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ABSTRACT. For a discrete valuation field K, the unit group K* of
K has a natural decreasing filtration with respect to the valuation,
and the graded quotients of this filtration are given in terms of the
residue field. The Milnor K-group Ky’ (K) is a generalization of the
unit group, and it also has a natural decreasing filtration. However, if
K is of mixed characteristics and has an absolute ramification index
greater than one, the graded quotients of this filtration are not yet
known except in some special cases.

The aim of this paper is to determine them when K is absolutely
tamely ramified discrete valuation field of mixed characteristics (0, p >
2) with possibly imperfect residue field.

Furthermore, we determine the kernel of the Kurihara’s Kj'-
exponential homomorphism from the differential module to the Milnor
K-group for such a field.
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1 INTRODUCTION

For a ring R, the Milnor K-group of R is defined as follows. We denote the unit
group of R by R*. Let J(R) be the subgroup of the g-fold tensor product of
R* overZ generated by the elements a1 ®- - -®aq, where a1, ..., a4 are elements
of R* such that a; +a; = 0 or 1 for some % # j. Define

KY(R) = (R* @z ®z R*)/J(R).
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We denotes the image of a1 ® --- @ a4 by {a1,...,aq}.

Now we assume K is a discrete valuation field. Let vg be the normalized
valuation of K. Let Ok, F and mg be the valuation ring, the residue field
and the valuation ideal of K, respectively. There is a natural filtration on K*
defined by

. Ok for i =0
K7 14 mi fori> 1.

We know that the graded quotients U/ U};H are isomorphic to F* if i = 0
and F'if i > 1. Similarly, there is a natural filtration on K7}'(K) defined by

U'K)(K) = {{xl,...,xq} € K/ (K) ‘ x1 €Uk, T2,...,24 GKX}.

Let gr' K} (K) = U'KY(K)/UT KY(K) for i > 0. gr' K)(K) are deter-
mined in the case that the characteristics of K and F are both equal to 0
in [5], and in the case that they are both nonzero in [2] and [9]. If K is
of mixed characteristics (0,p), gr' K}/(K) is determined in [3] in the range
0 <i<egp/(p—1), where ex = vg(p). However, gr’ KZI(K) still remains
mysterious for i > ep/(p —1). In [16], Kurihara determined gr* K/ (K) for all
i if K is absolutely unramified, i.e., vi(p) = 1. In [13] and [19], gr’ K}/ (K) is
determined for some K with absolute ramification index greater than one.

The purpose of this paper is to determine gr’ K}/ (K) for all i and a discrete
valuation field K of mixed characteristics (0, p), where p is an odd prime and
p 1 ex. We do not assume F to be perfect. Note that the graded quotient
gr' K¥(K) is equal to gr’ K% (K), where K is the completion of K with respect
to the valuation, thus we may assume that K is complete under the valuation.

Let F be a field of positive characteristic. Let QL = Q};/Z be the module
of absolute differentials and Q% the g-th exterior power of Q}. over F. As in
[7], we define the following subgroups of Q%. Z] = Z;Q%. denotes the kernel of
d: Q% — Q4 and BY = B1QY% denotes the image of d : Q4" — Q%. Then
there is an exact sequence

0— B! — 20 5,01 — 0,
where C is the Cartier operator defined by

d d d d
L N R R e
Y1 Yq Y1 Yq

B‘f—)O.

)

The inverse of C induces the isomorphism

c L = 79/BY
d d d d 1
Gy dn oy M)

Y1 Yq Y1 Yq
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for x € F and y1,... ,yq, € F*. For i > 2, let Bl = B;Q% (vesp. Z] = Z,Q%)
be the subgroup of Q% defined mductlvely by

B!>B!, C':BY, = BY/B!
(resp. Z4 c z,, C~':z% = 79/BY).

Let ZZ, be the intersection of all Z! for i > 1. We denote Z} = Q% for i <O0.
The main result of this paper is the following

THEOREM 1.1. Let K be a discrete valuation field of characteristic zero, and
F the residue field of K. Assume that p = char(F) is an odd prime and
e =ex = vi(p) is prime to p. Fori>ep/(p—1), let n be the mazimal integer
which satisfies i —ne > e/(p—1) and let s = vp(i — ne), where v, is the p-adic
order. Then

% 1
gI‘ KM( ) Q% /Bern

COROLLARY 1.2. Let UY(KY(K)/p™) be the image of U'K}(K)
i K)Y(K)/p"K)(K) for m > 1 and gr'(KY(K)/p™) =
Ut (K (K)/p™) /U (I (K) /p™). Then

| 04 /BL, (if m>s+n)
g’ (K (K)/p™) = < Q%257 (fm<s+n )
O /(1+aC)Z87 0 (ifm<s+ni—en=5)

where a is the residue class of p/m¢ for a fized prime element © of K.

Remark 1.3. 160 <4 < ep/(p — 1), gr' K}/ (K) is known by [3].

To show (1.1), we use the (truncated) syntomic complexes with respect to
Ok and Ok /pOk, which were introduced in [11]. In [12], it was proved that
there exists an isomorphism between some subgroup of the g-th cohomology
group of the syntomic complex with respect to Ok and some subgroup of
K (K)" which includes the image of U'K}'(K) (cf. (2.1)). On the other hand,
the cohomology groups of the syntomic complex with respect to Ok /pOk can
be calculated easily because Ok /pOk depends only on F' and e. Comparing
these two complexes, we have the exact sequence (2.4)

HY(S,) — Q41 /pd€ 2 =20 K3 (K Y
as an long exact sequence of syntomic complexes, where S, is the truncated
translated syntomic complex with respect to Ok /pOk, hat means the p-adic
completion, and exp,, is the Kurihara’s K¢'-exponential homomorphism with
respect to p. For more details, see Section 2. The left hand side of this exact
sequence is determined in (2.6), and we have (1.1) by calculating these groups
and the relations explicitly.
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In Section 2, we see the relations between the syntomic complexes mentioned
above, the Milnor K-groups, and the differential modules. The method of the
proof of (1.1) is mentioned here. Note that we do not assume p t e in this section
and we get the explicit description of the cohomology group of the syntomic
complex with respect to Ok /pOx which was used in the proof of (1.1) without
the assumption p t e. In Section 3, we calculate differential module of Og.
We calculate the kernel of the /K}/-exponential homomorphism (4) explicitly in
Section 4, 5, 6 and 7. In Section 8, we show Theorem 1.1 and Corollary 1.2.
In Section 9, we have an application related to higher local class field theory.

Notations and Definitions. All rings are commutative with 1. For an element
x of a discrete valuation ring,  means the residue class of x in the residue field.
For an abelian group M and positive integer n, we denote M/p™ = M /p"M
and M = lim,, M/p™. For a subset N of M, (N) means the subgroup of M
generated by N. For a ring R, let Q} = Q}% Iz be the absolute differentials of
R and Q% the g-th exterior power of Q, over R for ¢ > 2. We denote Q% = R
and Q% = 0 for negative ¢. If R is of characteristic zero, let

BanR = Ker (Q‘}% L Q’g‘l/p")

for positive n. For an element w € Q%, let v,(w) be the maximal n which
satisfies w € 3nfl}{3- For n <0, let SHQ‘ZR = QqR. Let SOOQ?% be the intersection
of BanR of all n > 0. All complexes are cochain complexes. For a morphism
of non-negative complexes f: C* — D", [f: C" — D’] and

co 4 o o2 @
|+ |+ |+
po 4 ,pr ¢  p2_d

both denote the mapping fiber complex with respect to the morphism f,
namely, the complex

L ctep L c2ept L),

where the leftmost term is the degree-0 part and where the differentials are
defined by

Ciao Dl oitl g pi
(a,b) —> (da, f(a) — db).

Acknowledgements. 1 would like to express my gratitude to Professor Kazuya
Kato, Professor Masato Kurihara and Professor Ivan Fesenko for their valuable
advice. I also wish to thank Takao Yamazaki for many helpful comments.

In [20], I.Zhukov calculated the Milnor K-groups of multidimensional com-
plete fields in a different way. He gives an explicit description by using topo-
logical generators. In [8], B.Kahn also calculated K2(K) of local fields with
perfect residue fields without an assumption p { ex.
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2 EXPONENTIAL HOMOMORPHISM AND SYNTOMIC COHOMOLOGY

Let K be a complete discrete valuation field of mixed characteristics (0, p).
Assume that p is an odd prime. Let A = Ok be the ring of integers of K
and F' the residue field of K. Let Ag be the Cohen subring of A with respect
to F, namely, Ag is a complete discrete valuation ring under the restriction
of the valuation of A with the residue field F' and p is a prime element of Ag
(cf. [4], IX, Section 2). Let Ky be the fraction field of Ag. Then K/Kj is
finite and totally ramified extension of extension degree e = ex. We denote
e’ =ep/(p—1). Let 7 be a prime element of K and fix it. We further assume
that F' has a finite p-base and fix their liftings T C Ag. We can take the
frobenius endomorphism f of Ag such that f(T) = TP for T € T (cf. [12] or
[17]). Let U'K}'(A) be the subgroup defined by the same way of U'K}'(K),
namely,

UK} (A) = <{m1,...,xq} € K)(A) | m1 € Uje, x2,...,34 € AX>.

Let UK} (K)" (resp. U'K}'(A)) be the closure of the image of U’ K} (K) (resp.
U'K} (A)) in KY(K) (resp. K} (A)). Note that gr' K (K) = gr' K} (K)" for
v > 0.

At first, we introduce an isomorphism between UlK]q” (K)" and a subgroup of
the cohomology group of the syntomic complex with respect to A. For further
details, see [12]. Let B = Ap[[X]], where X is an indeterminate. We extend
the operation of the frobenius f on B by f(X) = X?. We define Z and J as
follows.

X—7

j:Ker(B—>A)
T = Ker (B N, g modp A/p) — J +pB.

Let D and J C D be the PD-envelope and the PD-ideal with respect to B — A,
respectively ([1],Section 3). Let I C D be the PD-ideal with respect to B —
A/p. D is also the PD-envelope with respect to B — A/p. Let J4 and 119 be
their ¢-th divided powers. Notice that I = I, JM = J and 119 = Jl°l = D,
If ¢ is an negative integer, we denote J4 = 4 = D. We define the complexes
Jl4 and 19 as

where QqB is the p-adic completion of Q%. The leftmost term of each complex

is the degree 0 part. We define D = Tl% = JI%, For 1 < ¢ < p, let S(4, B)(q)

and §’(A, B)(q) be the mapping fibers of
Jld =/ D
1ldl 1=/ D

)
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respectively, where f; = f/p?. S(A, B)(q) is called the syntomic complex of A
with respect to B, and §’(A4, B)(q) is also called the syntomic complex of A/p
with respect to B (cf. [11]). We notice that

HY(S(A, B)(q))
 Ker ((Deh) & (Do) — (Do) & (Do) @)

I (T & (De0h?) — (DeO) & (De0g )

where the maps are the differentials of the mapping fiber. If ¢ > p, we cannot
define the map 1 — f, on J@ and 19, but we define H%(S(A, B)(q)) by using
(2) in this case. This is equal to the cohomology of the mapping fiber of

1—
U>q73J[Q] 4f$ 0>q-3D,

where ¢,C" means the brutal truncation for a complex C’, i.e., (0>nC;)i is
Ciifi>nand 0if i <n. Let UN(D ® Q% ") be the subgroup of D ® Q%!
generated by XD @ Q%' (XM D@ QL for allm > 1 and D® Q%L > AdX.
Let U'H%(S(A, B)(q)) be the subgroup of H%(S(A, B)(q)) generated by the
image of (D ® Q%) ® UY(D ® Q% "). Then there is a result of Kurihara:
THEOREM 2.1 (KURIHARA, [12]). A and B are as above. Then
1 ~ 1 ~
U HY(S(A, B)(q)) = U K{(A).

