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Abstract. Extending work of Bielawski-Dancer [3] and Konno [14],
we develop a theory of toric hyperkähler varieties, which involves
toric geometry, matroid theory and convex polyhedra. The frame-
work is a detailed study of semi-projective toric varieties, meaning
GIT quotients of affine spaces by torus actions, and specifically, of
Lawrence toric varieties, meaning GIT quotients of even-dimensional
affine spaces by symplectic torus actions. A toric hyperkähler variety
is a complete intersection in a Lawrence toric variety. Both varieties
are non-compact, and they share the same cohomology ring, namely,
the Stanley-Reisner ring of a matroid modulo a linear system of pa-
rameters. Familiar applications of toric geometry to combinatorics,
including the Hard Lefschetz Theorem and the volume polynomials of
Khovanskii-Pukhlikov [11], are extended to the hyperkähler setting.
When the matroid is graphic, our construction gives the toric quiver
varieties, in the sense of Nakajima [17].

1 Introduction

Hyperkähler geometry has emerged as an important new direction in differ-
ential and algebraic geometry, with numerous applications to mathematical
physics and representation theory. Roughly speaking, a hyperkähler manifold
is a Riemannian manifold of dimension 4n, whose holonomy is in the unitary
symplectic group Sp(n) ⊂ SO(4n). The key example is the quaternionic space
Hn ' C2n ' R4n. Our aim is to relate hyperkähler geometry to the combina-
torics of convex polyhedra. We believe that this connection is fruitful for both
subjects. Our objects of study are the toric hyperkähler manifolds of Bielawski
and Dancer [3]. They are obtained from Hn by taking the hyperkähler quo-
tient [10] by an abelian subgroup of Sp(n). Bialewski and Dancer found that
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the geometry and topology of toric hyperkähler manifolds is governed by hy-
perplane arrangements, and Konno [14] gave an explicit presentation of their
cohomology rings. The present paper is self-contained and contains new proofs
for the relevant results of [3] and [14].
We start out in Section 2 with a discussion of semi-projective toric varieties.
A toric variety X is called semi-projective if X has a torus-fixed point and
X is projective over its affinization Spec(H0(X,OX)). We show that semi-
projective toric varieties are exactly the ones which arise as GIT quotients of a
complex vector space by an abelian group. Then we calculate the cohomology
ring of a semi-projective toric orbifold X. It coincides with the cohomology of
the core of X, which is defined as the union of all compact torus orbit closures.
This result and further properties of the core are derived in Section 3.
The lead characters in the present paper are the Lawrence toric varieties,
to be introduced in Section 4 as the GIT quotients of symplectic torus ac-
tions on even-dimensional affine spaces. They can be regarded as the “most
non-compact” among all semi-projective toric varieties. The combinatorics of
Lawrence toric varieties is governed by the Lawrence construction of convex
polytopes [22, §6.6] and its intriguing interplay with matroids and hyperplane
arrangements.
In Section 6 we define toric hyperkähler varieties as subvarieties of Lawrence
toric varieties cut out by certain natural bilinear equations. In the smooth case,
they are shown to be biholomorphic with the toric hyperkähler manifolds of
Bielawski and Dancer, whose differential-geometric construction is reviewed in
Section 5 for the reader’s convenience. Under this identification the core of the
toric hyperkähler variety coincides with the core of the ambient Lawrence toric
variety. We shall prove that these spaces have the same cohomology ring which
has the following description. All terms and symbols appearing in Theorem 1.1
are defined in Sections 4 and 6.

Theorem 1.1 Let A : Zn → Zd be an epimorphism, defining an inclusion
TdR ⊂ TnR of compact tori, and let θ ∈ Zd be generic. Then the following
graded Q-algebras are isomorphic:

1. the cohomology ring of the toric hyperkähler variety Y (A, θ) =
Hn////(θ,0)TdR,

2. the cohomology ring of the Lawrence toric variety X(A±, θ) = C2n//θ TdR,

3. the cohomology ring of the core C(A±, θ), which is the preimage of the
origin under the affinization map of either the Lawrence toric variety or
the toric hyperkähler variety,

4. the quotient ring Q[x1, . . . , xn]/(M∗(A) + Circ(A)), where M∗(A) is the
matroid ideal which is generated by squarefree monomials representing
cocircuits of A, and Circ(A) is the ideal generated by the linear forms
that correspond to elements in the kernel of A.
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If the matrix A is unimodular then X(A±, θ) and Y (A, θ) are smooth and Q
can be replaced by Z.

Here is a simple example where all three spaces are manifolds: take A : Z3 →
Z, (u1, u2, u3) 7→ u1 + u2 + u3 with θ 6= 0. Then C(A±, θ) is the complex
projective plane P2. The Lawrence toric variety X(A±, θ) is the quotient of
C6 = C3 ⊕ C3 modulo the symplectic torus action (x, y) 7→ (t · x, t−1 · y).
Geometrically, X is a rank 3 bundle over P2, visualized as an unbounded 5-
dimensional polyhedron with a bounded 2-face, which is a triangle. The toric
hyperkähler variety Y (A, θ) is embedded into X(A±, θ) as the hypersurface
x1y1 + x2y2 + x3y3 = 0. It is isomorphic to the cotangent bundle of P2. Note
that Y (A, θ) itself is not a toric variety.
For general matrices A, the varieties X(A±, θ) and Y (A, θ) are orbifolds, by
the genericity hypothesis on θ, and they are always non-compact. The core
C(A±, θ) is projective but almost always reducible. Each of its irreducible
components is a projective toric orbifold.
In Section 7 we give a dual presentation, in terms of cogenerators, for the co-
homology ring. These cogenerators are the volume polynomials of Khovanskii-
Pukhlikov [11] of the bounded faces of our unbounded polyhedra. As an ap-
plication we prove the injectivity part of the Hard Lefschetz Theorem for toric
hyperkähler varieties (Theorem 7.4). In light of the following corollary to The-
orem 1.1, this provides new inequalities for the h-numbers of rationally repre-
sentable matroids.

Corollary 1.2 The Betti numbers of the toric hyperkähler variety Y (A, θ)
are the h-numbers (defined in Stanley’s book [18, §III.3]) of the rank n − d
matroid given by the integer matrix A.

The quiver varieties of Nakajima [17] are hyperkähler quotients of Hn by some
subgroup G ⊂ Sp(n) which is a product of unitary groups indexed by a quiver
(i.e. a directed graph). In Section 8 we examine toric quiver varieties which
arise when G is a compact torus. They are the toric hyperkähler manifolds
obtained when A is the differential Zedges → Zvertices of a quiver. Note that
our notion of toric quiver variety is not the same as that of Altmann and Hille
[1]. Theirs are toric and projective: in fact, they are the irreducible components
of our core C(A±, θ).
We close the paper by studying two examples in detail. First in Section 9
we illustrate the main results of this paper for a particular example of a toric
quiver variety, corresponding to the complete bipartite graph K2,3. In the final
Section 10 we examine the ALE spaces of type An. Curiously, these manifolds
are both toric and hyperkähler, and we show that they and their products are
the only toric hyperkähler manifolds which are toric varieties in the usual sense.

Acknowledgment. This paper grew out of a lecture on toric aspects of
Nakajima’s quiver varieties [17] given by the second author in the Fall 2000
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Quiver Varieties seminar at UC Berkeley, organized by the first author. We
are grateful to the participants of this seminar for their contributions. In
particular we thank Mark Haiman, Allen Knutson and Valerio Toledano. We
thank Roger Bielawski for drawing our attention to Konno’s work [14], and
we thank Manoj Chari for explaining the importance of [15] for Betti numbers
of toric quiver varieties. Both authors were supported by the Miller Institute
for Basic Research in Science, in the form of a Miller Research Fellowship
(1999-2002) for the first author and a Miller Professorship (2000-2001) for the
second author. The second author was also supported by the National Science
Foundation (DMS-9970254).

2 Semi-projective toric varieties

Projective toric varieties are associated with rational polytopes, that is,
bounded convex polyhedra with rational vertices. This section describes toric
varieties associated with (typically unbounded) rational polyhedra. The re-
sulting class of semi-projective toric varieties will be seen to equal the GIT-
quotients of affine space Cn modulo a subtorus of TnC.
Let A = [a1, . . . , an] be a d×n-integer matrix whose d×d-minors are relatively
prime. We choose an n × (n−d)-matrix B = [b1, . . . , bn]T which makes the
following sequence exact:

0 −→ Zn−d B−→ Zn A−→ Zd −→ 0. (1)

The choice of B is equivalent to choosing a basis in ker(A). The configura-
tion B := {b1, . . . , bn} in Zn−d is said to be a Gale dual of the given vector
configuration A := {a1, . . . , an} in Zd.
We denote by TC the complex group C∗ and by TR the circle U(1). Their Lie
algebras are denoted by tC and tR respectively. We apply the contravariant
functor Hom( · ,TC) to the short exact sequence (1). This gives a short exact
sequence of abelian groups:

1 ←− Tn−dC
BT←− TnC

AT←− TdC ←− 1. (2)

Thus TdC is embedded as a d-dimensional subtorus of TnC. It acts on the affine
space Cn. We shall construct the quotients of this action in the sense of ge-
ometric invariant theory (= GIT). The ring of polynomial functions on Cn is
graded by the semigroup NA ⊆ Zd:

S = C[x1, . . . , xn] , deg(xi) = ai ∈ NA. (3)

A polynomial in S is homogeneous if and only if it is a TdC-eigenvector. For
θ ∈ NA, let Sθ denote the (typically infinite-dimensional) C-vector space of
homogeneous polynomials of degree θ. Note that Sθ is a module over the
subalgebra S0 of degree zero polynomials in S =

⊕
θ∈NA Sθ. The following

lemma is a standard fact in combinatorial commutative algebra.
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Lemma 2.1 The C-algebra S0 is generated by a finite set of monomials, cor-
responding to the minimal generators of the semigroup Nn ∩ im(B). For any
θ ∈ NA, the graded component Sθ is a finitely generated S0-module, and the
ring S(θ) =

⊕∞
r=0 Srθ is a finitely generated S0-algebra.

The C-algebra S0 coincides with the ring of invariants ST
d
C . The S0-algebra

S(θ) is isomorphic to
⊕∞

r=0 t
rSrθ. We regard it as N-graded by the degree of t.

Definition 2.2 The affine GIT quotient of Cn by the d-torus TdC is the affine
toric variety

X(A, 0) := Cn//0 TdC := Spec (ST
d
C) = Spec (S0) = Spec

(
C[Nn∩im(B)]

)
. (4)

For any θ ∈ NA, the projective GIT quotient of Cn by the d-torus TdC is the
toric variety

X(A, θ) := Cn//θ TdC := Proj (S(θ)) = Proj
∞⊕

r=0

tr · Srθ. (5)

Recall that the isomorphism class of any toric variety is given by a fan in a
lattice. A toric variety is a toric orbifold if its fan is simplicial. We shall describe
the fans of the toric varieties X(A, 0) and X(A, θ) using the notation in Fulton’s
book [8]. We write M for the lattice Zn−d in (1) and N = Hom(M,Z) for its
dual. The torus Tn−dC in (2) is identified with N ⊗ TC. The column vectors
B = {b1, . . . , bn} of the matrix BT form a configuration in N ' Zn−d. We
write pos(B) for the convex polyhedral cone spanned by B in the vector space
NR = N ⊗ R ' Rn−d. Note that the affine toric variety associated with the
cone pos(B) equals X(A, 0).
A triangulation of the configuration B is a simplicial fan Σ whose rays lie in B
and whose support equals pos(B). A T-Cartier divisor on Σ is a continuous
function Ψ : pos(B) → R which is linear on each cone of Σ and takes integer
values on N ∩ pos(B). The triangulation Σ is called regular if there exists a
T-Cartier divisor Ψ which is ample, i.e. the function Ψ : pos(B)→ R is convex
and restricts to a different linear function on each maximal cone of Σ. Two
T-Cartier divisors Ψ1 and Ψ2 are equivalent if Ψ1 − Ψ2 is a linear map on
pos(B), i.e. it is an element of M . A divisor on Σ is an equivalence class of
T-Cartier divisors on Σ. Since Ψ1 is ample if and only if Ψ2 is ample, ampleness
is well-defined for divisors [Ψ]. Finally, we define a polarized triangulation of B
to be a pair consisting of a triangulation Σ of B and an ample divisor [Ψ].

