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Abstract. We consider G-equivariant semilinear parabolic equa-
tions where G is a finite-dimensional possibly non-compact symmetry
group. We treat periodic forcing of relative equilibria and resonant
periodic forcing of relative periodic orbits as well as Hopf bifurcation
from relative equilibria to relative periodic orbits using Lyapunov-
Schmidt reduction. Our main interest are drift phenomena caused by
resonance. In comparison to a center manifold approach Lyapunov-
Schmidt reduction is technically easier. We discuss impacts of our
results on spiral wave dynamics.
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1 Introduction

1.1 Spiral wave dynamics

Relative equilibria and relative periodic solutions are ubiquitous in systems
with continuous symmetry. Examples of relative equilibria and relative periodic
solutions are spiral waves. Spiral waves have been observed in various chemical
and biological systems, for example in the Belousov-Zhabotinsky reaction [5],
[26], [35], and in catalysis on platinum surfaces [16].
The spiral tip of a rigidly rotating spiral wave moves on a circle. In mathemat-
ical terms rigidly rotating spiral waves are rotating waves. Rotating waves are
stationary in a corotating frame and therefore examples of relative equilibria.
Meandering spiral waves are modulated rotating waves, i.e., they are periodic in
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Figure 1: Meandering spiral wave in the Belousov Zhabotinsky reaction, from
Steinbock et al. [27], with kind permission of Nature. The tip trajectory is
overlaid with a white curve.

a corotating frame. In this case the spiral tip performs a quasiperiodic motion,
which is called meandering, see Fig. 1.
Meandering spiral waves are generated by external periodic forcing of rigidly
rotating spiral waves [16]. Let ωext be the frequency of the external forcing
and let µext be its amplitude. If the periodic forcing is resonant, i.e., if the
rotation frequency ω∗

rot of the rigidly rotating wave at µext = 0 is a multiple
of the external frequency ωext of the system then a curve of drifting spiral
waves in the (ωext, µext)-plane is observed which separates modulated rotating
wave states with inward petals and outward petals, cf. [16]. This phenomenon
is called resonance drift. Drifting spiral waves, see Fig. 2, are modulated

Figure 2: Drifting Spiral Waves in the CO-Oxidation on Pt(110), courtesy of
[16]. The cross is always at the same position. So we see that the spiral wave
drifts away from the cross.
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travelling waves, i.e., they are periodic in a comoving frame. Both, meandering
and drifting spiral waves are examples of relative periodic orbits.

In experiments also meandering spiral waves have been forced periodically [35].
Here invariant 3-tori are found and frequency locking between the period of the
relative periodic orbits and the period of the external forcing occurs. Further-
more for certain external periods modulated travelling waves are generated.
Experimentalists call this phenomenon generalized resonance drift [35].
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Figure 3: Phase diagram for the spiral wave dynamics depending on the param-
eters a, b; courtesy of Barkley [4]. Shown are regions containing N: no spiral
waves, RW: stable rigidly rotating waves, MRW: modulated rotating waves,
MTW: modulated travelling waves (dashed curve). Spiral tip paths illustrate
states at 6 points. Small portions of spiral waves are shown for the two rotating
wave cases.

Meandering spiral waves can also emanate from rigidly rotating spiral waves
by a spontaneous bifurcation in autonomous systems, see [26], [32]. Barkley
found in numerical simulations [3], see Fig. 3, that this transition is a Hopf
bifurcation in the corotating frame. Hopf-bifurcation in autonomous systems
leads to analogous drifting phenomena as periodic forcing of rigidly rotating
waves.

The media in which spiral waves occur can be modelled by reaction-diffusion
systems of the form

∂ui

∂t
= δi∆ui + fi(u, t, µ), i = 1, . . . , M. (1.1)
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Here u = (u1, . . . , uM ) is a vector of concentrations of chemical species, the
functions ui, i = 1, . . . , M , map the plane R2 to R, the constants δi ≥ 0,
i = 1, . . . , M , are diffusion coefficients, µ ∈ Rp is a parameter, and the functions
fi, i = 1, . . . , M , are reaction-terms which are autonomous or time-periodic.
Barkley [4] was the first to notice the importance of the Euclidean symmetry
for spiral wave dynamics. The Euclidean group E(2) = O(2) n R2 of rotations,
translations and reflections on the plane acts on the functions u(x), x ∈ R2,
via

(ρ(R,a)u)(x) = u(R−1(x − a)), where R ∈ O(2), a ∈ R
2. (1.2)

System (1.1) is equivariant with respect to the symmetry group E(2).
In this article we want to study the transition from rigidly rotating to mean-
dering spiral waves on the infinitely extended plane R2. More generally the
aim of the paper is to understand the transition from relative equilibria to rel-
ative periodic orbits in equivariant systems. Furthermore we want to explain
the drift and resonance effects which we just described for general symmetry
groups. We will discuss implications of our results on spiral wave dynamics in
the plane and on the sphere (for simulations of spiral waves on the sphere see
[36]). Further we want to apply our results to the evolution of scroll-waves in
three-dimensional excitable media. Scroll waves have been studied numerically
for example in [15], [18].

1.2 Related literature

In the thesis [33] the first results on bifurcations from rotating waves in systems
with a non-compact, non-commutative symmetry group have been obtained.
This paper is based on the dissertation [33]; but whereas in [33] we restricted
attention to the symmetry group E(2) and applications in spiral wave dynamics
in this article we treat arbitrary symmetry groups. As in [33] we study the
transition from relative equilibria to relative periodic orbits using Lyapunov-
Schmidt reduction.
Shortly after [33] was finished a whole bunch of papers on spiral wave dynamics
and non-compact symmetry groups appeared:
Golubitsky et al. [10] used a formal center-bundle construction to derive ordi-
nary differential equations describing bifurcations near `-armed planar spiral
waves of autonomous reaction-diffusion systems and derived new conditions for
drifting. In [1] the drift of relative equilibria and periodic orbits along their
group orbit is analyzed for general non-compact groups. Fiedler et al. [7] clar-
ified the structure of the autonomous ordinary differential equations near rela-
tive equilibria with compact isotropy for general non-compact groups and gave
conditions for drifting. In [21], [22] we presented a center-manifold reduction
near relative equilibria and derived rigorously the ordinary differential equa-
tions on the center-manifold which were already guessed in [4] and formally
derived in [10]. In [23] we extended these results to relative periodic orbits.
In [8] normal forms near relative equilibria of non-compact group actions are
computed. In [34] bifurcations from relative periodic orbits are treated.
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Scheel [24], [25] proved the existence of rotating waves in unbounded domains.

The thesis [33] was inspired by work of Renardy on bifurcations from rotating
waves [19]. Renardy also studied bifurcations from rotating waves of semilinear
differential equations using Lyapunov-Schmidt reduction and applied his results
to the Laser equations [20]. But his results for partial differential equations are
restricted to compact symmetry groups.

1.3 Lyapunov-Schmidt-reduction versus center-manifold theory

To analyze bifurcations there are mainly two reduction methods: center-
manifold reduction and Lyapunov-Schmidt reduction. Both have advantages
and disadvantages. Here we will use Lyapunov-Schmidt reduction as tool for
the analysis of bifurcations; for a center-manifold approach see [21], [22]. The
advantage of Lyapunov-Schmidt reduction versus center-manifold theory is that
we obtain C∞-paths of relative periodic orbits if the nonlinearity in (1.1) is C∞

whereas we only obtain a Ck-smooth center-manifold, k < ∞. Besides this we
do not need the assumptions that the group action is isometric and that the
group orbit of the relative equilibrium is an embedded manifold which are nec-
essary for the center-manifold reduction. Finally the proofs are simpler since
they do not rely upon the highly developed invariant manifold machinery. On
the other hand the Lyapunov-Schmidt method is limited to relative equilibria
and relative periodic orbits – we cannot handle more complicated dynamics.
But for our purposes this is sufficient.

1.4 Organization of the paper

The paper is organized as follows.

First, in subsections 1.5 and 1.6 we study the functional-analytic framework of
spiral wave dynamics and show some of the difficulties arising in the mathe-
matical treatment of spiral waves. In subsection 1.7 we define an appropriate
abstract setting which covers the reaction-diffusion system (1.1) modelling spi-
ral wave dynamics. In this abstract setting we henceforth work. In section 2 we
study periodic forcing of relative equilibria and relative periodic orbits. First, in
subsection 2.1 we consider periodic forcing of relative equilibria and resonance
drift. In subsection 2.3 we study the scaling of the drift velocity. As exam-
ple we consider periodic forcing of rotating waves in E(2)-equivariant systems
which lead to modulated rotating waves or, in the resonance case, to modulated
travelling waves. This explains the experiments described in subsection 1.1. In
subsection 2.4 we consider resonant periodic forcing of relative periodic orbits
and discuss conditions for generalized resonance drift. The results apply to pe-
riodic forcing of meandering spiral waves as investigated experimentally by [35],
see also subsection 1.1. In section 3 we discuss Hopf bifurcation from relative
equilibria, resonances, scaling of drift velocity and effects of spatial isotropy of
the relative equilibrium. As an example we study the Hopf bifurcation from
multi-armed spiral waves. Section 4 is devoted to the proof of the main results.
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1.5 Functional-analytic framework

To describe spiral wave dynamics we consider reaction-diffusion systems of the
form (1.1) on a domain Ω ⊂ R3 to R, where Ω is a C∞-manifold without
boundary, for example R

2, the unit sphere S2 in R
3 or R

3 itself. The reaction-
terms fi, i = 1, . . . , M , are assumed to be Ck-smooth functions where k ∈ N.
The domain Ω is invariant under some subgroup G of the Euclidean group E(3)
of motions in three-dimensional space consisting of rotations, reflections and
translations. The group E(3) = O(3) n R3 acts on the functions u(x), x ∈ R3,
via (1.2), i.e.,

(ρ(R,a)u)(x) = u(R−1(x − a)), where R ∈ O(3), a ∈ R
3.

System (1.1) is equivariant with respect to the group G. If G = E(2) is the
Euclidean group of motions in the plane we write (φ, a) for (Rφ, a) where Rφ

is a rotation with angle φ and a ∈ R2.

We consider (1.1) in the space of bounded uniformly continuous functions X =
BCunif(Ω, RM ) or in the space X = L2(Ω, RM ).

In X = BCunif we get a time-evolution Φt,t0 of (1.1) on Y = X ; if X = L2 we
obtain a time-evolution on Y = Xα, α > 1/2 without any growth conditions
on f provided that f(0, t, µ) = 0 for all t, µ and δi > 0, i = 1, . . . , M . If δi = 0
for some i we still obtain a semiflow on X = H2 provided that f(0, t, µ) ≡ 0.

Note that the group action is not smooth on the whole function space X . If the
domain is Ω = R2 and we choose X = BCunif(R

2, RM ) then the E(2)-action
is even not strongly continuous because on the function u(x1, x2) = cosx1 the
rotation acts discontinuously: For large radius r the term |(ρ(φ,0)u)(x) − u(x)|
can become equal to 2 even for arbitrarily small φ. We encounter the same
problem if Ω = R3. Since we want to have a strongly continuous group action on
our base space X we consider the reaction-diffusion system (1.1) on a subspace
of BCunif which is invariant under the semiflow and where the group acts in a
strongly continuous way:

We define BCEucl(R
N , RM ) as the subspace of BCunif(R

N , RM ) on which E(N)
acts continuously, N = 2, 3. The Laplacian is sectorial on X = BCunif and
on L2, see [13]. We will now show that the Laplacian is also sectorial on
X = BCEucl(R

N , RM ): let Y be any Banach space with a group G acting on it
by a (not necessarily strongly continuous) representation ρg , g ∈ G. Let Y0 be
the subspace of Y on which G acts strongly continuously. If A is sectorial on Y
and Aρg = ρgA for all g ∈ G then A is sectorial in Y0: from ρge

−At = e−Atρg we
deduce that (e−At)t≥0 is a C0-semigroup from Y0 to Y0; furthermore e−Aty is
complex differentiable in t for y ∈ Y , t > 0, with derivative Ae−Aty ∈ Y . Since
ρgAe−At = Ae−Atρg and therefore Ae−AtY0 ⊂ Y0 we conclude that (e−At)t≥0

is an analytic semigroup on Y0. Since (λ − A)−1u ∈ Y0 for u ∈ Y0, λ ∈ C,
λ /∈ specY (A), the spectrum of A on Y0 is contained in the spectrum of A
on Y . Especially the Laplacian is sectorial on BCEucl, and its spectrum is
contained in the spectrum of the Laplacian defined on BCunif .
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We also get a time-evolution of (1.1) in BCEucl(R
N , RM ) because we have

ρgΦt,t0(u) = Φt,t0(ρgu) and therefore Φt,t0 maps Y0 into itself.
Now we have a C0-group action on X = BCEucl, but if Ω = R2, R3 the semi-
flow does not smoothen the group-action even if all diffusion coefficients δi are
positive. We demonstrate this for Ω = R

2 and for the heat equation where the
nonlinearity f is zero.
We will show that on R2 the operator ∂

∂φ is not bounded w.r.t. the Laplacian

∆ and to the semiflow (e∆t)t≥0:

Remark 1.1 The operator ∂
∂φ is not bounded relatively to the Laplacian ∆ or

relatively to the semiflow e∆t, t ≥ 0, on BCunif(R
2, R) and BCEucl(R

2, R).

Proof. The functions w`,b(x) := J`(b|x|)e
i`arg(x) where b ≥ 0 and J` is the `-th

Bessel function of the first kind are elements of BCEucl(R
2, R) ⊂ BCunif(R

2, R)
and they are eigenfunctions of the Laplacian ∆ and of the angle derivative ∂

∂φ :

∂

∂φ
w`,b = i`w`,b, ∆w`,b = −b2w`,b.

Since i`(1 + b2)−1 and i`e−b2t are not bounded for arbitrary b ∈ R, ` ∈
N0, we conclude that ∂

∂φ is not bounded relatively to ∆ on BCEucl(R
2, R),

BCunif(R
2, R) and that ∂

∂φe∆t is not a bounded operator on BCEucl(R
2, R),

BCunif(R
2, R) for t ≥ 0.

Remark 1.2 Also on L2(R2, R) the angle-derivative ∂
∂φ is not bounded rela-

tively to ∆ or e∆t, t ≥ 0.

Proof. By direct computation we see that F( ∂
∂φu) = ∂

∂φF(u). Here F(u)

denotes the Fourier transform of u. From this formula and from F(∆u)(x) =
−|x|2F(u)(x) we deduce that ∂

∂φ is not bounded with respect to ∆. Fur-

thermore the operator ∂
∂φ is not bounded relatively to e∆t in L2(R2, R) since

(F( ∂
∂φe∆tu))(x) = ∂

∂φe−|x|2t(F(u))(x) is not defined for all u ∈ L2(R2, R).
Therefore we cannot simply change coordinates into a corotating frame to deal
with the meandering transition.

