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Abstract. We consider a generalization E(n) of the Johnson-Wilson
spectrum E(n) for which E(n)∗ is a local ring with maximal ideal

In. We prove that the spectra E(n), E(n) and Ê(n) are Bousfield
equivalent. We also show that the Hopf algebroid E(n)∗E(n) is a free
E(n)∗-module, generalizing a result of Adams and Clarke for KU∗KU .
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Introduction

For each prime p and n > 0, the Johnson-Wilson ring spectrum E(n) provides
an important example of a p-local periodic ring spectrum. The associated Hopf
algebroid E(n)∗E(n) is well known to be flat over E(n)∗, but as far as we are
aware there is no proof in the literature that it is a free module for every n.

Of course, after passage to the In-adic completion Ê(n), and more drastically
the In-adic completion of E(n)∗E(n) (see [4, 8]), such problems disappear.
On the other hand, for the ring spectrum KU , the associated Hopf algebroid
KU∗KU was shown to be free over KU∗ by Frank Adams and Francis Clarke
[3, 2, 6]. Actually their approach has two parallel interpretations: one purely
algebraic involving stably numerical polynomials [5]; the other topological in
that it makes use of the cofibre sequence

Σ2kU
t
−→ kU −→ HZ

induced by the Bott map t : S2 −→ kU in connective K-theory.
In this paper we demonstrate an analogous result by constructing an E(n)∗-
basis for E(n)∗E(n) for a generalized Johnson-Wilson spectrum E(n) whose
homotopy ring is the (graded) local ring

E(n)∗ = (E(n)∗)In
.
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For completeness, in Section 1 we discuss even more general generalized
Johnson-Wilson spectra to which appropriate analogues of our results apply,
however we only describe the E(n) case explicitly.
Our main result is the following which has some immediate consequences stated
in the Corollary.

Theorem. E(n)∗E(n) is a free E(n)∗-module on a countably infinite basis.

Corollary.
A) For every E(n)∗-module M∗ and s > 0,

Exts,∗
E(n)∗

(E(n)∗E(n), M∗) = 0.

In particular,

E(n)∗E(n) = Hom∗
E(n)∗(E(n)∗E(n), E(n)∗),

and this is a free E(n)∗-module on an uncountably infinite basis.

B) The E(n)-module spectrum E(n) ∧ E(n) is a countable wedge

E(n) ∧ E(n) '
∨

α

Σ2`(α)E(n),

where ` is some integer valued function of the index α.

Actually, when s > 2, Exts,∗
E(n)∗

(E(n)∗E(n), M∗) = 0 for formal reasons. The

statement about E(n)∗E(n) follows from a version of the Universal Coefficient
Spectral Sequence of Adams [1].
Our approach to constructing a basis follows a line of argument suggested by
that of Adams [2] which also has a purely algebraic interpretation in Adams
and Clarke [3, 6].
Although the technology of brave new ring spectra applies to generalized
Johnson-Wilson spectra [7, 15], we have no need of such structure, except
perhaps to ensure the existence of the relevant Universal Coefficient Spectral
Sequence mentioned above; alternatively, M. Hopkins has shown that such
spectral sequences exist for all multiplicative cohomology theories constructed
using the Landweber Exact Functor Theorem.

I would like to thank Francis Clarke, Neil Strickland and the referee for their
helpful comments.

1. Generalized Johnson-Wilson spectra

Given a prime p and n > 1 we define generalized Johnson-Wilson spectra as
follows. Begin with a regular sequence u : u0 = p, u1, . . . , uk, . . . in BP∗ satis-
fying

uk ∈ BP2(pk−1), (p, u1, . . . , uk−1) = Ik / BP∗,

where Ik is actually independent of the choice of generators for BP∗. Of course
we have

Ik = (p, v1, . . . , vk−1) = (p, w1, . . . , wk−1),
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where vj and wj are the Hazewinkel and Araki generators respectively.
There is a commutative ring spectrum BP 〈n;u〉 for which

BP 〈n;u〉∗ = π∗BP 〈n;u〉 = BP∗/(uj : j > n + 1).