Furthermore, we have the following

LEMMA 2.2. A and K are as above. Assume that A has the primitive p-th
roots of unity. Then

(i) The natural map Ky (A)" — K/ (K) is an injection.
(i) U'HI(S(A,B)(q)) = UK}y (A) 2 U'K)(K)".

Remark 2.3. When F is separably closed, this lemma is also the consequence
of the result of Kurihara [14]. But even if F is not separably closed, calculation
goes similarly to [14].

Proof of Lemma 2.2. The first isomorphism of (ii) is (2.1). The natural map
U'K)(Ay - U'K} (K)

is a surjection by the definition of the filtrations and the fact that we can define

an element {1+7'ay, as, ..., aq—1, 7} as an element of K}/ (A) by using Dennis-

Stain Symbols, see [17]. Thus we only have to show (i). Let ¢, be a primitive
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p-th root of unity and fix it. Let p, be the subgroup of A* generated by (.
For n > 2, see the following commutative diagram.

N {*Cp} M n— M n
qul(K)/p - Kq (A)/p ! L’ Kq (A)/p

- | !

Ky (1) /p A5 K () fpr =t —E— K ()b )
— KjA)/p —— 0

l

—— KY(K)fp —— 0.

The bottom row are exact by using Galois cohomology long exact sequence
with respect to the Bockstein

= HY(K,Z/p(q)) — HU (K, Z/p" " (@) — HU(K,Z/p"(q) — ...
and
K (K)/p" = HY(K, Z/p"(q))

by [3]. The map {*,(,} in the top row is well-defined if K} (A4)/p"~' —
KY(K)/p™~! is injective, and the top row are exact except at K}'(A)/p"~!.
Using the induction on n, we only have to show the injectivity of K}/(A)/p —
K} (K)/p. We know the subquotients of the filtration of K}/(K)/p by [3]
and we also know the subquotients of the filtration of K7'(A)/p using the iso-
morphism U'H?(S(A, B)(q)) = U'KY(A) in [12] and the explicit calculation
of H1(S(A, B)(g)) by [14] except gr’ (K} (A)/p). Natural map preserves fil-

trations and induces isomorphisms of subquotients. Thus U'(K}'(A)/p) —
U 1(K34 (K)/p) is an injection. Lastly, the composite map of the natural maps

Ky (F)/p — gr (K} (4)/p) — er (K} (K) /p) = Ky (F) [p & Ky (F) /p
is also an injection. Hence K7'(A)/p — K}/ (K)/p is injective. O

Next, we introduce K/-exponential homomorphism and consider the kernel.
By [17], there is the K'-exponential homomorphism with respect to 7 for ¢ > 2
and n € K such that vk (n) > 2¢/(p — 1) defined by

exp, : Qi_l — KJ(K)
dbs dby— (4)

a——N--- A - ’—>{eXP(77@)7517---7bq71}
by byt

forae A, bi,...,bg—1 € A*. Here exp is
o0 Xn
exp(X) = Z—

n!
n=0
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We use this Kj'-exponential homomorphism only in the case n = p in this
paper. On the other hand, there exists an exact sequence of complexes

0>q73J[q] J>q73}1[q} U>q73]I[Q]/U>q73J[Q]
0= | li-s, | = |l1-r, | = ! — 0. (5)
U>q_3D U>q_3ID) 0

[05q—319 /o~ ,_3Jl9 — 0] is none other than the complex o~ 319 /o~ 3],

We denote the complex [0 3119 '=fa 0>q—3D][q — 2] by S,. It is the map-
ping fiber complex

1[2]®Qq3_2 4, [®QqB_1 4, D®QqB 4,

llffq llffq llffq . (6)

D®QqB_2 L D®QqB_1 L D®QqB L

Taking cohomology, we have the following

PROPOSITION 2.4. A, B and K are as above. Then K7/ -exponential homo-

morphism with respect to p factors through Q?[l/pdﬂ?[Q and there is an exact
sequence

HY(S,) & Q41 /pdQe-? =, KY(KY.

Proof. See the cohomological long exact sequence with respect to the exact
sequence (5). The g-th cohomology group of the left complex of (5) is equal to
H(S(A, B)(q)), thus the sequence

HY(Sq) 5 H' (0543117 /04 5J)[q = 2]) — HI(S(A, B)(q))

is exact. Here we denote the first map by 1. The complex
(05318 /5q a3 [g — 2] s

(12 052)/(JP @04 —» (1005 )/(Jo g —0— ).
I® QqB_l)/(J®QqB_1) is the subgroup of (D®Q%_1)/(J®QQB—1) _ A@QQB_l,
The image of /@ Q%" in A®QL ™ is equal to pA® Q" Thus (10Q%1)/(J®
Q(gl) =pA® Q(gl. The image of

(1% 0%2)/(12 0 0% -5 pAae 0!

is equal to the image of 72 ® Q%L 2. By T = (p) + J, d(Z?> ® Q%) is equal to
d(T? @ Q% 7?) + pd(T @ Q5 2) + p2d(Q%%). By the exact sequence

0—J—B—A—0,

DOCUMENTA MATHEMATICA 5 (2000) 151-200



THE MILNOR K-GROUPS 159
we have an exact sequence
(T)T) 0052 L A0t — 04t — 0. (7)

Thus the image of d(J2 ® Q% ?) in A® Q% ' is zero. A® Q%" is torsion free,
thus

pA®QL! p ! Ao QLt
pd(T @ Q5 ) +p2d0%5 2 d(T @ Q5 7%) + pdQy

I

= Q4 pdQ% 2 (8)

Hence we have H' (05431 /o5, 3])[g — 2]) = Q4" /pdQ% >, By chasing
the connecting homomorphism Q%" /pdQ% > — HI(S(A, B)(q)), we can show
that the image is contained by U'HY(S(A, B)(q)) and the composite map

Q" — Q7 /pdQ - UNHY(S(A, B)(0)) = UK (KY
is equal to exp,. We got the desired exact sequence. O
Remark 2.5. By [3], there exist surjections

QqF_2 @ Q%_l — gr' Kgf(K)
( dyl dyq—Q

= A A

0 ) — {1+ 7%, 91, ... Jga, T
Y1 fa—2 ) { u Y2, 7} 9)

d dyq— ;
(0,$£ A A M) — {1—}—71”@,:171,...,@,1_1}
Y1 qul

for ¢ > 1, where x € F, y1,...,yq—1 € F* and where Z,9,...,Jq—1 are their
liftings to A. If i > e + 1, then we can construct all elements of gr’ K} (K) as
the image of exp,,, namely,

{we O pdQs | exp,(w) € UKy (K) } =5 gr' Ky (K)
sz_lacé—bll ARERWA % A dr — {exp(n'a), b, ..., by_2,7}
_ = {1+ 7'a,by,...,by_2,7}
%Zadb—bll ARRRWA % — {exp(m'a),bi,...,by—1}

= {1 +7Tia,b1,.. .,bqfl}.

Thus Ut K}/ (K )" is contained by the image of exp,,. On the other hand, (2.4)
says the kernel of the K}'-exponential homomorphism is ¢(H'(S,)). Recall
that the aim of this paper is to determine gr’ Kgf(K ) for all 4, but we already
know them in the range 0 < ¢ < ¢’ in [3]. Thus if we want to know gr’ K}/ (K)
for all 4, we only have to know ¢(H'(S,)). We determine H'(S,) in the rest of
this section, and ¥(H'(S,)) in Section 4, 5, 6 and 7.
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To determine H'(S,), we introduce a filtration into it. Let 0 < r < p
and s > 0 be integers. Recall that B = Ao[[X]]. For i > 0 and s > 0, let
fil’ (1" @ Q%) be the subgroup of I'"l ® Q% generated by the elements

{X"(Xe)mw | nt+ej>i,n>0,j>rw ED®QSB}
U{X"_l(Xe)mw/\dX ’ n+ej>i,n>1,j>rw ED®QSB*1}.

The homomorphism 1 — f,,: I ® QSB —-D® QSB preserves filtrations. Thus
we can define the following complexes

1 (072451 fg — 2
= (i (12 @ 0% %) S (T @05 - AH(D e O%) — .. )

fil'(0>4—3D)[g — 2]
= (6 (D® 0% 2) - f(D e 0% ) - fli(D© Q%) — .. )

i [ i 1—fq qqd
fil'S, = [fil (05430 [qg — 2] —F fil'(05q_3D)[q — 2]]

' (04511") g — 2]
617 (0 1) [ — 2]

i i 1-f¢
&' S, = | ari(osg_al®)g — 2 =X gr'(0sy_aD)lqg - 21] .

gr' (05q-31")g — 2] =

forr=0,q

Note that if i > 1, 1 — f: gr'(osq—319)[g — 2] — gr'(o>q—3D)[g — 2] is none
other than 1 because f, takes the elements to the higher filters. fil"S, forms
the filtration of S; and we have the exact sequences

0— fil'''s, — fl'S, — gr'S, — 0
for 4 > 0. This exact sequence of complexes give a long exact sequence
< — H(AI'M'S,) — H™(fI'S,) — H"(gr'S,) — H"F(AI'T'S,) — ... (10)
Furthermore, we have the following

PROPOSITION 2.6. {H'(fil’ Sq)}i  forms  the  finite  decreasing  filtra-
tion of HYS,). Denote fil' H'(S,) = H'(fil'S;) and gr' H'(S,) =
fil' HY(S,)/ 61" HY(S,). Then

DOCUMENTA MATHEMATICA 5 (2000) 151-200



THE MILNOR K-GROUPS

161

gr'H'(S,) =
0 if i > 2e)
XX A (05%/p) if i = 2e)
X (Q4,2/p) @ X1aX A (@4, /p)

X (04,2 /p) © XX A (304, /p?05%)
XedX A (3047 /005

ax(n, —vp (e NG—2 NG—2 NG—2
(P 00gs 03, 602 4 e

ifi=eple)

(
(
(ife<i<2e)
(
(ifi=epte)

20)4—2
P?AUQA . (ifl<i<e)
@ XZ*ldX/\B"%Q%U +p QZ
P29 °
0 (ifi=0),

where 1; and 0! be the integers which satisfy p"i~1i < e < p"i and p”i_li —-1<

e < p”ii — 1 for each i.
To prove (2.6), we need the following lemmas.

