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0. Introduction

The Witt group is the classical invariant classifying symmetric spaces, up to
isometry and modulo metabolic spaces, see for instance [12] for rings and [11]
for schemes. The Gersten conjecture for Witt groups, stated by Pardon in 1982
[16], claims the existence and the exactness of a complex GWCa(R):

0→W(R)→W(K)→
⊕

x∈X(1)

W(κ(x))→ . . .→
⊕

x∈X(n−1)

W(κ(x))→W(κ(m))→ 0

where (R,m) is an n-dimensional regular local ring in which 2 is invertible;
we denote by X = Spec(R) the spectrum of R, by X (p) the primes of height
p, by κ(x) the residue field at a point x ∈ X, and by K = κ(0) the field of
fractions of R. We call GWCa(R) an augmented Gersten-Witt complex. In [5]
Balmer and Walter constructed a Gersten-Witt complex

GWC(X) := . . .→ 0 −→
⊕

x∈X(0)

W(κ(x)) −→ . . . −→
⊕

x∈X(p)

W(κ(x))→ . . .

for general regular schemes X, not necessarily local or essentially of finite type,
as part of the so-called Gersten-Witt spectral sequence. We will recall these
constructions in Section 3. The augmented Gersten-Witt complex that we
consider here is simply their complex GWC(R) augmented by the natural map
W(R)→W(K). Our main result is Theorem 6.1 below, which says:
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Theorem. The augmented Gersten-Witt complex GWCa(R) is exact for any
equicharacteristic regular local ring R, i.e. for R regular local containing some
field k.

If the field k can be taken infinite with R essentially smooth over k, this has
already been proven by Balmer [4] and independently by Pardon [17]. Here we
extend this result first to essentially smooth local algebras over finite ground
fields k. Then we extend it to regular local algebras which are not essentially
of finite type to obtain the above Theorem, following a method introduced by
Panin [15] to prove the equicharacteristic Gersten conjecture in K-theory.
Although these strategies have already been used for other theories, their appli-
cation to Witt theory has not been rapid. For instance the Gersten conjecture
for K-theory was proven by Quillen 30 years before the analogue for Witt
groups. The most significant problem was that until recently [2] [3] [4] [7] it
had not been established that Witt groups were part of a cohomology theory
with supports in the sense of Colliot-Thélène, Hoobler and Kahn [6]. It is ba-
sically this observation which led to the proof of the conjecture for essentially
smooth local algebras over infinite ground fields by means of a geometric proof
whose roots reach back to Ojanguren’s pioneering article [13].
Let us explain the general strategies to

(1) Go from infinite ground fields to any ground field.
(2) Go from essentially smooth local algebras to any regular local algebra.

The strategy for proving (1) is seemingly due to Colliot-Thélène, cf. [13], p. 115.
One considers infinite towers of finite field extensions k ⊂ F1 ⊂ F2 ⊂ . . .; the
result holds “at the limit” by assumption, hence holds for some finite extension,
and finally it holds for k itself by a transfer argument.
The strategy for proving (2) is due to Panin [15] and relies on results of
Popescu [18] [19] which imply that any equicharacteristic regular local ring R
is the filtered colimit of essentially smooth local algebras over some field k ⊂ R.
There is usually no hope of getting this limit to commute with Gersten-type
complexes because the morphisms in the colimit may be pretty wild. Panin’s
trick consists in finding a statement in terms of Zariski cohomology which is
equivalent to the considered Gersten conjecture (he did it for K-theory) and
then using a theorem of Grothendieck [1] asserting that the colimit and the
cohomology commute.
We follow these strategies for Witt groups. The main difference between the
usual cohomology theories (such as K-theory) and Witt groups is that the latter
depend not only on a scheme or a category but also on a duality functor E 7→ E∗

