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Abstract. Bipartite graphs occur in many parts of mathematics,
and their embeddings into orientable compact surfaces are an old sub-
ject. A new interest comes from the fact that these embeddings give
dessins d’enfants providing the surface with a unique structure as a
Riemann surface and algebraic curve. In this paper, we study the
(surprisingly many different) dessins coming from the graphs of finite
cyclic projective planes. It turns out that all reasonable questions
about these dessins — uniformity, regularity, automorphism groups,
cartographic groups, defining equations of the algebraic curves, their
fields of definition, Galois actions — depend on cyclic orderings of
difference sets for the projective planes. We explain the interplay
between number theoretic problems concerning these cyclic ordered
difference sets and topological properties of the dessin like e.g. the
Wada property that every vertex lies on the border of every cell.
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1 Finite projective planes and dessins d’enfants

1.1 Projective planes, bipartite graphs, and maps

It is well known that the incidence pattern of finite projective planes can be
made visible by connected bipartite graphs using the following dictionary.

line ←→ white vertex

point ←→ black vertex

incidence ←→ existence of a joining edge

flag ←→ edge
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Following this dictionary, the axioms of projective geometry translate into
graph–theoretic properties like
For any two different black vertices there exists a unique white vertex as a com-
mon neighbor.
The same is true for elementary properties like
Every black vertex has precisely q = n + 1 white neighbors and every white
vertex has precisely q = n+ 1 black neighbors. The graph has l = n2 + n+ 1
black and white vertices, respectively, and ql edges.
As usual, we will call n the order of the projective plane. (Recall that up to
now only finite projective planes of prime power order are known.) On the
other hand, it is well known that connected graphs can be embedded as maps
into oriented compact surfaces [Li].

1.2 Dessins d’enfants

Now, bipartite graphs embedded into orientable compact surfaces cutting these
surfaces into simply connected cells represent a way to describe Grothendieck’s
dessins d’enfants.
Definition. A (p, q, r)–dessin is a bipartite graph on an orientable compact
surface X with the following properties.

1. The complement of the graph is the disjoint union of simply connected
open cells.

2. p is the l.c.m. of all valencies of the graph at the black points.

3. q is the l.c.m. of all valencies of the graph at the white points.

4. 2r is the l.c.m. of all valencies of the cells (i.e. the numbers of bordering
edges; they have to be counted twice if they border the cell at both sides).

Dessins arise in a natural way on compact Riemann surfaces (non–singular
complex projective algebraic curves) X if there is a non–constant meromorphic
(= rational) Belyi function β : X → C ramified at most above 0, 1,∞.
Then β−1{0}, β−1{1} are the sets of white and black vertices respectively an
the connected components of β−1]0, 1[ are the edges of the dessin. According
to a theorem of Belyi such a function exists if and only if — as an algebraic
curve — X can be defined over a number field. Moreover, for every dessin D
on a compact orientable surface X there is a unique conformal structure on X
such that D results from a corresponding Belyi function β on X. Therefore the
combinatorics of dessins should encode all properties of curves definable over
Q. For a survey on this topic, see [JS]. In the present paper, we concentrate
on two aspects namely uniformization theory and Galois actions.
As a Riemann surface with a (p, q, r)–dessin, X is the quotient space of a
subgroup Γ of the triangle group ∆ of signature 〈p, q, r〉, acting discontinuously
on C , C or the hyperbolic plane H if

1

p
+

1

q
+

1

r
> 1 , = 1 or < 1 respectively.
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The dessin is uniform if all black points have equal valency p , all white points
have equal valency q , and all cells have equal valency 2r ; equivalently, Γ has no
torsion and is therefore the universal covering group of the Riemann surface.
This is satisfied e.g. if the dessin is regular, i.e. if its automorphism group G
acts transitively on the edges; equivalently, Γ is a normal torsion–free subgroup
of ∆ (and then ∆/Γ ∼= G ; for other reformulations of this condition see the
first section of [StWo]). Automorphism of the dessin means the restriction
of an orientation–preserving topological — and automatically conformal —
automorphism of X to the bipartite graph.

Recall that via the action of σ ∈ GalQ/Q on the coefficients of the defining
equations of the algebraic curve X — or of an extension of σ to AutC/Q on
the coordinates of their points — one has a Galois action on the set of Riemann
surfaces. We can even speak of Galois actions on dessins in the following sense:
for a dessins D on X consider the corresponding Belyi function β. Clearly,
for every σ ∈ GalQ/Q we have on the image curve Xσ a Belyi function βσ

defining a Galois conjugate dessin. (This Galois action is only the first step of
Grothendieck’s far reaching ideas for a better understanding of the structure
of GalQ/Q via the so called Grothendieck–Teichmüller lego.)

1.3 The Fano plane. An easy observation

Concerning the embedding of the bipartite graph of a finite projective plane as
a dessin on X, some immediate questions arise:

How does the structure of the Riemann surface depend on the choice of the
embedding? Which additional structure of the projective plane (like e.g. AutP ,
the group of collineations) translates into a structure of the dessin and the
Riemann surface?

We are grateful to David Singerman who informed us about former work on
these questions by himself [Si2], Fink and in particular Arthur White ([FiWh],
[Wh]). In the following, we will take up their work under new topological and
arithmetical aspects. Already the easiest example, i.e. the Fano plane P2(F2) ,
shows the existence of different embeddings leading to different dessins.

Fig. 6.5 of [JS] shows one of two embeddings of the graph of the Fano plane as
a regular (3, 3, 3)–dessin, consisting of 7 hexagons on a torus. The underlying
Riemann surface is the torus C/Λ for the sublattice Λ of the hexagonal lattice
Z[ 12 (1 +

√
−3)] corresponding to one of the two prime ideals of norm 7 in that

ring of integers. The automorphism group G of the dessin is isomorphic to Z7o
Z3 , in fact a subgroup of PGL3(F2) (Zm denotes the cyclic group of orderm ).
This full group of collineations of the Fano plane contains elements not giving
automorphisms of the dessin because an automorphism of the dessin fixing an
edge is automatically the identity. There is another embedding of the Fano
plane graph as a dessin to be discussed now which is better for generalizations
to other projective planes: Identify F32−{0} with the multiplicative group F∗8
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42 Manfred Streit and Jürgen Wolfart

of order 7 and generator g . The exponents m of g give a bijection

P2(F2) ←→ Z/7Z

and an analogous bijection — with g−1 as generator — for the lines of the Fano
plane. To make the incidence structure visible we use the trace t of the field
extension F8/F2 as a nondegenerate bilinear form

b : F8 × F8 → F2 : (x, y) 7→ t(xy) .

Then the point x and the line y are incident if and only if t(xy) = 0 . We may
choose the generator g such that t(g) = 0 ; then a point gm and a line g−k are
incident if and only

t(gm−k) = 0 ⇐⇒ m− k ∈ {1, 2, 4}

what is easily seen using the Frobenius of F8/F2 . Therefore, we may choose
the local orientation of the Fano plane graph as given in Figure 1.
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Figure 1: Local pattern of the Fano plane dessin

Then, the global dessin may be given as in Figure 2. To draw the picture
on a Riemann surface, observe that every edge not incident with the white
vertex 0 occurs twice. Identifying these edges, one obtains a (3, 3, 7)–dessin
with 3 cells on a Riemann surface of genus 3 . Here also, the automorphism
group of the dessin is easily seen to be Z7oZ3 which is a homomorphic image
of the triangle group 〈3, 3, 7〉 as well. Moreover, one may prove that the
kernel Γ of this homomorphism is torsion free and a normal subgroup even in
the triangle group 〈2, 3, 7〉 with factor group PSL2(F7) ∼= PGL3(F2) . The
Riemann surface is known to be uniquely determined by this property: it is
Klein’s quartic. One may vary Figure 1 by taking the mirror image on both
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sides: the global result will be a regular dessin looking like Figure 2 but with
completely different identifications of the edges. Its automorphism group is
again Z7 o Z3 and its Riemann surface is again Klein’s quartic, and both
dessins are Galois conjugate in the sense explained above, see Theorem 1.
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Figure 2: A (3, 3, 7)–dessin of the Fano plane

After all necessary identifications, we see that this Fano plane dessin has the
remarkable property that every vertex lies on the border of every cell. Such
phenomena occur even for subdivisions of the Euclidean plane into simply con-
nected open domains, as was long time ago known to Kerékjártó and Brouwer
([Ke], p.120), and became popular more recently under the name lakes of Wada
in the theory of dynamical systems [Ch]. Therefore, we propose the following

Definition. A Wada dessin is characterized by the property that every vertex
lies on the border of every cell.