LEMMA 2.7. Forw € D®QqB and n >0,

op(f"(w)) = vp(w) + ng. (11)
In particular, if w € Q?%, then
op(f" (W) = vp(w) + ng. (12)

Proof. w e D® QqB can be rewrite as w = ZZ a;w;, where a; € D and w; are

the canonical generators of Q%, which are

for Th,...,T; € TU{X}. Canonical generators have the property f(w;) = plw;,
thus we have (11). Furthermore, if w € Q% ,» then a; € Ap and we have

vp(f(as)) = vp(a;). Thus (12) follows.

O

LEMMA 2.8. If1 <7 <p,s>0andi > er, then there exists a homomorphism

Zws:

This is the inverse map of 1— fr1s, hence 1— fr1 s : ﬁli(I[T]®QSB) — ﬁli(D®QSB)
18 an tsomorphism.

fil'(D ® O%) — ' (1M @5 O%)
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Proof. By i > er, fil'(I"" @ Q%) = fil'(D @ Q%) because X¢ = rIXi—¢r(X¢)l],
All elements of fil' D ® Q% can be written as the sum of the elements of the
form X"(X¢)w, where w € D ® Q% and n 4 ej > i. Now r < p, thus
(X°)l"l = X /rl in D, hence we may assume j > r. The image of X™(X¢)llw

1S

S xn(xeylily) = §° P g ey £7W)

7;) 7‘+S(X (X ) w) THZZO p,«m(.ﬂ)X (X ) psm .

Here, f™(w) is divisible by p*™ by (11). The coefficients (p™j)!/p"™(j!) are
p-integers for all m and if j > 1 then the sum converges p-adically. If j = r =0,
n > 1 says that the order of the power of X is increasing. This also means the
sum converges p-adically in D @ %, The image is in fil’ (1" © 5 Q%) because
p™j > r for all m, thus the map is well-defined. Obviously, anozo 1 is the
inverse map of 1 — f.4s. O

LEMMA 2.9. Leti > 1 and e > 1 be integers. For each n > 0, let m,, (resp.
m), ) be the mazimal integer which satisfies ip™ > mye (resp. ip" —1 > mle).
Then

1-m<0 (whenn=mn;—1, ifn; > 1)
vp(mo!) +mo > 1 ( when n =0, if n; =0)
Min {v,(my,!) +m;, —n},
_J1-7n<0 (when n=n,—1, ifn, > 1)
| ep(mp!) +mp > 1 (whenn =0, if 5, =0),

where n; and 1, are as in (2.6).

Proof. By the definition of {my, },, mp41 is greater than or equal to pm,,. Thus
’Up(m{n-l-l!) > vp(pmy,!) and

Vp(Mpt1!) + Mpg1 — (n+ 1) = (vp(my!) +my —n) (13)
= Up(Mpy1!) — vp(Map!) + Mpg1 —my — 1

is greater than zero if m, > 0. On the other hand, »; is the number which has

the property that if n < #;, then m,, = 0 and m,, > 1. Thus the value of (13)

is less than zero if and only if n < 7;. Hence the minimum of v, (m,!) +m, —n

is the value when n = n; —1if n > 0 and n = 0 if n; = 0. The rest of the

desired equation comes from the same way. O
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Proof of Proposition 2.6. At first, we show that {H'(fil’S,)}; forms the finite
decreasing filtration of H'(S,). See

grt Sq =

i@ @0t? 1 g0t — 1 aiDe0l — ...

llffq llffq llffq

D@02 L, wipe0L! —L L giDe0, —1 ...
(14)
If ¢ > 1, all vertical arrows of (14) are equal to 1. Thus they are injections by

the definition of the filtration. Especially, the injectivity of the first vertical
arrow gives H%(gr’S,) = 0, this means

0 — H'(fI''S,) — HY(fI'S,) — H'(gr'S,) (15)
is exact. If i = 0, the first vertical arrow of (14) is 1 — f: pQQZ‘;Q — Q'XUQ. This
is also injective because of the invariance of the valuation of Ag by the action of
f. Thus the exact sequence (15) also follows when i = 0. Hence {H!(fil'S,)};
forms a decreasing filtration of H'(S,). '

Next we calculate H'(gr’S,). If i > 2e, fil'S, is acyclic by (2.8). Thus we
only consider the case ¢ < 2e. Furthermore, if 7 > 1, we may consider that
H'(gr'S,) is the subgroup of gr' D @ QqB_2 because of the injectivity of the
vertical arrows of (14).

Let i = 2e. Then gr** S, is

X?eQZ*UQ @pXQeildX A Q%;BL)X2GQ?4;1 ® XQefldX A Q?4702L) .
E E
X200 @ X2 1dX A Q4 L X 20 @ X2 lax A QY
The second vertical arrow is a surjection, thus
1(2€e ~ y2e—1 Ha—3
H (gr°S,) = X271dX A (04 /p). (16)
Let e < i < 2e. Then gr*¢S, is

i()9—2 i— Ag—3 d iHg—1 i Ag—2 d
pXQ?40 & pX 1dX/\Q?40—> QZ‘O e X 1ti,>(/\Q?4()—>~~~

I I
X042 @ XX A Q40 —Loxi0 T @ XX A QG 0
The second vertical arrow is also a surjection, thus

H'(gr's,) = Xi(fz?;f /p)® X"dX A (Qjﬂ,—o?’ /p). (17)
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Let i = e. Then gr¢§S, is

pXQ? @ p?X e dX A QX0 @ pXx e ldx A QG

b b
X2 e XX A0 Lo X0 e XedX A QG 0
The second vertical arrow is not a surjection. For an element X °w € X 69?4;2,
d(X°w) is included in Xeﬂ?[ol & pXetdX A Q?{OQ if and only if p | e or p | w.
For an element X~ 'w A dX € X¢71dX A Q% %, d(X°~'w A dX) is included in
XGQZ_Ul @ pXeldX A Q?{UQ if and only if p | dw. Thus we have

X4 /) ® XTUX A (3105 /%05°)  (ifple)
XeldX A (319?4;3/;;29?;03) (ifpte).
(18)

Il

Hl(gre Sq)

Let 1 <i <e. Then gr's, is

X0 @ p? X X AL X Q0 @ pX X A Qe

[ [

X0 2o XX A0 L X e XX A0 2 4
The image of X'w € X'Q%? is included in pX Q% " & pX~1dX AQ% % if and
only if p | iw and p | dw, and the image of X" 1dX Aw € X*71dX A Q?{OS is
included in pX'Q% & pX'~1dX A Q% ? if and only if p | dw. Thus

H'(gr'S,) =
X (3002 pP00) © XX A (3052 ?0%°)  (ifp i) (19)
X(pO42 /0% 2 & XX A (3952 705°) (it pti)

If i = 0, we need more calculation. The complex gr’S, is

202 4, pQ4 ! d Q9 d
[ P
a0 —— 00 —— o, —
We introduce a p-adic filtration to gr’S, as follows.
p2+mf2?4;2 d p1+mQ?4;1 d N me?‘Xo —>d -
ﬁl;n(gro Sq) = llffq llffq J(l*fq
P e O e,
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Then, for all m > 0,

QqF—Q 0 Q%—l 0 Q%
g1y (g’ S,) = l—C’l l—c*l ll—c*l : (20)

d d

-2 -1
O O O
The injectivity of the leftmost vertical arrow of (20) says that
HO(gry' (gr"Sy)) = 0

for all m > 0. Thus {H' (il (¢r°S;)) }m is a decreasing filtration of H'(gr’S,).
On the other hand, the intersection of the image of —C™! : Q‘Fl — Q‘Fl and
the image of d: Q4 — Q4" = B! is {0} by (1). Thus we also have
H' (e (gr°S,)) = 0 for all m > 0. Hence we have H(gr’S,) =

We already have known H'(gr'S,) for all i > 0, but the third arrow of
(15) is not surjective in general. So we must know the image of H!(fil'S,) —
H'(gr'S,). Let i > 1 and let = be an element of fil’ D ® Q% * which represents
an element of H'(gr'S,). H'(fil'S,) is

AT @052 4, AlTe 0L —L L flDeOL —L s ...

H' ll—fq ll—fq ll—fq

D02 L AlDe0s ! —1 s ilDe0L, —% s ...
Now the second vertical arrow is an injection. Thus x also represents the
element of H!(fil'S,) if and only if

> fida) € il T Q% (21)
n=0

The elements of H'(gr'S,) are represented by two types of the elements of
D ® Q% ?, these are X'w for w € 0% ? and X"~ 1dX Aw for w € Q% . Thus
we must know the condition when (21) follows for these elements.

At first, we calculate X'w for w € QZ{OQ.

> fdX w)
n=0

(X dw + i XX Aw)

tqu

3
Il
o

tqu

( X" (dw) + ;ZZXiP"_ldX/\f"(w))

3
Il
o

mg

sz ‘—mpe (Xe>[mn] fn(dw)
i p"(qfl)

3
I

+ (m )sznfl m! e(Xe>[ il]dX/\ f (w) )
pn p"(‘I*Q)
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Here m,, and m/, be the maximal integers which satisfy ip™ — mpe > 0 and
ip™ —1—mle > 0. Note that f*(dw) and f"(w) can be divided by p™(¢=1) and
p"(@72) | respectively, by (11). Furthermore, v,(f"(dw)/p™9~V) = v,(dw) and
v, (f(w)/p™972)) = v,(w) by (12). To be included in I ® Q%L ", the sum of
the p-adic order and divided power degree must be greater than or equal to 1,
ie., vp(my!) —n+my, +vp(dw) > 1 and vy (3) + vp(ml!) —n+m), +vp(w) > 1
must be satisfied for all n. We already know the minimal of v,(m,!) —n +m,
and v,(m},!) — n+m}, by (2.9), thus 307 ) f*(dX w) belongs to I®% ' if and
only if

no condition (ife+1<4)
vp(i) + vp(w) > 1 (if e =1) (22)
vp(dw) > n; and vp (i) + vp(w) > n) (f1<i<e).

Next, we calculate X~ 1dX Aw for w € Q?{f.

> AHAXTAX Aw)

n=0

M

SHXTHX A dw)

= (p—XiP"—ldX A f"(dw))
pmd
n=0

= Z <(m—;l!)XiP"—1—m;e(Xe)[m’n]dX A fn(dw)) .
n=0

gl
o

pn pn(q72)

To be included in T ® Q% ", v,(ml,!) —n +m!, + v,(dw) > 1 must be satisfied
for all n. As the same way as above, > 1" f#(X*~'dX Aw) belongs to 1oL
if and only if

{ no condition (ife+1<7) (23)

vp(dw) > 1) (if1<i<e).