and biduality isomorphisms $E : E ∼= E∗∗. Most schemes and categories
which one studies this way come equipped with numerous choices for (∗, $).
For instance one can twist the duality functor for vector bundles by a line
bundle, one can use shifted dualities for chain complexes, and one can change
the sign of the biduality isomorphisms. When one wishes to apply a geometric
argument with a pullback or a pushforward along a map π : Y → X one has
to worry about which dualities on X and Y correspond for the construction in
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question. Pushforwards (or transfers) in particular are not yet widely available
(although some of the authors are working on it). Nevertheless, things have
reached the point where one understands enough to construct the Gersten-
Witt complex (Balmer-Walter [5]) and to treat pushforwards along a closed
embedding Spec(R/fR) ↪→ SpecR of spectra of regular local rings (Gille [7]).
This allows us to carry out (1) and (2).
Another reason we write this paper is that Panin’s strategy for (2) is still quite
new and has not yet been assimilated by the community. We hope that our
exposition of this method will aid the process of digestion.
Note that our proof of the Gersten conjecture is independent of Ojanguren’s
and Panin’s work [14] and hence we get a new proof of their main theorem,
namely the purity theorem for equicharacteristic regular local rings. Neverthe-
less, the present work is more a generalization than a simplification of [14] since
the various pieces of our proof (geometric presentation lemmas, transfers, and
Panin’s trick) are of similar complexity.
Apart from the ideas described in this introduction, our basic technical device
is the recourse to triangular Witt groups [2] [3], namely Witt groups of suitable
derived categories.

We would like to thank Winfried Scharlau and the Sonderforschungsbereich
of the University of Münster for their precious support and for the one week
workshop where this article was started.
The third author thanks very much for the support the TMR Network ERB
FMRX CT-97-0107, the grant of the year 2002 of the “Support Fund of National
Science” at the Russian Academy of Science, the grant INTAS-99-00817, and
the RFFI-grant 00-01-00116.

1. Notations

Convention 1.1. Each time we consider the Witt group of a scheme X or
of a category A, we implicitly assume that 2 is invertible, i.e. that 1/2 is in
the ring of global sections Γ(X,OX), respectively that A is Z[1/2]-linear. Of
course, this has nothing to do with “tensoring outside with Z[1/2]” and our
Witt groups might very well have non-trivial 2-torsion.

Let X be a noetherian scheme with structure sheaf OX , and let Z be a closed
subset. For a complex P of quasi-coherent OX -modules we define the (homo-
logical) support of P to be

supph(P ) :=
⋃

i∈Z
supp

(
Hi(P )

)
.

We denote byMX the category of quasi-coherent OX -modules and by PX the
category of locally free OX -modules of finite rank. We denote by Db(E) the
bounded derived category of an exact category E . Let Db

coh(MX) be the full
subcategory of Db(MX) of complexes whose homology modules are coherent,
and let Db

coh, Z(MX) be the full subcategory of Db
coh(MX) of those complexes
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whose homological support is contained in Z. The symbol Db
Z(PX) has an

analogous self-explanatory meaning. For any positive integer p ≥ 0 we set

Db
Z(PX)(p) :=

⋃

codim W = p
W ⊂ Z

Db
W(PX).

The category Db
coh, Z(MX)(p) is defined similarly.

Remark 1.2. We shall use here the following standard abbreviations:

(1) When Z = X, we drop its mention, as in Db(PX) to mean Db
X(PX).

(2) In the affine case, X = Spec(R), we drop “Spec”, as in Db
coh(MR)(p)

which stands for Db
coh(MSpec(R))

(p).
(3) If X = Spec(R) and Z = V (I) is defined by an ideal I ⊂ R, we

replace “Z” by “I”, and even further we abbreviate Db
f (PR) instead of

Db
fR(PR) where f ∈ R.

2. Triangulated categories with duality and their Witt groups

When not mentioned, the reference for this section is [2].

A triangulated category with duality is a triple (K, ],$), where K is a trian-
gulated category, ] : K → K is a δ-exact contravariant functor (δ = ±1) and
$ : idK → ]] is an isomorphism of functors such that idM] = ($M )] ·$M] and
$M [1] = $M [1].

Triangular Witt groups. We can associate to a triangulated category with
duality a series of Witt groups Wn(K), for n ∈ Z. The group Wn(K) classifies
the n-symmetric spaces modulo Witt equivalence. Here an n-symmetric space
is a pair (P, φ) with P ∈ K and with φ : P

∼−→ P ][n] an isomorphism such

that φ][n]$P = (−1)
n(n+1)

2 δnφ. The isometry classes of n-symmetric spaces
form a monoid with the orthogonal sum as addition. Dividing this monoid by
the submonoid of neutral n-symmetric spaces (see [2] Definition 2.12) gives the
n-th Witt group of K. These groups are 4-periodic, i.e. Wn(K) = Wn+4(K).
The class of (P, φ) in the Witt group is written [P, φ].