(This property may be reformulated passing to a dual dessin by exchanging e.g.
the white vertices with the cells: then we obtain a complete bipartite graph
embedded in such a way that every white vertex lies on the border of every
cell.) Comparing the four realizations of the Fano plane graph as dessins one
may remark that the global picture depends heavily on the choice of the local
orientation of the edges around the vertices, see the proof of Proposition 2.
How typical are the Fano plane dessins for the general situation? An evident
observation is
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Proposition 1 Let P be a finite projective plane of order n . Then any embed-
ding of its graph as a dessin gives a (q, q,N)–dessin for some natural number
N , where q = n+1 is the number of points on a line of P . The automorphism
group of the dessin corresponds to a subgroup of AutP acting fixed-point–free
on the flags.

To prove the last statement one has just to observe that only the identity
automorphism of the dessin can fix an edge.

1.4 Main results

This first Proposition and the Fano plane example raise other questions:
is there a choice of the embedding such that N = l is the number of points
of P ? Is there a choice of the embedding such that the resulting dessin is a
Wada dessin, uniform or even regular? Which subgroup of the collineation
group of the projective plane becomes the automorphism group of the dessin?
How does the absolute Galois group act on the corresponding set of algebraic
curves? What is their field of definition?
It is not clear to us if these questions have a reasonable answer for very general
embeddings of bipartite graphs coming from arbitrary finite projective planes.
But it turns out that there is an interesting interplay between properties of P
and the algebraic curve X if we concentrate on cyclic projective planes with
an action of a Singer group Zl and a difference set D — the definitions will be
recalled in the beginning of the next section — and on embeddings compatible
with the action of Zl. First we (re)prove in Section 2

Theorem 1 For the known cyclic projective planes P2(Fn) the graph has em-
beddings into regular dessins if and only if n = 2 or 8 . For n = 2 these
are

• 2 non–isomorphic but Galois conjugate regular (3, 3, 7) –dessins on
Klein’s quartic (defined over Q ),

• 2 non–isomorphic but Galois conjugate regular (3, 3, 3) –dessins on the
elliptic curve with affine model y2 = x3 − 1 .

For n = 8 there are embeddings into

• 6 non–isomorphic, Galois conjugate regular (9, 9, 73)–dessins of genus
252 , defined over Q(ζ9) , ζ9 a 9–th primitive root of unity. Each pair of
complex conjugate dessins lies on an algebraic curve defined over Q(ζ9+
ζ−19 ) .

• 18 non–isomorphic regular (9, 9, 9)–dessins of genus 220 defined over
Q(ζ9) and forming 3 Galois orbits. They belong to 18 non–isomorphic
algebraic curves definable over the same field and forming 3 Galois orbits
as well.

Documenta Mathematica 6 (2001) 39–68



Cyclic Projective Planes and Wada Dessins 45

• 12 non–isomorphic regular (9, 9, 3)–dessins of genus 147 lying on 12 non–
isomorphic algebraic curves. The dessins and their curves form two Ga-
lois orbits and are defined over Q(ζ9) .

The first sentence and the genera are known by [Si2], Sec. 5., 6., [FiWh], [Wh],
Theorem 3.15, Theorem 5.3. Some results of [Wh], §3, Theorem 3.13, overlap
also with

Theorem 2 (and Definition). Let P be a cyclic projective plane with a fixed
Singer group Zl and a fixed difference set D . There is a bijection between

• pairs of cyclic orderings of D and

• embeddings of the graph of P as (q, q,N)–dessin D such that the auto-
morphism group AutD contains Zl .

For special choices of these orderings, characterized by the fact that D/Zl is a
genus 0 dessin, D becomes a (q, q, l)–dessin. We call these D globe covering
dessins; they depend on only one cyclic ordering of D .

(For the terminology globe covering see the proof, and for existence of isomor-
phisms between the resulting dessins see the Remark following the proof in
Section 2.)

Theorem 3 If l is prime, all globe covering dessins of a cyclic projective plane
are uniform Wada dessins.

It will turn out that such (q, q, l)–dessins are typical Wada dessins, see Section
5, Proposition 7. Regular Wada dessins can be completely characterized by
group theoretical properties (see Proposition 8 and 9) but are in general very
different from dessins coming from projective planes (Proposition 11).
For all other cyclic projective planes with the (possible) exception n = 4
( q = 5 , l = 21 ) there might exist embeddings onto uniform (q, q, l)–dessins as
well. Some evidence for this conjecture — reformulated as a number theoretic
question about cyclic orderings of difference sets — will follow from the proof
of Theorem 3 (Section 3) and Proposition 4. Concerning the automorphism
group of the dessin we will prove with similar methods as White [Wh], §3:

Theorem 4 Let P be a cyclic projective plane of prime power order n = ps ≡
2 mod 3 , and suppose the number l = n2 + n+ 1 to be prime. Then the graph
of P has embeddings as globe covering dessins with an automorphism group
Zl o Z3s .

To explain how the subgroup Z3s acts on the normal subgroup Zl recall that p
has the order 3s in the multiplicative group of prime residue classes (Z/lZ)∗

[Wh], Lemma 3.3, hence acts by multiplication on Zl ∼= Z/lZ . As a special
case, Theorem 4 contains the existence of regular dessins for the planes over

Documenta Mathematica 6 (2001) 39–68



46 Manfred Streit and Jürgen Wolfart

F2, F8 . Section 6 gives a different proof of a more general result saying that for
all l and all globe covering dessins, the automorphism group is of type ZloZm .
Section 4 treats the explicit equations for the algebraic curves corresponding
to the uniform globe covering dessins, in particular those of Theorem 3. We
can give these equations in the relatively simple form

yl = (x− ζ0)b1 · . . . · (x− ζq−1)bq ,

where ζ = ζq denotes a primitive q–th root of unity. The exponents bi depend
again on the ordering of the difference set of the projective plane, see Example
1 following Proposition 6. It will be shown that this equation can be replaced
by another with coefficients in Q(ζ+ ζ−1) . Examples suggest that this field of
definition is the smallest possible — Section 4 describes an effective procedure
for the determination of the moduli field of the curve.
Even non–regular dessins have a description in terms of group theory, namely
by their (hyper–) cartographic groups, i.e. the monodromy groups M of
the Belyi function belonging to the dessin D (see the proof of Theorem 2 and
Section 6). In the description given above using subgroups Γ of triangle groups
∆ this monodromy group can be written as the quotient ∆/N by the maximal
normal subgroup N of ∆ contained in Γ . In other words, M is isomorphic to
the automorphism group of the minimal regular cover R of D . In particular,
M ∼= AutD for regular dessins. How does M look like in the case of uniform
dessins for cyclic projective planes? In Section 6, we give the following partial
answer:

Theorem 5 Under the conditions of Theorem 3, the cartographic group of the
dessin D is isomorphic to a semidirect product

Zr
l o Zq

with an exponent r < q .

Again, we will prove a slightly more general version than stated here. Again,
the ordered difference sets determine the precise nature of the cartographic
group, i.e. the exponent r and the action of Zq on Zr

l .
It is a great pleasure for us to thank Gareth Jones for the many fruitful dis-
cussions on these subjects during the last Southampton–Frankfurt workshops
on dessins and group actions.

2 Cyclic projective planes and difference sets

Recall that a finite projective plane P is called cyclic if there is a collineation
a of order l generating a Singer subgroup of AutP acting sharply transitive
on the points (and, by duality, on the lines) of P . Fixing one point x and
writing all points as am(x) we may identify the points with the exponents
m ∈ Z/lZ ↔ Zl , hence read the cyclic automorphism group as the (additive)
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group Zl acting by addition on Zl . For the lines we adopt the same convention.
In the case of the projective plane over the finite field Fn we may — as we
did for the Fano plane — think of the exponents of some generator g of the
multiplicative group F∗n3/F∗n and describe the incidence between points and
lines using the trace t of Fn3/Fn as nondegenerate bilinear form. Locally, the
embeddings in question will be chosen such that the incidence graph look as
described in Figure 3,
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Figure 3: Local pattern of a dessin for a cyclic projective plane

for a fixed set {k1, . . . , kq} = {m1, . . . ,mq} ⊂ Zl characterized by the prop-
erty

t(gki) = 0 for all i = 1, . . . , q .

