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Abstract. We generalize Mumford’s construction of good quotients
for reductive group actions. Replacing a single linearized invertible
sheaf with a certain group of sheaves, we obtain a Geometric Invariant
Theory producing not only the quasiprojective quotient spaces, but
more generally all divisorial ones. As an application, we characterize
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tive group action on a smooth complex variety admits an algebraic
variety as orbit space.
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Introduction

Let the reductive group G act regularly on a variety X. In [19], Mumford asso-
ciates to every G-linearized invertible sheaf L on X a set Xss(L) of semistable
points. He proves that there is a good quotient p : Xss(L) → Xss(L)//G, that
means p is a G-invariant affine regular map and the structure sheaf of the
quotient space is the sheaf of invariants.

Mumford’s theory is designed for the quasiprojective category: His quotient
spaces are always quasiprojective. Conversely, for connected G and smooth
X, if a G-invariant open set U ⊂ X has a good quotient U → U//G with
U//G quasiprojective, then U is a saturated subset of a set Xss(L) for some
G-linearized invertible sheaf L on X.

However, there frequently occur good quotients with a non quasiprojective
quotient space; even if X is quasiaffine and G is a one dimensional torus, see
e.g. [2]. For X = Pn or X a vector space with linear G-action, the situation is
reasonably well understood, see [8] and [9]. But for general X, the picture is
still far from being complete.

The purpose of this article is to present a general theory for good quotients
with so called divisorial quotient spaces. Recall from [12] that an irreducible
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572 J. Hausen

variety Y is divisorial if every y ∈ Y admits an affine neighbourhood of the
form Y \Supp(D) with an effective Cartier divisor D on Y . This is a consider-
able generalization of quasiprojectivity. For example, all smooth varieties are
divisorial.

Our approach to divisorial good quotient spaces is to replace Mumford’s single
invertible sheaf L with a free finitely generated group Λ of Cartier divisors on
X. Then a G-linearization of such a group Λ is a certain G-sheaf structure
on the graded OX -algebra A associated to Λ; for the precise definitions see
Section 1.

In Section 2, we associate to every G-linearized group Λ ⊂ CDiv(X) a set
Xss(Λ) ⊂ X of semistable points and a set Xs(Λ) ⊂ Xss(Λ) of stable points.
Theorem 3.1 generalizes Mumford’s result on existence of good quotients:

Theorem 1. For any G-linearized group Λ of Cartier divisors, there is a good
quotient Xss(Λ)→ Xss(Λ)//G with a divisorial quotient space Xss(Λ)//G.

We note here that our quotient spaces are allowed to be non separated; see also
the brief discussion at the end of Section 3. As in the classical situation, the
restriction of the above quotient map to the set of stable points separates the
orbits. In Theorem 4.1, we give a converse of the above result:

Theorem 2. For Q-factorial, e.g. smooth, X every G-invariant open subset
U ⊂ X with a good quotient such that U//G is divisorial occurs as a saturated
subset of a set of semistable points Xss(Λ).

As an application, we discuss actions of connected reductive groups G on
normal complex varieties X. The starting point is the reduction theorem of
A. BiaÃlynicki-Birula and J. Świȩcicka [6, Theorem 5.1]: If some maximal torus
T ⊂ G admits a good quotient X → X//T , then there is a “good quotient” for
the action of G on X in the category of algebraic spaces.

Examples show that in general, the quotient space really drops out of the
category of algebraic varieties, see [7, page 15]. So, there arises a natural
question: When there is a good quotient X → X//G in the category of algebraic
varieties?

Our answers to this question are formulated in terms of the normalizer N(T )
of a maximal torus T ⊂ G. Recall that the connected component of the unit
element of N(T ) is just T ; in other words N(T )/T is finite. The first result is
the following, see Theorem 5.1:

Theorem 3. Let G be a connected reductive group, and let X be a normal

complex G-variety. Then the following statements are equivalent:

i) There is a good quotient X → X//G with a divisorial prevariety X//G.
ii) There is a good quotient X → X//N(T ) with a divisorial prevariety

X//N(T ).

Moreover, if one of these statements holds with a separated quotient space then

so does the other.
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We specialize to proper G-actions. It is an easy consequence of the reduction
theorem [6, Theorem 5.1] that such an action always admits a “geometric quo-
tient” in the category of algebraic spaces. Fundamental results of Kollár [18],
Keel and Mori [15] extend this fact to a more general framework.

In our second result, Theorem 5.2, the words geometric quotient refer to a good
quotient (in the category of algebraic varieties) that separates orbits:

Theorem 4. Suppose that a connected reductive group G acts properly on a
Q-factorial complex variety X. Then the following statements are equivalent:

i) There exists a geometric quotient X → X/G.
ii) There exists a geometric quotient X → X/N(T ).

Moreover, if one of these statements holds, then the quotient spaces X/G and
X/N(T ) are separated and Q-factorial.

So, for proper G-actions on Q-factorial varieties, the answer to the above ques-
tion is encoded in an action of the Weyl group W := N(T )/T : A geometric
quotient X → X/G exists in the category of algebraic varieties if and only if
the induced action of W on X/T admits an algebraic variety as orbit space.

1. G-linearization and ample groups

Throughout the whole article, we work in the category of algebraic prevarieties
over an algebraically closed field K. In particular, the word point refers to a
closed point. First we fix the notions concerning group actions and quotients.

In this section, G denotes a linear algebraic group, and X is an irreducible G-
prevariety, that means X is an irreducible (possibly non separated) prevariety
(over K) together with a regular group action σ : G×X → X.

For reductive G, a good quotient of the G-prevariety X is a G-invariant affine
regular map p : X → X//G of prevarieties such that p∗ : OX//G → p∗(OX)G

is an isomorphism. By a geometric quotient we mean a good quotient that
separates orbits. Geometric quotient spaces are denoted by X/G.

Remark 1.1. [22, Theorem 1.1]. Let p : X → X//G be a good quotient for an
action of a reductive group G. Then we have:

i) For every G-invariant closed set A ⊂ X the image p(A) ⊂ X//G is closed.
ii) If A,B ⊂ X are closed G-invariant subsets, then p(A ∩B) equals p(A) ∩

p(B).
iii) Each fibre p−1(y) contains exactly one closed G-orbit.
iv) Every G-invariant regular map X → X ′ factors uniquely through p.