Derived Witt groups of schemes. Let X be a scheme and Z ⊂ X a closed subset.
The derived functor of HomOX (− ,OX) is then a duality on Db

Z(PX) making
it a triangulated category with 1-exact duality. We denote the corresponding
triangular Witt groups by Wn

Z(X) and call them the derived Witt groups of
X with support in Z. The abbreviations introduced in 1.2 also apply to this
notation, like Wn(X) for Wn

X(X). The comparison with the classical Witt
group of the scheme X defined by Knebusch [11] is given by the following fact
([3] Theorem 4.7): The natural functor PX → Db(PX) induces an isomorphism

W(X)
'−→W0(X).
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The Gersten Conjecture for Witt Groups 207

The cone construction and the localization long exact sequence. The main the-
orem of triangular Witt theory is the localization theorem. Let

0→ J −→ K q−→K/J → 0 (2.1)

be an exact sequence of triangulated categories with duality, i.e. a localization
with J ] ⊂ J . Let z be an element of W0(K/J ). Then there exists a symmetric
morphism ψ : P → P ] (i.e. ψ]$P = ψ) such that z = [q(P ), q(ψ)]. In particular
C := coneψ belongs to J . By [2] Theorem 2.6, there is a commutative diagram

P
ψ ��

δ$P
��

P ]
��

=
��

C
��

' φ
��

P [1]

δ$P [1]
��

P ]]
δψ]

��
P ]

�� C][1] �� P ]][1]

such that the upper and the lower rows are exact triangles dual to each other
and such that φ][1]$C = −δφ. The last property means that (C, φ) is a 1-
symmetric space, i.e. represents an element of W1(J ). The isometry class
of (C, φ) is uniquely determined by the isometry class of (P,ψ). We get a
morphism W0(K) −→ W1(J ) sending z = [q(P ), q(ψ)] to [C, φ]. In the same
manner we can define morphisms ∂ : Wn(K) −→ Wn+1(J ) fitting in a long
exact sequence, the localization sequence associated to the exact sequence (2.1)
of triangulated categories with duality:

. . . −→Wn(K) −→Wn(K/J )
∂−→Wn+1(J ) −→Wn+1(K) −→ . . .

3. Gersten-Witt spectral sequences and complexes

We review the Gersten-Witt spectral sequence, which was introduced by
Balmer and Walter [5] for regular schemes, and generalized by Gille [7] to
Gorenstein schemes of finite Krull dimension.

The construction: Let X be a regular scheme of finite Krull dimension and
Z ⊂ X a closed subset. Then Db

Z(PX) has a filtration

Db
Z(PX) = D0

Z ⊃ D1
Z ⊃ · · · ⊃ DdimX

Z ⊃ DdimX+1
Z ' 0

where we have written Dp
Z := Db

Z(PX)(p). The localization exact sequences

. . . −→Wi(Dp+1
Z ) −→Wi(Dp

Z) −→Wi(Dp
Z/D

p+1
Z ) −→Wi+1(Dp+1

Z ) −→ . . . ,

can be organized into an exact couple, giving rise to a convergent spectral
sequence:

Ep,q1 (X,Z) = Wp+q(Dp
Z/D

p+1
Z ) =⇒ Wp+q

Z (X).

This is the Gersten-Witt spectral sequence for X with supports in Z.
Using the 4-periodicity of Witt groups, as well as [5] Theorem 7.2 and [7]
Theorem 3.14, one sees that the E1-page is zero everywhere except for the
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lines with q ≡ 0 (mod 4), which are all the same and which vanish outside
the interval codimXZ ≤ p ≤ dimX. So the information of the E1-page is
essentially given by the complex

0→ EcodimZ,0
1 (X,Z)→ EcodimZ+1,0

1 (X,Z)→ · · · → Edim X,0
1 (X,Z)→ 0.

Definition 3.1. Let X be a regular scheme of finite Krull dimension and Z ⊂
X a closed subset. Then we define the complex GWC•(X,Z) := E•,01 (X,Z).
In other words, we have

GWCp(X,Z) = Wp
(
Dp
Z/D

p+1
Z

)

where Dp
Z = Db

Z(PX)(p), and the differential dp = dp,01 is the composition

Wp
(
Dp
Z/D

p+1
Z

) ∂−→Wp+1
(
Dp+1
Z

)
−→Wp+1

(
Dp+1
Z /Dp+2

Z

)

where ∂ is the connecting homomorphism of the localization long exact se-
quence and where the second homomorphism is the natural one. When X = Z
we write Ep,q1 (X) instead of Ep,q1 (X,X), and similarly for GWC•(X). We
adopt the notation GWC•(X) to avoid confusion with the Grothendieck-Witt
group GW(X).