1.6 Representations of E(N)

The function spaces Y = BCEucl(R
N , R), L2(RN , R), N = 2, 3, do not contain

finite-dimensional subspaces which are E(N)-invariant and in which the E(N)-
action is non-trivial. Again we will demonstrate this in the case Ω = R2,
G = E(2):

Lemma 1.3 Let the action of E(2) on the spaces X = BCEucl(R
2, R), X =

L2(R2, R) be given by (1.2). Then the function spaces BCEucl, L2 do not con-
tain finite-dimensional E(2)-invariant subspaces with nontrivial E(2)-action.
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In Greenleaf [12] a general theory on the action of topological groups on function
spaces is developed.
If we allow polynomial growth in our function space then the polynomials of
degree ≤ j are finite-dimensional representations of E(2).
Proof of Lemma 1.3. Let Vj = span(e1, . . . , ej) be a j-dimensional repre-
sentation of E(2) in BCunif or L2. Then the translations act as a C0-group
of isometries on Vj since they act in such a way on BCunif , L2. Since Vj is

finite-dimensional, we know that ρ(0,(a1,a2))ei =
∑j

i=1(e
η1a1+η2a2)ijej where

η1 = ∂
∂x1

|Vj
, η2 = ∂

∂x2
|Vj

are (j, j)-matrices. Since ρ(0,a) is an isometry we con-
clude that Re spec(η1) = Re spec(η2) = 0 and that η1, η2 do not contain Jordan
blocks. After simultaneous diagonalization of η1, η2 (note that [η1, η2] = 0)
we see that the eigenfunctions of η1, η2 are of the form eibx, b, x ∈ R

2. These
functions are not elements of X = L2(R2, R). So the proof is finished for the
function space L2. If we choose b = 0 we obtain an E(2)-invariant subspace of
X = BCunif(R

2, R) which consists of all constant functions. The E(2)-action
on this space is trivial. The action of the rotation is not continuous on the
functions eibx, b 6= 0, with respect to the norm ‖ · ‖BCunif(R2,R). Therefore

the functions eibx do not span a finite-dimensional E(2)-invariant subspace of
BCEucl(R

2, R) for b 6= 0.
Of course, the same considerations apply for x ∈ R

3, G = E(3) instead of
x ∈ R2, G = E(2).
Especially for an E(2)-invariant steady state the eigenspace to each eigenvalue
is E(2)-invariant and therefore infinite-dimensional. This makes the study of
bifurcations from E(2)-invariant equilibria for an abstract equivariant parabolic
equation very difficult. We will not attack this problem and rather study bi-
furcations from relative equilibria where these difficulties do not occur. Bifur-
cations from homogeneous steady states of reaction diffusion equations have
been studied by Scheel [24], [25] using spatial dynamics.

1.7 Abstract Setting

In this paper we study semilinear parabolic equations

du

dt
= −Au + f(u, ωextt, µ) (1.3)

on some Banach space X which are equivariant under a m-dimensional Lie
group G which may be non-compact. We assume that A is sectorial (for a
definition see [13]) and that f is Ck-smooth from Y ×R×Rp to X . Here k ∈ N

or k = ∞, µ ∈ Rp and Y = Xα for 0 ≤ α < 1.
By [13] there exists a time-evolution Φt,t0(·; µ) of (1.3) on Y , and Φt,t0(u; µ) is
Ck-smooth in u, µ for t ≥ t0 and in u, µ, t, t0 for t > t0. We assume that the
group G acts on Y by the linear strongly continuous representation ρg ∈ L(Y ),
g ∈ G and that (1.3) is G-equivariant, i.e.,

∀ g ∈ G ρgA = Aρg, f(ρgu, t, µ) = ρgf(u, t, µ)
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This implies that ρgΦt,t0(·; µ) = Φt,t0(ρg ·; µ) for all g ∈ G.
Assume that f in (1.3) is time-independent. Then a group orbit Gu∗ is called a
relative equilibrium of (1.3) if Φt(u

∗) = ρexp(ξ∗t)u
∗ for some ξ∗ ∈ alg(G). Here

alg(G) denotes the Lie algebra of G. Sometimes we denote u∗ itself as relative
equilibrium.
A point u∗ lies on a relative periodic orbit

O∗ = {ρgΦt,0(u
∗) | g ∈ G, t ∈ R}

if ΦT∗,0(u
∗) = ρg∗u∗ for some T ∗ > 0, g∗ ∈ G. In this case we suppose that

f(u, ωextt, µ) is independent of time or time-periodic with frequency ωext =
2πj/T ∗, j ∈ N. Sometimes we sloppily denote u∗ itself as relative periodic
orbit. We call T ∗ the relative period of the relative periodic orbit.
The aim of this article is to study transitions from relative equilibria to relative
periodic orbits of (1.3).

2 Periodically forced G-equivariant systems

This section deals with the effects of periodic forcing on relative equilibria
and relative periodic orbits. In particular, we will investigate drift phenom-
ena caused by resonant periodic forcing. We will apply our results to spiral
wave dynamics. This helps to understand the experiments mentioned in the
introduction. Proofs of the main theorems are postponed to section 4.
In this section we assume that the nonlinearity f of (1.3) is of the form

f(u, t, µ) = f̂(u, µ̂) + µextfext(u, ωextt, µ).

Here fext(u, τ, µ) is 2π-periodic in τ ; ωext is the frequency of the periodic
forcing, Text = 2π

ωext
is its period, µext is its amplitude and we decompose

µ = (µext, µ̂), where µext ∈ R, µ̂ ∈ Rp−1. So we consider the periodically
forced differential equation

du

dt
= −Au + f̂(u, µ̂) + µextfext(u, ωextt, µ). (2.1)

A typical example of the abstract semilinear differential equation (2.1) is a
periodically forced reaction-diffusion system on the domain Ω ⊂ RN , N = 2, 3,
cf. (1.1):

∂ui

∂t
= δi∆ui + f̂i(u, µ̂) + µextfext,i(u, ωextt, µ), i = 1, . . . , M. (2.2)

2.1 Periodic forcing of relative equilibria

This subsection deals with effects of periodic forcing on relative equilibria.
First we state two general theorems, then we study examples in spiral wave
dynamics.
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Consider system (2.1) without periodic forcing, i.e., at µext = 0. Assume
that u∗ is a relative equilibrium of the unforced system for the parameter
µ̂ = µ̂∗ = 0. Then u∗ satisfies

Φt(u
∗) = ρetξ∗u∗

for some ξ∗ ∈ alg(G). Since Φt(·) is equivariant and Ck-smooth in t for t > 0
we conclude that etξ∗

u∗ is Ck-smooth in t for all t ∈ R.
We will write ξu for d

dtρetξu|t=0. Furthermore denote by

Adg ξ := gξg−1 =
d

dt
(g exp(ξt)g−1)

∣

∣

∣

t=0
∈ alg(G)

the adjoint action of G on alg(G) and by

K = {g ∈ G | ρgu
∗ = u∗}

the isotropy group of u∗. We assume that K is compact. Let G0 denote
the identity component of G. We have ξ∗ ∈ alg(N(K)) where N(K) is the
normalizer of the isotropy group K of u∗ because for g ∈ K, t ∈ R,

ρgρexp(tξ∗)u
∗ = ρgΦt(u

∗) = Φt(ρgu
∗) = Φt(u

∗) = ρexp(tξ∗)u
∗

and therefore g exp(tξ∗) ∈ exp(tξ∗)K. Similarly the pull-back element g∗ of a
relative periodic orbit u∗ = ρ−1

g∗ ΦText,0(u
∗) lies in the normalizer of the isotropy

K of u∗. Actually for a relative equilibrium the drift velocity ξ∗ lies in the Lie
algebra of the centralizer Z(K) of K, which follows from the formula N(K)0 =
K0Z(K)0, see [9].
Since by periodic forcing isotropy is not changed we assume without loss of
generality in the whole section that K = {id}. Otherwise we change the space
Y to the fixed point space Fix(K) = {g ∈ G, ρgu

∗ = u∗} of K and the
symmetry group G to N(K)/K.

Let u∗ be a relative equilibrium, i.e., −Au∗ + f̂(u∗) = ξ∗u∗, and let

L∗ = −A + Duf̂(u∗) − ξ∗

be the linearization at the relative equilibrium in the comoving frame. Assume
that ρgu

∗ is C1 in g ∈ G. We compute that for ξ ∈ alg(G)

L∗ξu∗ = (−A + Duf̂(u∗) − ξ∗)ξu∗

= −ξAu∗ + Duf̂(u∗)ξu∗ − ξ∗ξu∗

= ξ(−A + f̂(u∗)) − ξ∗ξu∗

= (ξξ∗ − ξ∗ξ)u∗

= [ξ, ξ∗]u∗ = −adξ∗u∗.

(2.3)

Here [·, ·] denotes the commutator, adξ∗(ξ) = [ξ∗, ξ] and we used that gf̂(u) =

f̂(gu) and therefore Duf̂(u∗)ξ = ξf̂(u). From (2.3) we see that L∗ maps
Tu∗Gu∗ = alg(G)u∗ into itself.
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Example 2.1 Let u∗ be a rotating wave of the unforced system (2.1), e.g a
rigidly rotating spiral wave of the reaction-diffusion system (2.2) on Ω = R2

at µext = 0. Then the symmetry group is G = E(2). We write g = (φ, a) ∈
SO(2) n R2 = SE(2). Let ξ1 denote the generator of the rotation and ξ2, ξ3

denote the generators of the translation. Then ξ∗ = ω∗
rotξ1 where ω∗

rot is the
rotation frequency of the spiral, and we compute

L∗ξ1u
∗ = 0, L∗(ξ2 + iξ3)u

∗ = ω∗
rot[ξ2 + iξ3, ξ1]u

∗ = iω∗
rot(ξ2 + iξ3)u

∗.

Therefore the linearization L∗ of the rotating wave in the rotating frame has
always eigenvalues on the imaginary axis.

For a relative periodic orbit u∗ = ρ−1
g∗ ΦT∗,0(u

∗) with ρgu
∗ C1 in g we get

ρ−1
g∗ DΦT∗,0(u

∗)ξu∗ = (Ad−1
g∗ ξ)u∗, ξ ∈ alg(G).

If u∗ is a relative equilibrium then the linearization of the time-T -map in the
comoving frame ξ∗ is given by

eL∗T = ρ−1
g∗ DΦT (u∗)

where g∗ = eTξ∗

.
For the groups relevant in applications (compact and Euclidean groups) the
eigenvalues of the linear maps [ξ, ·], ξ ∈ alg(G), on alg(G) are purely imaginary
and similarly the spectrum of the maps Adg , g ∈ G, on alg(G) lies on the unit
circle. We will restrict our attention to these groups in this article. So we make
the overall hypothesis

Overall Hypothesis The spectra of the linear maps Adg, g ∈ G, are subsets
of the unit circle {λ ∈ C; |λ| = 1}.

Therefore in the case of continuous symmetry where alg(G) is nontrivial the
linearization L∗ at a relative equilibrium always has eigenvalues on the imag-
inary axis and similarly the linearization ρ−1

g∗ DΦT (u∗) of a relative periodic

orbit u∗ = ρ−1
g∗ ΦT (u∗) of (2.1) has always center-eigenvalues on the unit circle.

If u∗ is a relative equilibrium fix some T > 0. In the case of a relative periodic
orbit take T = T ∗. We need the following assumption on the spectrum:

Hypothesis (S) The set {λ ∈ C; |λ| ≥ 1} is a spectral set for the spectrum
spec(B∗) of the operator

B∗ := ρ−1
g∗ DΦT (u∗) ∈ L(Y ) (2.4)

(called center-unstable spectral set) with associated spectral projection P ∈ L(Y )
and the corresponding generalized eigenspace Ecu := R(P ) (the center-unstable
eigenspace) is finite-dimensional.

We will show in Section 4 below that Hypothesis (S) implies that ρgu
∗ is Ck

in g. Let Gu∗ = {ρgu
∗; g ∈ G} denote the group orbit at u∗. Frequently we

employ the following notion:
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Definition 2.2 We say that a relative periodic orbit or a relative equilibrium
u∗ of (2.1) is non-critical if ρgu

∗ is C1 in g and if the operator B∗ from (2.4)
satisfies Hypothesis (S) and if the center-eigenspace

Ec = Tu∗Gu∗ + span(∂tΦt(u
∗)|t=0)

only consists of eigenvectors which are forced by G-symmetry or time-shift sym-
metry (in the case of relative periodic orbits of autonomous systems).

Denote the dual space of Y by Y ?, let m = dim(G) and assume that ρgu
∗ is

C1 in g. Choose li ∈ Y ?, i = 1, . . . , m, such that the equations li(u − u∗) = 0,
, i = 1, . . . , m, define a section Sl = u∗ + Ŝl transverse to the group orbit
Gu∗ of the relative equilibrium at u∗. If u∗ is non-critical we can choose the
functionals li as left center-eigenvectors of L∗.
The following theorem essentially states that external periodic forcing leads to
a transition from relative equilibria to relative periodic orbits.

Theorem 2.3 Let u∗ = ρe−tξ∗Φt(u
∗) be a relative equilibrium of the unforced

system (2.1), i.e., for the parameter µ = 0. Compute B∗ = eT∗

extL
∗

as in (2.4)
and assume that u∗ satisfies assumption (S). Then ρgu

∗ is Ck in g.
If the generalized eigenspace of B∗ to the eigenvalue 1 lies in alg(G)u∗ then for
each small amplitude µext of the periodic forcing, each frequency ωext ≈ ω∗

ext

of the forcing and each small µ̂ there is exactly one relative periodic orbit u =
u(ωext, µ), of (2.1) satisfying

u = ρ−1
g ΦText,0(u, µ) and u ∈ Sl, (2.5)

for some g = g(ωext, µ). Furthermore ρgu(ωext, µ) is Ck in g ∈ G, ωext and µ,
g(ωext, µ) is Ck in (ωext, µ) and u(ωext, 0) = u∗, g(ωext, 0) = g∗.

Often we need not use the full symmetry G of (3.1) to prove Theorem 2.3.
If L∗ does not have eigenvalues ijω∗

ext, j ∈ Z, forced by symmetry then the
symmetry group is discrete and we need not take it into account to prove the
theorem. If [·, ξ∗] has eigenvalues in iω∗

extZ, then the corresponding (gener-
alized) eigenvectors form a Lie-subalgebra of alg(G) as can be seen from the
Jacobi-identity.
We call the Lie group generated by the generalized eigenvectors of [·, ξ∗] to the
spectral set iω∗

extZ the minimal symmetry group for the forcing frequency ω∗
ext

that we consider.

2.2 Resonance drift

Now we deal with the effects of resonant periodic forcing. We need the following
notion:

Definition 2.4 Let g ∈ G. If gn = exp(ξn) for some ξ ∈ alg(G) with Adg ξ =
ξ and n ∈ N then we call ξ average velocity of g.
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There may be many average velocities for each group element g; for example if
G = SO(2) then for g∗ = φ∗ the set {ξ∗ = φ∗ + j2π | j ∈ Z} consists of average
velocities for g∗. If u = ρ−1

g ΦT,0(u) is a relative periodic orbit of (2.1) and
ξ is an average velocity of g then we call ξ/T average velocity of the relative
periodic orbit.

Definition 2.5 If exp(·) is not locally surjective near ξ∗ ∈ alg(G) then there
are elements g ∈ G close to exp(ξ∗) which have (if any) only average velocities
ξ which are far away from ξ∗. We call this phenomenon resonance drift.