Now we introduce the basic concepts used in this article, compare also [13] and
[14]. When we speak of a subgroup of the group CDiv(X) of Cartier divisors
of X, we always mean a finitely generated free subgroup.
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574 J. Hausen

Let Λ ⊂ CDiv(X) be such a subgroup. Denoting by AD := OX(D) the sheaf
of sections of D ∈ Λ, we obtain a Λ-graded OX -algebra:

A :=
⊕

D∈Λ

AD.

The following notion extends Mumford’s concept of a G-linearized invertible
sheaf to groups of divisors:

Definition 1.2. Fix the canonical G-sheaf structure (g ·f)(x) := f(g−1 ·x) on
the structure sheaf OX .

i) A G-linearization of the group Λ is a graded G-sheaf structure on the
Λ-graded OX -algebra A such that the representation of G on A(U) is
rational for every G-invariant open subset U ⊂ X.

ii) A strong G-linearization of the group Λ is a G-linearization of Λ such
that on each homogeneous component AD, D ∈ Λ, the G-sheaf structure
arises from a G-linearization σ∗(AD) ∼= pr∗X(AD) in the sense of [19,
Definition 1.6].

The reason to introduce besides the straightforward generalization 1.2 ii) also
the weaker notion 1.2 i), is that in practice the latter is often much easier to
handle. However, in many important cases both notions coincide, for example
if the component G0 of the unit element is a torus:

Proposition 1.3. If X is covered by G0-invariant affine open subsets, then
every G-linearization of Λ is in fact a strong G-linearization of Λ.

Proof. Assume that Λ ⊂ CDiv(X) is G-linearized, and let AD be a homoge-
neous component of the associated graded OX -algebra. Consider a geometric
line bundle p : L → X having AD as its sheaf of sections. Then the G-sheaf
structure of AD gives rise to a set theoretical action, namely

G× L→ L, (g, z) 7→ g ·z := (g ·f)(g ·p(z)),

where for given z ∈ L we choose any local section f of AD satisfying f(p(z)) =
z. Note that this well defined. In view of [16, Lemma 2.3], we only have to
show that this action is regular. Since for fixed g ∈ G the map z 7→ g ·z is
obviously regular, it suffices to show that G0 × L→ L is regular.

According to our assumption on X, it suffices to treat the case that X is affine.
But then the rational representation of G0 on the O(X)-algebra

A :=
⊕

n∈N

AnD(X)

defines a regular G0-action on the dual bundle L′ := Spec(A) such that L′ → X
becomes equivariant and G0 acts linearly on the fibres. It is straightforward to
check that this G0-action on L′ is dual to the G0-action on L. Hence also the
latter action is regular.
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A Generalization of Mumford’s GIT 575

Concerning existence of linearizations, we have the following generalization of
[19, Corollary 1.6], compare [14, Proposition 3.6]:

Proposition 1.4. Suppose that G is connected and that X is a normal sepa-

rated variety. Then every group Λ ⊂ CDiv(X) admits a strongly G-linearized
subgroup Λ′ ⊂ Λ of finite index.

Proof. Choose a basis D1, . . . , Dr of Λ. According to [16, Proposition 2.4],
there is a positive integer n such that each sheaf AnDi

admits a G-linearization
in Mumford’s sense. Tensoring these linearizations gives the desired strong
linearization of the subgroup Λ′ ⊂ Λ generated by nD1, . . . , nDr.

A more special existence statement for non connected G will be given in 4.2.
There is also a uniqueness statement like [19, Proposition 1.4]. Note that in
our version, we do not assume G to be connected:

Proposition 1.5. Suppose that Λ ⊂ CDiv(X) admits two strong G-lineariza-
tions. If O∗(X) = K∗ holds and G has only finitely many characters, then the
two G-linearizations coincide on a subgroup Λ′ ⊂ Λ of finite index.

Proof. To distinguish the two G-sheaf structures on the graded OX -algebra
associated to Λ, we denote them by (g, f) 7→ g ·f and (g, f) 7→ g∗f . Consider
a homogeneous component AD, and the tensor product

AD ⊗OX
A−D, g • (f ⊗ h) := g ·f ⊗ g∗h.

Since as an OX -module, AD ⊗OX
A−D is isomorphic to the structure sheaf

itself, we obtain a G-sheaf structure on OX , also denoted by (g, f) 7→ g • f . As
it arises from a G-linearization in the sense of [19, Definition 1.6], this G-sheaf
structure is of the form

(g • f)(x) = χ(g, x)f(g−1 ·x)

with a function χ ∈ O∗(G×X). Since we assumed O∗(X) ∼= K∗, the function
χ does not depend on the second variable. In fact, χ even turns out to be a
character on G.

Now, replacing in this setting D with a multiple nD amounts to replacing χ
with χn. Thus, taking n to be the order of the character group of G, we see
that for any D ∈ Λ, the two G-sheaf structures on AnD coincide. The assertion
follows.

We look a bit closer to the OX -algebra A associated to a group Λ ⊂ CDiv(X).

This algebra gives rise to a prevariety X̂ := Spec(A) and a canonical map

q : X̂ → X. We list some basic features of this construction:

Remark 1.6. Let X̂ := Spec(A) and q : X̂ → X be as above. For an open

subset U ⊂ X, set Û := q−1(U).
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576 J. Hausen

i) For a section f ∈ AD(U), let Z(f) := Supp(D|U +div(f)) denote the set
of its zeroes. Then we have

Ûf := {x ∈ Û ; f(x) 6= 0} = q−1(U \ Z(f)).

ii) The algebraic torus H := Spec(K[Λ]) acts regularly on X̂ such that every
f ∈ AD(U) is homogeneous with respect to the character χD, i.e., we
have

f(t·x) = χD(t)·f(x).

iii) The action of H on X̂ is free and the map q : X̂ → X is a geometric
quotient for this action.

For the subsequent constructions, it is important to figure out those groups Λ ⊂

CDiv(X) for which the associated prevariety X̂ over X is in fact a quasiaffine
variety. This leads to the following notion:

Definition 1.7. We call the group Λ ⊂ CDiv(X) ample on an open subset
U ⊂ X, if there are homogeneous sections f1, . . . , fr ∈ A(U) such that the sets
U \ Z(fi) are affine and cover U .

If Λ ⊂ CDiv(X) is ample on X, then we say for short that Λ is ample. So, the
prevariety X admits an ample group Λ ⊂ CDiv(X) if and only if it is divisorial
in the sense of Borelli [12], i.e., every x ∈ X has an affine neighbourhood
X \ Supp(D) with some effective D ∈ CDiv(X).

Remark 1.8. If X is a divisorial prevariety, then the intersection U ∩ U ′ of
any two affine open subsets U,U ′ ⊂ X is again affine.