Adding in the edge morphism E0(X)→ E0,0
1 (X) of the spectral sequence gives

the augmented Gersten-Witt complex of X

GWCa(X) : 0 −→W(X) −→ GWC0(X) −→ GWC1(X) −→ · · ·

The E2-page of the spectral sequence has Ep,02 (X) = Hp(GWC•(X)). From
this we deduce the following result which will be used in the proofs of Theo-
rems 4.4 and 6.1.

Lemma 3.2. The following hold true :

(1) Let X be a regular scheme. Assume that H i(GWC•(X)) = 0 for all
i ≥ 1. Then the augmented Gersten-Witt complex for X is exact.

(2) Let R be a regular local ring. Assume only that H i(GWC•(R)) = 0 for
all i ≥ 4. Then the Gersten conjecture for Witt groups holds for R.

Proof. We start with (1). The hypothesis implies that Ep,q2 (X) = 0 for all
p 6= 0. It follows that the spectral sequence degenerates at E2, and so the
edge morphisms give isomorphisms Eq(X)

∼−→E0,q
2 (X) for all q. For q = 0 this

means that the natural map W(X)→ H0(GWC•(X)) is an isomorphism. This
is what we needed to show.
For (2), recall from above that E1 is concentrated in the lines q ≡ 0 mod 4.
Therefore the spectral sequence degenerates again at E2 = E5 because no
nonzero higher differentials can occur. Observe that for p = 1, 2, 3, the ho-
mology Hp(GWC•(R)) is simply Ep,02 and the latter is isomorphic to Wp(R)
by the convergence of the spectral sequence. Now, when R is local, we have
Wp(R) = 0 for p = 1, 2, 3 by [4] Theorem 5.6. So we can apply (1). ¤
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The Gersten Conjecture for Witt Groups 209

Dévissage: The localization morphisms SpecOX,x −→ X induce an isomor-
phism (see [5] Proposition 7.1 or [7] Theorem 3.12)

GWCp(X,Z)
'−→

⊕

x∈X(p)∩Z
Wp

mx
(OX,x), (3.1)

where X(p) is the set of points of codimension p and (OX,x,mx) is the local
ring at x ∈ X.
Let (S, n) be a regular local ring and ` = S/n. Then we have an isomorphism

W(`)
∼−→ WdimS

n (S) which depends on the choice of local parameters (see [5]
Theorem 6.1) and hence

GWCp(X,Z) '
⊕

x∈X(p)∩Z
W(κ(x))

for any regular scheme X with closed subset Z. It follows that our Gersten-Witt
complex has the form announced in the Introduction.
There are two ways of having a complex independent of choices. Either
work as we do here in Definition 3.1 with the underlying complex before
dévissage, or twist the dualities on the residue fields, see [5]. The latter
means that one can consider for each x ∈ X (p) the Witt group W(κ(x), ωxp/X)
with twisted coefficients in the one-dimensional κ(x)-vector space ωxp/X :=

Extp(κ(x),OX,x) = Λp(mx/m
2
x)
∗
, and we have then a canonical isomorphism

W(κ(x), ωxp/X) ∼= Wp
mx

(OX,x) and thus a canonical Gersten-Witt complex
with

GWCp(X,Z) ∼=
⊕

x∈X(p)∩Z
W(κ(x), ωxp/X).

After all, this dévissage is only relevant for cognitive reasons since it relates the
terms of the Gersten-Witt complex with quadratic forms over the residue fields.
But we will see in the sequel that our initial canonical definition GWCp(X,Z) =

Wp
(
Dp
Z/D

p+1
Z

)
is more convenient to handle.

