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ABSTRACT. In their famous article [Gr-Za], Gross and Zagier proved
a formula relating heights of Heegner points on modular curves and
derivatives of L-series of cusp forms.

We prove the function field analogue of this formula. The classical
modular curves parametrizing isogenies of elliptic curves are now re-
placed by Drinfeld modular curves dealing with isogenies of Drinfeld
modules. Cusp forms on the classical upper half plane are replaced
by harmonic functions on the edges of a Bruhat-Tits tree.

As a corollary we prove the conjecture of Birch and Swinnerton-Dyer
for certain elliptic curves over functions fields whose analytic rank is
equal to 1.
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1 INTRODUCTION

Let K = Fy(T) be the rational function field over a finite field F,; of odd
characteristic. In K we distinguish the polynomial ring F,[T] and the place co.
We consider harmonic functions f on GL2(K)/TooK %, the edges of the
Bruhat-Tits tree of GLg, which are invariant under T'o(N) for N € F,[T].
These are called automorphic cusp forms of Drinfeld type of level N (cf. sec-
tion 2.1).

Let L = K(v/D), with ged(N, D) = 1, be an imaginary quadratic extension of
K (we assume that D is irreducible to make calculations technically easier).
We attach to an automorphic cusp form f of Drinfeld type of level N, which
is a newform, and to an element A in the class group of Or, = F,[T][V/D] an
L-series L(f, A, s) (section 2.1).

DOCUMENTA MATHEMATICA 5 (2000) 365-444



366 HANS-GEORG RUCK AND ULRICH TIPP

We represent this L-series (normalized by a suitable factor L(N:P)(2s + 1))
as a Petersson product of f and a function ®5 on I'o(N) \ GL2(Kx)/T oo K2
(sections 2.2 and 2.3). From this representation we get a functional equation
for L(f, A,s) (Theorem 2.7.3 and Theorem 2.7.6), which shows in particular

D
that L(f, A, s) has a zero at s = 0, if [N} =1.

In this case, under the additional assumptions that IV is square free and that
each of its prime divisors is split in L, we evaluate the derivative of L(f, A, s) at
s = 0. Since the function @ is not harmonic in general, we apply a holomorphic
projection formula (cf. section 2.4) to get

%(L(N’D)(Zs +1)L(f, A, 5)) |s=0= /f W4 (if deg D is odd),
resp.
g(ml’/ ’ (28 —+ 1)L(f7 A, S)) |s:0: f . \I/_A (lf degD 1S eVen)7

where ¥ 4 is an automorphic cusp form of Drinfeld type of level N. The Fourier
coefficients U (748 A2 ) of ¥ 4 are evaluated in sections 2.5, 2.6 and 2.8. The
results are summarized in Theorem 2.8.2 and Theorem 2.8.3.

On the other hand let = be a Heegner point on the Drinfeld modular curve
Xo(N) with complex multiplication by Oy, = F,[T][v/D]. There exists a cusp
form g4 of Drinfeld type of level N whose Fourier coefficients are given by (cf.
Proposition 3.1.1):

Ga(msSEA2 ) = g7 BN (@) = (00), Ta((2)™ — (0))),

where the automorphism o 4 belongs to the class A via class field theory, where
Ty is the Hecke operator attached to A and where { , ) denotes the global
Néron-Tate height pairing of divisors on X (V) over the Hilbert class field of
L.

We want to compare the cusp forms ¥ 4 and g 4. Therefore we have to evaluate
the height of Heegner points, which is the content of chapter 3. We evaluate the
heights locally at each place of K. At the places belonging to the polynomial
ring Fy[T] we use the modular interpretation of Heegner points by Drinfeld
modules. Counting homomorphisms between different Drinfeld modules (simi-
lar to calculations in [Gr-Za]) yields the formula for these local heights (Corol-
lary 3.4.10 and Proposition 3.4.13). At the place co we construct a Green’s
function on the analytic upper half plane, which gives the local height in this
case (Propositions 3.6.3, 3.6.5). Finally we evaluate the Fourier coefficients of
g4 in Theorems 3.6.4 and 3.6.6.

In chapter 4 we compare the results on the derivatives of the L-series, i.e. the
Fourier coefficients W (7d°82+2 X), and the result on the heights of Heegner
points, i.e. the coefficients g% (7d°&*+2 )), and get our main result (cf. Theo-
rem 4.1.1 and Theorem 4.1.2): If ged(A, N) = 1, then

1
W (roB M2 N) = qT g (des DHD/2 gx (rdegdt2 Ny (if deg D is odd),
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resp.

-1
W (et ) = Lo

1 g des D/2 gZ(wi‘fg A+2 A) (if degD is even).

We apply this result to elliptic curves. Let E be an elliptic curve over K
with conductor N - 0o, which has split multiplicative reduction at oo, then F is
modular, i.e. it belongs to an automorphic cusp form f of Drinfeld type of level
N. In particular the L-series of E/K and of f satisfy L(E,s+ 1) = L(f, s).
The L-series of E over the field L = K(v/D) equals L(E,s)L(Ep,s) and can
be computed by

L(E,s+1)L(Ep,s+1)= > LNP(2s+1)L(f, A, s),
AeCl(Or)

if deg D is odd, or in the even case by

1
AeCl(Or) q

This motivates the consideration of the L-series L(f, A, s).

The functional equations for all L(f, A, s) yield that L(E, s)L(FEp, s) has a zero
at s = 1. In order to evaluate the first derivative, we consider a uniformization
7 Xo(N) — E of the modular elliptic curve E and the Heegner point Py, :=
> aeci(o,) T(@?4). Pr is an L-rational point on E.

Our main result yields a formula relating the derivative of the L-series of E/L
and the Néron-Tate height h e, (Pr) of the Heegner point on E over L (Theo-
rem 4.2.1):

S LB L(ED,5) = hea(P) (D) (degm) ™ [ £7

To(N)\GL2(Koo)/Too K%

where the constant c¢(D) equals %1 g~ (e D+D/2 (if deg D is odd) or
4=l g=deeD/2 (if deg D is even).

As a corollary (Corollary 4.2.2) we prove the conjecture of Birch and
Swinnerton-Dyer for E/L, if its analytic rank is equal to 1.

Large parts of this work were supported by the DFG-Schwerpunkt “Algorithmi-
sche Algebra und Zahlentheorie”. We are very thankful for this.

2 L-SERIES

2.1 BASIC DEFINITIONS OF L-SERIES

Let F, be the finite field with ¢ = p® elements (p # 2), and let K = Fy(T) be
the rational function field over IF,. We distinguish the finite places given by the
irreducible elements in the polynomial ring F,[T] and the place co of K. For oo
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we consider the completion K., with normalized valuation v, and valuation
ring O. We fix the prime mo = 77!, then Ko = Fy((7)). In addition
we define the following additive character 1o, of Ko: Take o : F; — C* with
o(a) = exp(22 Trg, e, (a)) and set oo (Y a;,) = o(—ay).

The oriented edges of the Bruhat-Tits tree of GLs over K, are parametrized
by the set GLy(K)/T oo K2, where

re :{( ° ) € GLx(0w) | vao(7) > 0}.

GL3(Kx)/T oo KZ can be represented by the two disjoint sets

T, = {( ”50 11‘ > | m € Z,u € Koo/m" Ouo} (2.1.1)
and
Toe U 0 1 m
T —{( o1 ) ( - ) |méeZu€ Koo/TL Ooo}- (2.1.2)
. RIS 0 1 . .
Right multiplication by ( 0 ) reverses the orientation of an edge.

We do not distinguish between matrices in GL2(K ) and the corresponding
classes in GLy(Koo) /T K2 .

We want to study functions on GL2(K)/T'eo K% . Special functions are de-
fined in the following way: The groups GLo(Fy[T]) and SLo(F4[T]) operate on
GLy(K)/T K2, by left multiplication. For N € Fy[T] let

To(N) = {( ot > € GLy(F,[T)) | ¢ = 0 mod N}

and TV (N) 1= To(N) N SLo(F,[T)).

DEFINITION 2.1.1 A function f : GLy(Kw)/ToKZ:, — C is called an au-
tomorphic cusp form of Drinfeld type of level N if it satisfies the following
conditions:

i) [ is harmonic, i.e.,

(2 )=-seo)

and

> f(xB)=0

BEGL2(0x)/T o

for all X € GLy(Koo)/Too K2,
it) f is invariant under To(N), i.e.,

f(AX) = f(X)
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HEEGNER POINTS AND L-SERIES 369

for all X € GLa(Ks) /T K% and A € To(N),
ii1) f has compact support modulo U'o(N), i.e. there are only finitely many
elements X in Do(N)\GL2(Kx)/T oo K2 with f(X) # 0.

Any function f on GLa(Ks)/Too K% which is invariant under ( (1) Fql[T] )

has a Fourier expansion
i(TFE Y= X ezt (2.1
AEF,[T]
with
Fr ) = / f(( e ?)wmuu)du,
Koo /Fq[T)

where du is a Haar measure with S/ du =1.
Koo [Fq(T]

Since < é Fql[T] ) C T'g(N) this applies to automorphic cusp forms. In this

particular case the harmonicity conditions of Definition 2.1.1 imply

ff(m2A) = 0,if A=0orif degA+2>m, (2.1.4)
fram,A) = g mTdeeAt2 pr(pdee A2 Ay if A £ 0 and deg A + 2 < m.

Hence we get the following:

REMARK 2.1.2 All the Fourier coefficients of an automorphic cusp form f of
Drinfeld type are uniquely determined by the coefficients f*(mdeA*2 X) for
A e F,[T].

To an automorphic cusp form f one can attach an L-series L(f, s) in the fol-
lowing way (cf. [Wel], [We2]): Let m be an effective divisor of K of degree n,
then m = (X))o + (n — deg Moo with A € Fy[T], deg A < n. We define

fr(m)=f*(xi?0) and L(f,s) =Y f*(m)N(m)~*, (2.1.5)

m>0

where N(m) denotes the absolute norm of the divisor m.

The C-vector space of automorphic cusp forms of Drinfeld type of level N
is finite dimensional and it is equipped with a non-degenerate pairing, the
Petersson product, given by

(f,g) — / IR

To(N\GL2(K) /T K2,
There is the notion of oldforms, i.e. linear combinations of forms
g(( E)l (1) >X), where ¢ is an automorphic cusp form of level M, M|N
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and M # N, and d is a divisor of N/M. Automorphic cusp forms of Drinfeld
type which are perpendicular under the Petersson product to all the oldforms
are called newforms.

Important examples of newforms are the following: Let E be an elliptic curve
over K with conductor N - co, which has split multiplicative reduction at oo,
then F belongs to a newform f of level N such that the L-series of E satisfies

([De])
L(E,s+1) = L(f,s). (2.1.6)

This newform is in addition an eigenform for all Hecke operators, but we do
not assume this property in general.

From now on let f be an automorphic cusp form of level N which is a newform.
Let L/K be an imaginary quadratic extension (i.e. a quadratic extension of K
where oo is not split) in which each (finite) divisor of N is not ramified. Then
there is a square free polynomial D € F [T, prime to N with L = K(VD).
We assume in this paper that D is an irreducible polynomial. In principle all
the arguments apply to the general case, but the details are technically more
complicated. We distinguish two cases. In the first case the degree of D is odd,
i.e. oo is ramified in L/K; in the second case the degree of D is even and its
leading coefficient is not a square in Fy, i.e. oo is inert in L/K.

The integral closure of Fy[T] in L is Oy, = Fy[T] [\/5]

Let A be an element of the class group CI1(Op) of Or. For an effective divisor
m = (A)o + (n — deg Moo (as above) we define

ra(m) = #{a € A | aintegral with Nz /i (a) = AF,[T]} (2.1.7)

and hence we get the partial zeta function attached to A as

Cals) = ra(m)N(m)~. (2.1.8)

m>0

For the calculations it is sometimes easier to define a function depending on
elements of F,[T instead of divisors. We choose ag € A™! and \g € K with
Nz x(a0) = Ao Fy[T] and define

Tagao(A) = #{p € ao | N/ g (1) = Ao} (2.1.9)
Then )
ra(m) = 1 Z Tag. Ao (EN)-
eE]F;;
The theta series is defined as
T
SN LD DI C e} (2.10)
deg A +2<m
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HEEGNER POINTS AND L-SERIES 371

We will see later that the transformation rules of this theta series are the
starting point of all our calculations.

Now we combine the L-series of a newform f (cf. (2.1.5)) and the partial zeta
function of A (cf. (2.1.8)) to obtain the function

L(f, As) =Y fr(m)ra(m)N(m)~*. (2.1.11)
m>0
For technical reasons we introduce

1 D ,
LD +1) = — h] g~ Bothdesk (2.1.12)
KER[T]

ged(k,N)=1
D . .
where T denotes the Legendre resp. the Jacobi symbol for the polynomial
ring F,[T]. For an irreducible k € F,[T] and a coprime D € F,[T] the Legendre

D
symbol [?} is by definition equal to 1 or —1 if D is or is not a square in

D
(Fq[T]/kF4[T])*, respectively. If D is divisible by k, then [E} equals 0. This
definition is multiplicatively extended to the Jacobi symbol for arbitrary, not
D D D
necessarily irreducible k, so e.g. | — ] . [—] ifk=ky-ko.

E] k] ke
In the first case, where deg D is odd, the function

LWND) (25 + 1)L(f, A, )
is the focus of our interest; in the case of even degree it is the function
_
14+q 51
This is motivated by the following fact:

LD (25 +1)L(f, A, 5).

PROPOSITION 2.1.3 Let E be an elliptic curve with conductor N -oco and corre-
sponding newform f as above and let Ep be its twist by D. Then the following
identities hold:

L(E,s+1)L(Ep,s+1)= > LWYP(2s+1)L(f, A,s)

AeCl(Or)
if deg D is odd, and
1
L(E,s+1)L(Ep,s+1)= > ﬁL(N’D)(Qs +1)L(f, A, s)
AeCl(Or) ta

if deg D is even.

It is not difficult to prove this fact using the definitions of the coefficients f*(m)
(cf. (2.1.5)) and r4(m) (cf. (2.1.7)) and the Euler products of the L-series of
the elliptic curves.
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2.2 RANKIN’S METHOD
The properties of the automorphic cusp form f yield
* m _ _—m-+1 Wg U
reEzn =t S (L P, @2
UET oo /T
We use this to calculate
1 - */_m —(m—2)s
L(fv A, 5) = q——l Z ( Z f (Wooa )‘)ruo)\o (A)) q (m=2) . (222)
m=2 deg A\+2<m

Now we distinguish the two cases.

2.2.1 degD 1S ODD
We continue with equations (2.2.1) and (2.2.2):

)
= Li > f(( 7%’; ?))@ao,ko(( Wgé ?))q—m(sﬁ-l)-‘r?s

q T u U (s s
= Q*l /f( 0 1 ))eao,ko(( 0 1 ))q (5+1)+2 s (223)

where
(1 F,T] K Ko 0O O
we (o MO A )
We consider the canonical mapping
Heo — TSV (ND)\GLy (Koo ) /Too K2 =: G(ND),

which is surjective. We take the measure on G(N D) which counts the size of
the stabilizer of an element (cf. [Ge-Re], (4.8)). Then we get

(e (e
G(ND) M

where the sum is taken over those M = ( CCL Z > € < é Fql[T] )\F(()l)(ND)

with M ( WSO Qf > € 7, and where m* = m — 2vs(cu + d).
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REMARK 2.2.1 The definitions of T+ and T_ (cf. (2.1.1), (2.1.2)) yield:

M( 71'80 tlt ) € 71 if and only if veo(eml) > voo(cu + d).

In ([Riil], Theorem 6.2) we showed that for those M satisfying veo(cml) >
Voo (ctt + d) one has the following transformation rule for the theta series (cf.
(2.1.10)):

™

@a = ‘:) moo 5 — Voo cu+d
UqAU(M < ') Y )) u01AU(< (' )) |:D:| CU.erq ( )7

d
where [5} is the Legendre symbol (defined in section 2.1) and where §, denotes

the local norm symbol at oo, i.e., §, is equal to 1 if z € K is the norm of an
element in the quadratic extension K (v/D)/Ka and —1 otherwise.
Equations (2.2.4), (2.2.5) and the definition of L(™-P) (cf. (2.1.12)) yield:

q [
LD 25+ VG AS) = gt [ BT
G(ND)
with
Toe U —m(s s d Voo (Cu s
H175(< 60 1 >) =4 (s+1)+2 Z |:5:| 5cu+dq (cutd)(2 +1)-
¢,d€F,[T]
c=0mod ND
ged(d,N)=1

Voo (€05 ) > Voo (cu+d)

We see that Oq, 2, H1,s is a function on G(ND).
Let po: Fg[T] — {0,1, —1} be the Moebius function with

Z p(e) = 0 if nFo[T] # Fq[T7,
56F|q (T]

and

qi—l > ue)=1,

eck

m

then HLS(( 7r80 11L ))

m
oo

q—m(s+1)+25

= T D ule) [ | b am Ve B ¥y
qg—1 T D s 0

-
N—
N~—
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with the Eisenstein series

W f Tmow\, da Voo (cutd)(2s+1)

¢, d€F,[T]
c=0mod D
Voo (€55 ) >Voo (cu+d)

For a divisor e of N the function
m N=nl} Nu
TrOO u —mi(s S — -
@am(< S >)q (s+0)+2 E§”(< R >)

on GLy (K ) /T oo KX is invariant under Fél)(N—eD).
Since we assume that f is a newform of level N, it is orthogonal (with respect
to the Petersson product) to functions of lower level. Therefore we get

PROPOSITION 2.2.2 Let deg D be odd, then

LN (25 + 1)L(f, A, s) = ﬁ / [+ OagrgHa s

G(ND)
with H27s(( WSO 11L ))
qm(s+1)+2sE§1)(< Nz)rgg ]\iu >) (2.2.7)
—m(s s d v CINU S
= gt Z [5} Senuta g N FDEHD,

¢, deF,[T]
c=0mod D
Voo (CNTL ) > Voo (cNu+d)

2.2.2 degD 1S EVEN

We use equation (2.2.2) and the geometric series expansion of 1/(1+¢~*71) to
evaluate

1 1
N -
= (f, A, s) 1

DY Y e Mg (W) (a7

=2 deg A+2<I

Since f is an automorphic cusp form and hence f*(7l ,\) = ¢™ L f*(7™, \)
(cf. (2.1.4)), we get
1 1
S -
e H A =
3 Cmegye (FDTEA T

’ Z( Z f*(ﬁo@’)‘)rﬂo)\o()‘))q D)

m=2 deg A+2<m
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If rag.n(A) # 0, then degA = deg Ao mod 2, because deg D is even. Now
equation (2.2.1) yields

1 q
711 = —
1+q7571 (vaaS) q—1

™ T _ (=1 m—deg)\UJrl
/f(< 60 1))@%,)\0(( 60 1 >)qm(s+1)+25( ) 5 .

oo

Thus the right side of this equation differs from (2.2.3) only by the factor
((—1)m—desdo 4 1)/2. But this factor is invariant under G L2 (F,[T]) and hence
causes no problems here or in the next steps. Proceeding exactly as in the case
where deg D is odd gives the following result:

PROPOSITION 2.2.3 Let deg D be even, then
1
1+ qfsfl

f : GGU,AUHQ,E

LWND) (25 + 1)L(f, A, s) = ﬁ '

(71)m7deg)\o + 1
2

G(ND)

with Hy s given by equation (2.2.7).

