
Documenta Math. 343

Partition-Dependent Stochastic Measures

and q-Deformed Cumulants

Michael Anshelevich

Received: June 26, 2001

Communicated by Joachim Cuntz

Abstract. On a q-deformed Fock space, we define multiple q-Lévy
processes. Using the partition-dependent stochastic measures derived
from such processes, we define partition-dependent cumulants for their
joint distributions, and express these in terms of the cumulant func-
tional using the number of restricted crossings of P. Biane. In the
single variable case, this allows us to define a q-convolution for a large
class of probability measures. We make some comments on the Itô
table in this context, and investigate the q-Brownian motion and the
q-Poisson process in more detail.
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1. Introduction

In [RW97], Rota and Wallstrom introduced, in the context of usual probability
theory, the notion of partition-dependent stochastic measures. These objects
give precise meaning to the following heuristic expressions. Start with a Lévy
process X(t). For a set partition π = (B1, B2, . . . , Bk), temporarily denote by
c(i) the number of the class Bc(i) to which i belongs. Then, heuristically,

Stπ(t) =

∫

[0,t)k

all si’s distinct

dX(sc(1))dX(sc(2)) · · · dX(sc(n)).

In particular, denote by ∆n the higher diagonal measures of the process defined
by

∆n(t) =

∫

[0,t)

(dX(s))n.

These objects were used to define the Itô multi-dimensional stochastic integrals
through the usual product measures, by employing the Möbius inversion on
the lattice of all partitions. In particular this approach unifies a number of
combinatorial results in probability theory.
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The formulation of the algebraic (noncommutative, quantum) probability goes
back to the beginnings of quantum mechanics and operator algebras. While
a number of results have been obtained in a general context, in many cases
the lack of tight hypotheses guaranteed that the conclusions of the theory
would be somewhat loose. In the last twenty years of the twentieth century
a particular noncommutative probability theory, the free probability theory
[VDN92, Voi00], appeared, whose wealth of results approaches that of the clas-
sical one. This theory is based on a new notion of independence, the so-called
free independence. In particular, one defines the (additive) free convolution,
a new binary operation on probability measures: µ ¢ ν is the distribution of
the sum of freely independent operators with distributions µ, ν. Note that
this is precisely the relation between independence and the usual convolution.
Many limit theorems for independent random variables carry over to free prob-
ability [BP99] by adapting the method of characteristic functions, using the
R-transform of Voiculescu in place of the Fourier transform. Applications of
the theory range from von Neumann algebras to random matrix theory and
asymptotic representations of the symmetric group.
In [Ans00, Ans01a] (see also [Ans01b]) we investigated the analogs of the mul-
tiple stochastic measures of Rota and Wallstrom in the context of free proba-
bility theory. In this analysis, the starting object X(t) is a stationary process
with freely independent bounded increments. One important fact observed was
that in the classical case the expectation of Stπ(t) is the combinatorial cumu-
lant of the distribution of X(t). This means that the expectation of Stπ(t) is

equal to
∏k
j=1 r|Bj |, where ri is the i-th coefficient in the Taylor series expan-

sion of the logarithm of the Fourier transform of the distribution of X(t). See
[Shi96, Nic95] or Section 6.1. The importance of cumulants lies in their relation
to independence: since independence corresponds to a factorization property
of the joint Fourier transforms, it can also be expressed as a certain additivity
property of cumulants, the “mixed cumulants of independent quantities equal
0” condition. See Section 4.1.
It was observed by Speicher that in free probability, the condition of free in-
dependence can also be expressed in terms of a certain different family of cu-
mulants, the so-called free cumulants; see [Spe97a] for a review. One also
naturally obtains partition-dependent free cumulants, but only for partitions
that are noncrossing. In [Ans00], we showed that in the free case Stπ(t) = 0
if the partition π is crossing, and for a noncrossing partition π the expecta-
tion of Stπ(t) is the corresponding free cumulant of the distribution of X(t).
Thus both in the classical and in the free case Stπ(t) can be considered as an
operator-valued version of combinatorial cumulants (no relation to [Spe98]).
We try out this idea on the q-deformed probability theory. This is a non-
commutative probability theory in an algebra on the q-deformed Fock space,
developed by a number of authors, see the References. Free probability cor-
responds to q = 0, while classical (bosonic) and anti-symmetric (fermionic)
theories correspond to q = 1,−1 (in these cases q-Fock spaces degenerate to
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the symmetric and anti-symmetric Fock spaces, respectively). For the interme-
diate values of q, it is known that the theory cannot be as good as the classical
and the free ones, since one cannot define a notion of q-independence satisfying
all the desired properties [vLM96, Spe97b].
In this paper we try a different approach. As mentioned above, whenever we
have a family of operators which corresponds to a family of measures that
is in some sense infinitely divisible, we should be able to define the partition-
dependent stochastic measures, and then define the combinatorial cumulants as
their expectations. One definition of cumulants appropriate for the q-deformed
probability theory has already been given in [Nic95], based on an analog of
the canonical form introduced by Voiculescu in the context of free probability.
The advantage of the approach of that paper is that Nica’s cumulants are de-
fined for any probability distribution all of whose moments are finite. However,
the canonical form of that paper is not self-adjoint, and it is also not appro-
priate for our approach since it does not provide us with a natural additive
process. Instead, as a canonical form we choose the q-analog of the families of
[HP84, AH84, Sch91, GSS92], which in the classical and the free case provide
representations for all (classically, resp. freely) infinitely divisible distributions
all of whose moments are finite. We provide an explicit formula for the result-
ing combinatorial cumulants, involving as expected a notion of the number of
crossings of a partition. The appropriate one for our context happens to be
the number of “restricted crossings” of [Bia97]; in particular the resulting cu-
mulants are different from those of [Nic95]. Our approach makes sense only for
distributions corresponding to q-infinitely divisible families (although strictly
speaking, one can use our definition in general). However, our canonical form
of an operator is self-adjoint, and this in turn leads to a notion of q-convolution
on a large class of probability measures. The fact that this convolution is not
defined on all probability measures is actually to be expected, see Section 6.1.
After finishing this article, we learned about a physics paper [NS94] which
seems to have been overlooked by the authors of both [Bia97] and [SY00b].
The goals of that paper are different from ours, but in particular it defines and
investigates the same q-Poisson process as we do (Section 6.3) and, in that case,
points out the relation between the moments of the process and the number of
restricted crossings of corresponding partitions. It would be interesting to see
if the results of that paper can be extended to our context, and how our results
fit together with the “partial cumulants” approach.
The paper is organized as follows. Following the Introduction, in Section 2
we provide some background on the combinatorics of partitions and on q-Fock
spaces, and define the q-Lévy processes. In Section 3, we define the joint
moments and q-cumulants, and express partition-dependent q-cumulants in
terms of the q-cumulant functional. In Section 4 we show that the cumulant
functional is the generator, in the sense defined in that section, of the family of
time-dependent moment functionals, and characterize all such generators. We
also discuss the notion of a product state that arises from this construction.
In Section 5, we provide some information about the Itô product formula in
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this context, by calculating the quadratic co-variation of two q-Lévy processes.
In a long Section 6 we define the q-convolution, describe how our construction
relates to the Bercovici-Pata bijection, and investigate the q-Brownian motion
and the q-Poisson process in more detail. Finally, in the last section we make
a few preliminary comments on the von Neumann algebras generated by the
processes.
Acknowledgments: I would like to thank Prof. Bożejko for encouraging me
to look at the q-analogs of [Ans00], and Prof. Voiculescu for many talks I had
to give in his seminar, during which I learned the background for this paper.
I am also grateful to Prof. Speicher for a number of suggestions about Section
7, and to Daniel Markiewicz for numerous comments. This paper was written
while I was participating in a special Operator Algebras year at MSRI, and is
supported in part by an MSRI postdoctoral fellowship.

2. Preliminaries

2.1. Notation. Fix a parameter q ∈ (−1, 1); we will usually omit the depen-
dence on q in the notation. The analogs of the results of this paper for q = ±1
are in most cases well-known; we will comment on them throughout the pa-
per. For n a non-negative integer, denote by [n]q the corresponding q-integer,

[0]q = 0, [n]q =
∑n−1
i=0 q

i.

For a collection
{

y
(i)
j

}

of numbers and two multi-indices ~v = (v(1), . . . , v(k))

and ~u = (u(1), . . . , u(k)), we will throughout the paper use the notation y
(~u)
~v

to denote
∏k
j=1 y

(u(j))
v(j) .

Denote by [k . . . n] the ordered set of integers in the interval [k, n].
For a family of functions {Fj}, where Fj is a function of j arguments, ~v a vector
with k components, and B ⊂ [1 . . . k], denote F (~v) = Fk(~v) and

F (B : ~v) = F|B|(v(i(1)), v(i(2)), . . . , v(i(|B|))),
where B = (i(1), i(2), . . . , i(|B|)). In particular, we use this notation for joint
moments and cumulants (see below).

2.2. Partitions. For an ordered set S, denote by P(S) the lattice of set par-
titions of that set. Denote by P(n) the lattice of set partitions of the set
[1 . . . n], and by P2(n) the collection of its pair partitions, i.e. of partitions into

2-element classes. Denote by ≤ the lattice order, and by 1̂n = ((1, 2, . . . , n))

the largest and by 0̂n = ((1)(2) . . . (n)) the smallest partition in this order.
Fix a partition π ∈ P(n), with classes {B1, B2, . . . , Bl}. We write B ∈ π if B
is a class of π. Call a class of π a singleton if it consists of one element. For a
class B, denote by a(B) its first element, and by b(B) its last element. Order
the classes according to the order of their last elements, i.e. b(B1) < b(B2) <
. . . < b(Bl). Call a class B ∈ π an interval if B = [a(B) . . . b(B)]. Call π an
interval partition if all the classes of π are intervals.
Following [Bia97], we define the number of restricted crossings of a par-
tition π as follows. For B a class of π and i ∈ B, i 6= a(B), denote
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p(i) = max {j ∈ B, j < i}. For two classes B,C ∈ π, a restricted crossing
is a quadruple (p(i) < p(j) < i < j) with i ∈ B, j ∈ C. The number of
restricted crossings of B,C is

rc (B,C) = |{i ∈ B, j ∈ C : p(i) < p(j) < i < j}|
+ |{i ∈ B, j ∈ C : p(j) < p(i) < j < i}| ,

and the number of restricted crossings of π is rc (π) =
∑

i<j rc (Bi, Bj). It has

the following graphical representation. Draw the points [1 . . . n] in a sequence
on the x-axis, and to represent the partition π connect each i with p(i) (if it is
well-defined) by a semicircle above the x axis. Then the number of intersections
of the resulting semicircles is precisely rc (π). See Figure 1 for an example. We
say that a partition π is noncrossing if rc (π) = 0. Denote by NC (n) ⊂ P(n)
the collection of all noncrossing partitions, which in fact form a sub-lattice of
P(n).

Figure 1. A partition of 6 elements with 2 restricted crossings.

We need some auxiliary notation. For σ, π ∈ P(n), we define π ∧ σ ∈ P(n) to
be the meet of π and σ in the lattice, i.e.

i
π∧σ∼ j ⇔ i

π∼ j and i
σ∼ j.

For π ∈ P(n), we define πop ∈ P(n) to be π taken in the opposite order, i.e.

i
πop∼ j ⇔ (n− i+ 1)

π∼ (n− j + 1).

For π ∈ P(n), σ ∈ P(k), we define π + σ ∈ P(n+ k) by

i
π+σ∼ j ⇔ ((i, j ≤ n, i

π∼ j) or (i, j > n, (i− n) σ∼ (j − n))).
We’ll denote mπ = π + π + . . .+ π m times.
Finally, using the above notation, for a subset B ⊂ [1 . . . n] and π ∈ P(n),
(B : π) is the restriction of π to B.