But we may use this figure for other cyclic projective planes as well (if there
exist any) reading {k1, . . . , kq} = {m1, . . . ,mq} ⊂ Zl as a difference set
D characterized by the property that for all m ∈ Zl , m 6= 0 , there are unique
i and j with m = ki − kj . In any case, the cyclic collineation a of P can be
identified with the shift

m 7→ m+ 1 , k 7→ k + 1

proving graphically the if part of the following Proposition and the statement
in Theorem 2 about the automorphism group as well.

Proposition 2 Let D be a dessin obtained by embedding the graph of a cyclic
projective plane P with l points. Its Singer group Zl becomes a subgroup of the
automorphism group of D if and only if for all m and k the local orientation
of the edges around the vertices are chosen as indicated in Figure 3. Such
orientations correspond bijectively to the choice of a pair of orderings of a
given difference set D for P , both up to cyclic permutations.
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In fact, the translations m 7→ m + r , k 7→ k + r , r ∈ Zl , preserve incidence
and orientation and give the action of Zl on the dessin. The only if part is true
by the following reason: If a induces an automorphism of the dessin, the local
orientations of the edges around the black vertices must show the same pattern
as the left part of Figure 3, and an analogous statement is true for the white
vertices.
Proof of Theorem 2. We know already by Proposition 2 that embeddings for
the cyclic projective plane P as a dessin D with Zl ⊆ AutD determine two
orderings of the (fixed) difference set D . To prove the existence of such em-
beddings, choose a pair of orderings of D giving local orientations of the graph
around all vertices as in Figure 3. These 2l drawings define in an obvious way
local charts for an orientable surface into which the graph has to be embedded,
and the numbering of the vertices gives the following unique prescription how
to glue the local pieces together. Let Ω the set of all ql edges of D (flags of
P ) and let M be the permutation group on Ω generated by b and w where b
is the cyclic counterclockwise shift of all edges around the black vertices (i.e.
sending the edge between m and m − mi , for all i ∈ Zq and all m ∈ Zl ,
to the edge between m and m −mi+1 in the left part of Figure 3), and w is
the corresponding counterclockwise shift of the edges around all white vertices.
According to [JS], 5. Maps and Hypermaps, M and its generators b and w
of order q define an algebraic hypermap on a unique compact Riemann surface
X or — in the present terminology — a (q, q,N)–dessin on X where N is the
order of wb in the cartographic group M . The surface X can be described ex-
plicitly as follows: there is an obvious homomorphism h of the triangle group
∆ = 〈q, q,N〉 onto M ; let H ⊂M be the fixgroup of an arbitrary edge in Ω
and let Γ := h−1(H) , then we can define X as the quotient Γ\H .
For example, consider the case n = 4, q = 5, l = 21 with the cyclic ordering
of a difference set

(mi)imod5 = (−3, 0, 1, 6, 8) , (ki)imod5 = (8, 6, 1, 0,−3) .

Here one obtains a uniform (5, 5, 5)–dessin on a surface of genus 22 with 21
cells of valency 10 on which the Singer group Z21 acts fixed-point–free as cyclic
permutation group of the set of cells. The quotient dessin D/Z21 has one cell,
5 edges, one black and one white vertex, hence genus 2 .
For the last claim of the theorem suppose D to be globe covering. Since D/Zl
has genus 0 and q edges, one black and one white vertex (the poles), it has
also q cells, and we can imagine the edges as meridians joining the poles and
separating the cells. It is easy to see that this quotient dessin arises if and
only if both orderings of D are the same, i.e. if in Figure 3 mi = ki for all
i = 1, . . . , q . Clearly, the globe covering dessins depend on only one cyclic
ordering of D . Their cells look as indicated in Figure 4.
Then, the numbers corresponding to the vertices on the border of the cell form
arithmetic progressions in Zl and therefore this cell has 2l/ci edges where ci is
the gcd of l and ki+1 − ki . The resulting dessin is therefore a (q, q,N)–dessin
where 2N = 2l/c is the lcm of the valencies of the cells and c the gcd of all
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Figure 4: Cell of a globe covering dessin for a cyclic projective plane (mi = ki)

ci . But c > 1 would imply that all differences ki − kj were multiples of c in
contradiction to the fundamental property of the difference set. Therefore, we
have N = l proving that globe covering dessins are (q, q, l)–dessins for P .
Remark. Suppose D,D′ to be dessins resulting from two different pairs of
orderings for D . Then there is no Zl–equivariant isomorphism i : D → D′ , i.e.
satisfying i ◦ a = a ◦ i , since in that case we could replace i by an isomorphism
preserving the numbering of black and white vertices, hence also the local
pattern of Figure 3. However, non–Zl–equivariant isomorphisms may exist,
related to multipliers of difference sets: for n = 5, q = 6, l = 31 take two
different cyclic orderings of a fixed difference set D

(mi) = (ki) = (1, 5, 11, 25, 24, 27) , (m′i) = (k′i) = (5, 25, 24, 1, 27, 11)

giving isomorphic dessins where the isomorphism is defined by i : x 7→ 5x mod
l .
Exercise. Reverse the orientation in the right part of Figure 1 and show that
this choice induces globally a (3, 3, 3)–Fano dessin. Reverse the orientation
in the left part of Figure 1 to show that this choice induces globally another
(3, 3, 3)–Fano dessin.
Proof of Theorem 1. That we can obtain regular dessins only for n = 2 and
8 follows directly from Proposition 1 and a theorem of Higman/McLaughlin
[HML], Prop. 12, stating that for the planes P2(Fn) different from the Fano
plane and P2(F8) , flag–transitive groups of collineations cannot act fixed-
point–free on the flags. The converse direction is already verified for the Fano
plane by giving two regular dessins in genus 1 and two in genus 3 . The genus
3 dessins belong to Klein’s quartic which is known to be defined over Q . As
the two dessins on the elliptic curves they differ by their local orientation —
see the exercise above (giving a chiral pair of dessins) — whence the dessins
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have to be complex conjugate. For the genus 1 dessins, the underlying elliptic
curve is the same for both dessins since it has an automorphism of order 3 ,
hence uniquely determined with model y2 = x3 − 1 . On the other hand, the
dessins are not isomorphic: their vertices are obtained (with suitable coloring)
by the points of Z[ 12 (1 +

√
−3)] on the two tori

C/(2±
√
−3)Z[ 1

2
(1 +

√
−3)] .

These two tori are of course isomorphic but there is no isomorphism mapping
the two dessins onto each other since multiplication by (2 +

√
−3)/(2−

√
−3)

does not give an automorphism of the elliptic curve.
The two dessins for the Fano plane on Klein’s quartic are non–isomorphic
since they correspond to two different normal subgroups of the triangle group
〈3, 3, 7〉 which are conjugate in the index 2 extension 〈2, 3, 14〉, compare also
Lemma 1 and 2 below.
For the plane P2(F8) one may verify that

ki = 2i mod 73 , i = 0 , . . . , 8 ,

form a difference set. A cyclic order is provided by the cyclic order of the
exponents i mod 9 . Therefore, it is easy to verify that

b : m 7→ 2m : Z73 → Z73

together with a generates an edge–transitive automorphism group G ∼= Z73 o
Z9 of the (9, 9, 73)–dessin described by Figure 4.
For the proof of the statements about the different possible images under these
embeddings recall that cocompact triangle groups ∆ with signature 〈p, q, r〉
are presented by generators and relations

γ0 , γ1 , γ∞ ; γp0 = γq1 = γr∞ = γ0γ1γ∞ = 1 .

The following is well known and turns out to be very useful for the classification
of regular dessins.