The cokernel of M
B−→ Zn is identified with Zd in (1) and we call it the Picard

group. Hence A = {a1, . . . , an} is a vector configuration in the Picard group.
The chamber complex Γ(A) of A is defined to be the coarsest fan with support
pos(A) that refines all triangulations of A. Experts in toric geometry will note
that Γ(A) equals the secondary fan of B as in [7]. We say that θ ∈ NA is
generic if it lies in an open chamber of Γ(A). Thus θ ∈ NA is generic if it is
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not in any lower-dimensional cone pos{ai1 , . . . , aid−1
} spanned by columns of

A. The chamber complex Γ(A) parameterizes the different combinatorial types
of the convex polyhedra

Pθ =
{
u ∈ Rn : Au = θ, u ≥ 0

}

as θ ranges over NA. In particular, θ is generic if and only if Pθ is (n − d)-
dimensional and each of its vertices has exactly d non-zero coordinates (i.e. Pθ
is simple). A vector θ in NA is called an integral degree if every vertex of the
polyhedron Pθ is a lattice point in Zn.

Proposition 2.3 There is a one-to-one correspondence between generic inte-
gral degrees θ in NA and polarized triangulations

(
Σ, [Ψ]

)
of B. When forgetting

the polarization this correspondence gives a bijection between open chambers of
Γ(A) and regular triangulations Σ of B.

Proof: Given a generic integral degree θ, we construct the corresponding
polarized triangulation

(
Σ, [Ψ]

)
. First choose any ψ ∈ Zn such that Aψ = −θ.

Then consider the polyhedron

Qψ :=
{
v ∈MR : Bv ≥ ψ

}
.

The map v 7→ Bv − ψ is an affine-linear isomorphism from Qψ onto Pθ
which identifies the set of lattice points Qψ ∩ M with the set of lattice points
Pθ ∩ Zn. The set of linear functionals which are bounded below on Qψ is
precisely the cone pos(B) ⊂ N . Finally, define the function

Ψ : pos(B)→ R , w 7→ min {w · v : v ∈ Qψ }.

This is the support function of Qψ, which is piecewise-linear, convex and con-
tinuous. It takes integer values on N ∩pos(B) because each vertex of Qψ lies in
M . Since Qψ is a simple polyhedron, its normal fan is a regular triangulation
Σθ of B, and Ψ restricts to a different linear function on each maximal face of
Σθ. Hence

(
Σθ, [Ψ]

)
is a polarized triangulation of B.

Conversely, if we are given a polarized triangulation
(
Σ, [Ψ]

)
of B, then we

define ψ := (Ψ(b1), . . . ,Ψ(bn)) ∈ Zn, and θ = −Aψ is the corresponding
generic integral degree in NA. ¤

Theorem 2.4 Let θ ∈ NA be a generic integral degree. Then X(A, θ) is an
orbifold and equals the toric variety X(Σθ), where Σθ is the regular triangula-
tion of B given by θ as in Proposition 2.3.

Proof: First note that the multigraded polynomial ring S is the homogeneous
coordinate ring in the sense of Cox [6] of the toric variety X(Σθ). Specifically,
our sequence (1) is precisely the second row in (1) on page 19 of [6]. The
irrelevant ideal BΣθ of X(Σθ) equals the radical of the ideal generated by
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⊕∞
r=1 Srθ. Since Σθ is a simplicial fan, by [6, Theorem 2.1], X(Σθ) is the

geometric quotient of Cn\V(BΣθ ) modulo TdC. The variety V(BΣθ ) consists of
the points in Cn which are not semi-stable with respect to the TdC-action. By
standard results in Geometric Invariant Theory, the geometric quotient of the
semi-stable locus in Cn modulo TdC coincides with X(A, θ) = Proj (S(θ)) =

Cn//θ TdC. Therefore X(A, θ) is isomorphic to X(Σθ). ¤

Corollary 2.5 The distinct GIT quotients X(A, θ) = Cn//θ TdC which are
toric orbifolds are in bijection with the open chambers in Γ(A), and hence with
the regular triangulations of B.

Recall that for every scheme X there is a canonical morphism

πX : X 7→ X0 (6)

to the affine scheme X0 = Spec(H0(X,OX)) of regular functions on X. We
call a toric variety X semi-projective if X has at least one torus-fixed point and
the morphism πX is projective.

Theorem 2.6 The following three classes of toric varieties coincide:

1. semi-projective toric orbifolds,

2. the GIT-quotients X(A, θ) constructed in (5) where θ ∈ NA is a generic
integral degree,

3. toric varieties X(Σ) where Σ is a regular triangulation of a set B which
spans the lattice N .

Proof: The equivalence of the classes 2 and 3 follows from Theorem 2.4.
Let X(Σ) be a toric variety in class 3. Since B spans the lattice, the fan Σ
has a full-dimensional cone, and hence X(Σ) has a torus-fixed point. Since
Σ is simplicial, X(Σ) is an orbifold. The morphism πX can be described as
follows. The ring of global sections H0(X(Σ),OX(Σ)) is the semigroup algebra
of the semigroup in M consisting of all linear functionals on N which are non-
negative on the support |Σ| of Σ. Its spectrum is the affine toric variety whose
cone is |Σ|. The triangulation Σ supports an ample T-Cartier divisor Ψ. The
morphism πX is projective since it is induced by Ψ. Hence X(Σ) is in class 1.
Finally, let X be any semi-projective toric orbifold. It is represented by a fan
Σ in a lattice N . The fan Σ is simplicial since X is an orbifold, and |Σ| spans
NR since X has at least one fixed point. Since the morphism πX is projective,
the fan Σ is a regular triangulation of a subset B′ of |Σ| which includes the rays
of Σ. The set B′ need not span the lattice N . We choose any superset B of B′
which is contained in pos(B′) = |Σ| and which spans the lattice N . Then Σ
can also be regarded as a regular triangulation of B, and we conclude that X
is in class 3. ¤
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Remark. 1. The passage from B′ to B in the last step means that any GIT
quotient of Cn′ modulo any abelian subgroup of Tn′C can be rewritten as a
GIT quotient of some bigger affine space Cn modulo a subtorus of TnC. This
construction applies in particular when the given abelian group is finite, in
which case the initial subset B′ of N is linearly independent.
2. Our proof can be extended to show the following: if X is any toric variety
where the morphism πX is projective then X is the product of a semi-projective
toric variety and a torus.
3. The affinization map (6) for X(A, θ) is the canonical map to X(A, 0).

A triangulation Σ of a subset B of N ' Zn−d is called unimodular if every
maximal cone of Σ is spanned by a basis of N . This property holds if and only
if X(Σ) is a toric manifold (= smooth toric variety). We say that a vector
θ in NA is a smooth degree if C−1 · θ ≥ 0 implies det(C) = ±1 for every
non-singular d× d-submatrix C of A. Equivalently, the edges at any vertex of
the polyhedron Pθ generate kerZA ∼= Zn−d. From Theorem 2.6 we conclude:

Corollary 2.7 The following three classes of smooth toric varieties coincide:

1. semi-projective toric manifolds,

2. the GIT-quotients X(A, θ) constructed in (5) where θ ∈ NA is a generic
smooth degree,

3. toric varieties X(Σ) where Σ is a regular unimodular triangulation of a
spanning set B ⊂ N .

Definition 2.8 The matrix A is called unimodular if the following equivalent
conditions hold:

• all non-zero d× d-minors of A have the same absolute value,

• all (n−d)× (n−d)-minors of the matrix B in (1) are −1, 0 or +1,

• every triangulation of B is unimodular,

• every vector θ in NA is an integral degree,

• every vector θ in NA is a smooth degree.

Corollary 2.9 For A unimodular, every GIT quotient X(A, θ) is a semi-
projective toric manifold, and the distinct smooth quotients X(A, θ) are in bi-
jection with the open chambers in Γ(A).

Every affine toric variety has a natural moment map onto a polyhedral cone,
and every projective toric variety has a moment map onto a polytope. These are
described in Section 4.2 of [8]. It is straightforward to extend this description
to semi-projective toric varieties. Suppose that the S0-algebra S(θ) in Lemma
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2.1 is generated by a set of m + 1 monomials in Sθ, possibly after replacing
θ by a multiple in the non-unimodular case. Let PmC be the projective space
whose coordinates are these monomials. Then, by definition of “Proj”, the
toric variety X(A, θ) is embedded as a closed subscheme in the product PmC ×
Spec(S0). We have an action of the (n − d)-torus TnC/TdC on PmC , since Sθ is
an eigenspace of TdC. This gives rise to a moment map µ1 : PmC → Rn−d,
whose image is a convex polytope. Likewise, we have the affine moment map
µ2 : Spec(S0)→ Rn−d whose image is the cone polar to pos(B). This defines
the moment map

µ : X(A, θ) ⊂ PmC × Spec(S0) → Rn−d, (u, v) 7→ µ1(u) + µ2(v). (7)

The image of X(A, θ) under the moment map µ is the polyhedron Pθ ' Qψ,
since the convex hull of its vertices equals the image of µ1 and the cone P0 ' Q0

equals the image of µ2.
Given an arbitrary fan Σ in N , Section 2.3 in [8] describes how a one-parameter
subgroup λv, given by v ∈ N , acts on the toric variety X(Σ). Consider any
point x in X(Σ) and let γ ∈ Σ be the unique cone such that x lies in the orbit
Oγ . The orbit Oγ is fixed pointwise by the one-parameter subgroup λv if and
only if v lies in the R-linear span Rγ of γ. Thus the irreducible components
Fi of the fixed point locus of the λv-action on X(Σ) are the orbit closures
Oσi where σi runs over all cones in Σ which are minimal with respect to the
property v ∈ Rσi.
The closure of Oγ in X(Σ) is the toric variety X(Star(γ)) given by the quotient
fan Star(γ) in N(γ) = N/(N ∩Rγ); see [8, page 52]. From this we can derive
the following lemma.

Lemma 2.10 For v ∈ N and x ∈ Oγ the limit limz→0 λv(z)x exists and lies
in Fi = Oσi if and only if γ ⊆ σi is a face and the image of v in NR/Rγ is in
the relative interior of σi/Rγ.

The set of all faces γ of σi with this property is closed under taking intersections
and hence this set has a unique minimal element. We denote this minimal
element by τi. Thus if we denote

Uvi =
{
x ∈ X(Σ) : lim

z→0
λv(z)x exists and lies in Fi

}
,

or just Ui for short, then this set decomposes as a union of orbits as follows:

Ui = ∪τi⊆γ⊆σiOγ . (8)

In what follows we further suppose v ∈ |Σ|. Then Lemma 2.10 implies X(Σ) =
∪iUi, which is the Bialynicki-Birula decomposition [2] of the toric variety with
respect to the one-parameter subgroup λv.
We now apply this to our semi-projective toric variety X(A, θ) with fan Σ = Σθ.
The moment map µv for the circle action induced by λv is given by the inner
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product µv(x) = 〈v, µ(x)〉 with µ as in (7). We relabel the fixed components
Fi according to the values of this moment map, so that

µv(Fi) < µv(Fj) implies i < j. (9)

Given this labeling, the distinguished faces τi ⊆ σi have the following important
property:

τi ⊆ σj implies i ≤ j. (10)

This generalizes the property (∗) in [8, Chapter 5.2], and it is equivalent to

Uj is closed in U≤j = ∪i≤jUi. (11)

This means that the Bialynicki-Birula decomposition of X(A, θ) is filtrable in
the sense of [2]. The following is well-known in the projective case.

Proposition 2.11 The integral cohomology of a smooth semi-projective toric
variety X(A, θ) equals

H∗(X(A, θ);Z) ∼= Z[x1, x2, . . . , xn]/(Circ(A) + Iθ),

where Iθ is the Stanley-Reisner ideal of the simplicial fan Σθ, i.e. Iθ is
generated by square-free monomials xi1xi2 · · ·xik corresponding to non-faces
{bi1 , bi2 , . . ., bik} of Σθ, and Circ(A) is the circuit ideal

Circ(A) := 〈
n∑

i=1

λixi | λ ∈ Zn, A · λ = 0 〉.