We will denote by In / BP 〈n;u〉∗ the image of the ideal In / BP∗ under the
natural ring homomorphism BP∗ −→ BP 〈n;u〉∗.
For any multiplicative set S ⊆ BP 〈n;u〉∗ containing un and having In∩S = ∅,
we can form the localization

E(n;u; S)∗ = BP 〈n;u〉∗ [S−1].

There is a commutative ring spectrum E(n;u; S) with

E(n;u; S)∗ = π∗E(n;u; S) = BP∗/(uj : j > n + 1)[S−1].

Example 1.1. a) When S = {ur
n : r > 1},

E(n;u; {ur
n : r > 1})∗ = BP 〈n;u〉∗ [u−1

n ].

This ring contains a maximal ideal In generated by the image of In/BP 〈n;u〉∗,
whose quotient ring is

E(n;u; {ur
n : r > 1})∗/In = K(n)∗.

This is a mild generalization of the original notion of a Johnson-Wilson spec-
trum. There is also an In-adic completion E(n;u; {ur

n : r > 1})În
with homo-

topy ring (E(n;u; {ur
n : r > 1})∗)În

.
b) When S = BP 〈n;u〉∗ − In,

E(n;u; BP 〈n;u〉∗ − In)∗ = (BP 〈n;u〉∗)In
.

This is a (graded) local ring with residue (graded) field

E(n;u; BP 〈n;u〉∗ − In)∗/In = K(n)∗.

In all cases we have the following which is a consequence of modified versions
of standard arguments based on the Landweber Exact Functor Theorem.

Theorem 1.2. For each spectrum E(n;u; S) the following hold.

a) On the category of BP∗BP -comodules, tensoring with the BP∗-module

E(n;u; S)∗ preserves exactness.

b) E(n;u; S)∗E(n;u; S) is a flat E(n;u; S)∗-module.

c) (E(n;u; S)∗, E(n;u; S)∗E(n;u; S)) is a Hopf algebroid over Z(p).

Setting uk = vk, the Hazewinkel generator, for all k, we obtain the standard
connective spectrum BP 〈n〉 and the Johnson-Wilson spectra E(n), E(n) for
which

π∗E(n) = E(n)∗ = BP 〈n〉∗ [v−1
n ],

π∗E(n) = E(n)∗ = (BP 〈n〉∗)In
.

Notice that every unit u ∈ E(n)∗ has the form

u = avr
n + w,(1.1)

Documenta Mathematica 5 (2000) 351–364



354 Andrew Baker

where a ∈ Z×
(p) and w ∈ In; in particular, u ∈ E(n)2(pn−1)r. Of course, unlike

the case of E(n), the multiplicative set inverted to form E(n)∗ from BP 〈n〉∗
is infinitely generated. However, for every such unit u arising in BP 〈n〉∗, mul-
tiplication by U = ηR(u) ∈ E(n)∗BP 〈n〉 preserves E(n)∗-linearly independent
sets by courtesy of the following algebraic result (see for example theorem 7.10
of [12]) and Corollary 2.3 which shows that E(n)∗BP 〈n〉 is a free E(n)∗-module.

Proposition 1.3. Let A be a commutative unital local ring with maximal ideal

m. Let M be a flat A-module and (mi : i > 1) be a collection of elements in

M . Suppose that under the reduction map

q : M −→ M = A/m⊗
A

M,

the resulting collection (q(mi) : i > 1) of elements in M is A/m-linearly inde-

pendent. Then (mi : i > 1) is A-linearly independent in M .

We end this section with some remarks intended to justify working with E(n)
rather than E(n). For algebraic reasons, our proof of E∗-freeness for E∗E only
appears to work for E = E(n) although we conjecture that the result is true
for E = E(n). However, there are sound topological reasons for viewing E(n)
as a substitute for E(n). Notice that

E(n)∗/In = E(n)∗/In = Ê(n)∗/In = K(n)∗.

