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Abstract. In this paper the homology stability for unitary groups
over a ring with finite unitary stable rank is established. First we de-
velop a ‘nerve theorem’ on the homotopy type of a poset in terms of
a cover by subposets, where the cover is itself indexed by a poset. We
use the nerve theorem to show that a poset of sequences of isotropic
vectors is highly connected, as conjectured by Charney in the eight-
ies. Homology stability of symplectic groups and orthogonal groups
appear as a special case of our results.
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1. Introduction

Interest in homological stability problems in algebraic K-theory started with
Quillen, who used it in [15] to study the higher K-groups of a ring of integers.
As a result of stability he proved that these groups are finitely generated (see
also [7]). After that there has been considerable interest in homological stability
for general linear groups. The most general results in this direction are due to
the second author [20] and Suslin [19].
Parallel to this, similar questions for other classical groups such as orthogonal
and symplectic groups have been studied. For work in this direction, see [23],
[1], [5], [12], [13]. The most general result is due to Charney [5]. She proved
the homology stability for orthogonal and symplectic groups over a Dedekind
domain. Panin in [13] proved a similar result but with a different method and
with better range of stability.
Our goal in this paper is to prove that homology stabilizes of the unitary
groups over rings with finite unitary stable rank. To do so we prove that
the poset of isotropic unimodular sequences is highly connected. Recall that
Panin in [12] had already sketched how one can do this for a finite dimensional
affine algebra over an infinite field, in the case of symplectic and orthogonal
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groups. However, while the assumption about the infinite field provides a
significant simplification, it excludes cases of primary interest, namely rings
that are finitely generated over the integers.
Our approach is as follows. We first extend a theorem of Quillen [16, Thm
9.1] which was his main tool to prove that certain posets are highly connected.
We use it to develop a quantitative analogue for posets of the nerve theorem,
which expresses the homotopy type of a space in terms of the the nerve of
a suitable cover. In our situation both the elements of the cover and the
nerve are replaced with posets. We work with posets of ordered sequences
‘satisfying the chain condition’, as this is a good replacement for simplicial
complexes in the presence of group actions. (Alternatively one might try to
work with barycentric subdivisions of a simplicial complex.) The new nerve
theorem allows us to exploit the higher connectivity of the poset of unimodular
sequences due to the second author. The higher connectivity of the poset
of isotropic unimodular sequences follows inductively. We conclude with the
homology stability theorem.

2. Preliminaries

Recall that a topological space X is (−1)-connected if it is non-empty, 0-
connected if it is non-empty and path connected, 1-connected if it is non-empty
and simply connected. In general for n ≥ 1, X is called n-connected if X is
nonempty, X is 0-connected and πi(X,x) = 0 for every base point x ∈ X and
1 ≤ i ≤ n. For n ≥ −1 a space X is called n-acyclic if it is nonempty and
H̃i(X,Z) = 0 for 0 ≤ i ≤ n. For n < −1 the conditions of n-connectedness and
n-acyclicness are vacuous.

Theorem 2.1 (Hurewicz). For n ≥ 0, a topological space X is n-connected if

and only if the reduced homology groups H̃i(X,Z) are trivial for 0 ≤ i ≤ n and
X is 1-connected if n ≥ 1.

Proof. See [25], Chap. IV, Corollaries 7.7 and 7.8. ¤

Let X be a partially ordered set or briefly a poset. Consider the simplicial
complex associated to X, that is the simplicial complex where vertices or 0-
simplices are the elements of X and the k-simplices are the (k + 1)-tuples
(x0, . . . , xk) of elements of X with x0 < · · · < xk. We denote it again by X.
We denote the geometric realization of X by |X| and we consider it with the
weak topology. It is well known that |X| is a CW-complex [11]. By a morphism
or map of posets f : X → Y we mean an order-preserving map i. e. if x ≤ x′

then f(x) ≤ f(x′). Such a map induces a continuous map |f | : |X| → |Y |.

Remark 2.2. If K is a simplicial complex and X the partially ordered set of
simplices of K, then the space |X| is the barycentric subdivision of K. Thus
every simplicial complex, with weak topology, is homeomorphic to the geo-
metric realization of some, and in fact many, posets. Furthermore since it is
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well known that any CW-complex is homotopy equivalent to a simplicial com-
plex, it follows that any interesting homotopy type is realized as the geometric
realization of a poset.

Proposition 2.3. Let X and Y be posets.
(i) (Segal [17]) If f, g : X → Y are maps of posets such that f(x) ≤ g(x) for
all x ∈ X, then |f | and |g| are homotopic.
(ii) If the poset X has a minimal or maximal element then |X| is contractible.
(iii) If Xop denotes the opposite poset of X, i. e. with opposite ordering, then
|Xop| ' |X|.
Proof. (i) Consider the poset I = {0, 1 : 0 < 1} and define the poset map
h : I × X → Y as h(0, x) = f(x), h(1, x) = g(x). Since |I| ' [0, 1], we have
|h| : [0, 1]× |X| → |Y | with |h|(0, x) = |f |(x) and |h|(1, x) = |g|(x). This shows
that |f | and |g| are homotopic.
(ii) Suppose X has a maximal element z. Consider the map f : X → X with
f(x) = z for every x ∈ X. Clearly for every x ∈ X, idX(x) ≤ f(x). This shows
that idX and the constant map f are homotopic. So X is contractible. If X
has a minimal element the proof is similar.
(iii). This is natural and easy. ¤
The construction X 7→ |X| allows us to assign topological concepts to posets.
For example we define the homology groups of a poset X to be those of |X|, we
call X n-connected or contractible if |X| is n-connected or contractible etc. Note
that X is connected if and only if X is connected as a poset. By the dimension
of a poset X, we mean the dimension of the space |X|, or equivalently the
supremum of the integers n such that there is a chain x0 < · · · < xn in X. By
convention the empty set has dimension −1.
Let X be a poset and x ∈ X. Define Link+

X(x) := {u ∈ X : u > x} and

Link−X(x) := {u ∈ X : u < x}. Given a map f : X → Y of posets and an
element y ∈ Y , define subposets f/y and y\f of X as follows

f/y := {x ∈ X : f(x) ≤ y} y\f := {x ∈ X : f(x) ≥ y}.
In fact f/y = f−1(Y≤y) and y\f = f−1(Y≥y) where Y≤y = {z ∈ Y : z ≤ y} and
Y≥y = {z ∈ Y : z ≥ y}. Note that by 2.3 (ii), Y≤y and Y≥y are contractible. If
idY : Y → Y is the identity map, then idY /y = Y≤y and y\idY = Y≥y.
Let F : X → Ab be a functor from a poset X, regarded as a category in the
usual way, to the category of abelian groups. We define the homology groups
Hi(X,F) of X with coefficient F to be the homology of the complex C∗(X,F)
given by

Cn(X,F) =
⊕

x0<···<xn
F(x0)

where the direct sum is taken over all n-simplices in X, with differential ∂n =
Σni=0(−1)idni where dni : Cn(X,F)→ Cn−1(X,F) and dni takes the (x0 < · · · <
xn)-component of Cn(X,F) to the (x0 < · · · < x̂i < · · · < xn)-component of
Cn−1(X,F) via dni = idF(x0) if i > 0 and dn0 : F(x0) → F(x1). In particular,
for the empty set we have Hi(∅,F) = 0 for i ≥ 0.
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Let F be the constant functor Z. Then the homology groups with this coeffi-
cient coincide with the integral homology of |X|, that is Hk(X,Z) = Hk(|X|,Z)

for all k ∈ Z, [6, App. II]. Let H̃i(X,Z) denote the reduced integral homology

of the poset X, that is H̃i(X,Z) = ker{Hi(X,Z) → Hi(pt,Z)} if X 6= ∅ and

H̃i(∅,Z) =

{
Z if i = −1

0 if i 6= −1
. So H̃i(X,Z) = Hi(X,Z) for i ≥ 1 and for i = 0 we

have the exact sequence

0→ H̃0(X,Z)→ H0(X,Z)→ Z→ H̃−1(X,Z)→ 0

where Z is identified with the group H0(pt,Z). Notice that H0(X,Z) is iden-
tified with the free abelian group generated by the connected components of
X.
A local system of abelian groups on a space (resp. poset) X is a functor F
from the groupoid of X (resp. X viewed as a category), to the category of
abelian groups which is morphism-inverting, i. e. such that the map F(x) →
F(x′) associated to a path from x to x′ (resp. x ≤ x′) is an isomorphism.
Clearly, a local system F on a path connected space (resp. 0-connected poset)
is determined, up to canonical isomorphism, by the following data: if x ∈ X is
a base point, it suffices to be given the group F(x) and an action of π1(X,x)
on F(x).
The homology groups Hk(X,F) of a space X with a local system F are a
generalization of the ordinary homology groups. In fact if X is a 0-connected
space and if F is a constant local system on X, then Hk(X,F) ' Hk(X,F(x0))
for every x0 ∈ X [25, Chap. VI, 2.1].
Let X be a poset and F a local system on |X|. Then the restriction of F to
X is a local system on X. Considering F as a functor from X to the category
of abelian groups, we can define Hk(X,F) as in the above. Conversely if F
is a local system on the poset X, then there is a unique local system, up to
isomorphism, on |X| such that the restriction to X is F [25, Chap. VI, Thm
1.12], [14, I, Prop. 1]. We denote both local systems by F .