Similarly, let u∗ be a non-critical relative equilibrium of the unperturbed system
(2.1) which travels with velocity ξ∗. If the period of the external forcing T ∗

ext

is such that exp(·) is not locally surjective near ξ = ξ∗T
∗
ext then it may happen

that relative periodic orbits of (2.1) which are generated by external periodic
forcing, see Theorem 2.3, drift with an average velocity completely different to
the drift velocity ξ∗ of the relative equilibrium at µext = 0. We also call this
effect resonance drift.
Due to [31, Theorem 2.14.2] we know that the map (D exp(ξ∗))exp(−ξ∗) :
alg(G) → alg(G) is given as

(D exp(ξ∗))exp(−ξ∗) =
∑∞

n=0
(−1)n

(n+1)! (adξ∗)n

= (−adξ∗)−1(exp(−adξ∗) − id)
(2.6)

where adξ∗(ξ) = [ξ∗, ξ]. Hence exp(·) is not locally surjective at ξ∗ iff adξ∗

has eigenvalues in 2πiZ \ {0}. Consequently, for resonance drift to occur it is
necessary that the periodic forcing is resonant, i.e., that the linearization L∗ of
the relative equilibrium in the comoving frame has a symmetry eigenvalue in
iω∗

extZ \ {0}. Otherwise exp(·) would be surjective near T ∗
extξ

∗ and the relative
periodic orbits u(µ) generated by periodic forcing would drift with velocity
ξ(µ) ≈ ξ∗.
As we mentioned in the introduction even a transition from compact to non-
compact drift may take place. We will deal with this in the following example:

Example 2.6 Consider Example 2.1 again: Let the symmetry group be G =
E(2), write g = (φ, a) ∈ SO(2)nR2 = SE(2) and let u∗ be a non-critical rotating
wave u∗ = ρ(−ω∗

rott,0)
Φt(u

∗) of the unforced system (2.1), ie. for µext = 0. For
example u∗ could be a rigidly rotating spiral wave of the reaction-diffusion
system (2.2) on Ω = R

2. By Theorem 2.3 for each small forcing amplitude
µext ≈ 0 and each forcing frequency ωext there is a relative periodic orbit
u(ωext, µext) ≈ u∗.
If ω∗

rot/ω∗
ext /∈ Z then the forcing is non-resonant and the relative periodic

orbits u(µext, ωext) with ωext ≈ ω∗
ext are modulated rotating waves of (2.1)

(called meandering spiral waves in the example (2.2)).
If ω∗

rot/ω∗
ext = j ∈ Z then we see from (2.6) that D exp(2πξ∗/ω∗

ext) has rank
defect 2. We talk of a j : 1-resonance. In this case modulated travelling waves
(called drifting spiral waves of (2.2)) are generated as the following proposition
shows:
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Proposition 2.7 If a rotating wave of an E(2)-equivariant system (2.1) is
subject to j : 1-resonant periodic forcing then there is a Ck-smooth path u(µext),
a(µext), ωext(µext), of modulated travelling waves satisfying

Φ2π/ωext(µext)(u(µext)) = ρ(0,a(µext))u(µext)

such that u(0) = u∗, a(0) = 0, ωext(0) = ω∗
ext.

Proof. By Theorem 2.3 we get a surface u(ωext, µext) of relative periodic
orbits satisfying (2.5) where g(ωext, µext) = (φ(ωext, µext), a(ωext, µext)). To
obtain modulated travelling waves we need to solve the equation

φ(ωext, µext) = 0 mod 2π.

We have ∂ωextφ(ωext, µext)|(ωext,µext)=(ω∗

ext,0)
6= 0. This can be seen as follows:

Let ξ1 be the generator of the rotation, and ξ2, ξ3 be the generators of the
translation. Computing the derivative w.r.t. ωext of (2.5) in (ωext, µext) =
(ω∗

ext, 0) we get

−
2πω∗

rot

(ω∗

ext)
2 ξ1u

∗ + (DΦT∗

ext ,0(u
∗) − 1)∂ωextu(ω∗

ext, 0)

= (∂ωextφ(ω∗
ext, 0)ξ1 + ∂ωexta1(ω

∗
ext, 0)ξ2 + ∂ωexta2(ω

∗
ext, 0)ξ3)u

∗.
(2.7)

Here we used that

∂ωextΦ2π/ω∗

ext
(u∗) = −

2π

(ω∗
ext)

2
∂tΦt(u

∗)t=2π/ω∗

ext
= −

2πω∗
rot

(ω∗
ext)

2
ξ1u

∗.

If we choose the li in (2.5) as left center-eigenvectors of L∗ then

li((DΦT∗

ext ,0(u
∗) − 1)∂ωextu(ω∗

ext, 0)) = 0, i = 1, 2, 3.

Applying the functionals li, i = 1, 2, 3, onto (2.7) we conclude that

∂ωextφ(ω∗
ext, 0) = −2πω∗

rot/(ω∗
ext)

2 6= 0.

Hence we can apply the implicit function theorem to get a smooth path
µext(ωext) parametrizing modulated travelling waves.

A transition from rotating waves to modulated travelling waves has been ob-
served in experiments [16] in the case of 1 : 1-resonance and 2 : 1-resonance.
Ashwin and Melbourne [2] talk of drift bifurcation of relative equilibria if a
rotating wave of an E(2)-equivariant system becomes a travelling wave in the
limit ωrot → 0. So their drift bifurcation and our resonance drift are related.
But in our case the resonance drift is enforced by periodic forcing.

Example 2.8 Consider the reaction-diffusion system (2.2) on the sphere Ω =
S2. Then the symmetry group is G = O(3). We will show that a wave u∗ rotat-
ing around the x3-axis starts meandering around some vector in the (x1, x2)-
plane if it is subject to resonant periodic forcing.
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Let ξi denote the generators of the rotation around the unit vectors ei ∈ R3, i =
1, 2, 3, and write g ∈ SO(3) as g = exp(

∑3
i=1 φiξi). Let u∗ = ρexp(−ξ∗t)Φt(u

∗)
be a non-critical wave of the unforced system (2.2), µext = 0, rotating around
the x1-axis, i.e., ξ∗ = ω∗

rotξ1. As in (2.3) we compute

L∗(ξ2 + iξ3)u
∗ = iω∗

rot(ξ2 + iξ3)u
∗.

If we switch on resonant periodic forcing with ω∗
ext = ω∗

rot/j, j ∈ Z, then there
is a smooth path u(µext), ωext(µext) of waves meandering around some vector
in the (x2, x3)-plane:

ΦText(µext),0(u(µext)) = ρexp(φ2(µext)ξ2+φ3(µext)ξ3)u(µext)

where φ2(0) = 0, φ3(0) = 0, ωext(0) = ω∗
ext, u(0) = u∗. This can be seen as in

Example 2.6.
For numerical simulations of rotating waves on the sphere S2 see [36].

In the last two examples of resonant forcing the relative equilibria were always
rotating waves. But also for nonperiodic relative equilibria resonance drift
occurs:

Example 2.9 Consider the reaction-diffusion system (2.2) in three space Ω =
R3. Then the symmetry group is the Euclidean group E(3).
Let u∗ be a twisted scroll ring of the unforced system (2.2). Such a wave
consists of a circular filament in the (x2, x3)-plane along which vertical spiral
waves are located and an additional infinitely extended vertical filament [18].
It is a relative equilibrium which translates along its vertical filament and
simultaneously rotates around it.
Because of the vertical filament only translations a ∈ R3 and rotations around
the x3-axis act continuously on u∗ in the space BCunif . So the effective sym-
metry group is in this case G = E(2) × R. cf. [23]. We write g = (φ, a) for
the elements of E(2)×R where φ is the rotation angle around the x1-axis and
a ∈ R3 is a translation vector.
The time-evolution of the twisted scroll ring is given by Φt(u

∗) = ρexp(ξ∗t)u
∗

where ξ∗ = (ω∗
rot, v

∗
e1).

If the twisted scroll ring is forced periodically with frequency ωext it will typi-
cally start meandering in the (x2, x3)-plane:

ΦText,0(u(µext)) = ρ(φ(µext),a(µext))u(µext), a(µext) = v(µext)Texte1.

But by resonant periodic forcing, i.e., if ω∗
rot/ω∗

ext ∈ Z, we can achieve that the
scroll ring drifts away in another direction than the x1-axis as the following
proposition shows:

Proposition 2.10 If the twisted scroll ring of (2.2) is noncritical and forced
periodically such that ω∗

rot/ω∗
ext ∈ Z then there is a Ck-smooth path u(µext),

ωext(µext) of relative periodic orbits satisfying

Φ2π/ωext(µext),0(u(µext)) = ρ(0,a(µext))u(µext), a(µext) ∈ R
3.
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The direction of the drift a(µext) of the periodically forced twisted scroll rings
in the above proposition will typically not point in x1-direction. The proof of
the proposition is similar as the proof of Proposition 2.7.

Note again that to the isotropy K of the relative equilibria not all kinds of
noncompact drift are possible. As mentioned before the drifts g(ωext, µ) of
the emanating relative periodic orbits have to lie in N(K). Remember that
we have chosen G = N(K)/K in the whole section. In a second step we
have to interpret our results on periodic forcing for the original group G. In
a system with E(2)-symmetry for instance we see that a rotating wave with
spatial symmetry K can not start drifting under the influence of the periodic
forcing if K contains a non-trivial rotation (φ, 0). In this case N(K) = SO(2),
see [7]. Similarly if G = E(2) and K only consists of one reflection then the
relative equilibrium u∗ can not rotate. Hence it is a travelling wave in general.
A relative equilibrium in an E(2)-equivariant system with K ⊃ Dn, n > 1,
even has to be stationary.
We can generalize Propositions 2.7, 2.10 as follows: Let g = g̃(χ), χ ∈ Rn,
|χ| ≤ 1, be a smooth n-dimensional hyper-surface in G such that g(0) = g∗ =
exp(T ∗

extξ
∗). Let {ξi |i = 1, . . .m}, m = dim(G), denote a basis of alg(G).

Write

g̃(χ) = exp(ζ̃(χ))g∗, ζ̃(χ) =

dim(G)
∑

i=1

ζ̃i(χ)ξi, (2.8)

ζ̃i(0) = 0, i = 1, . . . , m, and assume that (∂χj
ζ̃i(0))i,j=1,...,n is an invertible

(n, n)-matrix
(∂χj

ζ̃i(0))i,j=1,...,n ∈ GL(n), (2.9)

and that
∂χζ̃i(0) = 0 for i = n + 1, . . . , m. (2.10)

Let u∗(µ̂) = ρexp(−t
∑

m
i=1 ζ∗

i (µ̂)ξi)Φt(u
∗(µ̂)) be relative equilibria of (2.1) at

µext = 0 such that u∗(0) = u∗,
∑m

i=1 ζ∗i (0)ξi = ξ∗ and u∗(µ̂) ∈ Sl. Then
the following holds:

Proposition 2.11 Let the assumptions of Theorem 2.3 jold. Then there is
a Ck-smooth hyper-surface (ωext(µext, ν), µ(µext, ν)) of relative periodic orbits
u(µext, ν) in the (ωext, µ)-parameter-space with ν ∈ Rd, d = p − (m − n) and
|ν| small, satisfying

Φ2π/ωext(µext,ν),0(u(µext, ν); µ(µext, ν)) = ρg̃(χ(µext,ν))u(µext, ν)

and
u(µext, ν) ∈ Sl, u(0, 0) = u∗, χ(0, 0) = 0,

provided that the (m − n, p)-matrix

(∂(ωext,µ̂)Textζ
∗
i (0))i=n+1,...,m

has full rank.
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Proof. We solve the equation

g̃(χ)−1g(ωext, µ) = id

by the implicit function theorem.
In the examples 2.6, 2.8, 2.9 above the hyper-surface g = g̃(χ) consists of
elements with average drift velocity far away from the drift velocity ξ∗ of the
relative equilibrium.

2.3 Scaling of drift velocity

In this section we study the scaling of drifts induced by a harmonic periodic
forcing where the forcing term in (2.1) is of the form

fext(u, ωextt, µ) = f̃(u) cos(ωextt, µ). (2.11)

Such a forcing term is usually used in experiments [16], [35]. Further let µ =
µext ∈ R.
We first state a general proposition, then we apply this result to some examples
in spiral wave dynamics explaining scaling laws which were observed in experi-
ments or simulations. In the end we give a mathematical definition of the spiral
tip. The motion of the spiral tip is measured in experiments to visualize the
drift [5].
We assume that the unforced system (2.1) has a non-critical relative equilibrium
u∗ and denote again by {ξ1, ξ2, . . . , ξm} a basis of alg(G).

Proposition 2.12 Assume that the periodic forcing term in (2.1) is of the
form (2.11). Fix a forcing frequency ω∗

ext. Let u(µext), g(µext) be relative
periodic orbits for µext ≈ 0. Write

g(µext) = eTextζ(µext)eTextξ
∗

, ζ(µext) =

m
∑

i=1

ζi(µext)ξi.

Assume that the geometric multiplicity of the eigenvalue 0 of the linear map
[·, ξ∗] on alg(G) equals its algebraic multiplicity. Then

∂µextζi(0) = 0 if [ξi, ξ
∗] = 0.

This is also true if fext is not a harmonic periodic forcing, but the mean value
∫ 2π

0 fext(u, t)dt of fext is zero.
Now assume that the periodic forcing is resonant so that the linear map [·, ξ∗] on
alg(G) has eigenvalues ±iω∗

G with eigenvectors ξ1± iξ2 such that ω∗
G/ω∗

ext = j ∈
Z. Assume that the algebraic and the geometric multiplicity of the eigenvalue
±iω∗

G of [·, ξ∗] are equal. Then

∂µextζi(0) = 0 for i = 1, 2 if j > 1.
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If u∗ is a rotating wave then eTextξ
∗

= id for some Text. Therefore the (m, m)-
matrix [·, ξ∗] is semisimple and has eigenvalues ±iω∗

G with ω∗
G/ω∗

ext = j ∈ Z
and the above proposition can be applied, see Example 2.13 below.

Proof of Proposition 2.12. We write a prime for ∂µext in the following
calculation. We choose the functionals li in (2.5) defining the section transversal
to the group orbit again as left center-eigenvectors of L∗. Differentiating (2.5)
with respect to µext in µext = 0 gives

∑m
i=1 T ∗

extζ
′
i(0)ξiu

∗ = (eTextL
∗

− 1)u′(0)
+ρexp(−Textξ∗)∂µΦT∗

ext
(u∗; µ)|µ=0

(2.12)

where

ρexp(−ξ∗Text
)∂µextΦText(u

∗; µ)|µ=0 =

∫ 2π/ωext

0

eL∗(2π/ωext−t)f̃(u∗) cos(ωextt)dt.

Let P be the spectral projection of L∗ to the eigenvalue 0. Since algebraic
and geometric multiplicity of the eigenvalue 0 of [ξ∗, ·] are equal by assumption
and the relative equilibrium u∗ is noncritical we conclude that PL∗ = 0 and
therefore

∫ 2π/ωext

0

P eL∗(2π/ωext−t)f̃(u∗) cos(ωextt)dt = 0.

Applying P onto (2.12) we therefore get

m
∑

i=1

T ∗
extζ

′
i(0)Pξiu

∗ =

∫ 2π/ωext

0

P eL∗(2π/ωext−t)f̃(u∗) cos(ωextt)dt = 0.

This proves that ζ ′i(0) = 0 if [ξi, ξ
∗] = 0, and we see that we get the same result

if only the time average of fext(u, t, 0) is zero.
Now let Q be the spectral projection to the eigenvalue iω∗

G, ω∗
G/ω∗

ext = j.
Applying Q onto (2.12) we get, similarly as above,

m
∑

i=1

T ∗
extζ

′
i(0)Qξiu

∗ =

∫ 2π/ωext

0

QeL∗(2π/ωext−t)f̃(u∗) cos(ωextt)dt.

As above we conclude that ζ ′i(0) = 0 for i = 1, 2 if j > 1.

Example 2.13 Again let G = E(2) and let u∗ be a non-critical rotating wave
of the unforced system (2.1), e.g. a rigidly rotating spiral wave of the reaction-
diffusion system (2.2) on the plane Ω = R2. Assume that the periodic forcing
is resonant ω∗

rot = jω∗
ext, j ∈ Z. Then according to Example 2.6 there is a path

u(µext), a(µext), ωext(µext) of modulated travelling waves (drifting spiral waves
of the reaction-diffusion system (2.2)) in the parameter-plane (ωext, µext) ∈ R2.
Assume that the periodic forcing is harmonic. By Proposition 2.12 the drift

velocity v(µext) = a(µext)
Text

of the modulated travelling waves satisfies v′(0) = 0
if |j| > 1.
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Drift velocities which only grow with the square µ2
ext of the amplitude of the

external periodic forcing are rather small and apparently difficult to find in
experiments. That is why in experiments [35] mainly the 1:1-resonance is ob-
served; however in [16] also a 2 : 1-resonance could be detected experimentally.

Example 2.14 Let G = SO(3) and let u∗ be a non-critical wave of the un-
forced system (2.1) rotating around the x1-axis with speed ω∗

rot, for instance, a
rigidly rotating spiral wave in the reaction-diffusion system (2.2) on the sphere,
see Example 2.8; if the periodic forcing is resonant ω∗

rot = jω∗
ext, j ∈ Z then

according to Example 2.8 there is a path u(µext), φ(µext), ωext(µext) of mod-
ulated rotating waves meandering around some vector in the (x2, x3)-plane.
By Proposition 2.12 their drift velocity ωrot(µext) = φ(µext)/Text(µext) satisfies
ω′

rot(0) = 0 if j > 1.

