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Abstract. Every countable group can be realized as the full au-
tomorphism group of a Riemann surface as well as the full group of
isometries of a Riemannian manifold.
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Saerens and Zame [4], and independently Bedford and Dadok [2] proved that
every compact real Lie group K can be realized as the group of holomorphic
automorphisms of a complex manifold as well as the group of isometries of a
Riemannian manifold.
Here we deduce a similar result for countable discrete groups.
Thus the purpose of this paper is to prove the following theorem:

Theorem. Let G be a (finite or infinite) countable group.
Then there exists a (connected) Riemann surface M such that G is isomorphic
to the group AutO(M) of all holomorphic automorphisms of M .
Moreover, there exists a Riemannian metric h on M such that AutO(M) equals
the group of all isometries of (M,h).

Our strategy is as follows: Using Galois theory of coverings, we first construct
a Riemann surface M1 on which G acts. Then we remove a discrete subset
S ⊂M1 to kill excess automorphisms. However, we have to show that passing
from M1 to M1 \ S we do not risk enlarging the automorphism group, i.e.,
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we will show that every automorphism from M1 \ S extends to M1. For this
purpose we employ the Freudenthal’s theory of topological ends.
Finally, hyperbolicity of the Riemann surface is exploited to ensure that there
is a hermitian metric of constant negative curvature such that the group of all
holomorphic automorphisms coincides with the group of all isometries.
Let us remark that by uniformization theory it is well-known that the following
is the list of all Riemann surface with positive-dimensional automorphism group
and that their automorphism groups are well-known:

• P1(C),

• C,

• C∗,
• H+ = {z ∈ C : =(z) > 0},
• Eτ = C/ 〈1, τ〉Z with τ ∈ H+,

• A(r, 1) = {z ∈ C : r < |z| < 1} with 0 ≤ r < +∞.

(See [1] for this and other basic facts on Riemann surfaces.)
Therefore our result yields a complete characterization which groups may occur
as automorphism group of a Riemann surface.
The above list furthermore has the following consequence which we will use
later on:

Fact. Let M be a Riemann surface with non-commutative fundamental group
π1(M). Then AutO(M) is discrete and acting properly discontinuously on M .
In particular, every orbit is closed.

1 Hyperbolic Riemannian Surfaces

A Riemannian surface M is “hyperbolic” (in the sense of Kobayashi) if and only
if its universal covering is isomorphic to the unit disk. In this case the Poincaré
metric on the unit disk induces a unique hermitian metric of constant Gaussian
curvature −1 on M . Every holomorphic automorphism of M is an isometry
and conversely every isometry is either holomorphic or antiholomorphic. Thus
the group of holomorphic automorphisms of M is a subgroup of index 1 or 2
in the group of isometries and the group of isometries coincides with the group
of all holomorphic or antiholomorphic diffeomorphisms of M .

2 Galois theory of coverings

Proposition 1. Let G be a countable group. Let M0 be a Riemann surface
whose fundamental group is not finitely generated.
Then there exists an unramified covering M1 →M0 such that there is an effec-
tive G-action on M1, AutO(M1) is discrete and acting properly discontinuously
on M1.
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Proof. Let F∞ be a free group with countably infinitely many generators
α1, α2, . . .. By standard results on Riemann surfaces (see e.g. [1]) we have
π1(M0) ' F∞. Since G is countable, there is a surjective group homomor-
phism ζ : F∞ → G. Furthermore, we may require that α1, α2 ∈ ker ζ. Then
we obtain a short exact sequence of groups

{e} → N → F∞
ζ→ G→ {e}

where N is non-commutative, because it contains a free group with two gener-
ators (viz. α1 and α2).
By Galois theory of coverings, this implies that there exists an unramified
covering M1 →M0 with π1(M1) ' N and an effective G-action on M1.
Finally, discreteness of AutO(M1) as well as the action of AutO(M1) being
properly discontinuous is implied by the “Fact” established above.

3 Topological ends

Let us recall the basic facts from the theory of ends as developed by Freudenthal
[3].
Let X be a locally compact topological space. Then the set of “ends” e(X) is
defined by

e(X) = lim
K
π0(X \K).

Thus, if Kn is an exhaustion of X by an increasing sequence of compact subsets,
then every end ε ∈ e(X) can be represented by a sequence Un of connected
components of X \Kn with Un ⊃ Un+1. For every connected component Wn,i

of X \ Kn we now define En,i as the set of ends ε which can be represented
with Un = Wn,i. Now X̄ = X ∪ e(X) becomes a compact topological space as
follows: As a basis of the topology we take the family of all open subsets of X
together with Vn,i = Wn,i ∪ En,i for all n, i.
Then every proper continuous map between locally compact topological spaces
X and Y extends to a continuous maps between X̄ and Ȳ . In particular, every
homeomorphism of X extends to a homeomorphism of X̄.

Definition. An end ε of a Riemann surface X is called a “puncture” if there
is an open neighbourhood W of ε in X̄ such that

• W \ {ε} ⊂ X and

• there is a homeomorphism ξ : W → D = {z ∈ C : |z| < 1} such that
ξ|W\{ε} is holomorphic.

