between relative homology of the
pair ((Sk)n, Γn) and cohomology of F (Sk, n).

Proposition 4.2 The k-th cohomology group of F (Sk, n), k > 2, n > 2, is
given by

Hk(F (Sk, n)) ∼=

{
Z for odd k ,
Z2 for even k .

Remark 4.3 In principle, the discriminant approach can be used to determine
the cohomology of F (Sk, n) as a graded group. However, to compute H∗(Γn)
is difficult and requires extra tools (interpretation of Γn as a homotopy limit of
a diagram of spaces, study of a spectral sequence converging to the homology
of a homotopy limit [ZŽ, Sect. 3(e)]). Also, the study of the pair sequence gets
considerably more involved. Moreover, because of the use of Poincaré-Lefschetz
duality the multiplicative structure of H∗(F (Sk, n)) seems out of reach for this
approach.

The partial result of Proposition 4.2 allows us to determine the differential in
the spectral sequence associated to Π1(S

k, n). Taking cohomology of E∗,∗
k with

respect to the differential dk leads to the final sequence tableau E∗,∗
k+1:

0

0

0

k

ν

Hk(F (Sk, n))

E∗,∗
k+1

k − 1

dk

E∗,∗
k

0

0 k

ci,j ker dkk − 1

coker dk

Since there is only one non-zero entry on the k-th diagonal for k > 2,
Hk(F (Sk, n)) can be read from E∗,∗

k+1:

Hk(F (Sk, n)) ∼= cokerdk .

Our result on Hk(F (Sk, n)) in Proposition 4.2 implies that

dk(c1,2) = dk(ci,j) =

{
0 for odd k
2ν for even k ,

where ν is a generator of Hk(Sk).
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4.2 . . . via an interpretation in terms of the Euler class.

Our second approach to the differential dk stays within the setting of fiber
bundles. We study an inclusion of fiber bundles and transfer information on
the differentials via the induced homomorphism of spectral sequences. We will
find that the differential is determined by the Euler class of the base space Sk,
which depends on the parity of k.

Consider, for n ≥ 3, the following space of point configurations on Sk, k > 2:

F̂ := {(x1, . . . , xn) ∈ (Sk)n |x1 6= x2, xj 6= xn for j = 1, . . . , n − 1} .

Projection of a configuration to its last point, Π̂ : F̂ → Sk, makes it the total
space of a fiber bundle with spherical fiber: the complement of the codimension
k subspace U1,2 in (Rk)n−1,

Π̂−1(xn) = {(x1, . . . , xn−1) ∈ (Sk)n−1 |x1 6= x2, xj 6= xn for 1 ≤ j ≤ n−1}
∼= {(x1, . . . , xn−1) ∈ (Rk)n−1 | x1 6= x2}

= M({U1,2}) .

The spectral sequence Ê∗ associated to Π̂ has an Ê2-tableau of the form

Êp,q
2

∼= Hp(Sk) ⊗ Hq(M({U1,2})) ,

p, q ≥ 0 .

k − 1

0

k0

Ê∗,∗
2

d̂k

From the location of non-zero entries in Ê∗,∗
2 we easily see that there is only

one possibly non-trivial differential d̂k on stage k of the sequence.
The inclusion of F (Sk, n) into F̂ is a map of fiber bundles.

F̂

Sk

F (Sk, n)

Sk

M(A
(k)
n−2)

M( {U1,2} )

The homomorphism of spectral sequences induced by the inclusion of the fiber
bundles factors on the Êk-tableau into the induced map between the cohomol-
ogy of the fibers and the identity on the cohomology of the base space [Bo1,
Exp. VIII, Thm. 4]. The map i∗ between the cohomology of the fibers maps

Documenta Mathematica 5 (2000) 115–139



Cohomology Algebras of Configuration Spaces . . . 129

the generator ĉ1,2 of Hk−1(M({U1,2})) to c1,2 in Hk−1(M(A
(k)
n−2)) (compare

Remark 3.2). Hence, we are left to determine the action of the k-th differential

on Ê0,k−1
k :

dk

i∗k

Ê∗,∗
k

E∗,∗
k

c1,2 id∗

ĉ1,2 d̂k

dk(c1,2) = dk(i∗(ĉ1,2)) = d̂k(ĉ1,2) .