Proof: Let D1, D2, . . . , Dn denote the divisors corresponding to the rays
b1, b2, . . . , bn in Σθ. The cohomology class of any torus orbit closure Oσ can
be expressed in terms of the Di’s, namely if the rays in σ are bi1 , bi2 , . . . , bik ,
then [Oσ] = [Di1 ][Di2 ] · · · [Dik ]. Following the reasoning in [8, Section 5.2], we
first prove that certain torus orbit closures linearly span H∗(X(A, θ);Z) and
hence the cohomology classes [D1], [D2], . . . , [Dn] generate H∗(X(A, θ);Z) as a
Z-algebra.
We choose v ∈ |Σ| to be generic, so that each σi is (n − d)-dimensional and
each Fi is just a point. Then (8) shows that Ui is isomorphic with the affine
space Cn−ki , where ki = dim(τi).
We set U≤j = ∪i≤jUi and U<j = ∪i<jUi. Note that Uj is closed in U≤j .
Thus writing down the cohomology long exact sequence of the pair (U≤j , U<j),
we can show by induction on j that the cohomology classes of the closures
of the cells Ui generate H∗(X(A, θ);Z) additively. Because the closure of a
cell Ui is the closure of a torus orbit, it follows that the cohomology classes
[D1], [D2], . . . , [Dn] generate H∗(X(A, θ);Z). Thus sending xi 7→ [Di] defines
a surjective ring map Z[x1, . . . , xn] → H∗(X(A, θ);Z), whose kernel is seen
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to contain Circ(A) + Iθ. That this is precisely the kernel follows from the
“algebraic moving lemma” of [8, page 107]. ¤
A similar proof works with Q-coefficients when X(A, θ) is not smooth but just
an orbifold.

Corollary 2.12 The rational cohomology ring of a semi-projective toric orb-
ifold X(A, θ) equals

H∗(X(A, θ);Q) ∼= Q[u1, u2, . . . , un]/(Circ(A) + Iθ).

In light of Corollary 2.12, the Betti numbers of X(A, θ) satisfy b2i = hi(Σθ),
where hi(Σθ) are the h-numbers of the Stanley-Reisner ideal Iθ, cf. [18, Section
III.3]. This observation leads to the following result.

Corollary 2.13 If fi(P
bd
θ ) denotes the number of i-dimensional bounded

faces of Pθ then the Betti numbers of the semi-projective toric orbifold X(A, θ)
are given by the following formula:

b2k = dimQH
2k(X(A, θ);Q) =

n−d∑

i=k

(−1)i−k
(
i
k

)
fi(P

bd
θ ). (12)

Proof: Lemma 2.3 of [19] implies that

n−d∑

i=0

hi(Σθ) · xi =
∑

σ∈Σθ\∂Σθ

(x− 1)n−d−dim(σ), (13)

where ∂Σθ denotes the boundary of Σθ. Hence the right hand sum is over all
interior cones σ of the fan Σθ. These cones are in order-reversing bijection with
the bounded faces of Pθ. Hence (13) is the sum of (x− 1)dim(F ) where F runs
over all bounded faces of Pθ. This proves (12). ¤

3 The core of a toric variety

The proof of Corollary 2.13 shows the importance of interior cones of Σθ. They
are the ones for which the closure of the corresponding torus orbit in X(A, θ)
is compact. This suggests the following

Definition 3.1 The core of a semi-projective toric variety X(A, θ) is
C(A, θ) = ∪σ∈Σθ\∂ΣθOσ. Thus the core C(A, θ) is the union of all compact
torus orbit closures in X(A, θ).

Theorem 3.2 The core of a semi-projective toric orbifold X(A, θ) is the in-
verse image of the origin under the canonical projective morphism X(A, θ) →
X(A, 0) as in (6). It also equals the inverse image of the bounded faces of the
polyhedron Pθ under the moment map (7) from X(A, θ) onto Pθ. In particular,
the core of X(A, θ) is a union of projective toric orbifolds.
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Proof: On the level of fans, the toric morphism X(A, θ) → X(A, 0) corre-
sponds to forgetting the triangulation of the cone |Σ| = pos(B). It follows from
the description of toric morphisms in Section 1.4 of [8] that the inverse image
of the origin is the union of the orbit closures corresponding to interior faces of
Σ. This was our first assertion. Each face of a simple polyhedron is a simple
polyhedron, and each bounded face is a simple polytope. If σ is the interior
cone of Σ dual to a bounded face of Pθ then the corresponding orbit closure is
the projective toric orbifold X(Star(σ)). The core C(A, θ) is the union of these
orbifolds. ¤

We fix a generic vector v ∈ int|Σ|. Then the Fi above are points and lie
in C(A, θ). In what follows we shall study the action of the one-parameter
subgroup λv on the core C(A, θ). We define

Di = U−vi =
{
x ∈ X(A, θ) : lim

z→∞
λv(z)x exists and equals Fi

}
.

Lemma 2.10 implies that this gives a decomposition of the core: C(A, θ) =
∪iDi. The closure Di is a projective toric orbifold, and it is the preimage of a
bounded face of Pθ via the moment map (7). If we now introduce an ordering
as in (9) then the counterpart of (11) is the following:

D≤j = ∪i≤jDi is compact. (14)

This property of the decomposition C(A, θ) = ∪iDi translates into a non-
trivial statement about the convex polyhedron Pθ. Let P bdθ denote the bounded
complex, that is, the polyhedral complex consisting of all bounded faces of Pθ.
Let Pj denote the bounded face of Pθ corresponding to Dj , and let pj denote
the vertex of Pθ corresponding to Fj . Then P≤j = ∪i≤jPi is a subcomplex
of the bounded complex P bdθ , and P≤j\P<j consists precisely of those faces of
Pj which contain pj . This property is called star-collapsibility. It implies that
P<j is a deformation retract of P≤j and in turn that P bdθ is contractible. The
contractibility also follows from [4, Exercise 4.27 (a)]. In summary we have
proven the following result.

Theorem 3.3 The bounded complex P bdθ of Pθ is star-collapsible; in particular,
it is contractible.

This theorem implies that the core of any semi-projective toric variety is con-
nected, since C(A, θ) is the preimage of the bounded complex P bdθ under the
continuous moment map. Moreover, since the cohomology of P bdθ vanishes, the
bounded complex does not contribute to the cohomology of C(A, θ). This fact
is expressed in the following proposition, which will be crucial in Section 7.

Proposition 3.4 Let C(A, θ) be the core of a semi-projective toric orbifold
and consider a class α in H∗(C(A, θ);Q). If α vanishes on every irreducible
component of C(A, θ) then α = 0.

Documenta Mathematica 7 (2002) 495–534



Toric Hyperkähler Varieties 507

Proof: Let v ∈ int|Σ|, Fi and Di as above. We prove by induction on j that

if α ∈ H∗(D≤j ;Q) and α |Di = 0 for i ≤ j, then α = 0. (15)

This implies the proposition, because if α vanishes on every irreducible com-
ponent of the core then it vanishes on every irreducible projective subvariety
Di of the core. The statement (15) then implies by induction that α vanishes
on the core.
To prove (15) consider the Mayer-Vietoris sequence of the covering D≤j =
D<j ∪Dj .

. . .→ Hk(D≤j ;Q)
α→ Hk(D<j ;Q)⊕Hk(Dj ;Q)

β→ Hk(D<j ∩Dj ;Q)→ . . .

We show that the map α is injective, which will prove our claim. For this we
show that β is surjective. This follows from the surjectivity of Hk(Dj ;Q) →
Hk(Dj\Dj ;Q), because clearly D<j ∩Dj = Dj\Dj .
To prove this we do Morse theory on the projective toric orbifold Dj . First it
follows from Morse theory that H∗(Dj ;Q)→ H∗(Dj\Fj ;Q) surjects. Moreover
we have that Dj\Dj is the core of the quasi-projective variety Dj\Fj . This
means that Dj\Dj is the set of points x in Dj such that limz→∞ λv(z)x is not
in Fj . Then the proof of Theorem 3.5 shows that H∗(Dj\Fj ;Q) is isomorphic
with H∗(Dj\Dj ;Q). This proves (15) and in turn our Proposition 3.4. ¤
We finish this section with an explicit description of the cohomology ring of
C(A, θ), namely, we identify it with the cohomology of the ambient semi-
projective toric orbifold X(A, θ):

Theorem 3.5 The embedding of the core C(A, θ) in X(A, θ) induces an iso-
morphism on cohomology with integer coefficients.

Proof: Let v ∈ int|Σ|, Fi, Ui and Di as above. We clearly have an inclu-
sion D≤j ⊂ U≤j . We show by induction on j that this inclusion induces an
isomorphism on cohomology. Consider the following commutative diagram:

. . .→ Hk(U≤j , U<j ;Z) → Hk(U≤j ;Z) → Hk(U<j ;Z) → . . .
↓ ↓ ↓

. . .→ Hk(D≤j , D<j ;Z) → Hk(D≤j ;Z) → Hk(D<j ;Z) → . . .
.

The rows are the long exact sequence of the pairs (U≤j , U<j) and (D≤j , D<j)
respectively. The vertical arrows are induced by inclusion. The last vertical
arrow is an isomorphism by induction.
By excision Hk(U≤j , U<j ;Z) ∼= Hk(T (Nj), t0;Z), where Nj is the normal (orbi-
)bundle to Uj and T (Nj) is the Thom space Nj ∪ t0, where t0 is the point
at infinity. Similarly Hk(D≤j , D<j ;Z) ∼= Hk(T (Dj), t0;Z), where T (Dj) =
D≤j/D<j is the one point compactification of Dj , which is homeomorphic
to the Thom space of Nj |Fj , the negative bundle at Fj . Because Fj is a
deformation retract of Uj and because the normal bundle Nj to Uj in U≤j
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restricts to the normal bundle of Fj in Dj , we find that T (Dj) is a deformation
retract of T (Nj). Consequently the first vertical arrow is also an isomorphism.
The Five Lemma now delivers our assertion. ¤

Remark. One can prove more, namely, that C(A, θ) is a deformation retract
of X(A, θ). This follows from Theorem 3.5 and the analogous statement about
the fundamental group, which vanishes for both spaces. Alternatively, one can
use Bott-Morse theory in the spirit of the proof of [16, Theorem 3.2] to get the
homotopy equivalence.

4 Lawrence toric varieties

In this section we examine an important class of toric varieties which are semi-
projective but not projective. We fix an integer d×n-matrix A as in (1), and we
write A± = [A,−A] for the d× 2n-matrix obtained by appending the negative
of A to A. The corresponding vector configuration A± = A∪−A spans Zd as
a semigroup; in symbols, NA± = ZA = Zd. A vector θ is generic with respect
to A± if it does not lie on any hyperplane spanned by a subset of A.

Definition 4.1 We call X(A±, θ) a Lawrence toric variety, for any generic
vector θ ∈ Zd.

Our choice of name comes from the Lawrence construction in polytope theory;
see e.g. Chapter 6 in [22]. The Gale dual of the centrally symmetric configu-
ration A± is denoted Λ(B) and is called the Lawrence lifting of B. It consists
of 2n vectors which span Z2n−d. The cone pos(Λ(B)) is the cone over the
(2n− d− 1)-dimensional Lawrence polytope with Gale transform A±.
Consider the even-dimensional affine space C2n with coordinates
z1, . . . , zn, w1, . . . , wn. We call a torus action on C2n symplectic if the
products z1w1, . . . , znwn are fixed under this action.

Proposition 4.2 The following three classes of toric varieties coincide:

1. Lawrence toric varieties,

2. toric orbifolds which are GIT-quotients of a symplectic torus action on
C2n for some n ∈ N,

3. toric varieties X(Σ) where Σ is the cone over a regular triangulation of
a Lawrence polytope.

Proof: This follows from Theorem 2.6 using the observation that a torus
action on C2n is symplectic if and only if it arises from a matrix of the form
A±. This means the action looks like

zi 7→ tai · zi , wi 7→ t−ai · wi (i = 1, 2, . . . , n)
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Note that a polytope is Lawrence if and only if its Gale transform is centrally
symmetric. ¤
The matrix A± is unimodular if and only if the smaller matrix A is unimodular.
Therefore unimodularity of A implies the smoothness of the Lawrence toric
variety, by Corollary 2.9. An interesting feature of Lawrence toric varieties is
that the converse to this statement also holds:

Proposition 4.3 The Lawrence toric variety X(A±, θ) is smooth if and only
if A is unimodular.