Another construction of a Gersten Witt spectral sequence has been given by
Gille [7], Section 3. Let Y be a Gorenstein scheme of finite Krull dimension
and Z ⊂ Y a closed subset. Then the derived functor of HomOY (− ,OY )
is a duality on Db

coh, Z(MY ) making it a triangulated category with 1-exact

duality. Following [7] we denote the associated so called coherent Witt groups

by W̃
i

Z(Y ). On the triangulated category Db
coh(MY ) we have also a finite

filtration

Db
coh, Z(MY ) = D0

Z ⊃ D1
Z ⊃ D2

Z ⊃ . . . ⊃ DdimY
Z ,

where Dp
Z := Db

coh, Z(MY )(p). As above this gives us long exact sequences

. . . −→Wi(Dp+1
Z ) −→Wi(Dp

Z) −→Wi(Dp
Z/D

p+1
Z ) −→Wi+1(Dp+1

Z ) −→ . . . ,

and hence by Massey’s method of exact couples a convergent spectral sequence

Ẽp,q(Y,Z) := Wp+q(Dp+q
Z /Dp+q+1

Z ) =⇒ W̃
p+q

Z (Y ) .
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If now Y is regular we have equivalences Db
Z(PY )(p) '−→ Db

coh, Z(MY )(p)

which are duality preserving and hence give isomorphisms Wi(Db
Z(PY )(p)) '

Wi(Db
coh, Z(MY )(p)). We get then from the functorial properties of the localiza-

tion sequence an isomorphism of spectral sequences Ep,q1 (Y,Z)
'−→ Ẽp,q1 (Y,Z).

Hence in the regular case both constructions lead to the same result.

One advantage of this “coherent” approach is the following. Let Y = SpecR
with R a Gorenstein ring of finite Krull dimension and let the closed sub-
set Z be defined by a regular element f of R, i.e. Z = SpecR/Rf . We set
D̄p := Db

coh(MZ)(p) and as before Dp
Z := Db

coh, Z(MY )(p). The natural mor-

phism α : Z ↪→ Y induces a pushforward functor α∗ : D̄p → Dp+1
Z for any

p ∈ N. This functor shifts the duality structure by 1 (cf. [7], Theorem 4.2),

i.e. it induces morphisms Wi(D̄p) → Wi+1(Dp+1
Z ) for all i ∈ Z and p ∈ N.

From the functoriality of the localization sequence (cf. [7] Theorem 2.9) we get
commutative diagrams with exact rows

· · · Wi(D̄p+1)
��

��

Wi(D̄p)
��

��

Wi(D̄p/D̄p+1)
��

��

Wi+1(D̄p+1) · · ·

��

· · · Wi+1(Dp+2
Z ) �� Wi+1(Dp+1

Z ) �� Wi+1(Dp+1
Z /Dp+2

Z ) �� Wi+2(Dp+2
Z ) · · ·

(cf. [7], diagram on the bottom of p. 130). In particular we have a morphism

of spectral sequences α̃∗ : Ẽp,q1 (Z) −→ Ẽp+1,q
1 (Y,Z) which is an isomorphism

as shown in [7], Section 4.2.3.
If now R is regular local and f a regular parameter, i.e. R/Rf is regular too,
the identification above gives the following

Lemma 3.3. Let R be a regular local ring and f a regular parameter. Then we
have an isomorphism of spectral sequences

Ep,qr (R/fR)
'−→ Ep+1,q

r (R, fR).

In particular, we have isomorphisms of complexes

GWC•(R/fR)
'−→ GWC•+1(R, fR) .

4. A reformulation of the conjecture

Let X be a regular scheme and Z a closed subset. From Definition 3.1 and
from the dévissage formula (3.1), we immediately obtain a degree-wise split
short exact sequence

0→ GWC•(X,Z) −→ GWC•(X) −→ GWC•(X \ Z)→ 0.

We will consider below the long exact cohomology sequence of this short exact
sequence of complexes in the case X = SpecR, for R a regular local ring, and
Z is defined by a regular parameter f .
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The Gersten Conjecture for Witt Groups 211

Definition 4.1. Recall from the introduction that the Gersten conjecture as-
serts that for a regular local ring R the Gersten complex GWC•(R) is an exact
resolution of W(R).
We denote by W the Witt sheaf, i.e. the sheafification of the presheaf on the
Zariski site

U 7−→W(U) U ⊂ X open.

We have also a Gersten-Witt complex GWC• of sheaves on any regular scheme
of finite Krull dimension X. The definition of this complex in degree p ≥ 0 is:

U 7−→ GWCp(U) U ⊂ X open.

Lemma 4.2. Let X be a regular scheme of finite Krull dimension and assume
that the Gersten conjecture holds for all local rings OX,x of X. Then for all i
we have

Hi
Zar(X,W) ' Hi(Γ(X,GWC•)) = Hi(GWC•(X)).