In the following statement, we subsume the consequences of the existence of
a G-linearized ample group, compare [13, Section 2]. By an affine closure of
a quasiaffine variety Y we mean an affine variety Y containing Y as an open
dense subvariety.

Proposition 1.9. Let G be a linear algebraic group and let X be a G-
prevariety. Suppose that Λ ⊂ CDiv(X) is G-linearized and ample on some

G-invariant open U ⊂ X. Let Û := q−1(U) ⊂ X̂, where q : X̂ → X is as above.

i) Û is quasiaffine and the representation of G on O(Û) induces a regular

G-action on Û such that the actions of G and H := Spec(K[Λ]) commute

and the canonical map q : Û → X becomes G-equivariant.
ii) For any collection f1, . . . , fr ∈ A(U) satisfying the ampleness condition,

there exists a (G×H)-equivariant affine closure U of Û such that the fi

extend to regular functions on U and q−1(Ufi
) = Ufi

holds.

Proof. Use [13, Lemmas 2.4 and 2.5].
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2. Stability notions

Generalizing [19, Definitions 1.7 and 1.8] we shall associate to a linearized group
of divisors sets of semistable, stable and properly stable points. Moreover, for
ample linearized groups, we give a geometric interpretation of semistability in
terms of a generalized nullcone.

Let G be a reductive algebraic group, and let X be an irreducible G-prevariety.
Suppose that Λ ⊂ CDiv(X) is a G-linearized (finitely generated free) subgroup.
Denote the associated Λ-graded OX -algebra by

A =
⊕

D∈Λ

AD.

Definition 2.1. Let G, X, Λ and A be as above. We say that a point x ∈ X
is

i) semistable, if x has an affine neighbourhood U = X \ Z(f) with some
G-invariant f ∈ AD(X) such that the D′ ∈ Λ admitting a G-invariant
fD′ ∈ AD′(U) which is invertible in A(U) form a subgroup of finite index
in Λ,

ii) stable, if x is semistable, its orbit G·x is of maximal dimension and G·x
is closed in the set of semistable points of X,

iii) properly stable, if x is semistable, its isotropy group Gx is finite and G·x
is closed in the set of semistable points of X.

Following Mumford’s notation, we denote theG-invariant open sets correspond-
ing to the semistable, stable and properly stable points by Xss(Λ), Xs(Λ) and
Xs
0(Λ) respectively. If we want to specify the acting group G, we also write

Xss(Λ, G) etc..

Remark 2.2. Let X be complete, let D ∈ CDiv(X) be an effective Cartier
divisor and suppose that the invertible sheaf L := AD on X is G-linearized
in the sense of [19, Definition 1.6]. Then the induced G-sheaf structure of AD

extends to a G-linearization of Λ := ZD. Moreover,

i) Xss(Λ) contains precisely the points of X which are semistable in the
sense of [19, Definition 1.7 i)],

ii) Xs(Λ) contains precisely the points of X which are stable in the sense
of [19, Definition 1.7 ii)],

iii) Xs
0(Λ) contains precisely the points of X which are properly stable in the

sense of [19, Definition 1.8].

The remainder of this section is devoted to giving a geometric interpretation
of semistability. For this, let U ⊂ X denote any G-invariant open subset such
that Λ is ample on U and Xss(Λ) is contained in U , for example U = Xss(Λ).
As usual, let

X̂ := Spec(A), q : X̂ → X, Û := q−1(U).
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Recall from Section 1 that the map q : X̂ → X is a geometric quotient for the

action of H := Spec(K[Λ]) on X̂ induced by the Λ-grading of A. Moreover,

Û is a quasiaffine variety and carries a regular G-action making q : Û → X
equivariant.

Our description involves two choices. First let f1, . . . , fr ∈ A(X) be homoge-
neous G-invariant sections such that the sets X\Z(fi) are as in Definition 2.1 i)
and cover Xss(Λ).

Next choose a (G×H)-equivariant affine closure U of Û such that the functions

fi ∈ O(Û) extend regularly to U and U fi
= Ûfi

holds for each i = 1, . . . , r.
Consider the good quotient

p : U → U//G := Spec(O(U))G.

Then the quotient variety U//G inherits a regular action ofH such that the map
p : U → U//G becomes H-equivariant. In this setting, the set U \ q−1(Xss(Λ))
takes over the role of the classical nullcone:

Proposition 2.3. Let V0 := U//G \ p(U \ Û), and let V1 ⊂ U//G be the union
of all H-orbits with finite isotropy.

i) One always has q−1(Xss(Λ)) ⊂ p−1(V0 ∩ V1).
ii) If U = X, then q−1(Xss(Λ)) = p−1(V0 ∩ V1).

The main point in the proof is to express Condition 2.1 i) in terms of the action
of the torus H on the affine variety U//G. Consider more generally an arbitrary
algebraic torus T and a quasiaffine T -variety Y .

Lemma 2.4. The isotropy group Ty of a point y ∈ Y is finite if and only if there
is a homogeneous function h ∈ O(Y ) such that Yh is an affine neighbourhood

of y and the characters χ′ ∈ Char(T ) admitting an invertible χ′-homogeneous
h′ ∈ O(Yh) form a sublattice of finite index in Char(T ).

Proof. First suppose that Ty is finite. Consider the orbit B := T ·y. This is
a locally closed affine subvariety of Y . The set M consisting of all characters
χ′ ∈ Char(T ) admitting a χ′-homogeneous h′ ∈ O(B) with h′(y) = 1 is a
sublattice of Char(T ). We show that M is of full rank:

Otherwise there is a non trivial one parameter subgroup λ : K∗ → T such that
χ◦λ = 1 holds for every χ ∈M . Thus, by the definition ofM , all homogeneous
functions of O(B) are constant along λ(K∗)·y. As these functions separate the
points of B, we conclude λ(K∗) ⊂ Ty. A contradiction.

Now, choose any T -homogeneous function h ∈ O(Y ) such that Yh is affine,
contains B as a closed subset, and for some base χ′1, . . . , χ

′
d ofM the associated

functions h′i ∈ O(B) extend to invertible regular homogeneous functions on Yh.
Then this h ∈ O(Y ) is as desired. The “if” part of the assertion is settled by
similar arguments.
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Proof of Proposition 2.3. LetW := Xss(Λ) and Ŵ := q−1(W ). We begin with

the inclusion “⊂” of assertions i) and ii). First note that Ŵ is p-saturated,

because this holds for each U fi
and, according to Remark 1.6 i), Ŵ is covered

by these subsets. In particular, it follows p(Ŵ ) ⊂ V0.