Example 2.15 We again consider a twisted scroll ring, see Example 2.9. In
this case the symmetry group is G = E(2) × R and the drift velocity of the
scroll ring is given by ξ∗ = (ω∗

rot, v
∗
e1). Denote by u(µext), g(µext) the relative

periodic orbits generated by periodic forcing of the twisted scroll with fixed
forcing frequency ωext. We write g(µext) = (φ(µext), a(µext)) where a(µext) ∈
R3, a(0) = a∗

e1 = Textv
∗
e1, ωrot(µext) = φ(µext)/Text, ωrot(0) = ω∗

rot. By
Proposition 2.12 we have

|ωrot(µext) − ω∗
rot| = O(µ2

ext), |a1(µext) − a∗| = O(µ2
ext),

but in general |ai(µext)| = O(µext), i = 2, 3. This is also observed in numerical
simulations, see [15].

Now we define the tip position xtip(u) for u ∈ Y . It is not clear at all how
to define the spiral tip exactly. Experimentalists often determine the tip of a
spiral wave in two dimensions visually as point with maximal curvature at the
end of the spiral [5], but there are also other more or less precise definitions
around [14].
From a symmetry point of view the position xtip(u) ∈ R2 of the spiral tip in
the case G = E(2) is a function of the spiral wave solution u into R2 and has
the following property.

Definition 2.16 The tip position xtip(·) is a C1-smooth G-equivariant func-
tion which maps an open set of Y into a G-manifold M .

For example in the case G = E(2) we choose π(φ, a) = a, π(G) = R2 and G
acts on π(G) by the natural affine representation [8]; in the case G = SO(3)
we choose π(G) = S2; each g ∈ SO(3) can be represented by a vector φ ∈
so(3) = R3 such that g = exp(φ) is a rotation around the unit vector φ/|φ| by
the rotation angle |φ|; we set π(exp(φ)) = φ/|φ|.
In experiments the drift phenomena we talked about are detected by following
the spiral tip xtip(u). For the spiral tip xtip(u(ωext, µext)) the same scaling
phenomena hold as for the drifts g(ωext, µext).
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2.4 Resonant periodic forcing of relative periodic orbits

Now we consider resonant periodic forcing of relative periodic orbits. We still
assume that the isotropy K of the relative periodic orbit is trivial, otherwise
we choose G = N(K)/K, Y = Fix(K) as before.
Experiments on periodic forcing of meandering spiral waves have been carried
out e.g. by Müller and Zykov [35]. Here invariant 3-tori were found and fre-
quency locking between the period of the relative periodic orbits and the period
of the external forcing was observed. Furthermore for certain periods of the
external forcing modulated travelling waves were found in experiments. This
phenomenon is called ”generalized resonance drift” [35].
We will only consider frequency locked relative periodic solutions generated by
external periodic forcing. Let again Text = 2π

ωext
denote the period of the forcing,

let µext denote its amplitude and let T ∗ be the period of the relative periodic
orbit for µ = 0. Assume that u∗ is a non-critical relative periodic orbit in µ = 0,
that is, u∗ satisfies ΦT∗(u∗) = ρg∗u∗, for some T ∗ > 0, B∗ = ρ−1

g∗ DΦT∗(u∗)
satisfies Hypothesis (S) and the center-eigenspace only consists of eigenvectors
forced by G-symmetry or time-shift symmetry:

Ec = alg(G)u∗ ⊕ span(∂tΦt(u
∗)|t=0).

Furthermore suppose that

Tnew = jText = `T ∗ where gcd(j, `) = 1.

Let Pθ be the spectral projection corresponding to the center spectral set of
ρ−1

g∗ DΦ1(Φθ(u
∗)). The condition Pθ(u − Φθ(u

∗)) = 0 defines a section Sθ

transversal to the relative periodic orbit in Φθ(u
∗).

Proposition 2.17 Under the above conditions there is a Ck-smooth hyper-
surface u(θ, µ) of ` : j-frequency-locked relative periodic solutions with µ ∈ Rp,
θ ∈ [0, T ∗], satisfying

Φ 2πj
ωext(θ,µ)

,0(u(θ, µ)) = ρg(θ,µ)u(θ, µ), u(θ, µ) ∈ Sθ, (2.13)

and u(θ, 0) = Φθ(u
∗), g(θ, 0) = (g∗)

`
.

This proposition is proved similarly as Theorem 2.3. We refer to section 4 for
a proof.
Assume for a moment that G is compact. Due to periodic forcing it may happen
that a discrete rotating wave, i.e., a relative periodic orbit u∗ for which g∗ lies
in a discrete Cartan subgroup Zn, starts drifting. If gcd(n, `) > 1, then (g∗)`

may lie in a Cartan subgroup Zn/gcd(n,`) × T N , N > 0 and ` : j-frequency
locked relative periodic orbits nearby starts drifting.
An example is the group G = O(2) where g∗ is a reflection. If ` = 2 then
modulated rotating waves with relative period Tnew ≈ 2T ∗ are generated by the
resonant periodic forcing of the discrete rotating wave u∗. Such a phenomenon
can not occur in the case of relative equilibria.
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Another phenomenon that may occur in the case of periodic forcing is resonance
drift as we saw in the preceding sections. Let ξ∗ be a drift velocity of g∗. By
resonance drift we mean that there are group elements g close to (g∗)` with all
average drift velocities ξ far away from the drift velocity ξ∗ of g∗. We first give
an example. Then we state a general proposition.

Example 2.18 We consider periodic forcing of meandering spiral waves. In
this case the symmetry group is G = E(2), and

u∗ = ρ(−φ∗,0)ΦT∗(u∗)

is a modulated rotating wave. Assume that

`φ∗ = 0 mod 2π, ` 6= 0,

and that µ̂ ∈ R (p = 2). If ∂µ̂φ∗(0) 6= 0 then there is an ` : j-frequency locked
modulated travelling wave u(θ, µext) to the parameter µ = (µext, µ̂(θ, µext)),
ωext(θ, µext) such that u(θ, 0) = u∗. Here φ∗(µ̂) is the rotation angle for the
modulated rotating wave u∗(µ̂) = ρ(−φ∗(µ̂),0)ΦT∗(µ̂)(u

∗(µ̂)) for the autonomous
system (µext = 0) with parameter µ̂. This explains the ”generalized drift
resonance” of locked solutions reported by [35].

Let g = g̃(χ) as in section 2.1 be a hyper-surface of dimension n in G such that

g(0) = (g∗)
`

and that (2.8), (2.9), (2.10) hold. The hyper-surface g = g̃(χ)
may for example consist of the group elements with average velocities far away
from the drift velocity ξ∗ of g∗.
Let u∗(µ̂) = ρ−1

exp(
∑

m
i=1 ζ∗

i (µ̂)T∗(µ̂)ξi)g∗
ΦT∗(µ̂)(u

∗(µ̂)), P0(u
∗(µ̂) − u∗) = 0, be

relative periodic orbits of the unforced system (2.1) where µext = 0 such that
u∗(0) = u∗, T ∗(0) = T ∗, ζi(0) = 0, i = 1, . . . , m. Similarly as in Proposition
2.11 we find:

Proposition 2.19 Under the above assumptions there is a Ck-smooth hyper-
surface of ` : j-frequency locked relative periodic orbits near u∗ satisfying

Φ j2π

ωext(θ,µext ,ν)
,0(u(θ, µext, ν); µ(θ, µext, ν)) = ρg̃(χ(θ,µext,ν))u(θ, µext, ν),

and u(θ, µext, ν) ∈ Sθ, where ν ∈ Rd, d = p − 1 − (n − dim(G)), |ν| small,
provided that the (n − dim(G), p − 1)-matrix

(∂µ̂ζ∗i (0))i=n+1,...,dim(G)

has full rank.

Now we study the scaling behaviour of the drift velocities in the case of har-
monic periodic forcing (2.11) which is usually used in experiments [35]. Let
µ = µext ∈ R.
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Proposition 2.20 Let the periodic forcing be harmonic as in (2.11). Fix a
frequency ωext of the periodic forcing and write the pull-back elements g(θ, µext)
of the ` : j-frequency locked periodic orbits, see Proposition 2.17, as

g(θ, µext) = exp(

m
∑

i=1

jText(θ, µext)ζi(θ, µext)ξi)(g
∗)`.

If ` > 1 and if the geometric multiplicity of the eigenvalue 1 of Adg∗ equals its
algebraic multiplicity then we have:

∂µextζi(0) = 0 for all i with Adg∗ ξi = ξi.

Moreover the Arnold tongues where the frequency locking occurs grow as |µext|
2

if ` > 1.

Note that if (g∗)` = id as in Example 2.18 the matrix Adg∗ is semisimple so
that Proposition 2.20 can be applied.

Again a cautious note: in the case G = E(2) the meandering spiral wave can
not start drifting unboundedly if its spatial symmetry group K contains a
nontrivial rotation. In general by periodic forcing the isotropy group of the
relative periodic orbit is not changed. So the group element g(θ, µ) satisfying
ΦjText(θ,µ)(u(θ, µ)) = ρg(θ,µ)u(θ, µ) is in N(K) where K is the isotropy of u∗

for properly chosen u(θ, µ). Note that we chose G = N(K)/K in the whole
section.

Proof of Proposition 2.20. Let W (t, 0) = DΦt(u
∗) denote the solution

of the variation equation along Φt(u
∗) and let W (t, s) := W (t, 0)(W (s, 0))−1,

that is, W (t, s) = DΦt−s(Φs(u∗)). We have

∂µextΦTnew(u∗, 0) =

∫ `T∗

0

W (`T ∗, s)f̃(Φs(u
∗)) cos(

2πjs

`T ∗
)ds

=

∫ T∗

0

(. . .)ds + . . . +

∫ `T∗

(`−1)T∗

(. . .)ds

= Re

(

C

∫ T∗

0

W (T ∗, s)f̃(Φs(u
∗))e

2πijs

`T∗ ds

)

where

C = ρ`
g∗

`−1
∑

i=0

(ρ−1
g∗ W (T ∗, 0))`−i−1e2πiji/`ρ−1

g∗ .

Here we used that

W (t + iT ∗, s + iT ∗) = DΦt−s(Φs+iT∗(u∗)) = DΦt−s(ρ
i
g∗Φs(u

∗))

= ρi
g∗W (t, s)ρ−i

g∗
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and that

W (`T ∗, iT ∗) = DΦ(`−i)T∗(ΦiT (u∗)) = ρi
g∗DΦ(`−i)T∗(u∗)ρ−i

g∗

= ρ`
g∗ρi−`

g∗ DΦ(`−i)T∗(u∗)ρ−i
g∗

= ρ`
g∗(ρ−1

g∗ W (T ∗, 0))`−iρ−i
g∗ ,

and that therefore for s ∈ [0, T ∗)

W (`T ∗, s + iT ∗)f̃(ΦiT∗+s(u
∗))

= W (`T ∗, (i + 1)T ∗)W (iT ∗ + T ∗, iT ∗ + s)ρi
g∗ f̃(Φs(u

∗))

= ρ`
g∗(B∗)`−i−1ρ−1

g∗ W (T ∗, s)f̃(Φs(u
∗)),

where B∗ := ρ−1
g∗ W (T ∗, 0).

Let P be the spectral projection of B∗ to the eigenvalue 1. We have

Pρ−`
g∗ ∂µextΦTnew (u∗, 0) = Re

(

cPρ−1
g∗

∫ T∗

0

W (T ∗, s)f̃(Φs(u
∗))e

2πijs

`T∗ ds

)

(2.14)

where c =
∑`−1

i=0 e2πiji/`. So P∂µextΦTnew(u∗; 0) = 0 if ` > 1.
Differentiating (2.13) in the solution (u, g, ωext)(µ) with respect to µext in µ = 0
yields with g(θ, µext)(g

∗)−` = exp(
∑m

i=1 jText(θ, µext)ζi(θ, µext)ξi)

0 = ((B∗)` − 1)∂µextu(θ, µext)|θ,µext=0 − `T ∗
m
∑

i=1

∂µextζi(0)ξiu
∗

−
2πj∂µextωext(0)

ω2
ext(0)

∂tΦt(u
∗)|t=0 + ρ−`

g∗ ∂µextΦTnew,0(u
∗, µ)|µ=0.

Applying the projection P to the eigenvalue 1 of B∗ we see that ∂ζi

∂µext
(0) = 0

for all i with Adg∗ ξi = ξi and that ∂ωext

∂µext
(0) = 0 provided that ` > 1.

3 Hopf bifurcation from relative equilibria

In this section we study transitions from relative equlibria to relative periodic
orbits in autonomous systems caused by Hopf bifurcation. For experiments
on Hopf bifurcation from rotating waves – the meandering transition – in the
Belousov-Zhabotinsky reaction see [26], [32], [27]. First we state a general
theorem for Hopf bifurcation from relative equilibria. The proof of the Hopf
theorem can be found in Subsection 4.6. In Subsection 3.2 we explain the
drift phenomena caused by resonance which were observed in experiments. In
Subsection 3.3 we discuss equivariant Hopf bifurcation.
In the whole section we assume that the nonlinearity f in (1.3) is autonomous.
So we consider the differential equation

du

dt
= −Au + f(u, µ). (3.1)
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In the applications we have in mind (3.1) is an autonomous reaction-diffusion
system

∂ui

∂t
= δi∆ui + fi(u, µ), i = 1, . . . , M, (3.2)

cf. (1.1).

3.1 The theorem on Hopf bifurcation

Let u∗ be a relative equilibrium of (3.1) for µ = 0 satisfying Hypothesis (S).
We will show in Section 4 below that Hypothesis (S) implies that ρgu

∗ is Ck in
g. In this subsection we assume that the isotropy K of the relative equilibrium
is trivial K = {id} or we exchange G by N(K), Y by Fix(K). We assume that
±i are eigenvalues of the linearization L∗ = −A− ξ∗ +Df(u∗) in the comoving
frame which are not only caused by symmetry, i.e., if Q is the spectral projection
of L∗ to the i then there is some w ∈ QY with w /∈ alg(G)u∗. Furthermore
assume that

ni ∈ spec(L∗), n ∈ Z =⇒ QY ⊂ span(w, w̄) ⊕ alg(G)u∗.

Let u∗(µ) be the Ck-smooth path of relative equilibria with

Φt(u
∗(µ)) = ρexp(tξ∗(µ))u

∗(µ), li(u
∗(µ) − u∗) = 0, i = 1, . . . , m, u(0) = u∗.

Note that we can obtain the path of relative equilibria u∗(µ) near u∗ by applying
Theorem 2.3 with non-resonant period Text. As before the functionals li, i =
1, . . . , m, determine a section Sl = u∗ + Ŝl transversal to the group orbit of
the relative equilibrium u∗. We choose the functionals li such that li(w) = 0,
i = 1, . . . , m (e.g. by using the spectral projection of L∗ to the symmetry
eigenvalues to construct the functionals li.).

Lemma 3.1 Under the above assumptions there is a Ck−1-path β(µ) of eigen-
values of the linearization

L∗(µ) = −A + Df(u∗(µ)) − ξ∗(µ)

such that β(0) = i.

This lemma will be proved in section 4.6 below.