For w € Q?[Ol, the condition v,(w) > n means w € p"f)?[ol and vp(dw) > n

means w € SHQZ‘?. Thus, by (16), (17), (18), (19), (22) and (23), we get
(2.6). O

3 DIFFERENTIAL MODULES AND FILTRATIONS

Let K, A, Ap, Ko and B are as in Section 2. We assume that pte = ek, i.e.,
K/Kj is tamely totally ramified extension from here. Let k be the constant
field of K (cf. [18]), i.e., k is the complete discrete valuation subfield of K
with the restriction of the valuation of K, algebraically closed in K, and the

DOCUMENTA MATHEMATICA 5 (2000) 151-200



THE MILNOR K-GROUPS 167

residue field of k is the maximal perfect subfield of F. Then there exists a
prime element of K such that 7 is the element of k. Let ko = Ko Nk. Then «
is algebraic over kg and we get Q}Qko = 0, where Oy, is the ring of integers of

ko. Thus 7¢~!dr = 0 in QY by taking the differential of the minimal equation
of m over k.
By the equation m¢~!dr = 0 in QY, we have

R dT; dT;
0% ~ @ v R Ng—
4 o . A T;, Areeh
i1 <ia < <ig

d
e—1 g—1
(&%) - @ A/(ﬂ' )T—il/\"'/\T—/\dﬂ' y
11 <t2<--<lg—1
where {T;} = T. We introduce a filtration on Q9% as follows. Let
- A ) q 1 ] =
fr s — % _ ., (Ei=0)
QY + 7 dr A QY (ifi>1).
The subquotients are
gr' Q4 = ' Q% / il QY

_ja% (iffi=0o0ri>e)
% et (if1<i<e),

where the map is
ﬂiﬂi Stlwr— e 95
e AQT s Tl Aw — 0 € Q%
Let fil’(Q% /pdQ% ") be the image of fil' Q% in Q% /pdQ% . Then we have the
following
ProrosiTiON 3.1. For j > 0,
o O (J
g (Q4/pa0 ) =0t w0i (1
/B (e

e

where | be the maximal integer which satisfies j — le >
Proof. If 1 < j < e, gt/ Q% = g/(Q9%/pdQ% ") because pdQ% " C file Q4.
Assume that j > e and let | as above. By (24) and pi®dr = 0, 9?4_1 is
generated by the elements pridw for 0 < i < e and w € Q?;Ol. By [7] (Cor.

2.3.14), pridw € fie+n)+i QZ‘ if and only if the residue class of p~™dw belongs
to Byi1. Thus g/ (Q% /pdQ% ") = Q% /BY. O
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We need the lemma in the following sections.

LEMMA 3.2. (i) Forn > 0, there exist maps

n fn A A
fq = W : 9?40 — 377,9?40

(il) Formn > 1,
n—1
382, = (Zplf:—lﬂ%o> 0, + 30,
=0
(iii) Forn >1,
n—1
d i He—1 Aa—1)E" ol ~ ()4
@Eofq—ﬁ (QAO /318, ) — 2, /p= 0%
i=0

is injective and the image is B,Q%.

(iv) For anyn >0,

. N fm . . . .
Qio /319?40 N BnQ%U/(Sn_,_lQ?% + 3"9?40 OPQ?%)
18 an tsomorphism.
(v) For anymn >0,
n @IS Eofia 3.0
3n82%, NPy,

(2, /0) & (95,1 /3:05.1)”

18 an tsomorphism.

Proof. (i) By (12), f*(w) belongs to p”qu{‘O. Q?% is p-torsion free, thus f* is

well-defined as the map to Q?%. Furthermore,
n 1 n n £n
) = s () = T (),

thus f'(w) € 371(2?40-
(ii) For 0 <1 <n — 1, the image of the natural injection
SHQ?% N plQio
(3%, NPHIQY ) + (30025, N PIQY,)
— - plﬁ?{” -
P+ (382, NPIYY,)

~ 0%/ Z 0%
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is coincide with Z,,_;Q%./Z..Q% by [7] (Cor. 3.2.14). The image of plf;*lﬁ?%
is also Z,_ 0%/ ZQ%. for all I, thus the natural projection

n—1 A
L 3,0
<§ Plfq lQ!iO) Ao
=0

P+ 3000,

is surjective. Hence we have (ii).
(iii) The following diagram commute

n—1 d _ri
i=0 Foqul

Ag—1 Ag—1 ®n g
(QAO /319,40 ) ? QAU/p
@on n—1—i
(qu_l/Zf_l) Qi d Q%,
The image of the bottom arrow is Bg.

(iv) The image of 3nQ?40/(3nQ?40 ﬂpﬂ?%) under the isomorphism Qio/p —
0% is Z2 by [7] (Cor. 3.2.14). (iv) follows from the diagram

R . o . . R R
9?40/319?40 — 319?40/(3n+19?40 + 3nQ?40 QPQ?%)

J y

o-n
0L/zi — VAYVAIRR
(v) The image of
a_ A n\8n D %of;;l A
(a5 /300 ) " S 4 et

is BZ by (iii), and the image of the composite

A o N
D, /p = )y, /p = Qp — O/ B}
is Z1/B4. Hence we get (v). O

4 THE IMAGE OF H(S,)

We assume p { e. We further assume that there exists the prime element 7 of
K such that 7¢ = p. If there does not exist such m, we replace K by K(pé).
Note that the extension K (p*)/K is unramified of degree prime to p. In this
section, we calculate ¥(H'(S,)) explicitly. We need some preparations.

Let N§ be the subset of QZU such that the canonical map N§ — Q% \ Z{ is
an injection, the image generates Q% /Z{ and have the property

If o+ C~ '@ =0, then dw = 0. (25)

We can take such N{ because of the following
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LEMMA 4.1. Take x € Q% If £+ C~ 'z = 0 then there exists w € 0?40 such
that © =z and dw = 0.

Proof. x can be written as
T = E T,
T

where 7 runs through the canonical generators (cf. in the proof of (2.7)) and
x, € F. The assumption x + C~ 'z = 0 means that xr + 22 = 0 for all 7, thus
x, € E for all 7, where F is the maximal perfect subfield of F'. The canonical
generators have the fixed lifts denoted by 7, and we can take lifts of x,, denoted
by Z,, in the ring of Witt vectors with coefficients in E, denotes W (FE). Fix
an inclusion W(E) — Ag. Let

w= g TrT.
T

Then dw = 0 in Q?% because dZ, = 0 in Q?% and @ = z. This w is the desired
one. O

For any ¢,1 > 0, let N/ = fé(NOq) as a subset of Q?% and let

N = 30004\ (3924, NpQY ),
N#=|JN/, N=N{UNZ.
>0

Then, by (3.2,iv), N? generates Qio/p and w # 0 in Q?%/p for all w € NY.
Furthermore, by using (3.2,v) and the isomorphism
3n71Q?40 i, ‘3”0?40 ﬂpﬂio
3,,_1(2?40 N pQ?40 3719?40 N pQQZ‘U

we have

n—1 A

d _ 3,01
FiNTU ) S NG ) = e
m:Op 3"9140 meAo

n—2 o N4

e T 308y, NP,
<Pfq U o £ >= S ol
m=0 p 3n Ao np Ao

(26)

Thus the union of the sets of the left hand side of (26) generates
3,09, /(3,99 Np*QY ). If ¢ < 0 then let N = 0.
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Let S, S1,, 82, and S}, be the subsets of D ® Q% > defined as follows.

0 (i =0,eori>2e)
XiNa—2 (if e <i < 2e)
S0 —
61 0 (if1<i<emn—uvy(i)>1)
Xi( 7N Uy A N 3) (f1<i<emn—uvpi)<0),
0 (i=0ori>e)
st =40 (<< em—vy(i) >2)
Xt (pf N2 UUBZ pe faNE™) (1< < ey — up(i) < 1),
0 (i=0ori>2e)
. X 1dX A N1—3 (e <i<2e)
Sio =9 xe=14x A (f;,gNHung*‘*) (i = e)
i P =1 d em Aa—4
X 1dX/\(f;7_3Nq SUULTS o fm NG ) 1<i<e),
0 (t=0o0ri>e)
e—1
,5’1122 XX A pN1? (ifi=e)
Xi= 1dX/\(pf’h N3 U n e pote fm  NE 4) (if1<i<e).

Let S@l = S?JUS}J, Si72 = SQQUSZ{Q, Sz = SZ-JUSZ-Q and S the union of all Sz
By the above definitions, S; generates gr’ H'(S,), hence S generates H'(S,).
The following lemma is useful to calculate .

LEMMA 4.2. If 1 < i < e then the minimal value of vi (7" /p"t') = ip" —
e(n+1) is

T - (whenn=mn; —1; ife <ip" < ep)
ip™ —e(n; +1) (whenn=nmn;; ife<iph <e)
ip" Tt — e (whenn=mn; —1,n; if <ip” =¢)

and if e < i then the minimal value of v (m™®" /p"t1) is i —e.

Proof. Lemma follows from the definition of 7;. O

Remark 4.5. Method of calculation of ¢. In (2.6) and in the definition of S,
we use elements of D ® QqB_Q, which is the degree zero part of the complex
0>q—3D[g — 2], to represent elements of H'(S,). Chasing the complex (6) and
the map (8), ¢ is the composite of

nxofq

D05 ? L Dg Oyt g[@()‘g
T Ae 0Lt 2 09 pdQ?,

1 I—pA PA® QqB—l
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Thus, for w € Q?{UQ (resp. w € Q?{UB) and i > 1,

% i ip" dm n 1 % n
P(Xiw) =3 <pn+17r PN fial) + g " (dw))
n>0

(27)

dX 1 . ndrm
resp. (XZY /\w) = anﬂﬂ'”’ - A foo(dw)

n>0

Here, to avoid the complication of notations, we use
cdX ;dm
X'— resp. ' —
X ( p- s )

which only denotes the meaning of X*~!'dX (resp. n'~'dr) when i > 1. By
using (4.2), n = n; — 1 or n = 7; is the number at which the value vy of the
coefficients of dr in (27) is the minimal. If X‘w € S (resp. X*"1dX Aw € S) for
wE 0?4;2 (resp. w € Q?{OS), then w has the property (22) (resp. (23)). Under
this condition, the right hand side of (27) belongs to Q?[l. Furthermore, by
7l =0, if 1; > 1 then

) i omerdm 7 ,dm
P(X'w) = — 7 /\f’% ( )erm_H p' /\fm (w)
+ Z( g (dw))’
n>0
dX 1 omi—dm i 1 ipns AT ;
’L/)(X X A ) Eﬂ' ip" ? A ;7721(dw)pm+17rpn ? A :fz(dW),

and if n; = 0 then

B = 1 s 3 (e ).

n>0
cdX 1 .d

Note that if n; > 1,
<0 (if ' <ip™ < ep)

1 i m;—1 1 ipi . . :
VK (p’%' P ) — UK (pm'“ﬂ- P ) >0 (if e <ip™ <¢) (28)
=0 (if ip™ =¢€').

By the definition, S generates H'(S,). But v: H'(S,) — Q%' /pdQ%? has
the kernel in general. The following lemma compute some subset of this kernel.
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LEMMA 4.4. (i) Sae, Se C Ker.

(i) If e < i < 2e then (S, \ (XWX ANT?) =0. If1<i<e
then (575 \ (X'71dX A f;iSNg—3)) = 0 and ¥(Sty \ (X71dX A
PFIGINE) = 0.