Proof. Note that GWCp is a flabby sheaf and that (GWCp)x ' GWCp(OX,x)
for all points x of the scheme X. Since the natural morphism W(OX,x) −→Wx

is an isomorphism for all x ∈ X it follows that if the Gersten conjecture is true
for every local ring of the regular scheme X, then GWC• is a flabby resolution
of W on X. ¤

Definition 4.3. Let C be a class of regular local rings. We say that C is
nepotistic if the following holds: whenever R belongs to C, so do Rp for all
p ∈ SpecR and R/fR for all regular parameters f ∈ R.

The main result of this section is the following:

Theorem 4.4. If C is a nepotistic class of regular local rings (see 4.3), then
the following conditions are equivalent :

(i) The Gersten conjecture for Witt groups is true for any R ∈ C.
(ii) For any R ∈ C and for any regular parameter f ∈ R, we have for all

i ≥ 1 that Hi
Zar(SpecRf ,W) = 0. ( When R is a field, this condition is

empty and thus always true. )

Proof. The short exact sequence 0 → GWC•(R, fR) → GWC•(R) →
GWC•(Rf )→ 0 of Gersten-Witt complexes gives rise to a long exact sequence
of cohomology

0→ H0(GWC•(R)) −→ H0(GWC•(Rf ))
δ−→H1(GWC•(R, fR))→ · · ·

(i) ⇒ (ii). Let R ∈ C, and let f ∈ R be a regular parameter. Then the
Gersten conjecture for Witt groups holds for R and R/fR, and so we have
Hi(GWC•(R)) = 0 and H i(GWC•(R/fR)) = 0 for all i ≥ 1. Because of the
isomorphism of Lemma 3.3, we get H i(GWC•(R, fR)) = 0 for all i ≥ 2. It now
follows from the long exact sequence that H i(GWC•(Rf )) = 0 for all i ≥ 1.
The local rings of SpecRf are the Rp with f /∈ p, so they are all in C. So we

also have Hi
Zar(SpecRf ,W) = 0 for all i ≥ 1 by Lemma 4.2.

Documenta Mathematica 7 (2002) 203–217



212 P. Balmer, S. Gille, I. Panin and C. Walter

(ii)⇒ (i). We will prove the Gersten conjecture for Witt groups for R ∈ C by
induction on n = dimR. For n = 0 the ring R is a field, and this is trivial.
So suppose n ≥ 1 and that the Gersten conjecture for Witt groups is true for all
S ∈ C with dimS < n. Let f ∈ m \m2 be a regular parameter. The local rings
of Rf are the local rings Rp for primes with f /∈ p, and they satisfy Rp ∈ C and
dimRp < n. So the Gersten conjecture holds for all local rings of SpecRf , and
so by (ii) and Lemma 4.2 we have H i(GWC•(Rf )) = 0 for all i ≥ 1. We also
have R/fR ∈ C with dimR/fR = n− 1, so we get H i(GWC•(R/fR)) = 0 for
all i ≥ 1. The identification of Lemma 3.3 now gives us H i(GWC•(R, fR)) = 0
for all i ≥ 2. So from the long exact sequence we get H i(GWC•(R)) = 0 for all
i ≥ 2 and the Gersten conjecture for Witt groups holds for R by Lemma 3.2,
part (ii). ¤

5. A pairing, a trace map and a projection formula

We recall here some techniques of Gille and Nenashev [8] that we shall use
below. For more details and a more general point of view see [8].

The pairing W(k)×Wi(Db(PR)) −→Wi(Db(PR)). Let k be a field of charac-
teristic not 2, and let R be a regular k-algebra of Krull dimension n. De-
note the duality on k-mod by V ∗ = Homk(V, k) and that on Db(PR) by
F ] := HomR(F,R). Let (V, ϕ) be a nondegenerate symmetric bilinear space
over k. Then V ⊗k− : Db(PR) −→ Db(PR) is an exact functor, and the system
of isomorphisms between V ⊗k F ] and (V ⊗k F )] ∼= V ∗⊗k F ] given by ϕ⊗ 1F ]
makes V ⊗k − duality-preserving. Actually, the duality-preserving functor is
formally the pair (V ⊗k − , ϕ ⊗ 1), and we will abbreviate it as (V, ϕ) ⊗k −.
Moreover, if we let Dp

R = Db(PR)(p) be the subcategory of complexes of homo-
logical support of codimension at least p, then (V, ϕ)⊗k − is compatible with
the filtration

Db(PR) = D0
R ⊃ D1

R ⊃ · · · ⊃ Dn+1
R ' 0.