2.3. The q-Fock space. Let H be a (complex) Hilbert space. Let Falg(H)
be its algebraic full Fock space, Falg(H) =

⊕∞
n=0H

⊗n, where H⊗0 = CΩ and
Ω is the vacuum vector. For each n ≥ 0, define the operator Pn on H⊗n by

P0(Ω) = Ω,

Pn(η1 ⊗ η2 ⊗ . . .⊗ ηn) =
∑

α∈Sym(n)

qi(α)ηα(1) ⊗ ηα(2) ⊗ . . .⊗ ηα(n),
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where Sym(n) is the group of permutations of n elements, and i(α) is the
number of inversions of the permutation α. For q = 0, each Pn = Id. For
q = 1, Pn = n! × the projection onto the subspace of symmetric tensors. For
q = −1, Pn = n! × the projection onto the subspace of anti-symmetric tensors.
Define the q-deformed inner product on Falg(H) by the rule that for ζ ∈ H⊗k,
η ∈ H⊗n,

〈ζ, η〉q = δnk 〈ζ, Pnη〉 ,
where the inner product on the right-hand-side is the usual inner product in-
duced on H⊗n from H. All inner products are linear in the second variable.
It is a result of [BS91] that the inner product 〈·, ·〉q is positive definite for

q ∈ (−1, 1), while for q = −1, 1 it is positive semi-definite. Let Fq(H) be the
completion of Falg(H) with respect to the norm corresponding to 〈·, ·〉q. For
q = −1, 1 one first needs to quotient out by the vectors of norm 0 and then
complete; the result is the anti-symmetric, respectively, symmetric Fock space,
with the inner product multiplied by n! on the n-particle space.
For ξ in H, define the (left) creation and annihilation operators on Falg(H) by,
respectively,

a∗(ξ)Ω = ξ,

a∗(ξ)η1 ⊗ η2 ⊗ . . .⊗ ηn = ξ ⊗ η1 ⊗ η2 ⊗ . . .⊗ ηn,

and

a(ξ)Ω = 0,

a(ξ)η = 〈ξ, η〉Ω,

a(ξ)η1 ⊗ η2 ⊗ . . .⊗ ηn =

n∑

i=1

qi−1 〈ξ, ηi〉 η1 ⊗ . . .⊗ η̂i ⊗ . . .⊗ ηn,

where as usual η̂i means omit the i-th term. For q ∈ (−1, 1), both operators can
be extended to bounded operators on Fq(H), on which they are adjoints of each
other [BS91]. They satisfy the commutation relations a(ξ)a∗(η)−qa∗(η)a(ξ) =
〈ξ, η〉 Id. For q = ±1, we first need to compress the operators by the projection
onto the symmetric / anti-symmetric Fock space, respectively, and the resulting
operators differ from the usual ones by

√
n, but satisfy the usual commutation

relations (thanks to a different inner product). For q = 1 the resulting operators
are unbounded, but still adjoints of each other [RS75].
Denote by ϕ the vacuum vector state ϕ [X] = 〈Ω, XΩ〉q.

2.4. Gauge operators. We now need to define differential second quantiza-
tion. Consider the number operator, the differential second quantization of the
identity operator. One choice, made in [Møl93], is to define it as the operator
that has H⊗n as an eigenspace with eigenvalue n. For a general self-adjoint
operator T , this gives the true differential second quantization derived from
the q-second quantization functor of [BKS97]. The resulting operators are self-
adjoint, but do not satisfy nice commutation relations.
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Another choice for the number operator is the operator that has H⊗n as an
eigenspace with eigenvalue [n]q. For a general (bounded) operator T , the cor-
responding construction is

p(T )Ω = 0,

p(T )η1 ⊗ η2 ⊗ . . .⊗ ηn =

n∑

i=1

qi−1η1 ⊗ . . .⊗ (Tηi)⊗ . . .⊗ ηn.

Similar operators were used in [Śni00], where stochastic calculus with respect
to the corresponding processes was developed. They do have nice commutation
properties, but are in general not symmetric.
Finally, another natural choice for the number operator is

∑

i a
∗(ei)a(ei), where

{ei} is an orthonormal basis for H; the resulting operator is then independent
of the choice of the basis. For a general bounded operator T , the correspond-
ing construction is

∑

i a
∗(Tei)a(ei). It is easy to see that this sum converges

strongly, to the following operator.

Definition 2.1. Let T be an operator on H with dense domain D. The cor-
responding gauge operator p(T ) is an operator on Fq(H) with dense domain
Falg(D) defined by

p(T )Ω = 0,

p(T )η1 ⊗ η2 ⊗ . . .⊗ ηn =

n∑

i=1

qi−1(Tηi)⊗ η1 ⊗ . . .⊗ η̂i ⊗ . . .⊗ ηn,

for η1, η2, . . . , ηn ∈ D.

Proposition 2.2. If T is essentially self-adjoint on a dense domain D and
T (D) ⊂ D, then p(T ) is essentially self-adjoint on a dense domain Falg(D).
Proof. We first show that p(T ) is symmetric on Falg(D). Fix n, and denote by
βj the cycle in Sym(n) given by βj = (12 . . . j). For a permutation α ∈ Sym(n),
write α(η1 ⊗ . . .⊗ ηn) = ηα(1) ⊗ . . .⊗ ηα(n). For η1, . . . , ηn, ξ1, . . . , ξn ∈ D,
〈p(T )η1 ⊗ . . .⊗ ηn, ξ1 ⊗ . . .⊗ ξn〉q

=
n∑

j=1

q
j−1 〈

β
−1
j (η1 ⊗ . . .⊗ (Tηj)⊗ . . .⊗ ηn), ξ1 ⊗ . . .⊗ ξn

〉

q

=
n∑

j=1

∑

α∈Sym(n)

q
j−1

q
i(α) 〈

β
−1
j (η1 ⊗ . . .⊗ (Tηj)⊗ . . .⊗ ηn), α(ξ1 ⊗ . . .⊗ ξn)

〉

=
n∑

j=1

n∑

k=1

∑

α∈Sym(n)
α(1)=k

q
j−1

q
i(α) 〈

β
−1
j (η1 ⊗ . . .⊗ ηn), α(ξ1 ⊗ . . .⊗ (T

∗
ξk)⊗ . . .⊗ ξn)

〉

=
n∑

j=1

n∑

k=1

∑

α∈Sym(n)
α(1)=k

q
j−1

q
i(α) 〈

η1 ⊗ . . .⊗ ηn, (βjαβk)β
−1
k (ξ1 ⊗ . . .⊗ (T

∗
ξk)⊗ . . .⊗ ξn)

〉
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Using the combinatorial lemma immediately following this proof, this expres-
sion is equal to

=
n∑

k=1

∑

γ∈Sym(n)

q
k−1

q
i(γ) 〈

η1 ⊗ . . .⊗ ηn, γ(β
−1
k (ξ1 ⊗ . . .⊗ (T

∗
ξk)⊗ . . .⊗ ξn))

〉

= 〈η1 ⊗ . . .⊗ ηn, p(T
∗)ξ1 ⊗ . . .⊗ ξn〉q .

Now we show that the operator p(T ) is essentially self-adjoint on Falg(D). For
q = 1, the proof is contained in [RS75, X.6, Example 3]. For q ∈ (−1, 1) we
proceed similarly. Let Dn = D⊗n. Let E· be the spectral measure of the closure
T̄ of T , and C ∈ R+. Let {ηi}ni=1 ⊂ (E[−C.C]H)∩D; then ‖Tηi‖ ≤ C ‖ηi‖. Let
~η = η1 ⊗ η2 ⊗ . . .⊗ ηn. Then

∥
∥p(T )k~η

∥
∥
2

q
=
〈
p(T )k~η, Pnp(T )

k~η
〉
≤ ‖Pn‖ (nkCk ‖~η‖)2.

It was shown in [BS91] that ‖Pn‖ ≤ [n]|q|! ≤ n!. We conclude that
∥
∥p(T )k~η

∥
∥
q
≤√

n!nkCk ‖~η‖ and so

lim sup
k→∞

1

k

∥
∥p(T )k~η

∥
∥
1/k

q
= 0.

Therefore ~η is an analytic vector for p(T ). The linear span of such vectors
is invariant under p(T ) and is a dense subset of Dn. Therefore by Nelson’s
analytic vector theorem, p(T ) is essentially self-adjoint on Dn.
The rest of the argument proceeds as in [RS72, VIII.10, Example 2]. An
operator A is essentially self-adjoint iff the range of A± i is dense. Since p(T )
restricted to H⊗n is essentially self-adjoint, this property holds for each such
restriction, and then for the operator p(T ) itself, which therefore has to be
essentially self-adjoint.

Lemma 2.3. For a fixed k, every permutation γ ∈ Sym(n) appears in the col-
lection

{βjαβk : 1 ≤ j ≤ n, α(1) = k}
exactly once. Moreover, for such α, i(βjαβk) = i(α) + j − k.
Proof. It suffices to show the first property for the collection {βjα}. This
collection contains at most n! distinct elements. On the other hand, for γ ∈
Sym(n), let j = γ−1(k), and α = β−1j γ; then j, α satisfy the conditions and
βjα = γ.
For the second property, first take γ ∈ Sym(n) such that γ(1) = 1 and show
that i(βjγ) = i(γ) + (j − 1). Indeed, βj only reverses the order of (j − 1) pairs
(a, j) with a < j. βj sends such a pair to ((a + 1), 1), and since γ(1) = 1, γ
preserves the order of such a pair.
We conclude that i(βjαβk) = i(αβk) + (j − 1). Now we show that i(αβk) =
i(α) − (k − 1). Indeed, βk only reverses the order of (k − 1) pairs (a, k) for
a < k. The pre-image of such a pair under α is (α−1(a), 1), and so α reverses
its order.
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These gauge operators themselves do not satisfy nice commutation relations.
Nevertheless, we can still calculate their combinatorial cumulants. Another
advantage of this definition is that it naturally generalizes to the “Yang-
Baxter” commutation relations of [BS94]. However, in this more general con-
text partition-dependent cumulants are not expressed in terms of the cumulant
functional, so we do not pursue this direction in more detail.
For q = 0, p(T ) are precisely the gauge operators on the full Fock space as
defined in [GSS92]. For q = 1, again we first need to compress p(T ) by the pro-
jection onto the symmetric Fock space, and the result is the usual differential
second quantization. For q = −1, we first need to compress p(T ) by the projec-
tion onto the anti-symmetric Fock space, and the result is the anti-symmetric
differential second quantization.

2.5. The processes. Let V be a Hilbert space, and let H be the Hilbert space
L2(R+, dx)⊗V . Let ξ ∈ V , and let T be an essentially self-adjoint operator on
a dense domain D ⊂ V so that D is equal to the linear span of {T nξ}∞n=0 and
moreover ξ is an analytic vector for T . Given a half-open interval I ⊂ R+, define
aI(ξ) = a(1I⊗ξ), a∗I(ξ) = a∗(1I⊗ξ), pI(T ) = p(1I⊗T ). Here 1I is the indicator
function of the set I, considered both as a vector in L2(R+) and a multiplication
operator on it. For λ ∈ R, denote pI(ξ, T, λ) = aI(ξ) + a∗I(ξ) + pI(T ) + |I|λ.
Denote by at, a

∗
t , pt the appropriate objects corresponding to the interval [0, t).

We will call a process of the form I 7→ pI(ξ, T, λ) a q-Lévy process. For q = 1
this is indeed a Lévy process.

Now fix a k-tuple {Tj}kj=1 of essentially self-adjoint operators on a common

dense domain D ⊂ V , Tj(D) ⊂ D, a k-tuple {ξj}kj=1 ⊂ D of vectors, and

{λj}kj=1 ⊂ R. We will make an extra assumption that

∀i, j ∈ [1 . . . k], l ∈ N, ~u ∈ [1 . . . k]l,

T~uξi = Tu(1)Tu(2) . . . Tu(l)ξi is an analytic vector for Tj ,

and D = span
({

T~uξi : i ∈ [1 . . . k], l ∈ N, ~u ∈ [1 . . . k]l
})
.

(1)

Denote by X the k-tuple of processes (X (1), . . . , X(k)), where X(j)(I) =
pI(ξj , Tj , λj). In particular X(t) = X([0, t)). We call such a k-tuple a mul-
tiple q-Lévy process.

Remark 2.4. The assumption (1) is not essential for most of the paper. Most
of the analysis could be done purely algebraically: see Remark 5.1. We will
make this assumption to guarantee that we have a correspondence between self-
adjoint processes and semigroups of measures, rather than between symmetric
processes and semigroups of moment sequences.

3. Cumulants

3.1. Joint distribution. Since the processes in X do not necessarily com-
mute, by their joint distribution we will mean the collection of their joint mo-
ments. We organize this information as follows.
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Denote by C〈x〉 = C〈x1, x2, . . . , xk〉 the algebra of polynomials in k formal
noncommuting indeterminates with complex coefficients. Note that in a more
abstract language, this is just the tensor algebra of the complex vector space

V0 with a distinguished basis {xi}ki=1. While we take V0 to be k-dimensional,
the same arguments will work for an arbitrary V0, as long as we use a more
functorial definition of a process, namely for f =

∑
aixi ∈ V0, we would define

T (f) =
∑
aiTi, ξ(f) =

∑
aiξi, λ(f) =

∑
aiλi. See [Sch91] for a more detailed

description of this approach.
Define a functional M on C〈x〉 by the following action on monomials:
M(1, t;X) = 1, for a multi-index ~u,

M(x~u, t;X) = ϕ
[

X(~u)(t)
]

,

and extend linearly. We will call M(·, t;X) the moment functional of the
process X at time t.
If we equip C〈x〉 with a conjugation ∗ extending the conjugation on C so that
each x∗i = xi, it is clear that M is a positive functional, i.e. M(ff ∗, t;X) ≥ 0
for all f ∈ C〈x〉.
For a partition π ∈ P(n) and a monomial x~u of degree n, denoteMπ(x~u, t;X) =
∏

B∈πM(x(B:~u), t;X). These are the combinatorial moments of X at time t.
For a one-dimensional process, the functional M(·, t;X) can be extended to a
probability measure µt such that µt(x

n) = M(xn, t;X). Specifically, µt(S) =
ϕ [ES ], where E· is the spectral measure of X(t).

