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Abstract. This note shows how two existing approaches to provid-
ing effective (quadratic) bounds for the freeness of adjoint line bundles
can be linked to establish a new effective bound which approximately
differs from the linear bound conjectured by Fujita only by a factor
of the cube root of the dimension of the underlying manifold. As an
application, a new effective statement for pluricanonical embeddings
is derived.
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1 Introduction and statement of the Main Theorem

Let L be an ample line bundle over a compact complex projective manifold
X of complex dimension n. Let KX be the canonical line bundle of X. The
following conjecture is due to Fujita [Fuj87].

Conjecture 1.1 (Fujita). The adjoint line bundle KX + mL is base point
free (i.e. spanned by global holomorphic sections) for m ≥ n + 1. It is very
ample for m ≥ n+ 2.

The standard example of the hyperplane line bundle on X = Pn shows that the
conjectured numerical bounds are optimal. In the case of X being a compact
Riemann surface, the conjecture is easily verified by means of the Riemann-
Roch theorem. Moreover, Reider [Rei88] was able to validate the conjecture
also in the case n = 2. In higher dimensions, the very ampleness part of the
conjecture has proved to be quite intractable so far. In fact, no further results
seem to be known here. On the other hand, several further results have been
established towards the freeness conjecture. The case n = 3 was solved by
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Ein and Lazarsfeld [EL93] (see also [Fuj93]), and n = 4 is due to Kawamata
[Kaw97]. In arbitrary dimension n, the state-of-the-art is that KX + mL is
base point free for any integer m that is no less than a number roughly of order
n2 (see below for exact statements).
To the author’s knowledge, [Dem00] constitutes the most recent survey on the
subject under discussion. It contains an extensive list of references (see also the
references at the end of this article) and, furthermore, introduces the reader to
various other effective results in algebraic geometry.
The above-mentioned bound in the case of arbitrary dimension n can be derived
from each of the following two theorems, due to Angehrn and Siu [AS95] (see
also [Siu96]) and Helmke [Hel97], [Hel99], respectively. Although the proofs
of these two theorems adhere to the same inductive approach, the key ideas
at their cores are of a different nature. In Proposition 3.5, we will show how
to use the techniques in question seamlessly in a back-to-back manner. This
insight, together with the numerical considerations in Section 2, will lead to
the improved bound asserted in the Main Theorem and proved in Section 3.
First, let us state the bound given by [AS95].

Theorem 1.2 ([AS95]). The line bundle KX +mL is base point free for m ≥
1
2n(n+ 1) + 1.

Secondly, we state Helmke’s result. Due to the nature of his technique, the
assumptions of his theorem are formulated in a slightly different way. We quote
the result in the way it is presented in [Hel97], because the slight improvement
achieved in [Hel99] is not relevant for our purposes.

Theorem 1.3 ([Hel97]). Assume that L has the additional properties that

Ln > nn

and for all x ∈ X:

Ld.Z ≥ mx(Z) · nd

for all subvarieties Z ⊂ X with x ∈ Z, d = dimZ ≤ n − 1 and multiplicity
mx(Z) ≤

(
n−1
d−1

)
at x. Then KX + L is base point free.

If n ≥ 3, it is clear that we need to set

m0 := max{n · d
√(

n− 1

d− 1

)
: d ∈ N and 1 ≤ d ≤ n}

to determine the minimal bound m0 deducible from Theorem 1.3 such that
KX +mL is base point free for any integer m ≥ m0. Since

d

√(
n− 1

d− 1

)
≥ 1

d
√

3

n1− 1
d

d
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according to our Lemma 2.3, we find that the m0 which one can derive from
Theorem 1.3 is essentially also of the order n2.
We conclude this section with the statement of our Main Theorem, which
asserts that the bound m0 can be chosen to be a number of the order n

4
3 .

Theorem 1.4 (Main Theorem). The line bundle KX +mL is base point free
for any integer m with

m ≥ (e+
1

2
)n

4
3 +

1

2
n

2
3 + 1,

where e ≈ 2.718 is Euler’s number.

2 Estimates for binomial coefficients

In order to understand precisely the nature of the numerical conditions in the
assumptions of Theorem 1.3, we prove some auxiliary estimates in this section.
We begin with the following lemma.

Lemma 2.1. For all x ∈ ]0, 1[ : 1 <
(

1
1−x

) 1−x
x

< e.

Proof. It is obvious that 1 is a strict lower bound of the given expression, so it
remains to show that (

1

1− x

) 1−x
x

< e.