Proposition 4.4 The fiber bundle F̂ over Sk is fiber homotopy equivalent to
Vk+1,2, the Stiefel manifold of orthogonal 2-frames in R

k+1, considered as fiber
bundle over Sk.

Proof. F̂ is fiber homotopy equivalent to F (Sk, 3), both spaces considered
as fiber bundles over Sk. The fiber homotopy equivalence is realized by the
projection of configurations in F̂ to their first, second and last points. In
turn, F (Sk, 3) is fiber homotopy equivalent to the Stiefel manifold Vk+1,2 [Fa,
Thm. 2.4]. 2

For a simply connected, k-dimensional, orientable manifold M the only possibly
non-trivial differential in the spectral sequence associated to the unit tangent
bundle can be described as a cup product multiplication with the Euler class
of the manifold:

dk(x ⊗ µ) = dk(µ) ^ x = χM ^ x ,

where µ is a generator of Hk−1(Sk−1), x ∈ H∗(M), and χM denotes the Euler
class of the manifold (compare [MS, Thm. 12.2]).
The Stiefel manifold Vk+1,2 coincides with the unit tangent bundle on Sk.
Given an orientation on Sk and a generator ν of Hk(Sk) that evaluates to 1
on the orientation class, the Euler class of Sk is given by

χSk
=

{
0 for odd k ,
2ν for even k .

We conclude that in the spectral sequence for F̂ the differential d̂k maps the
generator ĉ1,2 of Hk−1(M({U1,2})) to the Euler class χ of the base space, once
an orientation for the base Sk and with it the Euler class have been chosen
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appropriately. In particular, d̂k is the zero-map for odd k. For our initial fiber
bundle we thus derive

dk(ci,j) = dk(c1,2) =

{
0 for odd k ,
2ν for even k ,

where 2ν is the Euler class of the k-sphere under appropriate orientation.

5 Recovering H∗(F (Sk, n)) from the spectral sequence

For configuration spaces of odd-dimensional spheres we now have enough in-
formation to derive a complete description of the integer cohomology algebra.
In the previous section we showed that the k-th differential is trivial on multi-
plicative generators of the sequence tableau E∗,∗

k , therefore it is trivial on all of
E∗,∗

k . The spectral sequence collapses in its second term; a favorable location of
non-zero tableau entries allows us to get both the linear and the multiplicative
structure of H∗(F (Sk, n)) directly from the second tableau:

Theorem 5.1 For a sphere Sk of odd dimension k ≥ 3, and n ≥ 3, the integer
cohomology algebra of F (Sk, n) is given by

H∗(F (Sk, n)) ∼= H∗(Sk) ⊗ H∗(M(A
(k)
n−2))

∼= ( Z(0) ⊕ Z(k) ) ⊗ Λ∗
⊕

(n−1

2 )

Z(k − 1) / I ,

where I is the ideal described in Proposition 3.1. In particular, the cohomology
is free.

For the case of even-dimensional spheres the considerations in the previous
section show that the k-th differential is non-zero. We have to describe the
kernel and cokernel of that differential and with it the final sequence tableau
E∗,∗

k+1 in a manageable form.
The cohomology algebra of the fiber, hence of the left-most column of the sec-
ond, resp. k-th tableau, is given by Proposition 3.1. A linear basis for this
algebra is given by the products of (k − 1)-dimensional classes ci,j associated
with the faces of the broken circuit complex BC(L) of the intersection lat-

tice L = L(A
(k)
n−2) [BZ, Sect. 9]:

BBC = {cα1
∧ . . . ∧ cαt

| {α1, . . . , αt} ∈ BC(L)} .