Theorem 1.4. The spectra

E(n), E(n), Ê(n)

are Bousfield equivalent. More generally, the spectra

E(n;u; {ur
n : r > 1}), E(n;u; BP 〈n;u〉∗ − In), E(n;u; {ur

n : r > 1})În

are Bousfield equivalent.

Remark 1.5. It is claimed in proposition 5.3 of [10] that E(n) and Ê(n) are
Bousfield equivalent. The proof given there is not correct since the extension

E(n)∗ −→ Ê(n)∗ is not faithfully flat because In is not contained in the radical
of E(n)∗. We refer the reader to Matsumura [12], especially theorem 8.14(3), for
standard algebraic facts concerning faithful flatness. In the following proof, we
provide an alternative argument based on the Landweber Filtration Theorem
[11].

Proof. For simplicity we only give the proof for the classical case. Since

Ê(n)∗(X) = Ê(n)∗ ⊗
E(n)∗

E(n)∗(X),

we need only show that Ê(n)∗(X) = 0 implies E(n)∗(X) = 0.
Let M∗ a BP∗BP -comodule which is finitely generated as a BP∗-module. Then
M∗ admits a Landweber filtration by subcomodules

0 = M
[0]
∗ ⊆ M

[1]
∗ ⊆ · · · ⊆ M

[k]
∗ = M∗
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such that for each j = 0, . . . , k,

M
[j]
∗ /M

[j−1]
∗

∼= BP∗/Idj

for some dj > 0. The E(n)∗E(n)-comodule

M∗ = E(n)∗ ⊗
BP∗

M∗

inherits a filtration by subcomodules

0 = M
[0]

∗ ⊆ M
[1]

∗ ⊆ · · · ⊆ M
[k]

∗ = M∗

satisfying

M
[j]

∗ /M
[j−1]

∗
∼= E(n)∗/Idj

,

where E(n)∗/Idj
= 0 if dj > n. For a BP∗-module N∗,

Ê(n)∗ ⊗
E(n)∗

E(n)∗ ⊗
BP∗

N∗
∼= Ê(n)∗ ⊗

BP∗

N∗.

Then writing N̂∗ = Ê(n)∗ ⊗BP∗
N∗ we have

M̂
[j]
∗ /M̂

[j−1]
∗

∼= Ê(n)∗/Idj
.

From this it follows that M∗ = 0 if and only if M̂∗. So Ê(n)∗ is faithfully flat

in this sense on E(n)∗-comodules of the form M∗ for some finitely generated
BP∗BP -comodule.
We can extend this to faithful flatness on all BP∗BP -comodules. Such a co-
module N∗ is the union of its finitely generated subcomodules, by corollary
2.13 of [13]. For each finitely generated subcomodule M∗ ⊆ N∗, the short
exact sequence

0 → M∗ −→ N∗ −→ N∗/M∗ → 0

gives rise to the sequences

0 → M∗ −→ N∗ −→ N∗/M∗ → 0,

0 → M̂∗ −→ N̂∗ −→ N̂∗/M∗ → 0.

Each of these is short exact since by the Landweber Exact Functor Theorem,

tensor product over BP∗ with either of E(n)∗ or Ê(n)∗ is an exact functor on

BP∗-comodules. Suppose that N̂∗ = 0; then M̂∗ = 0, which implies M∗ = 0.
Since

N∗ = lim−→
M∗⊆N∗

M∗,

this gives N∗ = 0. Applying this to the case of N∗ = BP∗(X) we obtain the

Bousfield equivalence of E(n) with Ê(n).