Taking log on both sides of the inequality, we see that we are done if we can
show that

g(x) :=
x− 1

x
log(1− x) < 1

on the open unit interval. However, for this it suffices to prove that
limx→0+ g(x) = 1 and g′(x) < 0. The former is easily verified using L’Hôpital’s
rule, while the latter follows readily from a simple computation.

In the proof of the subsequent Lemma 2.3, we will employ Lemma 2.1 in the
form of the following corollary.

Corollary 2.2. Let n be an integer ≥ 2. Let d be an integer with 1 ≤ d ≤ n−1.
Then

1 <

(
n

n− d

)n−d
d

< e.

Proof. We have

(
n

n− d

)n−d
d

=

(
1

1− d
n

) 1− d
n
d
n

.

Thus the corollary follows immediately from Lemma 2.1.
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The preceding considerations allow us to estimate the binomial coefficients from
Theorem 1.3 in the form of the following lemma.

Lemma 2.3. Let 1 ≤ d ≤ n− 1. Then

1
d
√

3

n1− 1
d

d
≤ d

√(
n− 1

d− 1

)
≤ en

d
.

Proof. In [Ahl78], page 206, Stirling’s formula is stated as

Γ(x) =
√

2π xx−
1
2 e−xe

θ(x)
12x

for x > 0 with 0 < θ(x) < 1. In particular,

√
2π xx−

1
2 e−x ≤ Γ(x) ≤

√
2π xx−

1
2 e−xe

1
12

for any x ≥ 1. Thus, for the proof of the desired estimate from above, Stirling’s
formula enables us to proceed as follows.

(
n− 1

d− 1

)
=

(n− 1)!

(d− 1)!(n− d)!
=

1

n− d
Γ(n)

Γ(d)Γ(n− d)

≤ 1

n− d

√
2π nn−

1
2 e−ne

1
12

√
2π dd−

1
2 e−d

√
2π (n− d)n−d−

1
2 e−(n−d)

=
e

1
12√
2π

√
d

(n− d)n

(n
d

)d( n

n− d

)n−d

≤
(n
d

)d( n

n− d

)n−d
.

Resorting to Corollary 2.2, we eventually conclude:

(
n− 1

d− 1

) 1
d

≤ n

d

(
n

n− d

)n−d
d

≤ en
d
.

The desired estimate from below is proved analogously:
(
n− 1

d− 1

)
=

(n− 1)!

(d− 1)!(n− d)!
=

1

n− d
Γ(n)

Γ(d)Γ(n− d)

≥ 1

n− d

√
2π nn−

1
2 e−n√

2π dd−
1
2 e−de

1
12

√
2π (n− d)n−d−

1
2 e−(n−d)e

1
12

=
1

e
1
6

√
2π

√
d

(n− d)n

(n
d

)d( n

n− d

)n−d

≥ 1

3

1

n

(n
d

)d( n

n− d

)n−d
.
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Using Corollary 2.2 again, we obtain:

(
n− 1

d− 1

) 1
d

≥ d

√
1

3n

n

d
=

1
d
√

3

n1− 1
d

d
.

3 Proof of the Main Theorem

The following theorem states the improved effective freeness bound which we
shall prove at the end of this section.

Theorem 3.1 (Main Theorem). The line bundle KX +mL is base point free
for any integer m with

m ≥ (e+
1

2
)n

4
3 +

1

2
n

2
3 + 1,

where e ≈ 2.718 is Euler’s number.

First of all, let us recall how a result of this type can be proved by means of
multiplier ideal sheaves.
Let x ∈ X be an arbitrary but fixed point. The key idea of both [AS95] and
[Hel97] is to find an integer m0 (as small as possible) and a singular metric h
of the line bundle m0L with the following two properties:

1. Let h be given locally by e−ϕ. Then the curvature current i∂∂̄ϕ dominates
a positive definite smooth (1, 1)-form on X in the sense of currents.

2. Let the multiplier ideal sheaf of h be defined stalk-wise by (χ ∈ X):

(Ih)χ := {f ∈ OX,χ : |f |2e−ϕ is locally integrable at χ}.

Then, in a neighborhood of x, the zero set of Ih, which we denote by
V (Ih), is just the point x. (This is the key property we are looking for.
Note that the support of V (Ih) is just the set of points where h is not
locally integrable.)