2.3 COMPUTATION OF THE TRACE

The function ©Ogy,H2s on GLy(Ks)/ToKZ is only invariant under
Fél)(N D). To make it invariant under Fél)(N ) we compute the trace with
respect to the extension 1"81) (ND)\Fgl) (N). The trace from 1"81) (N) to To(N)
is easy, this will be done at the very end of the calculations.

Since N and D are relatively prime, there are pi, po € Fy[T] with 1 = 1 N +
peD. The set

R:{((l) ?),(;D MlN)((l) /\1) (A mod D)} (2.3.1)

is therefore a set of representatives of F((Jl)(N D)\F((Jl)(N ). Here we used the
assumption that D is irreducible. In order to evaluate ), p ©ag,xo Ha2,s(M-),
we treat Og,, ), and Ha s separately.

From ([Riil], Prop. 4.4) we get, if m > voo(u):

T 1 an ) )
@ao,Ao(< 762 1{))@%,\0(< D ))5uqvw(u)5A0q5degDeol

D
0 1
where €9 = 1 if deg D is even and eg = §_+(—1)*T1y(p)® (¢ = p* ; v(p) = 1 if
p =1 mod 4 or i otherwise) if deg D is odd. Then one evaluates

0 -1 Ty e =t
600)\0(< 1 A )( 0 1 >) = @ag,)\o(< 8 lf >) (232)

—Voo (u-l—)\)é)\ q—% deg D€61
o .

'6u+/\ q
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Now (2.2.5) and (2.3.2) yield the operation of the matrices M € R (cf. (2.3.1))
on 6007)\0'

The situation for Hs s and hence for the Eisenstein series 2% (cf. (2.2.6)) is
easier. Straightforward calculations (mainly transformations of the summation
indices) yield:

It ( . ; > € SLy(Fy[T)) with ged(c, D) = 1 and if veo(emil) > voo(cu + d)

d
then
W @ b (% w\ oo B Y <]
(o ) (F (T Y )5
'6D q—(28+1) deg D(Scu-l-d q—vx(cu+d)(28+1) (233)
with ¢* L mod D. Here E( )1s the Eisenstein series
Trm u c v Ccu S
¢,d€Fq[T)

Voo (€55 ) >Voo (cu+d)

2.3.1 degD 1S ODD

We apply the results of this section ((2.3.2) and (2.3.3)) to Proposition 2.2.2.
Let G(N) be the set T’ 1)( NN\GL2(Kx)/Too KX

ProPOSITION 2.3.1 Let deg D be odd, then

with

S S  —mis NDﬂ-glO NDU
= (st deg D+2s —m(s+1) Egl)(( 0 )) (2.3.6)

1

N7 Nu D 1
(D) 0 -1 = (=5—2s)deg D
+E; (( 0o ))%DN € [N} q ]
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2.3.2 degD 1S EVEN

We already mentioned that the factor ((—1)™~9¢€* 4 1)/2 is invariant un-
der the whole group GLy(Fy[T]). Therefore it is not affected by the trace.
Proposition 2.2.3 yields the following.

PROPOSITION 2.3.2 Let deg D be even, then

1

WL(N’D)(QS + 1)L(f7 A,S) = RUE / f : @

2(g—1)
G(N)

with

q)(e)(< 776”3 u )) _ q,go>(< ”é”o ; >) (*1)"17(:%% t+1 (2.3.7)

2.4 HOLOMORPHIC PROJECTION

We want to evaluate an integral fG( N) f - ®, where f is our automorphic cusp
form of Drinfeld type of level N (cf. section 2.1) and ® is any function on
G(N) = Fél)(N)\GLQ(KOO)/FOOK;O. Since the Petersson product is non-
degenerate on cusp forms, we find an automorphic cusp form ¥ of Drinfeld
type for Fgl)(N) (one has to modify the definition of cusp forms to Fgl)(N) in

an obvious way) such that
/ g T = / g3

G(N) G(N)

for all cusp forms g.

If we set g = f we obtain our result. In this section we want to show how one
can compute the Fourier coefficients of ¥ from those of ®. We already noticed
that only the coefficients U* (7822 )) are important (cf. Remark 2.1.2).
For this we take g = Py, where Py (A € Fy[T], A # 0) are the Poincaré series
introduced in [Rii2], and evaluate (cf. [Rii2], Prop. 14)

— 4 —— 5
/ Py 0= — U (roeEAT2 ). (2.4.1)
7=
G(N)

On the other hand we calculate (with transformations as in the proof of [Ri2],
Prop. 14)

Py-$=2lim / Iro - (& — D) (2.4.2)
G(N) Hoo

where
( T ou )= 0 if degA+2>m
Ire 0 1 Tl ™Y (Au) if degA+2<m
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and where

213(( e ﬁ‘));:@(( e 3‘)(7& (1))) (2.4.3)

For these calculations we used again the canonical mapping (cf. section 2.2)
Ho — G(N).

Since H o represents only the part 7 of GLa(K ) /T oo KX (cf. section 2.1) and
since ® is not necessarily harmonic, we also have to consider the function ®.
Using the Fourier expansions

o((E L) = T Eamein
B(F ) = L)

and the character relations for ¢, (2.4.2) yields

oo

— 2 =
Py -®=- 1ir% E q " (PF (e, A) — DF(, ). (2.4.4)
a{n) 477 m—deg a2

Finally, (2.4.1) and (2.4.4) prove:

PROPOSITION 2.4.1 Let & : G(N) = TS (N)\GLy(Koo)/Too K%, — C be any
function, then there is an automorphic cusp form ¥ of Drinfeld type for Fgl) (N)

such that
/f@: / 3
G(N)

G(N)
The Fourier coefficients of ¥ can be evaluated by the formula

o0

*/ _deg A\4+2 _ qil . —mo */_m Fok/_m
v (ﬂ.oog a)‘) - 2 ili% Z q ((I) (7700’)\)—(1) (ﬂ-ooa)‘))v

m=deg A\ +2

where ® is defined in (2.4.3).
Problems could arise since the limit may not exist. We will see this in the
following sections, where we apply this holomorphic projection formula to <I>§°),

® (cf. (2.3.5) and (2.3.7)) or their derivatives.
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2.5 FOURIER EXPANSIONS OF &) anD &'

In this section we evaluate the Fourier coefficients ¢§O)*(7rm A) and

00

<I>§e>*(7rm A) (cf. (2.3.5) and (2.3.7)). The function O, ), is already de-

[o oh)

fined by its coefficients 74, x,. It remains to evaluate the coefficients of &, (cf.
(2.3.6)) and therefore of the Eisenstein series % (cf. (2.2.6)) and ED (ct.
(2.3.4)).

We introduce a “basic function” on GLg (K )/T oo K2 :

ﬂ'm u " m i )
Fa(( 80 1 )) = z)\:Fs (T2, Moo (M) := Z Sutrdq (utd)(2s+1)

d€F, [T
M>Voo (u+d)

(2.5.1)

We recall that §, is the local norm symbol of z at co. At first we express the
Eisenstein series in terms of Fy. Elementary transformations give

Egl)(( ND7l} NDu )) _ Z {g] q—(25+1)degd+6D q—(zs+1)degD
]

0 1
deF [T
d#0
s (aNgm M d md
> | Y mevet) 3§l p| i,
HEF[T) clp dmodD

n#0 c=0modD
The Gauss sum can be evaluated
d d _ A —1_LdegD
> 5| e0p) = 5] atarer.
dmod D
where ¢ is as in (2.3.2). Therefore

D . 1
— § |:E:| q—(25+1)degd +6616D q(—25—5)degD .
deF,[T]
d#£0

DIEDY [%c] F:(CNﬁgag)wm(MNU)- (2.5.2)

p#EO  clp
c=0modD

The same transformations as above yield

(D) Nﬁowé Nu o i * m
€lfq
d#£0

22 [%} FJ(eN7Z, %)woo(uNu). (2.5.3)

u#0 clp
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Now we have to evaluate the Fourier coeflicients of the “basic function” Fj
(cf. (2.5.1)). This is not very difficult, though perhaps a little tedious to write
down in detail. One starts with the definition of the coefficients

* m —m ﬂ-o’rg u
S D Y T (i S N
UET oo /T

and uses the character relations for 1,.. We do not carry it out in detail. As
the local norm symbol §, behaves differently we have to distinguish again the
two cases.

2.5.1 degD 1S ODD

Lo /Ko is ramified and the local norm symbol for z = e, 7% +... is given by
6. = x2(ez) 0% (x2 is the quadratic character on F}; we recall that moe = T 1).
We get:

LEMMA 2.5.1 Let deg D be odd, then

Fr (™ ) 0 , if either u =0 or degu+2>m
s = 1
s \Toor # ealqi(;# @?s(degntl) it 1 2L 0 and degp +2 < m.

Now (2.5.2), (2.5.3), Lemma 2.5.1 and the definition of & in (2.3.6) give:
PROPOSITION 2.5.2 Let deg D be odd, then

G I IR SRR

HEF[T]
deg(uN)+2<m
with
cu(R2,0) = gV EDH B mer) S5 B et (25)
deF4[T)
d#0
and (11 #0)
es(”ﬁ,ﬂ) _ q(75+%)degD+4s+%fm(s+1)+2s degp | (255)
D —2sdeg D Dl 54
. I sdegc ) - - sdegey
(X [ i 5] S| 2] e
clp clp
c=0mod D
2.5.2 degD 1S EVEN
Lo /K is inert and the local norm symbol for z = e,n% + ... is given by
0, = (=)™
We get:
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LEMMA 2.5.3 Let deg D be even, then

*(_m 17q s\ym
F; (TFOO,O)Z (—QQ) )

S

and (p # 0 with degp +2 < m)
(=g )degnt
q* +1
Again (2.5.2), (2.5.3), Lemma 2.5.3 and the definition of & in (2.3.6) give:

F*(ngoa:u) =

S

(1= g)(—g®)ymdesnt — 1 — gt

PROPOSITION 2.5.4 Let deg D be even, then

(IS IED STy

WEF[T]
deg(uN)+2<m
with
(s s D1 (9641)de
s, 0) = gies DlstD-mis+ 125§ {_} g~ (25D degd
4€F, [T]
d£0
n 1 =G degD(—1—26)+26m—2sdeg N
q2s+1
D D
-1 deg Ao+m | i —2sdegd 5.
(cayreresm | ] S5 | B graeesty (256)
4€F, [T)
d£0
and (1 #0)

es(mil, ) = gm(TaTDF2dee Dl=st5) L (95.7)

D —2s c 17(] m— — s(m—
(( Z [ ]q 2s deg )( : (71) deg N—deg q2( deg N)

clp M_/C e
c=0mod D
2s5+1
ST g,
q25 + 1
D D —2s deg 1 —q deg A -
Ll [ sdegc —1)des otm ,2s(m—degN)
*M\ZH‘J et
clp
2s+1
Q(_l)deg No-deg N-deg . 2s(deg M+1))) .
q2s + 1

2.6 FOURIER EXPANSIONS OF &%

()

AND Py

In accordance with (2.4.3) let ®{” (resp. @) on GLy (Koo )/Too K=, be defined

as &) (X) = <1>g°>(X< ﬂ(; . )) (resp. B (X) = <1>§e>(x< W(:o . >)).
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The situation is more complicated than in the last section. To extend functions
canonically from 7, (cf. (2.1.1)) to the whole of GL2(K)/T oo K2 we need
the following proposition.

PROPOSITION 2.6.1 Let xp : (Fy[T]/DF,[T])* — C* be a character modulo
D and let xoo : K3, — C* be a character which vanishes on the subgroup of

1-units O = {z € KX | voo(xz — 1) > 0}.
Let F': T, — C be a function which satisfies

r(0 ) (F Y =r(TE Y D@t a,

a b (1) A a b T
fm“all(c d)eFO (D)wzth(c d)( 0 1)ET+.
Then F can be defined on GLa(Koo) /T K2, with

r(0 ) (Y p=r(TE L Dl

XOO(CU + d) ’ ifvoo(CWowé) > 'UOO(C’LL =+ d) 9261
| Xeo(e™h) s i Voo () < Voo (cu + d). (2.6.1)

Proor. We already know that CCL Z ( WSO 1{ € 7, is equivalent to

Voo (emT) > voo(cu + d) (cf. Remark 2.2.1). For each X € GLo(K)/Too K2

there is A € Fél)(D) and ( WSO 1{ > € 7, such that X = A< 0 1 ) in

GL3(Kx)/T oKz . Then we define F(X) by equation (2.6.1). The assumption
on F guarantees that this definition is independent of the choice of A and

T
(5 1) 0
We apply this proposition to O, », (cf. (2.1.10)) and to the Eisenstein series.
The Eisenstein series E{ (i = 1, D) (cf. (2.2.6), (2.3.4)) satisfy

(e ) (T ) = (F )

d
. |:_:| 5cu+d qfvao(cu+d)(2s+1)

m
T U

D

" ( a Z ) c Fél)(D) and veo (em™) > voo(cu+d). We can apply Proposition

d
2.6.1 with XD(d) = |:B:| and XOO(Z) — 6,2 q—’l}oo(z)(Qs-‘rl)-
Hence
W T U 0 1 = a Voo (€)(25+1)
ES((O 1)(7%00 ) Z D(S—cq

¢,d€F¢[T]

c=0modD
Voo (e ) <o (cu+d)
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(5 ) () B [l

¢,d€F [T
Voo (e ) SVoo (cu+d)

We denote these functions by Egl) and EgD) as above. Starting with the
definition of the Fourier coefficients we calculate

E§”<( NDme NDu ))

_ Z |fO qdegD(7257%)+degN(72s)+17m .

p#0
deg(pN)+2<m
D —zsdegc
“0uND Z l,u—/c]q Zsdeg ]woo(u]\fu) (2.6.2)
cEOCIlll(L)dD
and
/_(\D/) Nﬂ-org Nu _ . deg N(—2s)+1—m 2 —2sdegc
ES (< 0 1 )) =4q 57N ; c q +
— 48 —m D —zsdegc
+ > glesN(2attmms_ N {;} g 2 desc | o (uNw). (2.6.3)
p#0 clp

deg(puN)+2<m

In addition we have g=m(s+1) = g=(1=m)(s+1) ‘therefore (2.6.2) and (2.6.3) give:

PROPOSITION 2.6.2 Let deg D be odd or even, then

S h=e(TE V) (L 8 ) St

HEFG[T]
deg(uN)+2<m
with
> (M e —s+3 e —2s)+ms+s — D Dy s de;
un0) = gt [B] 57 D] v
d#0
(2.6.4)
and (u 7 0)
é;(ﬂ_o'ng’u) — qdeg D(75+%)+degN(72s)+ms+560—1 . (265)
D D D
S i —2sdegc 5 - = 72sdegc).
(o 3 [l oo [R] 2 [
cEOmlf)dD :
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For Oy, it is not just straightforward calculation. In the following we make
use of the fact that the Fourier coefficients 74,3, (A) of Og, 5, are independent
of 7% if degA+2 < m.

d
©q,,2, satisfies Proposition 2.6.1 with xp(d) = {5] and Yoo(2) = 6, ¢ V=)

(cf. (2.2.5)). Again we denote Oq o (-) = Oagrs (- < oo >).

Let 72 € KX and u € K. Choose ¢,d € Fy[T'] with ¢ = 0 mod D, ged(e, d) =
1 and veo(u+ %) > m + 1 and find a,b € F,[T] with ad — bc = 1. Then for all
k € Z with k < m + 1 there is the following identity in GL2(K)/T oo KX

Tk 0 11\ d -b ’Tico;k ,
0 1 Teo 0 ) \ —c a 0
We use this identity for K = m and k = m + 1. Then Proposition 2.6.1 gives
T amtl oy d o (e
600)\0(( SO 1 ))_eao,/\o(( OB 1 )): |:B:| 6—cq°o()'
a
Z Tao,o (:U’)’L/}OO (ME) (266)

deg p+2=1-m+2degc

—=ole

—__d m * a auc+b
On the other hand we set u. = —< +emy for € € F, we compare ¢ with cuTd
and sum over all e:

T u d Wioim auc+b
_ oo _ | = Voo (€) c2 cue+d
(q 1)600,k0(( 0 1 )) |:D:| d-cq E eao,/\o(< 0 1+ ))

(23

— 1 [%} 6-cq"="" > Tag, o () Vs (u%). (2.6.7)

deg p+2=1—m+2degc

7\'&177"' auc.+b a b ﬂ.m-i-l U
c2 cue+d = oo €
0 1 c d 0 1

in GLy(Koo)/TooKZ,. We use this to evaluate the corresponding value of
Oay.00- A combination of (2.6.6) and (2.6.7) therefore gives

Tl oy —— (T oy
qeao,/\o(( OB 1 ))_600,/\0(( SO 1))

m+1 m
=0 g ™Y 559%,A0(< Toel M e )). (2.6.8)

eE]Fj;

If we evaluate in (2.6.8) the Fourier coefficients at A with degA +2 < m, we
get the recursion formula

qeao,ko (7T<T>no+1’ )‘) - 600%0 (ﬂ-;no’ - 6ﬂ'mq Z 4 Tﬂo,/\o (269)
(23
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The Fourier coefficient in (2.6.8) at A with deg A +2 = m + 1 yields

qe)ao)\o (ngg /\+27 >‘) - 57rg§g At1q des At Z 551/100(*/\67&(53 >\+1>T00,/\0 (/\)

EEFZ
(2.6.10)
For A = 0 we calculate
Oap. N0 (Womo) = q*%degD(hoeal Z Tuo,Ao(H)- (2611)
deg p+2<deg D

It is now obvious how one evaluates 6/;:/% (7, A) with the recursion formula
(2.6.9) and the starting values (2.6.10) and (2.6.11). Here again we have to
consider the two cases separately.