In the chain of rings E(n)∗ ⊆ E(n)∗ ⊆ Ê(n)∗, the extension E(n)∗ −→ Ê(n)∗ is

faithfully flat, hence E(n) and Ê(n) are also Bousfield equivalent. Alternatively,
by the Landweber Exact Functor Theorem, tensoring with E(n)∗ is exact on
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BP∗BP -comodules, so the above proof works as well with E(n) in place of
E(n).

This result implies that the stable world as seen through the eyes of each of the

homology theories E(n)∗( ), E(n)∗( ) and Ê(n)∗( ) looks the same; indeed this
is true for any generalized Johnson-Wilson spectrum between BP 〈n〉 and E(n).
The proof of the p-local part of the result of Adams and Clarke [3, 2, 6] also
involves working over a (graded) local ring (KU∗)(p) = Z(p)[t, t

−1]; of course

their result holds over the arithmetically global ring KU∗ = Z[t, t−1].

2. Some bases for E(n)∗BP and E(n)∗BP 〈n〉

We first define a useful basis for E(n)∗BP which projects to a basis for
E(n)∗BP 〈n〉 under the natural surjective homomorphism of E(n)∗-algebras

qn : E(n)∗BP −→ E(n)∗BP 〈n〉 .

E(n)∗BP is the polynomial E(n)∗-algebra with the standard generators

tk ∈ E(n)2(pk−1)BP

induced from those for BP∗BP described by Adams [1], where

E(n)∗BP = E(n)∗[tk : k > 1].

Hence the latter has an E(n)∗-basis consisting of the monomials

tr1

1 · · · tr`

` (0 6 rk).

The kernel of qn is the ideal generated by the elements Vn+k = ηR(vn+k)
(k > 1), where ηR is the right unit obtained from the right unit in BP∗BP as
the composite

BP∗
ηR

−→ BP∗BP −→ E(n)∗BP.

By well known formulæ for the right unit of BP∗BP , in the ring E(n)∗BP we
have

ηR(vn+k) = vntp
n

k − vpk

n tk + · · · + ptn+k(2.1a)

≡ vntp
n

k − vpk

n tk mod In.(2.1b)

Here the undisplayed terms are polynomials over BP∗ in t1, . . . , tk−1.

Remark 2.1. The main source of difficulty in working with E(n) itself in place

of E(n) seems to arise from the fact that the coefficient of tpn

j in Equation (2.1)
is then only a unit modulo In, so we can only use monomials involving the
ηR(vn+k) as part of a basis when working over E(n)∗ rather than just E(n)∗.
This is used crucially in the proof of Proposition 2.2. Perhaps a careful choice
of generators in place of the Hazewinkel or Araki generators would overcome
this problem.
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We will also require an expression for the right unit on vn:

ηR(vn) = vn +
∑

16j6n

vjθj ∈ E(n)∗BP,(2.2)

where θj ∈ E(n)2(pn−pj)BP has the form

θj = tp
j

n−j mod In.

In particular θ0 = tn mod In. Although the θj are not unique, the terms
vjθj mod I2

n are well defined. Notice that if u ∈ E(n)∗ has the form of Equation
(1.1), then for the right unit ηR(u) on u,

ηR(u) ≡ avr
n mod In.

Now we will define some elements that will eventually be seen to form a basis
for E(n)∗BP . First we introduce the following elements of ker qn:

κr1,... ,rk;s1,... ,s`
= v−(s1+···+s`)

n tr1

1 · · · trk

k V s1

n+1 · · ·V
s`

n+`,(2.3a)

where 0 6 rj 6 pn − 1 with rk 6= 0 and ` > 0, sj > 0 and s` 6= 0. We also have
the elements

κr1,... ,rk
= tr1

1 · · · trk

k ,(2.3b)

where 0 6 rj 6 pn − 1 with rk 6= 0. The empty sequence corresponds to the
element κ∅ = 1. There are also elements

κr1,... ,rk
= qn(κr1,... ,rk

) ∈ E(n)∗BP 〈n〉 .(2.4)

Next we introduce an increasing multiplicative filtration on E(n)∗BP (apart
from a factor of 2 in the indexing, this is the filtration associated with the
Atiyah-Hirzebruch spectral sequence for E(n)∗BP ),

E(n)∗ = E(n)∗BP [0] ⊆ · · · ⊆ E(n)∗BP [k] ⊆ · · · ⊆
⋃

06j

E(n)∗BP [j] = E(n)∗BP.