(iii) Ife <i<2e and pti, then ¥(Si2) C (¥(Si1))-

(iv) If e < i< 2e andp|i, then

¢(Si,2>c<w U s}, >

1<j<e

(v) Let 1 <i < e, s =n; +vy(i) and ig = i/p*rD. If &' < ip" < ep and
s > 2, then

w(si,2> C < U Sjﬁl U Sz'pm'e,l>.

1<j<e
Furthermore, let
~ Jiop® (if s is even ),
7= {iopsTl (if s isodd).
Then

¢(522) C(Y(Sj,1))  if 3 > vp(i),
$(S}a) CW(S;1))  if 3mi > vp(d) + 2.

Proof. (i) Take X?7'dX Aw € Sac 2. Then

X 1
(0 <X26d7 /\w) = —7r2ed—7T ANdw =0
D T

by (4.3). Next, take X¢71dX Aw € S, 5. By the definition of S 2, such an w
can be divided by p. Thus, by using (4.3), we get

dX 1 .d
) (Xe—/\w) = —ﬂe—ﬂ-/\pd—w =0.
X p 7 p

(ii) At first, let e < i < 2e. When we take X'~ 'dX Aw from 59, \ (X"~ 1dX A
Ng_3)7 then w has the property v,(dw) > 1. Thus by using (4.3),

dX 1 .d d
P <Xz—/\w) = —ﬂz—ﬂAp—w =0.
X p T p
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Next let 1 < i < e. When we take X~ 1dX A w from

(s (#58) 5) (5 ).

w has the property vy,(dw) > n; + 1. Thus ¥(X~1dX Aw) = 0 by using (4.3).
(iii) In this case, S;2 = X""'dX AN and S;; = X*N972. For an element
X71dX ANw € S;o with w € N773, there exists X'dw € S;1 because dw €

NZ2, and
;dX Xidw
d{ X'— A d
(5 o) =0 (57)

This means (X" 1dX Aw) = (X'dw)/i. Thus ¢(S;2) C (¥(Si1)).
(iv) Take an element X" 1dX Aw € S; o withw € N3, Let j=jo=i—e¢
and j; = ji—1p — e for j > 1. Then, {j;}; have the property

Pt
€ . . .

—— < Jo<pn<jgp<...

p—1
by p | i and ¢ > €’. Let L be the minimal integer such that j; > 2e/p. Then
nj = 1 for all 0 <1 < L. There exist the elements X7'pfl ,(dw) € S} ,
because S} | = X7 N9=% and pf._,(dw) € N4 2. Thus the element, denoted
by Y

L 1\ ]
y=> D) X7tpfy_o(dw)

exists in (U;Z; St)- By (4.3), (X'~ 'dX Aw) = 7=~ ldr Adw. On the other
hand,

YY) = Z ((_1)lﬂ.jzd_7r A fl_g(dw) + (_1)11714'10 A fIELd ))
1=0 ™ D
= ((‘Ulﬂjl Cfr_ﬂ A fé—Q(dw) + (=l g 9T fl+1( )>
I= od7T
= ? A dw.

The third equation follows from j;11—1 > e—1. Hence (X~ 1dX Aw) = (Y)
because jo =i — e, and we get (iv).
(v) Now S?, and S}, are

dX 771_1
0 _ i 3 —4
Sip=X'= ( SN U )’
LdX ’”’2 d .. s
8’12—X7/\<pf;7131N‘1 3u Up— JNETH
m=0
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By (ii), we only have to calculate the element of

X .
;hSNq 3 X—/\p i 1Nq 3

widX
X

X

to show (v). If ¢/ <ip™ < ep and s > 2, then

dX on;—1 dm 2m;—1
A — P A 771 d
X gsw =T ﬂd [y (dw)
+ AT A f T (dw),
de i—1 ip"i— ldﬂ' 2m; —2
XY/\pf;_?,w:ﬂ'p 7T/\f" (dw)

e dT £ (dw).
The first terms of the right hand side come from
ipMi—1 _
Sip"i*1+e,1 :)le" +6Ngo 2
S5 XL () L e

- -
“ipey DX UTeNL?
P oy —1 dm

> Xipnrl"'ef;zi;%dw) —er?’  —A quTQ_Q(dw).
7T

1d —
= A S dw),

S.

pTi

On the other hand, the second terms of the right hand side are, if ip™ > 2e
then vanished. If ip™ < 2e, then by using the same argument of (iv) with
Jo = 1p" — e and

Ju

Zz . ( ]1) Xip L 2(f2771 (dw)) ( the second case ),

1

Yy — {ZZL 0 cu lepfl (me (dw)) ( the first case )

we get

w(Si,Q) - < U S‘71 U Sip"i—e,1> .

1<j<e

Next, we do not assume e < ip” < €’ and s > 2. In this case, we have to
show

cdX . _ . .
o (X ATENET) 0S5 i3 2 00

LdX o ' .
Y (XZ7 NI NG 3) Cp(Sin) if 3m > vp(i) + 2.
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Take w € N¢™°. Then, by (4.3),
dX .
P (XZY AFls (W))
1d .
vy ar A fQT,I ( ) + ﬂ_lpﬂl et

dX _
() <X17 /\pfghsl(w)>
vdm

_ 7Tipm d

— A (dw),

— ﬂ_ipm

AT () + T ().

On the other hand, there exist elements

Wi = f273 (dw)

p if s is even and 3n; > v, (1)),

L 1
P (dw)

2n;—5—1

wé = fq72 ) (dw)

j
Wy =pfily T (dw)

/
Wa

(
(if s is odd and 3n; > v, (7)),

(if s is even and 3n; > v, (1) + 2),
(if s is odd and 37; > v, (i) + 2)

in QZ,_OQ because the conditions are, 2n; > s/2 if and only if 3n; > v, (i) when
s is even, 21; > (s+1)/2 if and only if 3n; > v, (i) when s is odd, 2n; > (s/2)+1
if and only if 31m; > v, (i) + 2 when s is even, and 2n; > ((s +1)/2) + 1 if and

only if 3m; > v, (i) + 2 when s is odd. The image of ¢ of an each element is

- . sld ] . sd =4
S S F H%ﬂmiAﬁdﬂ)

ipTi T 1 d7T

N f2m—1(dw) +7:O7Tipm e f27h ( )
mw(x"%fAfm <>),

= ’ioﬂ'

X
; io iopS vdm io iop s dm
Q/J(X]Wé)zgﬂop 7/\fq 2( )+F7TO _/\fq 2(‘“2)
iomi—1d — . ipTi—
= ior®" " D 2 ) i e 72 ()
dX
_Zo’lb (Xzy/\fm ( )) 5
. ops—1 AT 1o ;. sdm s
B(XIw)) = igmioP 1— A FES(wh) + goﬂzop ? )
) 1d o
_ ioﬁlpnl us /\f2’l71*2( )+i0ﬂ_1pm e /\f27]1*1(dw)

d
mw<X”§§Apﬂg(w0,
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00y = o™ 0T 0 o2y 1 o T o
= iom®" T LA F212 (dw) + g T i AT (dw)
o (X‘%X Ao
Compare the definition of S;; with the condition of wi,...,w}. If s is even and

3n; > vp(i) then

j_d__ i3
Xiu) = {Xﬂ mr f () € X

2n; 2 3 .
p fqn2 Ng~ (lf i —
XI [, 2"1 2T (dw) € Xff:igNgo 2 (it m — 5 > ).
Thus X/wj € S7,. By the similar way, we have
Xlwy € Sj,  (if sis odd and 3n; > v,(i)),

Xiwh € 52,1 (if s is even and 3n; > v, (i) + 2),
X'wy € Sj,  (if sisodd and 3n; > vp(i) + 2).

The claim (v) was proved.
(|

Remark 4.5. Let S;?Q (resp. 5’;712) be the subset of S, (resp. S}, ) defined as
follows.

XX A NG (e<i<e,pli)
S = XBEAfILNET Si<e e<iph <€, B <up(0)
0 ( otherwise ),

XU ApfIINGT (1<i<e, e<iph <€, 3n; <vp(i)+2)
SzQ = :
0 ( otherwise ).

Remark that if 1 < ¢ < e satisfies v,(i) + 7, = 1 and €’ < ip™ < ep, then
vp(i) =0, e/(p—1) <i < eandn =1 Thus this ¢ satisfies neither 3n; <
vp(i) + 2 nor 3n; < vy(i). Let S}, = SZO2 U 5112 Then by (4.4), w(H(S,)) is

generated by

!
U siujul U si
1<i<2e 1<i<2e

We need some modification of generators of ¥(H(S,)) as follows.
Let the index sets Ag and A; be

A={i; 1<i<e, e <ip" <2 n;=uvp(i)}, (29)
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M={i;1<i<e e <iph <2, n=v,(i)+1, pf(i+e)}. (30)

Let A=AqgUA;. Fori € A, let

s = 1i + vp(0),
i/ — i/pvp(i),
iO — i/p571, (31)

=14 p—eforl>1,
L =Min{l ; i, > 2¢/p}.

{i1}; are monotonely increasing, thus we can take such L. Note that p 1 ¢/,
n, =1for 0<I<Landpti forl>1. If i € Ay then let g; o be

. 1. 1 ot 1 = (D i i
. ? — X, — 1ote £MNi— i emiHl—
9i0(X'w) = ZX'w — XTSI, (w)+; SpX W)
for w € 3771.@?4702. This function satisfies g;0(w) = (1/i')X‘w modulo

A" H1(S,), thus we can replace S?; by g;0(S0;) to generate ¢(H(S,)).
When ¢ € Ay, then let g; 1 be

_ 1 .
1 (Xpw) = = Xipw —
gi1(X'pw) R s

L—-1
X’L0+e ni—1 (71)l X’LL ni+l—1
fq—2 (OJ) + Z il p q—2 (OJ)
=1

for pw € inZQHBWiQQEQ. This function satisfies g; 1 (pw) = (1/i') X *pw modulo
1" H1(S,), thus we can replace S}, by g;.1(S},) to generate ¢(H(S,)).

5 ExpLICIT CALCULATION, CASE (a)

We compute ¢(Si,1), (S} ), ¥(g:,05) 1) and ¥(g:,1.5} ) explicitly in Section 5,
6 and 7.
Define the index sets as

r, — i‘1§i<e,

e . . .
1<ip"11<e}u{z‘e’<z<26},

I‘b:{i’1§i<e,e<ip7”<e'}u{i‘e<i<e'},

I, { c ,e’}.
p—1

These sets are disjoint to each other, and I'; UT, UT . is coincide with {i; 1 <
i < 2e,i# e}. Ais the subset of I'. In this section, we compute ¥(S;1US; ,)
for i € T \ A, 9(gi0(S71) U St US;,) for i € Ag and 9(g;1(S},) U S} ,) for
i € A1. We compute 9(S; 1 U SZ{,Q) when ¢ € Ty in Section 6 and when 7 € T,
in Section 7.
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At first, we compute ¢ when i € Ty and 1 <i<e. Lete/(p—1) < j <e,

s =wp(j)+1 and jo = j/p*~!. Then the integers i which satisfy ip”~! = j are

(ia 771) = (jOa S)a (j0p7 s — 1)7 ceey (jOps_la 1)

Let i = jop'. Then i € T', for all t. Notice that if i € I';, and 7 < e then there
exists e/(p — 1) < j < e such that ip"~! = j.

i1 =0.

