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Introduction

In this Note, we say that a compact complex manifoldX is a Fano-like manifold
if it becomes Fano after a finite sequence of blow-ups along smooth connected
centers, i.e if there exist a Fano manifold X̃ and a finite sequence of blow-
ups along smooth connected centers π : X̃ → X . We say that a Fano-like
manifold X is simple if there exists a smooth submanifold Y of X (Y may not
be connected) such that the blow-up of X along Y is Fano. If Z is a projective
manifold, we call smooth blow-down of Z (with an s-dimensional center) a map
π and a manifold Z ′ such that π : Z → Z ′ is the blow-up of Z ′ along a smooth
connected submanifold (of dimension s). We say that a smooth blow-down of
Z is projective (resp. non projective) if Z ′ is projective (resp. non projective).

It is well-known that any Moishezon manifold becomes projective after a finite
sequence of blow-ups along smooth centers. Our aim is to bound the geometry
of Moishezon manifolds becoming Fano after one blow-up along a smooth center,
i.e the geometry of simple non projective Fano-like manifolds.

Our results in this direction are the following, the simple proof of Theorem 1
has been communicated to us by Daniel Huybrechts.

Theorem 1. Let Z be a Fano manifold of dimension n. Then, there is only a
finite number of smooth blow-downs of Z.

Documenta Mathematica 5 (2000) 141–150



142 Laurent Bonavero and Shigeharu Takayama

Let us recall here that the assumption Z Fano is essential : there are projective
smooth surfaces with infinitely many −1 rational curves, hence with infinitely
many smooth blow-downs.

Since there is only a finite number of deformation types of Fano manifolds of
dimension n (see [KMM92] and also [Deb97] for a recent survey on Fano mani-
folds) and since smooth blow-downs are stable under deformations [Kod63], we
get the following corollary (see section 1 for a detailed proof) :

Corollary 1. There is only a finite number of deformation types of simple
Fano-like manifolds of dimension n.

The next result is essentially due to Wísniewski ([Wis91], prop. (3.4) and (3.5)).
Before stating it, let us define

dn = max{(−KZ)n |Z is a Fano manifold of dimensionn}

and

ρn = max{ρ(Z) := rk(Pic(Z)/Pic0(Z)) |Z is a Fano manifold of dimensionn}.

The number ρn is well defined since there is only a finite number of deformation
types of Fano manifolds of dimension n and we refer to [Deb97] for an explicit
bound for dn.

Theorem 2. Let X be an n-dimensional simple non projective Fano-like mani-
fold, Y a smooth submanifold such that the blow-up π : X̃ → X of X along Y
is Fano, and E the exceptional divisor of π. Then

(i) if each component of Y has Picard number equal to one, then each com-
ponent of Y has ample conormal bundle in X and is Fano. Moreover

deg−K
X̃

(E) := (−KX̃|E′)
n−1 ≤ (ρn − 1)dn−1;

(ii) if Y is a curve, then (each component of) Y is a smooth rational curve
with normal bundle OP1(−1)⊕n−1.

Finally, we prove here the following result :

Theorem 3. Let Z be a Fano manifold of dimension n and index r. Suppose
there is a non projective smooth blow-down of Z with an s-dimensional center.
Then

r ≤ (n− 1)/2 and s ≥ r.

Moreover,

(i) if r > (n− 1)/3, then s = n− 1 − r ;
(ii) if r < (n− 1)/2 and s = r, then Y ' Pr.

Recall that the index of a Fano manifold Z is the largest integer m such that
−KZ = mL for L in the Picard group of Z.

Remarks.

a) For a Fano manifold X of dimension n and index r with second Betti
number greater than or equal to 2, it is known that 2r ≤ n+ 2 [Wi91],
with equality if and only if X ' Pr−1 × Pr−1.
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b) Fano manifolds of even dimension (resp. odd dimension n) and middle
index (resp. index (n+ 1)/2) with b2 ≥ 2 have been intensively studied,
see for example [Wis93]. Our Theorem 3 shows that there are no non
projective smooth blow-down of such a Fano manifold, without using any
explicit classification.

c) The assumption that there is a non projective smooth blow-down of Z is
essential in Theorem 3 (i) : the Fano manifold obtained by blowing-up
P2r−1 along a Pr−2 has index r.

