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Abstract. In this paper we show that the bivariant Chern class
γ : F → H for morphisms from possibly singular varieties to nonsingular
varieties are uniquely determined, which therefore implies that the Brasse-
let bivariant Chern class is unique for cellular morphisms with nonsingular
target varieties. Similarly we can see that the Grothendieck transforma-
tion τ : Kalg → HQ constructed by Fulton and MacPherson is also unique
for morphisms with nonsingular target varieties.
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§1 Introduction

In [FM, Part I] W. Fulton and R. MacPherson developed the so-called Bivari-
ant Theories, which are simultaneous generalizations of covariant functors and
contravariant functors. They are equipped with three operations of product,
pushforward, pullback, and they are supposed to satisfy seven kinds of axioms.
A transformation from one bivariant theory to another bivariant theory, pre-
serving these three operations, is called a Grothendieck transformation, which
is a generalization of ordinary natural transformations.
The Chern-Schwartz-MacPherson class is the unique natural transformation
c∗ : F → H∗ from the covariant functor F of constructible functions to the
integral homology covariant functor H∗, satisfying the normalization condition
that the value c∗(11X) of the characteristic function 11X of a nonsingular variety
X is equal to the Poincaré dual of the total Chern class c(TX) of the tangent
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bundle TX of X. The existence of this transformation was conjectured by
Deligne and Grothendieck, and was proved by MacPherson (see [M] and also
[BS], [Sc]).
In [FM, Part I, §10.4] Fulton and MacPherson conjectured (or posed as a ques-
tion) the existence of a bivariant Chern class, i.e., a Grothendieck transfor-
mation γ : F → H from the bivariant theory F of constructible functions to
the bivariant homology theory H, satisfying the normalization condition that
for a morphism from a nonsingular variety X to a point the value γ(11X) of
the characteristic function 11X of X is equal to the Poincaré dual of the total
Chern class of X. The bivariant Chern class specializes to the original Chern-
Schwartz-MacPherson class, i.e., when restricted to morphisms to a point it
becomes the Chern-Schwartz-MacPherson class. As applications of the bivari-
ant Chern class, for example, one obtains the Verdier-Riemann-Roch for Chern
class and the Verdier’s specialization of Chern classes [V].
In [B] J.-P. Brasselet has solved the conjecture affirmatively in the category
of complex analytic varieties and cellular analytic maps. Any analytic map is
“conjecturally” cellular and indeed no example of a non-cellular analytic map
has been found so far. In this sense the condition of “cellularness” could be
dropped. For example, it follows from a result of Teissier [T] that an analytic
map to a smooth curve is cellular (see [Z2, 2.2.5 Lemme]). In [S] C. Sabbah
gave another construction of bivariant Chern classes, using the notions of bi-
variant cycle, relative local Euler obstruction, morphisme sans éclatement en
codimension 0 (see [S] or [Z1, Z2] for more details). And in [Z1] (and [Z2]) J.
Zhou showed that for a morphism from a variety to a smooth curve these two
bivariant Chern classes due to Brasselet and Sabbah are identical. However,
the uniqueness of bivariant Chern classes still remains as an open problem.
In [FM, Part II] Fulton and MacPherson constructed a Grothendieck transfor-
mation τ : Kalg → HQ, which is a bivariant-theoretic version of Baum-Fulton-
MacPherson’s Riemann-Roch τBFM : K0 → H∗Q constructed in [BFM]. The
uniqueness problem of this Grothendieck transformation remains open.
As remarked in [FM, Part I, §10.9: Uniqueness Questions], there are few unique-
ness theorems available concerning Grothendieck transformations.
In this paper we show that the bivariant Chern class for morphisms with non-
singular target varieties is unique if it exists. Therefore it follows that the
Brasselet bivariant Chern class is unique for cellular morphisms with nonsin-
gular target varieties, thus it gives another proof of Zhou’s result mentioned
above. Our method also implies that the above Grothendieck transformation
τ : Kalg → HQ constructed by Fulton and MacPherson is unique for morphisms
with nonsingular target varieties.
The author would like to thank Jean-Paul Brasselet and the referee for useful
comments and suggestions.
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Uniqueness of Bivariant Chern Classes 135

§2 Bivariant constructible functions
and bivariant homology theory

For a general reference for the bivariant theory, see Fulton-MacPherson’s book
[FM]. In this section, we recall some basic ingredients, needed in this paper, of
the bivariant theory of constructible functions and bivariant homology theory.