PROPOSITION 2.6.3 Let deg D be odd, then

T .
el 1 )= X G )
deg A +2<m
with

Oapno (T A) = q%q_mealé,\or%)\o (\). (2.6.12)

PROPOSITION 2.6.4 Let deg D be even, then

(T )= X G O

deg A +2<m

with

m —m q +1 q— 1 m —
Gao,)\o (Trooa A) =4q (71)d8g>\0 (T + T(il) deg do 1) Tag, Mo (/\)
(2.6.13)

2.7 FUNCTIONAL EQUATIONS

In this section we modify the representations of the L-series of Proposition
2.3.1 and Proposition 2.3.2. With these new formulas we can prove functional
equations for the L-series. Later we will use them to get our final results.

2.7.1 degD 1S ODD

Since f is an automorphic cusp form of Drinfeld type and therefore satisfies
(cf. Definition 2.1.1)

e

we can transform the integral in Proposition 2.3.1, and get:

0 1
Too O

)) =—f(X) for all X € GL3(Kw)/TouKZ,,
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LEMMA 2.7.1 Let deg D be odd, then

LD 2 + DA = s [ f R
(N)

with

F(X) =2 (X) - 2{”(X),

whose Fourier coefficients are

A) =3 (7, A).

oo

N) = —F (a7, )) = 0F (x

[o op)

Fs(o)* (ﬂ_m

[o op)

Now we evaluate F, s(")*(wg;, A). We start with the definition (cf. Proposition
2.3.1)

o Ty U _
(I)g)(( 0 1)) = 4q dea D,
Too  z(utd) LIS TEDN
> eam(( FE ))65(( I ))
AmodD

and use the Fourier coefficients of @4, x, (cf. (2.1.10)) and &, (cf. (2.3.6) and
Proposition 2.5.2) to evaluate

* (7 \) = > Tag.xg (UN — AD) eg(mmtdeeD 1)) (2.7.1)
HEFG[T]
deg(uN)+2<m-+deg D
On the other hand, if ( CCL Z > € SLy(F,[T]) with b,¢ = 0 mod D and if u is

such that ve(u + d/¢) > m, then we have (using the transformation rules of

Oap.0, and &):
>).

When we expand this equation with Fourier coefficients, we get

<I>§°)(< oo ] >)<1>g0>

—~
/N
3
offT
3
ol

O (AN = Y Oagny (TLTEP N = AD) & (r P, ) dp.
HEFG[T]
deg(uN)+2<m-+deg D
(2.7.2)

—_~—

Now we replace es, Oq,,5, and € in (2.7.1) and (2.7.2) by (2.5.5), (2.6.12) and
(2.6.5), and we get:
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PROPOSITION 2.7.2 Let deg D be odd and deg A + 2 < m, then

*

% (7m A) — 3 (7™ A) = ragng (—AD) g~ deED+E

o0
( Z |:B:| q—(25+1)degd) q—ms+25+%degD—%
deF,[T] d
d£0
D D
7( Z |:_:| q72sdegd) |:_:| qmsf2sdegN+s)
deF,[T] d N
d=£0
Y raa (N - AD) g RER
WEF[T], p#0
deg(uN)+2<m-+deg D
(( Z |:’uiic:| q72sdegC)(q72sdegD7ms+4s+25 degp 5A0N,u qm572sdegN+s>
cEOCIlll(L)dD

D X D X ) i '
+(Z |:?:| q—25 degc) |:N:| ((5)\0]\[” q—25 deg D—ms+4s+2sdegp qms—25 deg N+s))-
clp

With these formulas we prove the following result:

THEOREM 2.7.3 Let deg D be odd, then

gl NTaes D=0 (9% (x1z, N) — L) (w12, X)) =

D 5 * o -
B [ﬂ qiesNHaes DD (L (1, A) — 21 (a2, ),

and therefore Lemma 2.7.1 implies that
Z(s) := q9e8 N+degD_g)sL(N’D)(25 +1)L(f, A, s)

satisfies the functional equation

2= (7, )
]) in the formula

PROOF. One can verify the functional equation for <I>§°)* (m2,
independently for each summand (summation over pu € F,[
of Proposition 2.7.2 if one applies the following remarks:

a) For the first summand we mention (cf. [Ar]) that

Lol =gy 3 5] e (273)

deF, [T
d#0
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is the L-series of the extension K(v/D)/K and satisfies

Lp(2s 4 1) = ¢*("2des D+2)=zdea D5 (o4, (2.7.4)
b) Let p € Fy[T], po # 0 with rq, x,(uN — AD) # 0. Then there is k € L with
Np/k(k) = Xo(uN —AD) (cf. (2.1.9)). Hence we get {%] = [%] OxoNp- This
implies

D —2sdege _ _—2sd D D 2sdegc
Z[?}q ®C=q cen N 5>\0N#Z ~ |9 & (2.7.5)

clp clp

if u # 0mod D.
c) For p € Fy[T] with ¢ = 0 mod D, it is easy to see that

D D
Z |:?:| q72sdegc — q72sdegp‘ Z |: :| q2sdegc. 0 (276)

u/c
clp clp /
c=0modD

2.7.2 degD 1S EVEN
The automorphic cusp form f of Drinfeld type satisfies (cf. Definition 2.1.1)
> F(XB) =0 for all X € GLa(Ko)/Too K2 .
BEGL2(0Ox) /T

With this identity a transformation of the integral in Proposition 2.3.2 yields
immediately:

LEMMA 2.7.4 Let deg D be even, then

1 q (o)
S — AR 1)L =— / L
T Lk DI A = 5 [T
G(N)
with i
FE(x) .= 1 PO (x) - — d)(X3),

BEGL2(0Os)/Teo
A1

whose Fourier coefficients are

FO*(nm \) = { (@ (77, 0) = 87 (77+L, X)), if m = deg Ag mod 2

q+1

0 , if m # deg A\g mod 2
and

0 , if m = deg A\g mod 2
., (@) (w2, \) — B (71 N), if m # deg Ag mod 2
F (™ \) = and deg\+2 <m

3 (7, \) , if m % deg Ao mod 2

and degA+2=m.
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*

The calculations of FS(e)*(wgg, A) and £ (7, \) are similar to those above
and use Propositions 2.5.4, 2.6.2 and 2.6.4 developed in the previous sections.

We only give the results.

PROPOSITION 2.7.5 Let deg D be even, then

(I)ge)*(ﬂg, A) — q)ge) (7T$+1, A) = ragxg (—AD) qufédegD .

( Z |:2:| q—(28+1)degd) q—ms+25+%degD

deF, 1]
d£0
D D _1-s s
+( Z |:E:| q72sdegd) |:N:| qm572sdegN+25 qs+ 75(1)
deF,[T] ¢ T4q
d#£0
Y Taa N - AD) gD
REFG[T], u7#0
deg(uN)+2<m-+deg D
| ,—2sdegecy\/(__1\deg(AoNu), ms—2sdeg N+2s _ -
(3 || g aytsening L ¢
el n/e q° +q
c=0mod D
4 —ms—2sdeg D+2sdeg pu+4s qis + q1+s )
q ¢ +qs
D —2sdegc D ms—2sdeg N+2s 7(]175 — qs
+(Z[c]q )| 77| (@ P
m

—s 1+4s
1 deg(AoNp) ,—ms—2sdeg D+2s deg p+4s 4 +q
+(=1) q =t

if m = deg Ao mod 2, and

*

(I)ge) (ﬂ.gggk-‘ﬂ’)\) _ Z Tao Ao (,uN _ )\D) q degA\—1—2degD |

WEFG[T], p#0
deg(puN)=deg(AD)

D —2sdegc D D —2sdegc )
(<|Z[H/Jq R [ Fa

cEOmlf)dD a
.qsdegk—QsdegN+3s

if deg A # deg Ag mod 2.
The proof of the following functional equation is completely analogous to the
proof in the first case. Parts b) and c¢) in the proof of Theorem 2.7.3 are the

same, part a) has to be replaced by the functional equation for deg D even
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(cf. [Ar])
qdegD(Qs—%)LD(QS)_ (2.7.7)

We get

THEOREM 2.7.6 Let deg D be even, then

q(degN+degD—3)s ((bge)*(ﬂ.g, )\) _ @26) (ﬂ.oné—i-l, )\)) —

D 3 €e)x € *
- [ F|desraesr 900 @ ) - 0zt v,

if m = deg Ao mod 2, and therefore Lemma 2.7.4 implies that

1

7 — (deg N+degD—-3)s__ ~
(s):==g¢ g

LMD (25 + 1)L(f, A, )

satisfies the functional equation

2.8 DERIVATIVES OF L-SERIES

The functional equations in Theorem 2.7.3 and Theorem 2.7.6 show that the

D
L-series have a zero at s = 0, if [N] = 1. From now on we assume that

D
[N} = 1, and we want to compute the derivatives of the L-series at s = 0.

2.8.1 degD 1S ODD

The first calculations are straightforward, we will only sketch this procedure.
We start with the representation of L(V:P)(2s + 1)L(f, A, s) in Lemma 2.7.1,

then we evaluate the derivatives %Fs(o) |s=0 and %Fs(o) |s=0 from Proposition

2.7.2 by ordinary calculus. To simplify the formulas we introduce

1 ,if p=0mod D

Hp. D) 5{ 0 ,ifp#0modD (2.8.1)

and we consider the function Lp(s) defined in equation (2.7.3). It is known
that

hL = #Cl(OL) = LD(O)
In addition we use equations (2.7.4), (2.7.5) and (2.7.6).
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Then we apply the holomorphic projection formula of Proposition 2.4.1 and
evaluate

= 0 0 *

: —mo (0)*(,_m _ (0) m

im0 g TG FON (AN fsmo =5 (T A) fs=o)-
m=deg A\+2

In Proposition 2.7.2 there is a summation over p € F,[T] with deg(pN) +2 <
m + deg D. We divide this summation into two parts. The first sum is over
those p with deg(uN) < deg(AD) and the second sum is over those p with
deg(uN) > deg(AD). This is done in view of the following lemma.

LEMMA 2.8.1 Let p € Fy[T], pp # 0 with rqy x, (0N — AD) # 0, then
a)

e 1) - (| 2]y =0

and

b)

Oxronp =1 if deg(uN) > deg(AD).

D D
PROOF. The proof is an immediate consequence of {—] = [N] OxoNp, Which
I
was shown in the proof of Theorem 2.7.3, part b). O
Now at the end of our calculations we have to apply the trace corresponding
to I‘gl)(N) C To(NV) to get a cusp form of level N (and not just a cusp form

for the subgroup Fgl) (N)). We recall that

S Paprolen) = (g~ Dral().

e€lFy

A heuristic consideration, based on the holomorphic projection formula of
Proposition 2.4.1 and on our calculations, would then give:

0

ds

(LMD (25 + 1)L(f, A, 5)) |s=0= / f¥a,
To(NN\GL2(Koo)/Too K5,
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where ¥ 4 is an automorphic cusp form of Drinfeld type of level N with

1
\IJTA(W(OIOeg)\+2’)\) _ % qf(degDJrl)/Q q deg A

{(q —1)ra((N) hr <degN — deg(\D) — 2((]%—11) _ % fﬁgg;)

S 05 (2] Lo

H#0

deg(uN)<deg(AD) o
ulN g+1 D
: (deg()\—D) - m) — (1= bun-ap)un) (Z {?]) deg 1

clp

+ (1= d(un—rpyun) (s, D) +1) O [g} deg C))

clp
Cp s Y (- a0) (| 2]) )+ 1)
172770 4eg(uN) >deg(AD) o L€

"q (2.8.2)

(—o—1) deg(%) (q — 1)2((1 + q*U) (—o)deg A
(q+1)(g7! = 1)2 ’

provided the limit exists. But unfortunately this is not the case.

In order to get the final result, we proceed as follows:

1) We evaluate the pole of the limit in (2.8.2).

2) We find a function h on I'g(N)\ GL2(K ) /T oo K, whose holomorphic pro-
jection formula gives the same pole part as in (2.8.2) and which is perpendicular
to f under the Petersson product.

3) We replace %FS(O) ls—o0 by %FS(O) |s—o —h in the derivative of the equation
in Lemma 2.7.1 and in our calculations.

We start with 1): From section 3.5.1 we get the following result (independently
of these calculations):

Let Cy :=2(q — 1)?/|GL2(Fy[T]) : To(N)], then the limit

1§1< >ty - a0) (5 | 2]) w0+ 1)

deg(uN)>deg(AD) clp

. (7071)deg(‘;—N) —C.h dega 1
q D 1 L(%q )1iq,a

exists. But for this we have to adjust our assumptions. From now on N has
D
to be square free with [F} =1 for each prime divisor P of N and we only

consider those A with ged(\, N) = 1.
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We use this to calculate

lim < Z ra((uN — AD)) (Z {g}) (t(p, D) + 1) q(—o—l)deg(ﬁ—g)
deg(

o—0
uN)>deg(AD) clp

—1)2 4+q° 3 (—o)(deg A +2)
. (q ) (q q ) (—o)deg X Ol hL (quega)q

(¢ +1)(g7H = 1) pp 1—q°
D N
7 _ = (—o—1)deg(55)
= lim ( > ralen =) (X | 2]) D)+ 1) i
deg(uN)>deg(AD) clp

—Cu e (3 g — >+<quega>-c2, (28.3)

g
al\ 1—q al\

where (5 is a certain constant.
2) To find the function h we introduce for s > 1:

w5 4 Ymoma (1) (2 4 )

and the Eisenstein series

Gs(X) = ZQO,S(M : X)a

b FT ) \SLy(E, (1)), Then G, is
function on GL2(K ) /T oK, which is invariant under SLs(F4[T]) and which
satisfies a; = —G,. In addition G, is perpendicular to cusp forms. This can
be shown analogously to calculations in the proof of [Rii2], Proposition 14 (in
fact G can be seen as a Poincaré series for y = 0).

We evaluate the Fourier coefficients of G in a straightforward way (cf. proof
of [Rii2], Proposition 8) and get for deg A +2 < m, A # 0:

Gy 3) = (3 gD ese)
al\

((1 _ q2s) qs(2deg)\fm)7deg)\ + (qs + 1)(q175 _ 1) qs(m72)+1fm) )

where the sum is taken over M €

The coefficients G (722, 0) are not important, because they play no role in the
holomorphic projection formula.
Now we define the Eisenstein series G by its Fourier coefficients

G (w2 N) 1= lim G2, ).
and H by
0
H* (72, A) :=lim —Gi(m2, N).

o0’ s—1 85
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In the next step we evaluate the holomorphic projection formulas for G and H
and we get

. —mo x/_m vk (m _ —deg A—1 dega
lim Y g m(G (L A) — G, N) = —2(a + 1) g O qtE),
m=deg \+2 al\
(2.8.4)
and

lim Z q—mU(H*(ﬂ'gLo, )\) - I;*(ﬂ'org’ )\)) =—2(q+ 1) q deg A\—1 Ing

o—0

m=deg A+2
(—o)(deg A +2)
I degad x—2d dega li q
( (3 gt dem — 2deg) + (3 d™e) iy

—qi—l(z qdega)) . (2.85)

al\

This construction is motivated by the fact that the limit in the last formula
already occurred in equation (2.8.3).

3) Comparing (2.8.4) and (2.8.5) with (2.8.2) and (2.8.3) shows how to choose
h=a-G+0b-H with a,b € C to get the final result:

THEOREM 2.8.2 Let D be irreducible of odd degree, and let N be square free
D

with [F] =1 for each prime divisor P of N. For a newform f of level N we

get:

(P25 4 DL A, 5) o= / FTa

To(N)\GL2(Koo)/Too K2,

where W 4 is a cusp form of level N, whose Fourier coefficients for X\ with
ged(A, N) =1 are given by
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1
\Ith(ﬂ_cOigg/\-i-Q, A) = % q—(degD+1)/2 q deg A

'{(q —1) ra((N) he (degN — deg(\D) — 2(‘1%11) _ % ?;Eg;)

+ Y rA((MN—AD))((Z [§]><t(M,D)+1)1+%+wv

p#0 clp
deg(pN)<deg(AD)

(st~ 5 (1 o) ([ 2]) s

clp

+ (1= 0gun-apyun) (t(s, D) +1) (Z [D} deg C))

c
clp

N 2(qq+_11) fimy ( 2. ralluN =AD) (3 [2}) (e D))

deg(;N)>deg(AD) o €
dega
(coenyace(gyy) _ G1AE (o 67 )>

.q 1_q_5

+1
— h Ci hy (Z ¢4 (deg A — 2dega)) + (quega) Cg}.
alx al\

The following notation is used: hy, = #CIl(Or), Lp(s) is as in (2.7.3), t(u, D)
is as in (2.8.1),

C1 = 2(q —1)*/[GL2(F[T]) : To(N)],

and Cs is any constant (in particular independent of \).