Here the monomial tr1

1 · · · tr`

` has exact filtration
∑

j rj(p
j − 1). Of course each

E(n)∗BP [k] is a finite rank free E(n)∗-module with the basis consisting of all

the elements κr1,... ,rk
it contains. There are also compatible filtrations ker q

[k]
n ,

E(n)∗BP 〈n〉[k]
and K(n)∗BP [k] on ker qn, E(n)∗BP 〈n〉 and K(n)∗BP . Notice

that for j > 0, Vn+j has exact filtration (pn+j−1); more generally, the elements
defined in Equations (2.3) satisfy

κr1,... ,rk;s1,... ,s`
∈ E(n)∗BP [d](2.5)

whenever

d >
∑

i

ri(p
i − 1) +

∑

j

sj(p
n+j − 1).
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Proposition 2.2. The elements{
κr1,... ,rk

for 0 6 rj 6 pn − 1, rk 6= 0,

κr1,... ,rk;s1,... ,s`
for 0 6 rj 6 pn − 1, rk 6= 0, 0 6 sj , s` 6= 0, ` > 0,

(2.6)

form an E(n)∗-basis for E(n)∗BP .

Proof. Since

E(n)∗BP =
⋃

j>0

E(n)∗BP [m]

it suffices to show that for each m > 0, the κ elements specified in Equation
(2.6) and also contained in E(n)∗BP [m] actually form a basis for E(n)∗BP [m].
E(n)∗BP [m] has a natural basis consisting of all the t monomials tr1

1 · · · trk

k

(rj > 0) it contains. Notice that the number of κ elements in E(n)∗BP [m]

is the same as the number of such monomials, hence is equal to the rank of
E(n)∗BP [m]. Let M(m) be the Gram matrix over E(n)∗ expressing the κ
elements in terms of the t monomial basis, with suitable orderings on these
elements. It suffices to show that M(m) is invertible, and for this we need
to show that det M(m) is a unit in E(n)∗. As E(n)∗ is local, this is true if
det M(m) mod In is a unit.
We have

κr1,... ,rk;s1,... ,s`
≡ tr1

1 · · · trk

k (tp
n

1 − vp−1
n t1)

s1 · · · (tp
n

` − vp`−1
n t`)

s` mod In

≡ tr1+pns1

1 · · · tr`+pns`

` + (terms of lower filtration) mod In.(2.7)

Working modulo In in terms of the basis of t monomials, the Gram matrix for
the κ elements is lower triangular with all diagonal terms being 1, therefore
det M(m) ≡ 1 mod In. So det M(m) is a unit and M(m) is invertible. Thus
the κ elements of E(n)∗BP [m] form a basis.

Corollary 2.3. The short exact sequence of E(n)∗-modules

0 → ker qn −→ E(n)∗BP
qn
−→ E(n)∗BP 〈n〉 → 0

splits so there is an isomorphism of E(n)∗-modules

E(n)∗BP ∼= ker qn ⊕ E(n)∗BP 〈n〉 .

Also, E(n)∗BP 〈n〉 and ker qn are free E(n)∗-modules.