Here is a different basis which enables us to describe the kernel of dk both as
a direct summand and as a subalgebra of H∗(M(A

(k)
n−2)):

Proposition 5.2 The following set is a Z-linear basis for H∗(M(A
(k)
n−2)) :

B′ = {c1,2 ∧ (cα1
− c1,2) ∧ . . . ∧ (cαt − c1,2) | {α1, . . . , αt} ∈ BC(L), αi 6= (1, 2)}

∪ {(cα1
− c1,2) ∧ . . . ∧ (cαt − c1,2) | {α1, . . . , αt} ∈ BC(L), αi 6= (1, 2)} .
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Proof. Each element in BBC can be written as a linear combination of el-
ements in B′. This is true for each element having c1,2 as a factor because
those are themselves elements in B′. For cα1

∧ . . .∧ cαt
, {α1, . . . , αt} ∈ BC(L),

αi 6= (1, 2),

(cα1
− c1,2) ∧ . . . ∧ (cαt

− c1,2) = cα1
∧ . . . ∧ cαt

+ β ,

where β is a linear combination of products containing c1,2, hence of elements
in B′. Thus cα1

∧ . . . ∧ cαt
can be written as a linear combination of those. 2

Let T • denote the submodule of H∗(M(A
(k)
n−2)) generated by those elements of

B′ that contain c1,2 as a factor, whereas T ◦ denotes the submodule generated
by all other elements of B′:

H∗(M(A
(k)
n−2))

∼= T ◦ ⊕ T • .

Obviously, multiplication within T • is trivial, whereas for T ◦ we can state the
following:

Proposition 5.3 The submodule T ◦ is a subalgebra of H∗(M(A
(k)
n−2)) gener-

ated by the elements c̄i,j := (ci,j − c1,2) in dimension k − 1, 1 ≤ i < j ≤ n− 1,
(i, j) 6= (1, 2). It has a presentation as a quotient of the exterior algebra on
these generators:

T ◦ ∼= Λ∗
Z(n−1

2 )−1 / J ,

where J is the ideal generated by elements of the form

(c̄i,l ∧ c̄j,l) + (−1)k+1(c̄i,j ∧ c̄j,l) + (c̄i,j ∧ c̄i,l) , 1 ≤ i < j < l ≤ n−1 ,
(i, j) 6= (1, 2) ,

(c̄1,i ∧ c̄2,i) , 2 < i ≤ n−1 .

Proof. It is clear that T ◦ has a presentation as a quotient of the exterior
algebra on the generators c̄i,j = (ci,j − c1,2), 1 ≤ i < j ≤ n − 1, (i, j) 6= (1, 2).

Moreover, it is easy to check that the proposed relations hold in H∗(M(A
(k)
n−2)).

To see that they generate the ideal for a presentation of T ◦ note that they allow
one to write each product in the generators c̄i,j as a linear combination of
elements from the linear basis for T ◦: Assume that for a product of generators

c̄α1
∧ . . . ∧ c̄αt

all products with lexicographically smaller index set can be written as a linear
combination of basis elements from T ◦. If this product is not itself a basis

element then {α1, . . . , αt} contains a broken circuit of L(A
(k)
n−2). In case (1, 2)

extends it to a circuit the product is zero by a relation of the second type.
Otherwise, a relation of the first type allows to write it as a linear combination
of products with lexicographically smaller index set, and hence as a linear
combination of basis elements. 2
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Our results on dk now read as follows:

dk(c1,2) = 2 ν

dk(ci,j − c1,2) = 0 for 1 ≤ i < j ≤ n − 1 ,

where ν is a generator of Hk(Sk). Evaluating dk by the Leibniz rule on the
basis elements of B′ we exhibit T ◦ as the kernel of dk, whereas im dk = 2 T ◦,
and hence coker dk

∼= T ◦/2T ◦ ⊕ T • . We thus obtain the final sequence

tableau E∗,∗
k+1 with entries E0,∗

k+1 = T ◦ and Ek,∗
k+1 = T ◦/2T ◦ ⊕ T • .