2.8.2 degD 1S EVEN

Of course the programme is the same as above. We start with Lemma 2.7.4,
and we get the same pole as in (2.8.2) with different constants. Here we use
the result (cf. section 3.5.2):

Let Cy == (¢* — 1)?/(2 ¢ [GLa(F,[T]) : To(N)]), then the limit

nm< > ey -a0) (5 |2 e )+ 1)
deg(

o—0
wN)>deg(AD) clp

| 1
. q(_g_l)deg(%) — C1 ht (Z fega)ﬁ)
al\

converges.
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Again we take the Eisenstein series G and H to get the final result:

THEOREM 2.8.3 Let D be irreducible of even degree, and let N be square free
D

with [F] =1 for each prime divisor P of N. For a newform f of level N we

get:

0 1

55 Trammr LD 28 + DL A.9) o= / B

Lo(N)\GL2(Koo)/Too K&

where W 4 is a cusp form of level N, whose Fourier coefficients for A\ with
ged(A, N) =1 are given by

In
‘I’Z(”SngQa/\) _ T‘I qfdegD/Q qfdeg)\

.{TA((/\)) hr (g—1) (degN —deg(AD) — q22—31 _ % iggg;)

+ > TA((MNAD))<(Z [%])(t(u,D)+1)H5W\f——*D)“N

u#0 clp 2
deg(pN)<deg(AD)
uN 2q D
sl = ) = 1 Buv-ro) (5 2] deun
clp
D
+ (1= d(un—apyun) (. D) +1) (Y — | dege)
clp
2 .. D
- Ay ( Sl - a0) (5 | 2]) w0+ 1
deg(uN)>deg(AD) clp
"y 1
.q(—s—l)deg(%) — Oy hy (Z qdega)ﬁ>
al\ q
2(] dega dega
P21 C1hy (z&q 6% (deg A — 2dega)) + (z;q o )Cz}-

The following notation is used: hy, = #CIl(Or), Lp(s) is as in (2.7.3), t(u, D)
is as in (2.8.1),

C1 = (¢* = 1)*/(2 ¢ [GL2(Fy[T]) : To(N))),
and Cy is any constant (in particular independent of \).
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3 HEIGHTS OF HEEGNER POINTS

3.1 HEEGNER POINTS

Let K = F,(T') be the rational function field over I, as in the previous chapters.
For every N € Fy[T] there exists a coarse moduli scheme Yy(N) over F,[T]
parametrizing isomorphism classes of pairs (¢, ¢’) of Drinfeld modules of rank
2 together with a cyclic isogeny u : ¢ — ¢’ of degree N (cf. Lecture 2, [AB]).
This means that keru ~ F,[T]/(N). Yo(N) can be compactified to a scheme
Xo(N) by adjoining a finite number of sections. The points on these sections
can be interpreted as generalized Drinfeld modules (cf. Lecture 9 [AB]). The
fibres of Xo(/N) — Spec Fy[T] are regular outside the divisors of N. We will
also need the structure of the fibres over such places, which are known only for
N square free. So we will assume this condition on IV for the whole chapter. By
abuse of notation we often write Xo(V) also for the generic fibre Xo(N) ® K.
For every A € Fy[T] there is a Hecke correspondence on Xo(N). If 2 € Xo(NV)
is represented by two Drinfeld modules ¢, ¢’ and a cyclic isogeny u : ¢ — ¢’,
in which case we write x = (¢, ¢’,u), then Th(x) = > ~(xz¢), where C' runs
over all cyclic Fy[T] submodules of ¢ isomorphic to F,[T]/(A) which intersect
ker u trivially. z¢ is the point corresponding to (¢/C — ¢’ /u(C')). The Hecke
algebra is the subalgebra of End Jo(IV), the endomorphisms of the Jacobian
of Xo(N), generated by the endomorphisms induced by the Hecke correspon-
dences. For more details see for example [Ge3|.

Now let L = K (\/5) be an imaginary quadratic extension, where D is a poly-
nomial in F¢[T]. In the first part of this section we prove results for general D,
later we specialize to D being irreducible. We choose N € F,[T’] such that each

D
of its prime divisors is split in L. Then in particular we have {N} = 1. Suppose

that ¢, ¢’ are two Drinfeld modules of rank 2 for the ring F,[T] with complex
multiplication by an order O C Oy, = F,[T][V/D], i.e. End ¢ = End ¢/ = O
and that u : ¢ — ¢ is a cyclic isogeny of degree N. Then ¢ and ¢’ can be
viewed as rank 1 Drinfeld modules over O. As explained in the paper ([Hal)
there is a natural action on rank 1 Drinfeld modules: If n C O is an invertible
ideal and ¢ is a rank 1 Drinfeld module then there is a Drinfeld module n x ¢
with an isogeny ¢, : ¢ — nx ¢. As was remarked in ([Hal) just before Propo-
sition 8.3, every isogeny is of this form up to isomorphism. The explicit class
field theory ([Ha]) shows that ¢, ¢’ and the isogeny u can be defined (modulo
isomorphisms) over the class field Hp of O, which is unramified outside the
conductor f:={a € L : a0, C O} of O and where oo is totally split. (For the
maximal order Oy, we will simply write H instead of Hp, .) Therefore the triple
(¢, ¢, u) defines an Hp—rational point  on Xo(NN). This holds even though
Xo(N) is not a fine moduli space. These rational points x are called Heegner
points. We will primarily consider Heegner points for the maximal order Oy,
but Heegner points corresponding to non-maximal orders will occur naturally,
when we consider the operation of Hecke operators on the Heegner points.
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Heegner points corresponding to a maximal order can also be described by
the following data: Let K, be the completion of K at co and let C, be the
completion of the algebraic closure of K. The category of Drinfeld modules
of rank 2 over C, is equivalent to the category of rank 2 lattices in Cp. If ¢, ¢’
correspond to lattices A, A’, the isogenies are described by {c € C% : ¢cA C A'}.
If ¢ has complex multiplication by Oy, the corresponding lattice is isomorphic
to an ideal a in Op. Now let n|N be an ideal of Oy, which contains exactly
one prime divisor of every conjugated pair over the primes dividing N. If n|a,
the ideal n~'a is integral and corresponds to another Drinfeld module ¢’ with
complex multiplication. The inclusion a C n~'a defines a cyclic isogeny of
degree N, because n~'a/a ~ O /n ~F,[T]/(N).

The data describing the Heegner point x is the ideal class of a and the ideal n.
We get the following analytic realization of the Heegner point x.

Let = Coo — Koo be the Drinfeld upper half plane. Then X (V) is analytically
given by the quotient T'g(N)\ Q compactified by adjoining finitely many cusps.

Let z € Q) with
B+ +vD
= —
2A

Then the lattice (2, 1) is isomorphic to the ideal a = AF,[T]+ (B + v D)F,[T],
which defines together with the ideal n = NF,[T] + (3 + V' D)F,[T] with 3 =
B mod N a Heegner point.

Now we consider the global Néron-Tate height pairing on the H-rational points
of the Jacobian Jo(N) of Xo(N). There is an embedding of Jo(NN) in the
projective space P2’ 1 (Kummer embedding), where g is the genus of Xo(N).
The naive height on points in the projective space defines a height function h
on Jo(N)(H). The Néron-Tate height is the unique function h, which differs
from h by a bounded function and such that the map (.) : Jo(N)x Jo(N) — R
defined by (D, E) = (1/2)(h(D + E) — h(D) — h(E)) is bilinear. (.) is called
the Néron-Tate height pairing (cf. [Grl]). The pairing depends on H although
we omit this in the notation. Whenever we consider height pairings over other
fields than H, it will be explicitly mentioned.

The global pairing can be written as a sum >, (.), running over all places v
of H. For an irreducible polynomial P € F,[T] we write (.)p for ZU‘P( Do

, N|A, B?> = D mod A.

For the definition of the local pairing see [Grl, 2.5]. We recall the relation
of the local pairing at non-archimedian primes with the intersection product
on a regular model (see [Grl, 3]). Let v be some place of H and let H, be
the completion with valuation ring O,. We write g, for the cardinality of the
residue field. Let X/H, be a curve and X' /O, be a regular model of X. Suppose
D, E are divisors of degree 0 on X(N) with disjoint support. Let F; be the
fibre components of the special fibre of the regular model X and let D, E be the
horizontal divisors to D, E. (The horizontal divisor of a point in the generic
fibre is just the Zariski closure of it in X'.) Let (. ), be the intersection product
on X, which is defined in the following way. Let = # y be two distinct points
on X and Z, ¥ their closure in X. For a point z in the special fibre we consider

DOCUMENTA MATHEMATICA 5 (2000) 365-444



HEEGNER POINTS AND L-SERIES 399

the stalk Ox . of the structure sheaf in z. Let f;, fy be local equations for Z, g
in z. Then Ox ./(fz, fy) is a module of finite length. The intersection number
(% .9)v,» is defined to be the length of the module Ox ./(fs, fy) and it is zero
for almost all z. Let deg z be the degree of the residue field in z over the residue
field of v. The intersection number is then (Z.7), = >, (Z.7)v,- - deg 2.

Now return to the divisors D, E of degree 0. There exist a; € Q such that

(D,E)y = —Ing,[(D.E), + Zai(ﬂ L E),] (3.1.1)

cf. [Grl, 3]. The elements «; are unique up to an additive constant, indepen-
dent of 7. In particular if (D . F;), = 0 for all i, the equation (3.1.1) is satisfied
with «; = 0 for all <.

Let = (¢, ¢',u) be a Heegner point on Xo(N) for the maximal order Or,. We
denote by o4 the element in the Galois group of H/L which corresponds via
class field theory to A € CI(Or). Then z°4 is again a Heegner point for the
maximal order. The cusps are given by the cosets I'o(N) \ P}(K) and they are
K-rational. If deg N > 0 we have at least the two different cusps 0 and co. We
get the divisors (x) — (00) and (x)74 — (0) of degree 0 on Xo(N).

Let T be a Hecke operator and let g be an automorphic cusp form of Drinfeld
type of level N (cf. Definition (2.1.1). If we associate to (T, g) the Fourier
coefficient (Tyg)* (72, 1), we get a bilinear map between the Hecke algebra and
the space of cusp forms of level N. This map is a non-degenerate pairing ([Ge3,
Thm. 3.17]). For ged(A, N) =1 we have

(Trg)* (73, 1) = "8 g™ (m3E T2, ).
This is the key to the proof of the following proposition as in [Gr-Za, V 1]

PRrROPOSITION 3.1.1 There is an automorphic cusp form g4 of Drinfeld type of
level N such that

((2) = (00), Ta((2)7* = (0))) = g*B g (nsE2,N)
for all A € Fo[T] with ged(A\, N) = 1.

We want to compare g4 with the cusp form ¥ 4 of the previous section. There-
fore we have to evaluate this global height pairing. As we compare the cusp
forms only up to old forms, it suffices to calculate the height pairings above
only for the Hecke operators with ged(A, N) = 1. Thus we restrict to this case
in the whole section.

The first objective of this section is to express the intersection number of the
Heegner divisors on X, (V) at the finite places, i.e., those places corresponding
to irreducible polynomials in Fy[T], by numbers of homomorphisms between
the corresponding Drinfeld modules (Theorem 3.3.4).

For a place v of H we write H, for the completion at v and O, for the valuation
ring. Let W be the completion of the maximal unramified extension of O,, and
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7 a uniformizing element of O, (W, resp.). In order to calculate the local
pairings

(@) = (00), Ta((2)7* = (0)))w

we first describe the divisor Thx74.

3.2  THE DIVISOR THx%A

DEFINITION 3.2.1 Ifz = (¢,¢',u) and y = (¢, ¢’,v) are two points on Xo(N),
where ¢, @', 1,1’ are Drinfeld modules of rank 2 and u : ¢ — ¢’ and v : p — o’
are cyclic isogenies of degree N, we define

Hom g(z,y) :={(f, ') € Hom r(¢,v) x Hom r(¢',¢") : vf = f'u}

for any ring R where this is well defined, e.g. for R a local ring with alge-
braically closed residue field.

Consider a finite place v of H. Let H, be the completion of H at v and let
O, be the valuation ring. Let W again be the completion of the maximal
unramified extension of O,,.

LEMMA 3.2.2 Letx = (¢, ¢, dn) be a Heegner point for the mazimal order and
a an integral ideal in the class A, which corresponds to oo € Gal (H/L) under
the Artin homomorphism. Then

Hom w(z°4,2) ~ End w(z)-a (3.2.1)
and
Hom vy jmn (274, 1) >~ End w/m(x) - a (3.2.2)
for every n > 1 as left modules over the prevailing ring of endomorphisms.

PrOOF. It is enough to show the second assertion for all n, because for n suf-
ficiently big the second and the first assertion coincide. We show the assertion
for ¢ instead of x. To show it for x one only has to remark that the morphism
defined below is compatible with the morphism ¢,. We again assume that ¢
is defined over W and has leading coefficients in E*. For brevity we write
R, := End w/zn(¢). Let A be the fraction field of W and I, be the left ideal in
A{7} generated by all ¢, with a € a. This ideal is left principal and generated
by some ¢4 € W{r} ([Ha], Prop. 7.5). So Is N R, is a left ideal in R, and we
shall show that it is equal to the left ideal R,a. The inclusion R,a C I, N R,
is trivial. For the other inclusion we shall show (I, N R,)a~! C R,,. Without
loss of generality we shall assume that the image under the natural inclusion of
a is not divisible by 7. Then for every b € a~! there is a twisted power series
¢p in W{{7}} such that for a € a we get ¢p,dp = Pap. Now let f € I, N R,, and

beal then f =Y fida,, for some f; € W{r}. So fé, = 3. fida,b, which is
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a polynomial, because a;b € O. We also have ¢y¢, = ¢pa ¢y for every a € Fy [T,
and therefore fopd, = ¢ofdp mod ©™. This implies f-b € R,.
We know from (Thm. 8.5[Ha]) that there exists a w € W* such that

Dada = wil(bgAwQ/)a

holds for every a € O, i.e. wp, € Hom w (¢, ¢9°). Now define an R, —module
homomorphism from Hom yy /. (¢74,¢) to R, N I, by the assignment f
f - wdy. On the other hand if ¢ € W/n™{7} such that gwes =: u € R,, then
we have to show that g € Hom yy/.n(¢7,¢). We have

9¢Zw¢a = JWPaPa = UPg = PaU

for all a € Fy[T], where the last equality holds, because F,[T] is central in Ry
and therefore also in R, for every n > 1. But ¢,u = ¢p,9w¢, and so

(995 — bag)wpq = 0.

we@, cannot be a zero divisor, because the leading coefficient of ¢, is 1. This
finishes the proof of the lemma. O
From this lemma we get the following result about the multiplicity of x in
Thxz°4. The proof is exactly the same as in the characteristic 0 case ([Gr-Za,

(4.3)]).

PROPOSITION 3.2.3 Let o4 € Gal (H/L), let A be the ideal class correspond-
ing to o4 and let A € F,[T]. Then the multiplicity of x in the divisor Txz4 is
equal to the number r 4((\)) of integral ideals in the class of A with norm (X).

The points y € Tha’4 are Heegner points for orders O, C Or. Let f = {a € L:
a0, C Oy} be the conductor of the order O,. Let P be an irreducible, monic
polynomial in F,[T] and let s = s(y, P) be the greatest integer with P*|f. We
call s the level of y at P. If Pt )\, we get s = 0, because f|(A). If A\ = P*- R
with P{ R and ¢t > 0, then

Thx’* = Z Tpiz.
z€ETRTA
The following proposition tells us how often each level occurs in the divisor

Tp:z. For a proof see [Til].

PROPOSITION 3.2.4 Let P € F,[T] be irreducible and let z be a Heegner point
of level 0 at P. Set d = deg P and qp = q%. Then the number of points of level
s in the divisor Tptz is equal to

s _ ,s5—1
(t—s+1)(¢p —ap ) fortZSZl} if P s split in L/K;

t+1 for s =0
s 4 g5t ort>s>1,s=tmod?2 . . .
ap 1qP ;07’820 0 mod 2 if P is inert in L/ K;

g5 fort>s>0 if P is ramified in L/K.
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The next proposition shows where the points with level s are defined. The
proof is given by D. Hayes ([Ha, Thm 8.10, Thm. 1.5])

PROPOSITION 3.2.5 Let P be any irreducible polynomial and let z be a Heegner
point for an order O with conductor prime to N. Suppose that z has level 0 at
P. Then

1. z is defined over Hp, the ring class field of O, which is unramified over
H at P. The Galois group of Ho/H is isomorphic to the group of ideals
in O, modulo the principal ideals generated by some element a € O which
s prime to the conductor of O.

2. Bveryy € Tpez of level s at P is defined over another class field Hg with
[Hs : Hol = |(On/P*0L)*|/|(Fq[T]/P°F[T))*|, which is totally ramified
at P over Hp.

3.3 THE FINITE PLACES

For the calculations of height pairings at the finite places we want to make use
of the modular interpretation of the points on the modular curve in every fibre
including the fibres over the divisors of N. In contrast to the elliptic curve
case, we do not know how these fibres look like if IV is not square free. This is
one reason why we confine ourselves to this case.

The first step is to describe the pairings at a finite place v by intersection
products on a regular model of Xo(N)® K. When v { N then Xo(NV) ® O, is
a regular model and when v|N we take a regularization of Xo(N) ® O,, which
can be done by finitely many blow ups at the singular points. After that we use
the modular interpretation to describe the intersection numbers by numbers of
homomorphisms.

First we recall the structure of the fibres of Xo(N) at the places over N (see
[Ge2]).

PROPOSITION 3.3.1 For N € F,[T] square free, N ¢ F,, the modular curve
Xo(N) over Fy[T] is regular outside N and outside the supersingular points in
the fibres above prime divisors of N. Let P be any prime divisor of N of degree
d. Then the special fibre over P consists of two copies of Xo(N/P), which
intersect transversally in the supersingular points. One of the components is
the image of the map

Xo(N/P) x Fy[T)/P — Xo(N) x F,[T]/P

(p,¢',u) mod P — (,¢",7%) mod P,
where T¢ is the Frobenius of F,[T]/P regarded as isogeny of degree P. This
component is the “local component”, the other one is the “reduced component”.

The cusp 0 lies on the reduced component and oo lies on the local component.
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REMARKS. 1. We need not know what the resolutions of singular points are,
because our horizontal divisors always intersect the fibres over N outside the
supersingular points and the next proposition will show that no contribution
from the fibre components of the regular model will occur.

2. Because ged(D,N) = 1, the regular model remains regular under base
change to the Hilbert class field H/L as well as over the completion of the
maximal unramified extension W of some completion O, for a place v of H.