To verify p(Ŵ ) ⊂ V1, let z ∈ Ŵ . Take one of the fi with z ∈ Ufi
. As it is

G-invariant, fi descends to an H-homogeneous function h ∈ O(U//G). By the
properties of fi, the function h satisfies the condition of Lemma 2.4 for the
point p(z). Hence Hp(z) is finite, which means p(z) ∈ V1.

We come to the inclusion “⊃” of assertion ii). Let y ∈ V0 ∩ V1. Lemma 2.4
provides an h ∈ O(X//G), homogeneous with respect to some χD ∈ Char(H),
such that y ∈ V := (X//G)h holds and the D′ ∈ Λ admitting an invertible

χD′-homogeneous function on V form a subgroup of finite index in Λ. Suitably
modifying h, we achieve additionally V ⊂ V0 ∩ V1.

Now, consider a point z ∈ p−1(y). Since y ∈ V0, we have z ∈ X̂. We have to
show that q(z) is semistable. For this, consider the G-invariant homogeneous
section f := p∗(h)|X̂ of AD(X). By the choice of h, this f fulfills the conditions
of Definition 2.1 i) and thus the point q(z) is in fact semistable.

Corollary 2.5. Let Λ ⊂ CDiv(X) be an ample G-linearized group.

i) A point x ∈ Xss(Λ) with an orbit G·x of maximal dimension is stable if

and only if for any z ∈ q−1(x) the orbit G·z is closed in X̂.
ii) A point x ∈ Xss(Λ) with finite isotropy group Gx is properly stable if and

only if for any z ∈ q−1(x) the orbit G·z is closed in X̂.

3. The quotient of the set of semistable points

Let G be a reductive algebraic group, and let X be a G-prevariety. In this
section we show that any set of semistable points admits a good quotient. The
result generalizes [19, Theorem 1.10].

Theorem 3.1. Let Λ ⊂ CDiv(X) be a G-linearized subgroup. Then there exists
a good quotient p : Xss(Λ) → Xss(Λ)//G and the quotient space Xss(Λ)//G is
a divisorial prevariety.

An immediate consequence of this result is that the set of stable points admits
a geometric quotient. More precisely, by the properties of good quotients we
have:

Remark 3.2. In the notation of 3.1, the set Xs(Λ) is p-saturated and the
restriction p : Xs(Λ)→ p(Xs(Λ)) is a geometric quotient.

In the proof of Theorem 3.1, we make use of the following observation on
geometric quotients for torus actions, compare [1, Proposition 1.5]:
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Lemma 3.3. Let T be an algebraic torus and suppose that Y is an irreducible
quasiaffine T -variety with geometric quotient p : Y → Y/T . Then Y/T is a
divisorial prevariety.

Proof. We may assume that T acts effectively. Set for short Z := Y/T . Given
a point z ∈ Z, choose a T -homogeneous f ∈ O(Y ) such that U := Yf is an
affine neighbourhood of p−1(z). Consider the affine neighbourhood V := p(U)
of z. We show that B := Z \V is the support of an effective Cartier divisor on
Y .

Let χ ∈ Char(T ) be the weight of the above f ∈ O(Y ). Since T acts effec-
tively with geometric quotient, all isotropy groups Ty are finite. So we can
use Lemma 2.4 to cover Y by T -invariant affine open sets Ui admitting invert-
ible functions gi ∈ O(Ui) that are homogeneous with respect to some common
multiple mχ.

Each hi := fm/gi ∈ O(Ui) is T -invariant and hence we have hi = p∗(h′i) with
a regular function h′i defined on Vi := p(Ui). By construction, the zero set of
h′i is just B ∩ Vi. Since every h′i/h

′
j is regular and invertible on Vi ∩ Vj , the

functions h′i yield local equations for an effective Cartier divisor E on Z having
support B.

Proof of Theorem 3.1. As usual, let A be the graded OX -algebra associated

to Λ. We consider the corresponding prevariety X̂ := Spec(A) and the map

q : X̂ → X. Recall that the latter is a geometric quotient for the action of

H := Spec(K[Λ]) on X̂. Set for short W := Xss(Λ). Surely, Λ is ample on W .

Proposition 1.9 yields that Ŵ := q−1(W ) is a quasiaffine variety. Moreover, Ŵ

carries a G-action that commutes with the action of H and makes q : Ŵ →W
equivariant. Choose f1, . . . , fr ∈ A(X) satisfying the conditions of Defini-
tion 2.1 such that W is covered by the affine sets X \Z(fi), and set hi := fi|W .

Choose a (G × H)-equivariant affine closure W of Ŵ such that the above

hi ∈ O(Ŵ ) extend regularly to W and satisfy W hi
= Ŵhi

. The set Ŵ is
saturated with respect to the good quotient p : W →W//G because this holds

for the sets W hi
. Consequently, restricting p to Ŵ yields a good quotient

p̂ : Ŵ → Ŵ//G.

Moreover, Proposition 2.3 i) tells us that H acts with at most finite isotropy

groups on Ŵ//G. Thus, there is a geometric quotient Ŵ//G→ (Ŵ//G)/H. By
Lemma 3.3, the quotient space is a divisorial prevariety. Since good quotients
are categorical, we obtain a commutative diagram

Ŵ
p̂

//

/H

²²

Ŵ//G

/H

²²

W // (Ŵ//G)/H
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Now it is straightforward to check that the induced map W → (Ŵ//G)/H is
the desired good quotient for the action of G on W .

We conclude this section with a short discussion of the question, when the
quotient space Xss(Λ)//G is separated. Translating the usual criterion for
separateness in terms on functions on the quotient space to the setting of
invariant sections of the OX -algebra A of a G-linearized group Λ, we obtain:

Remark 3.4. Let Λ ⊂ CDiv(X) be a G-linearized group on a G-varietyX, and
let Xss(Λ) be covered by X\Z(fi) with G-invariant sections f1, . . . , fr ∈ A(X)
as in 2.1 i). The quotient space Xss//G is separated if and only if for any two
indices i, j the multiplication map defines a surjection in degree zero:

A(X)G(fi)
⊗A(X)G(fj)

→ A(X)G(fifj)
.

In the classical setting [19, Definition 1.7], the group Λ is of rank one, and
the above sections fi are of positive degree. In particular, for suitable positive
powers ni, all sections f

ni

i are of the same degree, and Remark 3.4 implies that
the resulting quotient space is always separated.