3.2. Multiple stochastic measures and cumulants. For a set S and a
partition π ∈ P(n), denote

Snπ =
{

~v ∈ Sn : v(i) = v(j)⇔ i
π∼ j
}

and

Sn≤π =
{

~v ∈ Sn : v(i) = v(j)⇒ i
π∼ j
}

.

Fix t. For N ∈ N and a subdivision of [0, t) into N disjoint ordered half-open in-
tervals I = {I1, I2, . . . , IN}, let δ(I) = max1≤i≤N |Ii|. Denote Xi, ai, a

∗
i , pi the

appropriate objects for the interval Ii. Fix a monomial x~u ∈ C〈x1, x2, . . . , xk〉
of degree n.

Definition 3.1. The stochastic measure corresponding to the partition π,
monomial x~u, and subdivision I is

Stπ(x~u, t;X, I) =
∑

~v∈[1...N ]nπ

X
(~u)
~v .

The stochastic measure corresponding to the partition π and the monomial x~u
is

Stπ(x~u, t;X) = lim
δ(I)→0

Stπ(x~u, t;X, I)
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Stochastic Measures and q-Cumulants 353

if the limit, along the net of subdivisions of the interval [0, t), exists. In partic-
ular, denote by ∆n(x~u, t;X, I) = St1̂(x~u, t;X, I) and

∆n(x~u, t;X) = St1̂(x~u, t;X)

the n-dimensional diagonal measure.

Definition 3.2. The combinatorial cumulant corresponding to the partition
π and the monomial x~u is

Rπ(x~u, t;X) = lim
δ(I)→0

ϕ [Stπ(x~u, t;X, I)]

if the limit exists. In particular, denote by

R(x~u, t;X) = R1̂(x~u, t;X) = lim
δ(I)→0

ϕ [∆n(x~u, t;X, I)]

the n-th joint cumulant of X at time t. Note that the functional R(·, t;X)
can be linearly extended to all of C〈x〉. We call this functional the cumulant
functional of the process X at time t. For t = 1 we call the corresponding
functional the cumulant functional of the process X.

We will omit the dependence on X in the notation if it is clear from the context.
Clearly if Stπ(x~u, t) is well-defined, its expectation is equal to Rπ(x~u, t).
By definition of Snπ , for any I

X(~u)(t) =
∑

π∈P(n)

Stπ(x~u, t;X, I).(2)

If Stπ(x~u, t) are well-defined, then

X(~u)(t) =
∑

π∈P(n)

Stπ(x~u, t;X),

and so

M(x~u, t;X) =
∑

π∈P(n)

Rπ(x~u, t;X);(3)

in fact for this last property to hold it suffices that the combinatorial cumulants
exist.
The following general algebraic notion of independence is due to Kümmerer.

Lemma 3.3. A multiple q-Lévy process X(t) has pyramidally independent in-

crements. That is, for a family of intervals
{

{Ii}n1+n3

i=1 , {Jj}n2

j=1

}

in R+ such

that for all i, j, Ii ∩ Jj = ∅,

ϕ





(
n1∏

i=1

X(u(i))(Ii)

)



n2∏

j=1

X(v(j))(Jj)





(
n1+n3∏

i=n1+1

X(u(i))(Ii)

)



= ϕ

[
n1+n3∏

i=1

X(u(i))(Ii)

]

ϕ





n2∏

j=1

X(v(j))(Jj)



 .
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We record the following facts we will use in the proof. Their own proof is
immediate.

Lemma 3.4. Choose two families of intervals
{

{Ii}n1

i=1 , {Jj}
n2

j=1

}

such that

(
⋃
Ii) ∩ (

⋃
Jj) = ∅. Let y =

∏n1

i=1 y
(u(i))
Ii

, where each y
(s)
I is one of

aI(ξs), a
∗
I(ξs), pI(Ts), |I|λs. Also let ~η1 ∈

⊕n1

j=0(L
2(
⋃
Ii) ⊗ V )⊗j and ~η2 ∈

⊕n2

i=0(L
2(
⋃
Jj) ⊗ V )⊗i, where these two spaces are naturally embedded in

Falg(L2(R+)⊗ V ). Then

y~η2 = ((y − 〈Ω,yΩ〉q)Ω)⊗ ~η2 + 〈Ω,yΩ〉q ~η2
and

〈~η1, ~η2〉q = 〈~η1,Ω〉q 〈Ω, ~η2〉q .

Proof of Lemma 3.3. Fix a family of intervals
{

{Ii}n1+n3

i=1 , {Jj}n2

j=1

}

such that

for all i, j, Ii ∩ Jj = ∅. Denote

~η1 =

(
1∏

i=n1

pIi(ξu(i), Tu(i), λu(i))

)

Ω ∈
n1⊕

j=0

(L2(
⋃

Ii)⊗ V )⊗j ,

~η2 =

(
n2∏

i=1

pJi(ξv(i), Tv(i), λv(i))

)

Ω ∈
n2⊕

j=0

(L2(
⋃

Ji)⊗ V )⊗j ,

~η3 =

(
n1+n3∏

i=n1+1

pIi(ξu(i), Tu(i), λu(i))

)

Ω ∈
n3⊕

j=0

(L2(
⋃

Ii)⊗ V )⊗j .

Then

ϕ





(
n1∏

i=1

X(u(i))(Ii)

)



n2∏

j=1

X(v(j))(Jj)





(
n1+n3∏

i=n1+1

X(u(i))(Ii)

)



=

〈
( 1∏

i=n1

pIi(ξu(i), Tu(i), λu(i))
)

Ω,

( n2∏

j=1

pJj (ξv(j), Tv(j), λv(j))

n1+n3∏

i=n1+1

pIi(ξu(i), Tu(i), λu(i))
)

Ω

〉

q

=

〈

~η1,





n2∏

j=1

pJj (ξv(j), Tv(j), λv(j))



 ~η3

〉

q

=
〈

~η1, (~η2 − 〈Ω, ~η2〉q Ω)⊗ ~η3 + 〈Ω, ~η2〉q ~η3
〉

q

= 〈Ω, ~η2〉q 〈~η1, ~η3〉q

= ϕ





n2∏

j=1

X(v(j))(Jj)



ϕ

[
n1+n3∏

i=1

X(u(i))(Ii)

]

.
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Proposition 3.5. For a noncrossing partition σ,

Mσ(x~u, t;X) =
∑

π∈P(n)
π≤σ

Rπ(x~u, t;X)

if the combinatorial cumulants are well-defined.

Proof. A noncrossing partition is determined by the property that it contains a
class that is an interval and the restriction of the partition to the complement of
that class is still noncrossing. Using this fact and Lemma 3.3, we can conclude
that for π ∈ P(n), π ≤ σ and ~v ∈ [1 . . . N ]nπ,

ϕ
[

X
(~u)
~v

]

=
∏

B∈σ

ϕ
[

X
(B:~u)
(B:~v)

]

.

Therefore

ϕ [Stπ(x~u, t;X, I)] =
∏

B∈σ

ϕ
[
St(B:π)(x(B:~u), t;X, I)

]
.

Thus if the combinatorial cumulants are well-defined,

Rπ(x~u, t;X) =
∏

B∈σ

R(B:π)(x(B:~u), t;X),

and so
∑

π∈P(n)
π≤σ

∏

B∈σ

R(B:π)(x(B:~u), t;X) =
∑

π∈P(n)
π≤σ

Rπ(x~u, t;X).

If σ = (B1, B2, . . . , Bl), the left-hand-side of this equation is equal to

l∏

i=1

∑

πi∈P(Bi)

Rπi(x(Bi:~u), t;X).

Combining this equation with equation (3), we obtain

Mσ(x~u, t;X) =
∑

π∈P(n)
π≤σ

Rπ(x~u, t;X).

We emphasize that while σ is noncrossing, π need not be. Note that on the
operator level we have for any σ ∈ P(n),

∑

π∈P(n)
π≤σ

Stπ(x~u, t;X, I) =
∑

~v∈[1...N ]n
≤σ

X
(~u)
~v .

Proposition 3.6. For the monomial x~u of degree n, the cumulant functional
of the multiple q-Lévy process X is given by

R(x~u, t) =

{

tλu(1) if n = 1,

t
〈

ξu(1),
∏n−1
j=2 Tu(j)ξu(n)

〉

if n ≥ 2.
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Proof. By definition,

R(x~u, t) = lim
δ(I)→0

ϕ





N∑

i=1

n∏

j=1

pi(ξu(j), Tu(j), λu(j))



 .

For n = 1,

〈Ω, pi(ξ, T, λ)Ω〉q = |Ii|λ,
and so R(x, t) = tλ.
Now let n ≥ 2. Decomposing each pi(ξ, T, λ) into the four defining summands,
we see that

ϕ





N∑

i=1

n∏

j=1

pi(ξu(j), Tu(j), λu(j))



 =
∑

S1,S2,S3,S4

N∑

i=1

〈

Ω, y
(1)
i y

(2)
i . . . y

(n)
i Ω

〉

q
.(4)

Here the sum is taken over all decompositions of [1 . . . n] into four disjoint
subsets S1, S2, S3, S4, and for each choice of these subsets

y
(j)
i =







ai(ξu(j)) if j ∈ S1,
a∗i (ξu(j)) if j ∈ S2,
pi(Tu(j)) if j ∈ S3,
|Ii|λu(j) if j ∈ S4.

The term corresponding to S1 = {1} , S2 = {n} , S3 = [2 . . . (n − 1)], S4 = ∅ is
equal to
〈

1[0,t) ⊗ ξu(1), (1[0,t) ⊗
n−1∏

j=2

Tu(j))(1[0,t) ⊗ ξu(n))
〉

= t

〈

ξu(1),
n−1∏

j=2

Tu(j)ξu(n)

〉

.

We show that the limit of each of the remaining terms is 0. Indeed,

y
(1)
i y

(2)
i . . . y

(n)
i Ω ∈ H⊗(|S2|−|S1|), so if |S1| 6= |S2| the corresponding term in

(4) is 0 even for finite N . Otherwise denote by b(S1, S2) the set of all bijections
S1 → S2. All the terms that are not 0 are of the form

N∑

i=1

((
∏

j4∈S4

λu(j4)

)

|Ii||S4|
∑

g∈b(S1,S2)

∑

S′j1
⊂S3:j1∈S1,

⋃

j1∈S1
S′j1=S3

Qg,{Sj1 ,j1∈S1}(q) |Ii|
|S1|

×
∏

j1∈S1

〈

ξu(j1),
∏

j3∈S′j1

Tu(j3)ξu(g(j1))

〉)

,

where each Qg,{S′j1 :j1∈S1}(q) is a polynomial independent of i, and |S1| ≥ 2 or

|S4| ≥ 1, |S1| ≥ 1; in both cases |S4| + |S1| ≥ 2. Thus each of these terms is
bounded by

C

N∑

i=1

|Ii||S1|+|S4| ≤ Cδ(I)t|S1|+|S4|−1,
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where C is a constant independent of the subdivision I. Therefore such a term
converges to 0 as δ(I)→ 0.

Construction 3.7 (An un-crossing map). Fix a partition π with l classes
B1, . . . , Bl. In preparation for the next theorem, we need the following com-
binatorial construction. Define the map F : P(n) → P(n) as follows. If π
is an interval partition, F (π) = π. Otherwise, let i be the largest index of a
non-interval class Bi of π. Let j2 = max {s ∈ Bi : (s− 1) 6∈ Bi} and j1 = p(j2).
Let α be the power of a cycle permutation

((j1 + 1)(j1 + 2) . . . b(Bi))
b(Bi)−j2+1.

Then F (π) = α ◦ π, by which we mean i
π∼ j ⇔ α(i)

F (π)∼ α(j). Also define
cb(π) = |{s : j1 < b(Bs) < b(Bi)}| − |{s : j1 < a(Bs) < b(Bi)}|. Then rc (π) =
rc (F (π))+cb(π). Indeed, for B,C ∈ π,B,C 6= Bi, rc (B,C) = rc (α(B), α(C)).
The number of restricted crossings of Bi, Bj with bi ∈ Bi, bj ∈ Bj and
p(bi) < p(bj) < bi < bj ≤ j1 or p(bj) < p(bi) < bj < bi ≤ j1 is equal to
the corresponding number for α(Bi), α(Bj), while there are no restricted cross-
ings for bi > j2 for Bi and bi > j1 for α(Bi). Finally, there are cb(π) restricted
crossings of the form p(j) < j1 < j < j2 in π. See Figure 2 for an example.