Ift=(s—1)/2and p| (j +e), then i € Ay, S7; =0 and

K2

ni—2
[ i - d m -
Shi=X (pf(?lzl]\’q ulU P aaNg 3) :
m=0
For X'pw € S}, ¥(gi,1(X'pw)) is

i _ pr'?”
Ul (X'p0) = 3 20 )
n>0
p”]i_l

ig+e)p™ pmitn—1
- Z Wﬂ'( otelp f3" T (dw) (32)

+1-1

+ Z Z pm " f;i-il-l-i-n—l(dw)

=1 n>0

by using (4.3) and the same kind of calculatlon in (4. 4 ,iv) with the nota-
tion (31). If pw € pme N2 or pw € Py f;"SNq for some m, then
P(gl(Xipw)) = 0 by (32). If pw € pfmgqu 2 then take [ > 0 and
LW € N2 for o' € NJ7? such that w = f;”_’gl "(w"). For this w’, we
have

Y9 (X pfy 5 (W) =

B R ) (i #£ 1)
ept i :
e ™ fa-1(dw’) (ifn =1)
mod A" QL pd Q).

Now ip"i~t =jandm =s—t=(s+1)/2,

U(gia (X pflt = (W))) =

Lo 9 f T (dw') (ifs—t>1)
Z(fie)ﬂ fé 1 (dw”) (ifft=0,s=1) (33)

mod fiyTel+t (Q?4 ! /de?L‘_Q).

If s =1 and p | (j+e), then ¢ can be taken only 0. S?, = (. This ¢ is
not in Ay, hence we compute S}, without g;1. Now S}, = X‘pN?2. For
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Xipw € XipNiI—2,
(X 'pw) = z’wi‘ldw Aw+in? N A fo_o(w)

+ Z 7T1p A fo-1(dw)
n>0 (34)

=ir ldr Aw+ 7' A dw
mod fil"™H Q4 /pdY?).

If t = s/2, then i € Ag and

ni—1
d _
Solin <f771 Ne— 2U Upp m Ng 3>.

m=0
For X'w € P, ¥(gi,0o(X'w)) is

_ ip"
Wgo(X'w) = 3 s fita ()

n>0
1
*Z(iwe)pnﬂ TS @) (35

+i-1

pm g ™ eni n—
15 3) Pl sty
=1 n>0
Ifwe fllyNE? orw e pim m o Ng ™ for some m, then ¥ (g;,0(X'w)) = 0 by
(35). Ifw € f;iQN;Z_Q, then take [ > 0 and f} ,w' € N2 for w' € NI72 such

that w = gfgl(w’). For this w’, we have

! inMi —
oo (X fPE @) = St e ()

l
p I—
T )

mod V(O /pdQy ).

Sl

i1 18

-2
S;1=Xi< S N2y Upd ’"Ng‘3>.

m=0
For X'pw € S} 1, (X 'pw) is
-1
p i dw
- e (). (37)

i —
n>0 p
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Thus if w € f:i;lNgo*Q or w € p%f;’%]\fgfg for some m, then ¥ (X’pw) = 0.

If w e f5'NI? let 1 > 0 and f o0’ € Nf72 for w' € N2 such that

w= gfgl(w’). For this «’, we have

w(Xl 7h+l l(w/)) :pl ip"i71f2m+l—2(dwl)
=p ﬂ_]ferl 2( ' ) (38)
mod AT (QL /pdQY?).
If t > s/2, then i & A and

-1
d -
Sol_Xz<fm N~ QUUP mNg 3)_

m=0

For X'w e S, ¥(X'w) is

. i o d
v(xw) = 30 L g (—“’) . (30)

i
n>0 p

If we floNT?orw e %f;’iBNg_3 for some m, then ¥(X‘w) = 0. If

w € f;iQNJ?_Q, then take [ > 0 and fl_,u' € N2 for o' € N2 such that

i+l
G

w = f5 (). For this w’, we have

PP WN) = ple T )
_pﬂ_ngs 2t+1— l(d(U) (40)
mod i T (Q4 /pdQ9T?).
When we take X‘pw € S}J, by the same calculation of the case t = s/2, we
have
,l/)(szferl 1( /)) plwzp"Z f(?rliJFl*Q(d /)
=p ijQs 2t+1— Q(dw ) (41)
mod fit/ T Q4 /pd Q9.
When i € T', and i < e then S}, = 0.
Next, we compute i € I'y and e < i. In this case S}, = 0, thus we only have

to compute S; ;1. Let e/(p—1) < j < eand i =j+e Then S} =0 and
531 = X*N9=2. For an element X'w € 8’21,

Y(X'w) = in'™ e—A +Z el " (dw).

n>0
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If p | i, then the first term of the right hand side is zero. Hence if w = f!_,(w’)
then

Y(X'w) = plat e oy (dw') (42)
mod il T (Q4! /pdQY )

and if w € N4? then ¢(X‘w) = 0. If p{4, then

. Cdr .
X'w)=ir"""— Aw+ 7"~
Y(X'w) =ir —Aw+ T dw (43)

mod iV Q4 /pdQ?).

We have computed all S; or substitutes of S; for ¢ € ', as above. Next,
we construct the sets {M7} ;>0 which are rearrangements of the generators of
Y(H!(S,)). The law of rearrangement is, for example, as follows. See (33). For

an element gi71(Xipfgfgl_1(w’)), the image of 7 is

[
i i +Hl— _b ) £s+1—
Vo (Xp S @) = Bl ot (awf)
mod A1+ (Q4 /pdQ4?)

when s — ¢ > 1. Thus this element goes to gr/+<(Q% ™" /pdQ% %) and it seems
non-zero. So we put gi,l(Xipf;fgl_l(w’)) into M7tel. We will know its image
is really non-zero in Section 8 but now we do not know it is true or not. We
construct the set M7+l by, roughly speaking, the set of the elements which
come to grite (Q4" /pdQ% ?) and seem non-zero. The real definition of M* is
as follows.

Use (33), (34), (36), (38), (40), (41), (42) and (43) to define M7 T for
e/lp—1)<j<eand!>0.Lete/(p—1)<j<e, s=vp(j)+1andl>0. If
s =1 then let

Mitel —
gi 1 (XIpNI ) U XI+teN9=2  (pf(j+e)and [ =0) ... (33),(43)
951 (XIpfl_oNE™?) (pf(+e)andl>1) ... (33) (44)
XIpNe—2y XIteNI? (p|(j+e)and 1 =0) ... (34),(42)
Xitefl  NET? (p|(G+e)and1>1) ... (42).

By (3.1), g?(Q4 " /pdQi™) = Q47" @ Q47 and gi Q4T /pdQyT) =
Q%4 /BY" for I > 1. The image of M7 is, if pf (j + ¢),
O /2] ST g (O fpa0 %) S 0 0 0
™ dw — <,Ldu_),0>
e ] +e

. e
wr— Yo gi1 X pw = -
ogi1X'p T
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and
Jjte N N o _ _
Q072 X o (Q97 /pdQ17?) S Q07 @ 042
wr— Yo X = rldw + (j + e)wj—ﬂ- ANw — (dw,i®).
7r
Thus we get

Y(x) # 0 for x € M7 in gr/ (Q4 " /pdQ%?), (@5)
grd (Q /pdQ% ) /(W (M7)) = QF /BT
The case s = 1 and p | (j + €) goes similarly to the case above. If [ > 1, the
image of M in gritel(Q4 /pdQ% ) = Q4 /BIT is
042/ 28 50— Clde € Q4 /BT
and hence non-zero. Thus

P(x) £ 0 for w € MI+e in gritel Q4" /pdQ%?),

j4el rda—1 ANg—2 jtel\\ ~ 07—1/pa-1 (46)
gr (QA /deA )/W(M )> =2 /Bl+1'
If s is even and s > 2, let
M7 =XITeNI=2 . (43)
-y _9
Ug,,4 0 (XJW FE NG ) ... (36)
. s s_1 _
UXPPEpf2 INGT2 L (38)
u U X9or oot NG 2O X p st INGT | L (40),(4),
s/2<t<s—1
(47)
and
Mj+el _
jop3 5+ Arq—
95030 (XM FENG 2) ... (36)
U xIorEpp it NG2 L (38)
U U onptf;:5+lNgf2 Uonptpf;:§+l71Ngf2 (40)7(41)
s/2<t<s—1
(48)

for I > 1. The image of (43) is the image of
Q4 5 2 Y (o iz) € QL @ Q2
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and the image of (36), (38) and (40) is
aOtzitea Yz e @ QF/Z etz

s/2<t<s—1
C(s=Dd g o-(s—2)d g @s/2<t<571(07(2872t71) dpC—(25-2t-2))

- -1 -2
B 'a0c Qi @ QL7

Thus we get
Y(x) # 0 for x € M7 in g/ (Q4 " /pdQ% ), (49)
grd (4! /pdQiT?) [ (w(MY)) = Q47 /BIT.
If [ > 1, the image of M7T¢ is
o l/zit ez e @ @F/ZT ey /2T
s/2<t<s—1
O (H=1) gpo—(s+1-2) @@S/2<tS871(07(2572t+171) $07(2572t+172))
BL/Bit cily/BiT
Thus we get
P(x) # 0 for x € MITelin gt Q9" /pdQ% ), (50)
gr/ QYT /pd ) (W (M) = Q47 /BI.
If s is odd and s > 3, let
MI =XITeNI=2 | (43)
. s=1 s=1_1 )
Ugjops;l B (X”p “ ol T Ng ) ... (33)
U U X9 fooi NG 2O X p st INGT | L (40),(4),
s/2<t<s—1
(51)
and
Mitel —
op T St -1 q—2
9055t (X”p Pl 22 N§ ) ... (33)
U | X7 £ NG U X P p i INGT )L (40),(41)
s/2<t<s—1
(52)
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for I > 1. By the similar calculation as the case s is even, we get the same
results (49) and (50).
By the definition of M7Tet,

U shiusii|u (U 91,0591 U83,1> U <U gi715i1,1> U (U S§,2>

€T \A i€Ao 1€AL i€l

is equal to the union of M7*¢ for all e/(p — 1) < j < e and all [ > 0.

6 ExpLICIT CALCULATION, CASE (b)

In this section, we compute 9(S;1) and ¥(S] 5) for i € I'.
At first, we compute ¢ wheni € I'y and 1 < i <e. Let e < j < €', s = v,(j)
and jo = j/p°. Then the integers ¢ which satisfy ip" = j are

(ia 771) = (jOa S)a (j0p7 s — 1)7 RN (jOps_la 1)

Let i = jop'. Then i € T'y for all t. Notice that if i € T’y and i < e then there
exists e < j < €’ such that ip™ = j. But if s = 0 then there is no ¢ € Iy, such
that ¢ < e and ip = j. Thus we assume s > 1 to calculate when i < e.

Ift < 5;1 then S@l = 0.