As soon as we leave the classical setting, the above reasoning may fail, and we
can obtain nonseparated quotient spaces, as the following two simple examples
show. Both examples arise from the hyperbolic K∗-action on the affine plane.
In the first one we present a group Λ of rank one defining a nonseparated
quotient space:

Example 3.5. Let the onedimensional torus T := K∗ act diagonally on the
punctured affine plane X := K2 \ {(0, 0)} via

t·(z1, z2) := (tz1, t
−1z2).

Consider the group Λ ⊂ CDiv(X) generated by the principal divisor D :=
div(z1). Since D is T -invariant, the group Λ is canonically T -linearized. We
claim that the corresponding set of semistable points is

Xss(Λ) = X.

To verify this claim, let A denote the graded OX -algebra associated to Λ, and
consider the T -invariant sections

f1 := 1 ∈ AD(X), f2 := z1z2 ∈ A−D(X).

Then the sets X \ Z(f1) and X \ Z(f2) form an affine cover of X. Moreover,
we have T -invariant invertible sections:

1 ∈ AD(X \ Z(f1)),
1

z1z2
∈ AD(X \ Z(f2)).

So, f1, f2 ∈ A(X) satisfy the conditions of Definition 2.1 i), and the claim is
verified. The quotient space Y := Xss(Λ)//T is the affine line with doubled
zero. In particular, Y is a nonseparated prevariety.

Documenta Mathematica 6 (2001) 571–592



582 J. Hausen

In view of Remark 3.4, we obtain always separated quotient spaces when start-
ing with a group Λ = ZD, where D is a divisor on a complete G-variety X.
In this setting, the lack of enough invariant sections of degree zero on the sets
X \ Z(fi) occurs for groups Λ of higher rank:

Example 3.6. Let the onedimensional torus T := K∗ act diagonally on the
projective plane X := P2 via

t·[z0, z1, z2] := [z0, tz1, t
−1z2].

Consider the group Λ ⊂ CDiv(X) generated by the divisors D1 := E0 + E1
and D2 := E0 + E2, where Ei denotes the prime divisor V (X; zi). Since the
divisors Di are T -invariant, the group Λ is canonically T -linearized. We claim
that the corresponding set of semistable points is

Xss(Λ) = X \ {[1, 0, 0], [0, 1, 0], [0, 0, 1]}.

To check this claim, denote the right hand side by U . Let A again denote the
graded OX -algebra associated to Λ, and consider the T -invariant sections

f1 := 1 ∈ AD1
(X), f2 := 1 ∈ AD2

(X), f3 :=
z1z2
z20

∈ AD1+D2
(X).

For the respective zero sets of these sections we have

Z(f1) = V (X; z0z1), Z(f2) = V (X; z0z2), Z(f3) = V (X; z1z2).

So, the set U is indeed the union of the affine sets X \ Z(fi). Moreover, we
have invertible sections

1 ∈ AD1
(X \ Z(f1)),

z20
z1z2

∈ AD2
(X \ Z(f1)),

1 ∈ AD2
(X \ Z(f2)),

z20
z1z2

∈ AD1
(X \ Z(f2)),

z1z2
z20

∈ A2D1
(X \ Z(f3)),

z1z2
z20

∈ A2D2
(X \ Z(f3)).

Thus f1, f2, f3 ∈ A(X) satisfy the conditions of Definition 2.1 i). Since the
fixed points [1, 0, 0], [0, 1, 0] and [0, 0, 1] occur as limit points of suitable T -
orbits through U , they cannot be semistable. The claim is verified.

Note thatXss(Λ) equals in fact the set of (properly) stable points. The quotient
space Y := Xss(Λ)//T is a projective line with doubled zero. In particular, Y
is a nonseparated prevariety.

4. Good quotients for Q-factorial G-varieties

Let G be a not necessarily connected reductive group, and let X be an irre-
ducible G-prevariety. In [19, Converse 1.13], Mumford shows that, provided X
is a smooth variety and G is connected, every open subset U with a geometric
quotient U → U/G such that U/G is quasiprojective arises in fact from a set
of stable points.
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Here we generalize this statement to non connected G and open subsets with a
divisorial good quotient space. Assume that X is Q-factorial, i.e., X is normal
and for each Weil divisor D on X, some multiple of D is Cartier. Moreover,
suppose that X is of affine intersection, i.e., for any two open affine subsets of
X their intersection is again affine.

To formulate our result, let U ⊂ X be an open G-invariant set of the G-
prevariety X such that there exists a good quotient U → U//G. Then we
have:

Theorem 4.1. If U//G is divisorial, then there exists a G-linearized group Λ ⊂
CDiv(X) such that U is contained in Xss(Λ) and is saturated with respect to
the quotient map Xss(Λ)→ Xss(Λ)//G.

For the proof of this statement, we need two lemmas. The first one is an
existence statement on canonical linearizations:

Let H be any linear algebraic group. We say that a Weil divisor E on a normal
H-prevariety Y is H-tame, if Supp(E) is H-invariant and for any two prime
cycles E1, E2 of E with E2 = h ·E1 for some h ∈ H their multiplicities in E
coincide.

Lemma 4.2. Let Λ ⊂ CDiv(Y ) be a group consisting of H-tame divisors. Then
Λ admits a canonical H-linearization, namely

AE(U)→ AE(h·U), (h·f)(x) := f(h−1 · x).

Proof. First we note that the canonical action of H on K(Y ) induces indeed a
H-sheaf structure on the sheaf AE of an H-tame Cartier divisor E on Y . This
follows from the fact that for f ∈ K(Y ), the order of a translate h·f along a
prime divisor E0 of E is given by

ordE0
(h·f) = ordh−1·E0

(f).

We still have to show that for every H-invariant open set V ⊂ Y , the rep-
resentation of H on AE(V ) is regular. Consider the maximal separated sub-
sets V1, . . . , Vr of V \ Supp(E), see [3, Theorem I]. Their intersection V ′ is
H-invariant, and AE(V ) injects H-equivariantly into O(V ′). Hence [16, Sec-
tion 2.5] gives the claim.

Now, consider a normal prevariety Y with effective E1, . . . , Er ∈ CDiv(Y ) such
that the sets Vi := Y \ Supp(Ei) are affine and cover Y . Let Γ ⊂ CDiv(Y )
be the subgroup generated by E1, . . . , Er. Denote the associated Γ-graded
OY -algebra by

B :=
⊕

E∈Γ

BE :=
⊕

E∈Γ

OY (E).