Proof: The chamber complex Γ(A±) is the arrangement of hyperplanes
spanned by subsets of A. The vector θ is assumed to lie in an open cell of
that arrangement. For any column basis C = {ai1 , . . . , aid} of the d×n-matrix
A there exists a unique linear combination

λ1ai1 + λ2ai2 + · · · + λdaid = θ.

Here all the coefficients λj are non-zero rational numbers. We consider the
polynomial ring

Z[x, y] = Z[x1, . . . , xn, y1, . . . , yn].

The 2n variables are used to index the elements of A± and the elements of
Λ(B). We set

σ(C, θ) = {xij : λj > 0 } ∪ { yij : λj < 0 }.

Its complement σ(C, θ) =
{
x1, . . . , xn, y1, . . . , yn

}
\σ(C, θ) corresponds to a

subset of Λ(B) which forms a basis of R2n−d. The triangulation Σθ of the
Lawrence polytope defined by θ is identified with its set of maximal faces. This
set equals

Σθ =
{
σ(C, θ) : C is any column basis of A

}
. (16)

Hence the Lawrence toric variety X(A±, θ) = X(Σθ) is smooth if and only if
every basis in Λ(B) spans the lattice Z2n−d if and only if every column basis
C of A spans Zd. The latter condition is equivalent to saying that A is a
unimodular matrix. ¤

Corollary 4.4 The Stanley-Reisner ideal of the fan Σθ equals

Iθ =
⋂

C

〈σ(C, θ)〉 ⊂ Z[x, y], (17)

i.e. Iθ is the intersection of the monomial prime ideals generated by the sets
σ(C, θ) where C runs over all column bases of A. The irrelevant ideal of the
Lawrence toric variety X(Σθ) equals

Bθ = 〈
∏

σ(C, θ) : C is any column basis of A 〉 ⊂ Z[x, y]. (18)
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We now compute the cohomology of a Lawrence toric variety. For simplicity
of exposition we assume A is unimodular so that X(A±, θ) is smooth. The
orbifold case is analogous. First note

Circ(A±) = 〈x1 + y1, x2 + y2, . . . , xn + xn〉 + Circ(A),

where Circ(A) is generated by all linear forms
∑n
i=1 λixi such that λ =

(λ1, . . . , λn) lies in ker(A) = im(B). From Proposition 2.11, we have

H∗
(
X(A±, θ) = Z[x, y] /

(
〈x1 + y1, x2 + y2, . . . , xn + yn〉 + Circ(A) + Iθ

)
.

Let φ denote the Z-algebra epimorphism which collapses the variables pairwise:

φ : Z[x1, . . . , xn, y1, . . . , yn] → Z[x1, . . . , xn], xi 7→ xi, yi 7→ −xi.

Then we can rewrite the presentation of the cohomology ring as follows:

H∗
(
X(A±, θ);Z

)
= Z[x1, . . . , xn] /

(
Circ(A) + φ(Iθ)

)
.

Clearly, the image of the ideal (17) under φ is the intersection of the ideals

φ
(
〈σ(C, θ)〉

)
= 〈xi : i ∈ C 〉

where C runs over the column bases of A. Note that this ideal is independent
of the choice of θ. It depends only on A. This ideal is called the matroid ideal
of B and it is abbreviated by

M∗(A) =
⋂{
〈xi1 , . . . , xid〉 : {ai1 , . . . , aid} ⊆ A is linearly independent

}

= 〈xi1 · · ·xik : {bi1 , . . . , bik} ⊆ B is linearly dependent 〉
= M(B).

We summarize what we have proven concerning the cohomology of a Lawrence
toric variety.

Theorem 4.5 The integral cohomology ring of a smooth Lawrence toric variety
X(A±, θ) is independent of the choice of the generic vector θ in Zd. It equals

H∗
(
X(A±, θ);Z

)
= Z[x1, . . . , xn]/

(
Circ(A) + M∗(A)

)
. (19)

The same holds for Lawrence toric orbifolds with Z replaced by Q.

Remark. The independence of the cohomology ring on θ is an unusual phe-
nomenon in the GIT-construction. Usually, the topology of the quotient
changes when one crosses a wall. Theorem 4.5 says that this is not the case
for symplectic torus actions. An explanation of this fact is offered through our
Theorem 1.1, as there are no walls in the hyperkähler quotient construction.
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The ring Q[x1, . . . , xn]/M∗(A) is the Stanley-Reisner ring of the matroid com-
plex (of linearly independent subsets) of the (n− d)-dimensional configuration
B. This ring is Cohen-Macaulay, and Circ(A) provides a linear system of
parameters. We write h(B) = (h0, h1, . . . , hn−d) for its h-vector. This is a
well-studied quantity in combinatorics; see e.g. [5] and [18, Section III.3].

Corollary 4.6 The Betti numbers of the Lawrence toric variety X(A±, θ)
are independent of θ, and they coincide with the entries in the h-vector of the
rank n− d matroid given by B:

dimQH
2i(X(A±, θ);Q) = hi(B). for i = 0, 1, . . . , n− d.

Our second result in this section concerns the core of a Lawrence toric variety
of dimension 2n− d. We fix a generic vector θ in Zd. The fan Σθ is the normal
fan of the unbounded polyhedron

Pθ =
{

(u, v) ∈ Rn ⊕ Rn : Au−Av = θ, u, v ≥ 0
}
.

As in the proof of Proposition 2.3, we chose any vector ψ ∈ Zn such that Aψ =
−θ, and we consider the following full-dimensional unbounded polyhedron in
R2n−d:

Qψ =
{

(w, t) ∈ Rn−d ⊕ Rn : t ≥ 0 , Bw + t ≥ ψ
}
.

The map (w, t) 7→ (Bw+t−ψ, t) is an affine-linear isomorphism from Qψ onto
Pθ. We define H(B,ψ) to be the arrangement of the following n hyperplanes
in Rn−d:

{w ∈ Rn−d : bi · w = ψi } (i = 1, 2, . . . , n).

The arrangement H(B,ψ) is regarded as a polyhedral subdivision of Rn−d into
relatively open polyhedra of various dimensions. The collection of all such
polyhedra which are bounded form a subcomplex, called the bounded complex
of H(B,ψ) and denoted by Hbd(B,ψ).

Theorem 4.7 The bounded complex Hbd(B,ψ) of the hyperplane arrangement
H(B,ψ) in Rn−d is isomorphic to the complex of bounded faces of the (2n−d)-
dimensional polyhedron Qψ ' Pθ.

Proof: We define an injective map from Rn−d into the polyhedron Qψ as
follows

w 7→
(
w, t
)
, where ti = max{0, ψi − bi · w}. (20)

This map is linear on each cell of the hyperplane arrangement H(B,ψ), and the
image of each cell is a face of Qψ. In particular, every bounded cell of H(B,ψ)
is mapped to a bounded face of Qψ and each unbounded cell of H(B,ψ) is
mapped to an unbounded face of Qψ. It remains to be shown that every
bounded face of Qψ lies in the image of the map (20).
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Now, the image of (20) is the following subcomplex in the boundary of our
polyhedron:

{ (w, t) ∈ Qψ : ti · (bi · w + ti − ψi) = 0 for i = 1, 2, . . . , n
}

' { (u, v) ∈ Pθ : ui · vi = 0 for i = 1, 2, . . . , n
}

Consider any face F of Pθ which is not in this subcomplex, and let (u, v) be
a point in the relative interior of F . There exists an index i with ui > 0 and
vi > 0. Let ei denote the i-th unit vector in Rn. For every positive real λ,
the vector (u + λei, v + λei) lies in Pθ and has the support as (u, v). Hence
(u+ λei, v + λei) lies in F for all λ ≥ 0. This shows that F is unbounded. ¤
Theorem 4.7 and Corollary 2.13 imply the following enumerative result:

Corollary 4.8 The Betti numbers of the Lawrence toric variety X(A±, θ)
satisfy

dimQH
2i(X(A±, θ);Q) =

n−d∑

i=k

(−1)i−k
(
i
k

)
fi(Hbd(B,ψ)),

where fi(Hbd(B,ψ)) denotes the number of i-dimensional bounded regions in
H(B,ψ).

There are two natural geometric structures on any Lawrence toric variety. First
the canonical bundle of X(A±, θ) is trivial, because the vectors in A± add
to 0. This means that X(A±, θ) is a Calabi-Yau variety. Moreover, since
the symplectic TdC-action preserves the natural Poisson structure on C2n ∼=
Cn⊕(Cn)∗, the GIT quotient X(A±, θ) inherits a natural holomorphic Poisson
structure. The holomorphic symplectic leaves of this Poisson structure are what
we call toric hyperkähler manifolds. The special leaf which contains the core
of X(A±, θ) will be called the toric hyperkähler variety. We present these
definitions in complete detail in the following two sections.

5 Hyperkähler quotients

Our aim is to describe an algebraic approach to the toric hyperkähler manifolds
of Bielawski and Dancer [3]. In this section we sketch the original differential
geometric construction in [3]. This construction is the hyperkähler analogue
to the construction of toric varieties using Kähler quotients. We first briefly
review the latter. Fix the standard Euclidean bilinear form on Cn,

g(z, w) =

n∑

i=1

(re(zi)re(wi) + im(zi)im(wi)) .

The corresponding Kähler form is

ω(z, w) = g(iz, w) =

n∑

i=1

(re(zi)im(wi)− im(zi)re(wi)) .
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Let A be as in (1) and consider the real torus TdR which is the maximal compact
subgroup of TdC. The group TdR acts on Cn preserving the Kähler structure.
This action has the moment map

µR : Cn → (tdR)∗ ∼= Rd , (z1, . . . , zn) 7→ 1

2

n∑

i=1

|zi|2ai. (21)

Fix ξR ∈ Rd. The Kähler quotient X(A, ξR) = Cn//ξRTdR = µ−1
R (ξR)/TdR inher-

its a Kähler structure from Cn at its smooth points. If ξR = θ lies in the lattice
Zd then there is a biholomorphism between the smooth loci in the GIT quotient
X(A, θ) and the Kähler quotient X(A, ξR). Hence if A is unimodular and θ
generic then the complex manifolds X(A, θ) and X(A, ξR) are biholomorphic.
Now we turn to toric hyperkähler manifolds. Let H be the skew field of quater-
nions, the 4-dimensional real vector space with basis 1, i, j, k and associative
algebra structure given by i2 = j2 = k2 = ijk = −1. Left multiplication by
i (resp. j and k) defines complex structures I : H → H, with I2 = −IdH,
(resp. J and K) on H. We now put the flat metric g on H arising from the
standard Euclidean scalar product on H ∼= R4 with 1, i, j, k as an orthonormal
basis. This is called a hyperkähler metric because it is a Kähler metric with
respect to all three complex structures I, J and K. It means that the differ-
ential 2-forms, the so-called Kähler forms, given by ωI(X,Y ) = g(IX, Y ) for
tangent vectors X and Y , and the analogously defined ωJ and ωK are closed.
For the reader’s convenience we write down these Kähler forms in coordinates
(x, y, u, v):

ωI = dx ∧ dy + du ∧ dv,
ωJ = dx ∧ du+ dv ∧ dy,
ωK = dx ∧ dv + dy ∧ du.

A special orthogonal transformation, with respect to this metric, is said to pre-
serve the hyperkähler structure if it commutes with all three complex structures
I, J and K or equivalently if it preserves the Kähler forms ωI , ωJ and ωK . The
group of such transformations, the unitary symplectic group Sp(1), is gener-
ated by multiplication by unit quaternions from the right. A maximal abelian
subgroup TR ∼= U(1) ⊂ Sp(1) is thus specified by a choice of a unit quaternion.
We break the symmetry between I, J and K and choose the maximal torus
generated by multiplication from the right by the unit quaternion i. Thus U(1)
acts on H by sending ξ to ξ exp(φi), for exp(φi) ∈ U(1) ⊂ R⊕Ri ∼= C. It follows
from (21) that the moment map µI : H → R with respect to the symplectic
form ωI is given by

µI(x+ yi+uj+ vk) = µI(x+ yi+ (−ui+ v)k) =
1

2
(x2 + y2−u2− v2). (22)

Similarly we obtain formulas for µJ and µK by writing down the eigenspace
decomposition in the respective complex structures:

µJ(x+ yi+ uj + vk) =
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= µJ

[(
y + u√

2
+
−x− v√

2
j

)
i+ j√

2
+

(
y − u√

2
j +
−x+ v√

2

)
k − 1√

2

]
= yu+ xv,

µK(x+ yi+ uj + vk) =

= µK

[(
y + v√

2
+
−x+ u√

2
k

)
i+ k√

2
+

(
y − v√

2
+
x+ u√

2
k

)
i− k√

2

]
= yv − xu.