Theorem 2.4. Let X be a poset and F a local system on X. Then the homology
groups Hk(|X|,F) are isomorphic with the homology groups Hk(X,F).

Proof. See [25, Chap. VI, Thm. 4.8] or [14, I, p. 91]. ¤

Theorem 2.5. Let X be a path connected space with a base point x and let F
be a local system on X. Then the inclusion {x} ↪→ X induces an isomorphism

F(x)/G
'−→ H0(X,F) where G is the subgroup of F(x) generated by all the

elements of the form a− βa with a ∈ F(x), β ∈ π1(X,x).

Proof. See [25], Chap. VI, Thm. 2.8∗ and Thm. 3.2. ¤

We need the following interesting and well known lemma about the covering
spaces of the space |X|, where X is a poset (or more generally a simplicial set).
For a definition of a covering space, useful for our purpose, and some more
information, see [18, Chap. 2].
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Lemma 2.6. For a poset X the category of the covering spaces of the space |X|
is equivalent to the category LS(X), the category of functors F : X → Set,
where Set is the category of sets, such that F(x) → F(x′) is a bijection for
every relation x ≤ x′.
Proof. See [16, Section 7] or [14, I, p. 90]. ¤

3. Homology and homotopy of posets

Theorem 3.1. Let f : X → Y be a map of posets. Then there is a first
quadrant spectral sequence

E2
p,q = Hp(Y, y 7→ Hq(f/y,Z))⇒ Hp+q(X,Z).

The spectral sequence is functorial, in the sense that if there is a commutative
diagram of posets

X ′
f ′−→ Y ′ygX

ygY
X

f−→ Y

then there is a natural map from the spectral sequence arising from f ′ to
the spectral sequence arising from f . Moreover the map gX∗ : Hi(X

′,Z) →
Hi(X,Z) is compatible with this natural map.

Proof. Let C∗,∗(f) be the double complex such that Cp,q(f) is the free abelian
group generated by the set {(x0 < · · · < xq, f(xq) < y0 < · · · < yp) : xi ∈
X, yi ∈ Y }. The first spectral sequence of this double complex has as E1-
term E1

p,q(I) = Hq(Cp,∗(f)) =
⊕

y0<···<yp Hq(f/y0,Z). By the general theory

of double complexes (see for example [24, Chap. 5]), we know that E2
p,q(I) is

the homology of the chain complex E1
∗,q(I) = C∗(Y,Gq) where Gq : Y → Ab,

Gq(y) = Hq(f/y,Z) and hence E2
p,q(I) = Hp(Y,Gq) = Hp(Y, y 7→ Hq(f/y,Z)).

The second spectral sequence has as E1-term E1
p,q(II) = Hq(C∗,p(f)) =⊕

f(xp)<y0<···<yq Hq(f(xp)\idY ,Z). But by 2.3 (ii), f(xp)\idY = Y≥f(xp) is

contractible, so E1
∗,0(II) = C∗(Xop,Z) and E1

∗,q(II) = 0 for q > 0. Hence
Hi(Tot(C∗,∗(f))) ' Hi(X

op,Z) ' Hi(X,Z). This completes the proof of exis-
tence and convergence of the spectral sequence. The functorial behavior of the
spectral sequence follows from the functorial behavior of the spectral sequence
of a filtration [24, 5.5.1] and the fact that the first and the second spectral
sequences of the double complex arise from some filtrations. ¤

Remark 3.2. The above spectral sequence is a special case of a more general
Theorem [6, App. II]. The above proof is taken from [9, Chap. I] where the
functorial behavior of the spectral sequence is more visible. For more details
see [9].

Definition 3.3. Let X be a poset. A map htX : X → Z≥0 is called height
function if it is a strictly increasing map.
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Example 3.4. The height function htX(x) = 1 + dim(Link−X(x)) is the usual
one considered in [16], [9] and [5].

Lemma 3.5. Let X be a poset such that Link +
X(x) is (n− htX(x)− 2)-acyclic,

for every x ∈ X, where htX is a height function on X. Let F : X → Ab be
a functor such that F(x) = 0 for all x ∈ X with htX(x) ≥ m, where m ≥ 1.
Then Hk(X,F) = 0 for k ≤ n−m.

Proof. First consider the case of a functor F such that F(x) = 0 if htX(x) 6=
m − 1. Then Ck(X,F) =

⊕
x0<···<xk

htX (x0)=m−1

F(x0). Clearly 0 = dk0 = F(x0 < x1) =

F(x0) → F(x1). Thus ∂k = Σki=1(−1)idki . Define C−1(Link+
X(x0),F(x0)) =

F(x0) and complete the singular complex of Link+
X(x0) with coefficient in

F(x0) to

· · · → C0(Link+
X(x0),F(x0))

ε→ C−1(Link+
X(x0),F(x0))→ 0

where ε((gi)) = Σigi. Then

Ck(X,F) =
⊕

htX(x0)=m−1

(
⊕

x1<···<xk
x0<x1

F(x0))

=
⊕

htX(x0)=m−1

Ck−1(Link+
X(x0),F(x0)).

The complex Ck−1(Link+
X(x0),F(x0)) is the standard complex for computing

the reduced homology of Link+
X(x0) with constant coefficient F(x0). So

Hk(X,F) =
⊕

htX(x)=m−1

H̃k−1(Link+
X(x),F(x)).

If htX(x0) = m−1 then Link+
X(x0) is (n−(m−1)−2)-acyclic, and by the univer-

sal coefficient theorem [18, Chap. 5, Thm. 8], H̃k−1(Link+
X(x0),F(x0)) = 0 for

−1 ≤ k−1 ≤ n−(m−1)−2. This shows that Hk(X,F) = 0 for 0 ≤ k ≤ n−m.
To prove the lemma in general, we argue by induction on m. If m = 1 then
for htX(x) ≥ 1, F(x) = 0. So the lemma follows from the special case above.
Suppose m ≥ 2. Define F0 and F1 to be the functors

F0(x) =

{
F(x) if htX(x) < m− 1

0 if htX(x) ≥ m− 1
, F1(x) =

{
F(x) if htX(x) = m− 1

0 if htX(x) 6= m− 1

respectively. Then there is a short exact sequence 0 → F1 → F → F0 → 0.
By the above discussion, Hk(X,F1) = 0 for 0 ≤ k ≤ n −m and by induction
for m − 1, we have Hk(X,F0) = 0 for k ≤ n − (m − 1). By the long exact
sequence for the above short exact sequence of functors it is easy to see that
Hk(X,F) = 0 for 0 ≤ k ≤ n−m. ¤

Theorem 3.6. Let f : X → Y be a map of posets and htY a height function on
Y . Assume for every y ∈ Y , that Link+

Y (y) is (n−htY (y)−2)-acyclic and f/y
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is (htY (y)− 1)-acyclic. Then f∗ : Hk(X,Z)→ Hk(Y,Z) is an isomorphism for
0 ≤ k ≤ n− 1.

Proof. By theorem 3.1, we have the first quadrant spectral sequence

E2
p,q = Hp(Y, y 7→ Hq(f/y,Z))⇒ Hp+q(X,Z).

Since Hq(f/y,Z) = 0 for 0 < q ≤ htY (y) − 1, the functor Gq : Y → Ab,
Gq(y) = Hq(f/y,Z) is trivial for htY (y) ≥ q + 1, q > 0. By lemma 3.5,
Hp(Y,Gq) = 0 for p ≤ n − (q + 1). Hence E2

p,q = 0 for p + q ≤ n − 1, q > 0.
If q = 0, by writing the long exact sequence for the short exact sequence
0 → H̃0(f/y,Z) → H0(f/y,Z) → Z → 0, valid because f/y is nonempty, we
have

· · · → Hn(Y,Z)→ Hn−1(Y, y 7→ H̃0(f/y,Z))→ E2
n−1,0 →

· · · → H1(Y,Z)→ H0(Y, y 7→ H̃0(f/y,Z))→ E2
0,0 → H0(Y,Z)→ 0.

If htY (y) ≥ 1, then H̃0(f/y,Z) = 0. By lemma 3.5, Hk(Y, y 7→ H̃0(f/y,Z)) = 0
for 0 ≤ k ≤ n− 1. Thus

E2
p,q =

{
Hp(Y,Z) if q = 0, 0 ≤ p ≤ n− 1

0 if p+ q ≤ n− 1, q > 0
.

This shows that E2
p,q ' · · · ' E∞p,q for 0 ≤ p+ q ≤ n−1. Therefore Hk(X,Z) '

Hk(Y,Z) for 0 ≤ k ≤ n− 1. Now consider the commutative diagram

X
f−→ Yyf

yidY

Y
idY−→ Y

.