We now prove that the ends of a certain special class of Riemann surfaces
cannot be punctures.

Proposition 2. Let an be a diverging sequence in D = {z ∈ C : |z| < 1} and
rn ∈ R>0 such that all the closed balls Bn = {z ∈ C : |z−an| ≤ rn} are disjoint
subsets of D. Then A = ∪nBn is a closed subset of D.
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Let X0 = D \A and let X1 → X0 be an unramified covering.

Then no end of X1 is a puncture.

Proof. First we show that A is indeed closed. Let vol(Bn) = πr2
n denote the

euclidean volume. Since the balls Bn are disjoint, we have
∑
vol(Bn) ≤ π and

therefore lim rn = 0. It follows that for every s < 1 there is a natural number
N such that |an| − rn > s for all n ≥ N . Therefore A = ∪nBn is actually a
locally finite union, and closedness of the Bn implies that A is closed.

Now let us assume that there exists an end which is a puncture. The natu-
ral embeddings X0 ↪→ D ↪→ C composed with the projection π : X1 → X0

yield a bounded holomorphic function f on X1. Let ε ∈ e(X1) be a punc-
ture with a connected open neighbourhood W as in the above definition of
the notion “puncture”. Then the Riemann extension theorem implies that f
extends through ε. In other words, limx→ε f(x) = a exists. Evidently a is
contained in the closure of X0 in C. However, the boundary ∂X0 is given by
∂X0 = ∂D ∪ (∪n∂Bn), and the openness of holomorphic maps implies that a
cannot lie on either ∂D or on one of the sets ∂Bn. Therefore a ∈ X0. Now
choose contractible open neighbourhoods U of a in X0 and V of ε in W such
that V \ {ε} ⊂ π−1(U). Since π : X1 → X0 is an unramified covering and U
is simply-connected, we obtain π−1(U) ' G×U where G is equipped with the
discrete topology. Being connected, V ∗ = V \ {ε} must be contained in one
connected component of π−1(U). This implies the following: If an is a sequence
in V ∗ such that limπ(an) = a, then there is a point p ∈ X1 with lim an = p.
But this contradicts the fact that by construction there is sequence an in V ∗

with lim an = ε 6∈ X1 and limπ(an) = a. Thus this case can be ruled out as
well, i.e., there cannot exist an end which is a puncture.

4 Proof of the theorem

Proof. Let an be a diverging sequence in D = {z ∈ C : |z| < 1} and rn ∈ R>0

such that all the closed balls Bn = {z ∈ C : |z−an| ≤ rn} are disjoint subsets of
D. Let A = ∪nBn. Then A is a closed subset of D and the fundamental group
of X0 = D\A is not finitely generated. Hence, by prop. 1 there is an unramified
covering π : X1 → X0 with an effective G-action on X1. Let AutO(X1) denote
the group of all holomorphic automorphisms of X1 and A the group of all
diffeomorphisms of X1 which are either holomorphic or antiholomorphic. Again
by prop. 1 we may assume that AutO(X1) is discrete and acting properly
discontinuously. Since AutO(X1) is of finite index in A, the group A is likewise
discrete and acting properly discontinuously on X1.

Now, for every g ∈ A \ {e} the fixed point set Xg
1 = {x ∈ X1 : g(x) = x}

is a nowhere dense real analytic subset of X1. Hence Σ = ∪g∈A\{e}Xg
1 is a

set of measure zero. In particular, Σ 6= X1. Let p ∈ X1 \ Σ, S = G(p) and
X = X1 \ S.

Note that the conditions p ∈ X1 \Σ, S = G(p) imply that g(p) 6∈ S if g ∈ A\G.
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Therefore
G = {g ∈ A : g(S) = S}.

Let h be the unique hermitian metric of constant Gaussian curvature −1 on X
and I its isomorphism group. We claim that I = AutO(X) ' G. To show this,
it suffices to show that every holomorphic or antiholomorphic automorphism of
X extends to a holomorphic or antiholomorphic automorphism of X1. If φ is a
holomorphic or antiholomorphic automorphism of X, it is in particular a self-
homeomorphism and therefore extends to a homeomorphism φ̄ of the compact
topological space X̄ = X ∪ e(X) (where e(X) is the set of ends as explained in
§3. above). Now e(X) = e(X1)∪S. Evidently every end of X given by a point
of S is a puncture as defined in §3. On the other hand, due to prop. 2 none
of the ends of X1 is a puncture. Now φ̄|e(X) is a permutation of the elements
of e(X) which stabilizes the set of those ends which are punctures. Hence
φ̄(S) = S. Thus φ extends to a continuous self-map of X1 = X ∪ S. However,
a continuous map which is holomorphic or antiholomorphic everywhere except
for some isolated points, is necessarily holomorphic resp. antiholomorphic ev-
erywhere (by Riemann extension theorem). Hence every φ ∈ I of X extends
to a holomorphic or antiholomorphic automorphism of X1. Consequently

AutO(X) = I = {g ∈ A : g(S) = S} = G.
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