Figure 2. Iteration of F on a partition of 6 elements.

Clearly Fn(π) is an interval partition. Therefore
∑n
s=0 cb(F

sπ) = rc (π).

Theorem 3.8. The combinatorial cumulants can be expressed in terms of the
cumulant functional: for π ∈ P(n) and x~u a monomial of degree n,

Rπ(x~u, t) = qrc(π)
l∏

i=1

R(x(Bi:~u), t).

Proof. The same argument as in the previous proposition shows that

Rπ(x~u, t) = lim
δ(I)→0

ϕ




∑

~v∈[1...N ]nπ

y
(1)
v(1)y

(2)
v(2) . . . y

(n)
v(n)



 ,

with

y
(j)
i =







|Ii|λu(j) if (j) is a singleton in π,

ai(ξu(j)) if j is the first element of its class in π,

a∗i (ξu(j)) if j is the last element of its class in π,

pi(Tu(j)) otherwise.

(5)
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Fix ~v. Let B be the class of π containing n. If B is an interval, then by Lemma
3.4
〈

Ω,





n∏

j=1

y
(j)
v(j)



Ω

〉

q

=

〈

Ω,





a(B)−1
∏

j=1

y
(j)
v(j)



Ω

〉

q

〈

Ω,





n∏

j=a(B)

y
(j)
v(j)



Ω

〉

q

.

Therefore

Rπ(x~u, t) = R(B1,... ,Bl−1)(x([1...n]\B:~u), t)R(x(B:~u), t).

Now suppose B is not an interval. Use the notation α, j1, j2, cb of Construction
3.7. Denote

η(j2) =





n∏

i=j2

y
(i)
v(i)



Ω ∈ H

and

~η(j1) =





j2−1∏

i=j1+1

y
(i)
v(i)



Ω ∈ H⊗(cb(π)).

Note that y
(j1)
v(j1)

is either av(j1)(ξu(j1)) or pv(j1)(Tu(j1)). Then





n∏

i=j1

y
(i)
v(i)



Ω =





j2−1∏

i=j1

y
(i)
v(i)



 η(j2) = y
(j1)
v(j1)





(( j2−1∏

i=j1+1

y
(i)
v(i)

)

Ω
)

⊗ η(j2)





= y
(j1)
v(j1)

(~η(j1)⊗ η(j2)) = qcb(π)(y
(j1)
v(j1)

η(j2))⊗ ~η(j1)

and

y
(j1)
v(j1)





n∏

i=j2

y
(i)
v(i)

j2−1∏

i=j1+1

y
(i)
v(i)



Ω = y
(j1)
v(j1)





n∏

i=j2

y
(i)
v(i)



 ~η(j1)

= y
(j1)
v(j1)





(( n∏

i=j2

y
(i)
v(i)

)

Ω
)

⊗ ~η(j1)





= y
(j1)
v(j1)

(η(j2)⊗ ~η(j1)) = (y
(j1)
v(j1)

η(j2))⊗ ~η(j1).

Therefore
〈

Ω,





n∏

j=1

y
(j)
v(j)



Ω

〉

q

= qcb(π)

〈

Ω,





n∏

j=1

y
(α(j))
v(α(j))



Ω

〉

q

.

The right-hand-side contains precisely the product of y’s corresponding to the
partition F (π). The result follows by iterating these two steps.
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Remark 3.9 (Comments on Proposition 3.5). For q = 0, Rπ(x~u, t;X) = 0 un-
less π is noncrossing. Then for σ ∈ NC (n),

Mσ(x~u, t;X) =
∑

π∈NC (n)
π≤σ

Rπ(x~u, t;X).

Therefore for π ∈ NC (n),

Rπ(x~u, t;X) =
∑

σ∈NC (n)
σ≤π

MöbNC (σ, π)Mσ(x~u, t;X),

where MöbNC is the Möbius function on the lattice of noncrossing partitions.
For q = 1, if σ ∈ P(n), σ = (B1, B2, . . . , Bl), then

Mσ(x~u, t;X) =
l∏

i=1

M(x(Bi:~u), t;X)

=
l∏

i=1

∑

πi∈P(Bi)

Rπi(x(Bi:~u), t;X)

=
∑

π≤σ

Rπ(x~u, t;X).

Therefore for π ∈ P(n),

Rπ(x~u, t;X) =
∑

σ∈P(n)
σ≤π

MöbP(σ, π)Mσ(x~u, t;X),

where MöbP is the Möbius function on the lattice of all partitions. Note that
X(I) commute with X(J) for I ∩ J = ∅ on the symmetric Fock space.
Thus for q = 0, 1, the cumulant functional at time 1 can be expressed through
the moment functional at time 1. We will show how to do this for arbitrary q
in the next section.

4. Characterization of generators

Denote by R(f ;X) = R(f, 1;X) the cumulant functional.

Lemma 4.1. The family of the moment functionals of a multiple q-Lévy process
is determined by its cumulant functional. The functional R(·;X) on C〈x〉 is
the generator of the family of functionals M(·, t;X), that is,

d

dt

∣
∣
∣
t=0

M(f, t;X) = R(f ;X).
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Proof. It suffices to prove these statements for a monomial x~u of degree n. By
equation (3), Theorem 3.8 and Proposition 3.6,

M(x~u, t;X) =
∑

π∈P(n)

Rπ(x~u, t;X)

=
∑

π∈P(n)

qrc(π)
∏

B∈π

R(x(B:~u), t;X)

=
∑

π∈P(n)

qrc(π)t|π|
∏

B∈π

R(x(B:~u), 1;X),

which implies the first statement. By differentiating this equality, we obtain

d

dt

∣
∣
∣
t=0

M(x~u, t;X) = R1̂(x~u, 1;X) = R(x~u;X).

Definition 4.2. A functional ψ on C〈x〉 is conditionally positive if its restric-
tion to the subspace of polynomials with zero constant term is positive semi-
definite.

We say that the functional ψ is analytic if for any i and any multi-index ~u,

lim sup
n→∞

1

n
ψ[(x~u)

∗x2ni x~u]
1/2n <∞.

The following proposition is an analog of the Schoenberg correspondence for
our context. Note that the formulation of the result does not involve q: the
dependence on q is hidden in Theorem 3.8.

Proposition 4.3. A functional ψ is analytic and conditionally positive if and
only if it is the generator of the family of the moment functionals for some
multiple q-Lévy process.

Proof. The proof is practically identical to that of [GSS92], or indeed of [Sch91].
We provide an outline for the reader’s convenience.
Suppose ψ is the generator of the family of moment functionals M(·, t;X) for
a multiple q-Lévy process X(t) = pt(ξ,T, λ). From the fact that each of the
moment functionals is positive and equals 1 on the constant 1 it follows by
differentiating that the cumulant functional is conditionally positive. Since
ψ = R(·;X), for x~u of degree l

lim sup
n→∞

1

n
ψ[(x~u)

∗
x

2n
i x~u]

1/2n = lim sup
n→∞

1

n
R((x~u)

∗
x

2n
i x~u, t;X)

1/2n

= lim sup
n→∞

1

n

〈

ξu(l),

1∏

j=l−1

Tu(j)T
2n
i

l−1∏

j=1

Tu(j)ξu(l)

〉1/2n

= lim sup
n→∞

1

n

∥
∥
∥
∥
∥
T
n
i

l−1∏

j=1

Tu(j)ξu(l)

∥
∥
∥
∥
∥

1/n

<∞

since the vector
∏l−1
j=1 Tu(j)ξu(l) is analytic for Ti.
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Now suppose ψ is conditionally positive and analytic. Then it gives rise to
a multiple q-Lévy process, as follows. Denote by δ0(f) the constant term of
f ∈ C〈x〉. ψ induces a positive semi-definite inner product on the space C〈x〉
by 〈f, g〉ψ = ψ[(f − δ0(f))

∗(g − δ0(g))]. Let Nψ be the subspace of vectors of
length 0 with respect to this inner product. Let V be the Hilbert space obtained
by completing the quotient (C〈x〉)/Nψ with respect to this inner product, with
the induced inner product. Denote by ρ the canonical mapping C〈x〉 → V , let
D be its image, and for f, g ∈ C〈x〉 define the operator Γ(f) : D → D by

Γ(f)ρ(g) = ρ(fg)− ρ(f)δ0(g).

The operator Γ is well defined since, by the Cauchy-Schwartz inequality,

‖Γ(f)ρ(g)‖ψ = ψ[(g − δ0(g))∗f∗f(g − δ0(g))] ≤ ‖ρ(g)‖ψ ‖f∗f(g − δ0(g))‖ψ .

Clearly D is dense in V , invariant under Γ(f), and Γ(f) is symmetric on it if
f is symmetric.
Put, for i ∈ [1 . . . k], λi = ψ[xi], ξi = ρ(xi), Ti = Γ(xi). Each Ti takes D to
itself. By construction, Γ(xi)ρ(x~u) = ρ(xix~u), and so

lim sup
n→∞

1

n
‖Tni ρ(x~u)‖1/nψ = lim sup

n→∞

1

n
‖xni x~u‖1/nψ

= lim sup
n→∞

1

n
ψ[(x~u)

∗x2ni x~u]
1/2n <∞

since the functional ψ is analytic. Therefore each of the vectors ρ(x~u) is analytic
for Ti, and the linear span of these vectors is D. In particular, Ti is essentially
self-adjoint on D.
Define the multiple q-Lévy process X by X(i)(t) = pt(ξi, Ti, λi). Then

R(x~u;X) = ψ[x~u].

Indeed, for n = 1

R(xi;X) = λi = ψ[xi].

For n ≥ 2,

R(x~u;X) =

〈

ξu(1),

n−1∏

j=2

T(u(j))ξu(n)

〉

=

〈

ρ(xu(1)),

n−1∏

j=2

Γ(xu(j))ρ(xu(n))

〉

ψ

=

〈

ρ(xu(1)), ρ(
n∏

j=2

xu(j))

〉

ψ

= ψ[
n∏

j=1

xu(j)]

= ψ[x~u].

Therefore ψ is the generator of the moment functional family of X.
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4.1. Product states. For arbitrary q, the relation in the proof of Lemma
4.1 can be inverted.

Definition 4.4. Let Φ be any functional on C〈x〉. Define the functional Ψ =
logq(Φ) on monomials recursively by

Ψ(x~u) = Φ(x~u)−
∑

π∈P(n)

π 6=1̂

qrc(π)
∏

B∈π

Ψ(x(B:~u))

and extend linearly.

The definition has the form

Ψ(x~u) =
∑

σ∈P(n)

c(σ)
∏

B∈σ

Φ(x(B:~u))

for some coefficient family {c(σ) : σ ∈ P(k)}. For q = 1, Φ is the convolution
exponential of Ψ [Sch91]. Lemma 4.1 and the discussion in Section 6 justify the
notations Ψ = logq(Φ), Φ = expq(Ψ). Note that this operation on functionals
appears to bear no relation to the q-exponential power series.
It is clear that for any q-Lévy process, R(·, t;X) = logqM(·, t;X) and, more-
over, that M(·, t;X) = expq(tR(·;X)).

Definition 4.5. Let Φ1 be a functional on C〈x1, x2, . . . , xk1〉, Φ2 a func-
tional on C〈x1, x2, . . . , xk2〉. Define their product functional Φ1 ×q Φ2 on
C〈x1, x2, . . . , xk1+k2〉 by the “mixed cumulants are 0” rule:

logq(Φ1 ×q Φ2)(x~u) =







logq(Φ1)(x~u) if ∀i, u(i) ≤ k1,

logq(Φ2)(x~u) if ∀i, u(i) > k1,

0 otherwise.

Note that it is more natural to think of this construction as taking the product
of two one-parameter families of functionals,

expq(t logq(Φ1))×q expq(t logq(Φ2)) = expq(t logq(Φ1 ×q Φ2)).
Denote

IDc(q, k) = {Φ : Φ =M(·, 1;X) for some k-dimensional q-Lévy process X}
=
{
Φ : logq(Φ) is conditionally positive and analytic

}
.

The notation stands for “combinatorially infinitely divisible”.

Lemma 4.6. For Φ1 ∈ IDc(q, k1),Φ2 ∈ IDc(q, k2), their product functional is
a state, that is, a positive functional that equals 1 on the identity element.

