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Summary

Let G be a complex semisimple algebraic group with real form GR, the fixed-
point subgroup of an antiholomorphic involution g 7→ g. The group GR ×GR

acts of G by the rule (r1,r2)g = r1gr
−1
2 . In this paper, we give a construc-

tion of a GR × GR-invariant pseudokähler form on a neighborhood of GR in
G. We expect this result will find application in several related areas in com-
plex geometry and representation theory. For example, future work of others
will show that symplectic reduction (with respect to the imaginary part of the
pseudokähler form) relates this open set in G with a neighborhood of a non-
compact Riemannian symmetric space in its complexification, as studied by
Akhiezer and Gindikin [AG].
As a first guess, one might attempt to construct such a pseudokähler form
as follows: given left-invariant vector fields Z,W on G, define the Hermitian
product of Z and W to be κ(Z,W ), where κ is the Killing form. However,
this fails, since the corresponding 2-form (the imaginary part of the Hermitian
form) is not closed. Instead, we take the following approach. We construct
a pseudokähler form on a complex manifold M ⊂ igR × GR. We then define
M ′ ⊂M such that f |M ′ : M ′ → G is a diffeomorphism onto an open subset of

G. Here f : igR ×GR → G is the map (iX, r)
f
7→ eiX · r. This allows us to push

Documenta Mathematica 5 (2000) 595–611



596 Ralph J. Bremigan

down the pseudokähler form on M ′ to the open set f(M ′) ⊂ G. The new form
turns out to be closely related to the form Z,W 7→ κ(Z,W ).
Our main results are as follows:
Let GR×GR act on igR×GR by the rule (r1,r2)(iX, r) = (iAdr1X, r1rr

−1
2 ); then

f equivariant. Define M := {(iX, r) : df is nonsingular at (iX, r)} ⊂ igR ×GR.
This makes M a complex manifold, with complex structure J induced from the
complex structure on G. A useful description of M is:

Theorem 1. (iX, r) /∈ M if and only if adX has an eigenvalue of nπ for some
nonzero integer n. Equivalently, for p := eiX , (iX, r) /∈M exactly when either
Adp has an eigenvalue of −1 or Adp fixes a vector in g not fixed by adX . (Proof
in §2.) �

Regard igR ×GR as the cotangent bundle of GR. As such, there is a canonical
real 1-form λ on igR × GR such that ω := dλ is an (exact) nondegenerate
symplectic form. On the other hand, let φ : igR ×GR → R, (iX, r) 7→ κ(X,X),
which is a GR ×GR-invariant function. These objects are related:

Theorem 2. On the complex manifold M ⊂ igR × GR, we have 2λ = dcφ.
(Proof in §4.) �

As an immediate corollary, we have:

Theorem 3. ω = dλ = 1
2dd

cφ = −i∂∂φ is a GR ×GR-invariant, J-invariant,
nondegenerate, exact, real 2-form on M , and

〈A,B〉 := ω(JA,B) + iω(A,B) (A,B ∈ TmM)

is a GR ×GR-invariant pseudokähler form on M . �

We seek to compute the pseudokähler form in terms of a reasonable collection
of vector fields on M . Let Z ∈ g, that is to say, a tangent vector to G at the
identity 1. As usual, we may identify Z with a left G-invariant vector field onG.

Let Ẑ denote the vector field onM obtained by pulling back the left G-invariant
vector field Z on G via the map f . These vector fields, which we call canonical
vector fields, are the ones we shall use throughout for computations. We also
need to define several linear transformations on g. Let (iX, r) ∈ M and write

p := eiX . First, we define Ap : g → g, Ap :=
(
I+Adp

2

)−1

. (This makes sense,

by Theorem 1.) We also define FiX : g → g by FiX (Z) := d
ds

∣∣
s=0

log(pesZ).

(Here log denotes a local inverse for exp, returning a neighborhood of p in G to
a neighborhood of iX in g.) Finally, define EiX := FiX ◦Ap ◦Adp. Our result
is:

Theorem 4. For Z,W ∈ g and (iX, r) ∈ M , we have that
〈
Ẑ, Ŵ

〉
(iX,r)

=

κ(EiAd−1
r XZ,W ). (Proof in §5.) �

Theorem 4 is useful since EiX is easy to understand: if adX is diagonaliz-
able, then EiX is also diagonalizable, has the same eigenspaces as adX , and
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its eigenvalues can be expressed in terms of the corresponding eigenvalues of
adX . In particular, if X lies in a Cartan subalgebra tR of gR, then one has
a simple expression for 〈 , 〉 at (iX, 1) when expressed using canonical vector
fields corresponding to elements of g that are root vectors or vectors in t. We
refer the reader to §6 for the precise statement. Additionally,

Theorem 5. The signature of the pseudokähler form is constant on M , and
is equal to the signature of the Hermitian form Z,W 7→ κ(Z,W ) on g. (Proof
in §6.) �

Trivially, if M ′ ⊂M is open and GR ×GR-stable, and if f |M ′ is injective, then
the pseudokähler form on M ′ pushes down to a GR×GR-invariant pseudokähler
form on f(M ′), which is open in G. We produce such a set M ′:

Theorem 6. Let ψ : G → GL(V ), g → gl(V ) be a finite-dimensional repre-
sentation that is defined over R and is faithful modulo the center of G (e.g. the
adjoint representation). Define M ′ ⊂ igR ×GR, where (iX, r) ∈ M ′ if and only
if for each eigenvalue λ of ψ(X), |Reλ| < π/2. Then

(1) M ′ ⊂M ,
(2) M ′ is GR ×GR-stable,
(3) M ′ is open in igR ×GR,
(4) f |M ′ is injective. (Proof in §8.) �

In some applications, it is more convenient to replace the above canonical
vector fields with tangent vectors that are either tangent (“orbital vectors”) or
transverse (“vertical vectors”) to the GR ×GR-orbits. We set up the notation
and compute the pseudokähler form using these vectors (§7). The imaginary
part of the pseudokähler form is particularly easy, and from it, one easily
computes the moment map:

Theorem 7. Relative to the symplectic form ω, the moment map µ : igR ×
GR → g∗

R
× g∗

R
' gR × gR is given by (iX, r) 7→ (X,−Ad−1

r X). The moment
map separates GR ×GR-orbits. We have ||µ||2 = 2φ. �

The present paper extends recent results of Gregor Fels. In [F], pseudokähler
forms are defined on certain complex domains which turn out to be subsets
of M . In §7, we verify that the restriction of 〈 , 〉 to these domains coincides
with Fels’ definition. That paper uses orbital and vertical vector fields, and
includes discussions of the moment map and CR-structures. I am grateful to
G. F. for sharing a copy of his preprint with me. I also thank Alan Huckleberry
for suggesting this problem to me and for helpful conversations.

§1. The Group Action

Let G be a connected complex semisimple algebraic group, endowed with a
complex conjugation g 7→ g, defining a real form GR ⊂ G (the fixed point
subgroup of the complex conjugation). The real group GR ×GR acts on G by
the rule (r1,r2)g = r1gr

−1
2 . Let g = Te(G) denote the Lie algebra of G, with
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Killing form κ. Given Y ∈ g, the left- and right-invariant vector fields on G
generated by Y are denoted g 7→ dlgY and g 7→ drgY .
We can identify the cotangent bundle T ∗(GR) with igR × GR; namely, from
X ∈ gR and k ∈ GR, we obtain the 1-form at k that sends drkY to κ(X,Y ),
where Y ∈ gR. The action of GR×GR on GR (by left/right translation) induces
an action on T ∗(GR), which in the above identification gives the following action
of GR ×GR on igR ×GR:

(r1,r2)(iX, r) = (Adr1(iX), r1rr
−1
2 ).

With this action, the map f : igR ×GR → G, (iX, r) 7→ eiXr is equivariant.
We shall often be particularly interested in the case when X is semisimple, and
we now set up some notation. If X is semisimple, then it is contained in tR,
where t is a (complex) Cartan subalgebra of g that is stable under complex
conjugation. Also p := eix ∈ T , where T is the maximal (complex) R-torus of
G with Lie (T ) = t. We have a root system Φ(T,G) consisting of characters
α : T → C∗, with differentials dα : t → C. (By abuse of notation, we write
−α for the inverse of α.) Roots are real, imaginary, or complex according to
whether α = α, −α, or neither. Imaginary roots arise in two ways, according to
whether the set of real points of the corresponding root sl(2) is isomorphic to
sl(2,R) or su(2), and are respectively “noncompact imaginary” or “compact
imaginary” roots. We have that dα(iX) ∈ iR (resp. R) if α is real (resp.
imaginary) and hence α(p) = edα(iX) ∈ U(1) (resp. R>0).
We recall some related facts (see [BF]). Let Z(G) = {g ∈ G : g = g−1}. It is a
topologically closed, smooth, IntGR-stable submanifold of G of real dimension

equal to the complex dimension of G. The subset B(G) := {h · h
−1

: h ∈ G} ⊂
Z(G) coincides with the connected component of Z(G) containing 1. Since

eiX = eiX/2 · eiX/2
−1

, we have exp(igR) ⊂ B(G).

§2. The Complex Manifold M and Canonical Vector Fields

In this section, we define the “canonical vector fields,” which are global vector
fields on a dense open subset M ⊂ igR×GR that are associated to elements of g.
We define and provide a characterization ofM (2.1). Given a point (iX, r) ∈M
and Z ∈ g, we produce a curve through (iX, r) in M whose tangent vector at
(iX, r) is the canonical tangent vector associated to Z (2.6).

We would like to define global vector fields on igR × GR by pulling
back the left invariant vector fields on G via the map f ; that is, given

Z ∈ g, we would like to define a vector field Ẑ = Z∧ on igR ×

GR by the rule Ẑ(iX,r) = (df)−1(dlf(iX,r)Z). This works precisely at
the points where df is an isomorphism. We define M = {(iX, r) :
adX has no eigenvalue of πn for any nonzero integer n} ⊂ igR × GR. Letting
p = eiX , we see that (iX, r) fails to be in M exactly when either Adp has an
eigenvalue of −1, or Adp fixes a point in g not fixed by adX . Below we prove:
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Theorem 2.1. The differential of f is an isomorphism at (iX, r) precisely
when (iX, r) ∈M . �

Thus an element Z ∈ g yields a globally-defined nonvanishing vector field Ẑ
on M , which we call the canonical vector field associated to Z. We see, by
taking a basis of g, that the tangent bundle of M is trivial. If we denote the

complex structure on M by J , we have that J(Ẑ) = (iZ)∧, where i is the
complex structure on the vector space g. The action of GR ×GR on M induces

an action on vector fields, and (r1,r2)(Ẑ) = (Adr2Z)∧.
For df to be nonsingular at (iX, r), we need the exponential map exp : igR →
B(G) to be nonsingular at iX , and we need the multiplication map B(G) ×
GR → G to be nonsingular at (eiX , r). Thus 2.1 follows from 2.2 and 2.3 below.