From the sequence tableau E∗,∗
k+1 we can read the cohomology algebra of

F (Sk, n): Free generators for T ◦ = E0,∗
k+1 are located in E0,0

k+1 and E0,k−1
k+1 .

Together with the free generator in Ek,k−1
k+1 and the generator of order two in

Ek,0
k+1 they generate T ◦/2T ◦ ⊕ T • = Ek,∗

k+1.

T ◦

E∗,∗
k+1

T ◦/2T ◦ ⊕ T •

2k − 2

0

k − 1

3k − 3

0 k

ν/2ν1

0

c1,2

0

k − 1 ci,j − c1,2

k

Linearly, the cohomology of F (Sk, n) is isomorphic to a tensor product of two
free generators in dimension 0 and 2k− 1 and a generator of order 2 in dimen-
sion k − 1 with the algebra T ◦:

H∗(F (Sk, n)) ∼= (Z(0) ⊕ Z2(k) ⊕ Z(2k − 1)) ⊗ T ◦ .

This isomorphism is an algebra isomorphism: This is obvious for multiplication
among elements represented by entries in the left-most column E0,∗

k+1. Also,

multiplication between entries of E0,∗
k+1 and Ek,∗

k+1 is correctly described in the
proposed tensor product. Moreover, the trivial multiplication among entries in
Ek,∗

k+1 has its correspondence in the tensor algebra since multiplication within
the left-hand factor is trivial. We conclude:

Theorem 5.4 For a sphere Sk of even dimension, k ≥ 4, the integer cohomol-
ogy algebra of F (Sk, n), n ≥ 3, is given by

H∗(F (Sk, n)) ∼= (Z(0) ⊕ Z2(k) ⊕ Z(2k − 1)) ⊗ T ◦

∼= (Z(0) ⊕ Z2(k) ⊕ Z(2k − 1)) ⊗ Λ∗
⊕

(n−1

2 )−1

Z(k − 1) / J ,

where J is the ideal described in Proposition 5.3.
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In the next section we will give a topological interpretation for this product
decomposition of the cohomology algebra (see Remark 6.1).

6 A family of fiber bundles

The bundle structure on F (Sk, n) given by the projection Π1 was the key to
determine the integer cohomology algebra of F (Sk, n). This projection Π1 is
one instance from a family of fiber maps Πr = Πr(S

k, n), 1 ≤ r < n, that are
given by projection of a configuration in F (Sk, n) to its last r points. In this
section we will have a closer look at these fiber maps, at their spectral sequences,
and at the question whether the induced bundle structures are trivial.

For the fiber map Πr(S
k, n), 1 ≤ r < n, we obtain the following space as the

fiber over a point configuration q = (q1, . . . , qr) on Sk:

Π−1
r (q) = {(x1, . . . , xn−r) ∈ (Sk)n−r |xi 6= xj for i 6= j, xi 6= qt

for i = 1, . . . , n − r, t = 1, . . . , r} .

This space is again a configuration space:

Π−1
r (q) = F ( Sk \ {q1, . . . , qr}, n − r ) .

Configurations on Sk that avoid r ≥ 1 (fixed) points q1, . . . , qr are equivalent
to configurations in Rk that avoid r−1 points q1, . . . , qr−1. Thus the fiber of Πr

is homeomorphic to the complement of the arrangement AΠr(Sk,n) of (affine)

subspaces in Rk(n−r) given by

Ui,j = {(x1, . . . , xn−r) ∈ (Rk)n−r | xi = xj }, 1 ≤ i < j ≤ n − r,

U t
i = {(x1, . . . , xn−r) ∈ (Rk)n−r | xi = t · (1, 0, . . . , 0)T },

1 ≤ i ≤ n − r, 0 ≤ t ≤ r − 2 .