1. Proof of Theorem 1 and Corollary 1. An example.

1.1. Proof of Theorem 1. Thanks to D. Huybrechts for the following proof.
Let Z be a Fano manifold and π : Z → Z ′ a smooth blow-down of Z with an s-
dimensional connected center. Let f be a line contained in a non trivial fiber of
π. Then, the Hilbert polynomial P−KZ

(m) := χ(f,m(−KZ)|f ) is determined
by s and n since −KZ ·f = n−s−1 and f is a smooth rational curve. Since −KZ

is ample, the Hilbert scheme Hilb−KZ
of curves in Z having P−KZ

as Hilbert
polynomial is a projective scheme, hence has a finite number of irreducible
components. Since each curve being in the component H of Hilb−KZ

containing
f is contracted by π, there is only a finite number of smooth blow-downs of Z
with an s-dimensional center.

1.2. Proof of Corollary 1. Let us first recall ([Deb97] section 5.2) that
there exists an integer δ(n) such that every Fano n-fold can be realized as a
smooth submanifold of P2n+1 of degree at most δ(n). Let us denote by T
a closed irreducible subvariety of the disjoint union of Chow varieties of n-
dimensional subvarieties of P2n+1 of degree at most δ(n), and by π : XT → T
the universal family.
Step 1 : Stability of smooth blow-downs. Fix t0 in the smooth locus Tsmooth
of T and suppose that Xt0 := π−1(t0) is a Fano n-fold and there exists a
smooth blow-down of Xt0 (denote by Et0 the exceptional divisor, P its Hilbert
polynomial with respect to OP2n+1(1)). Let S be the component of the Hilbert
scheme of (n− 1)-dimensional subschemes of P2n+1 with Hilbert polynomial P
and u : ES → S the universal family. Finally, let I be the following subscheme
of T × S :

I = {(t, s) |u−1(s) ⊂ Xt}

and p : I → T the proper algebraic map induced by the first projection.
Thanks to the analytic stability of smooth blow-downs due to Kodaira (see
[Kod63], Theorem 5), the image p(I) contains an analytic open neighbour-
hood of t0 hence it also contains a Zariski neighbourhood of t0. Moreover,
since exceptional divisors are rigid, the fiber p−1(t) is a single point for t in
a Zariski neighbourhood of t0. Finally, we get algebraic stability of smooth
blow-downs (the Pr-fibered structure of exceptional divisor is also analytically
stable - [Kod63], Theorem 4 - hence algebraically stable by the same kind of
argument).
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Step 2 : Stratification of T by the number of smooth blow-downs. For any
integer k ≥ 0, let us define

Uk(T ) = {t ∈ Tsmooth |Xt is a Fano manifold and there exists at least
k smooth blow-downs of Xt};

and U−1(T ) = Tsmooth. Thanks to Step 1, Uk(T ) is Zariski open in T , and
thanks to Theorem 1, ⋂

k≥−1

Uk(T ) = ∅.

Since {Uk(T )}k≥−1 is a decreasing sequence of Zariski open sets, by noetherian
induction, we get that there exists an integer k such that Uk(T ) = ∅ and we
can thus define

k(T ) := max{k ≥ −1 |Uk(T ) 6= ∅}, U(T ) := Uk(T )(T ).

Finally, we have proved that U(T ) is a non empty Zariski open set of Tsmooth
such that for every t ∈ U(T ), Zt is a Fano n-fold with exactly k(T ) smooth
blow-downs (k(T ) = −1 means that for every t ∈ Tsmooth, Xt is not a Fano
manifold).
Now let T0 = T , and T1 be any closed irreducible component of T0 \ U(T0).
We get U(T1) as before and denote by T2 any closed irreducible component of
T1 \U(T1), and so-on. Again by noetherian induction, this process terminates
after finitely many steps and we get a finite stratification of T such that each
strata corresponds to an algebraic family of Fano n-folds with the same number
of smooth blow-downs.

Step 3 : Conclusion. Since there is only a finite number of irreducible com-
ponents in the Chow variety of Fano n-folds, each being finitely stratified by
Step 2, we get a finite number of deformation types of simple Fano-like n-folds.

As it has been noticed by Kodaira, it is essential to consider only smooth blow-
downs. A −2 rational smooth curve on a surface is, in general, not stable under
deformations of the surface.