Lemma 4.3. In the above setting, every open set Vi = Y \ Supp(Ei) is covered
by finitely many open affine subsets Vij ⊂ Vi with the following properties:

i) Vij = Y \ Z(hij) with some hij ∈ BniEi
(Y ), where ni ∈ N,
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ii) for each k = 1, . . . , r there exists an hijk ∈ BEk
(Vij) without zeroes in

Vij.

Proof. Let y ∈ Vi and consider an affine open neighbourhood V ⊂ Vi of y such
that on V we have Ek = div(h′k) with some h′k ∈ O(V ) for all k. Then each
hk := 1/h′k is a section of BEk

(V ) without zeroes in V . By suitably shrinking
V , we achieve V = X \ Z(h) with some h ∈ BniEi

(X) and some ni ∈ N. Since
finitely many of such V cover Vi, the assertion follows.

Proof of Theorem 4.1. Since the quotient space Y := U//G is divisorial, we find
effective E1, . . . , Er ∈ CDiv(Y ) such that the sets Vi := Y \Supp(Ei) are affine
and cover Y . Let Vij , hij and hijk as in Lemma 4.3. Consider the quotient
map p : U → Y and the pullback divisors

D′
i := p∗(Ei) ∈ CDiv(U).

Then every Ui := p−1(Vi) is affine and equals U \ Supp(D′
i). Moreover, since

they are locally defined by invariant functions, we see that the divisors D′
i are

G-tame. Since X is Q-factorial and of affine intersection, we can construct
G-tame effective divisors Di ∈ CDiv(X) with the following properties:

i) Di|U = miD
′
i holds with some mi ∈ N and we have X \ Supp(Di) = Ui,

ii) for some li ∈ N, every fij := p∗(hli
ij) extends to a global section of OX(Di)

and satisfies X \ Z(fij) = p−1(Vij).

Let Λ ⊂ CDiv(X) denote the group generated by the divisors D1, . . . , Dr, and
let A be the associated graded OX -algebra. Lemma 4.2 tells us that the group
Λ is canonically G-linearized by setting g·f(x) := f(g−1·x) on the homogeneous
components of A.

Note that the set U ⊂ X is covered by the affine open subsets Uij := p−1(Vij).
Thus, using the pullback data fij and

fijk := p∗(hmi

ijk) ∈ ADi
(Uij),

it is straightforward to check U ⊂ Xss(Λ). Moreover, since the Uij are defined
by the G-invariant sections fij , we see that they are saturated with respect
to the quotient map p′ : Xss(Λ) → Xss(Λ)//G. Hence U is p′-saturated in
Xss(Λ).

Corollary 4.4. Let the algebraic torus T act effectively and regularly on a
Q-factorial variety X, and let U ⊂ X be the union of all T -orbits with finite
isotropy group. If dim(X \U) < dim(T ), then U is the set of semistable points
of a T -linearized group Λ ⊂ CDiv(X) .

Proof. By [23, Corollary 3], there is a geometric quotient U → U/T . Using
Proposition 1.9 and Lemma 3.3, we see that U/T is a divisorial prevariety.
Theorem 4.1 provides a T -linearized group Λ ⊂ CDiv(X) such that Xss(Λ)
contains U as a saturated subset with respect to p : Xss(Λ) → Xss(Λ)/T .
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Semicontinuity of the fibre dimension of p and dim(X \ U) < dim(T ) imply
U = Xss(Λ).

The classical example of a generic C∗-action on the Grassmannian of two di-
mensional planes in C4, compare also [5] and [25], fits into the setting of the
above observation:

Example 4.5. Realize the complex Grassmannian X := G(2; 4) via Plücker
relations as a quadric hypersurface in the complex projective space P5:

X = V (P5; z0z5 − z1z4 + z2z3).

This allows us to define a regular action of the one dimensional torus T = C∗

on X in terms of coordinates:

t·[z0, z1, z2, z3, z4, z5] := [tz0, t
2z1, t

3z2, t
3z3, t

4z4, t
5z5].

This T -action has six fixed points. Let U ⊂ X be the complement of the fixed
point set. It is well known that the quotient space Y := U/T is a nonseparated
prevariety which is covered by four projective open subsets. Moreover, Y con-
tains two nonprojective complete open subsets, see [5, Remark 1.6] and [25,
Example 6.4].

According to Corollary 4.4, the set U can be realized as the set of semistable
points of a T -linearized group of divisors. Let us do this explicitly. Consider
for example the prime divisors D1 := V (X; z1) and D2 := V (X; z4) and the
group

Λ := ZD1 ⊕ ZD2 ⊂ CDiv(X).

Then the group Λ is canonically T -linearized. We show that Xss(Λ) = U
holds. Let A denote the graded OX -algebra associated to Λ, and consider the
following T -invariant sections fij ∈ A(X):

f01 :=
z20z4
z31

∈ A4D1−D2
(X), h01 := 1 ∈ AD1

(X \ Z(f01)),

f02 :=
z0z2
z21

∈ A2D1
(X), h02 :=

z32
z0z24

∈ A2D2
(X \ Z(f02)),

f03 :=
z0z3
z21

∈ A2D1
(X), h03 :=

z33
z0z24

∈ A2D2
(X \ Z(f03)),

f04 :=
z20z4
z31

∈ A3D1
(X), h04 := 1 ∈ AD2

(X \ Z(f04)),

f05 :=
z30z5
z41

∈ A4D1
(X), h05 :=

z0z
3
5

z44
∈ A4D2

(X \ Z(f05)),

f12 :=
z22
z1z4

∈ A2D1+D2
(X), h12 := 1 ∈ AD1

(X \ Z(f12)),

f13 :=
z23
z1z4

∈ A2D1+D2
(X), h13 := 1 ∈ AD1

(X \ Z(f13)),

f14 := 1 ∈ AD1+D2
(X), h14 := 1 ∈ AD1

(X \ Z(f14)),
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f15 :=
z1z

2
5

z34
∈ A3D2

(X), h15 := 1 ∈ AD1
(X \ Z(f15)),

f24 :=
z22
z1z4

∈ AD1+2D2
(X), h24 := 1 ∈ AD2

(X \ Z(f24)),

f25 :=
z2z5
z24

∈ A2D2
(X), h25 :=

z32
z21z5

∈ A2D1
(X \ Z(f25)),

f34 :=
z23
z1z4

∈ AD1+2D2
(X), h34 := 1 ∈ AD2

(X \ Z(f34)),

f35 :=
z3z5
z24

∈ A2D2
(X), h35 :=

z33
z21z5

∈ A2D1
(X \ Z(f35)),

f45 :=
z1z

2
5

z34
∈ A4D2−D1

(X), h45 := 1 ∈ AD2
(X \ Z(f45)).