3. E(n)∗E(n) as a limit

In this section we will give a description of E(n)∗E(n) as a colimit. Although
we proceed algebraically, we note that this limit has topological origins since
for each u ∈ BP 〈n〉2(pn−1)r with r > 0 and which is a unit in E(n)∗, there is

a cofibre sequence

Σ2(pn−1)rBP 〈n〉
u
−→ BP 〈n〉 −→ BP 〈n − 1; u〉

and E(n) is the telescope

E(n) = Tel
u

BP 〈n〉 .
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On applying the functor E(n)∗( ), there is a short exact sequence

0 → E(n)∗BP 〈n〉
U
−→ E(n)∗BP 〈n〉 −→ E(n)∗BP 〈n − 1; u〉 → 0,

and limit

E(n)∗E(n) ∼= lim−→
U

E(n)∗BP 〈n〉 ,

in which U denotes multiplication by the right unit on u. Since u ≡ avr
n mod In

in the notation of Equation (1.1), application of the functor K(n)∗( ) induces
another exact sequence and limit

0 → K(n)∗BP 〈n〉
U
−→ K(n)∗BP 〈n〉 −→ K(n)∗BP 〈n − 1; u〉 = 0,

K(n)∗E(n) ∼= lim−→
U

K(n)∗BP 〈n〉 .

There are also algebraic identities

E(n)∗E(n) ∼= E(n)∗ ⊗
BP∗

BP∗BP ⊗
BP∗

E(n)∗,

E(n)∗BP 〈n〉 ∼= E(n)∗BP/ ker qn,

K(n)∗BP 〈n〉 ∼= K(n)∗ ⊗
E(n)∗

E(n)∗BP 〈n〉 ∼= K(n)∗ ⊗
BP∗

BP∗BP 〈n〉 ,

which allow us to work without direct reference to the underlying topology.
First we describe a directed system (Λ, 4). Recall that BP 〈n〉∗ is a graded

unique factorization domain, with group of units BP 〈n〉×∗ = Z
×
(p). Define the

sets

Λr = {(u) / BP 〈n〉∗ : u ∈ BP 〈n〉2(pn−1)r , u ∈ E(n)∗ is a unit} (r > 0),

Λ =
⋃

r>0

Λr.

We will often abuse notation and identify (u) with a generator u; this can be
made precise by specifying a choice function to select a generator of each such
principal ideal. Of course, (u) = (v) if and only if there is a unit a ∈ Z

×
(p)

for which u = av, i.e., if u | v and v | u in BP 〈n〉∗. We will write u 4 v if
(v) ⊆ (u), i.e., if u | v. We will also write u ≺ v if u 4 v and (u) 6= (v). The
directed system (Λ, 4) is filtered since for u, v ∈ Λ, u 4 uv and v 4 uv.

Remark 3.1. For later use we will need a cofinal subset of Λ and we now
describe some obvious examples. Since BP 〈n〉∗ is a countable unique fac-
torization domain, we may list the distinct prime ideals lying in Λ as
(w1), (w2), (w3), . . . say. Now inductively define

u0 = 1, uk = u k
k−1wk .

Then uk−1 | uk and indeed uk−1 ≺ uk. Also, for every element (u) ∈ Λ there
is a k such that u | uk, hence u 4 uk. So the uk form a cofinal sequence in Λ.
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Now form the directed system consisting of pairs of the form (BP 〈n〉∗ , u)
with u ∈ Λ. If u, v ∈ Λ, the morphism (BP 〈n〉∗ , u) −→ (BP 〈n〉∗ , uv) is
multiplication by v,

BP 〈n〉∗
v
−→ BP 〈n〉∗ .

On setting V = ηR(v), there is also a homomorphism

E(n)∗BP 〈n〉
V
−→ E(n)∗BP 〈n〉 .

These give rise to limits

E(n)∗ = lim−→
u∈Λ

BP 〈n〉∗ = (BP 〈n〉∗)In
,(3.1)

E(n)∗E(n) = lim−→
u∈Λ

E(n)∗BP 〈n〉 = (E(n)∗BP 〈n〉)ηRIn
.(3.2)

Remark 3.2. In describing E(n)∗E(n) as a limit, it suffices to replace each
map V by

E(n)∗BP 〈n〉
v−1V
−−−→ E(n)∗BP 〈n〉 ,

which is of degree 0 and satisfies

v−1V ≡ 1 mod In.(3.3)

This will simplify the description of our basis. Notice that if (v) = (w) /
BP 〈n〉∗, then

v−1V = w−1W,

providing another reason for using v−1V in place of V . From now on we will
consider E(n)∗E(n) as the limit over such maps v−1V rather than the limit of
Equation (3.2).