Lemma 1 Let ∆ = 〈p, q, r〉 be a Fuchsian triangle group. Then there is a
bijection between

• isomorphism classes of regular (p, q, r)–dessins with automorphism group
G ,

• normal torsion free subgroups Γ of ∆ with ∆/Γ ∼= G ,

• equivalence classes of epimorphisms h : ∆→ G , with torsion–free kernel,
i.e. mapping the generators γi of ∆ onto generators of G of the same
order. Two epimorphisms are equivalent if they result from each other by
combination with an automorphism of G .
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(The next lemma and the following remark will explain in more detail why
non–isomorphic dessins may however lie on isomorphic Riemann surfaces.) For
the special G under consideration, it is easy to see that such epimorphisms
exist only for the triangle groups 〈9, 9,m〉 with m = 73, 9 or 3 . Following
closely the method described in [StWo] we can select homomorphisms h (with
pairwise different kernels) onto G ∼= Z73oZ9 with generators a, b as above in
the following way. For 〈9, 9, 73〉 we may take

h(γ0) = bs , h(γ1) = b−sak , h(γ∞) = a−k , s ∈ (Z/9Z)∗

(another choice of k ∈ (Z/73Z)∗ changes h only by composition with an ele-
ment of AutG ). For 〈9, 9, 9〉 we may take

h(γ0) = bs , h(γ1) = btak , h(γ∞) = a−kbu ,

s , t , u ∈ (Z/9Z)∗ with s + t + u ≡ 0 mod 9

(same remark for the choice of k ), and for 〈9, 9, 3〉 we may take

h(γ0) = bs , h(γ1) = btak , h(γ∞) = a−kb3u ,

s , t , u ∈ (Z/9Z)∗ with s + t + 3u ≡ 0 mod 9 .

(same remark for the choice of k ). The number of non–isomorphic dessins now
follows from counting the possible parameter values s, t, u . The question if the
underlying curves are isomorphic can be answered by another well known

Lemma 2 Let Γ and N be two different torsion free normal subgroups of the
Fuchsian triangle group ∆ with isomorphic quotient ∆/Γ ∼= G ∼= ∆/N . The
Riemann surfaces Γ\H and N\H are isomorphic if and only if the following
equivalent conditions hold:

• Γ and N are PSL2(R)–conjugate.

• Γ and N are conjugate in some triangle group ∆ ⊃ ∆ .

(The two regular dessins corresponding to Γ and N are not isomorphic since the
isomorphism of Riemann surfaces induced by the conjugation with ∆ permutes
the different fix-point orbits of ∆ , i.e. does not preserve at least the color
of the vertices.) To apply this Lemma, one has to check if there are larger
triangle groups and to control if the normal subgroupsN remain normal in these
larger triangle groups. Equivalently, one has to check if the homomorphisms
found above are extendable to larger triangle groups than the original ones,
see [StWo], Lemma 4. As an example, take the first case m = 73 : here we
obtain 6 different normal torsion–free subgroups Ns of ∆ according to the 6
different choices of s . But ∆ is contained with index 2 in the maximal triangle
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group 〈2, 9, 146〉 in which Ns and N−s are conjugate. Therefore we obtain 6
non–isomorphic dessins but only 3 non–isomorphic Riemann surfaces.
The genera of the quotients of the upper half plane by these kernels can be
computed by standard methods like Riemann–Hurwitz’ theorem.
For the statements about fields of definition and Galois orbits recall first that
curves X with many automorphisms can be defined over their field of moduli,
i.e. the common fixed field of all σ with X ∼= Xσ [Wo1], Remark 4, [Wo2],
Satz 3. For the determination of this field take again the example of the regular
(9, 9, 73)–dessins. Let Ns be the kernel of the homomorphism h defined above
by h(γ0) = bs , h(γ1) = b−sak and let Xs be the quotient surface Ns\H .
Recall that η is a multiplier of an automorphism α of Xs in some fixed point
x if the action of α in a local coordinate z around x (corresponding to z = 0 )
can be described by z 7→ ηz (not to be confused with multipliers in the theory
of difference sets!). Then it is easy to prove

Lemma 3 On Xs the automorphism b has two fixed points with multipliers ζs9
and ζ−s9 where ζ9 = e2πi/9 and ss ≡ 1 mod 9 .

Using the representation of the automorphism group on the canonical model
or Belyi’s cyclotomic character one may prove moreover

Lemma 4 Let σ be ∈ GalQ/Q and let b act as an automorphism of X with a
multiplier η in the fixed point x . Then b acts in xσ on Xσ with a multiplier
σ(η) .

Lemma 1, 2, 3 and the classification of the covering groups Ns show that the
isomorphism class of Xs is uniquely determined among all surfaces with regular
(9, 9, 73)–dessin and automorphism group G by the unordered pair of multipli-
ers {ζs9 , ζ−s9 } , and that the isomorphism class of dessins is uniquely determined
by the ordered pair of multipliers. On the other hand, Lemma 4 shows that
every σ fixing elementwise the cyclotomic field Q(ζ9) fixes the isomorphism
class of dessin and curve. The Galois orbits are now easily determined by the
action of GalQ(ζ9)/Q . The other cases can be treated in the same way.
It remains to prove that all the resulting bipartite graphs are isomorphic (as
graphs, not as dessins) to the graph of P2(F8) . First, we observe that — by
the freedom of choice of k — we may assume that all h(γ1) generate the same
cyclic subgroup of G ; the same observation holds trivially for all h(γ0) . Then,
from the first part of the proof we know that at least one resulting dessin has
the desired property. Now, by the preceding classification of Riemann surfaces
with a regular dessin and automorphism group G we obtain graph–isomorphic
dessins what follows from a statement which might be of independent interest:

Proposition 3 Let Dr,Dl be regular (p, q, r)– and (m,n, l)–dessins with au-
tomorphism groups both isomorphic to G , induced by epimorphisms

hr : 〈p, q, r〉 → G , hl : 〈m,n, l〉 → G
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with torsion–free kernels. The bipartite graphs of Dr and Dl are graph–
isomorphic if

• p = m and q = n ,

• by combination with a group automorphism, hr and hl can be chosen
such that

1. hr(γ0) and hl(γ0) generate the same subgroup B of G ,

2. hr(γ1) and hl(γ1) generate the same subgroup W of G .

Proof. A necessary condition for the existence of an isomorphism between
both graphs is equality between the valencies in the vertices. Therefore we will
suppose in the sequel that the first condition is satisfied. Since both dessins are
regular with the same automorphism group, we can represent their edges by
group elements g ∈ G if we identify the edge 1 with the image of the hyperbolic
line between the fixed points of γ0 and γ1 under the map of H onto its quotient
by the kernels of hr and hl respectively. In order to describe the graph of Dr
we have to describe incidence around black (white) vertices. Let B and W
be the subgroups of G generated by hr(γ0) and hr(γ1) respectively. Then B
and W consist of the edges incident with 1 in its black and white end–vertex,
respectively. Using the G–action from the left, we see that the edge f is inci-
dent in its black end–vertex with all edges in fB and in its white end–vertex
with all edges fW . Since this property does not depend on the choice of the
generators of B and W , the conditions of Proposition 3 imply that the trivial
and G–covariant application of edges g 7→ g induces an isomorphism of graphs.

Remarks. 1) The different non–isomorphic dessins for P 2(F8) can be obtained
as well by different pairs of orderings of the difference set. If one wants to
obtain a regular dessin then only such permutations of D are admissible which
are preserved by the multiplication with 2 mod 73 , and it is easy to see that
there are precisely 6 such permutations. Applied independently to the inci-
dence pattern around black and white vertices, this gives 36 different regular
dessins as found in Theorem 1.
2) Which other cyclic projective planes besides the usual P 2(Fn) could exist,
giving also a regular dessin? It is known that their order n has to be > 3600 ;
furthermore, they should admit a sharply flag–transitive automorphism group,
and by results of Kantor and Feit (see Theorem 8.18 of [Ju]) this could be
possible only if a collection of exotic conditions holds: the order n of the plane
must be a multiple of 8 but no power of 2 , the number l of points is a prime,
and the difference D set can be chosen as set of powers nk mod (Z/lZ)∗ (for
this point one may also consult Proposition 11). Furthermore, D is its own
group of multipliers and contains all divisors of n .
3) Galois conjugate dessins are in general not necessarily graph isomorphic.
Some non–regular examples can be found in [JSt], but there are also such
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examples for regular dessins: the three regular (2, 3, 7)–dessins with automor-
phism group G = PSL2(F13) on three Macbeath–Hurwitz curves treated in
[St] give three non–isomorphic but Galois conjugate dessins whose graphs are
not isomorphic.