1.3. An example. Before going further, let us recall the following well known
example. Let Z be the projective 3-fold obtained by blowing-up P3 along a
smooth curve of type (3, 3) contained in a smooth quadric Q of P3. Let π
denotes the blow-up Z → P3. Then Z is a Fano manifold of index one and
there are at least three smooth blow-downs of Z : π, which is projective,
and two non projective smooth blow-downs consisting in contracting the strict
transform Q′ of the quadric Q along one of its two rulings (the normal bundle
of Q′ in Z is O(−1,−1)).

Lemma 1. There are exactly three smooth blow-downs of Z.

Proof : the Mori cone NE(Z) is a 2-dimensional closed cone, one of its two
extremal rays being generated by the class of a line fπ contained in a non trivial
fiber of π, the other one, denoted by [R], by the class of one of the two rulings
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of Q′ (the two rulings are numerically equivalent, the corresponding extremal
contraction consists in contracting Q′ to a singular point in a projective variety,
hence is not a smooth blow-down). If E is the exceptional divisor of π, we have

E · [fπ] = −1, E · [R] = 3, Q′ · [fπ] = 1, Q′ · [R] = −1.

Now suppose there exists a smooth blow-down τ of Z with a 1-dimensional
center, which is not one of the three previously described. Let L be a line
contained in a non trivial fiber of τ , then since −KZ · [L] = 1, we have [L] =
a[fπ] + b[R] for some strictly positive numbers such that a + b = 1. Since we
have moreover

Q′ · [L] = a− b = 2a− 1 ∈ Z and E · [L] = 3b− a = 3 − 4a,

we get a = b = 1/2. Therefore Q′ · [L] = 0 hence L is disjoint from Q′ (it can
not be contained in Q′ since Q′

|Q′ = O(−1,−1)). It implies that there are two

smooth blow-downs of Z with disjoint exceptional divisors, which is impossible
since ρ(Z) = 2.
Finally, if there is a smooth blow-down τ : Z → Z ′ of Z with a 0-dimensional
center, then Z ′ is projective and τ is a Mori extremal contraction, which is
again impossible since we already met the two Mori extremal contractions on
Z.

2. Non projective smooth blow-downs on a center with Picard
number 1. Proof of Theorem 2.

The proof of Theorem 2 we will give is close to Wísniewski’s one but we give
two intermediate results of independant interest.

2.1. On the normal bundle of the center. Let us recall that a smooth
submanifold A in a complex manifold W is contractible to a point (i.e. there
exists a complex space W ′ and a map µ : W → W ′ which is an isomorphism
outside A and such that µ(A) is a point) if and only ifN ∗

A/W is ample (Grauert’s

criterion [Gra62]).
The following proposition was proved by Campana [Cam89] in the case where
Y is a curve and dim(X) = 3.

Proposition 1. Let X be a non projective manifold, Y a smooth submanifold
of X such that the blow-up π : X̃ → X of X along Y is projective. Then, for
each connected component Y ′ of Y with ρ(Y ′) = 1, the conormal bundle N∗

Y ′/X

is ample.

Before the proof, let us remark that Y is projective since the exceptional divisor
of π is.

Proof of Proposition 1 : (following Campana) we can suppose that Y is
connected. Let E be the exceptional divisor of π and f a line contained in a non
trivial fiber of π. Since E ·f = −1, there is an extremal ray R of the Mori cone
NE(X̃) such that E ·R < 0. Since E ·R < 0, R defines an extremal ray of the
Mori cone NE(E) which we still denote by R (even if NE(E) is not a subcone
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of NE(X̃) in general !). Since ρ(Y ) = 1, we have ρ(E) = 2, hence NE(E) is a
2-dimensional closed cone, one of its two extremal rays being generated by f .
Then :

- either R is not generated by f and E|E is strictly negative on NE(E)\{0}.
In that case, −E|E = OE(1) is ample by Kleiman’s criterion, which means
that N∗

Y/X is ample.

- or, R is generated by f . In that case, the Mori contraction ϕR : X̃ → Z
factorizes through π :

X̃

π

��

ϕR // Z

X

ψ

??
�

�
�

�
�

�
�

�

where ψ : X → Z is an isomorphism outside Y . Since the variety Z is
projective and X is not, ψ is not an isomorphism and since ρ(Y ) = 1, Y is
contracted to a point by ψ, hence N∗

Y/X is ample by Grauert’s criterion.