By functoriality of the spectral sequence 3.1, and the above calculation we get
the diagram

Hk(Y, y 7→ H0(f/y,Z))
'−→ Hk(X,Z)yidY ∗

yf∗
Hk(Y, y 7→ H0(idY /y,Z))

'−→ Hk(Y,Z)

.

Since idY /y = Y≤y is contractible, we have Hk(Y, y 7→ H0(idY /y,Z)) =
Hk(Y,Z). The map idY ∗ is an isomorphism for 0 ≤ k ≤ n − 1, from
the above long exact sequence. This shows that f∗ is an isomorphism for
0 ≤ k ≤ n− 1. ¤
Lemma 3.7. Let X be a 0-connected poset. Then X is 1-connected if and only
if for every local system F on X and every x ∈ X, the map F(x)→ H0(X,F),
induced from the inclusion {x} ↪→ X, is an isomorphism (or equivalently, every
local system on X is a isomorphic with a constant local system).

Proof. If X is 1-connected then by theorem 2.5 and the connectedness of X,

one has F(x)
'−→ H0(X,F) for every x ∈ X. Now let every local system on

X be isomorphic with a constant local system. Let F : X → Set be in LS(X).
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Define the functor G : X → Ab where G(x) is the free abelian group generated
by F(x). Clearly G is a local system and so it is constant system. It follows that
F is isomorphic to a constant functor. So by lemma 2.6, any connected covering
space of |X| is isomorphic to |X|. This shows that the universal covering of
|X|, is |X|. Note that the universal covering of a connected simplicial simplex
exists and is simply connected [18, Chap. 2, Cor. 14 and 15]. Therefore X is
1-connected. ¤

Theorem 3.8. Let f : X → Y be a map of posets and htY a height function
on Y . Assume for every y ∈ Y , that Link+

Y (y) is (n − htY (y) − 2)-connected
and f/y is (htY (y)− 1)-connected. Then X is (n− 1)-connected if and only if
Y is (n− 1)-connected.

Proof. By 2.1 and 3.6 we may assume n ≥ 2. So it is enough to prove that
X is 1-connected if and only if Y is 1-connected. Let F : X → Ab be a local
system. Define the functor G : Y → Ab with

G(y) =

{
H0(f/y,F) if htY (y) 6= 0

H0(Link+
Y (y), y′ 7→ H0(f/y′,F)) if htY (y) = 0

.

We prove that G is a local system. If htY (y) ≥ 2 then f/y is 1-connected and
by 3.6, F|f/y is a constant system, so by 3.7, H0(f/y,F) ' F(x) for every

x ∈ f/y. If htY (y) = 1, then f/y is 0-connected and Link+
Y (y) is nonempty.

Choose y′ ∈ Y such that y < y′. Now f/y′ is 1-connected and so F|f/y′
is a constant system on f/y′. But f/y ⊂ f/y′, so F|f/y is a constant sys-
tem. Since f/y is 0-connected, by 2.5 and the fact that we mentioned before
theorem 2.4, H0(f/y,F) ' F(x) for every x ∈ f/y. Now let htY (y) = 0.
Then Link+

Y (y) is 0-connected, f/y is nonempty and for every y′ ∈ Link+
Y (y),

H0(f/y′,F) ' H0((f/y)◦,F) where (f/y)◦ is a component of f/y, which we fix.
This shows that the local system F ′ : Link+

Y (y) → Ab with y′ 7→ H0(f/y′,F)

is isomorphic to a constant system, so H0(Link+
Y (y), y′ 7→ H0(f/y′,F)) =

H0(Link+
Y (y),F ′) ' F ′(y′) ' F(x) for every x ∈ f/y′. Therefore G is a local

system.
If Y is 1-connected, by 3.7, G is a constant system. But it is easy to see that
F ' G ◦ f . Therefore F is a constant system. Since X is connected by our
homology calculation, by 3.7 we conclude that X is 1-connected. Now let X
be 1-connected. If E is a local system on Y , then f ∗E := E ◦ f is a local system
on X. So it is a constant local system. As above we can construct a local
system G′ on Y from F ′ := E ◦ f . This gives a natural transformation from G ′
to E which is an isomorphism. Since E ◦ f is constant, by 2.5 and 3.7 and an
argument as above one sees that G ′ is constant. Therefore E is isomorphic to
a constant local system and 3.7 shows that Y is 1-connected. ¤

Remark 3.9. In the proof of the above theorem 3.8 we showed in fact that: Let
f : X → Y be a map of posets and htY a height function on Y and n ≥ 2.
Assume for every y ∈ Y , that Link+

Y (y) is (n− htY (y)− 2)-connected and f/y
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is (htY (y) − 1)-connected. Then f∗ : LS(Y ) → LS(X), with E 7→ E ◦ f is an
equivalence of categories.

Remark 3.10. Theorem 3.8 is a generalization of a theorem of Quillen [16,
Thm. 9.1]. We proved that the converse of that theorem is also valid. Our
proof is similar in outline to the proof by Quillen. Furthermore, lemma 3.5 is
a generalized version of lemma 1.3 from [5]. With more restrictions, Maazen,
in [9, Chap. II] gave an easier proof of Quillen’s theorem.

4. Homology and homotopy of posets of sequences

Let V be a nonempty set. We denote by O(V ) the poset of finite ordered
sequences of distinct elements of V , the length of each sequence being at least
one. The partial ordering on O(V ) is defined by refinement: (v1, . . . , vm) ≤
(w1, . . . , wn) if and only if there is a strictly increasing map φ : {1, . . . ,m} →
{1, . . . , n} such that vi = wφ(i), in other words, if (v1, . . . , vm) is an order
preserving subsequence of (w1, . . . , wn). If v = (v1, . . . , vm) we denote by |v|
the length of v, that is |v| = m. If v = (v1, . . . , vm) and w = (w1, . . . , wn), we
write (v1, . . . , vm, w1, . . . , wn) as vw. For v ∈ F , but for such v only, we define
Fv to be the set of w ∈ F such that wv ∈ F . Note that (Fv)w = Fwv. A subset
F of O(V ) is said to satisfy the chain condition if v ∈ F whenever w ∈ F ,
v ∈ O(V ) and v ≤ w. The subposets of O(V ) which satisfy the chain condition
are extensively studied in [9], [20] and [4]. In this section we will study them
some more.
Let F ⊆ O(V ). For a nonempty set S we define the poset F 〈S〉 as

F 〈S〉 := {((v1, s1), . . . , (vr, sr)) ∈ O(V × S) : (v1, . . . , vr) ∈ F}.
Assume s0 ∈ S and consider the injective poset map ls0 : F → F 〈S〉 with
(v1, . . . , vr) 7→ ((v1, s0), . . . , (vr, s0)). We have clearly a projection p : F 〈S〉 →
F with ((v1, s1), . . . , (vr, sr)) 7→ (v1, . . . , vr) such that p ◦ ls0 = idF .

Lemma 4.1. Suppose F ⊆ O(V ) satisfies the chain condition and S is a
nonempty set. Assume for every v ∈ F , that Fv is (n− |v|)-connected.
(i) If s0 ∈ S then (ls0)∗ : Hk(F,Z) → Hk(F 〈S〉,Z) is an isomorphism for
0 ≤ k ≤ n.
(ii) If F is min{1, n− 1}-connected, then (ls0)∗ : πk(F, v)→ πk(F 〈S〉, ls0(v)) is
an isomorphism for 0 ≤ k ≤ n.

Proof. This follows by [4, Prop. 1.6] from the fact that p ◦ ls0 = idF . ¤

Lemma 4.2. Let F ⊆ O(V ) satisfies the chain condition. Then |Link−F (v)| '
S|v|−2 for every v ∈ F .

Proof. Let v = (v1, . . . , vn). By definition Link−F (v) = {w ∈ F : w < v} =

{(vi1 , . . . , vik) : k < n, i1 < · · · < ik}. Hence |Link−F (v)| is isomorphic to the
barycentric subdivision of the boundary of the standard simplex ∆n−1. It is
well known that ∂∆n−1 ' Sn−2, hence |Link−F (v)| ' S|v|−2. ¤
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Theorem 4.3 (Nerve Theorem for Posets). Let V and T be two nonempty sets,
F ⊆ O(V ) and X ⊆ O(T ). Assume X =

⋃
v∈F Xv such that if v ≤ w in F ,

then Xw ⊆ Xv. Let F , X and Xv, for every v ∈ F , satisfy the chain condition.
Also assume
(i) for every v ∈ F , Xv is (l − |v|+ 1)-acyclic (resp. (l − |v|+ 1)-connected),
(ii) for every x ∈ X, Ax := {v ∈ F : x ∈ Xv} is (l − |x| + 1)-acyclic (resp.
(l − |x|+ 1)-connected).
Then Hk(F,Z) ' Hk(X,Z) for 0 ≤ k ≤ l (resp. F is l-connected if and only if
X is l-connected).