Proof. It suffices to show that Φ1 ×q Φ2 ∈ IDc(q, k1 + k2). Let X1,X2 be
the q-Lévy processes whose distributions at time 1 are Φ1,Φ2, respectively.
Let X(i,1)(t) = pt(ξi,1, Ti,1, λi,1), X

(i,2)(t) = pt(ξi,2, Ti,2, λi,2). Here ξi,1 ∈ V1,
Ti,1 is an operator on V1 with domain D1, ξi,2 ∈ V2, Ti,2 is an operator on
V2 with domain D2. Let V = V1 ⊕ V2. Identify ξi,1 with ξi,1 ⊕ 0, ξi,2 with

0 ⊕ ξi,2, Ti,1 with
(
Ti,1 0
0 0

)
and Ti,2 with

(
0 0
0 Ti,2

)
. It is easy to see that this
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identification does not change the cumulants or the moments of the processes
X1,X2, and that condition (1) holds for the (k1+k2)-dimensional process X =
(X(1,1), . . . , X(k1,1), X(1,2), . . . , X(k2,2)). Then Φ1×q Φ2 is equal to M(·, 1;X).

For q = 1, the product state is the usual (tensor) product state, while for
q = 0 it is the (reduced) free product state. Already for q = −1, the situation
is unclear. The parity of rc (π) can differ from the parity of the number of
left-reduced crossings of [Nic95] even for partitions all of whose classes have
even order. Therefore even for q = −1, our cumulants are different from the
q-cumulants of that paper. In particular, the results of [MN97] about graded
independence do not apply. Note also that our product state construction is
defined only on the polynomial algebras C〈x〉, not on general algebras. So we
do not obtain a universal product in the sense of [Spe97b].
A state Φ is tracial if for all a, b, Φ(ab) = Φ(ba). For q = 0, 1, the product state
of two tracial states is tracial [VDN92]. This property remains true for the q-
Brownian motion (see below). However, the number of the restricted crossings
of a partition is not invariant under cyclic permutations of the underlying set.
For example, rc (((1, 3, 5)(2, 4))) = 2 while rc (((1, 3)(2, 4, 5))) = 1. So for
general q, the product state of two tracial states need not be tracial.

5. The Itô table

In general we do not know how to calculate the partition-dependent stochastic
measures Stπ(X); indeed we don’t expect a nice answer for a general process.
In particular we don’t expect that a functional Itô formula exists for q-Lévy
processes. However, one ingredient of it is present, namely, we can calculate
all the higher diagonal measures. These are higher variations of the processes,
and appear in the functional Itô formula for the free Lévy processes [Ans01b].

Remark 5.1 (Algebraic approach). Unless we are considering higher diagonal
measures of a single one-dimensional process, for this section we also need a
more general setup than the one we had before. First, we need to consider
multiple processes whose components are of the form X(t) = pt(ξ, η, T, λ) =
at(ξ)+a

∗
t (η)+pt(T )+ tλ. Second, we no longer can require T to be symmetric

and λ to be real. The solution in [Sch91] is to require that T be a linear
operator with domain D, not necessarily dense, so that the restriction of T ∗ to
D is a well-defined linear operator.
We describe briefly how to modify this paper for the algebraic context. The
gauge operators are defined in the same way, and the multiple q-Lévy process
are modified as in the previous paragraph, except that we drop the assumption
(1). The moments and cumulants can be modified to include ∗-quantities, i.e.
use words in both X and X∗ in the definitions, and consider them as function-
als on C〈x1, x2, . . . , xk, x∗1, x∗2, . . . , x∗k〉 with the obvious conjugation. All the
relations between moments and cumulants, and between partition-dependent
cumulants and the cumulant functional, remain the same, and it is clear how to
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modify the formula for the cumulant functional in terms of ξ, η, T, λ. In the al-
gebraic context, generators of the families of moment functionals for symmetric
processes are precisely all the conditionally positive functionals.

For the Itô table, we first need a technical lemma.

Lemma 5.2. For f, g ∈ L2(R+),

lim
δ(I)→0

∣
∣
∣
∣
∣

N∑

i=1

(∫

Ii

f(x)dx
)(∫

Ii

g(y)dy
)
∣
∣
∣
∣
∣
= 0,(6a)

lim
δ(I)→0

∥
∥
∥
∥
∥

N∑

i=1

(

1Ii(x)f(x)
)(∫

Ii

g(y)dy
)
∥
∥
∥
∥
∥
2

= 0,(6b)

lim
δ(I)→0

∥
∥
∥
∥
∥

N∑

i=1

(

1Ii(x)f(x)
)(

1Ii(y)g(y)
)
∥
∥
∥
∥
∥
2

= 0.(6c)

Proof. We repeatedly use the Cauchy-Schwartz inequality for sequences and
functions:
∣
∣
∣
∣
∣

N∑

i=1

(∫

Ii

f(x)dx
)(∫

Ii

g(y)dy
)
∣
∣
∣
∣
∣
≤

√
√
√
√

N∑

i=1

(∫

Ii

f(x)dx
)2 N∑

j=1

(∫

Ij

g(y)dy
)2

≤

√
√
√
√

N∑

i=1

|Ii|
∫

Ii

f2(x)dx

N∑

j=1

|Ij |
∫

Ij

g2(y)dy

≤ δ(I)

√
√
√
√

N∑

i=1

∫

Ii

f2(x)dx

N∑

j=1

∫

Ij

g2(y)dy

≤ δ(I) ‖f‖2 ‖g‖2 .
∥
∥
∥
∥
∥

N∑

i=1

(

1Ii(x)f(x)
)(∫

Ii

g(y)dy
)
∥
∥
∥
∥
∥
2

=

√
√
√
√

N∑

i=1

(∫

Ii

f2(x)dx
)(∫

Ii

g(y)dy
)2

≤

√
√
√
√

N∑

i=1

∫

Ii

f2(x)dx |Ii|
∫

Ii

g2(y)dy

≤
√

δ(I) ‖f‖2 ‖g‖2 .
The last property requires a bit more work, since uniform estimates do not
hold in this case. By the Cauchy-Schwartz inequality as above, we may assume
that f = g; also without loss of generality we assume that ‖f‖2 = 1. Let
I = (I1, I2, . . . , IM ) be a subdivision of [0, t), and ε > 0. For N > max(M, 8ε2 )
large enough, we can choose a subdivision J ′ = (J ′1, J

′
2, . . . , J

′
N ) so that all

∫

J ′j
f2(x)dx < 2

N and no Ii is a subset of any J ′j . Let J be the smallest
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common refinement of I,J ′. Then J consists of at most M +N intervals Jj ,
and for each of them

∫

Jj
f2(x)dx < 2

N . Therefore

∥
∥
∥
∥
∥
∥

∑

j

(

1Jj (x)f(x)
)(

1Jj (y)f(y)
)

∥
∥
∥
∥
∥
∥
2

=

√
∑

j

(∫

Jj

f2(x)dx
)(∫

Jj

f2(y)dy
)

≤
√

4(M +N)

N2

≤ ε.

We conclude that
∥
∥
∥
∑N
i=1

(
1Ii(x)f(x)

)(
1Ii(y)g(y)

)
∥
∥
∥
2
converges to 0 along the

net of subdivisions I as δ(I)→ 0.

Proposition 5.3. The Itô table for q-Lévy processes X (i)(t) = at(ξi)+a
∗
t (ηi)+

pt(Ti) + tλi is

dX(1)dX(2) da(ξ2) da∗(η2) dp(T2) λ2dt
da(ξ1) 0 〈ξ1, η2〉 dt da(T ∗2 ξ1) 0
da∗(η1) 0 0 0 0
dp(T1) 0 da∗(T1η2) dp(T1T2) 0
λ1dt 0 0 0 0

More precisely, the quadratic co-variation of these processes is

∆2(x1x2, t; (X
(1), X(2))) = [X(1), X(2)](t) = pt(T

∗
2 ξ1, T1η2, T1T2, 〈ξ1, η2〉).

Here the convergence in the definition of ∆ is the pointwise convergence on the
dense set Falg(L2(R+)⊗D).

Proof. We need to show that for ~ζ ∈ Falg(L2(R+)⊗D),

lim
δ(I)→0

∥
∥
∥
∥
∥

(
N∑

u=1

(y((1),i)u y((2),j)u )− y(i,j)
)

~ζ

∥
∥
∥
∥
∥
q

= 0,

where y((1),i), y((2),j) are labels for rows, respectively, columns of the Itô table,
and y(i,j) is the corresponding entry of the table. All of these are obtained by
applying Lemma 5.2, possibly with one or both of f, g equal to 1[0,t). More
precisely, we use equation (6a) for the product da(ξ1)da(ξ2), equation (6b) for
the products da∗(η1)da(ξ2), dp(T1)da(ξ2), da(ξ1)dp(T2) and equation (6c) for
the products da∗(η1)da

∗(η2), dp(T1)da
∗(η2), da

∗(η1)dp(T2), dp(T1)dp(T2).
We do the case dp(T1)da

∗(η2) as an example. The linear span of the vectors

of the form ~ζ = (f1 ⊗ ζ1) ⊗ (f2 ⊗ ζ2) ⊗ . . . ⊗ (fn ⊗ ζn), for f1, f2, . . . , fn ∈
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L2(R+), ζ1, ζ2, . . . , ζn ∈ D, is dense in Falg(L2(R+)⊗D). For such a vector,

N∑

i=1

pi(T1)a
∗
i (η2)

~ζ =

N∑

i=1

pi(T1)(1Ii ⊗ η2)⊗ ~ζ

=
N∑

i=1

(

(1Ii1Ii ⊗ T1η2)⊗ ~ζ

+

n∑

k=1

qk(1Iifk ⊗ T1ζk)⊗ (1Ii ⊗ η2)⊗ (f1 ⊗ ζ1)⊗ . . .⊗ (fn ⊗ ζn)
)

=

N∑

i=1

a∗i (T1η2)
~ζ

+

N∑

i=1

n∑

k=1

qk(1Iifk ⊗ T1ζk)⊗ (1Ii ⊗ η2)⊗ (f1 ⊗ ζ1)⊗ . . .⊗ (fn ⊗ ζn).

The first term is equal to a∗t (T1η2)
~ζ; we need to show that the second term

tends to 0 as δ(I) → 0. It suffices to do so for each fixed k. The operator Pn
is bounded, so it suffices to show that

lim
δ(I)→0

∥
∥
∥
∥
∥

N∑

i=1

(1Iifk ⊗ T1ζk)⊗ (1Ii ⊗ η2)⊗ (f1 ⊗ ζ1)⊗ . . .⊗ (fn ⊗ ζn)
∥
∥
∥
∥
∥
= 0,

where we are using the usual norm on (L2(R+)⊗ V )⊗n. But for this it suffices
to show that

lim
δ(I)→0

∥
∥
∥
∥
∥

N∑

i=1

(1Iifk ⊗ T1ζk)⊗ (1Ii ⊗ η2)
∥
∥
∥
∥
∥
= 0,

and in fact only that limδ(I)→0

∥
∥
∥
∑N
i=1(1Iifk)⊗ 1Ii

∥
∥
∥ = 0. Now apply the

lemma.

Remark 5.4. Note that the Itô table does not depend on q. The Itô table was
known for q = 1 [HP84] (with a somewhat different set of convergence), q = −1
[AH84] and q = 0 [Spe91]; for the q-Brownian motion (T = 0) it was known

for all q [Śni00]. In all of these cases it is only a facet of a well-defined theory
of stochastic integration.

Corollary 5.5. For a one-dimensional self-adjoint process X(t) = pt(ξ, T, λ)
and k ≥ 2,

∆k(t;X) = pt(T
k−1ξ, T k,

〈
ξ, T k−2ξ

〉
).
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6. Single-variable analysis

Denote byMc (for “combinatorial”) the space of finite positive Borel measures
on R all of whose moments are finite, and byM1

c ⊂Mc the subset of probability
measures. For µ ∈Mc considered as a functional on C[x], denote its moments
µ(xn) by mn(µ). For µ ∈M1

c and n ≥ 1, the q-cumulants rn(µ) = (logq µ)(x
n)

are determined by

rn(µ) = mn(µ)−
∑

π∈P(n)

π 6=1̂

qrc(π)
∏

B∈π

r|B|(µ).(7)

The expressions for the first few cumulants in terms of the moments and q are

r1 = m1,

r2 = m2 −m21,
r3 = m3 − 3m2m1 + 2m31,

r4 = m4 − 4m3m1 − (2 + q)m22 + (10 + 2q)m2m
2
1 − (5 + q)m41,

r5 = m5 − 5m4m1 − (5 + 4q + q2)m3m2 + (15 + 4q + q2)m3m
2
1

+ (15 + 12q + 3q2)m22m1 − (35 + 20q + 5q2)m2m
3
1 + (14 + 8q + 2q2)m51.

While these cumulants are well-defined for arbitrary µ ∈ M1
c , our results ap-

ply only to a special class of them. For a sequence r = (r0 = 0, r1, r2, . . . )
in R, let ψr be the functional on C[x] defined by ψr(

∑n
i=0 aix

i) =
∑n
i=0 airi.