For r = 1, the arrangement AΠ1(Sk,n) coincides with the k-braid arrangement

A
(k)
n−2 — a fact that we used extensively in the previous sections. For r > 2,

AΠr(Sk,n) contains affine subspaces, the subspaces U t
i for 0 < t ≤ r − 2. In

the complex case, for k = 2, these arrangements were extensively studied by
Welker [We].

6.1 The spectral sequences

We proved in the previous sections that the spectral sequence E∗(Π1) associated
to the fiber map Π1(S

k, n) collapses in E2 for odd k, and in Ek+1 for even k.
We obtain a similar picture for the spectral sequence E∗(Π2) associated to the
fiber map Π2(S

k, n): The base space F (Sk, 2) is homotopy equivalent to Sk.
Hence, it is simply connected for k ≥ 2, and the system of local coefficients on
Sk induced by Π2 is simple. The fiber M(AΠ2(Sk,n)) is homotopy equivalent

to the complement of the k-braid arrangement A
(k)
n−2. In fact, the homotopy
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equivalence is realized by projection of M(A
(k)
n−2) along

⋂
A

(k)
n−2 on the linear

subspace

U0
n−1 = { (x1, . . . , xn−1) ∈ (Rk)n−1 |xn−1 = 0 } .

Thus, the E2-tableaux of the spectral sequences induced by Π1 and Π2 coincide.
For dimensional reasons, the collapsing results on E∗(Π1) translate to analogous
collapsing results on E∗(Π2).

The picture changes for the spectral sequences E∗(Π3) associated to Π3(S
k, n).

In fact, we have all arguments at hand to discuss them briefly: The base
space F (Sk, 3) of the fiber map Π3(S

k, n) is homotopy equivalent to the Stiefel
manifold Vk+1,2 of orthogonal 2-frames in Rk+1 [Fa, Thm. 2.4], hence it is
simply connected for k ≥ 2. We conclude that the system of local coeffi-
cients on F (Sk, 3) induced by Π3 is simple. We have seen above that the fiber
of Π3 is homeomorphic to the complement of the (affine) subspace arrange-
ment AΠ3(Sk,n). Comparison to the complement of the k-braid arrangement

A
(k)
n−2 yields a homotopy equivalence,

M(AΠ3(Sk,n)) ' M(A
(k)
n−2dU

) ,

where A
(k)
n−2dU

denotes the restriction of the k-braid arrangement to the affine

subspace

U = {(x1, . . . , xn−1) ∈ (Rk)n−1 |xn−2 − xn−1 = (1, 0, . . . , 0)T } .

The homotopy equivalence is realized by projection of M(A
(k)
n−2dU

) along the

intersection
⋂
A

(k)
n−2 to the linear subspace

U0
n−1 = {(x1, . . . , xn−1) ∈ (Rk)n−1 |xn−1 = 0 } .

The affine arrangement A
(k)
n−2dU

is associated to the k-braid arrangement in the

same way as we associated before an affine complex hyperplane arrangement
to the complex braid arrangement (compare Section 2). This analogy allows
one to state a presentation for its cohomology algebra in terms of generators
and relations. In fact, one obtains an algebra presentation that coincides with
the one that we stated for T ◦ in Proposition 5.3:

H∗(M(A
(k)
n−2dU

)) ∼= T ◦ .

In particular, H∗(M(A
(k)
n−2dU

)) is torsion-free and it is generated in dimension

k − 1 by cohomology classes that are in one-to-one correspondence with the
inclusion maximal subspaces of the arrangement.
For both odd and even k the E2-tableaux of the spectral sequences associated
to Π3(S

k, n) carry the structure of tensor products. We content ourselves with
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discussing the spectral sequences for k ≥ 3; for k = 2, we already showed in
Section 2 that the bundle structure induced by Π3 is trivial.

0

T ◦ T ◦ T ◦ T ◦

0

dk−1

dk

E∗,∗
2 (Π3)
k odd

3k − 3

2k − 2

k − 1

kk−1 2k−1 0

T ◦ T ◦T ◦ ⊗ Z2

E∗,∗
2 (Π3)
k even

dk dk−1

3k − 3

2k − 2

k − 1

0

2k−1k

Ep,q
2 (Π3) ∼= Hp(Vk+1,2) ⊗ Hq(M(A

(k)
n−2dU

)) , p, q ≥ 0 .