Proof. Let F≤l+2 = {v ∈ F : |v| ≤ l + 2} and let i : F≤l+2 → F be the
inclusion. Clearly |F≤l+2| is the (l + 1)-skeleton of |F |, if we consider |F |
as a cell complex whose k-cells are the |F≤v| with |v| = k + 1. It is well
known that i∗ : Hk(F≤l+2,Z)→ Hk(F,Z) and i∗ : πk(F≤l+2, v)→ πk(F, v) are
isomorphisms for 0 ≤ k ≤ l (see [25], Chap. II, corollary 2.14, and [25], Chap.
II, Corollary 3.10 and Chap. IV lemma 7.12.) So it is enough to prove the
theorem for F≤l+2 and X≤l+2. Thus assume F = F≤l+2 and X = X≤l+2. We
define Z ⊆ X × F as Z = {(x, v) : x ∈ Xv}. Consider the projections

f : Z → F, (x, v) 7→ v , g : Z → X, (x, v) 7→ x.

First we prove that f−1(v) ∼ v\f and g−1(x) ∼ x\g, where ∼ means homotopy
equivalence. By definition v\f = {(x,w) : w ≥ v, x ∈ Xw}. Define φ : v\f →
f−1(v), (x,w) 7→ (x, v). Consider the inclusion j : f−1(v) → v\f . Clearly
φ ◦ j(x, v) = φ(x, v) = (x, v) and j ◦ φ(x,w) = j(x, v) = (x, v) ≤ (x,w). So by
2.3(ii), v\f and f−1(v) are homotopy equivalent. Similarly x\g ∼ g−1(x).
Now we prove that the maps f op : Zop → Y op and gop : Zop → Xop satisfy the
conditions of 3.6. First fop : Zop → Y op; define the height function htF op on
F op as htF op(v) = l + 2 − |v|. It is easy to see that f op/v ' v\f ∼ f−1(v) '
Xv. Hence fop/v is (l − |v| + 1)-acyclic (resp. (l − |v| + 1)-connected). But
l−|v|+1 = (l+2−|v|)−1 = htF op(v)−1, so fop/v is (htF op(v)−1)-acyclic (resp.
(htF op(v)− 1)-connected). Let n := l+ 1. Clearly Link+

F op(v) = Link−F (v). By

lemma 4.2, |Link−F (v)| is (|v|−3)-connected. But |v|−3 = l+1−(l+2−|v|)−2 =

n − htF op(v) − 2. Thus Link+
F op(v) is (n − htF op(v) − 2)-acyclic (resp. (n −

htF op(v)− 2)-connected). Therefore by theorem 3.6, f∗ : Hi(Z,Z)→ Hi(F,Z)
is an isomorphism for 0 ≤ i ≤ l (resp. by 3.8, F is l-connected if and only if
Z is l-connected). Now consider gop : Zop → Xop. We saw in the above that
gop/x ' x\g ∼ g−1(x) and g−1(x) = {(x, v) : x ∈ Xv} ' {v ∈ F : x ∈ Xv}. It
is similar to the case of f op to see that gop satisfies the conditions of theorem
3.6, hence g∗ : Hi(Z,Z) → Hi(X,Z) is an isomorphism for 0 ≤ i ≤ l (resp.
by 3.8, X is l-connected if and only if Z is l-connected). This completes the
proof. ¤

Let K be a simplicial complex and {Ki}i∈I a family of subcomplexes such that
K =

⋃
i∈I Ki. The nerve of this family of subcomplexes of K is the simplicial

complex N (K) on the vertex set I so that a finite subset σ ⊆ I is in N (K) if
and only if

⋂
i∈σKi 6= ∅. The nerve N (K) of K, with the inclusion relation,
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is a poset. As we already said we can consider a simplicial complex as a poset
of its simplices.

Corollary 4.4 (Nerve Theorem). Let K be a simplicial complex and {Ki}i∈I
a family of subcomplexes such that K =

⋃
i∈I Ki. Suppose every nonempty

finite intersection
⋂t
j=1Kij is (l − t + 1)-acyclic (resp. (l − t + 1)connected).

Then Hk(K,Z) ' Hk(N (K),Z) for 0 ≤ k ≤ l (resp. K is l-connected if and
only if N (K) is l-connected).

Proof. Let V be the set of vertices of K. We give a total ordering to V and
I. Put F = {(i1, . . . , ir) : i1 < · · · < ir and

⋂r
j=1Kij 6= ∅} ⊆ O(I), X =

{(x1, . . . , xt) : x1 < · · · < xt and {x1, . . . , xt} is a simplex in K} ⊆ O(V ) and
for every (i1, . . . , ir) ∈ F , put X(i1,...,ir) = {(x1, . . . , xt) ∈ X : {x1, . . . , xt} ∈⋂r
j=1Kij}. It is not difficult to see that F ' N (K) and X ' K. Also one

should notice that Ax := {v ∈ F : x ∈ Xv} is contractible for x ∈ X. We leave
the details to interested readers. ¤

Remark 4.5. In [7], a special case of the theorem 4.3 is proved. The nerve
theorem for a simplicial complex 4.4, in the stated generality, is proved for the
first time in [3], see also [2, p. 1850]. For more information about different
types of nerve theorem and more references about them see [2, p. 1850].

Lemma 4.6. Let F ⊆ O(V ) satisfy the chain condition and let G : F op → Ab
be a functor. Then the natural map ψ :

⊕
v∈F, |v|=1 G(v) → H0(F op,G) is

surjective.

Proof. By definition C0(F op,G) =
⊕

v∈F op G(v), C1(F op,G) =
⊕

v<v′∈F op G(v)
and we have the chain complex

· · · → C1(F op,G)
∂1→ C0(F op,G)→ 0,

where ∂1 = d1
0 − d1

1. Again by definition H0(F op,G) = C0(F op,G)/∂1. Now
let w ∈ F and |w| ≥ 2. Then there is a v ∈ F , v ≤ w, with |v| = 1.
So w < v in F op, and we have the component ∂1|G(w) : G(w) → G(w) ⊕ G(v),

x 7→ d1
0(x)−d1

1(x) = d1
0(x)−x. This shows that G(w) ⊆ im∂1 +imψ. Therefore

H0(F op,G) is generated by the groups G(v) with |v| = 1. ¤

Theorem 4.7. Let V and T be two nonempty sets, F ⊆ O(V ) and X ⊆ O(T ).
Assume X =

⋃
v∈F Xv such that if v ≤ w in F , then Xw ⊆ Xv and let F , X

and Xv, for every v ∈ F , satisfy the chain condition. Also assume
(i) for every v ∈ F , Xv is min{l − 1, l − |v|+ 1}-connected,
(ii) for every x ∈ X, Ax := {v ∈ F : x ∈ Xv} is (l − |x|+ 1)-connected,
(iii) F is l-connected.
Then X is (l − 1)-connected and the natural map

⊕

v∈F, |v|=1

(iv)∗ :
⊕

v∈F, |v|=1

Hl(Xv,Z)→ Hl(X,Z)
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is surjective, where iv : Xv → X is the inclusion. Moreover, if for every v
with |v| = 1, there is an l-connected Yv with Xv ⊆ Yv ⊆ X, then X is also
l-connected.

Proof. If l = −1, then everything is easy. If l = 0, then for v of length one,
Xv is nonempty, so X is nonempty. This shows that X is (−1)-connected.
Also, every connected component of X intersects at least one Xw and therefore
also contains a connected component of an Xv with |v| = 1. This gives the
surjectivity of the homomorphism

⊕

v∈F, |v|=1

(iv)∗ :
⊕

v∈F, |v|=1

H0(Xv,Z)→ H0(X,Z).

Now assume that, for every v of length one, Xv ⊆ Yv where Yv is connected.
We prove, in a combinatorial way, that X is connected. Let x, y ∈ X, x ∈ X(v1)

and y ∈ X(v2) where (v1), (v2) ∈ F . Since F is connected, there is a sequence
(w1), . . . , (wr) ∈ F such that they give a path, in F , from (v1) to (v2), that is

(v1) (w1) (wr) (v2)
Â Á . . . Â Á

(v1, w1) (wr, v2) .

Since Y(v1) is connected, x ∈ X(v1) ⊆ Y(v1) and X(v1,w1) 6= ∅, there is an
element x1 ∈ X(v1,w1) such that there is a path, in Y(v1), from x to x1. Now
x1 ∈ Y(w1). Similarly we can find x2 ∈ X(w1,w2) such that there is a path, in
Y(w1), from x1 to x2. Now x2 ∈ Y(w2). Repeating this process finitely many
times, we find a path from x to y. So X is connected.
Hence we assume that l ≥ 1. As we said in the proof of theorem 4.3, we can
assume that F = F≤l+2 and X = X≤l+2 and we define Z, f and g as we defined
them there. Define the height function htF op on F op as htF op(v) = l + 2− |v|.
As we proved in the proof of theorem 4.3, f op/v ' v\f ∼ f−1(v) ' Xv. Thus
fop/v is (htF op(v) − 1)-connected if |v| > 1 and it is (htF op(v) − 2)-connected
if |v| = 1 and also |Link+

F op(v)| is (l+ 1−htF op(v)− 2)-connected. By theorem
3.1, we have the first quadrant spectral sequence

E2
p,q = Hp(F

op, v 7→ Hq(f
op/v,Z))⇒ Hp+q(Z

op,Z).