PROPOSITION 3.3.2 Let @ = (¢, ¢, dn) be a Heegner point for the mazimal
order, o4 € Gal (H/L), A the corresponding ideal class, A € Fq[T], v a finite
place of H of residue cardinality q,. Suppose that r 4((N\)) = 0, then

((x) = (00), Ta((2)7* = (0)))y = — (2. Tha"*), Ingy.

PRrROOF. At first we check that the horizontal extension of one of the divisors in
the pairing has zero intersection with both fibre components if v|N. It follows
that the values «; in 3.1.1 all vanish. Let n be the ideal, such that ¢, is the
cyclic isogeny defining z. If v|n, = intersects the fibre in the local component.
If v|n then it intersects in the reduced component. Thus one of the divisors
() — (00), (x) — (0) has zero intersection with both fibre components. But the
points in Thz?4 reduce to the same component as x. This shows that one of the
divisors has zero intersection with all fibre components. This is trivially true
for the places of good reduction (v{ N). The result now follows by linearity of
the pairing and the fact that x can be represented by a Drinfeld module with
good reduction, so it does not intersect with the cusps. O

PROPOSITION 3.3.3 Let x = (¢ — ¢'), y = (¥ — ') be two W—rational
sections, i.e. horizontal divisors on Xo(N) over W, which intersect properly
and which reduce to reqular points outside the cusps in the special fibre. Then

1
(y.x)p = 1 Z #Isom v/ (Y, ).

n>1

PROOF. Let f: Y — X((IV) be a fine moduli scheme (e.g. a supplementary
full level N'— structure with gcd(N’, N) = 1 and N’ with at least two different
prime factors.) Let yo be a pre-image of y and z; the different pre-images of z,
ie. fu(yo) =y , f*(z) = > ;. Because f is proper, the projection formula
[Sha, Lect.6,(7)] implies that

(y . CE)’U = (f*yo . x)’u = (yO . f*-r)v = Z(?JO . xi)v-

K2

If (¢, ¢, u) is a representative of x, all the x; are represented by (¢, ¢, u, P, Q),
where P,(Q generates the N’ torsion module. Every such point occurs with
multiplicity #Aut(x)/(¢ — 1) in f*(x). The g — 1 trivial automorphisms all
give the same point in f*(z). Now let (¢,%’,v) be a representative of y
and (¢, ¢',u) a representative of z. Let yg be represented by (v,v’,v, P, Q).
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Then an isomorphism f : (¢¥,¢',v) — (¢,¢',u) defines an isomorphism

WY, v,PQ) — (¢,¢,u, f(P), f(Q)) and this is uniquely determined.
If x;, is the class of

(QZ/),QZ/)/,’LL, f(P), f(Q)), we have

_ 1 ifx; = Ti,
#lsom yy/rn (Yo, zi) = { 0 , otherwise.

Now x;, occurs in f*(z) with multiplicity #Aut(z)/(¢ — 1) and therefore

#Aut(x)
Z #lsom vy /qn (yo, vi) = q-1

0 , otherwise

, if #lsom yy/en (y,2) # 0

1
= F#Isom w/an (Y, T).
Therefore we only have to show that

(Yo - i)y = Z #lsom yrn (Yo, i)

n>1

Let Y — Py, be a projective embedding. Let Af;, be an affine part, which
contains the intersection point s of x; and yg. The coordinates with respect
to this affine part are denoted by yo = (m1,...,nr) and z; = (§i1,-..,&r). In
the local ring Oy, we have the local functions z; — n;, z; — &;;, respectively.
The ideal generated by these functions contains all differences (n; — &;;) and
therefore is the ideal (7)* with k = min; v(n; — &;;). From the definition of the
intersection number we get

(Yo - i)y = dimyy/r(Oy,s /(2 — nj, 25 — &) = dimyy(W/7"W) = k.
On the other hand

0, m; # &; mod ™ for some j

#lsom v/ (yo, i) = { 1, 7n; =&; mod n" for all 7,

because Y is a fine moduli scheme. It follows that

Z #lsom vy (Yo, i) = k.

n>1

|
The degree of an isogeny u between two Drinfeld modules ¢, ¢’ is by definition
the ideal IJ, if ker u ~ F,[T]/I ® F,[T]/J.

THEOREM 3.3.4 Let P € F,[T] be irreducible , v|P a place of H with local
parameter ™ and W the completion of the mazimal unramified extension of
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O,. Let x = (¢,¢',u) be a Heegner point for the mazimal order Op. Let
oA € Gal (H/L). For \, N without common divisor and r 4((\)) = 0 we get

1
(x . Tha®*), = qf—l E #FHom v /mn (274, ) deg -
n>1

The subscript deg A indicates that only homomorphisms of degree A\ are
counted.  The sum is finite because FFHom v en(274,2)degx = 0 for n
sufficiently large, because Hom w(x°4,2) = (),~; Hom w/m (274, 2) and
#Hom w (274, 2)degr = T4((A)) = 0 by assumption.

The rest of this section is used to prove this theorem. First of all we consider
the easiest case, namely Pt A. For the case P|\ we need the Eichler-Shimura
congruence and a congruence between points of level 0 and points of higher
level. After that the formula of the theorem is proved at first for P split, then
for P inert and finally for P ramified.

Suppose now that P 1 \. We have

%@(t) = A#0mod P,

and so the zeroes of ¢, (t) are pairwise disjoint mod P. If u : z°4 — z
is an isogeny over W/n™ of degree A, then w is uniquely determined up to
automorphism of x by keru(t) C ker¢y(t). For a fixed u we have a unique
lifting to a submodule of ker ¢ (t) over W, i.e., there exists y and an isogeny
x4 — y of degree A, such that

TOA—» T

R

commutes. Therefore

#Hom yy/rn (74, 2)deg x = Z #lsom vy n (y, ).

yeT\xz7 A

By summation over n together with Proposition 3.3.3 the assertion of the the-
orem follows.

Now let A = P*R with ¢ > 1 and Pt R. The elements y € Thx°4 are Heegner
points of different levels and are defined over some extension Hs/H which is
ramified at P. The analogue of the Eichler-Shimura congruence holds, i.e.

Tp=F*+ F mod P,
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where F' is the Frobenius correspondence and F'* is its dual correspondence on
Xo(N). This can be shown in the following way. Let u : ¢ — ¢’ be a cyclic
isogeny of degree P given as a T—polynomial. Then there exists a dual isogeny
v: ¢ — ¢, such that ¢p = v - u. Then either v = 7% mod P and consequently
¢ = ¢ mod P or u = 7¥ mod P and consequently ¢ = ¢/F mod P. This
proves the Eichler-Shimura congruence.

By a simple induction we get

Tpe=F* 4 p*¢Dp 4 4 F*F1 4 B mod P

LEMMA 3.3.5 Let y € Tpez. If s is the level of y, then y is defined over a
class field Hy (cf. Proposition 3.2.5). Let Hs, be the completion at v|P and
Wy the valuation ring of the maximal unramified extension of H,, with local
parameter ws. y is defined over Wy. If z has level 0 at P then it is defined
over an unramified extension Ho/H (cf. Proposition 3.2.5), thus also over W.
There exists a yo of level 0 defined over W, with y = yo mod 7.

PrOOF. For P ramified or split in L/K let o, € Gal (Hp/L) be the Frobenius
of p|P over L. For P inert let 0, = op € Gal (Hp/K) be the Frobenius
of P over K. Then o, operates on ¢. The definition of Frobenius yields
0% = ¢¥ mod 7, and q[)“v:l = ¢/ mod 7, with q[)/F = ¢ mod 7.

Now let y € Tptz. From the Eichler-Shimura congruence we get the existence
of y and i with 0 < i < ¢, such that y'F* = z mod 75 and y = y'F' ' mod 7
therefore y = 4% = 2%  mod s, S0 we can take yo = 275 . O
REMARK. In the ramified and in the inert case we have yg = 2% for ¢t odd or
yo = z for t even. This holds because , if P is inert in L/K it is a principal
ideal generated by an element which does not divide the conductor of O. This
implies, that of = 1 for 0, € Gal(Ho/K). If P is ramified in L/K we have
that p? = (P) is a principal ideal prime to the conductor. Therefore aﬁ =1
also in this case.

LEMMA 3.3.6 Let y € Tptz with level s > 1 and yg, 7s as in Lemma 3.3.5.
Then

y % yo mod 7.

PRrROOF. The assertion is even true for the associated formal modules [Gr2,
Prop. 5.3]. The formal module associated to a Drinfeld module is an extension
of ¢ to a homomorphism ¢") : F [T]p — W/n{{r}} where F,[T]p is the
completion at P and W/mn{{7}} is the twisted power series ring,. O
Now we can go on with the proof of Theorem 3.3.4. We treat the cases P split,
P inert and P ramified separately.

Suppose at first that P is split. Then ¢ has ordinary reduction and therefore
Hom w (274, x) = Hom yy/rn (274, ) for all n > 1, because Hom vy (2, 7) =
Hom w (x,2) = Or, and Hom yy/rn (294, 2) = a . By assumption we have
rA((A)) =0, so Hom yy/mn (274, 2)deg x = 0.
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On the other hand let y € Thz?A with z = y mod ms. Then Lemma 3.3.5
gives y = yo mod 7, for a yo € Thaz’ of level 0. Because x ~ yg over W/
and therefore also over W, we get x ~ yo over W, and so z € Thx°4, which
contradicts the assumption r4((\)) = 0. Therefore we get

(x . Tha*), = 0.

If P is inert then let yg = 2% for t odd and yy = z for t even, respectively,
as in the remark following Lemma 3.3.5. Then Lemma 3.3.5 and Lemma 3.3.6
yield y = yo mod 75, y # yo mod 72.

Each y of level s = s(y) is defined over Wy, which is ramified of degree e; =
qgffl)(qp + 1) (cf. Proposition 3.2.5(2)).

We distinguish between the intersection pairing over W and W;. For the latter
we write (.)y,s. From the definition of the intersection multiplicity we get

1
(Tptz . )y = —(Tptz . T)ys

S

and further

(Tptz . )y = el Z (Y. 2)ys = (3.3.1)

5 yETptz

= Z Z qfl Z#Isomw/wn(y,)

s=0 YETpt 2 S n>1
s=tmod2 (i g

Z #Isom yy/qn (2, 2)

n>1

qfl

# Tpiz:s
Z {y G( (y) =

0 }#Isom w/x(Yo, ) ,if tis even
q— =

s= tmod2

t
Tptz: =
3 #{y e( ez s) = sk wyx (o, ), if tis odd

q— 1) * €s

s=tmod2

L t -
—_— Z #lsom yy/rn (2, 2) + -§#Isom w/=(2,x) | ,if t is even

= 4= n>1

1 t+1
T—1 %#Hom w/x (%, T)deg P , if ¢ is odd.
q—
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Summing over all z € Tra we obtain (P { R)

(TAZ‘UA . z)v = Z (TptZ . 1')1; =

z€ETRTA
1
Z #Hom W/mn (zUA ) z)degR
- 1 n>1
e
— +2(q_ 1)#H0m W/F(zUAaz)degR B lft iS even
t+1
2(q+— 1)#H0m W/ﬂ'(zUAaz)deg RP , if ¢ is odd.

LEMMA 3.3.7 a) If t is even:
#Hom vy)an (274, 2)degr = F#Hom W /mntt/2 (74, %)gegn forn>1
#Hom yw)n(x°4,2)degr = FHom yymn (274, 2) deg 2 Jorn < t/2.
b) If t is odd:
#Hom v r (274, 2)acgrp = F#FHom y/ri1/2(T74, ) deg A
#Hom /- (2°*,2)degrp = FHom y/zn (274, 2)deg x
forn < (t+1)/2.

PROOF. a) We have that ¢pi2 = 7% mod /2 is an isogeny of degree P!
If u € Hom yy/nn (274, 2)deg ry then ¢pe/»(ugd* — ¢pu) = 0 mod 7" +*/2 and
therefore ¢ pe/2udIA = dpdpr/2u mod 72 e,

Gpr/2u € Hom yy/pntes2 (274, 2) deg A-

Now Pt R, thus 7{ug for v # 0, and ¢pi/2u = 0 mod 7" +/2 implies u =
0 mod 7™, i.e. the map is injective.

Now let u € Hom yy/rntt/2(274, T)deg x, then there is a splitting u = ug - ug
with an isogeny u; of degree P' and an isogeny us of degree R. We have
7% mod 7t/2, therefore the map is also surjective. This also shows that

Uy =
Hom W/7r (.Z‘UA 5 -T)degR — Hom W//n-n (.Z‘UA 5 -T)degA
is bijective for n < ¢/2, which implies a).

b) Analogous to a) with

Hom 7 (274, %)deg rp — Hom yy/rcer1)/2 (274, %) deg A

[ — ¢pe-np-f.
This completes the proof of Theorem 3.3.4, if P is inert.
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Now let P be ramified. p a prime in L over P. Then yy = z°» for ¢ odd and
Yo = z for t even, respectively, where o, is now the Frobenius over L. Lemma
3.3.5 and Lemma 3.3.6 tell us again that y = yo mod 7, y Z yo mod 72.

(Tha®* . x), = (3.3.2)

1 t
= Z #lsom yy/qn (2, 2) + (F—l#lsom w/x(2, )

n>1

1 t
—1 nz>:1 #lsom W/mn (zap ) x) + H#Hom W/n (ZUP ) -T)degP

for ¢ even or odd, resp. Summing over all z € Trz4 yields

(Taz™ )y = Y (Tpez.x), =

z€TRTA
1
P Z #Hom vzn (274, 2)deg r
q n>1
t
+—1#H0m W/ (274, T)deg R , if t is even
q—
1 oAC
T—1 Z #Hom wW/nn (m F‘;x)deg}%
q n>1
t
+—1#Hom W/ (27477, ) deg R , if t is odd.
q—

LEMMA 3.3.8 a) Fort even
#Hom ywyzn (274, 2)degr = FHOM y/mnte (274, T)degr  forn >1
#Hom (24, 2)acgr = FHHom w/en (274, 2)deg 2 forn <t.
b) Fort odd
FHom vy on (2747 T)aegr = FHOM vy /piern) (T74,7)deg A
#Hom v r (2747, 2)acgr =  FHom wyen (274, 7)deg
where the first equality holds for all n > 1 and the second one for alln <t+1.

PROOF. The proof is analogous to the proof of the previous lemma. Using the
facts that f —— @ pi/2 f for a) and f —— ¢y f for b) are bijections of the sets.[]
Now Theorem 3.3.4 is also completely proved.

3.4 QUATERNIONS

Assume that P is a prime which is non split in L. Then ¢ has supersingular

reduction and therefore End vy, (¢) is a maximal order in a quaternion algebra
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B over K with maximal subfield L, unramified outside P and oo and having
invariants invp = 1/2 and inve, = —1/2 (cf. [Ged]). The reduced norm of
B/K will be denoted by nr and the reduced trace by tr. The norm of L/K will
be denoted by Ny x(-). Let & = (¢, ¢’, ¢n) be a Heegner point. Then

R:=End w/(x) = {f € End w/z(¢) : dnf = g¢u, for some g € End y/=(¢)}

which is the same as R = End y/-(¢) N End y/-(¢') in B. This is also an
order in B, but is not a maximal one in general.
Let F4[T]p be the completion of F,[T] at P. Then ¢ extends to a formal module

¢\ Fy[T]p — W/r{{r}}
where W/n{{7}} is the twisted power series ring. Then we have the following
analogue of the theorem of Serre-Tate [Dr] with (") = (¢(P),¢/(P),¢,(1P)):
LEMMA 3.4.1
End vy mn(x) = End w(2) N End y)qn (:I:(P)).
Proor. It suffices to show that
End /0 (¢) = End y/x(6) N End /e (65)).

We use induction. Let f € End yy/rn(¢) NEnd yy/enta (¢")). We have to show
that f € End yy/zn+1(¢). Therefore let

f=fo+ AT+ + firt+ .. e W/a" T {{r}}

with f¢q = ¢of mod 7" for all a € F,[T] and assume that there is an M € N,
such that f; =0 mod #n™ for all 4+ > M. Now ¢ has supersingular reduction at
7, therefore

2d

¢op =ag+ a7+ ...+ angQd = a9¢7°" mod T,

if d =deg P. Now if k > M + 2d then the k—th coefficient of f¢p is
k—2d k—2d+1 k k—2d
fr—2da3,  + fr—2a410d, 1 + -+ frad = fr—2qal, mod ot
because f; = 0 mod ™ and a; = 0 mod 7 for i < 2d. On the other hand this
coefficient is equal to the k—th coefficient of ¢p f which is

2d—1 2d
aofr +arfi_y 4+ a1 fi_sup1 +azafi_5y = 0mod ot
Here agq occurs only together with f,gidg ; Which vanishes modulo 7! because
d > 1. Comparing both yields the assertion, namely fz_2q = 0 mod 7"+ for
all k> M + 2d. O
From Lemma 3.4.1 and the corresponding statement for formal groups ([Gr2])
we immediately get for the order R in the quaternion algebra B:
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PROPOSITION 3.4.2 Let p|P be a prime ideal in L and j in R with B = L+ Lj.
Then End yy)mn(v) =

{b=0b1 +byj € R: D Ny r(bz)nr(j) =0 mod P(Np, rc(p))" '}
Together with 3.3.4 we get

PROPOSITION 3.4.3 Let x be a Heegner point for the maximal order Oy, o4 €
Gal (H/L) and a an ideal from the ideal class A corresponding to o. Let
R = End w/(x) and suppose gcd(A\, N) = 1. Then
1 L1+ ordp(nr(§) Ny /x (b2))) (P inert)
TA - 2 /K \V2
(x . Tha*), = Z { ordp(D nr(j) Ny k (b2)) (P ramified).

bERa,bZL
nr(b)=ANp, /g (a)

PROOF. Theorem 3.3.4 yields

1
(z . Tha"*), = =1 > #Hom yyypn (274, 2)aeg 1.
n>1

With Lemma 3.2.2 and Proposition 3.4.2 we obtain

(¢ — 1)(z . Tha"),
= Z#{b:b1+b2j € Ra:

(I;r(b)) = (ANp/x(a)), D-Npjg(bz)ur(j) = 0mod P(Np/k(p))" "'}
_ Z { #{n :nr(j)Np,k(b2) = 0 mod P?>"~'}, (P inert)
#{n: D nr(j)Np k(bz) = 0 mod P"}, (P ramified)

beERa
(ar(b))=(ANp, ¢ (a))

— 3 { L(1+ ordp(nr(j)Np k(b2))) (P inert)
beRa ordp(D nr(§)Nz/k (b2)) (P ramified).
(nr(6))=(ANp /¢ ()

In the assertion of the proposition we sum only over b ¢ L or equivalently
by # 0. As we assume that r4((\)) = 0 this makes no difference because the
elements with by = 0 correspond to homomorphisms defined over W. |
The next step towards our final formulae is to describe Ra explicitly. This can
be done in almost the same way as in the paper of Gross and Zagier, therefore
we omit the details.