We now consider the map µC = µJ + iµK from H to C. It can be thought of
as the holomorphic moment map for the I-holomorphic action of TC ⊃ TR on
H with respect to the I-holomorphic symplectic form ωC = ωJ + iωK . If we
identify H with C ⊕ C by introducing two complex coordinates, z = x + iy ∈
R ⊕ Ri ∼= C and w = v − ui ∈ R ⊕ Ri ∼= C, then the I-holomorphic moment
map µC : H→ C is given algebraically by multiplying complex numbers:

µC(z, w) = µJ (z, w) + iµK(z, w) = yu+ xv + i(yv − xu) = zw. (23)

The discussion in the previous paragraph generalizes in an obvious man-
ner to Hn for n > 1. Indeed, the n-dimensional quaternionic space Hn
has three complex structures I,J and K, given by left multiplication with
i, j, k ∈ H. Putting the flat metric gn = g⊕n on Hn yields a hyperkähler
metric, i.e. the differential 2-forms ωI(X,Y ) = gn(IX, Y ) and similarly ωJ
and ωK are Kähler (meaning closed) forms. The automorphism group of
this hyperkähler structure is the unitary symplectic group Sp(n). We fix the
maximal torus TnR = U(1)n ⊂ Sp(n) given by the following definition. For
λ = (exp(φ1i), exp(φ2i), . . . , exp(φni)) ∈ TnR and (ξ1, ξ2, . . . , ξn) ∈ Hn we set

λ(ξ1, ξ2, . . . , ξn) = (ξ1 exp(φ1i), ξ2 exp(φ2i), . . . , ξn exp(φni)). (24)

As in the n = 1 case above, this fixes an isomorphism Hn ∼= Cn ⊕ Cn where
two complex vectors z, w ∈ Cn ∼= Rn ⊕ iRn represent the quaternionic vector
z + wk ∈ Hn ∼= Rn ⊕ iRn ⊕ jRn ⊕ kRn. Expressing vectors in Hn in these
complex coordinates, the torus action (24) translates into

λ(z, w) = (λz, λ−1w) for λ ∈ TnR and (z, w) ∈ Hn. (25)

The toric hyperkähler manifolds in [3] are constructed by choosing a subtorus
TdR ⊂ TnR and taking the hyperkähler quotient [10] of Hn by TdR. We do this
by choosing integer matrices A and B as in (1) and (2). The subtorus TdR of
TnR acts on Hn by (25) preserving the hyperkähler structure. The hyperkähler
moment map of the action (25) of TdR on Hn is defined by

µ = (µI , µJ , µK) : Hn → (tdR)∗ ⊗ R3,

where µI , µJ and µK are the Kähler moment maps with respect to ωI , ωJ and
ωK respectively. Using the formulas (22) and (23), the components of µ are in
complex coordinates as follows:

µR(z, w) := µI(z, w) =
1

2

n∑

i=1

(|zi|2 − |wi|2) · ai ∈ (tdR)∗, (26)
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µC(z, w) := µJ(z, w) + iµK(z, w) =

n∑

i=1

ziwi · ai ∈ (tdR)∗ ⊗ C ∼= (tdC)∗. (27)

Here ai is the i-th column vector of the matrix A. We can also think of µC
as the moment map for the I-holomorphic action of TdC on Hn with respect to
ωC = ωJ + iωK . Now take

ξ = (ξ1, ξ2, ξ3) ∈ (tdR)∗ ⊗ R3

and introduce ξR = ξ1 ∈ (tdR)∗ and ξC = ξ2 + iξ3 ∈ (tdC)∗ so we can write
ξ = (ξR, ξC) ∈ (tdR)∗ ⊕ (tdC)∗. The hyperkähler quotient of Hn by the action (25)
of the torus TdR at level ξ is defined as

Y (A, ξ) := Hn////ξTdR := µ−1(ξ)/TdR =
(
µ−1
R (ξR) ∩ µ−1

C (ξC)
)
/TdR. (28)

By a theorem of [10], this quotient has a canonical hyperkähler structure on
its smooth locus.
Bielawski and Dancer show in [3] that if ξ ∈ (tdR)∗ ⊗R3 is generic then Y (A, ξ)
is an orbifold, and it is smooth if and only if A is unimodular. Since ξ is
generic outside a set of codimension three in (tdR)∗ ⊗ R3, they can show that
the topology and therefore the cohomology of the toric hyperkähler manifold is
independent on ξ. In what follows we consider vectors ξ for which ξC = 0 in Cd
and ξR = θ ∈ Zd ⊂ Rd ∼= (tdR)∗. The underlying complex manifold in complex
structure I of the hyperkähler manifold Y (A, (θ, 0C)) has a purely algebraic
description as explained in the next section.

6 Algebraic construction of toric hyperkähler varieties

The Zd-graded polynomial ring C[z, w] = C[z1, . . . , zn, w1, . . . , wn], with the
grading given by A± = [A,−A], is the homogeneous coordinate ring of the
Lawrence toric variety X(A±, θ). By a result of Cox [6], closed subschemes
of X(A±, θ) correspond to homogeneous ideals in C[z, w] which are saturated
with respect to the irrelevant ideal Bθ in (18). Let us now consider the ideal

Circ(B) := 〈
n∑

i=1

aijziwi | j = 1, . . . , d 〉 ⊂ C[z, w], (29)

whose generators are the components of the holomorphic moment map µC of
(27). The ideal Circ(B) is clearly homogeneous and it is a complete intersection.
We assume that none of the row vectors of the matrix B is zero. Under this
hypothesis, the ideal Circ(B) is a prime ideal.

Definition 6.1 The toric hyperkähler variety Y (A, θ) is the irreducible sub-
variety of the Lawrence toric variety X(A, θ) defined by the homogeneous ideal
Circ(B) in the coordinate ring C[z, w] of X(A, θ).
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Proposition 6.2 If θ is generic then the toric hyperkähler variety Y (A, θ) is
an orbifold. It is smooth if and only if the matrix A is unimodular.

Proof: It follows from (27) that a point in C2n has a finite stabilizer under
the group TdC if and only if the point is regular for µC of (27), i.e. if the
derivative of µC is surjective there. This implies that, for θ generic, the toric
hyperkähler variety Y (A, θ) is an orbifold because then the variety X(A±, θ)
is an orbifold. For the second statement note that if A is unimodular then
X(A±, θ) is smooth, consequently Y (A, θ) is also smooth. However, if A is not
unimodular then X(A±, θ) has orbifold singularities which lie in the core. Now
the core C(A±, θ) lies entirely in Y (A, θ), by Lemma 6.4 below, thus Y (A, θ)
inherits singular points from X(A±, θ). ¤
We can now prove that our toric hyperkähler varieties are biholomorphic to
the toric hyperkähler manifolds of the previous section.

Theorem 6.3 Let ξR = θ ∈ Zd ⊂ (tdR)∗ ∼= Rd for generic θ. Then the toric
hyperkähler manifold Y (A, (ξR, 0)) with complex structure I is biholomorphic
with the toric hyperkähler variety Y (A, θ).

Proof: Suppose A is unimodular. The general theory of Kähler quotients
(e.g. in [12]) implies that the Lawrence toric variety X(A±, θ) and the corre-
sponding Kähler quotient X(A±, ξR) = µ−1

R (ξR)/TdR are biholomorphic, where
µR is defined in (26) and ξR = θ ∈ Zd ⊂ Rd ∼= (tdR)∗. Now the point is that
µC : Hn → Cd is invariant under the action of TdR and therefore descends to
a map on X(A±, ξR) = µ−1

R (ξR)/TdR and similarly on X(A±, θ) making the
following diagram commutative:

µξC : X(A±, ξR) → Cd
∼= ∼=

µθC : X(A±, θ) → Cd
.

It follows that Y (A, (ξR, 0)) = (µξC)−1(0) and Y (A, θ) = (µθC)−1(0) are biholo-
morphic. The proof is similar when the spaces have orbifold singularities. ¤
Recall the affinization map πX : X(A±, θ) → X(A±, 0) from (6), and the
analogous map πY : Y (A, θ) → Y (A, 0). These fit together in the following
commutative diagram:

Y (A, θ)
πY→ Y (A, 0)

iθ ↓ ↓ i0
X(A±, θ)

πX→ X(A±, 0)
µθC ↓ ↓ µ0

C
Cd ∼= Cd

,

where iθ : Y (A, θ)→ X(A±, θ) denotes the natural embedding in Definition 6.1
by the preimage of µθC at 0 ∈ Cd. From this we deduce the following lemma:

Lemma 6.4 The cores of the Lawrence toric variety and of the toric hy-
perkähler variety coincide, that is, C(A±, θ) = π−1

X (0) = π−1
Y (0).
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Remark. It is shown in [3] that the core of the toric hyperkähler manifold
Y (A, θ) is the preimage of the bounded complex in the hyperplane arrangement
H(B, ψ) by the hyperkähler moment map. We know from Theorem 3.2 that the
core of the Lawrence toric variety equals the preimage of P bdθ under the Kähler
moment map. Thus Theorem 4.7 is a combinatorial analogue of Lemma 6.4.

We need one last ingredient in order to prove the theorem stated in the Intro-
duction.

Lemma 6.5 The embedding of the core C(A±, θ) in Y (A, θ) gives an isomor-
phism in cohomology.

Proof: Consider the TC-action on the Lawrence toric variety X(A±, θ) defined
by the vector v =

∑n
i=1 bi ∈ Zn−d. This action comes from multiplication by

non-zero complex numbers on the vector space C2n. The holomorphic moment
map µC of (27) is homogeneous with respect to multiplication by a non-zero
complex number, and consequently µθC is also homogeneous with respect to
the circle action λv. It follows that this TC-action leaves the toric hyperkähler
variety invariant. Moreover, since v is in the interior of pos(B), all the results
in Section 3 are valid for this TC-action on X(A±, θ). Now the proof of The-
orem 3.5 can be repeated verbatim to show that the cohomology of Y (A, θ)
agrees with the cohomology of the core. ¤
Proof of Theorem 1.1: 1.= 3. is a consequence of Lemma 6.4 and Lemma 6.5.
2.= 3. This is a consequence of Theorem 3.5.
1.= 4. is the content of Theorem 4.5. ¤

Remark. 1. In fact, we could claim more than the isomorphism of cohomology
rings in Theorem 1.1. The remark after Theorem 3.5 implies that the spaces
C(A±, θ) ⊂ Y (A, θ) ⊂ X(A±, θ) are deformation retracts in one another. A
similar result appears in [3, Theorem 6.5].
2. The result 2.=4. in the smooth case was proven by Konno in [14].
3. We deduce from Theorem 1.1, Corollary 4.6 and Corollary 4.8 the following
formulas for Betti numbers. The second formula is due to Bielawski and Dancer
[3, Theorem 6.7].

Corollary 6.6 The Betti numbers of the toric hyperkähler variety Y (A, θ)
agree with:

• the h-numbers of the matroid of B: b2k(Y (A, θ)) = hk(B).

• the following linear combination of the number of bounded regions of the
affine hyperplane arrangement H(B,ψ):

b2k(Y (A, θ)) =

n−d∑

i=k

(−1)i−k
(
i
k

)
fi(Hbd(B,ψ)). (30)
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This corollary shows the importance of the combinatorics of the bounded com-
plex Hbd(B,ψ) in the topology of Y (A, θ) and X(A±, θ). This intriguing con-
nection will be more apparent in the next section. Before we get there we
infer some important properties of the bounded complex from Corollary 9.1
and Theorem E of [21].

Proposition 6.7 The bounded complex Hbd(B,ψ) is pure-dimensional. If ψ
is generic and B is coloop-free then every maximal face of Hbd(B,ψ) is an
(n− d)-dimensional simple polytope.

A coloop of B is a vector bi which lies in every column basis of B. This is
equivalent to ai being zero. Note that if A has a zero column then we can
delete it to get A′, which means that Y (A, θ) = Y (A′, θ)×C2 and similarly for
the Lawrence toric variety. Therefore we will assume in the next section that
none of the columns of A is zero.