By definition, we have Z(fij) = V (X; zizj) for the set of zeroes of fij . Conse-
quently, U is the union of the affine open subsets Xij := X \Z(fij). Moreover,
every hij is invertible over Xij , and the claim follows.

In fact, using PicT (X) ∼= Z2, it is not hard to show that besides the T -invariant
open subsets W ⊂ X admitting a projective quotient variety W//T , the subset
U is the only open subset of the form Xss(Λ) with a T -linearized group Λ ⊂
CDiv(X).

5. Reduction theorems for good quotients

In this section, G is a connected reductive group and the field K is of charac-
teristic zero. Fix a maximal torus T ⊂ G and denote by N(T ) its normalizer
in G. The first result of this section relates existence of a good quotient by G
to existence of a good quotient by N(T ):

Theorem 5.1. For a normal G-prevariety X, the following statements are
equivalent:

i) There is a good quotient X → X//G with a divisorial prevariety X//G.
ii) There is a good quotient X → X//N(T ) with a divisorial prevariety

X//N(T ).

Moreover, if one of these statements holds with a separated quotient space, then

so does the other.

Note that if X admits a divisorial good quotient space, then X itself is divi-
sorial. In the second result, we specialize to geometric quotients. Recall that
an action of G on X is said to be proper, if the map G×X → X ×X sending
(g, x) to (g ·x, x) is proper.

Theorem 5.2. Suppose that G acts properly on a Q-factorial variety X. Then
the following statements are equivalent:

i) There exists a geometric quotient X → X/G.
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ii) There exists a geometric quotient X → X/N(T ).

Moreover, if one of these statements holds, then the quotient spaces X/G and
X/N(T ) are separated Q-factorial varieties.

As an immediate consequence, we obtain the following statement on orbit
spaces by the special linear group SL2(K), which applies for example to the
problem of moduli for n ordered points on the projective line, compare [20]
and [4, Section 5]:

Corollary 5.3. Let SL2(K) act properly on an open subset U ⊂ X of a Q-
factorial toric variety X such that some maximal torus T ⊂ SL2(K) acts by
means of a homomorphism T → TX to the big torus TX ⊂ X. Then there is a
geometric quotient U → U/SL2(K).

Proof. Since SL2(K) acts properly, there is a geometric quotient U → U/T . Let
U ′ ⊂ X be a maximal open subset such that U ⊂ U ′ and there is a geometric
quotient U ′ → U ′/T . Then the set U ′ is invariant under the big torus TX , see
e.g. [24, Corollary 2.4]. Thus the geometric quotient space Y ′ := U ′/T is again
a toric variety.

In particular, any two points y, y′ ∈ Y ′ admit a common affine neighbourhood
in Y ′. But this property is inherited by Y := U/T . Thus, since W := N(T )/T
is of order two, we obtain a geometric quotient Y → Y/W . The composition
of U → Y and Y → Y/W is a geometric quotient for the action of N(T ) on U .
So Theorem 5.2 gives the claim.

We come to the proof of Theorems 5.1 and 5.2. We make use of the following
well known fact on semisimple groups:

Lemma 5.4. If G is semisimple then the character group of N(T ) is finite.

Proof. It suffices to show that for each χ̃ ∈ Char(N(T )), the restriction χ :=
χ̃|T is trivial. Clearly χ is fixed under the action of the Weyl group W =
N(T )/T on R⊗Z Char(T ) induced by the N(T )-action

(n·α)(t) := α(n−1tn)

on Char(T ). On the other hand, W acts transitively on the set of Weyl cham-
bers associated to the root system determined by T ⊂ G. Consequently, χ lies
in the closure of every Weyl chamber and hence is trivial.

Proof of Theorem 5.1. The implication “i)⇒ii)” is easy, use [21, Lemma 4.1].
To prove the converse, we first reduce to the case that G is semisimple: Let
R ⊂ G be the radical of G. Then R is a torus, and we have R ⊂ T . In
particular, there is a good quotient X → X ′ for the action of R on X. Thus
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we obtain a commutative diagram

X
//N(T )

//

//R
ÃÃ@

@@
@@

@@
@

X//N(T )

X ′

::uuuuuuuuu

Consider the induced action of the connected semisimple group G′ := G/R on
X ′. The image T ′ of T under the projection G → G′ is a maximal torus of
G′. Moreover, N(T ′) is the image of N(T ) under G→ G′. Thus, the upwards
arrow of the above diagram is a good quotient for the action of N(T ′) on X ′.

To proceed, we only have to derive from the existence of a good quotient
X ′ → X ′//N(T ′) that there is a good quotient X ′ → X ′//G′ with a divisorial
prevariety X ′//G′. In other words, we may assume from the beginning that the
group G is semisimple.

Let p : X → X//N(T ) denote the good quotient. Using Lemmas 4.2 and 4.3 we
can construct a canonically N(T )-linearized ample group Λ ⊂ X consisting of
N(T )-tame divisors such that we have

Xss(Λ, N(T )) = X.

Note that this equality also holds for any subgroup Λ′ ⊂ Λ of finite index
in Λ. We construct now such a subgroup Λ′ ⊂ Λ for which the canonical
N(T )-linearization of Λ′ extends to a strong G-linearization. The first step is
to realize X as an open G-invariant subset of a certain G-prevariety Y with
O(Y ) = K.

Consider the maximal separated open subsets X1, . . . , Xm ⊂ X, see [3, The-
orem I]. Since G is connected, it leaves these sets invariant. By Sumihiro’s
Equivariant Completion Theorem [23, Theorem 3], we find G-equivariant open
embeddings Xi → Zi into complete G-varieties Zi. Applying equivariant nor-
malization, we achieve that each Zi is normal.

Let Yi denote the union of Xi with the set of regular points of Zi. Note that
O(Yi) = K. Define Y to be the G-equivariant gluing of the varieties Yi along
the invariant open subsets Xi ⊂ Yi. Then we have O(Y ) = K. Moreover, all
points of Y \X are regular points of Y .

By closing components, every Cartier divisorD ∈ Λ extends to a Cartier divisor
on Y . Let Γ ⊂ CDiv(Y ) denote the (free) group of Cartier divisors generated by
these extensions. Lemma 4.2 ensures that the canonical N(T )-linearization of
Λ extends to a canonical N(T )-linearization of the group Γ. By [23, Corollary 2]
and Proposition 1.3, this linearization is even a strong one.