Proposition 2.2. (See [V].) Given exp : g → G and Y ∈ g, then the differ-
ential d exp : TY (g) → TeY (G) is given by

d exp : W 7→
d

ds

∣∣∣∣
s=0

eY+sW = dl(eY )

∞∑

n=0

(−adY )n

(n+ 1)!
W

and is an isomorphism exactly when adY has no eigenvalue of 2πin,
n ∈ Z \ {0}. �

(In particular, if Y ∈ g has no eigenvalue of 2πin (n a nonzero integer), then
there is a well-defined map log = logY from a neighborhood of eY in G to a
neighborhood of Y in g. If Y = iX (X ∈ gR), then in addition, log maps a
neighborhood of eiX in Z(G) to a neighborhood of iX in igR.)

Proposition 2.3. The differential of the multiplication map Z(G)×GR → G
at (p, r) is an isomorphism if and only if Adp has no eigenvalue of −1.

Before proving 2.3, we need to define an important linear operator on g. Let
X ∈ gR and let p = eiX . Assume that Adp has no eigenvalue of −1. We define

Ap : g → g by Ap =
(
I+Adp

2

)−1

. We will often use the following properties of

Ap:

Lemma 2.4.

(1) Ap = Adp ◦Ap = 2I −Ap.
(2) κ(Z,AdpW ) = κ(Ad−1

p Z,W ).
(3) κ(Z,ApW ) = κ(Adp ◦ApZ,W ).
(4) [X,DW ] = D[X,W ], where D = Adp or Ap.
(5) [Z,ApW ] − [Adp ◦ApZ,W ] = 1

2 (I − Adp)[ApZ,ApW ].
(6) κ (X, [Z,ApW ]) = κ (X, [Adp ◦ApZ,W ]).
(7) ApW = W if [X,W ] = 0, and more generally, ApW = 2

1+eµ if

[iX,W ] = µW .

Proof. For (1), we compute that Ap =
(
I+Ad−1

p

2

)−1

= Adp ◦
(

Adp+I
2

)−1

=

Adp ◦ Ap. Moreover, Ap + Adp ◦ Ap = Ap ◦ (I + Adp) = 2I . (2) follows from
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the Ad-invariance of κ. To prove (3), let Z ′ = ApZ and W ′ = ApW . Then

the left side of (3) is κ(
I+Adp

2 Z ′,W ′) = 1
2κ(Z

′,W ′) + 1
2κ(Adp Z

′,W ′), whereas

the right side is κ(Adp Z
′,
I+Adp

2 W ′) = 1
2κ(Adp Z

′,AdpW
′) + 1

2κ(Adp Z
′,W ′).

The proofs of (4), (5), and (6) are similar, using also that Ap and Adp fix X .
(7) is immediate from the definition of Ap. �

Lemma 2.5. If p ∈ Z(G), then Tp(Z(G)) = {dlpZ : Z ∈ Te(G) and Z =
−Adp (Z)}, and for such Z, petZ ∈ Z(G) for all t ∈ R.

Proof. Since Z(G) is smooth, any tangent vector at p can be written as dlpZ

for some Z ∈ g. If Z = −Adp Z then the curve petZ is contained in Z(G) since

petZ = p−1etZ and (petZ)−1 = e−tZp−1 = p−1e−tAdpZ = p−1etZ . Hence all
such Z give tangent vectors in Z(G). Note that since p = p−1, Z 7→ Adp Z gives
a complex conjugation on the vector space g; the choice of Z above amounts
to the pure imaginary elements of g for this real structure. The lemma follows
since dimR(Z(G)) = dimC g. �

Proof of 2.3. Tangent vectors at pr which are in the image of the differential of
the multiplication map at (p, r) are exactly those of the form d

dt

∣∣
t=0

petZetY r =
d
dt

∣∣
t=0

pet(Z+Y )r, where Z = −Adp Z and Y = Y . Hence (Z, Y ) is in the kernel
of the differential exactly when Z = −Y , which is possible for Z exactly when
Z is real, meaning Adp Z = −Z. �

Let (iX, r) ∈M and Z ∈ g. Since t 7→ eiXretZ gives an integral curve (starting
at eiXr) for the left invariant vector field associated to Z, we can obtain (for t

small) an integral curve at (iX, r) for Ẑ, by locally inverting f . The resulting
curve δ is described below. Unfortunately this curve is unwieldy for computa-
tions. Instead, we produce a simpler curve γ in igR × GR which has tangent

vector Ẑ at (iX, r) but not at other points on the curve. (This will be sufficient
for applications.)

Proposition 2.6. Let (iX, r) ∈ M , with p = eiX , and let Z ∈ g. Define the
following curves in M :

γiX,r,Z : t 7→
(
log
(
petAp◦AdriImZ

)
, et(AdrZ−Ap◦AdriImZ) · r

)

δiX,r,Z : t 7→

(
1

2
log2iX(pretZe−tZr−1p), p(t)−1pretZ

)

p(t) := exp

(
1

2
log2iX (pretZe−tZr−1p)

)

Then d
dt

∣∣
t=0

γ = Ẑ(iX,r), and δ is an integral curve for Ẑ starting at (iX, r).

Proof. (a) Both curves have a value of (iX, r) at t = 0. (b) We must
verify that the curves actually lie in igR × GR. For γ, one can use 2.5 to
show that petAp◦AdriImZ ∈ Z(G), and using 2.4(1), it is easy to verify that

AdrZ−Ap◦AdriImZ ∈ gR. For δ, one has that pretZe−tZr−1p ∈ Z(G) since its

Documenta Mathematica 5 (2000) 595–611



Pseudokähler Forms on Complex Lie Groups 601

complex conjugate equals its inverse. The fact that p(t)−1pretZ ∈ GR turns out

to be equivalent to p(t)2 = pretZe−tZr−1p, which is true by definition. (c)
Proving that the curves have the correct derivatives follows from pushing them
forward via f . We have that f(γ(t)) = petAp◦AdriImZet(Adr−Ap◦AdriImZ)r,
whose derivative at t = 0 is dlp ◦ drr ◦ AdrZ = dlprZ, as required. Note
that at other values of t, tangent vectors for this curve do not coincide with
the left invariant vector field on G! However, we do have f(δ(t)) = pretZ , as
required. �

§3. The Differential of the Logarithm Map

Throughout this section, let (iX, r) ∈ M and let p = eiX . We define:

FiX : g → g FiX (Z) =
d

ds

∣∣∣∣
s=0

logiX (pesZ)

This section is devoted to listing properties of this map.
By definition FiX = d(logiX ◦lp), with the differential taken at the identity.
Near the identity element of G, the map lp−1 ◦ exp ◦ logiX ◦lp is (defined and)
the identity function, so after taking differentials at the identity, we have

I = (dlp)
−1 ◦ d exp ◦d(logiX ◦lp) =

∞∑

n=0

(−adiX)n

(n+ 1)!
◦ FiX by 2.2.

Lemma 3.1. FiX = limc→0(icI − adiX ) ◦ (eicI−adiX − I)−1.

Proof.
Let T = −adiX and λ ∈ C. We must prove that

∞∑

n=0

Tn

(n+ 1)!
◦ lim
c→0

(icI − adiX) ◦ (eicI−adiX − I)−1 = I ∈ GL(g).

We compute that

∞∑

n=0

Tn

(n+ 1)!
◦ lim
c→0

(icI − adiX) ◦ (eicI−adiX − I)−1

=

(
∞∑

n=0

Tn

(n+ 1)!

)
◦ lim
λ→0

(λI + T ) ◦ (eλI+T − I)−1

= lim
λ→0

(
∞∑

n=0

(λI + T )n

(n+ 1)!

)
◦ (λI + T ) ◦ (eλI+T − I)−1

= lim
λ→0

∞∑

n=0

(λI + T )n

(n+ 1)!
◦ (λI + T ) ◦ (eλI+T − I)−1

and if S := λI+T , then
∑

∞

n=0
Sn

(n+1)! ◦S ◦(eS−I)−1 =
∑

∞

n=1
Sn

n! ◦(eS−I)−1 =

(eS − I) ◦ (eS − I)−1 = I . �
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Lemma 3.2.

(1) FiX (W ) = W if [X,W ] = 0, and FiX (W ) = −µeµ

1−eµ W if [iX,W ] = µW ,
µ 6= 0.

(2) F iX = Ad−1
p ◦ FiX = F−iX .

(3) κ(Z, FiXW ) = κ(F−iXZ,W ) for all Z,W ∈ g.
(4) κ(X,FiX (W )) = κ(X,W ) for all W ∈ g.
(5) adiX = FiX ◦ (I − Ad−1

p ).

Proof. (1,2) are easy. By substitution, (3) is equivalent to κ(Z, d(lp−1 ◦
exp)iXW ) = κ(d(lp ◦ exp)−iXZ,W ). By 2.2, κ(Z, d(lp−1 ◦ exp)iXW ) =

κ
(
Z,
∑ (−adiX )n

(n+1)! W
)
, which equals κ

(∑ (adiX )n

(n+1)! Z,W
)

= κ(d(lp ◦

exp)−iXZ,W ) by the associativity of the Killing form. Then (4) follows from

(1) and (3). For (5), we have FiX◦(I−Ad−1
p ) = FiX◦

(
−
∑

∞

n=0
(−adiX )n

n! + I
)

=

FiX ◦
(
−
∑

∞

n=0
(−adiX )n+1

(n+1)!

)
= FiX ◦

(∑
∞

n=1
(−adiX)n

(n+1)!

)
◦ adiX = I ◦ adiX . �

§4. The Liouville Form on M and its Exterior Derivative

We recall that the cotangent bundle to any real manifold possesses a canonical
1-form λ and that ω := dλ is a nondegenerate exact symplectic form (see [A],
[CG]). We have identified T ∗(GR) with igR ×GR. Given a curve (iX(t), r(t)),
then one can check that λ

(
d
dt

∣∣
t=0

(iX(t), r(t))
)

= κ
(
X(0), d

dt

∣∣
t=0

r(t)r(0)−1
)
.

It is easy to see that λ is GR ×GR-invariant. We wish to obtain a formula for

λ(Ẑ); this conveniently expresses the restriction of λ toM . By 2.6, we have that

λ(Ẑ)(iX,r) = κ(X, d
dt

∣∣
t=0

et(AdrZ−Ap◦AdriImZ)) = κ(X,AdrZ−Ap ◦AdriImZ),

where p = eiX . This can be sharpened:

Proposition 4.1. For all (iX, r) ∈ M , λ(Ẑ)(iX,r) = κ(X,AdrReZ).

Proof. We must show that κ(X,AdriImZ) = κ(X,Ap◦AdriImZ). This follows
from 2.4(3), since Adp ◦Ap(X) = X . �

On M , we have a complex structure J . Even prior to the explicit computation
of dλ, we have the following important observation:

Theorem 4.2. As a differential form on M , the 2-form ω := dλ is J-
invariant. �

This is a consequence of 4.4, for which we recall the customary notation. On any
complex manifold, the exterior derivative is written as the sum d = ∂ + ∂. Let
dc = i(∂− ∂). From d2 = 0, we know that ∂∂ = −∂∂, and hence ddc = 2i∂∂ =
−dcd. One can show (e.g. using local coordinates) that if φ is a smooth function
and X a vector field on M , then dcφ(X) = dφ(JX); by the derivation property,
if µ is a 1-form, then dcµ(X1, X2) = JX1(µ(X2))−JX2(µ(X1))−µ(J [X1, X2]).
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We confirm that ddc(φ) is J-invariant: by the product rule we have

ddcφ(X1, X2) = X1(d
cφ(X2)) −X2(d

cφ(X1)) − dcφ([X1, X2])

= X1(dφ(JX2)) −X2(dφ(JX1)) − dφ(J [X1, X2]),

and hence

ddcφ(JX1, JX2) = JX1(dφ(−X2)) − JX2(dφ(−X1)) − dφ(J [JX1, JX2])

= −JX1(dφ(X2) + JX2(dφ(X1) + dφ(J [X1, X2])

= −dcdφ(X1, X2) = ddcφ(X1, X2).