The functional ψr is analytic iff lim supn→∞
1
nr
1/2n
2(n+2) <∞. It is conditionally

positive iff the functional ψ(r2,r3,... ) is positive semi-definite. These condi-
tions imply [Shi96] that for n ≥ 0, rn+2 = mn(τ) for some τ ∈ Mc that is
uniquely determined by its moments. Denote by Mu (for “unique”) the sub-
space of finite positive Borel measures in Mc that are of this form, i.e. for
which lim supn→∞

1
nm2n(τ)

1/2n <∞. Equivalently, τ ∈ Mu if its exponential

moment-generating function
∫

R exp(θx)dτ(x) is defined for θ in a neighborhood
of 0.

Definition 6.1. Let τ ∈ Mu, and λ ∈ R. Define LH−1q (λ, τ) to be the prob-

ability measure in M1
c determined by the cumulant sequence r1 = λ, rn =

mn−2(τ) for n ≥ 2. Equivalently, LH−1q (λ, τ) is the distribution at time 1 of
the q-Lévy process pt(ξ, T, λ) such that the operator T has distribution τ with
respect to the vector functional 〈ξ, ·ξ〉. Note that LH−1q (λ, τ) is in fact in M1

u.

Denote by IDc(q) the image of the map LH−1q ; clearly IDc(q) = IDc(q, 1).
Call a measure in IDc(q) q-infinitely divisible.

It is clear that LH−1q is injective. We define LHq : IDc(q) → R ×Mu to be

the inverse of LH−1q . This is an analog of the Lévy-Hinchin representation, or
more precisely of the canonical representation; see Section 6.1.
Note that for the process pt(ξ, T, λ) in the definition above, we can identify the
Hilbert space V with L2(R, τ), so that ξ corresponds to the constant function
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1, and T corresponds to the operator of multiplication by the variable x. The
Hilbert space H is then equal to L2(R+ × R, dx⊗ τ).
Definition 6.2. For µ, ν ∈ IDc(q), define their q-convolution µ ∗q ν by the
rule that LHq(µ ∗q ν) = LHq(µ) + LHq(ν).

Lemma 6.3. (IDc(q), ∗q) is an Abelian semigroup. In particular, the q-
convolution of two positive measures is positive.

Proof. The sum of two measures in Mu is in Mu.

Lemma 6.4 (Relation to product states). For µ1, µ2 ∈ IDc(q),
(µ1 ∗q µ2)(xn) = (µ1 ×q µ2)((x1 + x2)

n).

Proof. Using the representation from the proof of Lemma 4.6, let ξ = ξ1⊕ ξ2 ∈
V , T =

(
T1 0
0 T2

)
an operator on V with domain D1⊕D2, λ = λ1+λ2. Let V

′ be

the closure of the span
({
T jξ

}∞

j=0

)

. Then T
(

span
({
T jξ

}∞

j=0

))

⊂ V ′. Define

T ′ to be the restriction T ¹ V ′. Then X(t) = pt(ξ, T
′, λ) is a q-Lévy process.

Its distribution is equal to µ1 ∗q µ2. Indeed, if we denote this distribution by
µ, then

r1(µ) = λ = λ1 + λ2 = r1(µ1) + r1(µ2),

and for n ≥ 2,

rn(µ) =
〈
ξ, (T ′)n−2ξ

〉
=
〈
ξ1, T

n−2
1 ξ1

〉
+
〈
ξ2, T

n−2
2 ξ2

〉
= rn(µ1) + rn(µ2).

But µ1 ×q µ2 =M(·, 1; (X(1), X(2))), and it is clear that

M(xn, 1;X) =M((x1 + x2)
n, 1; (X(1), X(2))).

6.1. The Bercovici-Pata bijection. One would not expect the q-cumulants
to be defined precisely for all probability measures in M1

c , rather than for
more general moment sequences. Indeed, such a construction would provide a
continuous bijection Λ on M1

c with the property that rn(q = 1, µ) = rn(q =
0,Λ(µ)). In particular, this would imply that Λ(µ ∗ ν) = Λ(µ)¢Λ(ν), where ∗
is the usual convolution while ¢ is the additive free convolution. Such a map
is not known, and indeed for the space of all probability measures it is known
not to exist, since the analog of the Cramér theorem does not hold in free
probability [BV95]. However, there is a remarkable bijection [BP99] between
the usual and the free infinitely divisible measures. We now show that as long
as we restrict ourselves to infinitely divisible measures in M1

c , this is precisely
the map obtained by identifying the cumulants as above, and in particular our
spaces IDc(q) provide an interpolation between the usual and the free infinitely
divisible measures in cases q = 0 and q = 1.
The bijection is defined as follows. Let σ be a finite positive Borel measure
on R and γ ∈ R. Denoting by F the Fourier transform, define µγ,σ∗ to be the
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probability measure with the Lévy-Hinchin representation

logFµγ,σ∗ (θ) = iγθ +

∫

R

(

eiθx − 1− iθx

1 + x2

)
1 + x2

x2
dσ(x).

Denoting by R the R-transform [VDN92, Voi00], define µγ,σ
¢

to be the proba-
bility measure with the free Lévy-Hinchin representation

Rµγ,σ
¢

(z) = γ +

∫

R

z + x

1− zxdσ(x).

Then Λ(µγ,σ∗ ) = µγ,σ
¢

.

Lemma 6.5. Let λ ∈ R, τ ∈ Mu. For dσ(x) = 1
1+x2 dτ(x) and γ = λ−m1(σ),

µγ,σ∗ = LH−11 (λ, τ) and µγ,σ
¢

= LH−10 (λ, τ).

Proof. Since σ ∈Mu, µ
γ,σ
∗ has finite variance. Then

logFµγ,σ∗ (θ) = iγθ +

∫

R

(

eiθx − 1− iθx+
iθx3

1 + x2

)
1

x2
dτ(x)

= iλθ +

∫

R

(
eiθx − 1− iθx

) 1

x2
dτ(x)

is the canonical representation of logFµγ,σ∗ . It has a convergent power series
expansion

iλθ +
∞∑

n=2

1

n!
(iθ)nmn−2(τ).

It is well-known [Shi96] that the classical (q = 1)-cumulants of µ are the coef-
ficients in such a power series expansion of logFµ. Similarly,

Rµγ,σ
¢

(z) = γ +

∫

R

(
z

1− zx +
x

x2 + 1

)

dτ(x)

= λ+

∫

R

z

1− zxdτ(x),

and for z = iθ, it has an expansion

λ+
∞∑

n=2

(iθ)n−1mn−2(τ).

Here the sum in the last expression need not converge, so what we mean by it
is that for k ≥ 2,

lim
θ→0

1

(iθ)k

(

Rµγ,σ
¢

(iθ)− λ−
k∑

n=2

(iθ)n−1mn−2(τ)

)

= mk−1(τ).

Again, it is well-known [Spe97a] that the free (q = 0)-cumulants of µ are the
coefficients in such an expansion of Rµ.

Lemma 6.6. The mapping (q, λ, τ) 7→ LH−1q (λ, τ) has the following properties.

a. LH−1q (λ1, τ1) ∗q LH−1q (λ2, τ2) = LH−1q (λ1 + λ2, τ1 + τ2).
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b. Denoting by Dc the dilation operator, Dc(µ)(S) = µ(c−1S),

Dc(LH
−1
q (λ, τ)) = LH−1q (cλ, c2Dc(τ)).

c. For any q, LH−1q (λ, 0) = δλ, and for any µ ∈ IDc(q), µ ∗q δλ = µ ∗ δλ.
d. For q ∈ [−1, 1] and fixed λ, τ , the mapping q 7→ LH−1q (λ, τ) is weakly

continuous.
e. For a fixed q ∈ [−1, 1], the mapping LH−1q : R × Mu → IDc(q) is a

homeomorphism in the weak topology.

Proof. The first and the third properties are immediate. For the second one,
we observe that mk(Dc(µ)) = ckmk(µ) and so rk(Dc(µ)) = ckrk(Dc(µ)). The
last two follow from the following fact [Dur91]. Let {µn}∞n=1 be a sequence of
finite measures inMc that converges weakly to a finite measure µ ∈Mc. Then
for all k, mk(µn) → mk(µ). Conversely, let {µn}∞n=1 be a sequence of finite
measures inMc such that for any k, mk(µn)→ mk. If the family {mk}∞k=0 are
the moments of a unique finite positive measure µ, then µn → µ weakly.

For q = 0, 1, it is known [BNTr00] that the map (γ, σ) 7→ LH−1q (γ +

m1(σ),
1

1+x2σ) can be extended to a weak homeomorphism between the weak

closures of R×Mu and IDc(q).
Corollary 6.7. Let τ ∈ Mu, λ ∈ R. Fix three sequences {A(n)}∞n=1,
{B(n)}∞n=1 ⊂ R, {N(1) < N(2) < . . . } ⊂ N. By limits of sequences of mea-
sures we will always mean weak limits.

a. Every measure in IDc(q) arises as a limit

lim
n→∞

(µn ∗q µn ∗q . . . ∗q µn
︸ ︷︷ ︸

N(n) times

) = LH−1q (λ, τ)(8)

for some {µn}∞n=1 ⊂ IDc(q). The statement (8) is equivalent to

lim
n→∞

(N(n)m1(µn)) = λ, lim
n→∞

(N(n)x2µn) = τ.

b. Let µ ∈ IDc(q). The statement

lim
n→∞

(DB(n)−1(µ ∗q . . . ∗q µ
︸ ︷︷ ︸

N(n) times

) ∗q δ−A(n)) = LH−1q (λ, τ)

is equivalent to

lim
n→∞

(
N(n)

B(n)
m1(µ)−A(n)) = λ, lim

n→∞

N(n)

B(n)2
= t, τ = tδ0.

Hence only LH−1q (λ, tδ0) arise as such limits.

Proof. Denote by (λn, τn) the components of LHq(µn). From the preceding
Lemma it follows that the statement (8) is equivalent to

lim
n→∞

(N(n)λn) = λ, lim
n→∞

(N(n)τn) = τ.

So to fulfill (8), it suffices to take µn = LH−1q ( 1
N(n)λ,

1
N(n)τ).
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Now we prove the equivalence. It is clear that λn = r1(µn) = m1(µn). The
family {µn} satisfies (8) iff, in addition, for all k > 1,

mk(N(n)τn) = N(n)mk(τn) = N(n)rk+2(µn)
n→∞−→ mk(τ).

This is equivalent to rk+2(µn) =
1

N(n)mk(τ) + o( 1
N(n) ). By induction on k and

using (7), this is equivalent to

mk(x
2µn) = mk+2(µn) =

1

N(n)
mk(τ) + o(

1

N(n)
),

i.e.

mk(N(n)x2µn)
n→∞−→ mk(τ)

and

(N(n)x2µn)
n→∞−→ τ.

The second statement follows from the first one with µn = DB(n)−1(µ)∗qδ− A(n)
N(n)

.

For k ≥ 2,

mk(µn) =
N(n)

B(n)k
mk(µ)

n→∞−→ mk−2(τ).

So limn→∞
N(n)
B(n)2 = t for some t, and mk(τ) = 0 for k ≥ 0, i.e. τ = tδ0. So only

shifted q-Gaussian distributions (see below) can arise as such a limit among
the measures in IDc(q). This means that the combinatorial framework is, in
general, not adequate for identifying the domains of partial attraction.

Remark 6.8. While the results of this section are of most interest in the one-
dimensional case, there is no difficulty with the extension to k dimensions. That
is, to every functional in IDc(q, k) there corresponds a unique conditionally

positive analytic functional, which can be identified with a pair of ~λ ∈ Rk and
a positive analytic functional on C〈x1, x2, . . . , xk〉. Using this bijection, we can
define a convolution on IDc(q, k), as well as a multi-dimensional extension of
the bijection Λ.

Now we consider the q-Lévy processes in the simplest case of one-dimensional
V . There are essentially two distinct situations, T = 0 and T = 1.

6.2. The q-Brownian motion. Denote ω(ξ) = a(ξ) + a∗(ξ).

Definition 6.9. Let V = C, ξ = 1 ∈ V, T = 0, λ = 0 and ξt = 1[0,t). Then the
q-Brownian motion is the process X(t) = p(ξt, 0, 0) = ω(ξt). The distribution
of X(t) is the q-Gaussian distribution with parameter t, given by LH−1q (0, tδ0).

See, for example, [BKS97] for an explicit form of the q-Gaussian distribution.

Definition 6.10. q-Hermite polynomials are defined by the recursion relation

xHq,n(x, t) = Hq,n+1(x, t) + [n]qtHq,n−1(x, t)

with initial conditions Hq,0(x, t) = 1, Hq,1(x, t) = x.
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Lemma 6.11. The following chaos representation holds:

Hq,n(X(t), t)Ω = ξ⊗nt .

Therefore the q-Gaussian distribution with parameter t is the orthogonalization
measure of the q-Hermite polynomials with parameter t.