The first property implies that

Hq(X, Ih(KX +m0L)) = (0) (q ≥ 1),

due to the vanishing theorem of Nadel [Nad89], [Nad90]. (In the special case
when the singular metric is algebraic geometrically defined, Nadel’s vanish-
ing theorem is the same as the theorem of Kawamata and Viehweg [Kaw82],
[Vie82].) With this information and the second property, it is easy to obtain
an element of Γ(X,KX +m0L) which does not vanish at x. Namely, consider
the short exact sequence

0→ Ih(KX +m0L)→ KX +m0L→ (OX/Ih)(KX +m0L)→ 0.
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The relevant part of the pertaining long exact sequence reads:

Γ(X,KX +m0L)→ Γ(V (Ih), (OX/Ih)(KX +m0L))→ 0,

which implies by virtue of the second property that

Γ(X,KX +m0L)
restr.−→ Γ({x},O{x}(KX +m0L))→ 0,

meaning that the restriction map to {x} is surjective, which is what we intended
to prove. Note that, since L is ample, there trivially exists a metric with the
two aforementioned properties for every line bundle mL with m ≥ m0 (just
multiply the metric for m0L by the (m −m0)-th power of a smooth positive
metric of L).
In both [AS95] and [Hel97], the sought-after metric h is produced by an induc-
tive method. First, here is the key statement proved in sections 7–9 of [AS95].
The cornerstone of its proof is a clever application of the theorem of Ohsawa
and Takegoshi on the extension of L2 holomorphic functions [OT87]. Note
that, in contrast to [AS95], we are only concerned with freeness, and not point
separation, so we can do without the complicated formulations found there.

Proposition 3.2 ([AS95]). Let d be an integer with 1 ≤ d ≤ n−1. Let kd be a
positive rational number, and let hd be a singular metric of the line bundle kdL.
Assume that x ∈ V (Ihd) and x 6∈ V (I(hd)γ ) for γ < 1. Moreover, assume that
the dimensions of those components of V (Ihd) which contain x do not exceed
d. Then there exist integers d′, kd′ with 0 ≤ d′ < d and kd < kd′ < kd+d+ ε (ε
denotes a positive rational number which can be chosen to be arbitrarily small)
and a singular metric hd′ of kd′L such that hd′ possesses the same properties
as hd, but with d and kd replaced by d′ and kd′ .

Second, the key statement of [Hel97] is the following proposition. It is stated in
such a way that it unites [Hel97], Proposition 3.2 (the inductive statement), and
[Hel97], Corollary 4.6 (the multiplicity bound), into one ready-to-use statement.
In its proof, the use of the aforementioned L2 extension theorem is avoided by
an explicit bound on the multiplicity of the minimal centers occurring in the
inductive procedure.

Proposition 3.3 ([Hel97]). Let d be an integer with 1 ≤ d ≤ n− 1. Let

Ln > nn

and
Ld̃.Z ≥ mx(Z) · nd̃

for all subvarieties Z ⊂ X such that x ∈ Z, d ≤ d̃ = dimZ ≤ n − 1 and
multiplicity mx(Z) ≤

(n−1
d̃−1

)
at x. Then there exists an integer 0 ≤ d′ < d,

a rational number 0 < c < 1 and an effective Q-divisor D such that D is Q-
linearly equivalent to cL, the pair (X,D) is log canonical at x and the minimal
center of (X,D) at x is of dimension d′.
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Let us briefly recall the definitions of some of the terms occurring in Proposition
3.3. First of all, for a pair (X,D) of a variety X and a Q-divisor D, an
embedded resolution is a proper birational morphism π : Y → X from a smooth
variety Y such that the union of the support of the strict transform of D
and the exceptional divisor of π is a normal crossing divisor. Next, we define
the following notions, which are fundamental in the study of the birational
geometry of pairs (X,D).

Definition 3.4. Let X be a normal variety and D =
∑
i diDi an effective

Q-divisor such that KX + D is Q-Cartier. If π : Y → X is a birational
morphism (in particular, an embedded resolution of the pair (X,D)), we define
the discrepancy divisor of (X,D) under π to be

∑

j

bjFj := KY − π∗(KX +D).

The pair (X,D) is called log canonical (resp. Kawamata log terminal) at x, if
there exists an embedded resolution π such that bj ≥ −1 (resp. bj > −1) for all
j with x ∈ π(Fj). Moreover, a subvariety Z of X containing x is said to be a
center of a log canonical singularity at x, if there exists a birational morphism
π : Y → X and a component Fj with π(Fj) = Z and bj ≤ −1.