If t = (s —1)/2, then S?; =0 and

7;—2
. o d o
sto=x (pszstveo U re?).
m=0

For X'pw € S}, (X'pw) is

) L os—1dm . i_.dm s+1
P(Xpw) = jor? ™ TN £ )+ o ™ T A £ ()
3 ()
n>0 (53)

. i dm sh1 . dw
Ejoﬂ"] ?/\fq—22(w)+ﬂ-‘7 fq 2 (p521>
mod fity =T (Q4 ! /pdQ9T?).

Note that if X’pw € S}, then w € 3?77;710?4702-
If t = s/2, then

ni—1
d -
8P =X (f’” N2y U NG 3)

m= 0

and
ni—2
511—X1<me 1Nq2UUP 3)-
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For X'w € 8, ¥(X'w) is

7 . | —e dﬂ- 5 i—e 5
vt = i LA fh) + e
mod fill =T Q4! /pdQ ).
For X'pw € S}, ¥(X'pw) is

www=z§wmuw.

n>0

dw

3

Thus if X'pw € S}, \ X'pf 5" N2 then (X 'pw) = 0. Take w’ € NI~ * such

that w = gjglfé_Qw’. Then

(X 'pw) = plad = fi i dw!
mod fit/ =TT QU /pd ).
If t > s/2, then

n:i—1
; . _ d _
Sih XZ( TONTT2U | e fi g NG 3)
m=0 p

and

ni—2
A d .. 0
Sip=X (pf?iqu U U ps s N 3>'

m=0

For X'w € 8, ¥(X'w) is

) 1 n
P(Xiw) =) anww ", (dw).

n>0

(55)

Thus if X'w € 5P, \ X* giQNJ'Z_Q then ¢(X'w) = 0. Take w’ € NI ? such that

— £ l /
w= flofq_ow’. Then

’L/J(XiUJ) = plﬂ.j—ef;iIQt-l-ldwl
mod il =TT Q9T /pdQ9 ).
For X'pw € S}, by the same calculation as in the case t = /2,
’l/)(Xipw) = plﬂjfefsiIQt-i-l—ldw/

mod il =TT (Q9T /pd Q9.
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Next, we compute S;, in the case i € I', and i < e. By (4.5), Si, (resp.
Sz,12) exists when 3s/4 < t (resp. (3s —2)/4 < t). If 3s/4 < t,

dX cdX

Siy = X' NN 5 X2 A ()
cdX
- i
— o A )
1p771 1 d7T ar N f2”1_1(dw) 1ﬂ_ip77-; d7T f27h (dw) (58)
s

/\f2s Qt(dw)

mod 7 QL /pdQ9 ).

If (35 — 2)/4 < t,

Sih= X1 AP NG 5 XIS A )

o (X A 5 )

:Wz'p”rld_” AP () + 21j ipmi AT /\f%_l(dw) (59)
= i _/\st 26-1( )

mod iy "t (Q4! /pdQ9 ).

Next, we compute S; 1 for ¢ € I', and ¢ > e. Let j = 4. Now Si171 — (0 and
SZ-O,1 = X*N?2. For an element X'w € Sgl,

Y(X'w) =ir'me

zp n (dw)
n>0

If p | 4, then the first term of the right hand side is zero. Hence if w = q o (W)
then

Y(X'w) = p'r' ™ fy_y (dw')

) . . 60
mod i ~TETL(QU /pdQ ) (60)
and if w € N2 then (X‘w) = 0. If p{4, then
. dm .
Xw)=ir = Aw+ 1w
H(Xw) - -

mod iVt (Q4! /pdQ9T?).
For i € I', and i > e, S}, is empty if p { i. So assume p | i. Then, for
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XTlX Awe XTHX AN =8, =59,

.dX ;
de_ Aw = ﬂz_ed—ﬂ- A dw
. i (62)
= Wj_e? Adw mod ﬁlreH(Qi_l/de?‘ﬁ_Q)'

Use (53), (54), (55), (56), (57), (58), (59), (60), (61) and (62) to define M7 +¢!
fore<j<e andl>0. Let e < j <e€',s=uvy,(j). By (3.1),

A e (1=
l

el Q1L a2y o
gr ( A /p A ) Qi{:l/qu_l (

If s = 0 then let

MI~¢ = XINT2 . (61)

Mi—etel _ 0 (63)

for all I > 0. The image of M7~¢ is the image of
012 50— (d, ju) € Q4 & 057,

hence we get

() # 0 for . € MP™¢ in grd=¢(Q4 " /pdQ%?),
gt/ (Q4 /pdQ4?) /(W (MI 7)) (64)
= Coker (Q%_2 >z (dr,jz) € Q5 @ QqF_Q)

and

P(x) #£ 0 for x € Mi—etel iy gri—etel (Qi_l/pdﬁ?ax_g)v

A A . 65
e/~ (QE D) (M) = QB v

for | > 1 because MJi—etel — ().
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If s is even and s > 2, let

Mi~¢ =
(s/2)—1
onp% 3 a2 d m N3 54
q-2 U U pm Ja=310 .. (54)
m=0

U xIor? DI Na2 L (55)
v U (ijt FTANE2 U X' f;:;*lNg—Q) ... (56),(57)
$<t<s—1
dX s
v U (XJOP qu_?ng ) .. (58)
B2 t<s—1
- dX _
U U X Jop Ypqu_*?f*lNg 3) ... (59)
3552 451
UXINI? ... (60)
dX .4
UXT==Ng™> .. (62)
and

Mj7€+€l —

Xt p DTN (55)
v U (ijt FoTANgT2 U X0 f;:;lNﬂ*Q) ... (56),(57)

$<t<s—1

UXINS? ... (60)

(67)

for I > 1. When [ = 0, the image of (58), (59) and (62) is

q—3 jr7q—3 q—3 jr7q—3 q—3 jr7q—3
b o¥zidle|l @ Qt/zi e/
3s/4<t<s—1 3s/4<t<s—1
(@35/4«554 ¢ (=20 d>€9(@(3572)/4<t5571 Cm@em2mh) d>€9d

0@ B Cc 0t @0L?,
the image of (55), (56), (57) and (60) is
0 zie | @ ez Teay /2 | ey /2

5<t<s—1
c—(s=1) d@(@ g<t<ont c—(2s—2t) d®07(2572t71)> ®d

— —1 -2
B 'o0oc bl el
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Furthermore, the image of (54) modulo the image of the group generated by
the other generators of M7 is

(€™ djo C™)&(Boemey C 2T d)

e | @ etz
0<m< 3
(C™"d,jo O™ + BI™?/BY C Q47 /BIT @ Q47 /B,

Hence we get
() # 0 for = € MI~ in gii=(Q4" /pdQY),
g~ (U /pd Q) (o (M)
= Coker (0% 52— (C™*dw, jo C™*2) € QF ' /BI™ 0 Q4 /BI~?) .

(68)
When [ > 1, the image of M7—¢tel is
0zt e | @ Rz ez | ey /2
s<t<s—1
CmCHD da (@ g oy, O3 dpom (oD ) g0l
—1/pq—1 —1 /-1
BB g By,
Hence we get
$(@) # 0 for z € M= in el = (@Y7 /pdQ ), (69)
grd TN pd Q) [ (M) = /B
If s is odd and s > 1, let
| L (s—1)/2)-1
MI—e — xdop Z pquz NI=2 U pp—mf;’z3]\7373 ... (53)
m=0
U U (X RTENGT U X TINGTY) L (56), (57)
$<t<s—1
1 dX
XJop' 2 ps—tpara=3)
o U (o gamm) o (70)
%<t§sfl
cedX _
U U X Jop 7p ;:éfl]\fg 3) ... (59)
222 y<s—1
UXING? ... (60)

dAX
U X7 == N§ 5o (62)
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and
Mimerel = | (XjUPtfjiéqu_QUXj””tf;Zé_lqu_Q) .. (56), (57)
S<t<s—1
UXIN/™2 ... (60)
(71)

for I > 1. By the similar calculation to the case s is even, we get the same
result (68) and (69).
By the definition of M7Tet,

(U S usi{1> U (U 5;72>
i€l i€l

is equal to the union of M7~¢t¢! for alle < j < e’ and all { > 0.

7 ExprLICIT CALCULATION, CASE (c)

In this section, we compute 1(S;,1) and ¥(S] ,) for i € T'..
I’ has only two elements, e/(p — 1) and e’. At first let i = ¢/(p — 1). Then
SP=0,8],=0and

Si1=X'pNi2,

Note that this ¢ has the property i = ip — e. Take X*pw € X*pN72 then

YK ) = i1 S (04 fyal)) + (e + fyma ()
+ Z —7er " (dw).

n>2
If w+ fy—2(w) = 0 mod p then the leftmost term of the right hand side vanishes.
But w + f,_2(w) = 0 means @ + C~'@ = 0 in Q%> thus dw = 0 hence
Y(X'pw) = 0 by the property of NI 72, see (25). So we get

= i\ (0 fyma(W)) + T (dw + o ()
mod fil"™ Q4! /pdQy?)
(#fw+ fyo(w)#0 modp)

=0 (fw+ fe—2(w)=0 modp)

(X pw) (72)

Next, let i = ¢/. Then S = X'Ny_», S;% = X'"1dX AN{™® and S}, =
S;L =0. For X'w € X'Ny_o,

) 1
w(m):zpmww " (dw).

n>0
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Thus if w € N& 2 then ¢(X'w) = 0 and if w = f._,w' for w’ € N§ ™ then
WX o) = p'7' 0 f oy (dw') mod AITHHQIT /pdQ ). (73)
For X'~ 'dX Aw e X~ 1dX A NI2,
P(XTHX Aw) = wi—ed?” A dw. (74)
Use (72), (73) and (74) to define M7*¢ for j =e/(p—1) and I > 0.

M#T =X71pNT2\ {w‘w + fg—ow =0 mod p} .. (72)

UXENIT2 ... (73)

UXe/% ANEE L (T4)
and let

Mt = X N2 (73).
By (3.1),
el el -2 o | B QL2 if1=0
gre/(p 1)+el Q‘i 1/de?4 2 {le/quFl Eiflz 1;'

When [ = 0, the image of (73) and (74) is

0 */2 P e 00 2170 L 0 e 0
and the image of (72) modulo the subgroup generated by (73) and (74) is

(1+C™Nd, = (1+C71))

yp—1

Qq—Q/Zq—Q
F 1
QL /BT @ QL2 /BT = 04 /(14 C)BY @ Q4% /(14 C)BY 2.

Here Q471 /BY™" = Q47! /(1 + C)BY! follows from C(B¢™") = 0. Hence we
get

P(x) # 0 for . € Me/P=Y in gre/P=D(QI" /pdQ%?),

/0D Q) (/)

052 — 5/ (14+ 0BT @ Q%72 /(a+ C) B (75)
= Coker e
T — ((1 +C)C~tdx, — (1+C)ct :c)
When [ > 1, the image of (73) is
%2z S B B ot B

DOCUMENTA MATHEMATICA 5 (2000) 151-200



THE MILNOR K-GROUPS 193

Hence we get

Y(x) #£0 for x € Me/P=D+el iy gpe/(p=1)+el (Q?[l/pdﬂ?;Q),

gt/ DU QU pd) /(M) 2 Qg B

(76)

By the definition of Af¢/(P—D+el

(U S USZ.{1> U <U 5;72>
iel. i€l

is equal to the union of M¢/(P=D+el for all [ > 0.