3 The Wada property

We mention first that the proof of Theorem 3 is an almost trivial consequence
of the proof of Theorem 2: For prime l and globe covering dessins, i.e. with
mi = ki for all i in Figure 3, every cell in Figure 4 has valency 2l . Therefore,
the dessin is uniform, and every vertex lies on the border of every cell.
According to standard conjectures of number theory, there should exist an
infinity of prime powers n such that l = n2 + n + 1 is a prime (n =
2, 3, 5, 8, 9, 17, . . . ). But even for composite l , each difference ki − ki+1 de-
fines a module for an arithmetic progression in Z/lZ giving the sequence of
black points in clockwise order around the cell, and similarly for the white
points. However, the length of these arithmetic progressions (determining the
valency of the cell) is in general a proper divisor of l . For example in the case
n = 4 , q = 5 , l = 21 the difference set

D := {−3, 0, 1, 6, 8 }

has no arrangement such that all differences ki − ki+1 are coprime to l (the
indices i have to be considered mod 5 , of course).
The question raised for composite l about the existence of uniform (q, q, l)–
dessins for cyclic projective planes admitting Zl as automorphism group may
be reformulated now in the following way (note that for n = 5 we have l = 31
prime and that for n = 6 no difference set exists). Let n be ≥ 7 and l ≥ 57
be a composite number. Is it always possible to arrange a difference set

D := { ki | i mod q } ⊂ Z/lZ

in such a way that all successive differences ki − ki+1 are coprime to l ?
For small (prime powers) n the answer is positive thanks to the following Propo-
sitions.

Proposition 4 Let n be ≥ 7 and l ≥ 57 be a composite number with prime
divisor p . A difference set D ⊂ Z/lZ can always be arranged in such a way
that all successive differences of elements in D satisfy

ki − ki+1 6≡ 0 mod p .

For the proof it is sufficient to show that no residue class mod p contains
≥ q/2 elements among the elements of D . This will follow from

Proposition 5 Let n be ≥ 7 and l ≥ 57 be a composite number with prime
divisor p and a difference set D ⊂ Z/lZ . Let ar be the number of elements d ∈
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D with d ≡ r mod p , r = 1, . . . , p . Then the numbers ar have the following
properties.

∑

r

ar = q = n + 1 , (1)

∑

r

a2r =
l

p
+ n =

1

p
(n2 + (p+ 1)n + 1) , (2)

∑

r

arar+s =
l

p
=

1

p
(n2 + n + 1) for all s 6≡ 0 mod p , (3)

|| (a1, . . . , ap) −
1

p
(n+ 1, . . . , n+ 1) ||2 =

p− 1

p
n (4)

Max | ar −
n+ 1

p
| <

√
n (5)

ar <
√
n +

n+ 1

p
for all r . (6)

(In (4), we use the Euclidean norm in Rp ).

From the last inequality, ar < n/2 follows for n > 40 and p ≥ 3 or for
n > 8 and p ≥ 7 (note that the primes 2 and 5 never occur as divisors of l ).
Therefore, one has to check the truth of Proposition 4 by hand for some small
n only. This can be done by giving the solutions of (1) to (3) for p = 3 and
small n . These are, up to permutation of the coordinates

(a1, a2, a3) = (4, 3, 1) for n = 7

(7, 4, 3) for n = 13

(9, 7, 4) for n = 19

(12, 7, 7) for n = 25

(13, 12, 7) for n = 31

(16, 13, 9) for n = 37 .

Now we can explain the strategy how to construct uniform dessins for projec-
tive planes even in the case of composite l , e.g. for n = 7 . Here we have
two prime divisors p = 3, 19 dividing l = 57 and we have to arrange D in
such a way that just every second ki ∈ D is congruent to 1 mod 3 . Then,
Proposition 5 is satisfied for p = 3 , and we have 2 · 4! · 4! possibilities for
such arrangements. Among these possibilities, one has to find an arrangement
satisfying Proposition 5 also for p = 19 . This is obviously possible since for
p = 19 , equations (1) and (2) are satisfied with one ar = 2 , for other six
indices m one has am = 1 , and all other at vanish.
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Proof of Proposition 5. Equation (1) just counts the number of elements in D .
Equation (2) follows from the fact that precisely l

p − 1 among the differences
ki − kj , i 6= j , fall into the residue class 0 mod p , and therefore

∑

r

ar(ar − 1) =
l

p
− 1 ,

Together with (1), this implies (2). Equation (3) follows by a similar consid-
eration of the differences giving elements ≡ d 6≡ 0 mod p . We may consider
(a1, . . . , ap) as a point on the hyperplane given by equation (1). By Hesse’s
normal form, this hyperplane has square distance 1

p (n + 1)2 from the origin,

and the nearest point to the origin is of course 1
p (n+1, . . . , n+1) . Therefore,

the square distance (2) and Pythagoras enable us to calculate the distance (4),
and this implies (5).
Proof of Theorem 4. If l = n2 + n+ 1 is prime and n = ps a prime power, it
is known [Wh], Lemma 3.3, that p mod l has order 3s in the group (Z/lZ)∗ .
Moreover, we may choose a difference set D ⊂ Zl = Z/lZ for the projective
plane invariant under multiplication with p mod l . Therefore, as in the case
of the plane P2(F8) described in the proof of Theorem 1, we have at least a
group of graph automorphisms isomorphic to ZloZ3s . This group becomes an
automorphism group of the globe covering dessin if and only if we can arrange
D in such a way that the multiplication with p preserves this cyclic ordering of
D .

Lemma 5 Under the hypotheses of Theorem 4, the action of Z3s through mul-
tiplication by pm on the p–invariant difference set D has orbits of length 3s .

Proof of the Lemma. Since l is prime and p mod l has order 3s , the orbits of
the action on Zl have length 3s or 1 . Length 1 occurs for one orbit only, and
this orbit cannot be contained in D since D has q = n+1 ≡ 0 mod 3 elements.
Proof of Theorem 4, continued. Now let k1, . . . , kr ∈ D represent the Z3s–
orbits of the Z3s–invariant difference set D , r = l/3s . Arrange D as

k1, . . . , kr , pk1, . . . , pkr, p
2k1, . . . . . . , p

3s−1kr .

Then it is easy to check that the multiplication with p mod l preserves the
cyclic order of the edges incident with black and white vertices as described in
Figure 3. Since l is prime, this arrangement does not bother the property that
every cell has valency 2l , see the proof of Theorem 3 in the beginning of this
section.

4 Equations

The aim of this section is the determination of explicit algebraic models for
the curves corresponding to the uniform (q, q, l)–dessins D coming from cyclic
projective planes as described in Theorem 3 and the last Section. We begin
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with a more general remark about globe covering (q, q, l)–dessins. The genus
0 quotient D/Zl with its q cells, q edges and two vertices, both of valency q ,
belongs to a unique Fuchsian subgroup of the triangle group ∆ of signature
〈q, q, l〉, its commutator subgroup Ψ of signature < 0; l(q) > , i.e. of genus 0
and with q inequivalent elliptic fixed points of order l such that

Γ ¢ Ψ with Ψ/Γ ∼= Zl , (7)

Ψ ¢ ∆ with ∆/Ψ ∼= Zq , (8)

if as before D corresponds to the Fuchsian group Γ . In the cases studied
in Theorem 3 and the last Section, i.e. for uniform dessins, Γ is the universal
(torsion–free) covering group of the curve whose equation we want to determine,
but with the exception of the cases studied in Theorem 1 we cannot suppose
that Γ is normal in ∆ .

Lemma 6 Suppose q > 2 and −2+q(1− 1l ) > 0 , and let Ψ be a Fuchsian group

of signature < 0; l(q) > . Then the number of torsion–free normal subgroups of
Ψ with cyclic factor group ∼= Zl is a multiplicative function fq(l) of l . For p
prime and integer exponents a ≥ 1 we have

fq(p
a) = [(p− 1)q−1 + 1] paq−2a−q+1

if q is even, and for q odd we have

fq(p
a) = [(p− 1)q−1 − 1] paq−2a−q+1 .