Definition/Theorem 4.3. Let φ : M → R be the GR×GR-invariant function
φ(iX, r) = κ(X,X). Then 2λ = dc(φ).

Proof. By definition,

dcφ(Ẑ)(iX,r) =
def of dc

(JẐ(φ))(iX,r) =
2.6

d

dt

∣∣∣∣
t=0

(φ(γiX,r,jZ (t)))

=
2.6,def of φ

2κ

(
−i

d

dt

∣∣∣∣
t=0

log(petAp◦AdriIm iZ), X

)

= 2κ(FiX ◦Ap ◦ AdrReZ,X)

=
2.4(3),3.2(4)

2κ(AdrReZ,X) =
4.1

2λ(Ẑ)(iX,r). �

Corollary 4.4. ω = dλ = 1
2dd

c(φ) = −i∂∂(φ). �

§5. Computation of the Pseudokähler Form

Let ω = dλ, a 2-form on igR × GR ⊃ M . Here we compute the restriction of

ω to M , using the vector fields Ẑ (which are only defined on M). We use the

formula ω(Ẑ, Ŵ ) = Ẑ(λ(Ŵ )) − Ŵ (λ(Ẑ)) − λ([Ẑ, Ŵ ]).
We will require another linear operator on g. For (iX, r) ∈ M and p := eiX ,
let

EiX = FiX ◦ Adp ◦Ap = d(log ◦lp) ◦ Adp ◦Ap.

(Note that the three factors commute.) We collect some properties of EiX and
FiX ◦Ap:

Lemma 5.1.

(1) EiX = FiX ◦ Ad−1
p ◦Ap.

(2) For all Z,W ∈ g, κ(EiXZ,W ) = κ(Z,EiXW ).
(3) iImEiX = adiX .
(4) If [X,W ] = 0 then EiXW = W .
(5) FiX ◦Ap = FiX ◦Ap and for all Z,W ∈ g, we have κ(FiX ◦Ap Z,W ) =

κ(Z, FiX ◦ApW ).
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Proof. EiX = FiX ◦ (Adp ◦Ap) =
2.4(1),3.2(2)

(FiX ◦Ad−1
p )◦Ap, proving (1). Then

(2) follows from (1), 2.4(1,2), and 3.2(2,3). To prove (3), we note 2iImEiX =
EiX−EiX =

5.1(1)
FiX ◦Ap◦Adp−FiX ◦Ap◦Ad−1

p = FiX ◦Ad−1
p ◦Ap◦(Ad2

p−I) =

2FiX ◦ (Adp − I) ◦ Ad−1
p ◦ Ap ◦

(
Adp+I

2

)
= 2FiX ◦ (I − Adp)

−1 =
3.2(5)

2adiX .

Finally, (4) follows from 2.4(7) and 3.2(1), and (5) is similar to (1) and (2). �

We return to the computation of dλ. First,

Ẑ(λŴ )(iX,r)

=
4.1

Ẑ (κ(X,AdrReW )

=
2.6

d

dt

∣∣∣∣
t=0

κ
(
−i log petAp◦AdriImZ ,Adet(AdrZ−Ap◦AdriIm Z) ◦ AdrReW

)

= κ (−iFiX ◦Ap ◦ AdriImZ,AdrReW )

+ κ
(
X, adAdrZ−Ap◦AdriImZ ◦ AdrReW

)

= κ (FiX ◦Ap ◦ AdrImZ,AdrReW )

− iκ (adiX(AdrZ −Ap ◦ AdriImZ),AdrReW )

= κ (FiX ◦Ap ◦ AdrImZ,AdrReW )

− iκ
(
FiX ◦ (I − Ad−1

p )(AdrZ −Ap ◦ AdriImZ),AdrReW
)

by 3.2(5)

= κ
(
FiX ◦Ap ◦ Ad−1

p ◦ AdrImZ,AdrReW
)

− iκ
(
FiX ◦ (I − Ad−1

p ) ◦ AdrZ,AdrReW
)

=
−i

4
κ
(
FiX ◦Ap ◦ Ad−1

p ◦ Adr(Z − Z),Adr(W +W )
)

+
−i

4
κ
(
FiX ◦ (I − Ad−1

p ) ◦ Adr2Z,Adk(W +W )
)
.

Similarly, we have

−Ŵ (λẐ)(iX,r) =
i

4
κ
(
Adr(Z + Z), FiX ◦Ap ◦ Ad−1

p ◦ Adr(W −W )
)

+
i

4
κ
(
Adr(Z + Z), FiX ◦ (I − Ad−1

p ) ◦ Adr2W
)

=
i

4
κ
(
FiX ◦Ap ◦ Adp ◦ Adr(Z + Z),Adr(W −W )

)

+
i

4
κ
(
FiX ◦ Ad−1

p ◦ (I − Adp) ◦ Adr(Z + Z),Adr2W
)

by 5.1(5), 3.2(2,3).
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Finally,

−λ[Ẑ, Ŵ ] = −λ([Z,W ]∧) = −κ (X,AdrRe [Z,W ])

=
i

2
κ (iX,Adr[Z,W ]) +

i

2
κ
(
iX,Adr[Z,W ]

)

=
i

2
κ
(
FiX ◦ (I − Ad−1

p ) ◦ AdrZ,AdrW
)

+
i

2
κ
(
FiX ◦ (I − Ad−1

p ) ◦AdrZ,AdrW
)
.