8 THE STRUCTURE OF THE MILNOR K-GROUP

Proof of Theorem 1.1. At first, assume (, € K, there exists a prime element
m of K such that 7¢ = p and the residue field F' has a finite p-base. By
the definition of M™, the union of all M™ for n > 1 and n/e ¢ Z generates
Y(H(S,)). Me for I > 0 is not defined yet, so let M = (). Then M™ is
defined for all n > 1. There is map

<Uw<M”>>/< U w<M">> Q) (77)

n>i n>i+1

for each ¢ > 0. By the exact sequence of (2.4), if (77) are injective for all i > 0
then

(M) — gr'(Q4 /pdQy ) =22 grite KY(K)

are also exact for all i > 0. We already know ¢(x) # 0 for x € M’ in
gr' (04 /pdQ%?) and what is the group (p(M?)) in gr*(Q% " /pdQy?) for

all i > 0 by (45), (46), (49), (50), (64), (65), (68), (69), (75) and (76). The
results are as follows:

B O A )/ () = QT BI (i T << el 20)
(78)

where s = v,(j) + 1.

g/~ QT pdQ )/ ( (M)

0% — 04 /BI 0 0F°/BI fo<ice lm
~ Coker< o (C—%da. jo C—* 2) (ffe<j<é,l=0)
Q‘Fl/Bgﬁ (ffe<j<eé,l>1),

(79)
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where s = v,(j) and jo = j/p°.
gre/(P*1)+€l (Q%ﬁlpdﬂi*Q)/<¢(Me/(}7*1)+el)>

0L -0/ 1+ OB @ QL /(1+ C)BY
Coker -1 € -1 (if1=0)
r— ((14+C)C " du, 1(1-1—(3‘)(]‘ x)

e
QLY/BY (if1>1).

(80)

! Qa2 2) /(M) = e (0 pd2?) = Q4 /BI (for 12 0).
(81)

Let n > 1 and k be the integer which satisfies e/(p — 1) < n — ke < €. If
1 <n <e/(p—1), then the results of (79) with [ = 0 and (80) with [ = 0 is
coincide with the result of [3] by gr"*¢ K}/ (K) = gr™(Q4 1 /pdQ9 )/ (p(M™)).
Let n >e/(p—1). Then (78), (79), (80) and (81) say

grn(Q?ax_lde?q_Q)/W(Mn)) = QqF_l/Bg’_+11+k’

where s’ = v,(n — ke). Hence we have

gt KY(K) = Q%5 /BY L,

and we get Theorem (1.1) by shifting degrees.

We prove Theorem (1.1) in the case K does not contain primitive p-th roots
of unity ¢, or K does not contain a prime element 7 such that 7¢ = p as follows.
Let L = K((p, ¢/p) and let m = [L : K]. Then p{m and the extention L/K is
unramified. By using standard norm argument, the composite map

gr' Ky (K) — gr'™ K (L) = g’ K (K)

is the multiplication by m, hence injective. Furthermore, F1/Fk is a finite
separable extension, where F, (resp. Fi) is the residue field of L (resp. K),
we get Q% '/BQL ! = Q- /BOL! ® pt Fr. Thus Theorem (1.1) follows
even if ¢, ¢ K. *

Lastly, do not assume that the residue field of K has a finite p-base. Then
an inductive system of complete discrete valuation fields whose residue fields
has a finite p-base and its limit is isomorphic to K exists by [9] Section 1.5. On
the other hand, for a purely transcendental extension or a separable extension
F'/F,

0L/B0% — Q% /BQY,

are injective for all ¢ and [ because, if F’/F is separable extension, then Q%, =
F' @p Q% and if F'/F is purely transcendental extension F’ = F(T') then
0%, = (F'@r QL)@ (F' @r Q% ' AdT). Hence we get Theorem (1.1) by taking
inductive limit. O
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To prove Corollary (1.2), we need the following

LEMMA 8.1. Assume ¢, € K. Let V = Im({(p, *}: K} |(K)/p — K (K)).
Then the sequence

0— VNUKY(KyNp"K)(K) — U'K)(K) Nnp"K}(KY)
— UK (K np" T K (K) — 0

is exact for i >e/(p—1).

Proof. Restricting the bottom row of (3) to the filtration of K}'(K), we have
the exact sequence

0— VNUKY(K)Y — UKY(K) - UTKY(K) — 0

and hence we get the exact sequence

0— VNU'K)(Kynp"K)(K) — U'K)(K) Nnp"K)(K) (52)
SN UH'GKJ; (K)A N pn-i—lef (K)A
We only have to show the surjectivity of the last arrow of (82). Take p"*lz €
UKy (K) np" T KY(K). By the surjectivity of the multiplication by p
map U'K}(K)" — UK} (K), there exists y € U'K}/(K)" such that p(y —
p"r) = 0. This y — p"x is a p-torsion element of K'(K)", thus y —p"z €V C
Ue/(p_l)Kzf(K)A. Hence p"x € Ue/(p_l)Kﬁy(K)A because y € UK} (K)". Now
e/(p — 1) is prime to p, thus gre/(»—1) K(K) = gre/(p_l)(Kﬁ‘f(K)/p”) by [3],
and p"z goes to zero on this map. Hence we get p"x € Ue/(p_l)“Kgf(K)”. Let
j=(e/(p—1)) 4+ 1. By the definition, all rows and columns in the following
commutative diagram are exact:

0 0
0 VU n(e") uZn(e") p uiteneth)
VAUi,np™) Ui,N(p™) Uiren(pn+t)
0 vVNUi, Ul P Uite 0
VnUg Ul Uite
) . j+e
0 Vpn ﬁU;n U;n p UZ,n,+1 0
VpnnUZ, Ul Uﬁil
0 0

where we denote Vpn = Im(V — KJ(K)/p"), UL = UMK/ (K), Uy =
UMKy (K)/p") and (p") = p"K}/(K) only in this diagram. p"z is in the
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middle group of the top row and goes to zero by multiplication by p. Thus there
exists z € VNU/ K} (K ) Np" K} (K)" such that p"z—z = 0 modulo U* K}/ (K)".
Furthermore, z € p" K}/ (K)" implies p"z — z € U'K}/(K) N p" K}/ (K, thus
U'KY(K)Y np"KY(K) - U KY(K) np" KM (K)
P — 2z — p" Tl — pz = p" Tl
Hence surjectivity of the last arrow of (82) follows. O

COROLLARY 8.2. All rows and columns are exact in the following commutative
diagram :

0 0
U KM (K)np™ Ky (K)° Ut KM (K )y np T KN (K)
U KM (K np" KM (K) U et T IM(K )y npr T T KA (K 0
gr' Ky (K) -, grite KM(K) — 0 (83

| |

gr! (KM(K)/p")  —E—  grTe(K¥(K)/p™*Y) —— 0

I I

0 0.
Proof. Exactness of the top row comes from (8.1). O

Proof of Corollary 1.2. Denote Ker(gr' K)(K) — gr' K)'(K)/p"*t) by
Gint1. At first, we prove Corollary (1.2) for e/ <i < e’ +e. Let s = vp(i —e)
and ig = (i —e)/p®. Then we know all gr'=¢ K} (K)" and gr'~¢(K} (K)/p") by
[3], thus (83) is, if n < s and i # €’ + e then

0
Zg_l D Zg_Q — Gint1 — 0
G=1 ) a—1,myd—2 | pg—2
Q% /B eQ% " /B Q%_l/Bg_’__ll 0

(C=#d,ip C~)Q% 2

| |

q—2 .
® 2 gr! (K (K) /p"+) ——— 0

-2
z3

| |

0 0

-1
Q%

—1
z3
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here all maps are natural maps, and if n < s and ¢ = ¢’ + ¢ then

0
(1+aC)Zi'®(1+aC)2i72 —— Gint1 — 0
QL /(14+aC) B @QL % /(14+aC) B2 - -

((14+aC) C=¢ dyig(1+aC) C—5)Q%4 >

—1 —2
QL @ Q%
(14aC)z2™* (14aC)z8™2

gr! (K (K)/p"*t) —— 0

l

0 0

where a is the residue class of p/7¢. We get (1.2) in this case by these dia-
grams. If n > s then gr’ K}'(K)" — gr'(K) (K)/p") is an isomorphism, thus
gr'te K)(K)" — gr'te (K} (K)/p"*!) is also an isomorphism.
By induction on ¢ and calculating the diagram (83) for each case, we get
(1.2).
O

9 AN APPLICATION

THEOREM 9.1. Let K be a Henselian discrete valuation field of mized charac-
teristics (0,p > 2) with the residue field F. Assume p{e and [F : FP] = p?=1,
where e = vk (p). Let L/K be a ferociously ramified cyclic extention of order
p" (i.e., the extention of the residue fields is inseparable of order p™). Then
p" <€, where e’ =ep/(p—1).

Remark 9.2. In [15] and [6], they give the upper bounds of such extensions. If
K has the property p 1 e, our bound is stricter than them (or equal to [6] if e
is small).

Proof. We use the notation Uj. = U'(K}(K)/p") for simplicity. ~The
proof goes similarly to the argument of [15] Section 3. By the limit argu-
ment, we may assume F' is a field of transcendental degree ¢ — 1 over Iy,
Then H?(K,Z/p(q)) is non zero by [10] and furthermore we know that
HYY(K,Z/p"(q)) has an elements of order p™ by using Bockstein.

Let L/K be a cyclic extension of order p" and let y € H(K,Z/p") be the
character which coincide with L/K. Let ¢, be the homomorphism

by KY(K)/p" — HIY YK, Z/p"(q))
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which is induced by the pairing
HY(K,Z[p") x K/ (K)/p" — H™(K,Z/p"(q))

by using K}/ (K)/p" = HY(K,Z/p"(q)). If L/K is ferociously ramified, by [15]
Section 3, we know

Gy : Upn — HTH(K, Z/p"(q))

p

is surjective and
¢X({1+7riz,y1,,..,yq,1}) Ed’x(U;il) (84)

for any x,41,...,y4-1 € O and ¢ > 1. Theorem (1.1) says that U;;H is
generated by the elements of the form of the left hand side of (84), thus we get

byt Ul JUSH — HITY (K, Z/p"(q))

is defined and surjective. Furthermore, for any element {1 +
L Y1, Ygo2, T € Upn for x,y1,...,yq-2 € Ok and i > p, its order
modulo U;;H is less than or equal to p' by [3] Theorem 1.4, where [ be
the maximal integer which satisfies p! < ¢/. Thus he maximal order of the
elements of U}fn modulo U;;H is less than or equal to p'. On the other hand,
HYY(K,Z/p"(q)) has a element of order p™, thus n <. This is the inequality
which we desired.

Note that there exists elements of U, / U;:[H of order p", for example, {1 +
T, Ty, ..., Ty—1, 7}, where {Th,...,Tq—1} are the liftings of a p-base of F.
Thus the maximal order of the elements of szn / U;;Jrl is pt. O
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