First of all we want to describe the quaternion algebra by Hilbert symbols.
This is obtained by class field theory.

PROPOSITION 3.4.4 Let P be monic and inert. Let ep be the leading coefficient

of D. Then there exists a monic, irreducible polynomial Q # P and e € IF:;*IE%,
such that
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1. deg PQD is odd,
2. ePQ =1mod! for alll|D.

In terms of the Hilbert symbol this means

D,ePQY 1 forltPoo
l "1 -1 forl=P orl=co.

Furthermore D is a quadratic residue modulo Q, i.e. Q is split in L/K.
COROLLARY 3.4.5 B is described by
B~ (D,ePQ), B=L+Lj
with j2 = ePQ.
We recall the following definition.

DEFINITION 3.4.6 The level (or reduced discriminant) rd of an order J in a
quaternion algebra B is defined by

rd:=n(J)"!,

where J = {b € B : tr(bJ) C F,[T]} is the complement of J and n(J) is the

gcd of the norms of elements in J.

Then we can show that R has level NP and Oy, is optimally embedded in R,
ie. RNL=0y.
The next step is to identify the order R in B.

ProprosITION 3.4.7 The set
S={a+pBj:acdt, peo g !n, a =B mod O; Vf[o}

is an order in (D, ePQ) of level NP and Oy, is optimally embedded in S. Here
2 = (V/D) is the different, q|Q is a prime of L and Os is the localization of Of,
at f.

The proof is given by straightforward calculations (cf. Satz 3.18, [Til]).

Now R, S are both orders in which Oy, is optimally embedded and sharing the
same level. A Theorem of Eichler [Ei, Satz 7] states the existence of an ideal b
of O, with Rb = bS.

So if a is an ideal in the class A corresponding to o4 € Gal (H/L), and without
loss of generality we assume that P is not a divisor of a, then

Ra=bS6"1a=

={a+pj:acota,pc 0_1q_1nbﬁflﬁ, a = (=1)4® 3 mod O; Vf[o}.
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The ideal class B of b depends on the place v|P. But P is inert, therefore it is
a principal prime ideal in L, and so P is totally split in H/L. The places over
P are permuted transitively by the Galois group. If 7 € Gal (H/L) and W, is
the maximal unramified extension of Op - and 7, is a uniformizing parameter
and R; = End w, /r (z), then R; = ¢ Rc; L where ¢, lies in the ideal class
corresponding to 7. If b, is defined by R, b, = b.S, it follows that b, = bc,.

Now we can give a more explicit formula for the height pairing at inert primes.

We define d(u, D) to be the number of common prime factors of p and D.
PROPOSITION 3.4.8 For P inert we get the formula:

((z) = (00) , Ta((2)7* = (0)))p
— Z —(z . Tha®*), Ing,

v|P
1
= —u? . Ing deg P Z ordp(P?1) - rA((NPu — AD)) -
N HEFq[T]— {0}
deg p<deg AD—deg NP
1 —6(NPu—AD)NP
29 PIR  afany3 (1)) ( ; P
with
e s ) g+ 1, ifdegD =0
u=|01/F| = { 1, otherwise.

Here ¢ is again the local norm symbol at co (cf. the definition of § in section
2.2 following equation (2.2.5) ). Ryia[qn)y(1t) denotes the number of integral
ideals ¢, which lie in a class differing from the class Alqn] by a square in the
class group and with norm ().

PROOF. Let a be a fixed ideal in A and let g be a fixed generator of Ny /x (a).
We calculate the height pairing using Proposition 3.4.3 together with the ex-
plicit description of Ra.

Ith=a+5j€Rra,ie. €0 la,f€d g nb, b, @, a=(—1)4® G mod
Os, we define

¢ = (Bogn o tba ! € [qnlB2A
and

vi= fNL/K(a)D/\al € F,[T]

pi=—eNp/i(B)DQN ' AT € Fy[TT.
Then c is integral and

nr(o+ 8§) = Np g (a) — ePQNL (8) = (—v + NPu)D™ "X
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thus
(nr(a+B9)) = (A\) < (—v+ NPu) = (D)) < v=NPyu—¢éDA

for a uniquely determined € € Fy.

Now if 1 € Fo[T] and € € F; are given, then the number of a € 0~ 'a with
Nz k(@) = —vD ™ Xg is a5, (NPp — €DA).

0 is determined by the integral ideal ¢ up to multiplication with elements of
oL”.

If deg D = 0 there are no further restrictions on «, 3. Now suppose deg D > 0.
We have that éAXg = Ny (o) — ePQNp, k(3) is integral and that ePQ =
1 mod f for all f|D. Therefore o = £ mod Oy.

Let (VD) = py---p;, we can modify b, modulo squares of classes to find b
with

b= brpilp?
with €; € {0,1} such that
a = (—1)°%:(®) 5 mod Op;-

The €; are uniquely determined if 8 ¢ Oy, which is the case exactly when p; { .
If 5 € O5 then both choices of €; give the correct congruence. Thus there are
24(1:D) jdeal classes which differ from the class of b, only by classes of order
2 and which have the given congruence for « and 3. The only exception to
this is when D|u. In this case all ¢; can be chosen arbitrarily, so for each d-
tuple (e1,...,€q) also (—e1,..., —€q) is possible but both give the same class.
The number of classes is therefore divided by two. On the other hand the
congruences fix 3, except when all congruences are trivial. So the number of
pairs (a, 3) doubles in the latter case.

The existence of 3 is equivalent to e '@ N being a norm of an element
in L*. As we already know that it is the norm of an ideal, we get the following
local condition:

e 'UQ T N € Ny (L*) < 0c-1,0-182 = 1.

= —1. Therefore the condition is equiv-

D, eP
By definition of ) we have <LQ>
00

alent to d,pny, = —1.
For a given a the number of 3 in some class b is then

) 1—6upPNx,

21020 Ry gy (1) —
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This shows that
(@) = (00) , Tu((2)7* = (0)))p
L . In g, Z Z (14 ordp(Pu)) -

q KwEFG[T]—{0} celFy
deg p<deg AD—deg NP

Tao (NPp—EXD) - 27 =PI R o (1))

= —u

1 —=4dnPuro
—

If ra.x,((NPu — €XD)) # 0 then 05, = dnpu—exn, Ing, = 2deg Plng. If we
substitute this and change p — €u we get

((2) = (00), Ta((z)™* = (0))p

= —udegP Ilng Z ordp(P? ) Z Tax, (E(NPu — AD)) -
1EFg[T]—{0} EeF;
deg p<deg AD—deg NP

1- 5NPH(NP,U,—>\D)

290D R anpy (1)) 5

Using the identity

5 3 res(ENPE = AD) = ura((NP = AD))

eeFy
we get the formula of the proposition. (I
We specialize this result to the case where D is irreducible. Then v = 1

because deg D > 0. d(u, D) = t(u, D) = 0 or 1 for t(u, D) defined in (2.8.1)
and therefore 290 P) = ¢(u, D) + 1.

LEMMA 3.4.9 If D is irreducible, then

1 — 6_NQure 1 D] 1= 6_noun
PORLET ST U Y ) S

2 q—1 c 2
clp
PROOF. One has to show that
1—-6_ . .
R{A[qn]}((u))% = #{c integral ideal : Nz /x(c) = (u)}.

Then the assertion follows by comparing the coefficients of both sides of (,(s) =
Ck(s)Lp(s). If deg D is odd then every class is a square in the class group and
we are done. If deg D is even and if —NQuA¢ is a norm, then deg Ny, (apqn) =
deg 1 mod 2. #{c¢ integral ideal : N /g (c) = (1)} is the sum of r z((u)) over
all classes A, which is equal to the sum over all square classes if © = 0mod 2
and equal to the sum over all non-square classes if ; Z 0 mod 2. In any case
this is R.A[qn] (). 0
From this lemma the following corollary follows.
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COROLLARY 3.4.10 Let P be inert and D be irreducible. Then

(@) = (00) , Ta((2)°* = (0)))p
= Z —(z . Thz*), Ing,

v|P
Ing 9
= T Z deg Pordp(P*u) - ra((NPu — AD)) -

wEFq[T)—{0}
deg p<deg AD—deg N P

(t,D)+1) [ [g] L= S puan)vpy

2

clp

If P is ramified we can get a similar formula arguing in the same way as for
the inert case. Let p|P be a prime over P and let f (=1 or 2) be the order of
the place in the class group. Then p splits in H into h/f factors all of which
have residue degree f over the residue field of p.

PROPOSITION 3.4.11 There exists € € Fy — Fg and a monic polynomial Q €
F,[T] with deg QD odd, such that eQQ = 1 mod ! for alll|D, | # P and

€
()
Also Q is split in L/K, B ~ (D,eQ) and B =L+ Lj with j2 = Q.
PROPOSITION 3.4.12 The order
S={a+pBj:acpdt, Bepdtqn, a = mod O Vj[o}
in (D,eQ) has level N - P and Oy, is optimally embedded in S.

From this and the Theorem of Eichler we get
R;a=10b,5b""a=

—{a+Bj:acppta,Becpr g inb,b. & a=(—1)"9") 8 mod Os}.
In the same way as for the inert primes we can show:

PROPOSITION 3.4.13 Assume again thatr o((N\)) = 0. Let P be ramified. Then
degD >0 and u=1. We have:

(@) = (00) , Th((2)7* = (0)))p

= Z —(x . Tha®*), Ing,
v|P

In
= - _‘11 deg P 3 ordp(Pp) - 7 4(NPy — D)) -

WEFq[T] {0}
deg p<deg AD—deg NP

1- 5(NPH—>\D)NPM

24 LY Ry 4qnpy (PR) 5
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If D is irreducible we get the formula:

((2) = (00), Ta((x)7* = (0))p

= —Mggr Y ordp(Pu)ra(NPu—AD))-

q WEFq[T] {0}
deg p<deg AD—deg N P

D1\ 1—=9dNpPu-rD)NPu
2 [;} ; .

e

PrOOF. The proof is just as in the inert case. The only thing we want to
mention is that all classes for b are counted. But the sum runs only over the
v| P, so only over the h/f classes mod p. On the other hand there is a factor f
from Ingq, = f - deg P1n ¢ which compensates for this. ([
Now we sum up the formulae for all finite P in the case that D is irreducible.

THEOREM 3.4.14 Let N € Fy[T] square free, D € Fy[T] irreducible and D =
b2 mod N for some b € F[T]. Let L = K(v/D) and let H denote the Hilbert
class field of L. Let o4 € Gal(H/L) and suppose that A is the corresponding

tdeal class.
Let X € Fy[T] be such that ged(A,N) =1 and r4((\)) = 0. Then

> (@) = (00) , Ta((x)™* = (0))r

P#oo

= - 1nq1 > ral(uN = AD)) - (1 = 5(n-xpyun)

nEFq[T]—{0}
deg uN <deg AD

| = (t, D) +1) Z[g]degc + Z{g]degu |

clp clp

PROOF. The sum over all P # oo of the formulae in Proposition 3.4.8 and in
Proposition 3.4.13 gives

S (@)~ (00) , Ta((@)™ — ()
P#oo
_ LS (uN = AD)) - (1= 8 apyen)

q weEFq[T]—{0}
deg N <deg AD

Cc
Plu cl&
P inert p

c

+2ordp(p) degD | Y [2] 1 .

c\%
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Some calculations with the Dirichlet character show that

> degPordp(Pu) | Y {g]

Plu c|&
P inert B

_ Z [%] deg p —ordp () deg D Z {%]

clp clp

—2(> [g] degc

clp

Substituting this yields

> (@) = (00) , Ta((x)™ — (0))r

P#oo

_ _Ing > ral(uN = AD)) - (1 = §(un—-xpyun)

qg—1
HEF[T]—{0}
deg u N <deg AD

[ty +1) [ [9} deg

clp

—deg D (t(p, D) + 1) ordp(p) Z [2}

c
clp

—9(t(u, D) +1) Z[%} dege | +2ordp(u) deg D Z{Q] }

c
clp clp

For 7 4((uN — AD)) # 0 we observe that (cf. Lemma 2.8.1):

(1= S0, 0) = 1) [ S [ 2] ] =0

C
c|%

from which the theorem follows. O

3.5 THE LOCAL HEIGHT PAIRING AT 00

At first we assume that 7 4((A\)) = 0. The local height pairing at places over co
can be calculated by Green’s functions as described in [Ti3]. This approach is
based on the general formula (3.1.1). This means that there are contributions
coming from the intersection of horizontal divisors and from the intersection
with the fibre components. In contrast to [Ti3] here we always consider I" as
a subgroup of GLy(IF4[T]) instead of PGLa(F4[T1]), so the formulae differ by a
factor ¢ — 1.
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The cases deg D odd and deg D even will be treated separately starting with
the former case. In the whole section we again assume that D is irreducible.
We write |z|; = min{|z —y| : y € Koo} and

|z — 2|

d(Z, Z/) = Iqu W

3.5.1 DEG D oDD

If 2, 2’ are two elements in  with log, |z];, log, [2'|: ¢ Z and which represent
Lo— rational points on the algebraic curve Xo(V) then by definition of the
Green’s function G ([Ti3, Def 2]) and Theorem 2 together with Proposition 8
of [Ti3] we have

= (~lng)(G G(2,00) = G(0,2) + G(0,0))
—1 1
g [ L d(q2, )
1 yer q - 1)
d(vz,2")<0
q“ dmms,w}
t i_rg {2 e 1—gqgl=s
ver
d(vz,2')>0

~ lim [¢/2(¢? - DB ) + Bl () - 41,@-(9,7(;1)}]

2
: g -1 (N, N . . .
with x := . Here Eis ’(z) is the Eisenstein series
2[GLa(Fq[T]) : To(N)]
EitN)(2) = |2|3 Z lcz +d| =25,
(e,d), N|c
ged(c,d)=1
We define

a

’ Z > € Mataya(Fy[T]) : Nle, det< ’ Z ) £0}.
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If X e Fy[T], A # 0 we get

((z) = (00), Ta((z") = (0) 2

= —d(,72))
q- 1 ~YER ), (det v)=(\) 2(q - 1)
d(z,vz')<0
) qg+1 (e 2k01(N)

+ lim | > gt 2]

s=112(g 1) YERN, (det v)=(2) 1—¢!

d(z,vz')>0
1

— lim [ql/g(q +1) (qdeg Moo, (N EIN () + Ul(A)EigN)(m))

4ko1(N) }

1— qlfs

with o5(A) = Za|/\ gi°ees for any s. Now we specialize z to be a Heegner

point and z’ to be a conjugate under the Galois group.

Let A € Fy[T]\ {0} with r4((A)) = 0. Let n be an ideal with niv = (N). For
j=1,21let a; = A;F,[T] + (B, + vD)F,[T] be two ideals contained in n with
N,k (a;) = (A;) and let A; be the corresponding ideal classes. Then this data
defines two Heegner points which are represented in the upper half plane by

-B;++vD
T = % We have that log, |7;|; = log, [V D/A;| € Z.
J

If A is an ideal class and o4 € Gal(H/L) the corresponding automorphism we
get

(1) = (00), Ta((7)7* = (0)))oo
= D (1) = (00), TA((1)™* = (0))s

v|oco

— > (ray) = (00), Tal(Ta,) = (0))) Lo

A1, A2€CI(OL)

Arazt=4a
B —lnq . 2HhL01()\)
i {Fﬂ*“ﬁ) EET =S
. 4/€hL0'1()\)
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- (¢*—1)
where 7 is one of the 74, k = and
’ 2[GLy (F,[T7]) : To(N)]
g+1
Fi(As) = > [ > (m - d(WTAUTAz))
A1,A2€CI1(01) ~ERp, (det v)=(X) q
ArAzt=4 (YT Ay TA5)SO
q +1 —d(yT TAy)S
R SN Z g A, }
2(q o 1) YERN, (det v)=(X)
A(vT 4, T Ay)>0
and
Fy(As):= > ¢g+1)
A1,A2€CI(O])
ArAzt=4
. . 1
: [qdeg ’\501—25()\)EZ§N) (T4,) + Ul(A)ElgN)(—)} . (3.5.2)
NTg,

At first we calculate the function F3(A, s). The following proposition combined
with the convergence of the limits in (3.5.1) implies the existence of the limits
in section 2.8 (cf. the corresponding remark there).