For a morphism f : X → Y the bivariant theory F(X
f−→ Y ) of constructible

functions consists of all the constructible functions on X which satisfy the local
Euler condition with respect to f , i.e., the condition that for any point x ∈ X
and for any local embedding (X,x)→ (CN , 0) the following equality holds

α(x) = χ
(
Bε ∩ f−1(z);α

)
,

where Bε is a sufficiently small open ball of the origin 0 with radius ε and z is
any point close to f(x) (see [B], [FM], [S], [Z1]). The three operations on F are
defined as follows:
(i): the product operation

• : F(X
f−→ Y )⊗ F(Y

g−→ Z)→ F(X
gf−→ Z)

is defined by:
α • β := α · f∗β.

(ii): the pushforward operation

f∗ : F(X
gf−→ Z)→ F(Y

g−→ Z)

is the pushforward

(f∗α)(y) := χ(f−1(y);α) =

∫

f−1(y)

c∗(α|f−1(y)).

(iii): For a fiber square

X ′
g′−−−−→ X

f ′
y

yf

Y ′
g−−−−→ Y,

the pullback operation

g∗ : F(X
f−→ Y )→ F(X ′

f ′−→ Y ′)

is the functional pullback

(g′
∗
α)(x′) := α(g′(x′)).

Documenta Mathematica 7 (2002) 133–142



136 Shoji Yokura

These operations satisfy the seven axioms listed in [FM, Part I, §2.2] and it is
also known that these three operations are well-defined (e.g., see [BY], [FM],

[S], [Z1]). Note that F(X
idX−→ X) consists of all locally constant functions and

F(X → pt) = F (X).
Let H be the Fulton-MacPherson bivariant homology theory, constructed from
the cohomology theory. For a morphism f : X → Y , choose a morphism
φ : X →M to a smooth manifold M of real dimension n such that Φ := (f, φ) :
X → Y ×M is a closed embedding. Of course, the morphism φ : X →M can be

already an embedding. Then the i-th bivariant homology group Hi(X f−→ Y )
is defined by

Hi(X f−→ Y ) := Hi+n(Y ×M, (Y ×M) \Xφ),

where Xφ is defined to be the image of the morphism Φ = (f, φ). The definition
is independent of the choice of φ, i.e., for any other morphism φ′ : X →M ′ to
a smooth manifold M ′ of real dimension n′ there is an isomorphism

Hi+n(Y ×M, (Y ×M) \Xφ) ∼= Hi+n′(Y ×M ′, (Y ×M ′) \Xφ′).

See [FM, §3.1] for more details of H.
A bivariant Chern class is a Grothendieck transformation from the bivariant
theory F of constructible functions to the bivariant homology theory H

γ : F→ H

satisfying the normalization condition that for a nonsingular variety X and for
the map π : X → pt to a point pt

γ(11π) = c(TX) ∩ [X]

where 11π = 11X ∈ F (X) = F(X
π−→ pt). Here the Grothendieck transfor-

mation γ : F → H preserves the three operations of product, pushforwad and
pullback, i.e.,
(i) γ(α • β) = γ(α) • γ(β),
(ii) γ(f∗α) = f∗γ(α) and
(iii) γ(g∗α) = g∗γ(α).

Theorem (2.1). (Brasselet’s Theorem [B]) For the category of analytic vari-
eties with cellular morphisms there exists a bivariant Chern class γ : F→ H.

§3 Uniqueness of the bivariant Chern class

First we take a bit closer look at the definition of the bivariant homology theory.
As seen above, for any morphism φ : X → M such that (f, φ) : X → Y ×M
is a closed embedding (or simply, for any closed embedding φ : X → M), we
have the isomorphism
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Uniqueness of Bivariant Chern Classes 137

H(X
f−→ Y ) ∼= H∗(Y ×M, (Y ×M) \X).

This isomorphism is thought to be a “realization isomorphism with respect

to the embedding X → Y ×M” of the group H(X
f−→ Y ). We denote this

isomorphism by <X↪→Y×M , emphasizing the embedding Φ : X → Y ×M . In
particular, for a morphism f : X → pt to a point pt, the bivariant homology

group H(X
f−→ pt) is considered to be the homology group H∗(X), since

for any embedding of X into any manifold N we have the Alexander duality
isomorphism

H∗(N,N \X) ∼= H∗(X),

which shall be denoted by AX↪→N , again indicating the embedding X ↪→ N .
Note that the Alexander isomorphism is given by taking the cap product with

the fundamental class, i.e.,AX↪→N (a) = a ∩ [N ]. Therefore H(X
f−→ pt) =

H∗(X) and <X↪→N =
(
AX↪→N

)−1
. In particular, if X is nonsingular, the

Alexander duality isomorphism is the Poincaré duality isomorphism via Thom
isomorphism, denoted by PX :

AX↪→X = PX : H∗(X) ∼= H∗(X).