Let us prove the following consequence of Proposition 1:

Proposition 2. Let X be a non projective manifold, Y a smooth submanifold
of X such that the blow-up π : X̃ → X of X along Y is projective with −KX̃

numerically effective (nef). Then, each connected component Y ′ of Y with
ρ(Y ′) = 1 is a Fano manifold.

Proof : we can suppose that Y is connected. Let E be the exceptional
divisor of π. Since −E|E is ample by Proposition 1, the adjunction formula
−KE = −KX̃|E −E|E shows that −KE is ample, hence E is Fano. By a result

of Szurek and Wísniewski [SzW90], Y is itself Fano.

2.2. Proof of Theorem 2. For the first assertion, we only have to prove
that

deg−K
X̃

(E) ≤ (ρn − 1)dn−1.

Let Y ′ be a connected component of Y and E ′ = π−1(Y ′). Then, since −E|E′

is ample :

deg−K
X̃

(E′) = (−KX̃|E′)
n−1 = (−KE′ +E|E′)n−1 ≤ (−KE′)n−1 ≤ dn−1.

Now, if m is the number of connected components of Y , then

ρn ≥ ρ(X̃) = m+ ρ(X) ≥ m+ 1.

Putting all together, we get

deg−K
X̃

(E) ≤ (ρn − 1)dn−1,

which ends the proof of the first point.
We refer to [Wis91] prop. (3.5) for the second point.
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3. On the dimension of the center of non projective smooth
blow-downs. Proof of Theorem 3.

Theorem 3 is a by-product of the more precise following statement and of
Proposition 3 below :

Theorem 4. Let Z be a Fano manifold of dimension n and index r, π : Z →
Z ′ be a non projective smooth blow-down of Z, Y ⊂ Z ′ the center of π. Let f
be a line contained in a non trivial fiber of π, then

(i) if f generates an extremal ray of NE(Z), then dim(Y ) ≥ (n− 1)/2.
(ii) if f does not generate an extremal ray of NE(Z), then dim(Y ) ≥ r.

Moreover, if dim(Y ) = r, then Y is isomorphic to Pr.

In both cases (i) and (ii), Y contains a rational curve.

The proof relies on Wísniewski’s inequality (see [Wis91] and [AnW95]), which
we recall now for the reader’s convenience : let ϕ : X → Y be a Fano-
Mori contraction (i.e −KX is ϕ-ample) on a projective manifold X , Exc(ϕ) its
exceptional locus and

l(ϕ) := min{−KX · C ; C rational curve contained in Exc(ϕ)}

its length, then for every non trivial fiber F :

dim Exc(ϕ) + dim(F ) ≥ dim(X) − 1 + l(ϕ).

Proof of Theorem 4. The method of proof is taken from Andreatta’s recent
paper [And99] (see also [Bon96]).
First case : suppose that a line f contained in a non trivial fiber of π generates
an extremal ray R of NE(Z). Then the Mori contraction ϕR : Z → W facto-
rizes through π :

Z

π

��

ϕR // W

Z ′

ψ

>>
|

|
|

|
|

|
|

|

where ψ is an isomorphism outside Y . In particular, the exceptional locus E
of π is equal to the exceptional locus of the extremal contraction ϕR.
Let us now denote by ψY the restriction of ψ to Y , s = dim(Y ), πE and ϕR,E
the restriction of π and ϕR to E. Since Z ′ is not projective, ψY is not a finite
map. Since ϕR is birational, W is Q-Gorenstein, hence KW is Q-Cartier and
KZ′ = ψ∗KW . Therefore, KZ′ is ψ-trivial, hence KY +detN∗

Y/Z′ is ψY -trivial.

Moreover, OE(1) = −E|E is ϕR,E-ample by Kleiman’s criterion, hence N∗
Y/Z′

is ψY -ample. Finally, ψY is a Fano-Mori contraction, of length greater or equal
to n− s = rk(N∗

Y/Z′ ). Together with Wísniewski’s inequality applied on Y , we

get that for every non trivial fiber F of ψY

2s ≥ dim(F ) + dim Exc(ψY ) ≥ n− s+ s− 1

hence 2s ≥ n − 1. Moreover, Exc(ψY ) is covered by rational curves, hence Y
contains a rational curve.
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Second case : suppose that a line f contained in a non trivial fiber of π does not
generate an extremal ray R of NE(Z). In that case, since E · f = −1, there is
an extremal ray R of NE(Z) such that E ·R < 0. In particular, the exceptional
locus Exc(R) of the extremal contraction ϕR is contained in E, and since f is
not on R, we get for any fiber F of ϕR :

dim(F ) ≤ s = dim(Y ).