Summing the terms and using 2.4(1), we find

ω(Ẑ, Ŵ ) =
−i

2
κ(FiX ◦Ap ◦Adp ◦ AdrZ,AdrW )

+
i

2
κ(FiX ◦Ap ◦ Ad−1

p ◦ AdrZ,AdrW )

=
−i

2

(
κ(EiX ◦ AdrZ,AdrW ) − κ(EiX ◦ Ad−2

p ◦AdrZ,AdrW )
)

=
1

2i

(
κ(EiX ◦ AdrZ,AdrW

)
− κ(EiX ◦ AdrZ,AdrW )

= Im
(
κ(EiX ◦ AdrZ,AdrW

)

We have proved:

Theorem 5.2. ω(Ẑ, Ŵ ) = Imκ
(
EiX ◦ AdrZ,AdrW

)
is an exact, nondegen-

erate, J-invariant, GR ×GR-invariant, real-valued 2-form on M , and coincides
with the restriction to M of the standard (cotangent bundle) symplectic form
on T ∗(GR). �

Recall that on any complex manifold, a closed, nondegenerate, real 2-form ω
for which the complex structure is an isometry yields a pseudokähler form, by

the rule
〈
Ẑ, Ŵ

〉
= ω(JẐ, Ŵ ) + iω(Ẑ, Ŵ ). Here Ẑ, Ŵ 7→ ω(JẐ, Ŵ ), the real

part of
〈
Ẑ, Ŵ

〉
, is a real, J-invariant, symmetric bilinear form (which need not

be positive definite), and the imaginary part of 〈 , 〉 is just ω.
In our situation, we have:

Theorem 5.3. The pseudokähler form associated to ω is

〈
Ẑ, Ŵ

〉
(iX,r)

= κ(EiX ◦ AdrZ,AdrW ) = κ(EiAd−1
r XZ,W ). �

Note that 5.1(2) shows independently that 〈 , 〉 is Hermitian.

§6. Evaluation of the Pseudokähler Form on a Basis

Our next goal is to compute 〈 , 〉 with respect to a natural basis of vector
fields at (iX, r), in the (generic) case that X is semisimple. Without loss of
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generality, we assume that r is the identity element of GR. We use notation
involving T and t as in §1.
It is clear that EiX preserves t and each root space gα. Hence for our Hermitian
form, t ⊥ gα and gα ⊥ gβ unless β = −α. So, the only products we need

compute are
〈
Ẑ, Ŵ

〉
for Z,W ∈ t, and

〈
Ẑα, Ẑ−α

〉
, where Zα ∈ gα.

By 2.4(1) and the definition of EiX , it follows easily that:

Lemma 6.1. EiX (Z) = Z if Z ∈ t (or more generally, if [X,Z] = 0); and if

Zα ∈ gα with dα(iX) 6= 0, then EiX (Zα) =
−α(p2) · dα(2iX)

1 − α(p2)
Zα. �

Lemma 6.2. For Z,W ∈ t, we have

〈
Ẑ, Ŵ

〉
= κ(Z,W )

= (κ(ReZ,ReW ) + κ(ImZ, ImW ))

+ i (κ(ImZ,ReW ) − κ(ReZ, ImW ))

=
∑

α∈Φ(T,G)

dα(Z) · dα(W ). �

From this, it is easy to describe the signature of 〈 , 〉 on t: suppose the con-
nected component of 1 in TR is a product of n circles and m real lines (here
n +m is the complex dimension of T ). Then 〈 , 〉 is negative-definite on the
complexified Lie algebra of the circles and positive-definite on the lines, and
these two subspaces of t are perpendicular. For: in computing signatures, we
may assume that Z ∈ tR. If Z ∈ tR, then in the former case dα(Z) ∈ iR,
and in the latter, dα(Z) ∈ R. Also for Z ∈ tR, 〈Z,Z〉 =

∑
α∈Φ(T,G)(dα(Z))2.

Also if Z,W ∈ tR but are of “opposite types,” the last lemma shows that
〈Z,W 〉 ∈ iR ∩ R = {0}.

Now let Z = Zα and W = Z−α. Recall that by our definition of M , we have
α(p) 6= −1. Also, either α(p) 6= 1, or dα(iX) = 0 and α(p) = 1.

Lemma 6.3. If α(p) 6= 1, then
〈
Ẑα, Ẑ−α

〉
=

−α(p2) · dα(2iX) · κ(Zα, Z−α)

1 − α(p2)
,

whereas if dα(iX) = 0, then
〈
Ẑα, Ẑ−α

〉
= κ(Zα, Z−α). �

This shows that if α is not imaginary, then 〈 , 〉 is isotropic on gα⊕ g−α. Sup-
pose that α is imaginary; we wish to see whether 〈 , 〉 is positive- or negative-
definite on gα. In the copy of sl(2) (sl(α) ⊂ g) corresponding to α, recall that
we may pick a basis {Hα, Zα, Z−α} satisfying [Zα, Z−α] = Hα, [Hα, Zα] = 2Zα,
and [Hα, Z−α] = −2Z−α. By explicit computation, one sees that one can pick
Zα satisfying Zα = εZ−α, where ε = 1 (resp. −1) if SL(α)R is noncompact

(resp. compact). Then
〈
Ẑα, Ẑα

〉
=

−ε · α(p2) · dα(2iX) · κ(Zα, Z−α)

1 − α(p2)
, or sim-

ply εκ(Zα, Z−α) if dα(iX) = 0. In the latter case, since κ(Zα, Z−α) > 0 we
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already see that 〈 , 〉 is positive on gα if α is noncompact and negative if
α is compact. In the former case, we get the same information: since α is
imaginary, we have dα(iX) ∈ R, and α(p) = edα(iX) > 0. Note then that

dα(iX)/(1 − α(p)) < 0; it then follows that the sign of
〈
Ẑα, Ẑα

〉
is ε.