We write µ = (µ1, µ2) where µ1 ∈ R and µ2 ∈ Rp−1. If the transversality
condition

Re
∂β(0)

∂µ1
6= 0 (3.3)

holds then we can assume w.l.o.g. that µ1 = 0 parametrizes the relative equi-
libria u∗(µ) which are Hopf points.
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Theorem 3.2 Under the above assumptions there are relative periodic orbits
u(s, µ2), s ∈ R

+
0 small, of relative period T (s, µ2) near u∗ to the parameter

µ1(s) satisfying

ΦT (s)(u(s, µ2), (µ1(s), µ2)) = ρg(s,µ2)u(s, µ2) (3.4)

and u(0) = u∗, µ(0) = 0, g(0) = e2πξ∗

, T (0) = 2π provided that the transver-
sality condition (3.3) is satisfied. For each small s a circle ul(s1, s2, µ2),
s1 = s cos τ , s2 = s sin τ , τ ∈ [0, 2π], of the relative periodic orbit to the param-
eter s lies in the section Sl with corresponding pull-back element gl(s1, s2, µ2),
and we fix the phase by setting u(s, µ2) = ul(s, 0, µ2), g(s, µ2) = gl(s, 0, µ2),
such that ∂su(0) = Re w. The functions ul(s1, s2, µ2), µ1(s, µ2), gl(s1, s2, µ2),
T (s, µ2) are Ck−1 in s1, s2 ∈ R and µ2 ∈ Rp−1, and µ1(s, µ2) and T (s, µ2) only
depend on s = ‖(s1, s2)‖ and µ2.

Theorem 3.2 is proved in section 4.6 below. The Hopf bifurcation from relative
equilibria to relative periodic orbits is called relative Hopf bifurcation because
it is a Hopf bifurcation in the space of group orbits. Formally we can define a
semiflow Ψt(·) on Ŝl in a comoving frame by

Ψt(u; µ) = ρ−1
g(Φt(u,µ))Φt(u + u∗(µ); µ) − u∗(µ) (3.5)

where g(u) is such that li(ρ
−1
g(u)u − u∗) = 0, i = 1, . . . , m, ie. ρ−1

g(u)u ∈ Sl.

Under the above assumptions Ψt(·) undergoes a usual Hopf bifurcation with two
simple Hopf eigenvalues ±i and without any resonances. To see this note that

the linearization eL̃t of Ψt(u) in the Hopf point u = 0 is given by L̃ = PlL
∗Pl

where Pl is the projection onto the space li(u) = 0, i = 1, . . . , m such that
Pl alg(G)u∗ = 0. Choosing li, i = 1, . . . , m, such that li(ρgy) is C1 in g for
y ∈ Y (which is possible as we will see in Lemma 4.3 below) we see that the
semiflow Ψt(u) is strongly continuous on Y . But it is only smooth in u if
the group action is smooth on Φt(u), t > 0, u ∈ Y , which is not the case in
applications as we saw in the introduction, cf. subsection 1.5.
Often we need not use the full symmetry G of (3.1) to prove the Hopf theorem.
The situation is analogous to the case of periodic forcing of relative equilibria,
see section 2.1: If L∗ does not have eigenvalues ij, j ∈ Z, forced by symmetry
then ξ∗ = 0 and we have an ordinary Hopf bifurcation from an equilibrium. If
[ξ∗, ·] has eigenvalues in iZ, then the corresponding (generalized) eigenvectors
form a Lie subalgebra of alg(G). We call the group generated by this Lie
subalgebra the minimal symmetry group for the Hopf bifurcation.

Example 3.3 Consider again the reaction-diffusion system (3.2) on the do-
main Ω = R2. Then the symmetry group is G = E(2). Let u∗ be a rigidly
rotating spiral wave Φt(u

∗) = ρ(ω∗

rott,0)
u∗ of the reaction-diffusion system (3.2).

The meandering transition mentioned in the introduction corresponds to a rel-
ative Hopf bifurcation from the rotating wave u∗.
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3.2 Resonance drift and scaling of drift velocity

In this section we deal with resonant Hopf bifurcation. Again we assume that
the isotropy K of the relative equilibrium u∗ is trivial, K = {id} or we choose Y
as Fix(K), G as N(K)/K. In the next subsection we will deal with equivariant
Hopf bifurcation where K 6= {id}. Let the assumptions of Theorem 3.2 hold,
let again u∗ be a Hopf point with Hopf eigenvalues ±i, let again µ ∈ Rp and
let u∗(µ) be relative equilibria satisfying li(u

∗(µ) − u∗) = 0, i = 1, . . . , m, and

Φt(u
∗(µ)) = ρexp(ξ∗(µ)t)u

∗(µ), ξ∗(µ) =

m
∑

i=1

ζ∗i (µ)ξi,

with u∗(0) = u∗, ξ∗(0) = ξ∗. Here we again denote by {ξi; i = 1, . . . , m} a
basis of the Lie algebra alg(G) of G. We have

L∗ξu∗ = [ξ, ξ∗]u∗, e2πL∗

ξu∗ = Adexp(−2πξ∗) ξu∗ = (e2π[·,ξ∗]ξ)u∗, ξ ∈ alg(G).

If exp(·) is not locally surjective near 2πξ∗ then there may be relative periodic
orbits bifurcating from the relative equilibrium with all average drift velocities
completely different from the drift velocity ξ∗ of the relative equilibrium at the
Hopf bifurcation. We talk of resonance drift as introduced in subsection 2.2.
For resonance drift to occur it is necessary that the Hopf bifurcation is reso-
nant which means that the linearization L∗ of the relative equilibrium in the
comoving frame has a symmetry eigenvalue in iZ \ {0}. In group-theoretical
terms, the linear map [·, ξ∗] has eigenvalues in iZ\{0}. Otherwise exp(·) would
be surjective near 2πξ∗ and the relative periodic orbits u(s) generated by Hopf
bifurcation would drift with velocity ξ(s) ≈ ξ∗, cf. subsection 2.2.
Let g = g̃(χ) be an n-dimensional hyper-surface in G, χ ∈ Rn, |χ| ≤ 1 such

that g̃(0) = g∗ = eξ∗2π. Write g̃(χ) = exp(ζ̃(χ))g∗ where ζ̃ =
∑dim(G)

i=1 ζ̃i(χ)ξi,
ζi(0) = 0, i = 1, . . . , dim(G), and assume that (2.9) and (2.10) hold. As in
section 2.2 the hyper-surface g = g̃(χ) may consist of elements with average
drift velocity far away from the drift velocity ξ∗ of the relative equilibrium.
Again let µ = (µ1, µ2) with µ1 ∈ R, µ2 ∈ Rp−1.

Proposition 3.4 Let the assumptions of Theorem 3.2 and the above assump-
tions hold and let K = {id}. If ∂

∂µ1
Re β(0) 6= 0 and if the matrix

∂µ2(
Im β(µ)

ζ∗i (µ)
)|µ=0}i=n+1,...,m (3.6)

has full rank then there are relative periodic orbits with average drift inside
the hypersurface g = g̃(χ), more precisely: there are Ck−1-smooth functions
u(s, ν), T (s, ν), µ(s, ν), χ(s, ν) such that

ΦT (s,ν)(u(s, ν)) = ρg̃(χ(s,ν))u(s, ν).

Here ν ∈ Rd, d = p − 1 − (dim(G) − n), χ(0) = 0, u(0) = u∗.
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Proof. By Theorem 3.2 there are relative periodic orbits u(s, µ2), g(s, µ2),
T (s, µ2) bifurcating from u∗(µ)|µ1=0.
We want to solve the equation g̃(χ)−1g(s, µ2) = id by the implicit function
theorem. Since T (0, µ2) = 2π

Im β(0,µ2)
we have

∂µ2g(0, µ2)|µ2=0 = ∂µ2 exp(

m
∑

i=1

2πζ∗i (0, µ2)

Im β(0, µ2)
ξi)|µ2=0

= 2π(

m
∑

i=1

∂µ2ζ
∗
i (0)ξi − Im ∂µ2β(0)ξ∗)g∗.

We need that ∂(χ,µ2)g̃(χ)−1g(s, µ2)(s,χ,µ2)=(0,0,0) has full rank. Therefore the
matrix

{∂µ2ζ
∗
i (0) − ζ∗i (0)∂µ2 Im β(0)}i=n+1,...,dim(G)

has to be invertible, that is, we need that

{∂µ2(
Im β(µ)

ζ∗i (µ)
)|µ=0}i=n+1,...,dim(G)

has full rank.
Now we study the scaling behaviour of the drift velocities. Let µ ∈ R and write
the pull-back elements g(s) of the bifurcating relative periodic orbits u(s) as

g(s) = exp(T (s)ζ(s))g∗, ζ(s) =

dim(G)
∑

i=1

ζi(s)ξi. (3.7)

Remark 3.5 Let [ξi, ξ
∗] = 0. Then d

dsζi(0) = 0. In a j : 1-resonance

[ξ1 + iξ2, ξ
∗] = ij(ξ1 + iξ2), j ∈ N,

we have d`

ds` ζi(0) = 0, i = 1, 2, ` = 1, . . . , min(j, k) − 1.

Proof. Differentiating

ρ−1
g(s)ΦT (s)(u(s); µ(s)) − u(s) = 0

w.r.t. s in s = 0 gives

−2π

m
∑

i=1

ζ ′i(0)ξiu
∗ + (e2πL∗

− 1) Re w = 0.

Applying the spectral projection P0 of L∗ to the eigenvalue 0 gives

P0

m
∑

i=1

ζ ′i(0)ξiu
∗ = 0.
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If [ξi, ξ
∗] = 0 then P0ξiu

∗ = ξiu
∗, so ζ ′i(0) = 0. We have

ΦT (s)(ul(s1, s2), µ(s)) = ρgl(s1,s2)ul(s1, s2) (3.8)

where s1 = s cos τ , s2 = s sin τ , τ ∈ [0, 2π]. By Theorem 3.2 ul(s1, s2) and
gl(s1, s2) are Ck−1-smooth in s1, s2. We write gl(s1, s2) as in (3.7):

gl(s1, s2) = exp(T (s)ζl(s1, s2))g
∗, ζl(s1, s2) =

dim(G)
∑

i=1

ζl,i(s1, s2)ξi.

Since ul(s1, s2) ∈ GΦτT (s)/2π(u(s), µ(s)) there are Ck−1-functions ĝ(τ, s) ∈ G,

ζ̂(τ, s) ∈ alg(G) such that ĝ(τ, 0) = id, ζ̂(τ, 0) = 0,

ĝ(τ, s) = exp(ζ̂(τ, s)), ζ̂(τ, s) =

m
∑

i=1

ζ̂i(τ, s)ξi

and
ul(s1, s2) = ρĝ(τ,s) exp(−ξ∗τT (s)/2π)ΦτT (s)/2π(u(s), µ(s)). (3.9)

From (3.4), (3.8), (3.9) we conclude that

gl(s1, s2) = ĝ(τ, s) exp(−
τT (s)

2π
ξ∗)g(s) exp(

τT (s)

2π
ξ∗)ĝ(τ, s)−1.

Hence

eT (s)ζ(s1,s2) = eζ̂(τ,s) exp(T (s) Ad
exp(−

τT (s)
2π

ξ∗)
ζ(s))e−Adg∗ ζ̂(τ,s).

We can choose G minimal such that Adg∗ = id on alg(G). Therefore we
conclude that for each i

ζl,i(s1, s2)ξi = Ad
exp(ζ̂(τ,s)) exp( τT (s)

2π
ξ∗)

ζi(s)ξi.

Since exp(ξ∗τ)(ξ1 + iξ2) = exp(ijτ)(ξ1 + iξ2) we see that

ζl,1(s1, s2)ξ1 + iζl,2(s1, s2)ξ2 = (1 + sM(s)) exp(ijτ)(ζ1(s)ξ1 + iζ2(s)ξ2)

where M(s) ∈ Mat(2) is a Ck−2 smooth function. Therefore since ζl,i(s1, s2),

i = 1, 2, is Ck−1-smooth in s1, s2 we conclude that d`

ds` ζi(0) = 0, ` =
0, . . . , min(j, k) − 1, i = 1, 2.

Example 3.6 Again let G = E(2) and let u∗ be a rotating wave Φt(u
∗) =

ρ(ω∗

rott,0)
u∗ of (3.1), e.g. a rigidly rotating spiral wave of (3.2). Assume that the

parameter space is two-dimensional, µ ∈ R2, as in Fig. 3, and that parameters
are chosen such that the rotating waves u∗(µ) which are Hopf points lie on the
line µ1 = 0 in parameter space. Note that ±iω∗

rot are eigenvalues of [·, ξ∗] with
eigenvectors ξ2 ± iξ3, cf. Example 2.1. Choosing the hypersurface g = g̃(χ) in
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Proposition 3.4 as the subgroup of translations we now understand Fig. 3: If
the rotation frequency ω∗

rot is resonant to the Hopf frequency ω∗
Hopf = 1, ω∗

rot =

jω∗
Hopf ∈ Z and the resonance is crossed with nonzero speed ∂µ2(

Im β(µ)
ω∗

rot(µ) )|µ=0 6=

0 (which is generically satisfied) then there is a path µ(s) in parameter space
R2 of modulated travelling waves (drifting spiral waves)

ΦT (s)(u(s); µ(s)) = ρ(0,a(s))u(s).

From Remark 3.5 we see that the drift velocity v(s) = |a(s)|/T (s) generically
scales like |µ|j/2, see [4], [8].

3.3 Equivariant relative Hopf bifurcation

In this subsection we study relative Hopf bifurcation in the case of a compact
isotropy K 6= {id} of the relative equilibrium u∗. We consider the case when
the spatial isotropy K of the relative equilibrium is broken. If the bifurcating
solutions are relative periodic solutions and not relative equilibria we talk of
equivariant or symmetry-breaking relative Hopf bifurcation.
Assume that the linearization L∗ at the relative equilibrium u∗ has an eigen-
value i with a generalized eigenvector w /∈ alg(G)u∗, i.e., the eigenvalue i of
L∗ is not (only) caused by symmetry. The generalized eigenspace to the Hopf
eigenvalues ±i is K-invariant and may be forced by K-equivariance of L∗ to
have higher dimension than two even if ±i are not eigenvalues of [·, ξ∗]. see [11].
Let again Sl = u∗+Ŝl denote a section transversal to the group orbit Gu∗ at u∗

defined by functionals li, i = 1, . . . , mK where mK = dim(G/K) and denote by
Pl the projection from Y to the subspace Ŝl = {y; li(y) = 0, i = 1, . . . , mK}.
Since K is compact we can choose Pl to be K-equivariant and PlY = Ŝl to
be K-invariant: for example choose P = Ps + Q where Ps is the projection
onto the stable eigenspace of L∗ and Q is an orthogonal projection from the
finite-dimensional center-unstable eigenspace Ecu to (alg(G)u∗)⊥. Since ξ∗

commutes with the elements of K the operator L∗ = −A + Df(u∗) − ξ∗ is K-
equivariant and therefore Ecu is invariant and Ps is K-equivariant. If we choose
the scalar-product on Ecu to be K-invariant then also Q is K-equivariant. De-
fine L̃ = PlLPl. Denote the eigenspace of L̃ to the eigenvalues ±i by V . In the

generic case when i is a simple eigenvalue of L̃ the matrices eL̃τ , τ ∈ [0, 2π],
define an S1-action on V .
We consider the subgroups H of K × S1 with two-dimensional fixed point
spaces. They are called axial subgroups [11]. Let π : K × S1 → K be the
projection of K×S1 onto its first component. For each axial subgroup H there
is a homomorphism Θ : K → S1 = R/Z such that H = {(h, Θ(h)) | h ∈ π(H)},
see [11], [7]. There are two cases, Θ(K) = S1 or Θ(K) = Z`. Let Kbif denote
the kernel of Θ. Then the following lemma holds:

Lemma 3.7 Let the assumptions of Theorem 3.2 and the above assumptions
hold. If Θ(K) = S1 then there is a symmetry breaking transition from relative
equilibria to relative equilibria.
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If Θ(K) = Z` then a symmetry breaking relative Hopf bifurcation takes place:
Let h∗ = Θ−1(1/`) ∈ K. There is a path of relative periodic solutions u(s)
which emanates from the relative equilibrium u∗ by equivariant relative Hopf
bifurcation and satisfies

ΦT (s)/`(u(s)) = ρg(s)h∗u(s), T (0) = 2π, u(0) = u∗, g(0) = e2πξ∗/`.