4. Some bases for E(n)∗BP 〈n〉 and E(n)∗E(n)

For each pair (u, s) with u ∈ Λr and s a non-negative integer, set

M(u; s)∗ = E(n)∗BP 〈n〉[s+r(pn−1)]
.

By Corollary 2.3, M(u; s)∗ is free on the images under qn of the κr1,... ,rk
defined

in Proposition 2.2 and we refer to this as the qnκ-basis. There are inclusion
maps

inc: M(u; s)∗ −→ M(u; s + 1)∗.

For v ∈ Λt and V = ηR(v), there is a multiplication by v−1V map

v−1V : M(u; s)∗ −→ M(uv; s)∗.

By Equation (2.2), v−1V raises filtration by t(pn − 1). Equation (3.3) and
Proposition 1.3 imply that v−1V is also injective; indeed we have the following
result.
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Proposition 4.1. Let s > 0 and u, v ∈ Λ. The E(n)∗-submodule

v−1V M(u; s)∗ ⊆ M(uv; s)∗

is a summand. Furthermore, if B is a basis for M(u; s)∗ then M(uv; s)∗ has a

basis consisting of the elements

v−1V b (b ∈ B), κr1,... ,rk
∈ M(uv; s)∗ − v−1V M(u; s)∗.

Proof. M(u; s)∗ and M(uv; s)∗ each have the qnκ-bases. After reduction mod-
ulo In, the stated elements in K(n)∗BP 〈n〉 satisfy

v−1V b = b ∈ K(n)∗BP 〈n〉[d+s]
,

κr1,... ,rk
∈ K(n)∗BP 〈n〉[d+h+s] − K(n)∗BP 〈n〉[d+s]

,

where u and v have exact filtrations d and h. These elements are clearly
K(n)∗-linearly independent, so by Equation (3.3) and Proposition 1.3 they are
E(n)∗-linearly independent. Thus they form a basis, so the exact sequence

0 → M(u; s)∗
v−1V
−−−→ M(uv; s)∗ −→ M(uv; s)∗/v−1V M(u; s)∗ → 0

splits and there is a direct sum decomposition

M(uv; s)∗ = v−1V M(u; s)∗ ⊕ M(uv; s)∗/v−1V M(u; s)∗.

The E(n)∗-linear maps v−1V and inc commute and together form a doubly
directed system. Then we have

E(n)∗E(n) = lim−→
(u,s)

M(u; s)∗

= lim−→
u

lim−→
s

M(u; s)∗

= lim−→
s

lim−→
u

M(u; s)∗.

Each M(u; s)∗ is a finitely generated free E(n)∗-module, with a basis consisting
of the κ elements it contains; we will refer to this as its κ-basis. M(u; s)∗ also
has another useful basis which we will now define.
Choose a cofinal sequence uk in Λ, for example by the process described in
Remark 3.1. For convenience we will assume that u0 = 1. Of course

E(n)∗E(n) = lim−→
(r,s)

M(ur; s)∗

= lim−→
r

lim−→
s

M(ur; s)∗

= lim−→
s

lim−→
r

M(ur; s)∗.

When r = 0, we take the κ-basis for M(1; s)∗, denoting its elements by κ1;s
r1,... ,rk

.