Proof. For n = 0, 1Ω = Ω. For n = 1, X(t)Ω = ξt. For n ≥ 2 by induction

Hq,n+1(X(t), t)Ω = X(t)ξ⊗nt − [n]qtξ
⊗(n−1)
t

= ξ
⊗(n+1)
t + [n]qtξ

⊗(n−1)
t − [n]qtξ

⊗(n−1)
t

= ξ⊗nt .

Since ξ⊗nt are orthogonal in Fq(H) for different n, the polynomials Hq,n are
orthogonal for different n with respect to the distribution of X(t).

For the q-Brownian motion, ∆2(t) = t and ∆k(t) = 0 for k > 2. But in this
case, we can in fact calculate all the partition-dependent stochastic measures.
Temporarily denote by s1, s2 the numbers of singleton and 2-element classes of
π, respectively. For a singleton (i), define its depth as

d(i) = |{j|∃a, b ∈ Bj : a < i < b}| .
Define the singleton depth sd (π) to be the sum of depths of all the singletons
of π. In the single-variable case, we will omit the polynomial from the notation
for stochastic measures.

Proposition 6.12. The partition-dependent stochastic measures of the q-
Brownian motion are

Stπ(t;X) =







qrc(π)+sd(π)ts2Hq,s1(X(t), t) if all the classes of π contain

at most 2 elements,

0 otherwise,

where the defining limits are taken in the Lp(ϕ) norm, for any p ≥ 1 (where

‖X‖p = ϕ [|X|p]1/p).

The result is known for q = 1 [RW97] when a different mode of convergence is
used, and for q = 0 [Ans00] when the limit is taken in the operator norm. The
preceding proposition probably holds with the operator norm convergence as
well.
Throughout, we will use the following explicit formula for the moments of the
q-Brownian motion, implicitly contained already in [BS91]:

ϕ [ω(η1)ω(η2) . . . ω(η2n)] =
∑

π∈P2(2n)

qrc(π)
n∏

i=1

〈
ηa(Bi), ηb(Bi)

〉
.

Lemma 6.13. If π has a class of at least three elements, then Stπ(t;X) = 0,
where the limit is taken in the operator norm.
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Proof. For ~v ∈ [1 . . . N ]nπ and B ∈ π, denote by v(B) the value of v on any
element of B. Denote by π(~v) the partition induced by ~v, given by

i
π(~v)∼ j ⇔ v(i) = v(j).

Assume t > 1 to simplify notation.

‖Stπ(t;X, I)‖2k2k =

∥
∥
∥
∥
∥
∥

∑

~v∈[1...N ]nπ

X~v(t)

∥
∥
∥
∥
∥
∥

2k

2k

,

which equals to

ϕ













∑

~v∈[1...N ]nπ

X~v(t)








∑

~v∈[1...N ]nπ

X~v(t)





∗



k





= ϕ







∑

~v=(~v1,~v2,... ,~v2k)
~v2i+1∈[1...N ]

n
π ,~v2i∈[1...N ]

n
πop

X~v(t)







=
∑

~v=(~v1,~v2,... ,~v2k)
~v2i+1∈[1...N ]

n
π ,~v2i∈[1...N ]

n
πop

∑

τ∈P2(2nk)
τ≤π(~v)

qrc(τ)
∏

B∈τ

∣
∣Iv(B)

∣
∣

≤
∑

τ∈P2(2nk)

qrc(τ)δ(I)k(n−2|π|)t2k|π|

≤ Q2nk(q)δ(I)k(n−2|π|)t2k|π|,

where Q2n(q) =
∑

τ∈P2(2n)
qrc(τ). Therefore

‖Stπ(t;X, I)‖2k ≤ Q2nk(q)
1/2kt|π|δ(I)(n−2|π|)/2.

Q2n(q) is the 2n-th moment of the q-Gaussian distribution. By [AB98],
it is equal to

∑

τ∈NC2(2n)

∏

B∈τ [d(B)]q. Here NC 2(2n) is the collection of

noncrossing pair partitions on the set of 2n elements, and for τ ∈ NC (n)
and an arbitrary class B ∈ τ , we can define its depth in τ by d(B) =
|{i : a(Bi) ≤ B ≤ b(Bi)}|; note that this differs by 1 from our definition of
singleton depth above. For q ∈ [−1, 1), [k]q ≤ 2

1−q , and so the sum is

bounded by cn

(
2
1−q

)n

, where cn is the n-th Catalan number. Therefore

Q2nk(q)
1/2k ≤ 2n

(
2
1−q

)n/2

. We conclude that

‖Stπ(t;X, I)‖2k ≤ 2n
(

2

1− q

)n/2

t|π|δ(I)(n−2|π|)/2.(9)

All the vectors ξt lie in the real subspace L2(R+,R) of L2(R+,C). The state
ϕ is faithful on the algebra generated by

{
ω(ξ) : ξ ∈ L2(R+,R)

}
, in fact Ω is
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separating for this algebra [BS94]. Therefore the estimate (9) holds for the
operator norm of Stπ(t;X, I). So this norm converges to 0 as δ(I)→ 0.

Lemma 6.14. Let π contain only classes of at most 2 elements. Suppose that
one of the following conditions holds:

a. B,C ∈ π are 2-element classes with a(B) < a(C) = b(B)−1 < b(C). Let
α be the transposition (a(C)b(B)).

b. B ∈ π is a 2-element class and (j) ∈ π is a singleton with a(B) < j =
b(B)− 1. Let α be the transposition (j b(B)).

Then Stπ = qStα◦π, meaning

lim
δ(I)→0

‖Stπ(t;X, I)− qStα◦π(t;X, I)‖p = 0,

for any p ≥ 1.

Proof. We prove only the first case, the proof of the second case is similar. For
a multi-index ~v, denote α(~v) = (v(α(1)), v(α(2)), . . . , v(α(n))).

ϕ













∑

~v∈[1...N ]nπ

X~v(t)− qXα(~v)(t)








∑

~v∈[1...N ]nπ

X~v(t)− qXα(~v)(t)





∗



k





= ϕ








∑

S⊂[1...2nk]

∑

σ∈P(2nk)

σ∧2k1̂n=
∑2nk

j=1 πj(S)

∑

~v∈[1...N ]2nkσ

(−q)|S|X~v(t)







,

where

πj(S) =







α ◦ π if j ∈ S, j odd,

(α ◦ π)op if j ∈ S, j even,

π if j 6∈ S, j odd,

πop if j 6∈ S, j even.

First consider all the terms with σ ∈ P2(2nk).

(10) ϕ








∑

S⊂[1...2nk]

∑

σ∈P2(2nk)

σ∧2k1̂n=
∑2nk

j=1 πj(S)

∑

~v∈[1...N ]2nkσ

(−q)|S|X~v(t)








=
∑

S⊂[1...2nk]

∑

σ∈P2(2nk)

σ∧2k1̂n=
∑2nk

j=1 πj(S)

∑

~v∈[1...N ]2nkσ

(−q)|S|qrc(σ)
∏

B∈σ

∣
∣Iv(B)

∣
∣ .

Since σ ∈ P2(2nk), it is completely determined by the collection {πj(S)} and

the partition σs induced by σ on the singleton classes of
∑2nk
j=1 πj(S). Note that

there is a natural (order-preserving) identification of the singleton classes of π
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and α ◦ π, so we can consider σs as a partition on the singletons of k(π+ πop).
Denote by σ′ the partition obtained from k(π+πop) by identifying its singleton
classes using σs.
It is easy to see that

rc (σ) = rc (σs) + rc





2nk∑

j=1

πj(S)



+ (2nk)sd (π) .

In its turn, rc
(
∑2nk
j=1 πj(S)

)

= (2nk)rc (π)−|S|. Therefore, continuing expres-

sion (10),

= q
(2nk)(rc(π)+sd(π))

∑

S⊂[1...2nk]

∑

σ∈P2(2nk)

σ∧2k1̂n=
∑2nk
j=1 πj(S)

∑

~v∈[1...N ]2nkσ

(−1)|S|qrc(σs)
∏

B∈σ

∣
∣Iv(B)

∣
∣

= q
(2nk)(rc(π)+sd(π))

∑

σs

∑

~v∈[1...N ]2nk
σ′

q
rc(σs)

∏

B∈σ′

∣
∣Iv(B)

∣
∣

∑

S⊂[1...2nk]

(−1)|S|.

In this expression, the only dependence on S is in (−1)|S|, and the sum
∑

S⊂[1...2nk](−1)|S| = 0.

Therefore the non-zero contributions come only from the terms with σ 6∈
P2(2nk). The rest of the argument proceeds as in the previous lemma, and
shows that ‖Stπ − qStα◦π‖p = 0.

Proof of Proposition 6.12. Using the lemmas, it suffices to prove the proposi-
tion for an interval partition π whose classes have at most 2 elements. Moreover,
by the same arguments as in the preceding lemmas it is easy to see that each
2-element class contributes a factor of t. It remains to show that

St0̂n(t;X) = Hq,n(X(t), t).

For n = 1,
∑N
i=1Xi(t) = X(t). For n = 2,

N∑

i6=j

Xi(t)Xj(t) =
( N∑

i=1

Xi(t)
)2

−
N∑

i=1

X2
i (t) = X2(t)− t = Hq,2(X(t), t).

For n > 2, it suffices to show that St0̂n(t;X) satisfy the same recursion relations
as the q-Hermite polynomials. Indeed,

X(t)St0̂n(t;X, I) = St0̂(n+1)
(t;X, I) +

n+1∑

i=2

Stπi(t;X, I),

where πi = ((1, i)(2) . . . (̂ı) . . . (n+1)) ∈ P(n+1). By the second case of Lemma
6.14 and using induction on n,

Stπi(t;X) = tqi−2St0̂n−1
(t;X).

Therefore

St0̂n+1
(t;X) = X(t)St0̂n(t;X)−

n+1∑

i=2

tqi−2St0̂n−1
(t;X).
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This implies by induction that St0̂n+1
(t;X) is well-defined, and

X(t)St0̂n(t;X) = St0̂n+1
(t;X) +

n+1∑

i=2

tqi−2St0̂n−1
(t;X)(11)

= St0̂n+1
(t;X) + t[n]qSt0̂n−1

(t;X).

Remark 6.15 (A combinatorial corollary). Denote by P1,2(n) the collection
of all partitions in P(n) that have classes of only 1 or 2 elements, and by
s1(π), s2(π) the number of 1- and 2-elements classes, respectively. Then using
equation (2), we have a combinatorial corollary of the preceding proposition:

xn =
∑

π∈P1,2(n)

qrc(π)+sd(π)ts2(π)Hq,s1(π)(x, t).

Using the Möbius function on P(n), this relation can be inverted, to obtain

Hq,n(x, t) =
∑

π∈P1,2(n)

(−1)s2(π)qrc(π)+sd(π)ts2(π)xs1(π),

which is a well-known expansion for q-Hermite polynomials. In particular,

X(t)nΩ =
∑

π∈P1,2(n)

qrc(π)+sd(π)ts2(π)Hq,s1(π)(X(t), t)Ω

=
∑

π∈P1,2(n)

qrc(π)+sd(π)ts2(π)ξ
⊗s1(π)
t

= Hq,n(ξt,−t),
where ξt is considered as an element of the tensor algebra, with the tensor
multiplication.

6.3. The q-Poisson process. The following representation is similar to but
different from that of [SY00b].

Definition 6.16. Let V = C, ξ = 1 ∈ V, T = Id, λ = 1 and ξt = 1[0,t), Tt =
1[0,t). The q-Poisson process is the process X(t) = p(ξt, Tt, t). The distribution

of X(t) is the q-Poisson distribution with parameter t, given by LH−1q (t, tδ1).

We use the definitions of the q-Poisson distribution and the q-Poisson-Charlier
polynomials that were introduced in [SY00a]. See that paper for an explicit
formula for the q-Poisson distribution.

Definition 6.17. q-Poisson-Charlier polynomials are defined by the recursion
relations

xCq,n(x, t) = Cq,n+1(x, t) + ([n]q + t)Cq,n(x, t) + [n]qtCq,n−1(x, t)(12)

with initial conditions Cq,0(x, t) = 1, Cq,1(x, t) = x− t.
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Remark 6.18. Let Sk,n;q =
∑

π∈Π(n,k) q
rc(π), where Π(n, k) is the set of parti-

tions in P(n) with k classes. It is appropriate to call these q-Stirling num-
bers: they interpolate between the usual Stirling numbers for q = 1 and

1
n−k+1

(
n
k

)(
n−1
k−1

)
for q = 0. Then according to [Bia97] (cf. [NS94]), the gen-

erating function
∑

k,n≥0

Sk,n;qt
kzn

has the continued fraction expansion

1

1− ([0]q + t)z − [1]qtz
2

1− ([1]q + t)z − [2]qtz
2

· · ·

.