Hence the maps Wi(Dp
R) −→Wi(Dp

R) and Wi(Dp
R/D

p+1
R ) −→Wi(Dp

R/D
p+1
R )

induced by (V, ϕ)⊗k− are compatible with the localization exact sequences and
induce endomorphisms of the Gersten-Witt exact couple and spectral sequence
for R. These endomorphisms depend only on the Witt class of (V, ϕ), and
they are compatible with the orthogonal direct sum (V, ϕ) ⊥ (W,ψ) and tensor
product (V ⊗W,ϕ⊗ ψ) of symmetric bilinear spaces over k. This gives us the
following result.

Lemma 5.1. If R is a regular k-algebra of finite Krull dimension, then the pair-
ing makes the Gersten-Witt spectral sequence Ep,qr (R) into a spectral sequence
of W(k)-modules. ¤

Documenta Mathematica 7 (2002) 203–217



The Gersten Conjecture for Witt Groups 213

Base change. Let `/k be a separable algebraic field extension. Denote by π the
projection π : Spec(` ⊗k R) → SpecR. Then ` ⊗k R is a regular `-algebra of
Krull dimension n ( see [9], and in particular Prop. 6.7.4, p. 146 for regularity ).
Moreover, Db(P`⊗kR) has a duality (−)[ given by G[ := Hom`⊗kR(G, `⊗k R),
and the exact functor ` ⊗k − : Db(PR) −→ Db(P`⊗kR) is naturally duality-
preserving. It is compatible with the filtration of Db(PR) and the corresponding
filtration

Db(P`⊗kR) = D0
`⊗kR ⊃ D1

`⊗kR ⊃ · · · ⊃ D
n+1
`⊗kR = 0.

of Db(P`⊗kR), so it induces a morphism of spectral sequences π∗ : Ep,qr (R) −→
Ep,qr (`⊗k R).

A trace map. If `/k is finite and separable, then choose 0 6= τ ∈ Homk(`, k)
and extend it to an R-linear map τR : ` ⊗k R −→ R by setting τR(l ⊗ a) =
τ(l)a. Let π∗ : P`⊗kR → PR be the restriction-of-scalars functor. The natural
homomorphism of R-modules

π∗(G[) = Hom`⊗kR(G, `⊗k R)
τR∗ �� HomR(G,R) = (π∗G)]

sending f 7→ τR ◦f is an isomorphism for any G in P`⊗kR, and it makes π∗ into
a duality-preserving exact functor π∗ : Db(P`⊗kR) → Db(PR). Actually, the
duality-preserving functor is formally the pair (π∗, τR∗), and we will abbreviate
it as Trτ`⊗kR/R. Since `⊗k R is flat and finite over R, the restriction-of-scalars
functor preserves the codimension of the support of the homology modules,
and so π∗ is compatible with the filtrations on the two derived categories. So
we again get a morphism of spectral sequences Trτ`⊗kR/R : Ep,qr (` ⊗k R) −→
Ep,qr (R).

Remark 5.2. For R = k and i = 0 our Trτ`/k is just the Scharlau transfer

τ∗ : W(`) −→W(k) (cf. [20] Section 2.5).

Let (U,ψ) be a nondegenerate symmetric bilinear space over `. The following
diagram of duality-preserving functors commutes up to isomorphism of duality-
preserving functors (see [5] §4 for the definition):

Db(PR)

Trτ`/k(U,ψ)⊗k −
��

`⊗k − �� Db(P`⊗kR)

(U,ψ)⊗` −
��

Db(PR) Db(P`⊗kR) .
Trτ`⊗kR/R

��

The induced maps on derived Witt groups, exact couples, and spectral se-
quences are then the same (cf. [5] Lemma 4.1(b)). This gives us a projection
formula (cf. [8] Theorem 4.1):

Theorem 5.3. Let R be a regular k-algebra of finite Krull dimension, let `/k
be a finite separable extension of fields, and let π : Spec(` ⊗k R) → SpecR be
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the projection. Let Ep,qr (R) and Ep,qr (`⊗k R) be the two Gersten-Witt spectral
sequences. Then

Trτ`⊗kR/R(u · π∗(x)) = Trτ`/k(u) · x,
for all u ∈W(`) and all x ∈ Ep,qr (R). ¤

Odd-degree extensions. If `/k is of odd degree, then there exists a τ ∈
Homk(`, k) such that Trτ`/k(1W(`)) = 1W(k) ([20] Lemma 2.5.8). We then have

Trτ`⊗kR/R(π∗x) = x for all x ∈ Ep,qr (R). In other words :

Corollary 5.4. If `/k is separable of odd degree, then π∗ : Ep,qr (R) →
Ep,qr (` ⊗k R) is a split monomorphism of spectral sequences. In particular
Hi(GWC•(R))→ Hi(GWC•(`⊗kR)) is a split monomorphism for every i. ¤

The base change maps for separable algebraic extensions commute with filtered
colimits.