We claim that some subgroup Γ′ ⊂ Γ of finite index admits a strong G-lineariza-
tion. Let B be the graded OY -algebra associated to Γ. For each homogeneous
component BE,i := BE |Yi

, some power BnE,i admits a G-linearization as in [16,
Proposition 2.4]. Since G is semisimple, these linearizations are unique, see [19,
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Proposition 1.4]. Thus they define G-sheaf structures on the OYi
-algebras

Bi :=
⊕

E∈Γi

BE,i,

for suitable subgroups Γi ⊂ Γ of finite index. Again by uniqueness of strong
G-linearizations, we can patch the above G-sheaf structures together to the
desired strong G-linearization on the intersection Γ′ ⊂ Γ of the subgroups
Γi ⊂ Γ, and our claim is proved.

Now, since the character group of N(T ) is finite, Proposition 1.5 tells us that
on some subgroup Γ′′ ⊂ Γ′ of finite index, the canonical N(T )-linearization
and the one induced by the G-linearization coincide. Thus restricting Γ′′ to X
provides the desired subgroup Λ′ ⊂ Λ of finite index. We replace Λ with Λ′.

In order to obtain a quotient of X by G, we want to apply Theorem 3.1. So
we have to show that Xss(Λ, G) equals X. For this, let A be the graded OX -

algebra associated to Λ, and set X̂ := Spec(A). Moreover, let q : X̂ → X be

the canonical map and H := Spec(K[Λ]) the torus acting on X̂. Note that

Xss(Λ, T ) = Xss(Λ, N(T )) = X.

Choose G-invariant homogeneous f1, . . . , fr ∈ A(X) and T -invariant homoge-
neous h1, . . . , hs ∈ A(X) such that the complements X \ Z(fi) and X \ Z(hi)
satisfy the condition of Definition 2.1 i) and

Xss(Λ, G) = (X \ Z(f1)) ∪ . . . ∪ (X \ Z(fr)),

Xss(Λ, T ) = (X \ Z(h1)) ∪ . . . ∪ (X \ Z(hr)).

Since Λ is ample, Proposition 1.9 yields a (G×H)-equivariant affine closure X

of X̂ such that the fi and the hj extend to regular functions on X satisfying

Xfi
= X̂fi

and Xhj
= X̂hj

. Moreover, we obtain a commutative diagram of
H-equivariant maps:

X
pG

//G
//

pT

//T

!!B
BB

BB
BB

B
X//G

X//T

;;xxxxxxxx

Now, let x ∈ X, and assume that x is not semistable with respect to G.
Choose z ∈ q−1(x), and let y := pG(z). By Proposition 2.3 ii), the assumption

x 6∈ Xss(Λ, G) amounts to y ∈ pG(X \X̂) or to an isotropy group Hy of positive
dimension.

First suppose that we have y ∈ pG(X \ X̂). Let G ·z′ be the closed orbit in

p−1G (y). Then G ·z′ is contained in X \ X̂. Moreover, the Hilbert-Mumford-
Birkes Lemma [10], provides a maximal torus T ′ ⊂ G such that the closure of
T ′ ·z intersects G·z′.
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Let g ∈ G with gT ′g−1 = T . Then the closure of T·g·z contains a point z′′ ∈ G·z′.

Surely, pT (g·z) equals pT (z
′′). Thus, since z′′ ∈ X \ X̂, Proposition 2.3 ii) tells

us that g ·x = q(g ·z) is not semistable with respect to T . A contradiction.

As the situation y ∈ pG(X \X̂) is excluded, the isotropy group Hy is of positive

dimension, and the whole fibre p−1G (y) is contained in X̂. Let H0 ⊂ Hy be the
connected component of the neutral element. Then H0 acts freely on the fibre
p−1G (y), and the closed orbit G·z′ ⊂ p−1G (y) is invariant by H0.

Let µ : g 7→ g·z′ denote the orbit map. Since the actions of G and H0 commute,
G′ := µ−1(H0·z

′) is a subgroup of G. Since H0·z
′ ∼= H0, there is a torus S′ ⊂ G′

with µ(S′) = H0 ·z
′, use for example [11, Proposition IV.11.20].

Let T ′ ⊂ G be a maximal torus with S ′ ⊂ T ′ and choose g ∈ G with T =
gT ′g−1. Then H0 ·g ·z

′ equals (gS′g−1)·g ·z′. According to Proposition 2.3 ii),
the point q(g·z′) is not semistable with respect to T . A contradiction. So, every
x ∈ X is semistable with respect to G, and the implication “ii)⇒i)” is proved.

We come to the supplement concerning separateness. Clearly, existence of a
good quotient X → X//G with X//G separated implies that also the quotient
space X//N(T ) is separated.

For the converse, suppose that X → X//N(T ) exists with a separated divisorial
X//N(T ). Then there is a good quotient X → X//T with a separated quotient
space X//T , and [6, Theorem 5.4] implies that also the quotient space X//G is
separated.

In the proof of Theorem 5.2, we shall use that geometric quotient spaces of
proper actions inherit Q-factoriality. By the lack of a reference for this pre-
sumably well-known fact, we give here a proof:

Lemma 5.5. Suppose that a reductive group H acts regularly with finite isotropy
groups on a variety Y and that there is a geometric quotient p : Y → Y/H. If
Y is Q-factorial, then so is Y/H.

Proof. Assume that Y is Q-factorial, and let E ⊂ Y/H be a prime divisor.
Then p−1(E) is a union of prime divisors D1, . . . , Dr. Some multiplemD of the
divisor D := D1+. . .+Dr is Cartier. Using Lemma 4.2 and Proposition 1.3, we
see that the group of Cartier divisors generated by mD is canonically strongly
H-linearized.

Enlarging m, we achieve that the sheaf AmD is equivariantly isomorphic to the
pullback p∗(L) of some invertible sheaf L on Y/H, use e.g. [17, Proposition 4.2].
The canonical section 1 ∈ AmD(Y ) is H-invariant and hence induces a section
f ∈ L(Y/H) having precisely E as its set of zeroes.

Proof of Theorem 5.2. If one of the quotients exists, then by [19, Section 0.4]
and Lemma 5.5, the quotient space is separated and Q-factorial. Now, existence
of a geometric quotient X → X/G surely implies existence of a geometric
quotient X/N(T ). Conversely, if X/N(T ) exists, then it is Q-factorial. Hence
Theorem 5.1 yields a geometric quotient X → X/G.
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