Proof. In order to obtain a torsion–free normal subgroup of Ψ we have to
map the generators γ1, . . . , γq onto b1, . . . , bq ∈ (Z/lZ)∗ such that

∑

bi ≡
0 mod l . By an obvious extension of Lemma 1 to Γ¢Ψ , the number of these
congruence solutions is ϕ(l)fq(l) because two such epimorphisms Ψ → Zl
have the same kernel if and only if they result from each other by combination
with one of the ϕ(l) automorphisms of Zl where ϕ denotes the Euler function.
The multiplicativity of fq is therefore a consequence of the Chinese remainder
theorem and the multiplicativity of ϕ .
First, let l = p be prime. Then we count the congruence solutions

(p− 1) fq(p) = #{ (b1, . . . , bq) | bi ∈ (Z/pZ)∗ ,
∑

bi ≡ 0 mod p } =

= #{ (b1, . . . , bq−2) |
q−2
∑

bi ≡ 0 mod p } (p− 1)

+ #{ (b1, . . . , bq−2) |
q−2
∑

bi 6≡ 0 mod p } (p− 2) =

= #{ (b1, . . . , bq−2) | bi ∈ (Z/pZ)∗} (p− 1) − (p− 1)q−2

+ #{ (b1, . . . , bq−2) |
q−2
∑

bi ≡ 0 mod p } =

= (p− 1)q−1 − (p− 1)q−2 + (p− 1) fq−2(p)
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from which the formulae for l = p follow easily by induction over q .
Now, let l be a prime power pa , a > 1 . Every solution of

q
∑

i=1

bi ≡ 0 mod pa , bi ∈ (Z/paZ)∗

gives by reduction mod p a solution of
∑

bi ≡ 0 mod p , and conversely every
solution of

∑

bi ≡ 0 mod p comes from p(a−1)(q−1) solutions mod pa since
every bi mod p has pa−1 preimages in (Z/paZ)∗ , and we have a free choice for
precisely q − 1 of these preimages. Therefore Lemma 6 follows from

(p− 1) pa−1 fq(p
a) = paq−a−q+1 (p− 1) fq(p) .

For another approach, in particular to the case of l = p prime, see [J], p.500.

Proposition 6 Let Ψ of signature < 0; l(q) > be the unique normal subgroup
of the triangle group ∆ of signature 〈q, q, l〉 , q > 2 , l > 3 with factor group
Zq . Let Γ of signature < (l − 1)(q − 2)/2; 0 > be the torsion–free kernel of
the epimorphism Ψ → Zl sending the canonical elliptic generators γi, i =
1, . . . , q, of Ψ onto bi ∈ (Z/lZ)∗ with

∑

bi ≡ 0 mod l (w.l.o.g. we may
normalize these epimorphisms by taking b1 = 1 ). Let bi be defined by bibi ≡
1 mod l , and let ζ = exp(2πi/q) be the multiplier of all γi . Then, as an
algebraic curve, the quotient surface Γ\H has a (singular, affine) model given
by the equation

yl = (x− ζ0)b1 · . . . · (x− ζq−1)bq .

Proof. This curve defines a function field built up by two consecutive cyclic
extensions

C(x, y) ⊃ C(x) ⊃ C(xq)

of orders l and q . The function xq on this curve is a Belyi function whose
ramification points lie above 0, 1,∞ of orders q, l, q respectively. The condition
∑

bi ≡ 0 mod l is necessary and sufficient to ensure that∞ is unramified under
the extension C(x, y)/C(x) . The choice of the exponents easily follows from
a consideration of the local action of the automorphism group Zl in its fixed
points.

Example 1. For the globe covering dessins of Theorem 2, suppose that
k1, . . . , kq ∈ Z/lZ form the difference set D with (ki − ki+1, l) = 1 for all
i ∈ Z/qZ . This is true for prime l (Theorem 3); the Propositions 4 and 5 give
some evidence that there may exist orderings of D with that property as well
for all other q 6= 5 . Then the graph of the projective plane embeds into

yl = (x− ζ0)k2−k1 · . . . · (x− ζq−1)k1−kq .
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Remark. Cyclic permutations of the difference set in Example 1 give isomorphic
dessins and should give therefore isomorphic curves. In Lemma 10 below, we
will study these isomorphisms as coming from cyclic shifts of exponents.
Example 2. With l = q and b1 = . . . = bq = 1 the Fermat curves

yq = (x− ζ0) · . . . · (x− ζq−1) = xq − 1

fall under Proposition 6 as well.
Remark. Example 2 corresponds to a dessin for which — in the terminology
of Proposition 6 — Γ is even normal in ∆ . The dessin has therefore the larger
automorphism group Z2q inducing additional relations between the exponents
(here: equality). Other examples of this type can be found in [StWo], Section
3.
The remaining part of this section is devoted to a determination of the moduli
field for the curves treated in Proposition 6. To this aim, define

b := (b1, . . . , bq) = (1, b2, . . . , bq)

and Xb := Γ\H to be the curve with the affine equation arising in Proposition
6, i.e. with bi ∈ (Z/lZ)∗ for all i and 1+

∑q
i=2 bi ≡ 0 mod l . Clearly, the field

of definition of Xb can be chosen as a subfield of the cyclotomic field Q(ζ) ,
hence also the field of moduli (recall that by the definition given in Section 2
between Lemma 2 and Lemma 3, the field of moduli is contained in any field
of definition). We can give a slightly better result:

Lemma 7 The curve Xb can be defined over K = Q(ζ + ζ−1) = Q(cos 2π/q) ,
and K contains the moduli field of Xb .

A direct proof is provided by a substitution x = µ(z) in the defining equation
of Xb where µ denotes a fractional linear transformation defined over Q(ζ)
sending R ∪ {∞} onto the unit circle. Another way to prove the statement
about the field of moduli relies on the fact that the complex conjugation on
Xb corresponds on the one hand to the transformation

a : b = (1, b2, . . . , bq) 7→ (1, bq, . . . , b2) .

On the other hand, the same transformation of exponents corresponds to the
isomorphism of curves given by

x 7→ 1

x
, y 7→ y

x
.

We know by Lemma 1 that there is a bijection between the normalized q–
tuples b introduced above and the torsion–free normal subgroups N in this
unique subgroup Ψ of ∆ = 〈q, q, l〉 with quotient Ψ/N ∼= Zq . The absolute
Galois group does only permute the different curves Xb . To determine their
fields of moduli, one has therefore to determine the isomorphisms between
these different Xb , and by Lemma 2 we know that we have to determine all
conjugacies between the different groups N in maximal triangle groups ∆ .
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Lemma 8 Suppose q > 2 , l > 3 , q 6= l, 2l, 4l and suppose that 〈q, q, l〉 = ∆
is a non–arithmetic triangle group. Then ∆ = 〈2, q, 2l〉 is the unique maximal
triangle group containing N, Ψ, ∆ .

The uniqueness is a consequence of Margulis’ characterization of non–
arithmetic Fuchsian groups that the commensurator of N, Ψ, ∆ is only a finite
index supergroup of them. By work of Singerman [Si1], these supergroups are
well known, and our hypotheses about q and l guarantee that 〈2, q, 2l〉 is in
fact the maximal triangle group to be considered here.
Remark. The Fermat curves give examples in which 〈2, q, 2q〉 are not maximal
— and for which the following determination of the moduli field needs an extra
effort which is useless since we know that K = Q . For the dessins arising from
the embeddings of cyclic projective planes we have l = q2 − q + 1 > q . The
hypotheses of the Lemma are therefore violated only if ∆ is an arithmetical
triangle group. A look into Takeuchi’s classification [Ta] shows that this is
the case only for 〈3, 3, 7〉 . Since we already know that in this case Xb is
isomorphic to Klein’s quartic defined over K = Q , we can concentrate on the
cases satisfying the hypotheses of Lemma 8.
We continue with four rather obvious observations.