It follows from Shokurov’s connectedness lemma in [Sho86] that the intersection
of two centers of a log canonical singularity is again a center of a log canonical
singularity (for a proof, see [Kaw97]). Thus there exists a unique minimal center
of a log canonical singularity at x with respect to the inclusion of subvarieties
on X.
In order to connect Proposition 3.2 and Proposition 3.3 for our purposes, we
derive from the conclusion of Proposition 3.3 a statement about the existence
of a certain singular metric:

Proposition 3.5. Let (X,D) be a pair of a smooth projective variety X and an
effective Q-divisor D. Let x ∈ X be an arbitrary but fixed point. Assume that
the pair (X,D) is a log canonical at x with its minimal center at x being non-
empty. Let 0 < c < 1 be a rational number such that D is Q-linearly equivalent
to cL. Then there exists a singular metric hD and a rational number c′ (which
can be chosen to be arbitrarily close to c) such that hD is a metric of c′L,
x ∈ V (IhD ) and V (IhD ) is contained in the minimal center of (X,D) at x in
a neighborhood of x. Moreover, x 6∈ V (I(hD)γ ) for γ < 1.

Proof. Let s be a multivalued holomorphic section of cL whose Q-divisor is
D. This means that for some positive integer p with cp being an integer, the
p-th power of s is the canonical holomorphic section of pcL with divisor pD.
Let Z denote the minimal center of (X,D) and π : Y → X a log resolution of
(X,D) with discrepancy divisor

∑
j bjFj . We choose π such that there exists

at least one index j0 with bj0 = −1 and π(Fj0) = Z. Furthermore, we set∑
j δjFj := π∗(D).
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Since L is ample, we can choose a finite number of multivalued holomorphic
sections s1, . . . , sq of L whose common zero set is exactly Z. Let δi,j denote
the vanishing order of π∗si along Fj at a generic point of Fj . If we set δ :=
min{δi,j0 : i = 1, . . . , q}, then δ > 0 holds because all si vanish on Z.
For small positive rational numbers ε, ε′, we define the following singular metric
of, say, c̃L:

h̃D :=
1

|s|2(1−ε)
1

(
∑q
i=1 |si|2)ε′

.

Whatever the choice of ε, ε′ may be, h̃D is locally integrable outside of Z in
a small neighborhood of x. Here is how to choose ε, ε′ in order to make h̃D
not integrable at x. In a small neighborhood U of x, the integrability of h̃D is
equivalent to the integrability of

π∗h̃D|Jac(π)|2 =
1

|s ◦ π|2(1−ε)
1

(
∑q
i=1 |si ◦ π|2)ε′

|Jac(π)|2

over every small open subset W of π−1(U). Note that |Jac(π)|2 can only be
defined locally, and over W we take it to be the quotient

π∗(ωU ∧ ω̄U )

ωW ∧ ω̄W
,

where ωU , ωW are arbitrary but fixed nowhere vanishing local holomorphic n-
forms on U and W , respectively. As we continue, we observe that there exists
a small open subset W of π−1(U) such that W ∩ Fj0 6= ∅ and π∗h̃D|Jac(π)|2
has a pole along W ∩ Fj0 , with its order at a generic point of W ∩ Fj0 being

bj0 + εδj0 − ε′δ.

This number equals −1 if we choose ε arbitrarily and set ε′ := 1
δ εδj0 . We

conclude that, with these choices for ε and ε′, h̃D is not integrable at x.
Finally, we set hD := (h̃D)r with

r := min{ρ : 0 < ρ ≤ 1, (h̃D)ρ is not integrable at x}

to obtain the desired singular metric for c′L. Notice that if we let ε→ 0, then
r → 1, c̃→ c and c′ → c.

Now we are in a position to prove our Main Theorem.

Proof. Fix x ∈ X. Our goal is to prove that, if m0 is the smallest integer no
less than

(e+
1

2
)n

4
3 +

1

2
n

2
3 + 1,

there exists a singular metric h of the line bundle m0L such that the two
properties listed at the beginning of this section are satisfied. As was explained
before, this is all that is necessary to prove the Main Theorem.
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Let a be the smallest integer which is no less than e n
4
3 . Let d0 be the integral

part of n
2
3 . According to Lemma 2.3, we have

(
n− 1

d̃− 1

) 1
d̃

n ≤ e n
2

d̃

for all integers d̃ with 1 ≤ d̃ ≤ n− 1. Furthermore,

e
n2

d̃
≤ e n 4

3 ≤ a

for d̃ ≥ n 2
3 . Thus we can use Proposition 3.3 to produce an effective Q-divisor