With these notation, it follows from the definition of the bivariant product in
H [FM, Part I, §3.1.7] that the bivariant product

• : H(X
f−→ Y )⊗H(Y

g−→ Z)→ H(X
gf−→ Z)

is described as follows: consider the following commutative diagram where the
rows are closed embedding and the verticals are the projections with M and
N being manifolds:

X −−−−→ Y ×M −−−−→ Z ×N ×M
y

yp

Y −−−−→ Z ×N
y

Z

Then for α ∈ H(X
f−→ Y ) and β ∈ H(Y

g−→ Z)

(3.1) α • β :=
(
<X↪→Z×N×M

)−1
(
<X↪→Y×M (α) · p∗<Y ↪→Z×N (β)

)
,

where the center dot · is the product defined by [FM, §3.1.7 (1), p.36]. The well-
definedness of the bivariant homology product given in Fulton-MacPherson’s
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book [FM] means that the above description (3.1) is independent of the choices
of M and N , i.e., the realization isomorphisms. This viewpoint becomes a
crucial one in our proof.

Remark (3.2). Suppose that γ : F → H is a bivariant Chern class. For a

morphism f : X → Y , we denote the homomorphim γ : F(X
f−→ Y ) →

H(X
f−→ Y ) by γX→Y . Then, for any variety X we see that the homomorphism

γX→pt : F (X) = F(X → pt)→ H(X → pt) = H∗(X) is nothing but the Chern-
Schwartz-MacPherson class homomorphism c∗ : F (X) → H∗(X), because
γX→pt is a natural transformation satisfying the normalization condtion and
thus it has to be the Chern-Schwartz-MacPherson class c∗ : F (X) → H∗(X)
since it is unique.

Let γ : F → H be a bivariant Chern class and let α ∈ F(X
f−→ Y ). Then we

have
γX→pt(α) = γX→Y (α) • γY→pt(11Y ),

Therefore it follows from Remark (3.2) that we have

(3.3) c∗(α) = γX→Y (α) • c∗(11Y ).

Furthermore, for any constructible function β ∈ F (Y ), we have

c∗(α · f∗β) = γX→Y (α) • c∗(β).

The uniqueness of γ : F → H, therefore, follows if we can show that ω ∈
H(X

f−→ Y ) and ω • c∗(β) = 0 for any β ∈ F (Y ) automatically implies that
ω = 0.
Heuristically or very loosely speaking, the bivariant Chern class γX→Y (α) of

the bivariant constructible function α ∈ F(X
f−→ Y ) could be or should be

“described” as a “quotient”

γX→Y (α) :=
c∗(α)

c∗(11Y )

in a reasonable way. Otherwise it would be an interesting problem to see if
there is a reasonable bivariant homology theory so that this “quotient” is well-
defined. We hope to come back to this problem in a different paper.
However, in the case of morphisms whose target varieties are nonsingular, the
above argument gives us the uniqueness of the bivariant Chern class and fur-

thermore we can describe the above “quotient” c∗(α)
c∗(11Y ) explicitly.

Theorem (3.4). Let γ : F→ H be a bivariant Chern class. Then it is unique,
when restricted to morphisms whose target varieties are nonsingular.
Explicitly, for a morphism f : X → Y with Y being nonsingular and for any

bivariant constructible function α ∈ F(X
f−→ Y ) the bivariant Chern class

γX→Y (α) is expressed by

γX→Y (α) = f∗s(TY ) ∩ c∗(α)

where s(TY ) is the total Segre class of the tangent bundle TY , i.e., s(TY ) =
c(TY )−1 the inverse of the total Chern class c(TY ).
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Uniqueness of Bivariant Chern Classes 139

Corollary (3.5). The Brasselet bivariant Chern classes, defined on cellular
morphisms with nonsingular target varieties, are unique.

Thus in particular, we get the following

Corollary (3.6). (Zhou’s theorem [Z1, Z2]) For a morphism f : X → S
with S being a smooth curve, Brasselet’s bivariant Chern class and Sabbah’s
bivariant Chern class are the same.

Proof of Theorem (3.4). First, the hypothesis that the target variety Y is non-
singular implies that we have

H(X
f−→ Y ) = H(X → pt) = H∗(X).