For 0 < q ≤ htF op(v) − 2, Hq(f
op/v,Z) = 0. Define Gq : F op → Ab, Gq(v) =

Hq(f
op/v,Z). Then Gq(v) = 0 for htF op(v) ≥ q + 2, q > 0. By lemma 3.5,

Hp(F
op,Gq) = 0 for p ≤ l + 1 − (q + 2). Therefore E2

p,q = 0 for p + q ≤ l − 1,

q > 0. If q = 0, arguing similarly to the proof of theorem 3.6, we get E2
p,0 = 0

if 0 < p ≤ l − 1 and E2
0,0 = Z. Also by the fact that F op is l-connected we

get the surjective homomorphism Hl(F
op, v 7→ H̃0(fop/v,Z)) ³ E2

l,0. Since

l ≥ 1, H̃0(fop/v,Z) = 0 for all v ∈ F op with htF op(v) ≥ 1 and so Hl(F
op, v 7→

H̃0(fop/v,Z)) = 0 by lemma 3.5. Therefore E2
l,0 = 0. Let

G′q : F op → Ab, G′q(v) =

{
0 if htF op(v) < l + 1

Hq(f
op/v,Z) if htF op(v) = l + 1
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and

G′′q : F op → Ab, G′′q(v) =

{
Hq(f

op/v,Z) if htF op(v) < l + 1

0 if htF op(v) = l + 1.

Then we have the short exact sequence 0 → G ′q → Gq → G′′q → 0 and the
associated long exact sequence

· · · → Hl−q(F
op,G′q)→ Hl−q(F

op,Gq)→
Hl−q(F

op,G′′q)→ Hl−q−1(F op,G′q)→ · · · .

If q > 0, then G′′q(v) = 0 for 0 < q ≤ htF op(v) − 1 and so by lemma 3.5,
Hp(F

op,G′′q) = 0 for p + q ≤ l, q > 0. Also if |v| = 1 then H0(fop/v,Z) = 0
for 0 < q ≤ htF op(v) − 2 = l − 1. This shows G ′q = 0 for 0 < q ≤ l − 1. From
the long exact sequence and the above calculation we get

E2
p,q =

{
Z if p = q = 0

0 if 0 < p+ q ≤ l, q 6= l.

HH
HY

l + 1 ∗ E2
p,q

l ∗ ∗
0 0 ∗
...

...
. . .

. . .

0 · · . . . ∗
0 Z 0 · · · 0 0 ∗

0 1 l l + 1

Thus for 0 ≤ p+q ≤ l, q 6= l, E2
p,q ' · · · ' E∞p,q and there exist an integer r such

that E2
0,l ³ · · · ³ Er0,l ' Er+1

0,l ' · · · ' E∞0,l. Hence we get a surjective map

H0(F op, v 7→ Hl(f
op/v,Z)) ³ Hl(Z

op,Z). By lemma 4.6, we have a surjective
map

⊕
v∈F, |v|=1Hl(f

op/v,Z)³ Hl(Z
op,Z).

Now consider the map gop : Zop → Xop and define the height function
htXop(x) = l + 2 − |x| on Xop. Arguing similarly to the proof of theorem
4.3 one sees that g∗ : Hk(Z,Z) → Hk(X,Z) is an isomorphism for 0 ≤ k ≤ l.
Therefore we get a surjective map

⊕
v∈F, |v|=1Hl(Xv,Z)³ Hl(X,Z). We call

it ψ. We prove that this map is the same map that we claimed. For v of length
one consider the commutative diagram of posets

{v}op −−−−→ F op

↗ ↗
f−1({v})op−−→ Zop

↘ ↘
Xop
v −−−−→ Xop
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By functoriality of the spectral sequence for the above diagram and lemma 4.6
we get the commutative diagram

Hl(f
op
v /v,Z)

(jv)∗−−−−−→ ⊕
v∈F,|v|=1Hl(f

op/v,Z)y y
H0({v}op, v 7→ Hl(f

op
v /v,Z)) −−−→ H0(F op, v 7→ Hl(f

op/v,Z))y y
Hl(f

−1(v)op,Z) −−−−−→ Hl(Z
op,Z)y y

Hl(X
op
v ,Z)

(iopv )∗−−−−−→ Hl(X
op,Z)

where jv : fopv /v → fop/v is the inclusion which is a homotopy equivalence
as we already mentioned. It is not difficult to see that the composition of
homomorphisms in the left column of the above diagram induces the identity
map from Hl(Xv,Z), the composition of homomorphisms in the right column
of above diagram induces the surjective map ψ and the last row induces the
homomorphism (iv)∗. This show that (iv)∗ = ψ|Hl(Xv,Z). This completes the
proof of surjectiveness.
Now let for v of length one Xv ⊆ Yv where Yv is l-connected. Then we have
the commutative diagram

Hl(Xv,Z)
(iv)∗−−−→ Hl(X,Z)

↘ ↗
Hl(Yv,Z)

.

By the assumption Hl(Yv,Z) is trivial and this shows that (iv)∗ is the zero
map. Hence by the surjectivity, Hl(X,Z) is trivial. If l ≥ 2, the nerve theorem
4.3 says that X is simply connected and by the Hurewicz theorem 2.1, X is
l-connected. So the only case that is left is when l = 1. By theorem 3.8, X is
1-connected if and only if Z is 1-connected. So it is enough to prove that Zop is
1-connected. Note that as we said, we can assume that F = F≤3 and X = X≤3.
Suppose F is a local system on Zop. Define the functor G : F op → Ab, as

G(y) =

{
H0(fop/v,F) if |v| = 1, 2

H0(Link+
F op(v), v′ 7→ H0(fop/v′,F)) if |v| = 3

.

We prove that G is a local system on F op. Put Zw := g−1(Yw) for |w| = 1. If
|v| = 1, 2, then fop/v is 0-connected and fop/v ⊆ Zopw , where w ≤ v, |w| = 1.
By remark 3.9 we can assume that F = E ◦ gop where E is a local system
on Xop. Then F|Zopw = E|Y opw ◦ gop|Zopw . Since Y opw is 1-connected, E|Y opw is
a constant local system. This shows that F|Zopw is a constant local system.
So F|fop/v is a constant local system and since f op/v is 0-connected we have
H0(fop/v,Z) ' F(x), for every x ∈ fop/v. If |v| = 3, with an argument
similar to the proof of the theorem 3.8 and the above discussion one can get
G(v) ' F(x) for every x ∈ fop/v. This shows that G is a local system on F op.
Hence it is a constant local system, because F op is 1-connected. It is easy to
see that F ' G ◦ f . Therefore F is a constant system. Since X is connected
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by our homology calculation, by 3.7 we conclude that X is 1-connected. This
completes the proof. ¤

5. Posets of unimodular sequences

Let R be an associative ring with unit. A vector (r1, . . . , rn) ∈ Rn is called
unimodular if there exist s1, . . . , sn ∈ R such that Σni=1risi = 1, or equivalently
if the submodule generated by this vector is a free summand of the left R-
module Rn. We denote the standard basis of Rn by e1, . . . , en. If n ≤ m, we
assume that Rn is the submodule of Rm generated by e1, . . . , en ∈ Rm.
We say that a ring R satisfies the stable range condition (Sm), if m ≥ 1 is an
integer so that for every unimodular vector (r0, r1, . . . , rm) ∈ Rm+1, there exist
t1, . . . , tm in R such that (r1 + r0t1, . . . , rm + r0tm) ∈ Rm is unimodular. We
say that R has stable rank m, we denote it with sr(R) = m, if m is the least
number such that (Sm) holds. If such a number does not exist we say that
sr(R) =∞.
Let U(Rn) denote the subposet of O(Rn) consisting of unimodular sequences.
Recall that a sequence of vectors v1, . . . , vk in Rn is called unimodular when
v1, . . . , vk is basis of a free direct summand of Rn. Note that if (v1, . . . , vk) ∈
O(Rn) and if n ≤ m, it is the same to say that (v1, . . . , vk) is unimodular as a
sequence of vectors in Rn or as a sequence of vectors in Rm. We call an element
(v1, . . . , vk) of U(Rn) a k-frame.

Theorem 5.1 (Van der Kallen). Let R be a ring with sr(R) <∞ and n ≤ m+1.
Let δ be 0 or 1. Then
(i) O(Rn + δen+1) ∩ U(Rm) is (n− sr(R)− 1)-connected.
(ii) O(Rn+δen+1)∩U(Rm)v is (n−sr(R)−|v|−1)-connected for all v ∈ U(Rm).

Proof. See [20, Thm. 2.6]. ¤

Example 5.2. Let R be a ring with sr(R) < ∞. Let n ≥ sr(R) + k + 1 and
assume (v1, . . . , vk) ∈ U(R2n). Set W = e2 + Σni=2Re2i. Renumbering the
basis one gets by theorem 5.1 that the poset F := O(W ) ∩ U(R2n)(v1,...,vk) is
((n−1)− sr(R)−k−1)-connected. Since n ≥ sr(R)+k+1, it follows that F is
not empty. This shows that there is v ∈W such that (v, v1, . . . , vk) ∈ U(R2n).
We will need such result in the next section but with a different method we
can prove a sharper result. Compare this with lemma 5.4.