ProrosiTION 3.5.1 The following equation for Fy holds:

AAs = X ey o) (X 2]) w0+

#0 )
dcg(uNL)LSdcg(/\D) clu

14 dun= 1
2T OuN-AD)uN (deguN+deg)\D+L)

9 2(‘1 - 1)
a1l r - -
*30=T mq%;m A((uN — D)) % { c }

deg uN >deg AD

(1, D) + 1)~ (degnN—degAD)s
PrOOF. We define
M(ar,a2,m) = {(a, ) € a7 %" x a7 'a5 0| Ay Ax(or — ) € VDF,[T][VD]}
By calculations analogous to [Gr-Za], II (3.6)-(3.10) the map
Ry — M(a1,az,n)
( LCL 2 > — (a=cnTe+dTe —am — b, 8 =crim2 +drs —ar — b)
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is a bijection and det ( LCL Z ) = —A1A>(Np g (a) = Ny (8) D71

For A e Fy[T], A # 0 we get
{( : Z > € Ry, (ad —be) = (\)}

—A1A2(Np g (a) = Np g
= {(0.B) € My, aq, ) (—2 22 Benl Z ReycB)y

We set 1 = Np/x(8)/A7 A7 'N € Fy[T], then d(y74,,74,) = deguN —
deg AD. Then it follows that

> (% - d(WAl,TAZ))

‘2
(det 1)=(2)
1
= Z ( g+t fdeguN+deg)\D)~
o V2@ —1)
1€ [T]—{0}

#{(e, 0) € M(ay, a2, n))|

—A1Ao(Np k(o) = Np/r(B)), Np/x(B)
We see that
#{(O{, ﬂ) € M(ala az, n)|
—A1A>(Np k(o) = Np i (B)) Np/x(B)
( . )= O, ety =4
1.1, N B
= #{ﬂ€a11a21“|% =pu}-

#{o € a7 @ | (- A1A2(Np k(@) — Nyyx(5) = (AD)} -
1
1
= Taflagln,A;lAglN(H) : Z Taflagl,AflAgl(HN —€AD) - 5(15(#71)) +1).
ecFy

Now we set as = Hl_lﬁo_ L and Ay = Al_l)\o_ 1, summing over all classes we get
for the first part of the formula in the proposition:

Z Z (2((1;:11) —d(WAl,TAz))

A1,A2€CI(0f) ~YERN,
A1A;1:A (det v)=(X)

= Z ( g+1 —deguN—i—deg)\D)-

2(g — 1
wer oy 24—
1
> Tarmamann @) (D Taa (N = AD)) (11, D) +1).
A1€CI(Or) eclky
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Since deg D is odd we see that

ral’lﬁlﬁon,koN(M) = rA%[aoﬁ]((N))((;/\oN# + 1)'

The class number is odd, and therefore every class is a square. Hence

S etmmnan 0= 3 ()G, 1) = 2L S [2]

qg—1 c
A1€CI(0Or) BeCl(Or) clp

We use this equation, we change the order of the summation, and we continue
with our formula

> > (Q(qq;_ll) *d(WTAl,T&))

Ay, .AZGCL(OL) ~YER N
Apaytoa (etn= o))

1
g E (L — deg uN + deg )\D) .
= 2(¢ - 1)
€ pEF[T]—{0}

: (ZED(‘S%Neﬁl)T%,AO((uN AD))

-1 | (t(u, D) +1).

N~

If 7ap,no (e(uN — AD)) # 0, then Xoe(uN — AD) is a norm and dx,nep =
duN(uN-p)- In addition we use the relation

D Taono (€(uN = AD)) = (¢ — D)ra((uN — AD)).
EEFZ

This proves the first part of the formula in the proposition. The same calcula-
tions hold with ¢~%("741:742)¢ instead of d(y7a,,74,). If deg uN > deg AD we
have d,n(un-xp) = 1. Therefore the second part of the formula is also true.

Now we continue with the calculation of the function F5(A, s) defined in equa-
tion (3.5.2).

PROPOSITION 3.5.2 For the function F5(A,s) the following formula holds

lim [FQ(A, s) — Zl’f}L_Lile_(;\)]

s—1
C’( Z qdega) + 2khr Z(deg)\ — 2dega)qicee

al\ alX
with
C := —4khg (degN — Z deg P(1 + qdegP)—l
(P)I(N)
(P prime
deg D 2 1 L'h(1)
2 g—1 IngLp(1) /)
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PRrROOF. EigN)('r) is invariant under the non trivial automorphism of L/K.
From Tan = 7415 and 1/(N7a, n) = 74,5 it follows that

> BN = Y EN ),

AECI(OL) A secioy)

Ei™N) can be expressed through the Eisenstein series Ei(!) by (cf. Lemma 7,
[Ti3])

N
<(N) _ —s _ —2s5\—1 —s (1) 2V
EiM () =N T 0= 127 (X w6 =) Bl (Sra).

(N/d§)T4 are Heegner points for § instead of N with the same discriminant.
Immediately from the definitions we get

Ei{N(r) = (1 - ¢"*)|VD[*¢L(A, s)

where (1,(A, s) is the partial (—function to the class A. This yields

> EiN(14)

AeCi(0Or)

= v T a=1p (X wesl)
(P)|(N) SIN
(P) prime SmodF}

(L=¢"*)VDI"Y_CulAs).
A

We have Y 4 Cr(A,s) = (r(s)(1 — ¢~ %) = Lp(s)/(1 — ¢"~*). This gives

1— 1-2s
_ —s —s\—1_1/2 q
Fy(As) = N7 [T a+1PI7*) " (a + D= e
PIN
Pmosz
VD Lp(s)(01(A) + [P 0125 (X))
Now a straightforward calculation gives the desired result. O

3.5.2 DEG D EVEN

For the case where the degree of D is even we proceed in almost the same way
as for the case of odd degree, so we only need mention here the statements and
the differences in the proofs.

We start again with the general formula for the local height pairing at infinity
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for two points given by z, 2’ € Q of [Ti3] (Thm.1, Prop. 8,9):

((z) = (00), (2") = (0)) L.
—21Ingq q 1 ,
- l > (o z0m)

ver
d(vz,2')<0

. q —d(’yz,z/)s _ K‘(q - 1)i|
tim [t Y T
~er

d(vz,2")>0

~ iy [alg = DEICOE) + B () - Tiﬁﬂ |

Again we take 74, €  to be elements corresponding to the different ideal
classes A;. If 7 is one of these 74, we get

(1) = (00), Ta((7)7* = (0)))oo

—lnq . 2,‘<&hL0'1()\)
= o1 [Fl(A’S)l_iql_s
i (A drkhror(N)
—lim 1A s) = 5

as above and the modified functions Fi, F5

2q
Fl(.A, S) = Z |: Z 2_ 1 d(’YTAlaTAz))
A1, A2€CI(OL) ~ERN, (det v)=(\) q
ApAyl=a A(VT AL T Ay) SO
2q —d( )s
+ 5 Z g~ 0TALTA; é}
T =0 L ery @en=0
d(’yT_Al,T_A2)>O
and
. . 1
BAs) = 3 a0 WEN () + o WEIY ()]
1

A1,A2€CI0])
ArAzt=a

With these definitions we get:
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ProprosITION 3.5.3 The following equation for Fy holds

AAs = X raley o) (3 2]) o)+

W#0 clp
deg(uN)<deg(AD)

14 duN-rD)Nu
2

-1

s ey o) (X2

HEFG[T]—{0} clp
deg uN >deg AD

'(t(M,D) + 1)q—(deguN—deg/\D)s.

2
(—deg,uN—&—deg)\D-&- d )

PrOOF. The proof of this proposition differs from the corresponding Proposi-
tion 3.5.1 only slightly. We start with

2q
Hz?;) (q2 1 deguN—i—deg)\D) ra((uN — AD)) -
Z {2} (0un(un-xD) +1) %(t(u, D)+1).

c
clp

Since D is irreducible with even degree, the ideal class number is divisible by
2 exactly once. Hence the set {A?|A € Cl(Or)} is equal to the set

{B € Cl(Or)|deg Ny, (b) is even for all b € B}.

This yields:

> (@) =Y rs(9)Grn + )
A1€CI(01) BeCl(OL)
1 D
= (e,

Using similar arguments as in Proposition 3.5.1 we get for our first sum:

2q 1
Z ( 31 fdegHNereg)\D)( Z S 1 Z Taflﬁlﬁon,)\oN(elﬂ))

,LL#O q Aq ECl(OL)q €1 G]FZ
1
(32 Paura (N = AD)) 5 (21 D) + 1).
EEF;

Each ¢; € IF} is norm at the extension L/K, i.e., ¢; = Ny /k(x). The divisor of
% is of the form (k) = b=1b. This proves

ra;lalaon,,\oN(M) = (o, b)*lmﬁgn,/\gN(elu)‘
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Therefore an appropriate choice of the ideals a; yields for our sum:

2q
Z (q2 4~ deg uN + deg )\D) ( Z Taflalagn,AoN(“)) .

u#0 Ay ECl(OL)
1
( Z Tao,No (MN - GAD)) §(t(ﬂa D)+ 1)'
(23 s
The rest follows in the same way as in the proof of Proposition 3.5.1. O

The formula for F5(A, s) can be calculated in exactly the same way, so we only
write down the result.

PROPOSITION 3.5.4 For the function F5(A,s) the following formula holds

- 4nhL01(/\)]

214)11% |:F2(A75) 1— ql_s

= C’(quega) + 2khr Z(deg)\ — 2dega)qicee
al\ al\
with

C := —4krhp, <degN — Z deg P(1 4 ¢ P)~!

(P)I(N)
(P) prime

_degD  g+3 1 L’D(l))

2 @-1 IngLp(l)

3.6 MODIFICATION IF r4((\)) #0

So far we have only evaluated heights and intersection numbers, when the
divisors involved have a disjoint support. In order to get a final result we must
also define and compute self-intersection numbers.

Let X be a complete, non-singular, irreducible curve defined over a global
function field F' over Fy, and let  be a F-rational point on X. Let X be a
regular model of X over PL. We call I, a local parameter at x if [, generates the
prime ideal corresponding to x in the local ring at « in the generic fibre. Let Z be
the Zariski closure of z in X. If 7 is a local parameter of a fibre corresponding
to a valuation v, we call I, a local parameter at x for the wvaluation v, if I,
together with 7 generate the maximal ideal corresponding to the intersection
point of & with the fibre over v. Now fix a local parameter [, at x. Then we
define for each normalized valuation v of F' the local self-intersection number
of x as

(0. 2o = I (@ . )0 — vl (y))) = lm (@ . )+ —

1 ZI v/
Jim Jim dogo 1084 ll=(W)l)

(3.6.1)
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where deg v is defined as usual, and where the absolute value is given by ||, :=
g desvv(@) | according to the product formula of the function field F.

The definition (3.6.1) and the definition of the ordinary intersection number
(x.y)y (cf. section 3.1) show immediately that (x.z), = 0, if I, is a local
parameter at x for the valuation v.

In the next step we have to choose the local parameter [, in our situation. The
curve Xo(1) is the projective line parametrized by the j-invariant of a Drinfeld
module of rank 2. We recall that a Drinfeld module of rank 2 over F [T is
given by an additive polynomial &7 (X) =TX +gX7+AX * with discriminant
A and j-invariant j = g?t1/A.

We let Y7 be the projective line given by the parameter u with v?t! = j. Then
Y1/Xo(1) is an extension of degree ¢ 4+ 1, where only the elliptic points and
cusps (i.e. zeroes and poles of j) are ramified (These facts and the definition of
elliptic points can be found in [Gel] or in other textbooks on Drinfeld modules).
Let Yy be the composite of Y7 and Xo(N), we get the following diagram:

Yy

7

Y1 Xo(N)

e

Xo(1)

On Yy we choose for a point y the local parameter [, := u — u(y). The self-
intersection numbers on Xo(N) will then be evaluated with this local parameter
on Yy and with the projection formula for the extension Yy /X (V).

We distinguish different cases for the valuations v:

3.6.1 v{N-o0
Let 2 be a Heegner point on Xo(N), defined locally over W as in section 3.1,

and let y1, ... ,y: be the points on Yy lying over . Then the projection formula
yields

(@.2)o =1 y1)o+ @r-y2)o+ -+ @1 Yt)o
Since the covering Y / Xo(N) is unramified outside the elliptic points and cusps
and outside the divisors of N - 0o, we see that u — u(y1) is a local parameter of
y1 at v. Hence (y1 . y1)» = 0 by the above remark. Since

1 o0
(Y1 - Yj)o = -1 > #somyy o (y1,95)
k=1

for j # 1 (Proposition 3.3.3), we therefore get

(x.x)y = qfll (#Autyy/or (z) — FAutw (7). (3.6.2)
k=1

oo
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As mentioned at the end of the proof of Proposition 3.4.3 the automorphisms
not defined over W correspond to the elements b € Ra, b = by + byj with
by # 0 which corresponds to p # 0 in the formulae of Corollary 3.4.10 and
Proposition 3.4.13. So these formulae already count only the “new” part, i.e.
without counting homomorphisms over W. Thus if A € F,[T] is prime to P the
formulae for the local height pairings ((x) — (00), Tx(2)°4 — (0)) p of Corollary
3.4.10 and Proposition 3.4.13 remain valid. This is not true however, if v|\.
We write as before A = PR with P { R. For the points of level s > 0 it is not
correct to take only the "new” part. So we have to add the contribution from
homomorphisms over W for these points to the formulae of Corollary 3.4.10
and Proposition 3.4.13.

For P inert we look at the last line of (3.3.1) We get a contribution of

t
1 5# Isomw (z,x) #{z € Traz*} if t is even
a_1 t+1
q—1 %# Homywy (2, 2)deg p #{7 € Trx®*} if ¢ is odd

which is (¢/2)r1((P))r4((R)) if t is even and 0 if ¢ is odd. In both cases this
is equal to (ordp(A)/2)r4((N)).

If P is ramified we get in a similar way from (3.3.2) a contribution of
ordp(N)ra((N)).

If P is split we have t + 1 points of level 0 in Thz?4, where x is just one of
them (cf. Proposition 3.2.4). From the t — s+ 1 divisors of points of level s > 0
there is at most one whose points are congruent to z. Summing over all levels
shows that the correction term in this case is ordp(A)r4((N\))kp, where k, is a
number less or equal to ¢, and k, + k5 = ordp(N).

3.6.2 o|N

Let 2 be a Heegner point on X(IV) represented by the pair of ideals (a,an™1),
where n is a divisor of N in L (cf. section 3.1).

a) Suppose that v|n, in particular let v divide the prime divisor p of norm
Nz/x(p). The Artin reciprocity law in explicit class field theory ([Ha, (8.7)])
uses the fundamental congruence

F(ap™h) = 5 (a)Ne/x®) mod .

From this we see that u — u(y;) is again a local parameter of y; at v for a
point y; on Yy lying over x. Hence the calculations of the previous section, in
particular equation (3.6.2), remain true in this situation.

b) Suppose that v|fi. Then the calculations of a) show that wy(u — u(y1)) is
a local parameter of y; at v, where wy denotes the canonical involution on
Xo(N) and Yy. Hence

1 w0 = o P2 ), (3:63)
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Using the fact that u?t! = j we get

(8wévu(u)

Y+l = (ang(j))qﬂ(wj(j))q' (3.6.4)

If the Heegner point x is represented by 7 € Q, then wx (j)(7) = j(N7). And

dwy () dj
5, (1) —=(7). For

d
and =

we can evaluate the right hand side of (3.6.4) with

94
9 e use the definition j =g /A and get

0z
dj g? 0g 0A
= == (ZA—g—).
5: ~ A? (5.2 9
@A fg% can be expressed in terms of A (cf. equation (3.6.11)). For

0z 0z

&u#(]) we perform similar calculations. Hence we get
z
Own (u) 21 21 A(NT) 5
= N1 . .6.

A(7)/A(NT) is algebraic over L and its divisor is equal to A% = (we get this
by calculations analogous to those in [Deu], sect. 13). With this fact and with
(3.6.5) we can evaluate the value in (3.6.3). Together we get

LEMMA 3.6.1 If vn, then
(x.z), =0,
and if v[n, then
(x.x), =—v(N)=-1.

We can now summarize the results of the first two cases. We want to evaluate
the height of Heegner points as in section 3.4, but without any restriction on
rA((A)). We combine the calculations in section 3.4 with the contributions
from subsection 3.6.1 and Lemma 3.6.1, and we get

PROPOSITION 3.6.2

Inq

q—1

D (@) = (00), Ta()* = (0))p =

P#oo
-{(q = 1) 74((A)) h (deg N — deg )

+ Z rA((uN = AD)) (1 = 0(uN—rD)uN)
p#0
deg(puN)<deg(AD)

(1. D) + DX | 2] des) = (|2 dea }

clp clp
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3.6.3 w|oo
Let = be a Heegner point on Xo(N) represented by 7 € Q, and let y1,... ,u

be the points on Yy lying over x. As above the projection formula yields
(@ . 2)o =1 y1)o+ (W1 - y2)o + -+ (U1 - Ye)o-

The self-intersection number on Yy is by definition given as

(Y1 - yo)o = lLim ((y1 - 9)o = v(u(g) — u(y1))-
Therefore, if § on Yy is mapped to Z on Xo(NV), we get
(. x)y = %g((x L&)y —o(u(g) — ulyr))). (3.6.6)

The point x is represented by 7 € €, let in addition Z be represented by 7 € (2.
At first we treat the case where deg D is odd. The local height pairing of  and
Z at v is given by the Green’s function G(7,7) ([Ti3], cf. also section 3.5):

. 1 q+1 IT — 7
G(T, 1) = ——= —— —log, ————
vero(:N) (2(11 -1 ©\rlily Tl )
[r=~y712< 71177l

12
0L )3 (M)(r%),(gm)

2(q —1)2 o—1 = |7]: YT
7= 712>171; 17715
where we normalize the absolute value such that |f| = g8/ = ¢=*() for
f e Fy[T].

The Green’s function G(7,7) contains two parts, the intersection number
(Z . x), and the contribution of the fibre components (cf. (3.1.1)). We must
replace (Z . z), by the self intersection number (z . x),. The contribution of
the fibre components remains unchanged.

We have u4t! = j and j = j(z) for z € Q, this yields

lim (v(u(g) —u(y1))) = v(%) + lim (v(7 — 7)). (3.6.8)

J—Y1 T—T

Ju ou aj
Here — only represents the two derivatives — and —j, we do not assume
or dj or

that Yy is a quotient of Q.
Now (3.6.6), (3.6.7) and (3.6.8) show that we have to replace G(7,7) by

1 q+1 [T —7]?
G(r,7) = —— 5 —log, —————
1 2 B )

lT=y7I12<I7l3lv7ls

g+1 |7 =7 - Ch
+ 1T gim ( -
2(q— 1) o—1 ( 2 |7lilyrli 1- ql“’)

YETQ(N)
Ir=y72> |7l lvrls

q+1

ou
4T 49 it
T g slilE)
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When we compare the results in section 3.5 with these formulas, we get

((x) = (00), Ta((2)°* — (0)))oo = right hand side of eq. (3.5.1)

~2Ingra((\)Y (logq(lrli%l) + 43;11))’

-
where we sum over all 7 corresponding to the classes in Or. We denote the
second sum in (3.6.9) by S, which we will evaluate now.