Summarizing the above, we have:

Theorem 6.4. Suppose that (iX, 1) ∈ M and eiX ∈ T for some maximal R-
torus T of G. Write T = Ts · Ta, the decomposition of T into an almost direct
product of split and anisotropic subtori. For each root α, let gα be the root
subspace of g. We identify elements of g with the induced tangent vectors at
(iX, 1) coming from the canonical vector fields. Then under the Hermitian form
〈 , 〉, t is perpendicular to each root space; LieTa is perpendicular to LieTs; gα
is perpendicular to gβ unless β = −α; 〈 , 〉 is positive definite on LieTs and
negative definite on LieTa; 〈 , 〉 is isotropic on gα⊕g−α if α is not imaginary;
and 〈 , 〉 is positive (resp. negative) definite on gα if α is noncompact imaginary
(resp. compact imaginary). �

A priori, the signature of 〈 , 〉 is only constant on each connected component
of M , but in fact more is true:

Corollary 6.5. The signature of 〈 , 〉 is constant on M .

Proof. Since (i0, 1) ∈ M , there exists a connected neighborhood U of 0 in
gR such that iU × GR ⊂ M . It follows that 〈 , 〉 has constant signature on
iU × GR (note that while GR need not be connected, this is irrelevant since
〈 , 〉 is GR-invariant). We must show that the signature of 〈 , 〉 on any con-
nected component of M is the same as on iU ×GR. Without loss of generality
we may choose (iX, r) ∈M such that X is regular semisimple in g, which is to
say that X ∈ tR for a (unique) Cartan subalgebra tR ⊂ gR. We may find s ∈ R∗

sufficiently small that sX ∈ U , and of course sX ∈ tR is still regular semisim-
ple. However by 6.4, the signature at (iY, r) ∈ M (for Y regular semisimple)
depends only on attributes of the unique real Cartan subalgebra containing Y
and of its root system. Hence the signature of 〈 , 〉 at (iX, r) is the same as
the signature of 〈 , 〉 on iU ×GR. �

Corollary 6.6. The signature of 〈 , 〉 equals the signature of the Hermitian
form Z,W 7→ κ(Z,W ) on g, which equals the signature of the (real) symmetric
bilinear form Z,W 7→ κ(Z,W ) on gR.

Proof. By 6.5, it is enough to check the result at a single point of M , and at
the point (i0, 1), 〈Z,W 〉 = κ(Z,W ). The second statement is a simple linear
algebra fact. �

7. Alternative Vector Fields and Comparison with Fels’ Work

Let (iX, r) ∈M . Since GR×GR acts onM , any pair (Y1, Y2) ∈ gR×gR produces
a tangent vector at (iX, r) (indeed it produces an “orbital vector field” on all of
igR×GR). It is easy to see that (Y1, Y2) and (Y ′

1 , Y
′

2) produce the same tangent
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vector at (iX, r) if and only if (Y ′

1 , Y
′

2) = (Y1 +A, Y2 + Ad−1
r A) for some A in

the centralizer in gR of X . Given any V in this centralizer, we obtain a (non-
orbital) tangent vector to M at (iX, r), namely d

dt

∣∣
t=0

(iX + itV, r) (however
this need not be extendable to a vector field on M). By dimension count,
any tangent vector to M at (iX, r) can be obtained from a combination of
orbital and transverse vectors; namely, given (Y1, Y2, V ) as above, we obtain
the tangent vector d

dt

∣∣
t=0

(
AdetY1 (iX + itV ), etY1re−tY2

)
, and every tangent

vector can be obtained in this way. The relationship to canonical vectors is:

Proposition 7.1. At (iX, r) (with p = eiX), the tangent vector
coming from the triple (Y1, Y2, V ) coincides with the canonical vector
(Ad−1

pr Y1 + iAd−1
r V − Y2)

∧.

Proof. This is equivalent to the (straightforward) proof that
d
dt

∣∣
t=0

(
etY1eiX+itV e−tY1

)
·
(
etY1ke−tY2

)
= dlpk

(
Ad−1

pr Y1 + iAd−1
r V − Y2

)
. �

Fix (iX, r) ∈ M , and take (Y1, Y2, V1) and (Y3, Y4, V2) as above. Let Z,W ∈ g

be the corresponding canonical vectors (only valid for the point (iX, r)!). It
follows from 2.4(2) and 5.1(1,2,4) that:

Theorem 7.2. At (iX, r),

〈
Ẑ, Ŵ

〉
= κ(EiXY1, Y3) − κ(FiX ◦Ap Y1,Adr Y4) − κ(Y1, iV2)

− κ(FiX ◦Ap ◦ Adr Y2, Y3) + κ(EiX ◦ Adr Y2,Adr Y4) + κ(Adr Y2, iV2)

+ κ(iV1, Y3) − κ(iV1,Adr Y4) + κ(iV1,−iV2). �

Using 5.1(1,3,5), we can separate easily the real and imaginary parts of
〈
Ẑ, Ŵ

〉
:

Corollary 7.3.