It is easy to see that E∗(Π3) collapses in its second term for both odd and
even k: The location of non-zero entries in the respective tableaux suffices to
see the triviality of differentials dr with r 6= k. The k-th cohomology group of
F (Sk, n) can be read already from the k-th diagonal in Ek+1(Π3). Our results
on Hk(F (Sk, n)) (Proposition 4.2) allow to deduce triviality of the differen-
tial dk as we did in Section 4.1.

Remark 6.1 There is a topological explanation for the product decomposition
of the integer cohomology algebra of F (Sk, n) for even k that we obtained in
Theorem 5.4: The factors are the cohomology algebras of base space and fiber
for the fiber bundle structure on F (Sk, n) given by Π3. We showed above that
the associated spectral sequence E∗(Π3) collapses in its second term, which
explains the product structure in cohomology.
The collapsing result on E∗(Π3) extends to the spectral sequences associated
to the fiber maps Πr for r > 3, and we can summarize as follows:

Proposition 6.2 The spectral sequence E∗(Πr) of the fiber map Πr(S
k, n)

on the configuration space F (Sk, n) collapses in its second term unless k is
even and r equals 1 or 2. For those parameters the spectral sequence collapses
in Ek+1.

Proof. We are left to show the triviality of the spectral sequence E∗(Πr)
for r > 3. This we will derive from the triviality of E∗(Π3), thereby involving
several applications of the following Lemma.

Lemma 6.3 [Bo2, Ch. II, Thm. 14.1] Let F
i

↪→ E
Π
→ B be a fiber bundle

with path-connected base B and assume that the cohomology of the base or
the cohomology of the fiber is torsion-free. Then the following assertions are
equivalent:
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(1) The system of local coefficients on B induced by Π is simple and the
associated spectral sequence with integer coefficients collapses in its second
term.

(2) The induced map i∗ : H∗(E) → H∗(F ) is surjective.

Consider the map of fiber bundles between Πr(S
k, n) and Π3(S

k, n) given by
(id, Π3(S

k, r)). For simplicity of notation we denote with Qt a fixed set of
pairwise distinct points {q1, . . . , qt} in Sk and thus write F (Sk\Qt, n − t) for
the respective fibers. The fibers are complements of affine k-arrangements, thus
their cohomology algebras are torsion-free.

F (Sk, n)

Πr

F (Sk \ Qr, n − r)

idi

F (Sk, r)

F (Sk \ Q3, n − 3)
iΠ3

iΠr

F (Sk, n)

Π3

F (Sk, 3)

Π3

The configuration space F (Sk, 3) is simply connected for k ≥ 2, due to the
homotopy equivalence with the Stiefel manifold Vk+1,2. With the collapsing
result on E∗(Π3) we deduce that i∗Π3

is surjective by the equivalence stated
above. We are left to show that the inclusion i between the fibers induces a
surjective homomorphism in cohomology. Then i∗Πr

= i∗ ◦ i∗Π3
is surjective, and

another application of Lemma 6.3 yields the collapsing result on E∗(Πr).
To see that i∗ is surjective we interpret i as a concatenation of inclusions in
a sequence of fiber maps. Namely, we consider the sequence of fiber maps
obtained by successively projecting F (Sk \Q1, n−1) to its last coordinate. We
picture the part of this sequence which is relevant to our investigation:

F (Sk\Qr, n − r)
jr−1

−→ . . .
j4−→ F (Sk\Q4, n − 4)

j3−→ F (Sk\Q3, n − 3)
y

p4

y
p3

Sk \ Q4 Sk \ Q3

The base spaces of the fiber bundles given by pt, 1 ≤ t ≤ n − 2, are simply
connected for k > 2, thus the systems of local coefficients are simple. The same
holds for k = 2, which is a result of Cohen [C2, Lemma 6.3]. The fibers are
complements of affine k-arrangements, thus their cohomology groups are non-
trivial only in dimensions that are multiples of k − 1 [GM, Part III, Thm. B].
For dimensional reasons, the associated spectral sequences E∗(pt) collapse in
their second terms and we conclude by Lemma 6.3 that the j∗t are surjective
for 1 ≤ t ≤ n−2. Thus, i∗ = j∗r−1 ◦ . . .◦j∗3 is a surjective map, which concludes
our proof. 2
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6.2 Triviality of the fiber bundles

The fiber bundle structure induced by Π3 on F (S2, n) for n ≥ 3 is trivial
(Theorem 2.1). One is led to ask: For which parameters do the fiber maps Πr

induce a trivial fiber bundle structure on F (Sk, n)?

We observed in Section 2 that the bundle structure on F (Sk, 2) given by Π1

is equivalent to the tangent bundle over Sk. Thus, Π1(S
k, 2) is a trivial fiber

map if and only if Sk is parallelizable (see Hirzebruch [H]). This indicates
that the triviality question for the fiber maps Πr is difficult in general.
Our results on the cohomology algebra of F (Sk, n) for even k, k ≥ 2, exclude
a trivial bundle structure on F (Sk, n) induced by Π1: There is 2-torsion in
H∗(F (Sk, n)) while the cohomology algebra of the cartesian product of base
space and fiber is torsion-free. However, the cohomology algebra of F (Sk, n)
for odd k coincides with the cohomology algebra of the cartesian product of
base space and fiber. Such product decomposition might as well hold beyond
the level of cohomology.
Recall from previous arguments that F (Sk, 3) is fiber homotopy equivalent to
the Stiefel manifold Vk+1,2 of orthogonal 2-frames in Rk+1, both considered as
fiber bundles over Sk. Fiber bundles are trivial if and only if their associated
principal bundles are trivial [St, Part I, Cor. 8.4]. Hence, Vk+1,2 is a trivial
fiber bundle if and only if O(k+1), considered as a fiber bundle over Sk, admits
a section — which again is the case iff k = 1, 3 or 7. Moreover, Vk+1,2 is fiber
homotopy equivalent to a trivial bundle if and only if it is trivial itself, hence
iff k = 1, 3 or 7 [Ja, Thm. 1.11]. We conclude that F (Sk, 3) is a non-trivial
fiber bundle over Sk for k 6= 1, 3 or 7.
For the 1-sphere we have shown triviality of F (S1, n) as a fiber bundle over S1 in
Section 2. Analogously, we obtain a trivialization of the fiber bundle structure
on F (S3, n) given by Π1, using the group structure of S3. The 7-sphere does
not carry the structure of a topological group [Bd, VI, Cor. 15.21]. However,
one can establish an explicit equivalence of fiber bundles between F (S7, 3) and
V8,2 × R

7 × R, both considered as fiber bundles over S7 in the natural way.
As mentioned above, V8,2 is a trivial fiber bundle over S7, and we can thus
conclude triviality of F (S7, 3) over S7.
Thus it remains to decide whether the bundle structure on F (Sk, n) induced
by Π1 is trivial for n > 3 and odd k ≥ 5.

We have seen in Section 2 that Π3 induces a trivial bundle structure on
F (S2, n). Our collapsing results on the spectral sequences E∗(Π3(S

k, n)) for
both odd and even k would be consistent with triviality of the fiber bundle
structure given by Π3. However, except for k = 2 this leaves us with an open
question.

Remark 6.4 After completion of this paper, we learned about recent work
by Fadell & Husseini [FaH] which addresses the question of configuration
space bundles being (fiber-homotopically) trivial. The paper is mostly con-
cerned with configuration spaces of Euclidean spaces; a complete discussion for
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configuration spaces of spheres is announced, but the results are stated only
for spheres of odd dimension.
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