An n× k-matrix B with n < k is called unimodular if B has a right inverse. If
B is an n×k-matrix and C ∈ GLk(R), then B is unimodular if and only if CB

is unimodular. A matrix of the form

(
1 u
0 B

)
, where u is a row vector with

coordinates in R, is unimodular if and only if the matrix B is unimodular.
We say that the ring R satisfies the stable range condition (Snk ) if for every
n × (n + k)-matrix B, there exists a vector r = (r1, . . . , rn+k−1) such that
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B

(
1 r
0 In+k−1

)
=
(
u B′

)
, where the n × (n + k − 1)-matrix B′ is uni-

modular and u is the first column of the matrix B. Note that (S1
k) is the same

as (Sk).

Theorem 5.3 (Vaserstein). For every k ≥ 1 and n ≥ 1, a ring R satisfies (Sk)
if and only if it satisfies (Snk ).

Proof. The definition of (Snk ) and the proof of this theorem is similar to the
theorem [22, Thm. 3′] of Vaserstein. ¤

Lemma 5.4. Let R be ring with sr(R) <∞ and let n ≥ sr(R)+k. Then for every
(v1, . . . , vk) ∈ U(R2n) there is a v ∈ e2 + Σni=2Re2i such that (v, v1, . . . , vk) ∈
U(R2n).

Proof. There is a permutation matrix A ∈ GL2n(R) such that (e2 +
Σni=2Re2i)A = e1 + Σ2n

j=n+2Rej . Let wi = viA for i = 1, . . . , k. So

(w1, . . . , wk) ∈ U(R2n). Consider the k × 2n-matrix B whose i-th row is the
vector wi. By theorem 5.3 there exists a vector r = (r2, . . . , r2n) such that

B

(
1 r
0 I2n−1

)
=
(
u1 B1

)
, where the k× (2n− 1)-matrix B1 is unimod-

ular and u1 is the first column of the matrix B. Now let s = (s3, . . . , s2n)

such that B1

(
1 s
0 I2n2

)
=
(
u2 B2

)
, where the k× (2n− 2)-matrix B2 is

unimodular and u2 is the first column of the matrix B1. Now clearly

B

(
1 r
0 I2n−1

)


1 0 0
0 1 s
0 0 I2n−2


 =

(
u1 u2 B2

)
.

By continuing this process, n times, we find a 2n× 2n matrix C of the form



1 ∗ ∗ ∗
. . . ∗ ∗ N

1 ∗ ∗
0 1 ∗

In−1




where N is an (n−1)×(n−1) matrix and BC = (L |M) where L is a k×(n+1)
matrix and M is a unimodular k × (n− 1) matrix. Now let
t = (tn+2, . . . , t2n) = −(first row of N). Then

(
1 0 . . . 0 tn+2 . . . t2n

B

)
C =

(
1 ∗ ∗ 0 . . . 0
∗ ∗ ∗ M

)
.

Since M is unimodular the right hand side of the above equality is unimodular.
This shows that the matrix(

1 0 . . . 0 tn+2 . . . t2n
B

)
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is unimodular. Put w = (1, 0, . . . , 0, tn+2, . . . , t2n). Then (w,w1, . . . , wk) ∈
U(R2n). Now v = wA−1 is the one that we are looking for. ¤

6. Hyperbolic spaces and some posets

Let there be an involution on R, that is an automorphism of the additive
group of R, R → R with r 7→ r, such that r = r and rs = s r. Let ε be an
element in the center of R such that εε = 1. Set Rε := {r − εr : r ∈ R} and
Rε := {r ∈ R : εr = −r} and observe that Rε ⊆ Rε. A form parameter relative
to the involution and ε is a subgroup Λ of (R,+) such that Rε ⊆ Λ ⊆ Rε and
rΛr ⊆ Λ, for all r ∈ R. Notice that Rε and Rε are form parameters. We denote
them by Λmin and Λmax, respectively. If there is an s in the center of R such
that s+ s ∈ R∗, in particular if 2 ∈ R∗ , then Λmin = Λmax.
Let ei,j(r) be the 2n × 2n-matrix with r ∈ R in the (i, j) place and zero
elsewhere. Consider Qn = Σni=1e2i−1,2i(1) ∈ M2n(R) and Fn = Qn + ε tQn =
Σni=1(e2i−1,2i(1) + e2i,2i−1(ε)) ∈ GL2n(R). Define the bilinear map h : R2n ×
R2n → R by h(x, y) = Σni=1(x2i−1y2i + εx2iy2i−1) and q : R2n → R/Λ by
q(x) = Σni=1x2i−1x2i mod Λ, where x = (x1, . . . , x2n), y = (y1, . . . , y2n) and x =
(x1, . . . , x2n). The triple (R2n, h, q) is called a hyperbolic space. By definition
the unitary group relative Λ is the group

U ε
2n(R,Λ) := {A ∈ GL2n(R) : h(xA, yA) = h(x, y), q(xA) = q(x), x, y ∈ R}.

For more general definitions and the properties of these spaces and groups see
[8].

Example 6.1. (i) Let Λ = Λmax = R. Then U ε
2n(R,Λ) = {A ∈ GL2n(R) :

h(xA, yA) = h(x, y) for all x, y ∈ R2n} = {A ∈ GL2n(R) : tAFnA = Fn}.
In particular if ε = −1 and if the involution is the identity map idR, then
Λmax = R. In This case U ε2n(R,Λmax) := Sp2n(R) is the usual symplectic
group. Note that R is commutative in this case.
(ii) Let Λ = Λmin = 0. Then U ε

2n(R,Λ) = {A ∈ GL2n(R) : q(xA) =
q(x) for all x ∈ R2n}. In particular if ε = 1 and if the involution is the identity
map idR, then Λmin = 0. In this case U ε2n(R,Λmin) := O2n(R) is the usual
orthogonal group. As in the symplectic case, R is necessarily commutative.
(iii) Let ε = −1 and the involution is not the identity map idR. If Λ = Λmax

then U ε
2n(R,Λ) := U2n(R) is the classical unitary group corresponding to the

involution.

Let σ be the permutation of the set of natural numbers given by σ(2i) = 2i−1
and σ(2i− 1) = 2i. For 1 ≤ i, j ≤ 2n, i 6= j, and every r ∈ R define

Ei,j(r) =





I2n + ei,j(r) if i = 2k − 1, j = σ(i), r ∈ Λ

I2n + ei,j(r) if i = 2k, j = σ(i), r ∈ Λ

I2n + ei,j(r) + eσ(j),σ(i)(−r) if i+ j = 2k, i 6= j

I2n + ei,j(r) + eσ(j),σ(i)(−ε−1r) if i 6= σ(j), i = 2k − 1, j = 2l

I2n + ei,j(r) + eσ(j),σ(i)(εr) if i 6= σ(j), i = 2k, j = 2l − 1
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where I2n is the identity element of GL2n(R). It is easy to see that Ei,j(r) ∈
U ε

2n(R,Λ). Let EU ε
2n(R,Λ) be the group generated by the Ei,j(r), r ∈ R. We

call it elementary unitary group.
A nonzero vector x ∈ R2n is called isotropic if q(x) = 0. This shows automati-
cally that if x is isotropic then h(x, x) = 0. We say that a subset S of R2n is
isotropic if for every x ∈ S, q(x) = 0 and for every x, y ∈ S, h(x, y) = 0. If
h(x, y) = 0, then we say that x is perpendicular to y. We denote by 〈S〉 the
submodule of R2n generated by S, and by 〈S〉⊥ the submodule consisting of
all the elements of R2n which are perpendicular to all the elements of S.
From now, we fix an involution, an ε, a form parameter Λ and we consider the
triple (R2n, h, q) as defined above.

Definition 6.2 (Transitivity condition). Let r ∈ R and define Cεr(R
2n,Λ) =

{x ∈ Um(R2n) : q(x) = r mod Λ}, where Um(R2n) is the set of all unimodular
vectors of R2n. We say that R satisfies the transitivity condition (Tn), if
EU ε

2n(R,Λ) acts transitively on Cεr(R
2n,Λ), for every r ∈ R. It is easy to see

that e1 + re2 ∈ Cεr(R2n,Λ).

Definition 6.3 (Unitary stable range). We say that a ring R satisfies the
unitary stable range condition (USm) if R satisfies the conditions (Sm) and
(Tm+1). We say that R has unitary stable rank m, we denote it with usr(R),
if m is the least number such that (USm) is satisfied. If such a number does
not exist we say that usr(R) =∞. Clearly sr(R) ≤ usr(R).