It is also the moment-generating function (in z) of the probability measure with
q-cumulants rn = t for n ≥ 1. The formula says precisely that the orthogonal
polynomials with respect to that measure satisfy the 3-term recursion relation
(12). These are then the orthogonal polynomials with respect to the q-Poisson
distribution with parameter t. A more direct proof follows from the following
lemma, which is almost verbatim from [SY00b].

Lemma 6.19. The following chaos representation holds:

Cq,n(X(t), t)Ω = ξ⊗nt .

Therefore the distribution of X(t) is the orthogonalization measure of the q-
Poisson-Charlier polynomials.

For the q-Poisson process, for k > 0, ∆k(t) = X(t) independently of k. The
situation with the more general stochastic measures is more complicated. In
particular, it is not true that St0̂n(t;X) = Cq,n(X(t), t), unlike in the classical
and the free case [RW97, Ans00]. Nevertheless, the analog of equation (11),
which is a form of q-Kailath-Segall formula for centered processes, does hold,
as follows:

Lemma 6.20. For n ≥ 0,

Cq,n+1(X(t), t) = (X(t)− t)Cq,n(X(t), t)

+
n∑

j=1

(−1)j [n]q[n− 1]q . . . [n− j + 1]q∆j+1(t;X)Cq,n−j(X(t), t).

Proof. We need to show that

Cq,n+1(x, t) = (x− t)Cq,n(x, t) +
n∑

j=1

(−1)j [n]q[n− 1]q . . . [n− j + 1]qxCq,n−j(x, t).

(13)
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We will prove this by induction. The formula holds for n = 0. Suppose the
formula true for n− 1, i.e.

Cq,n(x, t) = (x− t)Cq,n−1(x, t) +

n−1∑

j=1

(−1)j [n− 1]q[n− 2]q . . . [n− j]qxCq,n−j−1(x, t).

Then

− [n]qCq,n(x, t)

= −[n]q(x− t)Cq,n−1(x, t) +

n−1∑

j=1

(−1)j+1[n]q[n− 1]q . . . [n− j]qxCq,n−j−1(x, t)

= [n]qtCq,n−1(x, t) +

n−1∑

j=0

(−1)j+1[n]q[n− 1]q . . . [n− j]qxCq,n−j−1(x, t)

= [n]qtCq,n−1(x, t) +
n∑

j=1

(−1)j [n]q[n− 1]q . . . [n− j + 1]qxCq,n−j(x, t).

Add to it the recursion relation (12)

[n]qCq,n(x, t) + Cq,n+1(x, t) = (x− t)Cq,n(x, t)− [n]qtCq,n−1(x, t)

to obtain (13).

7. von Neumann algebras

In this section we list some preliminary results on the algebras generated by
the q-Lévy processes. Throughout the section we consider only q ∈ (−1, 1).
Let X be a centered q-Lévy process with X(i) = p(ξi, Ti, 0), i ∈ [1 . . . k]. We
further assume that the Hilbert space V has a real Hilbert subspace VR so that
V is the complexification of VR. Then the Hilbert space H is the complexifica-
tion of its real subspace L2(R+,R, dx) ⊗ VR. So H has a natural conjugation

¯defined on it. Assume that {ξi}ki=1 ⊂ VR, and that for each i, Ti(VR) ⊂ VR
and Ti is the complexification of its restriction to VR. Denote by B(Fq(H))
the algebra of all bounded linear operators on Fq(H), and by AX its von Neu-

mann subalgebra generated by
{
X(i)(t) : i ∈ [1 . . . k], t ∈ [0,∞)

}
. As usual, if

the operators comprising X are not bounded, we mean the algebra generated
by their spectral projections.

First consider the multi-dimensional q-Brownian motion. Let {ξi}ki=1 be an

orthonormal basis for V , let VR be the real linear span of {ξi}ki=1, and all
Ti = 0. Since the space of simple functions is dense in L2(R+), the resulting
algebra is the same as the one obtained from the q-Gaussian functor. The
algebra A is known to have the following properties [BS94, BKS97].

a. The vacuum vector Ω is a cyclic vector for A.
b. The vacuum expectation ϕ is a trace on A.
c. The vacuum vector Ω is a cyclic vector for the commutant A′ of A.

Therefore it is a separating vector for A, and the vacuum expectation ϕ
is faithful on A.
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d. Define an anti-linear involution J on Fq(H) by

J(η1 ⊗ η2 ⊗ . . .⊗ ηn) = η̄n ⊗ . . .⊗ η̄2 ⊗ η̄1.
Then A′ = JAJ .

e. A is a factor. Therefore A is a II1 factor in standard form.

We now investigate these properties for more general processes.

Lemma 7.1. If span ({ξi : i ∈ [1 . . . k]}) is dense in V , the vacuum vector Ω is
a cyclic vector for AX.

Proof. For a multi-index ~u of length n and a family of intervals {Ii},
n∏

i=1

X(u(i))(Ii)Ω = (1I1 ⊗ ξu(1))⊗ (1I2 ⊗ ξu(2))⊗ . . .⊗ (1In ⊗ ξu(n)) + ~η,

with ~η ∈ ⊕n−1
j=0 (L

2(R+) ⊗ V )⊗j . So if span ({ξi : i ∈ [1 . . . k]}) is dense in V ,
by induction on n we see that Ω is a cyclic vector for AX.

Remark 7.2. We could also consider the algebra generated by the process
and its higher diagonal measures determined in Section 5. We describe the
construction in the one-dimensional case. Let X = p(ξ, T, 0), and define

∆n = p(Tn−1ξ, Tn,
〈
ξ, Tn−2ξ

〉
).

Let AX,∆ be the von Neumann algebra generated by all the processes ∆n(t) for
n ≥ 1. Then Ω is a cyclic vector for AX,∆. We may describe this construction
in more detail elsewhere.

Lemma 7.3. Let q = 0. If the cumulant functional R(·;X) is a trace on C〈x〉,
then ϕ is a trace on AX.

Proof. Let {Ii}li=1 be a family of disjoint intervals. It suffices to show the trace

property for the family of operators
{
X(u(i))(Iv(i))

}n

i=1
for arbitrary multi-

indices ~u,~v. However, it is easy to see that

ϕ

[
n∏

i=1

X(u(i))(Iv(i))

]

=
∑

σ∈NC (n)
σ≤π(~v)

∏

B∈σ
B=(j(1),j(2),... ,j(l))

∣
∣
∣
∣
∣
∣

⋂

j∈B

Iv(j)

∣
∣
∣
∣
∣
∣

〈
ξj(1), Tj(2) . . . Tj(l−1)ξj(l)

〉

=
∑

σ∈NC (n)
σ≤π(~v)

Rσ(x~u;X)
∏

B∈σ

∣
∣
∣
∣
∣
∣

⋂

j∈B

Iv(j)

∣
∣
∣
∣
∣
∣

.

If R(·; X) is a trace, this expression is symmetric under simultaneous cyclic
permutations of the components of ~u and ~v.
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The hypothesis of Lemma 7.1 is rarely satisfied. It does hold for the q-Brownian
motion, and it also holds for the q-Poisson process. For the remained of the
section we investigate the latter.

Let {ξi}ki=1 be an orthonormal basis for V , with VR the real linear span of

{ξi}ki=1. Let Ti be the orthogonal projection on ξi. The process X with X(i) =
p(ξi, Ti, 0) is the centered k-dimensional q-Poisson process. By Lemma 7.1, Ω
is a cyclic vector for AX; a related statement is contained in Lemma 6.19.
First let q = 0. Then by Lemma 7.3, ϕ is a trace on AX. By the same
arguments used in [BS94] for the q-Brownian motion, it is easy to see that Ω is
separating for AX, and A′X = JAXJ . In fact, using a different representation
of the process [NS96] it follows that AX is the reduced von Neumann algebra of
the free group on infinitely many generators. The preceding discussion shows
that it is given in standard form.
For q 6= 0, for simplicity we consider the 1-dimensional process. Then H =
L2(R+). We extend the mapping I 7→ X(I) to the map on all of HR, namely
for f ∈ L2(R+,R, dx), X(f) = a(f)+a∗(f)+p(Mf ), whereMf is the (possibly
unbounded) operator of multiplication by f . Then AX is the von Neumann
algebra generated by {X(f) : f ∈ HR}.

Proposition 7.4. For the q-Poisson process X, Ω is a separating vector for
AX .

Proof. Define the Wick map W : Falg(HR)→ AX as follows. For f, f1, f2, . . . ∈
HR, let W (Ω) = Id, W (f) = X(f), inductively

W (f ⊗ f1 ⊗ . . .⊗ fn) = X(f)W (f1 ⊗ . . .⊗ fn)

−
n∑

i=1

qi−1 〈f, fi〉W (f1 ⊗ . . .⊗ f̂i ⊗ . . .⊗ fn)

−
n∑

i=1

qi−1W (ffi ⊗ f1 ⊗ . . .⊗ f̂i ⊗ . . .⊗ fn),

and extend R-linearly. Clearly

W (f1 ⊗ . . .⊗ fn)Ω = f1 ⊗ . . .⊗ fn.(14)

For f ∈ HR, define the operator Xr(f) with dense domain Falg(HR) by

Xr(f)f1 ⊗ . . .⊗ fn =W (f1 ⊗ . . .⊗ fn)X(f)Ω =W (f1 ⊗ . . .⊗ fn)f.

Xr(f) commutes with AX on its domain of definition. Indeed,

X(g)Xr(f)Ω = X(g)f =W (g)f = Xr(f)g = Xr(f)X(g)Ω.

Also,

X(g)Xr(f)f1 ⊗ . . .⊗ fn = X(g)W (f1 ⊗ . . .⊗ fn)f

Documenta Mathematica 6 (2001) 343–384



Stochastic Measures and q-Cumulants 381

and

Xr(f)X(g)f1 ⊗ . . .⊗ fn

= Xr(f)X(g)W (f1 ⊗ . . .⊗ fn)Ω

= Xr(f)
[

W (g ⊗ f1 ⊗ . . .⊗ fn) +
n∑

i=1

q
i−1 〈g, fi〉W (f1 ⊗ . . .⊗ f̂i ⊗ . . .⊗ fn)

+

n∑

i=1

q
i−1

W (gfi ⊗ f1 ⊗ . . .⊗ f̂i ⊗ . . .⊗ fn)
]

Ω

= X(g)W (f1 ⊗ . . .⊗ fn)f.

Next,

Xr(fn)Xr(fn−1) . . . Xr(f2)Xr(f1)Ω =W (. . .W (W (f1)f2) . . . fn−1)fn

= f1 ⊗ f2 ⊗ . . .⊗ fn + ~η,

with ~η ∈⊕n−1
i=0 H

⊗i. Therefore Ω is separating for AX .

As a consequence, the map W is in fact determined by the condition (14).

Lemma 7.5. Assume q 6= 0. Then for the q-Poisson process X,

a. ϕ is not a trace on AX .
b. AX and JAXJ do not commute.

Proof. Let I1, I2 be two disjoint intervals. It is easy to see that

ϕ [X(I1)X(I2)X(I1)X(I2)X(I1)] = q2 |I1| |I2| ,
while

ϕ [X(I1)X(I1)X(I2)X(I1)X(I2)] = q |I1| |I2| .
Therefore ϕ is not a trace on AX .
Moreover, for an interval I, (X(I)JX(I)J)(η1 ⊗ η2 ⊗ η3) contains the term
1I⊗η1⊗η2⊗η3 with coefficient q3, while (JX(I)JX(I))(η1⊗η2⊗η3) contains
no such term. So already on H⊗3, AX and JAXJ do not commute.

We conclude that even for the q-Poisson process, the Fock representation of the
corresponding algebra provides little immediate information about the algebra.
The subject certainly deserves further investigation.
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and stochastic evolutions, Comm. Math. Phys. 96 (1984), no. 4,
473–496.

[Ans00] Michael Anshelevich, Free stochastic measures via noncrossing
partitions, Adv. Math. 155 (2000), no. 1, 154–179.

Documenta Mathematica 6 (2001) 343–384



382 Michael Anshelevich

[Ans01a] Michael Anshelevich, Free stochastic measures via noncrossing
partitions II, arXiv: math.OA/0102062, 2001. Accepted for publi-
cation by the Pacific J. Math..
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[BS94] Marek Bożejko and Roland Speicher, Completely positive
maps on Coxeter groups, deformed commutation relations, and op-
erator spaces, Math. Ann. 300 (1994), no. 1, 97–120.

[BV95] Hari Bercovici and Dan Voiculescu, Superconvergence to the
central limit and failure of the Cramér theorem for free random
variables, Probab. Theory Related Fields 103 (1995), no. 2, 215–
222.

[Dur91] Richard Durrett, Probability, Wadsworth & Brooks/Cole, Pa-
cific Grove, CA, 1991.

[GSS92] Peter Glockner, Michael Schürmann, and Roland Spe-
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