D such that D is Q-linearly equivalent to caL for some 0 < c < 1, the pair
(X,D) is log canonical at x and its minimal center at x is of dimension d′ for
some integer d′ with 0 ≤ d′ ≤ d0. By Proposition 3.5, this translates into the
existence of a singular metric h1 of c′aL (0 < c′ < 1) such that x ∈ V (Ih1

),
x 6∈ V (I(h1)γ ) for γ < 1 and the dimensions of those components of V (Ih1

)
that contain x do not exceed d′.
From this point onwards, we can use the method of [AS95] in the form of
Proposition 3.2 to produce inductively a singular metric h2 such that V (Ih2

)
is isolated at x. If the constructed metric h2 is a metric for, say, kL, then

k ≤ c′a+ 1 + 2 + . . .+ d0 + ε1 + ε2 + . . .+ εd0
.

Since the εi can be chosen to be arbitrarily small positive rational numbers and
since c′ < 1, we can assume that

c′a+ 1 + 2 + . . .+ d0 + ε1 + ε2 + . . .+ εd0
< a+ 1 + 2 + . . .+ d0.

To obtain a metric of m0L with the additional property that its curvature
current dominates a positive definite smooth (1, 1)-form on X in the sense of
currents, we can simply multiply h2 by the (m0 − k)-th power of a smooth
positive metric of L to obtain the desired metric h of m0L. Note that m0 − k
is a positive number because

m0 − k > m0 − (a+ 1 + 2 + . . .+ d0)

≥ m0 − (e n
4
3 + 1 + 1 + 2 + . . .+ d0)

= m0 − (e n
4
3 + 1 +

1

2
d0(d0 + 1))

≥ m0 − (e n
4
3 + 1 +

1

2
n

2
3 (n

2
3 + 1))

= m0 − ((e+
1

2
)n

4
3 +

1

2
n

2
3 + 1) ≥ 0.

The proof of the Main Theorem is now complete.
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4 Applications

As was indicated before, not much is known about the very ampleness part of
the Fujita conjecture. The theorems and techniques mentioned in the previous
sections do not seem to be directly applicable to it. However, Angehrn and Siu
[AS95] were able to prove the following weaker analog to the very ampleness
part of Fujita’s conjecture, in which they assume that L, in addition to being
ample, is also base point free. Their result improves on previous results of Ein,
Küchle and Lazarsfeld [EKL95] and Kollar [Kol93].

Theorem 4.1 ([AS95]). Let L be an ample line bundle over a compact complex
manifold X of complex dimension n such that L is free. Let A be an ample line
bundle. Then (n+ 1)L+A+KX is very ample.

In conjunction with our Main Theorem, Theorem 4.1 can readily be applied
to the case of an ample canonical line bundle in order to give the following
effective statement on pluricanonical embeddings. As far as the author knows,
this is the best effective statement on pluricanonical embeddings currently on
hand. Note that Fujita’s conjecture indicates that the statement of Corollary
4.2 should hold true for any integer m ≥ n+ 3.

Corollary 4.2. If X is a compact complex manifold of complex dimension n
whose canonical bundle KX is ample, then mKX is very ample for any integer
m ≥ (e+ 1

2 )n
7
3 + 1

2n
5
3 + (e+ 1

2 )n
4
3 + 3n+ 1

2n
2
3 + 5.

Proof. Let m0 be the smallest integer no less than (e + 1
2 )n

4
3 + 1

2n
2
3 + 1.

According to our Main Theorem, m0KX + KX = (m0 + 1)KX is base
point free (and, of course, ample). Thus we can apply Theorem 4.1 with
L = (m0 + 1)KX and A = KX to obtain that mKX is very ample for any
integer m ≥ (n+ 1)(m0 + 1) + 2. A simple estimate yields the following upper
bound for (n+ 1)(m0 + 1) + 2:

(n+ 1)(m0 + 1) + 2

= m0(n+ 1) + n+ 3

≤ ((e+
1

2
)n

4
3 +

1

2
n

2
3 + 1 + 1)(n+ 1) + n+ 3

= (e+
1

2
)n

7
3 +

1

2
n

5
3 + (e+

1

2
)n

4
3 + 3n+

1

2
n

2
3 + 5.

Finally, we remark that our effective statement on pluricanonical embeddings
can be used to sharpen the best known bound for the number of dominant
holomorphic maps from a fixed compact complex manifold with ample canoni-
cal bundle to any variable compact complex manifold with big and numerically
effective canonical bundle.
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