7 Cogenerators of the cohomology ring

There are three natural presentations of the cohomology ring of the toric hy-
perkähler variety Y (A, θ) associated with a d× n-matrix A and a generic vec-
tor θ ∈ Zd. In these presentations H∗(Y (A, θ);Q) is expressed as a quo-
tient of the polynomial ring Q[x, y] in 2n variables, as a quotient of the
polynomial ring Q[x] in n variables, or as a quotient of the polynomial ring
Q[ t ] ' Q[x]/Circ(A) in d variables, respectively. In this section we com-
pute systems of cogenerators for H∗(Y (A, θ);Q) relative to each of the three
presentations. As an application we show that the Hard Lefschetz Theorem
holds for toric hyperkähler varieties, and we discuss some implications for the
combinatorial problem of classifying the h-vectors of matroid complexes.
We begin by reviewing the definition of cogenerators of a homogeneous poly-
nomial ideal. Consider the commutative polynomial ring generated by a basis
of derivations on affine m-space:

Q[∂] = Q[∂1, ∂2, . . . , ∂m].

The polynomials in Q[∂] act as linear differential operators with constant co-
efficients on

Q[x] = Q[x1, x2, . . . , xm].

If Γ is any subset of Q[x] then its annihilator Ann(Γ) is the ideal in Q[∂]
consisting of all linear differential operators with constant coefficients which
annihilate all polynomials in Γ. If I is any zero-dimensional homogeneous ideal
in Q[∂] then there exists a finite set Γ of homogeneous polynomials in Q[x]
such that I = Ann(Γ). We say that Γ is a set of cogenerators of I. If Γ is a
singleton, say, Γ = {p}, then I = Ann(Γ) is a Gorenstein ideal. In this case,
the polynomial p = p(x) which cogenerates I is unique up to scaling. More
generally, if all polynomials in Γ are homogeneous of the same degree then

Documenta Mathematica 7 (2002) 495–534



Toric Hyperkähler Varieties 519

I = Ann(Γ) is a level ideal. In this case, the Q-vector space spanned by Γ is
unique, and it is desirable for Γ to be a nice basis for this space.
We replace the vector ψ = (ψ1, . . . , ψn) in Theorem 4.7 by an indeterminate
vector x = (x1, . . . , xn) which ranges over a small neighborhood of ψ in Rn.
For x in this neighborhood, the polyhedron Qx remains simple and combina-
torially isomorphic to Qψ, and the hyperplane arrangement H(B, x) remains
isomorphic to H(B,ψ). Let ∆1, . . . ,∆r denote the maximal bounded regions
of H(B, x). These are (n − d)-dimensional simple polytopes, by Proposition
6.7 and our assumption that B is coloop-free. They can be identified with the
maximal bounded faces of the (2n− d)-dimensional polyhedron Qx, by Theo-
rem 4.7. The volume of the polytope ∆i is a homogeneous polynomial in x of
degree n− d denoted

Vi(x) = Vi(x1, . . . , xn) = vol(∆i) (i = 1, 2, . . . , r)

Theorem 7.1 The volume polynomials V1, . . . , Vr form a basis of cogenerators
for the cohomology ring of the Lawrence toric variety X(A±, θ) and of the toric
hyperkähler variety Y (A, θ):

H∗(Y (A, θ);Q) = Q[∂1, ∂2, . . . , ∂n]/Ann
(
{V1, V2, . . . , Vr}

)
. (31)

Proof: Each simple polytope ∆i represents an (n− d)-dimensional projective
toric variety Xi. The core C(A±, θ) is glued from the toric varieties X1, . . . , Xr,
and it has the same cohomology as X(A±, θ) and Y (A, θ) as proved in Theo-
rem 1.1. Hence we get a natural ring epimorphism induced from the inclusion
of each toric variety Xi into the core C(A±, θ):

φi : H∗
(
C(A±, θ);Q

)
→ H∗(Xi;Q). (32)

In terms of coordinates, the map φi is described as follows:

φi : Q[∂1, , . . . , ∂n]/
(
M(B)+Circ(A)

)
→ Q[∂1, , . . . , ∂n]/

(
I∆i

+Circ(A)
)
, (33)

where I∆i
is the Stanley-Reisner ring of the simplicial normal fan of the poly-

tope ∆i. Each facet of ∆i has the form {w ∈ ∆i : bj · w = ψj } for some
j ∈ {1, 2, . . . , n}. The ideal I∆i

is generated by all monomials ∂j1∂j2 · · · ∂js
such that the intersection of the facets {w ∈ ∆i : bjν · w = ψjν }, for
ν = 1, 2, . . . , s, is the empty set. By the genericity hypothesis on ψ, this
will happen if {bj1 , bj2 , . . . , bjs} is linearly dependent, or, equivalently, if
∂j1∂j2 · · · ∂js lies in the matroid ideal M(B). We conclude that M(B) ⊆ I∆i

,
and the map φi in (33) is induced by this inclusion.
Proposition 3.4 implies that

ker(φ1) ∩ ker(φ2) ∩ . . . ∩ ker(φr) = {0}. (34)

Here is an alternative proof for this in the toric hyperkähler case. We first note
that the top-dimensional cohomology of an equidimensional union of projective
varieties equals the direct sum of the pieces:

H2n−2d
(
C(A±, θ);Q

)
' H2n−2d

(
X1;Q

)
⊕ · · · ⊕ H2n−2d

(
Xr;Q

)
, (35)
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and the restriction of the map φi to degree 2n − 2d is the i-th coordinate
projection in this direct sum. In particular, (34) holds in the top degree.
We now use a theorem of Stanley [18, Theorem III.3.4] which states that the
Stanley-Reisner ring of a matroid is level. Using condition (j) in [18, Proposition
III.3.2], this implies that the socle of our cohomology ring H∗

(
C(A±, θ);Q

)

consists precisely of the elements of degree 2n−2d. Suppose that (34) does not
hold, and pick a non-zero element p(∂) of maximal degree in the left hand side.
The cohomological degree of p(∂) is strictly less than 2n− 2d by (35). For any
generator ∂j ofH∗

(
C(A±, θ);Q

)
, the product ∂j ·p(∂) lies in the left hand side of

(34) because φi(∂j ·p(∂)) = φi(∂j) ·φ(p(∂)) = 0. By the maximality hypothesis
in the choice of p(∂), we conclude that ∂j · p(∂) = 0 in H∗

(
C(A±, θ);Q

)
for all

j = 1, 2, . . . , n. Hence p(∂) lies in the socle of H∗
(
C(A±, θ);Q

)
. By Stanley’s

Theorem, this means that p(∂) has cohomological degree 2n − 2d. This is a
contradiction and our claim follows.
The result (34) which we just proved translates into the following ideal-theoretic
statement:

M(B) + Circ(A) =

r⋂

i=1

(
I∆i

+ Circ(A)
)
. (36)

Since Xi is a projective orbifold, the ring H∗(Xi;Q) is a Gorenstein ring. A
result of Khovanskii and Pukhlikov [11] states that its cogenerator is the volume
polynomial, i.e.

I∆i
+ Circ(A) = Ann(Vi) for i = 1, 2, . . . , r.

We conclude that M(B) + Circ(A) = Ann
(
{V1, . . . , Vr}

)
, which proves the

identity (31). ¤

Remark. We note that the above proof of (34) is reversible, i.e. Proposition 3.4
actually implies the levelness result of Stanley [18, Theorem III.3.4] for matroids
representable over Q.

We next rewrite the result of Theorem 7.1 in terms of the other two presen-
tations of our cohomology ring. From the perspective of the Lawrence toric
variety X(A±, θ), it is most natural to work in a polynomial ring in 2n vari-
ables, one for each torus-invariant divisor of X(A±, θ).

Corollary 7.2 The common cohomology ring H∗(X(A±, θ);Q) of the
Lawrence toric variety and the toric hyperkähler variety has the presentation

Q[∂x1
, ∂x2

, . . . , ∂xn , ∂y1
, ∂y2

, . . . , ∂yn ]/Ann
(
V1(x− y), . . . , Vr(x− y)

)
.

Proof: The polynomials Vi(x − y) = Vi(x1 − y1, x2 − y2, . . . , xn − yn)
are annihilated precisely by the annihilators of Vi(x) and by the extra ideal
generators ∂x1

+ ∂y1
, . . . , ∂xn + ∂yn . ¤
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This corollary states that the cogenerators of the Lawrence toric variety are the
volume polynomials of the maximal bounded faces of the associated polyhedron
Qψ = Pθ. The same result holds for any semi-projective toric variety, even if
the maximal bounded faces of its polyhedron have different dimensions. This
can be proved using Proposition 3.4.
The economical presentation of our cohomology ring is as a quotient of a poly-
nomial ring in d variables ∂t1 , . . . , ∂td . The matrix A defines a surjective ho-
momorphism of polynomial rings

α : Q[∂x1
, . . . , ∂xn ] → Q[∂t1 , . . . , ∂td ] , ∂xj 7→

d∑

i=1

aij∂ti ,

and a dual injective homomorphism of polynomial rings

α∗ : Q[t1, . . . , td] → Q[x1, . . . , xn] , ti 7→
n∑

j=1

aijxj .

The kernel of α equals Circ(A) and therefore

H∗
(
Y (A, θ);Q

)
= Q[∂t1 , . . . , ∂td ]/α(M(B)). (37)

We obtain cogenerators for this presentation of our cohomology ring as follows.
Suppose that the indeterminate vector t = (t1, . . . , td) ranges over a small
neighborhood of θ = (θ1, . . . , θd) in Rd. For t in this neighborhood, the poly-
hedron Pt remains simple and combinatorially isomorphic to Pθ. The maximal
bounded faces of Pt can be identified with ∆1, . . . ,∆r as before, but now the
volume of ∆i is a homogeneous polynomial of degree n− d in only d variables:

vi(t) = vi(t1, . . . , td) = vol(∆i) for i = 1, 2, . . . , r.

The polynomial vi(t) is the unique preimage of the polynomial Vi(x) under the
inclusion α∗.

Corollary 7.3 The cohomology of the Lawrence toric variety and the toric
hyperkähler variety equals

H∗
(
Y (A, θ);Q) = Q[∂t1 , . . . , ∂td ]/Ann

(
{v1, . . . , vr}).

Proof: A differential operator f = f(∂x1
, . . . , ∂xn) annihilates α∗(v) for some

v = v(t1, . . . , td) if and only if the operator α(f) annihilates v itself. This is
the Chain Rule of Calculus. Hence

Ann({v1, . . . , vr}) = α
(
Ann({V1, . . . , Vr})

)

= α
(
Circ(A) + M(B)

)

= α(M(B)).

The claim now follows from equation (37). ¤
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Remark. Since the cohomology ring of Y (A, θ) does not depend on θ, we get
the remarkable fact that the vector space generated by the volume polynomials
does not depend on θ either.

We close this section by presenting an application to combinatorics. We use
notation and terminology as in [18, Section III.3]. Let M be any matroid
of rank n − d on n elements which can be represented over the field Q, say,
by a configuration B ⊂ Zn−d as above, and let h(M) = (h0, h1, . . . , hk) be
its h-vector. A longstanding open problem is to characterize the h-vectors of
matroids. For a survey see [5] or [18, Section III.3]. We wish to argue that
toric hyperkähler geometry can make a valuable contribution to this problem.
According to Corollary 6.6 the h-numbers of M are precisely the Betti numbers
of the associated toric hyperkähler variety:

hi(M) = rankH2i
(
Y (A, θ);Q

)
. (38)

As a first step, we prove the injectivity part of the Hard Lefschetz Theo-
rem for toric hyperkähler varieties. The g-vector of the matroid is g(M) =
(g1, g2, . . . , gbn−d2 c

) where gi = hi − hi−1.

Theorem 7.4 The g-vector of a rationally represented coloop-free matroid is a
Macaulay vector, i.e. there exists a graded Q-algebra R = R0⊕R1⊕· · ·⊕Rbn−d2 c
generated by R1 and with gi = dimQ(Ri) for all i.