Now for r > 1, suppose that we have defined a basis κ
ur−1;s
r1,... ,rk

for M(ur−1; s)∗.
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For M(ur; s)∗, replace each κr−1;s
r1,... ,rk

of this basis by

κur ;s
r1,... ,rk

= w−1
r Wrκ

ur−1;s
r1,... ,rk

(4.1)

≡ κur−1;s
r1,... ,rk

mod In

whenever this element is also in M(ur; s)∗. For w−1
r Wrκ

ur−1;s
r1,... ,rk

/∈ M(ur; s)∗,
set

κur ;s
r1,... ,rk

= κur−1;s
r1,... ,rk

.(4.2)

Notice that by repeated applications of Equation (3.3), we have for all basis
elements,

κur;s
r1,... ,rk

≡ κr1,... ,rk
mod In.(4.3)

Next we consider the effect of raising s by considering the extension

M(ur; s)∗ ⊆ M(ur; s + 1)∗.

Clearly M(ur; s + 1)∗ contains all the elements κur ;s
r1,... ,rk

together with its κ-
basis elements of exact filtration dr + s + 1 where dr is the exact filtration of
ur. Reducing modulo In these elements are K(n)∗-linearly independent, so by
Equation (4.3) and Proposition 1.3 these are E(n)∗-linearly independent and
hence form a basis, showing that this extension splits. We have demonstrated
the following.

Proposition 4.2. For r, s > 0, the E(n)∗-module M(ur; s)∗ is free with the

following two bases:

• Bur;s
1 consisting of the elements κr1,... ,rk

contained in M(ur; s)∗;
• Bur;s

2 consisting of the elements κur;s
r1,... ,rk

.

Now we can state our main result.

Theorem 4.3. E(n)∗E(n) is E(n)∗-free with a basis consisting of the images of

the non-zero elements of the form

κur;s
r1,... ,rk

∈ M(ur; s)∗ − w−1
r WrM(ur−1; s)∗ (r, s > 0)

under the natural map M(ur; s)∗ −→ E(n)∗E(n).

Proof. We begin by showing that these elements span E(n)∗E(n). Let z ∈
E(n)∗E(n) and suppose that t is the image of zr ∈ M(ur; s)∗ under the natural
map

M(ur; s)∗ −→ E(n)∗E(n).

Then zr can be uniquely expressed as an E(n)∗-linear combination

zr =
∑

r1,... ,rk

λr1,... ,rk
κur ;s

r1,... ,rk
.

We can split up this sum as

zr =

( ∑

r1,... ,r`

λr1,... ,r`
κur−1;s

r1,... ,r`

)
+ w−1

r Wr

( ∑

s1,... ,sk

λs1,... ,sk
κur−1;s

s1,... ,sk

)
.
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Since
∑

r1,... ,r`

λr1,... ,r`
κur−1;s

r1,... ,r`
∈ M(ur−1; s)∗,

∑

s1,... ,sk

λs1,... ,sk
κur−1;s

s1,... ,sk
∈ M(ur; s)∗

map to linear combinations of the asserted basis elements in the images of
M(ur−1; s)∗ and M(ur−1; s)∗ in E(n)∗E(n), z is also a linear combination of
those basis elements.
Now we show that these elements are linearly independent over E(n)∗E(n). We
know that E(n)∗E(n) is E(n)∗-flat, and also that

K(n)∗ ⊗
E(n)∗

E(n)∗E(n) = K(n)∗E(n)

( = K(n)∗K(n) in the standard but misleading notation)

which has a K(n)∗-basis consisting of the reductions of the elements

tr1

1 · · · trk

k (0 6 rj 6 pn − 1).

Now tr1

1 · · · trk

k is the image of κur;s
r1,... ,rk

∈ M(ur; s) under the natural map. Care-
ful book keeping shows that the asserted basis elements do indeed account for
all the tj-monomials in this basis of K(n)∗E(n). These are linearly independent
in E(n)∗E(n) by Proposition 1.3.

The following useful consequence of our construction is immediate on taking

E(n)∗BP 〈n〉 = lim−→
s

M(1; s)∗.

Corollary 4.4. The natural map

E(n)∗BP 〈n〉 −→ E(n)∗E(n)

is a split monomorphism of E(n)∗-modules.
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