We use the definitions u9t! = j and j = g9t /A to evaluate

(3.6.9)

Ju dg 0A
UV -1 _ A2-d"—q A — -1 6.1
(82) (82 82) (3.6.10)
(?Af %)q_1 is a modular form of weight ¢(¢> — 1) for the group
2z

GLy(F,[T)), and it is therefore a polynomial in g and A (cf. [Go]). The
evaluation of the expansion around the cusp yields the identity
dg 8A
YIN
(82 9oz 2"
where 7 is a well-defined element (cf. [Ge3]) with log, 7| = ¢/(q —1).
Now (3.6.10) and (3.6.11) yield

= —7l7IA9, (3.6.11)

Ju . q
g 171 52 = o (A7)0 D7) - L.

Since |A(7)|2/(@° =D |7|; is invariant under GLo(F,[T]), we can assume that T

satisfies |7| = |7|; > 1. For these 7 we use the product formula for A (for all
the details concerning the product formula we refer to [Ge3]):
A(r) = -1 71t H fal(t( q ?=1)(q— D,
a€Fq(T]
where

7T7' H

1€Fg[T]
L¢0

and where f, are well-defined polynomials. Using the definitions of f, and ¢(7)
we can show that in our case (i.e. 7 € Koo(vD), deg D odd, |7| = |7]; > 1)

q+1
log, [t(T)] = *Wz“fﬂm
and
log, | fa(t(r))] = 0.
Therefore
1
log, |A(T)| = qlg +1) = 54"(g + D7l (3.6.12)
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Hence we get

au q q1/2
log, (I7lil 5-1) = 1 Flrli +log, |7]:. (3.6.13)

Now the definition of S in (3.6.9) and equation (3.6.13) yield

/2|7,
S=-21Ingq m@»(%m + Z(% +log, |T|Z-)). (3.6.14)

On the other hand we consider the Eisenstein series

. |7'|S
Eiy(r) := —_—t (3.6.15)
de;qm ler + d|?s
(e.d)#(0.0)
We see that
. —1)|VDJ?
S mintr) = L 1), (36.16)

where Lp(s) again is the non-trivial L-series of the extension L/K. Straight-
forward calculations of the sum in (3.6.15) show that Fis(7) can be expressed
as a rational function:

i q'2|rl; " 2 47
T ((a- 1= el 1). (3.6.17)

Eis(1) = (¢—1)

With (3.6.16) and (3.6.17) we can evaluate the following term

2 L' (0) 2q 2 27
Ing =—degD+———-=5 (————log,Irl:).  (3.6.18
lnqLD(()) €8 +q_l hLZ( q-l qu|7_|) ( )

T

We compare equation (3.6.14) coming from values of A and equation (3.6.18)
dealing with Eisenstein series, to get

S =Ingra((N) hp(—degD — %Eggg; - 2(qqtll)). (3.6.19)

This result can be seen as the Kronecker limit formula for function fields.

We summarize Propositions 3.5.1 and 3.5.2 and the result (3.6.9), (3.6.19) about
S in the following proposition.
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PROPOSITION 3.6.3 Let deg D be odd, then

Ingq
q—1

R O ),

() = (00), Ta((2)7* = (0))oo =

1+ 0(un-aD)uN

X e a0 [ ) 1)

K70 clp
deg(pN)<deg(AD)
pN q+1
(deg(E=) — ———
(deg(575) QW—Jf
g+1 D
2Aq—1) o >, raleN=2D) (3 H) (t(u, D) + 1)
deg(uN)>deg(AD) cln
dega
. q(fdfl)deg(%) . Cih (Za\,\q & )
1—q°
_ Ll Ci hr, (Z qdega(deg/\ — 2dega)) + (Z qdega) O,
Aoy > IA
with
2(qg—1)?
Cl =
[GLy(Fg[T]) : To(N)]
and
2(q2 — 1) degP degD
Cy 1= — hp | deg N — _
2T T GLy(F, (1)) : To(v)] "2 | 8 > AP 11 2

(P)I(N)
(P) prime

2 _LL'D(D)
g—1 IngLp(1)/)’

Combining this with the results for the finite primes finally gives:

THEOREM 3.6.4 Let deg D be odd and let g4 be the Drinfeld automorphic cusp
form of Proposition 3.1.1. Then g4 has the Fourier coefficients for all \ € Fy[T]
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with ged(A, N) = 1:

1
g;(ﬂggg)\+2a)\) _ nq qfdeg)\

q—1
g+1 2 L0
{(q — 1) ra((N) hyr <deg]\7 — deg(AD) — Q(T—l) " g LD(O))
+ Y ral(uN - D)) <(Z [g]) (t(u, D) + 1) H‘SW%DW
deg(ﬂNl)ngeg(AD) el
N +1 D
: (deg(i_D) - 2(qq — 1)) — (1 = d(un=-arD)un) (% {?]) deg p
+ (1= d(un—xpyun) (s, D) +1) O [g} deg C))
clp
- g I ( > raten - a0) (X | 2]) 60+
¢ deg(1uN) >deg(AD) ol
oD des(88) _ C1 hr (X qdega)>
1—q°
= 4L Gy (3 gt (deg A — 2dega)) + (3 675) s
2(q—1) pp =
with
Cy = 2((] — 1)2
- [GLa(Fy[T7) : To(NV)]
and
o 2(¢* - 1) o B degP  degD
@= [GLa(Fy[T7]) : To(N)] | des N (%) qles P +1 2
(P) prime
2 LLID(D)
g—1 IngLp(1)/)’

If deg D is even, the calculations are the same. We will present only the differ-
ences in the formulas to the first case. The calculations with the corresponding
Green’s function (cf. (3.6.9)) give

S=-2Igra((\)> (1ogq(|T|iI%|) + q2q_ 1)

T

Equation (3.6.12) has to be replaced by
log, |A(T)] = q(g+1) —q];.
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Hence (3.6.14) has the form

2
q° +2q 2q|7|i
S=-21Ingq TA(()\))( 1 hr + E (_qg Ul + log, |T|z))

The definition (3.6.15) and the relation (3.6.16) remain unchanged, but the

rational expression (3.6.17) becomes
[l gl

1— q1—23 1— q2—23

|17S 2 q >
: ((Q*l)erqfl)-

Eis(’r) = (q - 1)
Equation (3.6.18) has to be replaced by

2 Lp(0)
Ing Lp(0)

2¢> +2q 2 2q|7l;
= 7degD+ﬁ — E;(q2 1 —logq |7'|z)

And finally we get:

PROPOSITION 3.6.5 Let deg D be even, then

Inq
qg—1

'{(q — 1) ra((X)) b (— deg D — q223 1 % gﬁggg)

(@) = (00), Th((2)7* = (0)))oc =

D 1+ (N -AD)uN
fX e a0 [ ) 1) e
u#0 clp
deg(uN)<deg(AD)
uN

(deg(53) - 71

¢ —1

)

S| Y ey -a) ([ 2] ) )

q2 —1o0—0
deg(puN)>deg(AD) clp

uny Ch hr, (Za|,\ qdega)>

. o(—o—1)deg( o)
q g

2q
¢ —1

Ci hy, (Z q4°®%(deg A — 2dega)) + (Z qie ) 02}

al\ al\

with
O e (¢* —1)?
T 2q[GLy(F,[T]) : To(N))]
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and
2(¢%> — 1) deg P deg D
CQ = - hL degN — —
[GLo(F,[T]) : To(N) P
(P) prime

g+3 1 Lh(1)
¢>—1 IngLp(l))

Combining this with the results for the finite places yields:

THEOREM 3.6.6 Let deg D be even and let g4 be the Drinfeld automorphic
cusp form of Proposition 8.1.1. Then g4 has the Fourier coefficients for all
A € Fy[T] with ged(A, N) = 1:

In
galmdesr+? y) = L g des
q—1
2 2 L’D(O))

~{T_A((/\)) hr (¢—1) (degN —deg(AD) — q2——1 - m Lp(0)

+ > TA((MNAD))<(Z [%])(t(u,D)+1)1+5W\+*D)P‘N

u#0 clp
deg(uN)<deg(AD)
uN 2q D
: (deg()\_D) T A- 1) — (1 = d(un=-aD)un) (|Z {?]) deg p
clp
D
+ (1= d(un—apyun) (t(p, D) + 1) (Z - degc)
clp

2 nm( > raten - a0) (X | 2] 60+

- q2 —10—0
deg(pN)>deg(AD) clp

1
. (—o—1) deg( ig — Cih dega
q 1 he (EAQ )—17(]70

2
_ Z 3 7 Ci hr (Z qdega(deg)\ —2dega)) + (Z qdega) 02}
alX al

with

O e (> —1)?
' 2[GLy(F[T]) : To(N)]
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and
2(¢® —1) deg P deg D
CQ = - hL degN — —
[GLy(F,4[T]) : To(V)] (P);V) qdes P +1 2
(P) prime

4t 1L
-1 IngLp(l) )

4 CONCLUSION

4.1 MAIN RESULTS

Now we combine the previous chapters on L-series (chapter 2) and on Heegner
points (chapter 3). We recall the assumptions: D € F,[T] is an irreducible
polynomial and N € Fy[T] is a square free polynomial, whose prime divisors
are split in the imaginary quadratic extension K(vD)/K.

If deg D is odd, we evaluated in Theorem 2.8.2 the Fourier coefficients

U (rdeeA+2 X) of an automorphic cusp form W 4 of Drinfeld type with

0

s

(L5 + 1)L, A, 5)) |eco= / f U

FU(N)\GLQ(KOC)/FOCK;O

On the other hand, in Theorem 3.6.4 we obtained the Fourier coeflicients of
g, which are defined as

Ga(rSEM2N) = ¢~ 4B ((2) — (00), Ta((2)7 — (0))).
If we compare the two formulas, we see that

-1
o* deg A\ +2 A) = q —(deg D+1)/2 _x deg A\+2 A
.A(Troo ’ ) 92 q gA(ﬂ-oo ’ )
for all A € Fy[T] with ged(A, N) = 1. Hence the two automorphic cusp forms
Uy and (¢ — 1)/2 - g~ (deeD+D/2 ¢ differ only by an old form. Since f is a
newform, the occurring old form does not affect the integral. And this can be
summarized by the following main result:

THEOREM 4.1.1 Let deg D be odd. Let x be a Heegner point on Xo(N) with
complex multiplication by Or, = Fy[T][V'D], let A € Cl1(Or), and let g be the
automorphic cusp form of Drinfeld type of level N, which is given by

(Trga)* (75, 1) = {(z) — (00), Ta((x)™ — (0)))
for all X € Fy[T). Let f be a newform of level N, then

0 -1 _ _
S (LNPI 25+ 1L(S, A, 8)) lomo= Lo e P02 [ rm
To(N)\GL2 (Koo ) /T K2,
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If deg D is even, we have to compare Theorem 2.8.3 and Theorem 3.6.6. Let
U 4 be defined by

0 1

%(WL(N’D)(QS +1)L(f, A, 8)) [s=0= / fWa.

FU(N)\GLQ(KOC)/FOCK;C
The Fourier coefficients of ¥ 4 and g4 satisfy

1

Wiy (rdeE 2, \) = I g B D2 g (o2 )

for all A\ € F,[T] with ged(A, N) = 1. Hence we have

THEOREM 4.1.2 Let deg D be even. Let x be a Heegner point on Xo(N) with
complex multiplication by Or, = Fy[T][V/D], let A € Cl1(Or), and let ga be the
automorphic cusp form of Drinfeld type of level N, which is given by

(Txg.4)" (15, 1) = ((z) = (00), Ta((2)7 — (0)))
for all A € Fy[T]. Let f be a newform of level N, then

0 1

%(1—1—(1_5—1

-1
LD @5+ DL AS) o= T2 [ f

To(N)\GL2(Koo)/Teo K2,

4.2 AppPLICATION TO ELLiPTIC CURVES

We want to apply our main results to elliptic curves. Therefore we assume in
addition that the newform f is an eigenform for all Hecke operators. So far we
haven’t required this condition in our calculations.

Let x be a character of the class group Cl(Or). If deg D is odd, we define

L(fixos) = Y, x(A) LV 2s+1)L(f, A, ).
AeCl(Or)

Then Theorem 4.1.1 yields immediately
9 Lf,%,9) lsmom= o g (@enDH1)/2 / 73 XA
ds N 1s=0 '

2
To(N)\GL2(Koo)/Too K2, A
(4.2.1)

Note that »° 4 x(A)ga is an automorphic cusp form which satisfies (cf. the
definition of g4 in Proposition 3.1.1)

(T x(A)ga) (Mo, 1) = Y x(A)(@) = (), T((2)™ = (0)))  (4.2:2)
A A
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for each Hecke operator T'. Exactly the same calculations as in [Gr-Za], p. 308
show that (4.2.2) can be computed as

(T X(A)ga) (w5, 1) = hi ey, Tey),
A

where ¢, = > x HA)((z) — (0))74 is an element in the Jacobian
Jo(N)(H) ® C. Here we used the fact that (0) — (co0) is an element of finite
order in Jo(N) (cf. [Ge2, Satz 4.1]).

Let {f;} be a basis of the space of automorphic cusp forms of Drinfeld type
of level N which consists of normalized newforms together with a basis of the
space of oldforms. We assume that fi = f. And let ¢, = ), cgf) be the
decomposition of ¢, in f;-isotypical components (i.e. components, where the
Hecke operators act by multiplication of the corresponding Hecke eigenvalues).
Then again as in [Gr-Za], p. 308 we get

S x(A)ga = hpt S (D, D) g (4.2.3)
A ¥

Since f is a newform, we have (c@,c&”) = 0 for ¢ # 1. Then equations (4.2.1)
and (4.2.3) yield:
COROLLARY OF THEOREM 4.1.1 If deg D is odd, then

) g—1
9 — = —(deg D+1)/2
D5 (f,X,S)|70 ) q
hzl <C§<1),C§<1)> f?
To(N\GL2(Koo) /T K2,

If deg D is even we define

1
L(f.x.s) =Y, x(A) Tt LY s LA ),
AeCi(0y1) q

and we get analogously:
COROLLARY OF THEOREM 4.1.2 If deg D is even, then

0 4—1 _4egp
—L g = ~——— g desD/2 .
(98 (faXvS) |‘570 4 q
hzl <C§<1),C§<1)> / f ?

To(N)\GL2(Koo)/Too K%

Now let E be an elliptic curve with conductor N - oo, which has split multiplica-
tive reduction at oo, and let f be the corresponding newform as in section 2.1.
We have already seen that the L-series of E over the imaginary quadratic field L
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satisfies (with the notations of this section) L(E, s+1)L(Ep, s+1) = L(f, xo0, 5),
where Xo is the trivial character of Cl(OL).

Let m : Xo(N) — E be a uniformization (cf. [Ge-Re], (8)) which maps the point
oo on Xo(N) to the zero on E. The two homomorphisms 7, : Jo(N) — E and
7 : E — Jy(N) are related by the formula 7, o 7* = degw. On Jy(N) we
consider the elliptic curve E’ = 7*(E). Then , g and 7* are dual isogenies
of E and E’, in particular we get

7 oy g = degT. (4.2.4)

For a Heegner point z on Xo(N) let Pp = 3~ 1ccy0,) T(@74) be the corre-

sponding Heegner point on E. The component c;{,) lies on B’ and we have

Top () = Pp. (4.2.5)

The points Py, on E and c( ) on Jo(IN) are both defined over the field L. Let
h e, be the canonical Neron-Tate height of E over L, analogously we consider

}ALJO(N)’L. If we apply the projection formula and equations (4.2.4) and (4.2.5)
we get

deg - by () = (deg- e el) s,

(o, |E/< ) ) so.z
= (mup (D), mym () p,e
g L(PL). (4.2.6)

Since the height pairing ( , ) is normalized for the Hilbert class field H (cf.
section 3.1), we have

(D Dy = hp by vy (e (). (4.2.7)

o0 » X0
Now (4.2.6), (4.2.7) and the two corollaries yield in the case of elliptic curves:

THEOREM 4.2.1 Let E be an elliptic curve with conductor N - oo, which has
split multiplicative reduction at oo, with corresponding newform f as above, let
P;, € E(L) be the Heegner point given by the parametrization m : Xo(N) —
E. Then the derivative of the L-series of E over L and the canonical height
lA”LE,L(PL) are related by the formula

0

S LB DL(ED. ) [cr= hen(PL) (D) (egm) [ f-T,

To(N)\GL2(Koo)/Teo Kz,

where the constant

q=1 _—(degD+1)/2 . :
o(D) = { q if deg D is odd,

T1 q deg D/2 if deg D is even.
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Finally we mention just one consequence of Theorem 4.2.1. The L-series
L(E,s) - L(Ep,s) of E over the field L has a zero at s = 1 according to
the functional equations of section 2.7. In the function field case it is known
([Ta], [Sh]) that the analytic rank of E/L is not smaller than the Mordell-Weil
rank of E(L). Therefore Theorem 4.2.1 implies

COROLLARY 4.2.2 If

%(L(E,S)L(ED, s)) [s=17# 0,

then the Birch and Swinnerton-Dyer conjecture is true for E, i.e. the analytic
rank and the Mordell-Weil rank of E/L are both equal to 1.

REMARKS.

1) In [Br] Brown proved the Birch and Swinnerton-Dyer conjecture in the
case that the Heegner point has infinite order. And he conjectured that this
assumption is true if and only if the first derivative of the L-series does not
vanish at the point 1. Theorem 4.2.1 proves his conjecture.

2) Milne ([Mi]) showed that the equality of the analytic rank and the Mordell-
Weil rank implies even the strong Birch and Swinnerton-Dyer conjecture.
Therefore in our case the assumption of Corollary 4.2.2 implies

9 L BIL.8) o= %ﬂ

0s
where L*(E/L, s) is the modified L-series of the elliptic curve E over the field
L (cf. [Ta], [Mi]), Py is a generator of the free part of the Mordell-Weil group
E(L) and IIT is the Tate-Shafarevich group of E/L.
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