Lemma 9 Under the hypotheses of Proposition 6, Ψ is a normal subgroup of
∆ = 〈2, q, 2l〉, and to the group inclusions Ψ ⊂ ∆ ⊂ ∆ correspond the normal
function field extensions of their quotient spaces C(x) ⊃ C(xq) ⊃ C(xq+x−q) .
The quotient ∆/Ψ is isomorphic to the dihedral group Zq o Z2 and acts as
Galois group on the function field extension C(x)/C(xq + x−q) of degree 2q
generated by

a : x 7→ 1

x
, b : x 7→ ζx .

Lemma 10 This group Zq oZ2 acts on the set of quotient curves Xb
∼= N\H

by

a(b) = a((1, b2, . . . , bq)) = (1, bq, bq−1, . . . , b2) ,

b(b) = b((1, b2, . . . , bq)) = (1, b3b
−1
2 , . . . , bqb

−1
2 , b−12 ) .

If the hypotheses of Lemma 8 are satisfied, the orbits under this group action
form precisely the isomorphism classes among the curves Xb .

Lemma 11 For i ∈ Z/qZ denote bi(b) =: (1, b′2, . . . , b
′
q) . There is a k ≡

1− i mod q such that the cyclic sequences of quotients

1 , b2 , . . . , bq−1 , bq and 1 , b′k+1/b
′
k , b

′
k+2/b

′
k , . . . , b

′
k−1/b

′
k

coincide. The action of a reverses the order of these sequences, i.e. replaces
b′k+m by b

′
k−m .
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Lemma 12 The action of the absolute Galois group GalQ/Q on the set of
curves Xb factorizes through G = GalQ(ζ)/Q . If we identify G in the usual
way with the group of prime residue classes Z∗q := (Z/qZ)∗ , every r ∈ Z∗q acts
on the set of q–tuples b by

r : (1, b2, . . . , bq) 7→ (1, br−1+1, b2r−1+1, . . . , b(q−1)r−1+1) .

In particular, the action of r = −1 coincides with the action of a .

The last sentence again shows that the moduli field of every Xb is a real
subfield of Q(ζ) . If Xb and Xb′ are isomorphic curves, then their r–images are
isomorphic, too, for all r ∈ Z∗q . We obtain therefore

Lemma 13 Under the hypotheses of Lemma 8 there is a well–defined action of
the Galois group G = GalQ(ζ)/Q = Z∗q on the Zq o Z2–orbits considered in
Lemma 10. With this action of G , the moduli field of Xb is the fixed field of
the stabilizer of (Zq o Z2)(b) .

Example. Let n = 7 , q = 8 , l = 57 and consider the uniform dessin for the
plane P2(F7) belonging to the cyclic ordered difference set

D = (0, 1, 3, 7, 21,−19,−24,−8)

satisfying in fact the condition (ki − ki+1, l) = 1 , see the last section. Its
algebraic curve Xb corresponds to the 8–tuple (of inverse exponents mod 57 )

b = (1, 2, 4, 14, 17,−5, 16, 8) .

For r = 3 and r = 5 ∈ Z∗8 = G we obtain

3(b) = (1, 14, 16, 2, 17, 8, 4,−5) and 5(b) = (1,−5, 4, 8, 17, 2, 16, 14) .

Both do not belong to the (Z8 o Z2)–orbit of b what can easily be seen using
Lemma 11: the cyclic sequence of the bi contains the subsequent members
1, 2, 4 which do not occur in any sequence of quotients 1 , b′k±1/b

′
k , b

′
k±2/b

′
k

for 3(b) and 5(b) . Therefore, the field of moduli and the field of definition
of Xb is in fact the fixed field K = cos 2π/8 of the subgroup {1,−1} ⊂ G .
Another interesting fact becomes visible in this example: Being the dessin of
a projective plane is not a Galois invariant property because e.g. 5(b) does
not consist of the successive differences of a difference set. By consequence, the
existence or non–existence of quadrangle loops (see Prop. 10, next section) in
a dessin is neither a Galois invariant.

5 Regular Wada dessins

We start with some more general remarks on the Wada property. Clearly,
unicellular dessins are Wada dessins, and starting with unicellular dessins in
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Figure 5: Non–uniform Wada dessin on a torus

positive genera, it is easy to construct Wada dessins by suitable subdivisions of
the cell as in the following more general genus 1 example (Figure 5) in which
the opposite borderlines have to be identified.
This (4, 4, 3)–dessin is not uniform since there are vertices of both colors with
different valencies. The reason is the fact that on the border of each cell there
are different vertices which have to be identified on the Riemann surface. In
other words, one may draw a curve joining this vertex to itself in the cell but not
null–homotopic in the (closed) cell. This turns out to be the only obstruction
for Wada dessins with more than one cell to be uniform.
Definition. We call a dessin flat if the topological closure of all cells are simply
connected.

Proposition 7 Let D be a flat Wada dessin with q > 1 cells. Then D is a
uniform (q, q, l)–dessin where l denotes the number of black resp. white vertices.

Proof. By definition, every vertex of D lies on the border of every cell, so the
valencies of the vertices have to be at least q . On the other hand, no such
valency can be > q : Otherwise there would exist a cell S having a vertex
x twice on its border, more precisely one could join x with itself by a non–
nullhomotopic curve in the cell, but — by hypothesis — null–homotopic in S ;
therefore another vertex y 6= x exists in the interior of this curve, lying on the
border of (only) the cell S , hence q = 1 , contradiction. By the same reason,
every cell has precisely the valency 2l .
Remark and Example. By Theorem 2, we know that the resulting dessin of the
embedding of a cyclic projective plane’s graph depends on the chosen orderings
of the difference set. This is also true for the Wada property and for flatness:
For P2(F3) one has the difference set

D := { 0, 1, 3, 9 } ⊂ Z13 .
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If we take the corresponding globe covering dessin, i.e. with mi = ki , we obtain
a uniform flat (4, 4, 13)–dessin as in the proof of Theorem 3. If we change the
cyclic orders of D into

(mi)i=1,... ,4 = (0, 1, 3, 9) but (ki)i=1,... ,4 = (9, 3, 1, 0)

we obtain a non–flat uniform (4, 4, 26)–Wada dessin with two cells. With the
cyclic orders

(mi)i=1,... ,4 = (0, 1, 3, 9) and (ki)i=1,... ,4 = (0, 3, 9, 1)

we obtain a Wada dessin with two cells, one of valency 2 · 13 and the other
of valency 2 · 39 . In both examples the quotient by the Singer group Z13 is a
dessin with one black vertex and one white vertex and q = 4 edges, but not
with q cells in genus 0 (as for the globe covering dessins treated in Sections 3
and 4) but with two cells in genus 1 .

In Section 2, we already met some special regular Wada dessins. Here we
will characterize such dessins, give some more examples and explain why their
underlying graphs do in general not come from finite projective planes even if
the valencies q and l satisfy the necessary relation l = n2+n+1 = q2− q+1 .

Proposition 8 Let D be a regular (q,m, l)–dessin with automorphism group
G , generated by elements b0, b1, b∞ of respective orders q,m, l and generating
cyclic subgroups B, W and C , respectively. Then D is a Wada dessin if and
only if

(G : B) = (C : C ∩B) and (G : W ) = (C : C ∩W ) .

In that case, the number of cells of D is

(G : C) = (B : C ∩B) = (W : C ∩W ) .

D is a flat Wada dessin if and only if moreover

C ∩B = C ∩W = {1} ,

in other words if D has l black and l white vertices and q = m cells.

Proof. There are a black vertex x fixed by B and a white vertex y fixed by
W , both on the border of a cell fixed by C . Since D is a regular dessin, the
automorphism group G acts transitively on all black (resp. white) vertices, and
since B (resp. W ) is the stabilizer subgroup of x (resp.y ), the total number
of black (resp. white) vertices is (G : B) resp. (G : W ) . Now, D is a Wada
dessin if and only if all these black (resp. white) vertices form one orbit under
the action of C . According to the class formula, this is the case if and only if

(G : B) = (C : C ∩B) and (G : W ) = (C : C ∩W ) .
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The number of cells is deduced in a similar way by the action of G, B and
W on the cells. Moreover, D is flat if and only if all the black (resp. white)
vertices on the border of the cell fixed by C are pairwise different, i.e. if and
only if l is the number of black (resp. white) vertices.
As a non–flat example, take the genus 3 curve with the affine model

y2 = x7 − x ,

with (4, 4, 6)–dessin and an automorphism group G of order 12 (a semidirect
product of a cyclic group of order 4 with a normal subgroup of order 3 ). Here
we have two cells of valency 12 but only 3 different black (resp. white) vertices.
It is not surprising that in the case of flat regular Wada dessins the structure
of G can be determined rather precisely.