The isotropy of the bifurcating solutions is Kbif = ker(Θ) in both cases.

The proof is a small modification of the proof of Theorem 3.2 and can be found
in subsection 4.6, see also [7]. Again the pull-back element g(s)h∗ of the relative
periodic orbit u(s) has to lie in N(Kbif). In the following discussion assume
that G = N(Kbif)/Kbif .
In the case of symmetry breaking Hopf bifurcation the average velocity of the
bifurcating relative periodic orbits is often far away from the drift velocity of
the relative equilibrium, as we see from the following example.

Example 3.8 (See also [7], [10]) Again let G = E(2) and let u∗ be a ro-
tating wave Φt(u

∗) = ρ(ω∗

rott,0)
u∗ with isotropy K = Z`, for example a

rigidly rotating spiral wave of (3.2) with ` identical arms. Consider a rep-
resentation of K on the critical eigenspace V = spanC(w, w̄) which is faith-
ful, i.e., Θ−1(1/`) = 2πn/`, gcd(`, n) = 1. If the rotating wave is a Hopf
point then under the usual transversality condition and in the non-resonant
case a Hopf bifurcation to modulated rotating waves takes place. The av-
erage rotation frequency ωrot(s) of the bifurcating modulated rotating waves
is given as ωrot(s) = (h∗ + φ(s))/(T (s)/`). Note that h∗ = 2πn/` and that
g(s) = (φ(s), a(s)) satisfies g(0) = (ω∗

rot2π/`, 0). Hence we get

ωrot(s = 0) = (2πn/` + ω∗
rot2π/`)/(2π/`) = n + ω∗

rot.

But in physical space the bifurcating modulated rotating waves in Example
3.8 still seem to drift in a similar direction as the rotating wave u∗. So what
is a useful definition of resonance drift in the case of symmetry-breaking Hopf
bifurcation? We first continue our example:

Example 3.9 (Example 3.8 continued) We recall the condition for noncom-
pact drift of relative periodic orbits nearby the Hopf point in Example 3.8,
see also [7], [10]. Since g(s) ∈ N(Kbif) we can only get noncompact drift if
Kbif ⊆ K is trivial. So we consider again, as above, a faithful representation
of K on the critical eigenspace V = spanC(w, w̄), where Θ−1(1/`) = 2πn/`,
gcd(`, n) = 1. Resonance drift occurs if ω∗

rot = j`−n, j ∈ Z, since for noncom-
pact drift φ(0) = 2πω∗

rot/` + 2πn/` = 0 mod 2π has to be satisfied. Since iω∗
rot

is in the spectrum of [·, ξ∗] with eigenvectors ξ1 + iξ2 we see from Remark 3.5
that the drift velocity v(s) = |a(s)|/T (s) generically grows as |µ||j`−n|/2.

In the case of noncompact drift in the above example we clearly want to speak
of resonance drift. Since we do not want to care about the (small) effects of the
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broken spatial Z` symmetry of the bifurcating relative periodic orbits in the
comoving system (3.5) we only talk of resonance whenever the drift (g(s)h∗)`

of the relative periodic orbits after time T (s) is not of the form exp(2πξ) with
ξ ≈ ξ∗. Note that a necessary condition for resonance drift is that exp(·) is
not locally surjective at ξ = 2πξ∗, but since g(s) and h∗ need not commute (in
contrast to h∗ and ξ∗) this condition is not sufficient: in Example 3.6 where the
isotropy is trivial the condition for unbounded drift is ω∗

rot ∈ Z, in the case of
Z`-isotropy the condition for noncompact drift is more restrictive, see Example
3.9.

4 Proof of the main theorems

This section is devoted to the proof of the theorems on periodic forcing and
Hopf bifurcation which we presented in Sections 2 and 3. First, in subsections
4.1 – 4.4 we present a general method how to continue relative periodic orbits
that satisfy the spectral hypothesis (S). In subsection 4.5 we prove Theorem
2.3 on periodic forcing. In subsection 4.6 below we use the developed methods
to prove the Hopf theorem 3.2 by use of Lyapunov-Schmidt reduction.

4.1 The method of proof

Assume that we are given a relative periodic orbit u∗ = ρ−1
g∗ Φ2π/ω∗

ext,0
(u∗)

of (2.1) that satisfies the spectral hypothesis (S). We want to continue this
relative periodic orbit wrt. the parameters µ and ωext, i.e., we want to solve
the equation F = 0 where F is given by

F (u, g, ωext, µ) =

(

ρ−1
g ΦText,0(u; ωext, µ) − u

li(u − u∗), i = 1, . . . , m

)

. (4.1)

We consider (4.1) for u in the fixed point space Fix(K) where K is the isotropy
of the relative periodic orbit. W.l.o.g. we assume that Y = Fix(K) and
G = N(K) is the normalizer of K. The functionals li, i = 1, . . . , m, define a
section transversal to the group orbit Gu∗ at u∗. We will show in Lemma 4.5
below that hypothesis (S) implies that ρgu

∗ is C1 in g so that it makes sense to
talk about a transverse section to Gu∗. We can not solve (4.1) by the ordinary
implicit function theorem because in general F (u, g, ωext, µ) is only continuous
in g. This comes from the fact that the G-action is only strongly continuous
and the Lie algebra elements ξ ∈ alg(G) act in general as unbounded operators
on Y . Furthermore, the time-evolution does not smoothen the group action,
that is, ρgΦText,0(u) is not differentiable in g in general. This is due to the
fact that the operators ξ ∈ alg(G) are not assumed to be bounded w.r.t. A (in
the case of the reaction-diffusion system (1.1) the operator ∂

∂φ is not bounded

w.r.t. ∆, see Proposition 1.2). Therefore the operator ∂F
∂u (u, g, ωext, µ) is in

general not continuous in g with respect to the norm ‖ · ‖L(Y ). We overcome
these difficulties as follows:
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We will solve the fixed point equation

y = Π(y, q, g, ωext, µ) = (1 − P̂ )ρ−1
g ΦText,0(y + q; ωext, µ), (4.2)

y ∈ (1 − P̂ )Y , q ∈ P̂ Y , by Banach’s contraction mapping theorem. Here P̂ is
a projector which is near the projection P onto the center-unstable eigenspace
Ecu of B∗ = ρ−1

g∗ DΦText,0(u
∗) in the L(Y )-norm. Furthermore we will show that

the solution y(q, g, ωext, µ) of this fixed point equation depends smoothly on
the parameters (q, g, ωext, µ) and that the G-action on the solutions is smooth.
Then we solve the reduced equation Fred = 0

Fred(q, g, ωext, µ) =

(

P̂ ρ−1
g ΦText,0(y(q, g, ωext, µ) + q; ωext, µ) − q

li(y(q, g, ωext, µ) + q − u∗) = 0, i = 1, . . . , m

)

(4.3)
by the implicit function theorem. In this way we can solve (4.1).

4.2 The scale of Banach spaces {Yj}j=0,...,k

For j > 1, define inductively

Yj := {u ∈ Yj−1; ξu ∈ Yj−1 for any ξ ∈ alg(G)}, Y0 = Y, (4.4)

equipped with the graph norm | · |Yj
given by

|u|Yj
= |u|Yj−1 + sup

ξ∈alg(G),|ξ|=1

|ξu|Yj−1 .

Let Y ? be the dual space to Y and define

Z?
0 := {y? ∈ Y ?; ρ?

gy
? is C0 in g},

where ρ?
g denotes the adjoint operator of ρg in Y ?. For j > 1, we define the

spaces Z?
j with norm | · |Z?

j
for the adjoint group action as in (4.4) with Y0

replaced by Z?
0 .

In the following we will often use that Pρg and ρgP are continuous in g with
respect to the norm ‖ · ‖L(Y ). For the second operator this is clear since ρg

is strongly continuous in g and PY is finite-dimensional. The operator Pρg is
continuous in g with respect to the norm ‖ · ‖L(Y ) iff ρ?

gP
? is continuous with

respect to the norm ‖ · ‖L(Y ?) where P ? is the spectral projection in Y ? onto
the left center-unstable eigenspace of L∗.

Lemma 4.1 P ? maps Y ? into Z?
0 .

If the group G acts strongly continuously on the dual space, for example in the
case G = E(2) acting on Y = L2(R2, RM ), then Lemma 4.1 is automatically
satisfied. Therefore we will skip the proof which is elementary, but technical
and can be found in [23, Lemmata 5.1,5.2].
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Remark 4.2 If we replace the assumption of a C0-action of G by the assump-
tion that ρgu

∗ is continuous in g and the group action is weakly continuous
then the theorems in sections 2, 3 still hold.

This is due to the fact that PY ⊂ Y0 is still satisfied, see [23, Lemmata 5.1,5.2]
and we can therefore restrict the problem onto Y0.
Since ξΦt,t0(u) = DΦt,t0(u)ξu we see that Φt,t0 maps Y1 into Y1. Inductively
we see that the time-evolution Φt,t0 maps each Yj , j ≤ k, into itself. Further
Φt,t0 is Ck−j -smooth from Yj into Yj .
Now we need the following lemma:

Lemma 4.3 Y1 is dense in Y0 and Z?
1 is dense in Z?

0 . Moreover, G acts as
C0-group on Yj , Z?

j .

The proof can be found in [23, Lemma 4.1]. If dim(G) = 1 this is usual
semigroup theory. From this lemma we can deduce

Lemma 4.4 There is a projector P̂ near P such that ρgP̂ and P̂ ρg are Ck in
g.

This was shown in [23, Lemma 5.3]. The idea is the following: let ei, i =
1, . . . , dim(PY ) be a basis of PY , and e?

i , i = 1, . . . , dim(PY ), be a basis for
P ?Y . Then by the foregoing lemma we can find êi ∈ Yk, ê?

i ∈ Z?
k which are

near ei rsp. e?
i in the Y -norm rsp. Y ?-norm. From these vectors êi, ê?

i we

”build” the projection P̂ .

4.3 Regularity of the relative periodic orbit

Now we need the following main lemma which will inductively yield Ck-
regularity of Gu∗ and ρgP , Pρg:

Lemma 4.5 If Hypothesis (S) is satisfied then u∗ ∈ Y1.

Proof. For a proof involving exponential dichotomies see [23]. Here we will
give a more elementary proof.
In a first step we define a formal expression for ξu∗, ξ ∈ alg G, and in a second
step we will show that ξu∗ exists and indeed equals this expression.
Let P̂ be a projector near P such that ρgP̂ and P̂ ρg are C1 in g in the operator
norm on Y and denote Φ = ΦText,0. Since u∗ = ρ−1

g∗ Φ(u∗) and ξρ−1
g = ρ−1

g Adg ξ
we have

ξu∗ = ρ−1
g∗ (Adg∗ξ)Φ(u∗) = ρ−1

g∗ DΦ(u∗)(Adg∗ξ)u∗ = B∗(Adg∗ξ)u∗

where B∗ = ρ−1
g∗ DΦ(u∗) and so we formally get

z(ξ) = Bsz(Adg∗ξ) + η(ξ). (4.5)
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Here

z(ξ) := (1 − P̂ )ξu∗, Bs := (1 − P̂ )B∗, η(ξ) = BsP̂ (Adg∗ξ)u∗.

Note that z(ξ) and η(ξ) are linear in ξ. Since P̂ is near P and since the
spectral radius of (1 − P )B∗ is smaller than one also the spectral radius of Bs

is smaller than one. Let {ξi, i = 1, . . . , m} be a basis of alg(G). By our overall
hypothesis the operator Adg∗ : alg(G) → alg(G) has spectrum on the unit
circle. Let (Adg∗)ij be the matrix associated to the operator Adg∗ with respect
to the basis {ξi, i = 1, . . . , m} of alg(G). We can define Adg∗ as operator in
Y m = Y × . . . × Y by setting

Adg∗(z1, . . . , zm) := (s1, . . . , sm), si =

m
∑

j=1

(Adg∗)ijzj , zi ∈ Y, i = 1, . . . , m.

Also the operator Bs can be extended to an operator on Y m by defining

Bs(z1, . . . , zm) := (Bsz1, . . . , Bszm), zi ∈ Y, i = 1, . . . , m.

Hence the operator BsAdg∗ = Adg∗Bs on Y m has also spectral radius smaller
than one. Changing Φ = ΦText,0 to Φ`Text,0 and accordingly B∗ to (B∗)` and
g∗ to (g∗)` with ` large enough we can achieve that ‖Bs‖‖Adg∗‖ < 1. W.l.o.g.
we assume that ` = 1. We rewrite (4.5) as

(1 − BsAdg∗)z = η, z = (z1, . . . , zm), η = (η1, . . . , ηm) (4.6)

where ηi = η(ξi), i = 1, . . . , m, are well-defined since P̂ ρg is C1 in g in the
operator norm. The system of equations (4.6) can be solved uniquely for zi =
z(ξi), i = 1, . . . , m. So we have proved that ξiu

∗ = zi+P̂ ξiu
∗ formally exists for

all ξi, i = 1, . . . , m, and hence by linear combination we get for each ξ ∈ alg(G)
a formal expression z(ξ) + P̂ ξu∗ which we know equals ξu∗ if u∗ ∈ Y1.
To show that the formal expression z(ξ) is indeed (1 − P̂ )ξu∗ we argue as
follows. Let z(ξ, t) = 1

t (1 − P̂ )(ρexp(ξt)u
∗ − u∗). We have

z(ξ, t) = 1
t (1 − P̂ )(ρexp(ξt)ρ

−1
g∗ Φ(u∗) − ρ−1

g∗ Φ(u∗))
= Bs(t)z(Adg∗ ξ, t) + η(ξ, t)

(4.7)

where
Bs(t) := (1 − P̂ )ρ−1

g∗ DΦ(u∗ + Θ(t)(ρexp(Adg∗ξt)u
∗ − u∗))

with 0 ≤ Θ(t) ≤ 1 and

η(ξ, t) =
1

t
Bs(t)P̂ (ρexp(Adg∗ξt)u

∗ − u∗).

Here we applied the mean value theorem. Let δz(ξ, t) = z(ξ, t) − z(ξ). Then

δz(ξ, t) = Bs(t)δz(Adg∗ξ, t) + δη(ξ, t) (4.8)
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where
δη(ξ, t) = (Bs(t) − Bs)z(ξ) + η(ξ, t) − η(ξ)

converges to zero as t → 0. Let

εz(t) = sup
‖ξ‖≤1,|τ |≤t

δz(ξ, τ), εη(t) = sup
‖ξ‖≤1,|τ |≤t

δη(ξ, τ).

Here ‖ξ‖ = (
∑m

i=1 ζ2
i )1/2 for ξ =

∑m
i=1 ζiξi is a norm on alg G. We define Bs(t)

like Bs as operator from Y m into Y m. Since Bs(t) is continuous in t in the
L(Y )-norm and ‖Bs‖‖Adg∗ ‖ < 1 we get ‖Bs(t)‖‖Adg∗‖ = c < 1 for t small
enough .
From (4.8) we get

εz(t) ≤ cεz(‖Adg∗‖t) + εη(t) (4.9)

with εη(t) → 0 as t → 0. Here we used that

z(Adg∗ξ, t) = z(
1

‖Adg∗‖
Adg∗ξ, ‖Adg∗‖t)‖Adg∗‖,

z(Adg∗ξ) = z(
1

‖Adg∗‖
Adg∗ξ)‖Adg∗‖

and that therefore

δz(Adg∗ξ, t) = δz(
1

‖Adg∗‖
Adg∗ξ, ‖Adg∗‖t)‖Adg∗‖

and consequently

sup
‖ξ‖≤1

δz(Adg∗ξ, t) ≤ ‖Adg∗‖ sup
‖ξ‖≤1

δz(ξ, ‖Adg∗‖t).