Proof: Let [D] ∈ H2(Y (A, θ);Q) be the class of an ample divisor. The
restriction D|Xj to any component Xj of the core is an ample divisor on the
projective toric orbifold Xj . Consider the map

L : H2i−2
(
Y (A, θ);Q

)
→ H2i

(
Y (A, θ);Q

)
, (39)

given by multiplication with [D]. We claim that this map is injective for i =
1, . . . , bn−d2 c. To see this, let α ∈ H2i−2(Y (A, θ);Q) be a nonzero cohomology
class. Then according to equation (34), there exists an index j ∈ {1, 2, . . . , r}
such that α|Xj is nonzero. Then the Hard Lefschetz Theorem for the projective
toric orbifold Xj implies that α|Xj · [D|Xj ] is a non-zero class in H2i(Xj ;Q).
Its preimage α · [D] under the map φj is non-zero, and we conclude that the
map (39) is injective for 2i ≤ n − d. Consider the quotient algebra R =
H∗(Y (A, θ);Q)/〈[D]〉. The injectivity result just established implies that

gi = hi − hi−1 = dimQ
(
H2i(Y (A, θ);Q)/〈[D]〉

)
= dimQ(Ri).

This completes the proof of Theorem 7.4. ¤

Remark. After the submission of our paper we learned that Swartz [20] has
given a different proof of Theorem 7.4 for all coloop-free matroids. The expla-
nation of this theorem in a combinatorial context and a comparision of the two
proofs will appear in a forthcoming paper [9].
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8 Toric quiver varieties

In this section we discuss an important class of toric hyperkähler manifolds,
namely, Nakajima’s quiver varieties in the special case when the dimension
vector has all coordinates equal to one. Let Q = (V,E) be a directed graph (a
quiver) with d + 1 vertices V = {v0, v1, . . . , vd} and n edges {eij : (i, j) ∈ E}.
We consider the group of all Z-linear combinations of V whose coefficients sum
to zero. We fix the basis {v0 − v1, . . . , v0 − vd} for this group, which is hence
identified with Zd. We also identify Zn with the group of Z-linear combinations∑
ij λijeij of the set of edges E. The boundary map of the quiver Q is the

following homomorphism of abelian groups

A : Zn → Zd, eij 7→ vi − vj . (40)

Throughout this section we assume that the underlying graph of Q is connected.
This ensures that A is an epimorphism. The kernel of A consists of all Z-linear
combinations of E which represent cycles in Q. We fix an n × (n − d)-matrix
B whose columns form a basis for the cycle lattice ker(A). Thus we are in the
situation of (1). The following result is well-known:

Lemma 8.1 The matrix A representing the boundary map of a quiver Q is
unimodular.

Every edge eij of Q determines one coordinate function zij on Cn and two
coordinate functions zij , wij on Hn. The action of the d-torus on Cn and Hn
given by the matrix A equals

zij 7→ tit
−1
j · zij , wij 7→ t−1

i tj · wij . (41)

We are interested in the various quotients of Cn and Hn by this action. Since
the matrix A represents the quiver Q, we write X(Q, θ) instead of X(A, θ), we
write X(Q±, θ) instead of X(A±, θ), and we write Y (Q, θ) instead of Y (A, θ).
From Corollary 2.9 and Lemma 8.1, we conclude that all of these quotients are
manifolds when the parameter vector θ is generic:

Proposition 8.2 Let θ be a generic vector in the lattice Zd. Then X(Q, θ)
is a smooth projective toric variety of dimension n − d, X(Q±, θ) is a non-
compact smooth toric variety of dimension 2n − d, and Y (Q, θ) is a smooth
toric hyperkähler variety of dimension 2(n− d).

We call Y (Q, θ) a toric quiver variety. These are precisely the quiver varieties of
Nakajima [17] in the case when the dimension vector has all coordinates equal
to one. Altmann and Hille [1] used the term “toric quiver variety” for the
projective toric variety X(Q, θ), which is specified by an oriented quiver. Our
toric quiver variety Y (Q, θ) and its ambient Lawrence toric variety X(Q±, θ)
incoorporate all orientations of the quiver simultaneously. In view of Theo-
rem 3.2, the Altmann-Hille variety X(Q, θ) is an irreducible component of the
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common core of Y (Q, θ) and X(Q±, θ). These manifolds and their core have
the same integral cohomology ring, to be described in terms of quiver data in
Theorem 8.3.
Fix a vector θ ∈ Zd and a subset τ ⊆ E which forms a spanning tree in Q.
Then there exists a unique linear combination with integer coefficients λτij
which represents θ as follows:

θ =
∑

(i,j)∈τ
λτij · (vi − vj).

Note that the vector θ is generic if λτij is non-zero for all spanning trees τ and
all (i, j) ∈ τ .
For every spanning tree τ , we define a subset of the monomials in T = C[zij , wij ]
as follows.

σ(τ, θ) :=
{
zij : (i, j) ∈ τ and λτij > 0

}
∪
{
wij : (i, j) ∈ τ and λτij < 0

}
.

Recall that a cut of the quiver Q is a collection D of edges which traverses
a partition (W,V \W ) of the vertex set V . We regard D as a signed set by
recording the directions of its edges as follows

D− =
{

(i, j) ∈ E : i ∈ V \W and j ∈W
}
,

D+ =
{

(i, j) ∈ E : i ∈W and j ∈ V \W
}
.

We now state our main result regarding toric quiver varieties:

Theorem 8.3 Let θ ∈ Zd be generic. The Lawrence toric variety X(Q±, θ) is
the smooth (2n− d)-dimensional toric variety defined by the fan whose 2n rays

are the columns of Λ(B) =

(
I I
0 BT

)
and whose maximal cones are indexed

by the sets σ(τ, θ), where τ runs over all spanning trees of Q. The toric quiver
variety Y (Q, θ) is the 2(n − d)-dimensional submanifold of X(Q±, θ) defined
by the equations

∑
(i,j)∈D+ zijwij =

∑
(i,j)∈D− zijwij where D runs over all

cuts of Q. The common cohomology ring of these manifolds is the quotient of
Z[∂ij : (i, j) ∈ E] modulo the ideal generated by the linear forms in ∂ · B and
the monomials

∏
(i,j)∈D ∂ij where D runs over all cuts of Q.

A few comments are in place: the variables ∂ij , (i, j) ∈ E, are the coordinates of
the row vector ∂, so the entries of ∂ ·B are a cycle basis for Q. The equations
which cut out the toric quiver variety Y (Q, θ) lie in the Cox homogeneous
coordinate ring of the Lawrence toric manifold X(Q±, θ). A more compact
representation is obtained if we replace “cuts” by “cocircuits”. By definition,
a cocircuit in Q is a cut which is minimal with respect to inclusion. The proof
of Theorem 8.3 follows from our general results for integer matrices A.
Corollary 6.6 shows that the Betti numbers of Y (Q, θ) are the h-numbers of the
matroid of B. This is not the usual graphic matroid of Q but it is the cographic
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matroid associated with Q. Thus the Betti numbers of the toric quiver variety
Y (Q, θ) are the h-numbers of the cographic matroid of Q. The generating
function for the Betti numbers, the h-polynomial of the cographic matroid, is
known in combinatorics as the reliability polynomial of the graph Q; see [5].

Corollary 8.4 The Poincaré polynomial of the toric quiver variety Y (Q, θ)
equals the reliability polynomial of the graph Q, which is the h-polynomial of its
cographic matroid. In particular, the Euler characteristic of Y (Q, θ) coincides
with the number of spanning trees of Q.

Lopez [15] gives an explicit enumerative interpretation of the coefficients of the
reliability polynomial of a graph and hence of the Betti numbers of a toric
quiver variety. In particular, he proves Stanley’s longstanding conjecture on
h-vectors of matroid complexes [18, Conjecture III.3.6] for the special case of
cographic matroids.

9 An example of a toric quiver variety

We shall describe a particular toric quiver variety Y (K2,3, θ) of complex di-
mension four. Consider the quiver in Figure 1, the complete bipartite graph
K2,3 given by d = 4, n = 6 and E = {(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)}.

e e e
e

e

¡
¡
¡
¡µ

-
@
@
@
@R

¡
¡

¡
¡ª

¾ @
@

@
@I

0
3

1

2

4

Figure 1: The quiver K2,3

The matrix A representing the boundary map (40) is given in Figure 2. The
six columns of A span the cone over a triangular prism as depicted in Figure
3. A Gale dual of this configuration is given by the six vectors in the plane in
Figure 4. The rows of BT span the cycle lattice of K2,3.
Our manifolds are constructed algebraically from the polynomial rings

S = C[z02, z03, z04, z12, z13, z14]

and
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A =




0 0 0 −1 −1 −1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1




Figure 2: The matrix A

u u

u

u

u

u

­
­
­
­
­
­­

J
J
J
J
J
JJ

­­

­­

­­

JJ

JJ

JJ

v0 − v2

v0 − v3

v0 − v4

v1 − v2

v1 − v3

v1 − v4

Figure 3: The column vectors of the matrix A

T = S[w02, w03, w04, w12, w13, w14],

where the degrees of the variables are given by the columns of the matrix A±:

degree(zij) = −degree(wij) = vi − vj . (42)

This grading corresponds to the torus action (41) on the polynomial rings S and
T . Fix θ = (θ1, θ2, θ3, θ4) ∈ Z4. It represents the following linear combination
of vertices of K2,3:

(θ1 + θ2 + θ3 + θ4)v0 − θ1v1 − θ2v2 − θ3v3 − θ4v4

The monomials zu02
02 zu03

03 zu04
04 zu12

12 zu13
13 zu14

14 in the graded component Sθ corre-

spond to the nonnegative 2×3-integer matrices

(
u02 u03 u04

u12 u13 u14

)
with column

sums θ2, θ3, θ4 and row sums θ1 + θ2 + θ3 + θ4 and −θ1. For instance, for
θ = (−3, 2, 2, 2) there are precisely seven monomials in Sθ as shown on Figure
6. Taking “Proj” of the algebra generated by these seven monomials we get
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BT =

[
1 0 −1 −1 0 1
0 1 −1 0 −1 1

]

Figure 4: Transpose of the matrix B

b02

b14b03

b12

b04 b13

Figure 5: Rows of the matrix B

Sθ = C
{

z02z03z04z12z13z14,
z2

02z04z
2
13z14,

z2
02z03z13z

2
14,

z02z
2
03z12z

2
14,

z2
03z04z

2
12z14,

z03z
2
04z

2
12z13,

z02z
2
04z12z

2
13

}

�

��

�

� �

�

�

�

�

� �

�

Figure 6: Monomials in multidegree θ = (−3, 2, 2, 2)

a smooth toric surface X(K2,3, θ) in P6. This surface is the blow-up of P2 at
three points.
As θ varies, there are eighteen different types of smooth toric surfaces
X(K2,3, θ). They correspond to the eighteen chambers in the triangular prism,
or, equivalently, to the eighteen complete fans on B. This picture arises in the
Cremona transformation of classical algebraic geometry, where the projective
plane is blown up at three points and then the lines connecting them are blown
down. The eighteen surfaces are the intermediate blow-ups and blow-downs.
We next describe the Lawrence toric varieties X(K±2,3, θ) which are the GIT

quotients of C12 by the action (41). First, the (singular) affine quotient
X(K±2,3, 0) is the spectrum of the algebra

T0 = C
[
z02w02, z03w03, z04w04, z12w12, z13w13, z14w14, z02z13w12w03,

z03z12w13w02, z02z14w12w04, z04z12w14w02, z03z14w13w04, z04z13w14w03

]
.
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This is the affine toric variety whose fan is the cone over the 7-dimensional

Lawrence polytope given by the matrix

(
I I
0 BT

)
, where I is the 6 × 6-unit

matrix. This Lawrence polytope has 160 triangulations, all of which are regular,
so there are 160 different types of smooth Lawrence toric varieties X(K±2,3, θ)
as θ ranges over the generic points in Z4. For instance, for θ = (−3, 2, 2, 2) as
in Figure 6, X(K±2,3, θ) is constructed as follows. The graded component Tθ is
generated as a T0-module by 13 monomials: the seven z-monomials in Sθ and
the six additional monomials:

w02z
2
03z

2
04z

3
12, w03z

2
02z

2
04z

3
13, w04z

2
02z

2
03z

3
14,

w12z
2
13z

2
14z

3
02, w13z

2
12z

2
14z

3
03, w14z

2
12z

2
13z

3
04.