Remark 6.4. Our definition of unitary stable range is a little different than the
one in [8]. In fact if (USRm+1) satisfied then, by [8, Chap. VI, Thm. 4.7.1],
(USm) is satisfied where (USRm+1) is the unitary stable range as defined in [8,
Chap. VI, 4.6]. In comparison with the absolute stable rank asr(R) from [10],
we have that if m ≥ asr(R) + 1 or if the involution is the identity map (so R is
commutative) and m ≥ asr(R) then (USm) is satisfied [10, 8.1].

Example 6.5. Let R be a commutative Noetherian ring where the dimension
d of the maximal spectrum Mspec(R) is finite. If A is a finite R-algebra then
usr(A) ≤ d+ 1 (see [21, Thm. 2.8], [8, Thm. 6.1.4]). In particular if R is local
ring or more generally a semilocal ring then usr(R) = 1 [8, 6.1.3].

Lemma 6.6. Let R be a ring with usr(R) < ∞. Assume n ≥ usr(R) + k and
(v1, . . . , vk) ∈ U(R2n). Then there is a hyperbolic basis {x1, y1, . . . , xn, yn} of
R2n such that v1, . . . , vk ∈ 〈x1, y1, . . . , xk, yk〉.
Proof. The proof is by induction on k. If k = 1, by definition of unitary stable
range there is an E ∈ EU ε

2n(R,Λ) such that v1E = e1 + re2. So the base of
the induction is true. Let k ≥ 2 and assume the induction hypothesis. Ar-
guing as in the base of the induction we can assume that v1 = (1, r, 0, . . . , 0),
r ∈ R. Let W = e2 + Σni=2Re2i. By lemma 5.4, choose w ∈ W so that
(w, v1, . . . , vk) ∈ U(R2n). Then (w, v1 − rw, v2, . . . , vk) ∈ U(R2n). But
(w, v1 − rw) is a hyperbolic pair, so there is an E ∈ EU ε

2n(R,Λ) such
that wE = e2n−1, (v1 − rw)E = e2n by [8, Chap. VI, Thm. 4.7.1]. Let
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(wE, (v1−rw)E, v2E, . . . , vkE) =: (w0, w1, . . . , wk) where wi = (ri,1, . . . , ri,2n).
Put ui = wi − ri,2n−1e2n−1 − ri,2ne2n for 2 ≤ i ≤ k. Then (u2, . . . , uk) ∈
U(R2n−2). Now by induction there is a hyperbolic basis {a2, b2, . . . , an, bn} of
R2n−2 such that ui ∈ 〈a2, b2, . . . , ak, bk〉. Let a1 = e2n−1 and b1 = e2n. Then
wi ∈ 〈a1, b1, . . . , ak, bk〉. But v1E = w1 + rwE = e2n + re2n−1, viE = wi
for 2 ≤ i ≤ k and considering xi = aiE

−1, yi = biE
−1, one sees that

v1, . . . , vk ∈ 〈x1, y1, . . . , xk, yk〉. ¤

Definition 6.7. Let Zn = {x ∈ R2n : q(x) = 0}. We define the poset U ′(R2n)
as U ′(R2n) := O(Zn) ∩ U(R2n).

Lemma 6.8. Let R be a ring with sr(R) <∞ and n ≤ m. Then
(i) O(R2n) ∩ U ′(R2m) is (n− sr(R)− 1)-connected,
(ii) O(R2n)∩U ′(R2m)v is (n−sr(R)−|v|−1)-connected for every v ∈ U ′(R2m),
(iii) O(R2n) ∩ U ′(R2m) ∩ U(R2m)v is (n− sr(R)− |v| − 1)-connected for every
v ∈ U(R2m).

Proof. Let W = 〈e2, e4, . . . , e2n〉 and F := O(R2n)∩U ′(R2m). It is easy to see
that O(W )∩F = O(W )∩U(R2m) and O(W )∩Fu = O(W )∩U(R2m)u for every
u ∈ U ′(R2m). By theorem 5.1, the poset O(W )∩F is (n−sr(R)−1)-connected
and the poset O(W ) ∩ Fu is (n − sr(R) − |u| − 1)-connected for every u ∈ F .
It follows from lemma [20, 2.13 (i)] that F is (n − sr(R) − 1)-connected. The
proof of (ii) and (iii) is similar to the proof of (i). ¤

Lemma 6.9. Let R be a ring with usr(R) < ∞ and let (v1, . . . , vk) ∈ U ′(R2n).
If n ≥ usr(R)+k then O(〈v1, . . . , vk〉⊥)∩U ′(R2n)(v1,...,vk) is (n−usr(R)−k−1)-
connected.

Proof. By lemma 6.6 there is a hyperbolic basis {x1, y1, . . . , xn, yn} of R2n

such that v1, . . . , vk ∈ 〈x1, y1, . . . , xk, yk〉. Let W = 〈xk+1, yk+1, . . . , xn, yn〉 '
R2(n−k) and F := O(〈v1, . . . , vk〉⊥) ∩ U ′(R2n)(v1,...,vk). It is easy to see that

O(W )∩F = O(W )∩U ′(R2n). Let V = 〈v1, . . . , vk〉, then 〈x1, y1, . . . , xk, yk〉 =
V ⊕ P where P is a (finitely generated) projective module. Consider
(u1, . . . , ul) ∈ F\O(W ) and let ui = xi + yi where xi ∈ V and yi ∈ P ⊕W .
One should notice that (u1 − x1, . . . , ul − xl) ∈ U(R2n) and not necessarily in
U ′(R2n). It is not difficult to see that O(W ) ∩ F(u1,...,ul) = O(W ) ∩ U ′(R2n) ∩
U(R2n)(u1−x1,...,ul−xl). By lemma 6.8, O(W ) ∩ F is (n − k − usr(R) − 1)-
connected and O(W ) ∩ Fu is (n − k − usr(R) − |u| − 1)-connected for every
u ∈ F\O(W ). It follows from lemma [20, 2.13 (i)] that F is (n−usr(R)−k−1)-
connected. ¤

7. Posets of isotropic and hyperbolic unimodular sequences

Let IU(R2n) be the set of sequences (x1, . . . , xk), xi ∈ R2n, such that x1, . . . , xk
form a basis for an isotropic direct summand of R2n. Let HU(R2n) be the
set of sequences ((x1, y1), . . . , (xk, yk)) such that (x1, . . . , xk), (y1, . . . , yk) ∈
IU(R2n), h(xi, yj) = δi,j , where δi,j is the Kronecker delta. We call IU(R2n)
and HU(R2n) the poset of isotropic unimodular sequences and the poset of
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hyperbolic unimodular sequences, respectively. For 1 ≤ k ≤ n, let IU(R2n, k)
and HU(R2n, k) be the set of all elements of length k of IU(R2n) and HU(R2n)
respectively. We call the elements of IU(R2n, k) and HU(R2n, k) the isotropic
k-frames and the hyperbolic k-frames, respectively. Define the posetMU(R2n)
as the set of ((x1, y1), . . . , (xk, yk)) ∈ O(R2n×R2n) such that, (i) (x1, . . . , xk) ∈
IU(R2n), (ii) for each i, either yi = 0 or (xj , yi) = δji, (iii) 〈y1, . . . , yk〉 is
isotropic. We identify IU(R2n) with MU(R2n) ∩ O(R2n × {0}) and HU(R2n)
with MU(R2n) ∩ O(R2n × (R2n\{0})).
Lemma 7.1. Let R be a ring with usr(R) < ∞. If n ≥ usr(R) + k then
EU ε

2n(R,Λ) acts transitively on IU(R2n, k) and HU(R2n, k).

Proof. The proof is by induction on k. If k = 1, by definition EU ε
2n(R,Λ)

acts transitively on IU(R2n, 1) and by [8, Chap. VI, Thm. 4.7.1] the group
EU ε

2n(R,Λ) acts transitively on HU(R2n, 1). The rest is an easy induction
and the fact that for every isotropic k-frame (x1, . . . , xk) there is an isotropic
k-frame (y1, . . . , yk) such that ((x1, y1), . . . , (xk, yk)) is a hyperbolic k-frame [8,
Chap. I, Cor. 3.7.4]. ¤
Lemma 7.2. Let R be a ring with usr(R) < ∞, and let n ≥ usr(R) + k.
Let ((x1, y1), . . . , (xk, yk)) ∈ HU(R2n), (x1, . . . , xk) ∈ IU(R2n) and V =
〈x1, . . . , xk〉. Then
(i) IU(R2n)(x1,...,xk) ' IU(R2(n−k))〈V 〉,
(ii) HU(R2n) ∩MU(R2n)((x1,0),...,(xk,0)) ' HU(R2n)((x1,y1),...,(xk,yk))〈V × V 〉,
(iii) HU(R2n)((x1,y1),...,(xk,yk)) ' HU(R2(n−k)).

Proof. See [5], the proof of lemma 3.4 and the proof of Thm. 3.2. ¤
For a real number l, by blc we mean the largest integer n with n ≤ l.
Theorem 7.3. The poset IU(R2n) is bn−usr(R)−2

2 c-connected and IU(R2n)x is

bn−usr(R)−|x|−2
2 c-connected for every x ∈ IU(R2n).