By the adjunction formula, −KE = −KZ|E−E|E , the length lE(R) of R as an
extremal ray of E satisfies

lE(R) ≥ r + 1,

where r is the index of Z. Together with Wísniewski’s inequality applied on
E, we get :

r + 1 + (n− 1) − 1 ≤ s+ dim(Exc(R)) ≤ s+ n− 1.

Finally, we get r ≤ s, and since the fibers of ϕR are covered by rational curves,
there is a rational curve in Y . Suppose now (up to the end) that r = s. Then
E is the exceptional locus of the Mori extremal contraction ϕR. Moreover,
KZ+r(−E) is a good supporting divisor for ϕR, and since every non trivial fiber
of ϕR has dimension r, ϕR is a smooth projective blow-down. In particular,
the restriction of π to a non trivial fiber F ' Pr induces a finite surjective map
π : F ' Pr → Y hence Y ' Pr by a result of Lazarsfeld [Laz83].
This ends the proof of Theorem 4.

The proof of Theorem 4 does not use the hypothesis Z Fano in the first case.
We therefore have the following :

Corollary 2. Let Z be a projective manifold of dimension n, π : Z → Z ′ be
a non projective smooth blow-down of Z, Y ⊂ Z ′ the center of π. Let f be a
line contained in a non trivial fiber of π and suppose f generates an extremal
ray of NE(Z). Then dim(Y ) ≥ (n − 1)/2. Moreover, if dim(Y ) = (n − 1)/2,
then Y is contractible on a point.

We finish this section by the following easy proposition, which combined with
Theorem 4 implies Theorem 3 of the Introduction :

Proposition 3. Let Z be a Fano manifold of dimension n and index r, π :
Z → Z ′ be a smooth blow-down of Z, Y ⊂ Z ′ the center of π. Then n − 1 −
dim(Y ) is a multiple of r.

Proof. Write

−KZ = rL and −KZ = −π∗KZ′ − (n− 1 − dim(Y ))E

where E is the exceptional divisor of π. Let f be a line contained in a fiber of
π. Then rL · f = n− 1 − dim(Y ), which ends the proof.

Proof of Theorem 3. Let Z be a Fano manifold of dimension n and index
r and suppose there is a non projective smooth blow-down of Z with an s-
dimensional center. By Proposition 3, there is a strictly positive integer k
such that n − 1 − kr = s. By Theorem 4, either n − 1 − kr ≥ (n − 1)/2 or
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n−1−kr ≥ r. In both cases, it implies that r ≤ (n−1)/2 and therefore s ≥ r.
If r > (n − 1)/3, since n− 1 ≥ (k + 1)r > (k + 1)(n− 1)/3, we get k = 1 and
s = n− 1 − r.

4. Rational curves on simple Moishezon manifolds.

The arguments of the previous section can be used to deal with the following
well-known question : does every non projective Moishezon manifold contain
a rational curve ? The answer is positive in dimension three (it is due to
Peternell [Pet86], see also [CKM88] p. 49 for a proof using the completion of
Mori’s program in dimension three).

Proposition 4. Let Z be a projective manifold, π : Z → Z ′ be a non projective
smooth blow-down of Z. Then Z ′ contains a rational curve.

Proof. With the notations of the previous section, it is clear in the first case
where a line f contained in a non trivial fiber of π generates an extremal ray R
of NE(Z) (in that case, the center of π contains a rational curve). In the second
case, since f is not extremal and KZ is not nef, there is a Mori contraction ϕ
on Z such that any rational curve contained in a fiber of ϕ is mapped by π to
a non constant rational curve in Z ′.
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[Wis93] J. Wísniewski. A report on Fano manifolds of middle index and b2 ≥
2. Mathematica Gottingensis, Schriftenreihe des Sonderforschungs-
bereichs Geometrie und Analysis. Heft 16 (1993).

Laurent Bonavero
Institut Fourier, UMR 5582
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