(43)

The 13 monomial generators of Tθ correspond to the 13 lattice points in the
star diagram in Figure 6. The toric variety X(K±2,3, θ) = Proj(⊕n≥0Tnθ) is
characterized by its irrelevant ideal in the Cox homogeneous coordinate ring
T , which is graded by (42). The irrelevant ideal is the radical of the monomial
ideal 〈Tθ〉. It is generated by the 12 square-free monomials obtained by erasing
exponents of the monomials in (43) and Figure 6. The 7-simplices in the
triangulation of the Lawrence polytope are the complements of the supports of
these twelve monomials,
We finally come to the toric quiver variety Y (K2,3, θ), which is smooth and
four-dimensional. It is the complete intersection in the Lawrence toric variety
X(K±2,3, θ) defined by the equations

z02w02 + z03w03 + z04w04 = z02w02 + z12w12 = z03w03 + z13w13 =

= z04w04 + z14w14 = 0.

These equations are valid for all 160 toric quiver varieties Y (K2,3, θ). The cores
of the manifolds vary greatly. For instance, for θ = (−3, 2, 2, 2), the core of
Y (K2,3, θ) consists of six copies of the projective plane P2 which are glued to
the blow-up of P2 at three points. These correspond to the six triangles which
are glued to the edges of the hexagon in Figure 6.
The common cohomology ring of the 8-dimensional Lawrence toric varieties
X(K±2,3, θ) and the 4-dimensional toric quiver varieties Y (K2,3, θ) is indepen-
dent of θ and equals

Z[∂]/〈∂03∂04∂12, ∂02∂04∂13, ∂02∂03∂14, ∂13∂14∂02, ∂12∂14∂03, ∂12∂13∂04, ∂02∂03∂04,

∂12∂13∂14, ∂02∂12, ∂03∂13, ∂04∂14, ∂02 − ∂03 − ∂12 + ∂13, ∂02 − ∂04 − ∂12 + ∂14〉.

From this presentation we can compute the Betti numbers as follows:

H∗(Y (K2,3);Z) = H0(Y (K2,3);Z) ⊕ H2(Y (K2,3);Z) ⊕ H4(Y (K2,3);Z)

= Z1 ⊕ Z4 ⊕ Z7.

The 7-dimensional space of cogenerators is spanned by the areas of the six
triangles in Figure 6, e.g., V{03,04,12}(x) = (x03 + x04 − x12)2, together with
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the area polynomial of the hexagon

Vhex(x) = 2x03x14 + 2x14x02 + 2x02x13 + 2x13x04 + 2x04x12 + 2x12x03 −
−x2

02 − x2
03 − x2

04 − x2
12 − x2

13 − x2
14.

10 Which toric varieties are hyperkähler ?

Toric hyperkähler varieties are constructed algebraically as complete intersec-
tions in Lawrence toric varieties, but they are generally not toric varieties
themselves. What we mean by this is that there does not exist a subtorus
of the dense torus of X(A±, θ) such that Y (A, θ) is an orbit closure of that
subtorus. The objective of this section is to characterize and study the rare
exceptional cases when Y (A, θ) happens to be a toric variety. We are particu-
larly interested in the case of manifolds, when A is unimodular. The following
is the main result in this section.

Theorem 10.1 A toric manifold is a toric hyperkähler variety if and only if it
is a product of ALE spaces of type An if and only if it is a toric quiver variety
X(Q, θ) where Q is a disjoint union of cycles.

The ALE space of type An is denoted C2//Γn where Γn is the cyclic group of

order n acting on C2 as the matrix group
{( η 0

0 η−1

)
: ηn = 1

}
. The name

“ALE space” indicates the fact that these varieties are the underlying varieties
of Asymptotically Locally Euclidean gravitational instantons, or in other words
4-dimensional hyperkähler manifolds (see [13] for details).
The smooth surface C2//Γn is defined as the unique crepant resolution of the
2-dimensional cyclic quotient singularity

C2/Γn = SpecC[x, y]Γn = SpecC[xn, xy, yn].

Equivalently, we can construct C2//Γn as the smooth toric surface whose fan
Σn consists of the cones R≥0{(1, i − 1), (1, i)} for i = 1, 2, . . . , n and whose
lattice is the standard lattice Z2.
Let us start out by showing that the ALE space C2//Γn is indeed a toric
quiver variety. Let Cn denote the n-cycle. This is the quiver with vertices
V = {0, 1, . . . , n− 1} and edges

E =
{

(0, 1), (1, 2), (2, 3), . . . , (n−2, n− 1), (n− 1, 0)
}
.

We prove the following well-know result to illustrate our constructions.

Lemma 10.2 The affine quiver variety Y (Cn, 0) is isomorphic to C2/Γn and
for any generic vector θ ∈ Zn−1, the smooth quiver variety Y (Cn, θ) is isomor-
phic to the ALE space C2//Γn.
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Proof: The boundary map of the n-cycle Cn has the format Zn → Zn−1 and
looks like

A =




1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
0 0 1 −1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 0 · · · 1 −1



.

and its Gale dual is the 1× n-matrix with all entries equal to one:

BT = ( 1 1 1 · · · 1 ) . (44)

The torus Tn−1
C acts via A± on the polynomial ring T = C [ zi,i+1, wi,i+1 :

i = 0, . . . , n − 1 ]. The affine Lawrence toric variety X(C±n , 0) = C2n//0Tn−1
C

is the spectrum of the invariant ring

T0 = C
[
z01w01 , . . . , zn−1,0wn−1,0 , z01z12 · · · zn−1,0 , w01w12 · · ·wn−1,0

]
.

The common defining ideal of all the quiver varieties Y (Cn, θ) is the following
ideal in T :

Circ(B) = 〈 zi−1,iwi−1,i − zi,i+1wi,i+1 : i = 1, 2, . . . , n 〉.

All indices are considered modulo n. The quiver variety Y (Cn, 0) is the spec-
trum of T0/(T0 ∩ Circ(B)). Dividing T0 by T0 ∩ Circ(B) means erasing the
double indices of all variables:

T0/(T0 ∩ Circ(B)) ' C[ zw, zn, wn ].

Passing to the spectra of these rings proves our first assertion: Y (Cn, 0) '
C2/Γn.
For the second assertion, we first note that θ = (θ1, . . . , θn−1) is generic for A±
if and only if all consecutive coordinate sums θi + θi+1 + · · ·+ θj are non-zero.
The associated hyperplane arrangement Γ(A) is linearly isomorphic to the braid
arrangement {ui = uj}. It has n ! chambers, and the symmetric group acts
transitively on the chambers. Hence it suffices to prove Y (Cn, θ) ' C2//Γn
for only one vector θ which lies in the interior of any chamber.
We fix the generic vector θ = (1, 1, . . . , 1). There are n monomials of degree θ
in T , namely,

i−1∏

j=1

zi−jj−1,j ·
n∏

k=i+1

wk−ik−1,k for i = 1, 2, . . . , n. (45)

The images of these monomials are minimal generators of the T0/(T0 ∩
Circ(B))-algebra

∞⊕

r=0

Trθ/(Trθ ∩ Circ(A)(B)).
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By definition, Y (Cn, θ) is the projective spectrum of this N-graded algebra.
Applying our isomorphism “erasing double indices”, the images of our n mono-
mials in (45) translate into

z(i2) · w(n−i+1
2 ) for i = 1, 2, . . . , n. (46)

Hence Y (Cn, θ) is the projective spectrum of the C[zw, zn, wn]-algebra gener-
ated by (46). It is straightforward to see that this is the toric surface with fan
Σn, i.e. the ALE space C2//Γn. ¤

It is instructive to write down our presentations for the cohomology ring of the
ALE space Y (Cn, θ) = C2//Γn. The circuit ideal of the n-cycle is the principal
ideal

Circ(A) = 〈 ∂01 + ∂12 + ∂23 + · · ·+ ∂n−1,0 〉.
The matroid ideal M(B) is generated by all quadratic squarefree monomials
in Z[∂]. It follows that Z[∂]/(Circ(A) +M(B)) is isomorphic to a polynomial
ring in n − 1 variables modulo the square of the maximal ideal generated by
the variables, and hence

H∗(Y (Cn, θ);Z) = H0(Y (Cn, θ);Z) ⊕ H2(Y (Cn, θ);Z) ' Z1 ⊕ Zn−1.

On our way towards proving Theorem 10.1, let us now fix an epimorphism
A : Zn → Zd and a generic vector θ ∈ Zd. We assume that A is not a cone,
i.e. the zero vector is not in B. We do not assume that A is unimodular. By a
binomial we mean a polynomial with two terms.

Proposition 10.3 The following three statements are equivalent:

(a) The hyperkähler toric variety Y (A, θ) is a toric subvariety of X(A±, θ).

(b) The ideal Circ(B) is generated by binomials.

(c) The configuration B lies on n − d linearly independent lines through the
origin in Rn−d.

Proof: The condition (b) holds if and only if the matrix A can be chosen to
have two nonzero entries in each row. This defines a graph G on {1, 2, . . . , n},
namely, j and k are connected by an edge if there exists i ∈ {1, . . . , d} such
that aij 6= 0 and aik 6= 0. The graph G is a disjoint union of n− d trees. Two
indices j and k lie in the same connected component of G if and only if the
vectors bj and bk are linearly dependent. Thus (b) is equivalent to (c).
Suppose that (b) holds. Then the prime ideal Circ(B) is generated by the
quadratic binomials aijzjwj + aikzkwk indexed by the edges (j, k) of G. The
corresponding coefficient-free equations

zjwj = zkwk for (j, k) ∈ G.
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define a subtorus T of the dense torus of the Lawrence toric variety X(A±, θ),
and the equations

aijzjwj + aikzkwk = 0 for (j, k) ∈ G.
define an orbit of T in the dense torus of X(A±, θ). The solution set of the same
equations in X(A±, θ) has the closure of that T-orbit as one of its irreducible
components. But that solution set is our hyperkähler variety Y (A, θ). Since
Y (A, θ) is irreducible, we can conclude that it coincides with the closure of the
T-orbit. Hence Y (A, θ) is a toric variety, i.e. (a) holds.
For the converse, suppose that (a) holds. The irreducible subvariety Y (A, θ) is
defined by a homogeneous prime ideal J in the homogeneous coordinate ring T
of X(A±, θ). Since Y (A, θ) is a torus orbit closure, the ideal J is generated by
binomials. The ideal Circ(B) has the same zero set as J does, and therefore,
by the Nullstellensatz and results of Cox, rad

(
Circ(B) : B∞θ

)
= J . Our

hypothesis 0 6∈ B ensures that Circ(B) itself is a prime ideal, and therefore we
conclude Circ(B) = J . In particular, this ideal is generated by binomials, i.e.
(b) holds. ¤
Proof of Theorem 10.1: Suppose that Q is a quiver with connected compo-
nents Q1, . . . , Qr. Then its boundary map is given by a matrix with block
decomposition

A = A1 ⊕ A2 ⊕ · · · ⊕ Ar, (47)

where Ai is the boundary map of Qi. There is a corresponding decomposition
of the Gale dual

B = B1 ⊕ B2 ⊕ · · · ⊕ Br. (48)

In this situation, the toric hyperkähler variety Y (A, θ) is the direct product of
the toric hyperkähler varieties Y (Ai, θ) for i = 1, . . . , r. For our quiver Q this
means

Y (Q, θ) = Y (Q1, θ) × Y (Q2, θ) × · · · × Y (Qr, θ).

Using Lemma 10.2, we conclude that a manifold is a product of ALE spaces of
type An if and only if it is a toric quiver variety Y (Q, θ) where Q is a disjoint
union of cycles Cni .
The matrix A in (47) is unimodular if and only if the matrices A1, . . . , Ar
are unimodular. Hence a product of toric hyperkähler manifolds is a toric
hyperkähler manifold. In particular, a product of ALE spaces C2/Γni is a
toric hyperkähler manifold which is also a toric variety.
For the converse, suppose that Y (A, θ) is a toric hyperkähler manifold which is
also a toric variety, so that statement (a) in Proposition 10.3 holds. Statement
(c) in Proposition 10.3 says that the matrix B has a decomposition (48) where
r = n − d and each Bi is a matrix with exactly one column. We may assume
that none of the entries in Bi is zero. The Gale dual Ai of Bi is a unimodular
matrix, and hence Bi is unimodular. For a matrix with one column this means
that all entries in Bi are either +1 or −1. After trivial sign changes, this
means BTi = ( 1 1 . . . 1 ). Now we are in the situation of (44), which means
that Y (Ai, θ) is an ALE space C2/Γni . ¤
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