Proof. If n ≤ usr(R), the result is clear, so let n > usr(R). Let Xv = IU(R2n)∩
U ′(R2n)v ∩ O(〈v〉⊥), for every v ∈ U ′(R2n), and put X :=

⋃
v∈F Xv where

F = U ′(R2n). It follows from lemma 7.1 that IU(R2n)≤n−usr(R) ⊆ X. So to

treat IU(R2n), it is enough to prove that X is bn−usr(R)−2
2 c-connected. First

we prove that Xv is bn−usr(R)−|v|−2
2 c-connected for every v ∈ F . The proof is

by descending induction on |v|. If |v| > n−usr(R), then bn−usr(R)−|v|−2
2 c < −1.

In this case there is nothing to prove. If n − usr(R) − 1 ≤ |v| ≤ n − usr(R),

then bn−usr(R)−|v|−2
2 c = −1, so we must prove that Xv is nonempty. This

follows from lemma 6.6. Now assume |v| ≤ n − usr(R) − 2 and assume by

induction that Xw is bn−usr(R)−|w|−2
2 c-connected for every w, with |w| > |v|.

Let l = bn−usr(R)−|v|−2
2 c, and observe that n− |v| − usr(R) ≥ l + 2. Put Tw =

IU(R2n)∩U ′(R2n)wv∩O(〈wv〉⊥) where w ∈ Gv = U ′(R2n)v∩O(〈v〉⊥) and put
T :=

⋃
w∈Gv Tw . It follows by lemma 6.6 that (Xv)≤n−|v|−usr(R) ⊆ T . So it is

enough to prove that T is l-connected. The poset Gv is l-connected by lemma
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6.9. By induction, Tw is bn−usr(R)−|v|−|w|−2
2 c-connected. But min{l − 1, l −

|w|+ 1} ≤ bn−usr(R)−|v|−|w|−2
2 c, so Tw is min{l− 1, l− |w|+ 1}-connected. For

every y ∈ T , Ay = {w ∈ Gv : y ∈ Tw} is isomorphic to U ′(R2n)vy∩O(〈vy〉⊥) so
by lemma 6.9, it is (l− |y|+ 1)-connected. Let w ∈ Gv with |w| = 1. For every
z ∈ Tw we have wz ∈ Xv, so Tw is contained in a cone, call it Cw, inside Xv.
Put C(Tw) = Tw ∪ (Cw)≤n−|v|−usr(R). Thus C(Tw) ⊆ T . The poset C(Tw) is l-
connected because C(Tw)≤n−|v|−usr(R) = (Cw)≤n−|v|−usr(R). Now by theorems
5.1 and 4.7 , T is l-connected. In other words, we have now shown that Xv is

bn−usr(R)−|v|−2
2 c-connected. By knowing this one can prove, in a similar way,

that X is bn−usr(R)−2
2 c-connected. (Just pretend that |v| = 0.)

Now consider the poset IU(R2n)x for an x = (x1, . . . , xk) ∈ IU(R2n). The
proof is by induction on n. If n = 1, everything is easy. Similarly, we

may assume n − usr(R) − |x| ≥ 0. Let l = bn−usr(R)−|x|−2
2 c. By lemma

7.2, IU(R2n)x ' IU(R2(n−|x|))〈V 〉, where V = 〈x1, . . . , xk〉. In the above
we proved that IU(R2(n−|x|)) is l-connected and by induction, the poset

IU(R2(n−|x|))y is bn−|x|−usr(R)−|y|−2
2 c-connected for every y ∈ IU(R2(n−|x|)).

But l−|y| ≤ bn−|x|−usr(R)−|y|−2
2 c. So IU(R2(n−|x|))〈V 〉 is l-connected by lemma

4.1. Therefore IU(R2n)x is l-connected. ¤

Theorem 7.4. The poset HU(R2n) is bn−usr(R)−3
2 c-connected and HU(R2n)x

is bn−usr(R)−|x|−3
2 c-connected for every x ∈ HU(R2n).

Proof. The proof is by induction on n. If n = 1, then everything is triv-
ial. Let F = IU(R2n) and Xv = HU(R2n) ∩ MU(R2n)v, for every v ∈ F .
Put X :=

⋃
v∈F Xv. It follows from lemma 7.1 that HU(R2n)≤n−usr(R) ⊆

X. Thus to treat HU(R2n), it is enough to prove that X is bn−usr(R)−3
2 c-

connected, and we may assume n ≥ usr(R) + 1. Take l = bn−usr(R)−3
2 c

and V = 〈v1, . . . , vk〉, where v = (v1, . . . , vk). By lemma 7.2, there is an
isomorphism Xv ' HU(R2(n−|v|))〈V × V 〉, if n ≥ usr(R) + |v|. By in-

duction HU(R2(n−|v|)) is bn−|v|−usr(R)−3
2 c-connected and again by induction

HU(R2(n−|v|))y is bn−|v|−usr(R)−|y|−3
2 c-connected for every y ∈ HU(R2(n−|v|)).

So by lemma 4.1 , Xv is bn−|v|−usr(R)−3
2 c-connected. Thus the poset Xv is

min{l − 1, l − |v| + 1}-connected. Let x = ((x1, y1), . . . , (xk, yk)). It is easy
to see that Ax = {v ∈ F : x ∈ Xv} ' IU(R2n)(x1,...,xk). By the above the-

orem 7.3, Ax is bn−usr(R)−k−2
2 c-connected. But l − |x| + 1 ≤ bn−usr(R)−k−2

2 c,
so Ax is (l − |x| + 1)-connected. Let v = (v1) ∈ F , |v| = 1, and let
Dv := HU(R2n)(v1,w1) ' HU(R2(n−1)) where w1 ∈ R2n is a hyperbolic dual

of v1 ∈ R2n. Then Dv ⊆ Xv and Dv is contained in a cone, call it Cv,
inside HU(R2n). Take C(Dv) := Dv ∪ (Cv)≤n−usr(R). By induction Dv is

bn−1−usr(R)−3
2 c-connected and so (l− 1)-connected. Let Yv = Xv ∪C(Dv). By

the Mayer-Vietoris theorem and the fact that C(Dv) is l-connected, we get the
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exact sequence

H̃l(Dv,Z)
(iv)∗→ H̃l(Xv,Z)→ H̃l(Yv,Z)→ 0.

where iv : Dv → Xv is the inclusion. By induction (Dv)w is bn−1−usr(R)−|w|−3
2 c-

connected and so (l− |w|)-connected, for w ∈ Dv. By lemma 4.1(i) and lemma
7.2, (iv)∗ is an isomorphism, and by exactness of the above sequence we get

H̃l(Yv,Z) = 0. If l ≥ 1 by the Van Kampen theorem π1(Yv, x) ' π1(Xv, x)/N
where x ∈ Dv and N is the normal subgroup generated by the image of the
map (iv)∗ : π1(Dv, x) → π1(Xv, x). Now by lemma 4.1(ii), π1(Yv, x) is trivial.
Thus by the Hurewicz theorem 2.1, Yv is l-connected. By having all this we
can apply theorem 4.7 and so X is l-connected. The fact that HU(R2n)x is

bn−usr(R)−|x|−3
2 c-connected follows from the above and lemma 7.2. ¤

Remark 7.5. One can define a more generalized version of hyperbolic space
H(P ) = P ⊕ P ∗ where P is a finitely generated projective module. Charney
in [5, 2.10] introduced the posets IU(P ), HU(P ) and conjectured that if P
contains a free summand of rank on rank n then IU(P ) and HU(P ) are in fact
highly connected. We leave it as exercise to the interested reader to prove this
conjecture using the theorems 7.3 and 7.4 as in the proof of lemma 6.8. In
fact one can prove that if P contains a free summand of rank n then IU(P )

is bn−usr(R)−2
2 c-connected and HU(P ) is bn−usr(R)−3

2 c-connected. Also, by as-

suming the high connectivity of the IU(R2n), Charney proved that HU(R2n)
is highly connected. Our proof is different and relies on our theory, but we use
ideas from her paper, such as the lemma 7.2 and her lemma 4.1, which is a
modified version of work of Maazen [9].

8. Homology stability

From theorem 7.4 one can get the homology stability of unitary groups. The
approach is well known.

Remark 8.1. To prove homology stability of this type one only needs high
acyclicity of the corresponding poset, not high connectivity. But usually this
type of posets are also highly connected. Here we also proved the high connec-
tivity. In particular we wished to confirm the conjecture of Charney [5, 2.10],
albeit with different bounds (see 7.5).

Theorem 8.2. Let R be a ring with usr(R) < ∞ and let the action of the
unitary group on the Abelian group A is trivial. Then the homomorphism Inc∗ :
Hk(U ε

2n(R,Λ), A)→ Hk(U ε2n+2(R,Λ), A) is surjective for n ≥ 2k + usr(R) + 2
and injective for n ≥ 2k + usr(R) + 3.

Proof. See [5, Section 4] and theorem 7.4. ¤

Remark 8.3. With the result of the previous section one also can prove ho-
mology stability of the unitary groups with twisted coefficients. For more
information in this direction see [20, §5] and [5, 4.2].
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