Re
〈
Ẑ, Ŵ

〉

= κ(FiX ◦Ap Re (Adp Y1), Y3) + κ(FiX ◦Ap Re (Adp Adr Y2),Adr Y4)

− κ(FiX ◦Ap Y1,Adr Y4) − κ(FiX ◦Ap ◦ Adr Y2, Y3) + κ(V1, V2),

and

ω(Ẑ, Ŵ )

= Im
〈
Ẑ, Ŵ

〉

= κ(X, [Y1, Y3] − Adr [Y2, Y4])

+ κ(V1, Y3 − Adr Y4) − κ(Y1 − Adr Y2, V2). �

We recall some facts about moment maps (see [CG, Chapter 1], [HW]). Suppose
that a Lie group K acts symplectically on a symplectic manifold (N,ω). There
is a map sending smooth functions on N to symplectic (=locally Hamiltonian)
vector fields on N . Since G acts symplectically, there is also a map sending
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each element of k to a symplectic vector field. The action of K is said to
be Hamiltonian if there is a Lie algebra homomorphism H from k to smooth
functions on N which makes a commutative triangle with the other two maps.
The associated moment map µ : N → k∗ is the map sending n ∈ N to the linear
function on k given by x 7→ Hx(n). If the manifold in question is a cotangent
bundle, with canonical 1-form λ and ω := dλ and with K acting on the base
space, then (N,ω) is Hamiltonian, with H sending x ∈ k to the contraction of
λ with the vector field coming from the infinitesimal action of x.
In our case, N = igR×GR ' T ∗(GR) and k = gR×gR. Given (Y1, Y2) ∈ gR×gR,
the induced tangent vector at (iX, r) is d

dt

∣∣
t=0

(
iAdetY1X, e

tY1re−tY2
)
, so by the

remark at the beginning of §4, we have

H(Y1,Y2) = κ(X,
d

dt

∣∣∣∣
t=0

etY1re−tY2r−1)

= κ(X,Y1 − AdrY2) = κ(X,Y1) − κ(Ad−1
r X,Y2).

We identify gR with g∗
R

via the Killing form. We have proved:

Theorem 7.4. Relative to the symplectic form ω, the moment map µ : igR ×
GR → g∗

R
× g∗

R
' gR × gR is given by (iX, r) 7→ (X,−Ad−1

r X). �

Corollary 7.5. The image of the moment map is {(Y1, Y2) :
Y1 and −Y2 are Ad(GR)-conjugate}. �

Another easy consequence of 7.4 is:

Corollary 7.6. The moment map µ : igR×GR → g∗
R
×g∗

R
' gR×gR separates

GR ×GR-orbits. �

The formula for ω(Ẑ, Ŵ ) in (7.3) is essentially due to Gregor Fels [F]. Here
we recall his construction in [F] of a pseudokähler form on certain complex
manifolds and relate the construction to the one in this paper. (We have
changed notation slightly from [F].)
Let GR ⊂ G as usual, and let t be a Cartan subalgebra of g that is stable
under complex conjugation. Let t′

R
denote the regular semisimple elements of

tR. Define N = {(n, n) : n ∈ NGR
(TR)} ⊂ GR × GR. Since N acts on t′

R
, we

have the usual twisted product (GR ×GR) ∗N it′
R
. It is easy to see that the

map

Θ : (GR ×GR) ∗N it′R −→M

given by [(r1, r2), iX ] 7→
(
Adr1(iX), r1r

−1
2

)
is well-defined, injective, and GR ×

GR-equivariant, with everywhere nonsingular differential. Moreover, the map
forms one leg of a commutative triangle with the maps

(GR ×GR) ∗N it′R → G M → G

[(r1, r2), iX ] 7→ r1e
iXr−1

2 (iX, k) 7→ eiXk.
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It follows that there is a complex structure on (GR ×GR) ∗N it′
R

that agrees
with the ones on G and on M .
Given the point v = [(r1, r2), iX ] ∈ (GR ×GR) ∗N it′

R
, one can construct (any)

tangent vector as d
ds

∣∣
s=0

of the curve s 7→ [(r1e
sY1 , r2e

sY2), iX + siY3], where

Y1, Y2 ∈ gR and Y3 ∈ tR. The J-invariant 2-form on (GR ×GR) ∗N it′
R

con-
structed in [F] arises as dθ, where θ is the 1-form which sends the above tangent
vector to κ(X,Y1−Y2). However, one can show that Θ induces an identification
between the 1-forms θ and λ, and hence Θ induces an identification between
(the restriction of) the pseudokähler form in the present paper and the one in
[F].

8. Proof of Theorem 6

Proof of (1). Write H for GL(V ). The map ψ : G→ H induces an embedding
ψ : g ↪→ h. Since g is reductive, we can choose a G-stable complement of g in
h and obtain embeddings Γ : GL(g) ↪→ GL(h) and Γ : gl(g) ↪→ gl(h).
Suppose that (iX, r) ∈ M ′; for any eigenvalue λ of ψ(X), |Reλ| < π/2. Since
the eigenvalues of adψ(X) are the pairwise differences of the eigenvalues of
ψ(X), we have that for any eigenvalue α of adψ(X), |Reα| < π. However
adψ(X) = Γ(adX), and Γ is an embedding, so we can say that for any eigenvalue
β of adX , |Reβ| < π. In particular, this shows that (iX, r) ∈ M .
Proof of (2,3). These are trivial.
Proof of (4). Let (iX1, r1), (iX2, r2) ∈ M ′ and suppose that eiX1r1 = eiX2r2.
Applying the map η : g 7→ gg−1, we have that e2iX1 = e2iX2 . Applying ψ,
we have eψ(2iX1) = eψ(2iX2). Let λ be any eigenvalue of ψ(X1) or ψ(X2). By
assumption, |Reλ| < π/2, hence for any eigenvalue α of ψ(2iX1) or ψ(2iX2),
we have |Imα| < π. By a well-known property of the exponential map for linear
groups (see[V, p. 111]), we may conclude that ψ(2iX1) = ψ(2iX2). Since ψ is
injective on the level of Lie algebras, we have X1 = X2, and r1 = r2. �
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