From (4.9) we conclude that

εz(t) ≤ c`εz(‖Adg∗ ‖`t) +

`−1
∑

i=0

ciεη(‖Adg∗ ‖it),

and hence that

εz(t/‖Adg∗ ‖`) ≤
1 − c`

1 − c
εη(t) + c`εz(t).

Choosing t small enough and ` large enough we see that εz(t) → 0 as t → 0.

4.4 Contractions on a scale of Banach spaces

We first show (Lemma 4.6) that Π` is a contraction in (1 − P̂ )Y for some
` ∈ N. Afterwards, in Lemma 4.7, we show that we can apply the contraction
theorem on the Banach scale {(1− P̂ )Yj}j=0,...,k−1. Finally Theorem 4.8 below
guarantees that the solution we obtained depends smoothly on parameters.
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Lemma 4.6 Let u∗ be a relative periodic orbit of (1.3) to the parameters
(ω∗

ext, µ
∗) fulfilling the spectral condition (S). Let P̂ be a projection which is

L(Y )-near P . Let (g, ωext, µ) be near (g∗, ω∗
ext, µ

∗) and let (y + q) be near
(y∗ +q∗) in the Y -norm with y∗, y ∈ (1− P̂ )Y , q, q∗ ∈ P̂ Y , q∗ +y∗ = u∗. Then
Π satisfies

‖
∂Π`

∂y
(y, q, g, ωext, µ)‖ ≤ c < 1,

where ` ∈ N is sufficiently large.

Proof of Lemma 4.6. Again let B∗ = ρ−1
g∗ DΦText ,0(u

∗). We have ‖(B∗(1 −

P ))`‖ ≤ MC`, C < 1. Let ` ∈ N be so large that for g in a neighborhood UG

of id in G

‖(1− P )ρg(B
∗)`(1 − P )‖ ≤ ‖(1 − P )‖MGC`M < 1.

Here we used that for g ∈ UG there is a uniform bound MG of ‖ρg‖. Then
(1 − P )ρg(B

∗)`(1 − P ) is a uniform contraction for g ∈ UG. We have

DyΠ`(y) =

`−1
∏

i=0

DΠ(Πi(y)) =

`−1
∏

i=0

(1 − P̂ )ρ−1
g DzΦText,0(q + z)|z=Πi(y).

Since y is near y∗, q is near q∗ and g is near g∗ we know that Πi(y) ≈ y∗ and
that

ρ−1
g DuΦText,0(u)|u=q+Πi(y) ≈ ρ−1

g ρg∗B∗

in the operator norm. Since P̂ is near P in the ‖ · ‖L(Y )-norm we conclude that

DyΠ`(y) ≈

`−1
∏

i=0

(1 − P )ρg−1g∗B∗(1 − P )

in the norm on L(Y ). Further we compute

(ρg−1g∗B∗)2 = ρg−1DyΦText,0(u
∗)ρg−1g∗B∗ ≈ ρg−1ρg−1g∗DyΦText,0(u

∗)B∗

= ρg−2(g∗)2(B
∗)2.

Similarly we get
(ρg−1g∗B∗)` ≈ ρg−`(g∗)`(B∗)`.

Since ρgP and Pρg are continuous in g in the operator norm we conclude that
DyΠ`(y) is near (1−P )ρg−`(g∗)`(B∗)`(1−P ) for g near g∗, y near y∗, q near q∗

in the operator norm. Hence ∂Π`

∂y (y, q, g, ωext, µ) is a contraction if we choose

(y + q, g, ωext, µ) near (y∗ + q∗, g∗, ω∗
ext, µ

∗) (here we measure y − y∗, q − q∗ in
the Y -norm).
Now we show that Π` is a contraction on the scale of Banach spaces
{(1 − P̂ )Yj}j=0,...,k−1 for some ` = `(k) ∈ N.
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Lemma 4.7 Let u∗ be a relative periodic orbit of (1.3) to the parameters
(ω∗

ext, µ
∗) fulfilling Hypothesis (S). If f is Ck-smooth, k ∈ N, then we have:

(i) u∗ ∈ Yk.

(ii) B∗Yj ⊆ Yj , (B∗)?Z?
j ⊆ Z?

j , and spec(B∗
j ) ⊂ spec(B∗), j = 1, . . . , k −

1, where B∗
j is the operator B∗ considered as map from Yj into itself.

Further, P ∈ L(Y, Yk−1), P ? ∈ L(Y ?, Z?
k−1).

(iii) u∗ satisfies Hypothesis (S) on each Yj , 0 ≤ j ≤ k − 1.

(iv) Let P̂ be L(Y, Yk−1)-near P . If ` = `(k) ∈ N is large enough then the func-
tion y → Π`(y, q, g, ωext, µ) from (4.2) is a uniform contraction on each
Yj , 0 ≤ j ≤ k−1, for y +q Yj-near u∗ and (g, ωext, µ) near (g∗, ω∗

ext, µ
∗).

(v) Let P̂ be as in (iv) and assume that ρgP̂ and P̂ ρg are Ck-smooth in
the L(Y )-norm. Then there is a locally unique solution y(q, g, ωext, µ) ∈
(1− P̂ )Y of (4.2) which is continuous in (q, g, ωext, µ) with respect to the
norm ‖ · ‖Yk

.

Part (i) of this lemma can also be found in [23].
Proof of Lemma 4.7. Suppose that u∗ ∈ Yj for some j with j ≥ 1, j < k.
Since Φt,t0 is a time-evolution on each Yj and G acts as C0-group on each Yj

w.r.t. the Yj-norm by Lemma 4.3 we know that B∗ ∈ L(Yi), i ≤ j. We have

ξ(B∗ − λ) = (B∗ − λ) Adg∗ ξ + V (ξ),

with

V (ξ) := ∂2
uΦText,0(u

∗)(Adg∗ ξ)u∗ ∈ L(Yj−1).

Let λ ∈ C \ spec(B∗) lie in the resolvent set of B∗. Then we get

Adg∗ ξ(B∗ − λ)−1 = (B∗ − λ)−1ξ − (B∗ − λ)−1V (ξ)(B∗ − λ)−1. (4.10)

Let B∗
j be the operator B∗ considered as element of L(Yj). From (4.10) we

deduce that spec(B∗
j ) ⊂ spec(B∗

j−1) ⊂ . . . ⊂ spec(B∗
0 ). Let σ be the spectral

set of the center-unstable eigenvalues of B∗. Then

P =
1

2πi

∮

around σ

(λ − B∗)−1dλ. (4.11)

From (4.11) we see that P maps Yj into itself if u∗ ∈ Yj . Since Yj is dense in Y
by iterative application of Lemma 4.3 we can find wi ∈ Yj , i = 1, . . .dim(PY ),
such that Pwi, i = 1, . . .dim(PY ), span PY . Hence PY ⊆ Yj . Since ξu∗ ∈ PY ,
ξ ∈ alg(G), we infer u∗ ∈ Yj+1.
According to Lemma 4.5 we have u∗ ∈ Y1 if k ≥ 1. Hence by induction we
obtain

u∗ ∈ Yk, PY ⊆ Yk−1.
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By computing the adjoints on both sides of equation (4.10) we see that B?Z?
j ⊂

Z?
j , 0 ≤ j ≤ k − 1. Analogously as above we obtain P ?Y ? ⊂ Z?

k−1. Using (i)
and (ii) we conclude that u∗ satisfies condition (S) on each Yj , j ≤ k − 1.

To prove (iv) we apply Lemma 4.6 on each Yj , j ≤ k − 1. Applying the
contraction principle on each Yj , j ≤ k− 1, we obtain solutions yj(q, g, ωext, µ)
of y = Π`(y) which are continuous in the parameters and locally unique in Yj

and therefore solutions of (4.2). Since Yj ⊆ Y for all j the solutions are the
same solution y(q, g, ωext, µ). Since with y = y(q, g, ωext, µ) also Πi(y), i ∈ Z,
are solutions of y = Π`(y) and the solution is locally uniqute we know that
y(q, g, ωext, µ) is a solution of (4.2).

In the same way as in Lemma 4.5 we can show that y = y(q, g, ωext, µ) ∈ Yk:
From y = Π(y) we formally get the identity

z(ξ) = Bsz(Adg∗ ξ) + η(ξ)

on Yk−1 where z(ξ) = (1 − P̂ )ξy(q, g, ωext, µ), Bs = DΠ(q + y)(1 − P̂ ) and

η(ξ) = −(1 − P̂ )ξP̂ ρ−1
g ΦText,0(y + q)

+(1 − P̂ )ρ−1
g DΦText,0(y + q)(P̂ Adg∗ ξy + Adg∗ ξq).

The operator η(ξ) is well-defined for all y ∈ Y and maps into Yk−1 because
ρgP̂ and P̂ ρg are Ck-smooth in the L(Y )-norm. Since Bs has spectral radius
smaller than one this equation can be solved uniquely for z(ξi), i = 1, . . . , m.
In the same way as in the proof of Lemma 4.5 we can now show that the formal
derivative z(ξ) + P̂ ξy(q, g, ωext, µ) is indeed the derivative ξy(q, g, ωext, µ). We
infer that y(q, g, ωext, µ) is continuous in its parameters in the norm of Yk.

In order to show that the solutions really depend Ck-smoothly on their param-
eters we will use a contraction mapping theorem on a scale of Banach spaces.
This idea has frequently been used in the literature, for example it is used to
prove the smoothness of center manifolds (Vanderbauwhede & Van Gils [30],
Vanderbauwhede & Iooss [29]). Renardy [19] proved a generalized implicit
function theorem on a scale of Banach spaces {Yj}0≤j≤k; he required that the
derivative of the nonlinear equation to be solved evaluated at the starting solu-
tion depends continuously on the parameter with respect to the norm ‖·‖L(Yj).
As in [30] we will assume that the derivative is a contraction. Hard implicit
function theorems can be found in Nirenberg [17]. We will employ the following
theorem which is stated in general form in [30] for k = 1.

Theorem 4.8 Let Y = Y0 ⊃ Y1 ⊃ . . . ⊃ Yk, k ≥ 1, be a scale of Banach
spaces with norms ‖ · ‖Yj

, j ≤ k, and let Yj be continuously embedded in Yj−1.
Let (u, ν) → Π(u, ν) be a nonlinear map from some open set U ⊂ Y × Rp into
Y. Assume the following:

(i) Π maps Uj := (Yj × R
p) ∩ U into Yj and Π is C`−j-smooth from U` to

Yj , j, ` ∈ N0, k ≥ ` ≥ j ≥ 0.
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(ii) (ν, u, w1, . . . , wj) →
∂j+`

∂uj∂ν` Π(u, ν)(w1, . . . , wj) is continuous as map from

Ui × (Yi)
j into L`(Rp,Yi−`), for i, j, ` ∈ N0, ` ≤ i ≤ k, j + ` ≤ k, where

L0(Rp,Yi) := Yi.

(iii) Π(·, ν) is a uniform contraction as map from Uj into Yj , 0 ≤ j ≤ k − 1,
with contraction constant c < 1.

Then

a) there is a unique solution u(ν) ∈ Yk−1 to Π(u, ν) = u and u(ν) is a
Ck−1-function of ν with respect to the norm ‖ · ‖Y .

b) If we require in addition

(iv) u(ν) is continuous in the norm ‖ · ‖Yk

then u(ν) is a Ck-function of ν with respect to the norm ‖ · ‖Y .

Proof. We can apply Banach’s fixed point theorem on each Yj , 0 ≤ j ≤ k−1,
and since Yj ⊂ Y for 0 ≤ j ≤ k the solutions are all equal to u(ν). Under
assumptions (i)–(iii) we can formally compute the first (k − 1) derivatives of
u(ν) considered as lying in Y , if we assume hypotheses (i)–(iv) then we can
even compute the formal k-th derivative of u(ν) considered as lying in Y . It
remains to be shown that the formal derivatives are indeed the derivatives of
u(ν). For k = 1 the proof can be found in [30]. The rest is induction over
k. Since this theorem is the main technical tool of our results we present the
whole proof of the theorem.
1. Step. We first show that the solution u(ν) is a C1-function of ν with respect
to the norm of Y . Assuming that u(ν) is C0 in ν in the Y1-norm the formal
derivative κ(ν) is given by the equation

κ(ν) − (∂uΠ)(u(ν), ν)κ(ν) = (∂νΠ)(u, ν)|u=u(ν).

Since ‖(∂uΠ)(u(ν), ν)‖L(Y) ≤ c < 1 this equation can be solved uniquely for
κ(ν) ∈ Y . Furthermore, due to our assumption, κ(ν) ∈ Y depends continuously
on ν. We consider a fixed ν. In order to prove that κ(ν) = ∂νu(ν) we have to
show that

‖u(ν + ν̃) − u(ν) − κ(ν)ν̃‖Y = o(ν̃). (4.12)

Multiplying

u(ν + ν̃) − u(ν) − κ(ν)ν̃ = u(ν + ν̃) − u(ν)

−ν̃(1 − (∂uΠ)(u(ν), ν))−1(∂νΠ)(u, ν)|u=u(ν)

by (1 − (∂uΠ)(u(ν), ν)) we see that (4.12) is equivalent to ‖θ(ũ, ν̃)‖Y = o(ν̃)
where ũ = u(ν + ν̃) − u(ν) and

θ(ũ, ν̃) = Π(u(ν + ν̃), ν + ν̃) − Π(u(ν), ν) − (∂uΠ)(u(ν), ν)ũ − (∂νΠ)(u(ν), ν)ν̃ .
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We can estimate

‖θ(ũ, ν̃)‖Y ≤ ‖Π(u(ν + ν̃), ν + ν̃) − Π(u(ν + ν̃), ν) − (∂νΠ)(u(ν), ν)ν̃‖Y
+‖Π(u(ν + ν̃), ν) − Π(u(ν), ν) − (∂uΠ)(u(ν), ν)ũ‖Y

= ‖(∂νΠ)(u(ν + ν̃), ν)ν̃ − (∂νΠ)(u(ν), ν)ν̃‖Y
+o(‖ũ‖Y) + o(ν̃)

≤ o(ν̃) + o(‖ũ‖Y).
(4.13)

Here we used that u(ν) is a C0-function of ν with respect to the norm ‖ · ‖Y1 .
This follows from Banach’s contraction mapping theorem applied onto Y1 or,
if k = 1, from the additional assumption (iv). It holds

θ(ũ, ν̃) = (1 − (∂uΠ)(u(ν), ν))ũ − (∂νΠ)(u(ν), ν)ν̃ .

Hence

‖ũ‖Y ≤
1

1 − c
(‖(∂νΠ)(u(ν), ν)‖Y |ν̃| + ‖θ(ũ, ν̃)‖Y) ≤

1

1 − c
(c̃|ν̃| + o(‖ũ‖Y)).

Thus, we obtain ‖ũ‖Y ≤ ĉ|ν̃| for |ν̃| small. From (4.13) we conclude that
‖θ(ũ, ν̃)‖Y = o(ν̃). Hence u(ν) is a C1-function of ν with respect to the norm
‖ · ‖Y .
2. Step. To show that u(ν) is a Ci-function of ν, i > 1, we proceed by induc-
tion. If the theorem holds for k = (j − 1), j ≥ 2, and Π satisfies assumptions
(i) –(iii) of the theorem with k = j then by the contraction principle applied
on Yj−1 the function u(ν) is continuous in ν with respect to the norm ‖ · ‖Yj−1 .
Hence by part b) of the theorem for k = (j−1) we conclude that u(ν) is C j−1-
smooth in ν when considered as lying in Y . This proves part a) of the theorem
for k = j. Now we come to part b). If Π satisfies assumptions (i)–(iv) of the
theorem for k = j then u(ν) is a Cj−1-function of ν in the Y-norm and u(ν)
is a Cj−`-function of ν with respect to the norm ‖ · ‖Y`

, j ≥ ` ≥ 1. Therefore
we can apply part b) of the theorem with k = (j − 1) onto the differentiated
equation

(1 − (∂uΠ)(u(ν), ν))∂νu(ν) = (∂νΠ)(u, ν)|u=u(ν).

and conclude that ∂νu(ν) is a Cj−1-function of ν and that u is a Cj -function
of ν with respect to the norm ‖ · ‖Y .