Proposition 9 Let D be a regular (q, q, l)–Wada dessin with q cells and l
black (resp. white) vertices. Then

1. G = AutD has order ql ,

2. G = BC = WC for the cyclic stabilizer subgroups B,W of a black and
a white neighbor vertex and the cyclic stabilizer subgroup C of a cell,

3. G′′ = {1} , i.e. G is metabelian.

4. If q is prime and l > 1 , one has even l ≥ q .

5. In the case l = q prime, the dessin belongs to a Fermat curve of exponent
q and with G ∼= Z2q .

6. If l is prime > q (arbitrary), q divides l − 1 and G ∼= Zl o Zq .

Proof. 1) Clearly, D has ql edges. Since G acts sharply transitive, the number
of edges is the order of G . A similar argument proves assertion 2). As we
learned from Gareth Jones, 3) follows from 2) by a theorem of Itô [I]. 4)
Because G is generated by two cyclic subgroups B and W of order q , they
coincide if and only if l = 1 . If not and q is prime, they satisfy moreover
B ∩W = {1} , ordG ≥ q2 and hence l ≥ q . 5),6) Since G contains a cyclic
subgroup of order l , the statements about the structure of G are standard
consequences of Sylow’s theorems. It is well known that regular (q, q, q)–
dessins with automorphism group Z2q belong to Fermat curves, see e.g. [JS],7.
Examples 3. On the other hand: that these dessins are flat Wada dessins can
easily be verified using Proposition 8.

Remark. If q is not prime, the statement 4) in general fails as the following
example shows. On the elliptic curve y2 = x4 − 1 there is a regular (4, 4, 2)–
dessin with 8 edges, q = 4 cells, l = 2 black resp. white points, automorphism
group G ∼= Z4 ×Z2 and disjoint generating subgroups B ∼= W ∼= Z4 , C ∼= Z2
(complete the Figure 5 dessin by two edges forming a vertical middle axis).
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For the structure of G in these more general cases one may consult a paper of
Huppert [Hu]. Theorem 2 of [I] gives the existence of normal subgroups N¢G
containing B,W or C and other normal subgroups contained in these cyclic
subgroups, so it is possible to represent D by successive cyclic coverings of very
simple genus 0 dessins.
In [StWo] we studied a series of regular (q, q, l)–dessins with q, l prime, q|l−1
and automorphism group G ∼= Zl o Zq giving examples for Proposition 9.6).
For the purpose of the present paper, the hypothesis ”q prime” is unnecessary,
but we make the assumptions

q > 2 , l = q2 − q + 1 prime , G ∼= Zl o Zq

where Zl is generated by a and Zq by b satisfying the relation

b−1 a b = au

for some fixed prime residue class u ∈ (Z/lZ)∗ of order q . Imitating the
proof of Proposition 3, we generate the automorphism group of the dessin by a
rotation b around a black vertex x and a rotation b−1a around a white vertex
neighbor y . That all these dessins are flat Wada dessins follows again easily
from Proposition 8.

Proposition 10 Let D be a (q, q,m)–dessin with l = q2 − q + 1 points, all
vertices with valency q > 2 . The underlying graph is the graph of a projective
plane if and only if no quadrangle loop exists in D , i.e. if there are no white
vertices y 6= y∗ , black vertices x 6= x∗ such that xyx∗y∗x are successive
neighbors.

Proof. If such a quadrangle loop exists, the uniqueness of the intersection points
or joining lines is violated, whence we cannot have the graph of a projective
plane. If no such quadrangle exists, counting neighbor vertices one easily shows
that any two black vertices have a unique white neighbor in common, and that
the respective statement is true for two white vertices. The existence of four
points in general position follows easily from q > 2 .
With Proposition 10 we can now see why e.g. the regular (7, 7, 43)–dessin
with automorphism group Z43 o Z7 has no underlying graph belonging to a
projective plane:

Proposition 11 Let D be a regular (q, q, l)–dessin with l = q2 − q+ 1 prime
and automorphism group G ∼= Zl o Zq whose generators a, b of respective
orders l, q satisfy

b−1 a b = au ,

u ∈ (Z/lZ)∗ of order q . The underlying graph is a graph of a projective plane
of order n = q−1 if and only if the powers uk, k = 1, . . . , q, form a difference
set in Z/lZ .
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Proof. Because the dessin is regular, we can start with any black vertex x and
a white neighbor y , hence we will take the fixed points of b and b−1a . Suppose
there is a quadrangle loop as forbidden by Proposition 9, then

x∗ = (b−1a)k(x) , y∗ = bm(y)

with k,m 6≡ 0 mod q , and the subgroups fixing these two points are generated
by

(b−1a)k b (b−1a)−k and bm(b−1a)b−m

respectively. An edge joining x∗ with y∗ exists if and only if it is the G–image
of the edge joining y and x by a group element which can be written in two
ways:

(bm(b−1a)b−m)s bm = ((b−1a)k b (b−1a)−k)r (b−1a)k

with r, s 6≡ 0 mod q . This equation is equivalent to

(b−1a)s = b−m (b−1a)k br

or, using the relation between a and b ,

au+u
2+...+us

b−s = b−m au+u
2+...+uk

b−k+r = au
m(u+u2+...+uk) b−m−k+r .

This relation holds if and only if

s+ r ≡ m+ k mod q and u+ . . .+ us ≡ um(u+ . . .+ uk) mod l .

The second congruence is easily seen to be equivalent to

us − 1 ≡ um+k − um

meaning that the powers of u do not form a difference set in Z/lZ . On the
other hand, if the powers of u form a difference set, the last congruence is
unsolvable for s,m, k 6≡ 0 mod q , whence a quadrangle loop cannot exist.

6 The cartographic group

We prove the last theorem in the following more general form.

Proposition 12 Let D be a globe covering dessin obtained by embedding the
graph of a cyclic projective plane P of order n = q − 1 with Singer group
Zl ⊆ AutD . Then the cartographic groupM of D is isomorphic to a semidirect
product A o Zq for a quotient A of Z

n
l .
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As explained in the beginning of Section 4, the hypothesis globe covering says
that D corresponds to a subgroup Γ of the triangle group ∆ = 〈q, q, l〉 with
an intermediate normal subgroup Ψ = ∆′ of signature < 0; l(q) > such that
(7) and (8) hold. In contrast to Section 4, we can even admit the existence
of torsion elements in Γ , in other words D is allowed to be a non–uniform
dessin. The cartographic group of D can be introduced either as monodromy
group of the corresponding Belyi function β or as a certain permutation group
of the edges of D since these represent the sheets of the covering β . Here, the
easiest way to determine M is the fact that M is isomorphic to the quotient
∆/N of ∆ by its maximal normal subgroup N contained in Γ . Let Ψ′ the
commutator subgroup of Ψ . Since Ψ is normal in ∆ , the same holds for Ψ′ .
The presentation of Ψ shows that

Ψ′ ⊆ Γ with Ψ/Ψ′ ∼= Zq−1
l .

Therefore, Ψ′ ⊆ N ⊆ Γ , and if we denote the quotient Ψ/N by A , the result
follows.
Remark. As in Section 4, the choice of the ordered difference set for P deter-
mines the homomorphism Ψ→ Zl with kernel Γ , and the action of ∆ resp. Zq
on Zq−1

l is also known. Using these data, it is in principle possible to determine
A and the action of Zq on A .
The same line of arguments as in the proof above gives a more general version of
Theorem 4. Since the full automorphism group of D is isomorphic to N∆(Γ)/Γ
where N∆(Γ) denotes the normalizer in ∆ (containing Ψ , of course), we obtain

Proposition 13 Under the hypotheses of Proposition 12 we have

AutD ∼= Zl o Zm

for some divisor m of q .
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