This turns out to be a key fact. Let γ : F → H be a bivariant Chern class.
Then it follows from (3.3) that we have

c∗(α) = γX→Y (α) • c∗(11Y ).

To consider the product, we look at the following commutative diagram with
j : X → Y ×M being an embedding and p : Y ×M → Y the projection such
that f = p ◦ j:

X
j−−−−→ Y ×M id−−−−→ Y ×M

p

y
yp

Y
id−−−−→ Y

y

pt

Hence we have, via the realization isomorphisms <X↪→Y×M , that

c∗(α) =
(
<X↪→Y×M

)−1
(
<X↪→Y×M (γX→Y (α)) · p∗<Y ↪→Y (c∗(Y ))

)
.

Here it should be noted that the realization isomorphism <X↪→Y×M functions
as two kinds of realization isomorphism: the first one is

<X↪→Y×M : H(X → pt) = H∗(X) ∼= H∗(Y ×M, (Y ×M) \X)

and the second one is

<X↪→Y×M : H(X
f−→ Y ) = H∗(X) ∼= H∗(Y ×M, (Y ×M) \X).

Since id : Y ×M → Y ×M is the identity, it follows from the definition of the
product · that it is nothing but the usual cup product, thus we have

c∗(α) =
(
<X↪→Y×M

)−1
(
<X↪→Y×M (γX→Y (α)) ∪ p∗<Y ↪→Y (c∗(Y ))

)
.
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Since Y is nonsingular, c∗(Y ) = c(TY ) ∩ [Y ] and <Y ↪→Y : H∗(Y ) = H(Y →
pt) ∼= H∗(Y ) which is the inverse of the Poincaré duality isomorphism PY , we
have <Y ↪→Y (c∗(Y )) = c(TY ). Therefore we get that

c∗(α) =
(
<X↪→Y×M

)−1
(
<X↪→Y×M (γX→Y (α)) ∪ p∗c(TY )

)
.

Which implies that

<X↪→Y×M (c∗(α)) = <X↪→Y×M (γX→Y (α)) ∪ p∗c(TY ).

Thus we get that

<X↪→Y×M (γX→Y (α)) = <X↪→Y×M (c∗(α)) ∪ p∗s(TY ),

which implies that

γX→Y (α) =
(
<X↪→Y×M

)−1
(
<X↪→Y×M (c∗(α)) ∪ p∗s(TY )

)
.

Furthermore this can be simplified more as follows. Since, as we observe in the
previous section,

(
<X↪→Y×M

)−1

(a) = a ∩ [Y ×M ],

we get

γX→Y (α) =

(
<X↪→Y×M (c∗(α)) ∪ p∗s(TY )

)
∩ [Y ×M ].

Then it follows from the equation [F, §19.1, (8), p.371] that we get the following:

γX→Y (α) =

(
<X↪→Y×M (c∗(α)) ∪ p∗s(TY )

)
∩ [Y ×M ]

= j∗p∗s(TY ) ∩
(
<X↪→Y×M (c∗(α)) ∩ [Y ×M ]

)

= j∗p∗s(TY ) ∩ c∗(α)

= f∗s(TY ) ∩ c∗(α). ¤

By the same argument as above, we can show the following:
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Uniqueness of Bivariant Chern Classes 141

Theorem (3.7). The Grothendieck transformation

τ : Kalg → HQ

constructed in [FM, Part II] is unique on morphisms with nonsingular target
varieties. And the bivariant class τX→Y (α) for a bivariant coherent sheaf α ∈
Kalg(X → Y ) is given by

τX→Y (α) =
1

f∗td(TY )
∩ τBFM(α)

where τBFM : K0 → H∗Q is the Baum-Fulton-MacPherson’s Riemann-Roch
and td(TY ) is the total Todd class of the tangent bundle.

Remark (3.8). In the case when the target variety Y is singular, the above argu-
ment does not work at all. Thus the target variety being nonsingular is essential
(cf. [Y]). However, “modulo resolution” the uniqueness holds. Namely, by tak-

ing any resolution of singularities π : Ỹ → Y , for any bivariant constructible
function α ∈ F(X → Y ), the pullback π∗γ(α) is uniquely determined; i.e.,
suppose that we have two bivariant Chern classes γ, γ ′ : F → H, then for any

resolution π : Ỹ → Y we have

π∗γ(α) = π∗γ′(α).

It is the same for the Grothendieck transformation τ : Kalg → HQ, i.e.,

π∗τ(α) = π∗τ ′(α).
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