4.5 Proof of the theorems on periodic forcing

We prove Theorem 2.3 by applying Theorem 4.8 onto (4.2) with ν =
(g, q, ωext, µ) and with the hierarchy Yj of Banach spaces defined by

Yj = (1 − P̂ )Yj , Yj given by (4.4), 0 ≤ j ≤ k.

As before P̂ is a projection which is L(Y, Yk−1)-near the spectral projection P
onto the center-unstable eigenspace and such that P̂ ρg and ρgP̂ are Ck-smooth
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in g in the L(Y )-norm. We consider the fixed point equation y = Π`(y) with
` so large that DΠ` is a contraction on each Yj , 0 ≤ j ≤ k − 1, k ∈ N.
Because of Lemma 4.7 all assumptions of Theorem 4.8 are satisfied. So there
is a locally unique solution y(q, g, ωext, µ) ∈ Yk of Π`(y) = y if (q, g, ωext, µ) is
near (q∗, g∗, ω∗

ext, µ
∗) satisfying y(q∗, g∗, ω∗

ext, µ
∗) = y∗ and y(q, g, ωext, µ) is a

Ck−j -function of (q, g, ωext, µ) with respect to the norm ‖ · ‖Yj
, 0 ≤ j ≤ k. As

in the proof of Lemma 4.7 we can argue that y(q, g, ωext, µ) is also a solution of
(4.2) since with y = y(q, g, ωext, µ) also Πi(y), i ∈ Z, are solutions of Π`(y) = y
and since the solution of y = Π`(y) is locally unique.
The reduced equation (4.3) is Ck−j -smooth in its variables if y(q, g, ωext, µ) is
considered as lying in Yj . Solving the reduced equation by the ordinary im-
plicit function theorem we obtain relative periodic orbits ΦText,0(u(ωext, µ)) =
ρg(ωext,µ)u(ωext, µ) of (1.3) to the parameters ωext, µ with (ωext, µ) near

(ω∗
ext, µ

∗). Here g(ωext, µ) is Ck-smooth in (ωext, µ) and u(ωext, µ) depends
Ck−j -smoothly on (ωext, µ) when considered as lying in Yj .
Proposition 2.17 is proved along the same lines.

4.6 Proof of the results on Hopf bifurcation by use of Lyapunov-
Schmidt-reduction

In this section we will prove Theorem 3.2 on Hopf bifurcation and Proposition
3.7 on equivariant Hopf bifurcation by Lyapunov-Schmidt-reduction. First we
will prove Lemma 3.1 on the eigenvalue path β(µ).

4.6.1 Proof of Lemma 3.1

Let P be the projection onto the center-unstable eigenspace of u∗. By Lemma
4.7 we have P ∈ L(Y, Yk−1) and P ? ∈ L(Y ?, Z?

k−1) with the hierarchy of
Banach spaces {Yj}0≤j≤k defined by (4.4).
Let u∗ satisfy Hypothesis (S) and let u∗(µ) ∈ Sl, µ small, be the Ck-smooth
manifold of relative equilibria of (1.3) such that u∗(0) = u∗ (cf. Section 3.1).
We will show:

Lemma 4.9 If the above assumptions hold then u∗(µ) satisfies Hypothesis (S)
and the center-unstable spectral projection P of L∗ can be continued to a spectral
projection P (µ) of L∗(µ) such that P (µ) is Ck−1 in µ in the space L(Y ).

Proof. Let B(µ) = ρexp(−ξ∗(µ)t)DΦt(u
∗(µ); µ) be the linearization at the

relative equilibrium u∗(µ) in the comoving frame and choose t so large that
‖(1− P )B(µ)‖ ≤ c < 1 for small µ. Let λ ∈ C, |λ| > c. Due to Lemma 4.7 the
equation

y =
1

λ
(1 − P )(B(µ)y − w + (B(µ) − λ)q), q ∈ PY, w ∈ Yk−1

can be solved to get a solution y(q, µ, λ) for µ small enough. By Theorem 4.8
the solution y(q, µ, λ) is Ck−1−j in µ in the norm ‖ · ‖Yj

. Now we solve the
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equation
P (B(µ) − λ)(y(q, µ, λ) + q) = Pw

by the implicit function theorem. We conclude that (B(µ) − λ)−1w is Ck−j−1

in µ in the space Yj . Let σ denote the center-unstable spectral set of B(0) and
denote

P (µ) =
1

2πi

∮

around σ

(λ − B(µ))−1dλ.

Since P ∈ L(Y, Yk−1) we know that ρgP (µ)P is Ck−1-smooth in (g, µ) in the
space L(Y ). Since P ? ∈ L(Y ?, Z?

k−1) we can apply the same arguments on the

dual space which yields that ρ?
gP

?(µ)P ? is Ck−1 in (g, µ) in the space L(Y ).
The operator P (µ) is a linear combination of the operators 〈P ?(µ)e?

i , ·〉P (µ)ei

where {ei}i=1,...,m is a basis of PY and {e?
i }i=1,...,m is a basis of P ?Y . Conse-

quently ρgP (µ) and P (µ)ρg are Ck−1 in (g, µ) in the space L(Y ).

Let Ψt(·) be the semiflow on Ŝl in a comoving frame

Ψt(u; µ) = ρ−1
g(Φt(u,µ))Φt(u + u∗(µ); µ) − u∗(µ)

where u ∈ Ŝl is Y1-near u∗, and g(u) is such that ρ−1
g(u)u ∈ Sl, see also (3.5).

Let DΨt(0; 0) = eL̃t and denote by Pl the projection onto the space Ŝl such
that Pl alg(G)u∗ = 0. Then L̃ = PlL

∗Pl.

Similarly denote DΨt(0; µ) = eL̃(µ)t. Then L̃(µ) = Pl(µ)L∗(µ)Pl(µ) where

Pl(µ)y = y −

m
∑

i=1

αi(µ)(y)ξiu
∗(µ)

and αi(µ) ∈ Y ? are such that li(y −
∑m

i=1 αi(µ)(y)ξiu
∗(µ)) = 0, i = 1, . . . , m.

By the above Lemma 4.9 Pl(µ) is Ck−1 in µ in the space L(Y ) and the operator
L̃(µ)P (µ) is Ck−1 in µ in the space L(Y ). So the simple eigenvalue β(0) = i
of L̃ can be continued to a Ck−1 smooth path of eigenvalues β(µ) of L̃(µ) with
Ck−1 smooth path of eigenvectors w(µ). Note that β(µ) is an eigenvalue of
L(µ) as well.

4.6.2 Proof of Theorem 3.2

We will study the solutions of the equation

0 = F (u, g, T, µ) :=

(

ρ−1
g ΦT (u, µ) − u

li(u − u∗(µ)), i = 1, . . . , m

)

, (4.14)

where li ∈ Y ? and the conditions li(u − u∗) = 0, i = 1, . . . , m, define a section
transversely to the G-orbit of u∗. Later on, we will need an additional condition
to take care of the time-shift symmetry of the relative periodic orbits which we
want to find. The map F is smooth in u, µ, T for T > 0, but only continuous
in g. Further ∂uF (u, g, T, µ) is not continuous in g with respect to the norm
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‖ · ‖L(Y ). So we can not use the usual Lyapunov-Schmidt-reduction to solve
equation (4.14), but (4.14) fits into the setting which we treated in the preceding
subsections, and we will use the techniques developed in these subsections to
solve (4.14).
We can find a projector P̂ which is near P in the norm of L(Y, Yk−1) and such
that ρgP̂ and P̂ ρg are Ck-smooth in g in the norm of L(Y ). Consider the fixed
point equation

y = Π(y, q, g, T, µ) := (1 − P̂ )ρ−1
g ΦT (y + q, µ),

with y ∈ (1− P̂ )Y , q ∈ P̂Y , on the scale of Banach spaces Yj , 0 ≤ j ≤ k. This
fixed point equation equals (4.2) from Section 4 with Text replaced by T and
Φt(·) autonomous. So we get a solution y(q, g, T, µ) of the fixed point equation
which is Ck−j -smooth in its parameters in the Yj-norm. Now we are ready to
solve the reduced equation Fred(q, g, T, µ) = 0 with Fred given by

Fred(q, g, T, µ) =

(

P
(

ρ−1
g ΦT (q + y(q, g, T, µ), µ) − q − y(q, g, T, µ)

)

li(u − u∗), i = 1, . . . , m

)

.

(4.15)
The map Fred is Ck−j -smooth in its variables when considered as map from Yj

into Yj . The rest of the proof is standard, see [6]:

Let w be the eigenvector of L̃ to the eigenvalue i. Let 〈w?, ·〉 belong to the left
eigenspace of L∗ to the eigenvalue i such that

〈Re w?, Re w〉 = 〈Im w?, Im w〉 = 1,
〈Re w?, Im w〉 = 〈Im w?, Rew〉 = 0

(4.16)

is satisfied and 〈w?, alg Gu∗〉 = 0, i = 1 . . .m.
Let

s(q, g, T, µ) :=
1

2π
〈Re w?,

∫ 2π

0

eL̃(2π−t)ΨTt
2π

(y(q, g, T, µ) + q − u∗(µ); µ)dt〉

where Ψt is the semiflow in a comoving frame as defined in (3.5). We first
compute q = q(s, T, µ) and g = g(s, T, µ) as functions of s, T and µ by solving

Fred − 〈Re w?, Fred〉Re w − 〈Im w?, Fred〉 Im w = 0.

and

〈Im w?,

∫ 2π

0

eL̃(2π−t)ΨTt
2π

(y(q, g, T, µ) + q − u∗(µ); µ)dt〉 = 0.

The last condition fixes the time-shift. Now we still have to solve the Ck-
function F̂ : R3 → R2, (s, T, µ) → F̂ (s, T, µ) given by

F̂ (s, T, µ) =

(

〈Im w?, Fred(q(s, T, µ), g(s, T, µ), T, µ)〉

〈Re w?, Fred(q(s, T, µ), g(s, T, µ), T, µ)〉

)

= 0.
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Obviously F̂ (0, T, µ) = 0, ∂(s,T,µ)F̂ (0, 2π, 0) = 0. We define

FLS(s, T, µ) :=
1

s
F̂ (s, T, µ).

Since

lim
s→0

1

s
F̂ (s, T, µ) = ∂sFLS(0, T, µ)

and ∂sF̂ (0, 2π, 0) = 0 we have FLS(0, 2π, 0) = 0. Furthermore ∂T FLS(0, T, µ) =
∂T ∂sF̂ (0, T, µ) and ∂µFLS(0, T, µ) = ∂µ∂sF̂ (0, T, µ), since ∂(T,µ)F̂ (0, T, µ) = 0.

Lemma 4.10 Under the assumptions of Theorem 3.2 the derivative

∂(T,µ)FLS(0, 2π, 0)

of FLS in (s, T, µ) = (0, 2π, 0) has full rank.

Proof of Lemma 4.10. We have

∂(T,µ)FLS(0, 2π, 0) =

(

〈Im w?, ∂(T,µ)∂uΨ2π(0; 0) Rew〉

〈Re w?, ∂(T,µ)∂uΨ2π(0; 0) Rew〉

)

(4.17)

We invoke the following lemma which is the adaption of a lemma in Crandall
& Rabinowitz [6] to our setting.

Lemma 4.11 Let assumptions (i)–(iii) of Theorem 3.2 hold. Then

〈Re w?, ∂µ∂uΨ2π(0; 0) Re w〉 = 2π Re ∂β
∂µ (0),

〈Im w?, ∂µ∂uΨ2π(0; 0) Rew〉 = −2π Im ∂β
∂µ (0),

(4.18)

where 〈w?, ·〉 is the left eigenvector of L̃ to the eigenvalue i which satisfies
(4.16).

We have
∂T ∂uΨ2π(0; 0) Rew = L̃eL̃2π Rew = Im w.

Using Lemma 4.11 and condition (iv) we conclude that ∂(T,µ)FLS(0, 2π, 0) has
full rank.
Because of Lemma 4.10 we can apply the ordinary implicit function theorem to
obtain solutions u(s, µ2) := u∗(µ(s, µ2))+z(s, µ2), g(s, µ2), T (s, µ2), µ(s, µ2) =
(µ1(s, µ2), µ2) of (4.14) which are relative periodic orbits with li(z(s, µ2)) =
0, i = 1, . . . , m. Here µ(s, µ2), g(s, µ2), T (s, µ2) are Ck−1-smooth in s, µ2.
Moreover, z(s, µ2) is Ck−1-smooth in the ‖ · ‖Y -norm and Ck−j−1-smooth in
the ‖ · ‖Yj

-norm, 1 ≤ j ≤ k − 1.
We have z(−s, µ2) = ΨT (s,µ2)

2

(z(s, µ2); µ(s, µ2)). Since µ(s, µ2), T (s, µ2) do

not depend on the time-shift, they are even in s.
The solutions u(s) = u∗(µ(s)) + z(s), g(s), T (s), µ(s) of (4.14) which we
obtained above (for convenience we ignore the µ2-dependence of the solutions
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in the notation) depend Ck−1-smoothly on the chosen eigenvector of L̃ to the
eigenvalue i. We can also consider zl ∈ Y , gl, Tl, µl as Ck−1-smooth functions
of (s1 + is2)w where s1, s2 ∈ R and w is the originally chosen eigenvector of L̃
to i. As before, zl(s1, s2) is Ck−j−1-smooth in the Yj-norm, 1 ≤ j < k. We
have z(s) = zl(s1, 0) and

eiτ = 〈Re w? + i Im w?,

∫ 2π

0

eL̃(2π−t)Ψ (t+τ)T (s)
2π

(z(s); µ(s))dt〉.

Obviously µ(s) = µl(s1, s2), T (s) = Tl(s1, s2) only depend on s = ‖(s1, s2)‖,

zl(s1, s2) := Ψ τT(s)
2π

(z(s); µ(s)), where s1 = s cos τ, s2 = s sin τ,

and ul(s1, s2) = u∗(µ(s)) + zl(s1, s2).

4.6.3 Equivariant Hopf bifurcation

In this subsection we prove Lemma 3.7, see also section 3.3. If the isotropy
K of the relative equilibrium u∗ is non-trivial it may happen that forced by
symmetry the eigenspace of the K-equivariant matrix L̃ to the Hopf eigenvalue
i has dimension higher than 2. Then the assumptions of Theorem 3.2 are not
satisfied any more.

We choose functionals li, i = 1, . . . , mK , which define a section Sl = u∗ + Ŝl

transversal to the group orbit Gu∗ in u∗ such that Ŝl is K-invariant and that
Pl is K-equivariant, see subsection 3.3. Here mK = dim(G/K).

If Θ(K) = Z` then we solve the equation

F (u, g, T, µ) =

(

ρ(gh∗)−1ΦT (u, µ) − u
li(u − u∗), i = 1, . . .mK

)

= 0 (4.19)

on Fix(Kbif) where T ≈ 2π/`, g ≈ e
2π
`

ξ∗

, the group H is generated by h∗ ∈ K

and Kbif = ker(Θ) is axial. By our assumptions DFu(u∗, e
2π
`

ξ∗

, 2π/`, 0)|Ŝl
has

a two-dimensional kernel and therefore (4.19) can be solved by the methods of
subsection 4.6.2.

If Θ(K) = S1 we solve

F (u, g, T, µ) =

(

ρ−1
g exp(−χ∗T )ΦT (u, µ) − u

li(u − u∗), i = 1, . . .mK

)

= 0 (4.20)

on Fix(Kbif). In this case the axial group H is generated by χ∗ ∈ alg(K) and

Kbif = ker(Θ). We choose T such that (ρe−χ∗T eL̃T −1)|Ŝl
has a two-dimensional

kernel. This is possible because the number of center eigenvalues of L̃ is finite.
Then we can proceed as before.
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