Corollary 5.5. If `/k is a filtered colimit of separable finite extensions
of odd degree, then π∗ : Ep,qr (R) → Ep,qr (` ⊗k R) is a filtered colimit of
split monomorphisms of spectral sequences. In particular H i(GWC•(R)) →
Hi(GWC•(`⊗k R)) is a monomorphism for every i. ¤

6. The equicharacteristic case of the Gersten conjecture for
Witt groups

We are now ready to prove the main result of the paper.

Theorem 6.1. Let R be an equicharacteristic regular local ring, i.e. R contains
some field (of characteristic not 2). Then the Gersten conjecture for Witt
groups is true for R.

Fix the following notation: m is the maximal ideal of R. We prove the theorem
in two steps.

Step 1. Assume that R is essentially smooth over some field k.

When k is an infinite field, this is a special case of [4] Theorem 4.3 which states
the following. If S is a semilocal ring essentially smooth over a field ` (i.e. S is
the semi-localization of a smooth scheme over `), and if the field ` is infinite,
then the Gersten conjecture for Witt groups is true for S, i.e. H i(GWC(S)) = 0
for all i ≥ 1.
Assume now k is a finite field and hence perfect. Fix an odd prime s. For any
n ≥ 0 let `n be the unique extension of the finite field k of degree sn, and let
` =

⋃∞
n=0 `n. The `-algebra ` ⊗k R is integral over R and hence semilocal. It

is further essentially smooth over the infinite field ` ( [10] Prop. 10.1.b ) and
hence by the result above the Gersten conjecture is true for ` ⊗k R. Using
Corollary 5.5, we see that the same is true for R.
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Step 2. General equicharacteristic R.

For this case we use the following result:

Theorem 6.2. Let R be an equicharacteristic regular local ring, and let f ∈
m \m2 be a regular parameter. Then:

(1) There exist a perfect field k contained in R and a filtered system of
pairs (Rj , fj) such that each Rj is an essentially smooth local k-algebra,
each fj is a regular parameter in Rj , and such that R = colimRj and
Rf = colim(Rj)fj , and the morphisms Rj → R are local.

(2) In addition the natural maps

colimj Hi
Zar(Spec(Rj)fj ,W) −→ Hi

Zar(SpecRf ,W)

are isomorphisms for all i ≥ 0.

Proof. The first part is a consequence of Popescu’s Theorem [18] [19] (see
also [15] §3), while the second part follows from [15] Theorem 6.6, which was
inspired by the étale analogue of this result : [1] Exposé VII, Théorème 5.7. ¤
Let Ceq be the class of all equicharacteristic regular local rings, and let Csm be
the subclass of regular local rings that are essentially smooth over a field. Both
Ceq and Csm are nepotistic (Definition 4.3). The class Csm satisfies condition
(i) of Theorem 4.4 by the first step of our proof, and we wish to show that
Ceq satisfies the same condition. But conditions (i) and (ii) of Theorem 4.4
are equivalent, so it is enough to show that Ceq satisfies condition (ii) of Theo-
rem 4.4, knowing that Csm satisfies the same condition.
Let R be in Ceq, and let f be a regular parameter of R. By Theorem 6.2
there exist a perfect subfield k ⊂ R and a filtered system (Rj , fj) of essentially
smooth local k-algebras Rj plus regular parameters fj ∈ Rj such that Rf =

colim(Rj)fj . Since the Rj are in Csm, we have Hi
Zar(Spec(Rj)fj ,W) = 0 for all

i ≥ 1 and all j because Csm satisfies condition (ii) of Theorem 4.4. Then by
Theorem 6.2 (2) we also have Hi

Zar(SpecRf ,W) = 0 for i ≥ 1. This is condition
(ii) of Theorem 4.4 for the class Ceq, so we have completed the proof.
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