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ABSTRACT. Suppose that

tn
is a simple C*-algebra, where X, ; are compact metrizable spaces of
uniformly bounded dimensions (this restriction can be relaxed to a
condition of very slow dimension growth). It is proved in this article
that A can be written as an inductive limit of direct sums of matrix
algebras over certain special 3-dimensional spaces. As a consequence
it is shown that this class of inductive limit C*-algebras is classified
by the Elliott invariant — consisting of the ordered K-group and the
tracial state space — in a subsequent paper joint with G. Elliott and
L. Li (Part II of this series). (Note that the C*-algebras in this class
do not enjoy the real rank zero property.)
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Office under grant number DAAD19-00-1-0152. The research is also partially supported by
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0 INTRODUCTION

In this article and the subsequent article [EGL], we will classify all the unital
simple C*-algebras A, which can be written as the inductive limit of a sequence

t1 to

¢1, @2,
@PMM[M} (C(X1,)Pr; —5 @Pz,iM[z,i](C(Xz,i))Pz,i =3
i=1 i=1

where X, ; are compact metrizable spaces with sup{dim X, ;},,.; < 400, [n,1]
and ¢, are positive integers, and P, ; € M, (C(X,,:)) are projections. The
invariant consists of the ordered K-group and the space of traces on the algebra.
The main result in the present article is that a C*-algebra A as above can
be written in another way as an inductive limit so that all the spaces X, ;
appearing are certain special simplicial complexes of dimension at most three.
Then, in [EGL], the classification theorem will be proved by assuming the C*-
algebras are such special inductive limits.

In the special case that the groups K, (C(X,,;)) are torsion free, the C*-algebra
A can be written as an inductive limit of direct sums of matrix algebras over
C(S1)(i.e., one can replace X, ; by S'). Combining this result with [El2],
without [EGL]-the part II of this series—, we can still obtain the classification
theorem for this special case, which is a generalization of the result of Li for
the case that dim(X,, ;) =1 (see [Lil-3]).

The theory of C*-algebras can be regarded as noncommutative topology, and
has broad applications in different areas of mathematics and physics (e.g., the
study of foliated spaces, manifolds with group actions; see [Con]).

One extreme class of C*-algebras is the class of commutative C*-algebras,
which corresponds to the category of ordinary locally compact Hausdorff topo-
logical spaces. The other extreme, which is of great importance, is the class of
simple C*-algebras, which must be considered to be highly noncommutative.
For example, the (reduced) foliation C*-algebra of a foliated space is simple if
and only if every leaf is dense in the total space; the cross product C*-algebra,
for a ZZ action on a space X, is simple if and only if the action is minimal.
Even though the commutative C'*-algebras and the simple C*-algebras are
opposite extremes, remarkably, many (unital or nonunital) simple C*-algebras
(including the foliation C*-algebra of a Kronecker foliation, see [EE]) have
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been proved to be inductive limits of direct sums of matrix algebras over com-
mutative C*-algebras, i.e., to be of the form
lim (A, = @'", M;y,.5(C(Xni)), n,m). (Note that the only commutative C*-

n—oo

algebras, or matrix algebras over commutative C*-algebras, which are simple
are the very trivial ones, C or My(C).) In general, it is a conjecture that any
stably finite, simple, separable, amenable C*-algebra is an inductive limit of
subalgebras of matrix algebras over commutative C'*-algebras. This conjecture
would be analogous to the result of Connes and Haagerup that any amenable
von Neumann algebra is generated by an upward directed family of sub von
Neumann algebras of type I.

The sweeping classification project of G. Elliott is aimed at the complete clas-
sification of simple, separable, amenable C*-algebras in terms of a certain
simple invariant, as we mentioned above, consisting of the ordered K-group
and the space of traces on the algebra. Naturally, the class of inductive limit
C*-algebras A = liln(An = @:;1 PriMiy, i (C(Xn,i))Pnis @n,m), considered in
this article, is an essential ingredient of the project. Following Blackadar [Bl1],
we will call such inductive limit algebras AH algebras.

The study of AH algebras has its roots in the theory of AF algebras (see [Br]
and [Ell4]). But the modern classification theory of AH algebras was inspired
by the seminal paper [B13] of B. Blackadar and was initiated by Elliott in [ElL5].
The real rank of a C*-algebra is the noncommutative counterpart of the di-
mension of a topological space. Until recently, the only known possibilities for
the real rank of a simple C*-algebra were zero or one. It was proved in [DNNP]
that any simple AH algebra

tn
A =lim(4, = @ M, (C(Xn4)), Snm)
i=1

has real rank either zero or one, provided that sup{dim X,, ;},; < +oo. (Re-
cently, Villadsen has found a simple C*-algebra with real rank different from
zero and one, see [Vi 2].)

For the case of simple C*-algebras of real rank zero, the classification is
quite successful and satisfactory, even though the problem is still not com-
pletely solved. Namely, on one hand, the remarkable result of Kirchberg [Kir]
and Phillips [Phil] completely classified all purely infinite, simple, separable,
amenable C*-algebras with the so called UCT property (see also [R] for an
important earlier result). All purely infinite simple C*-algebras are of real
rank zero; see [Zh]. On the other hand, in [EG1-2] Elliott and the author
completely classified all the stably finite, simple, real rank zero C*-algebras
which are AH algebras of the form liLn(An = @2’;1 My,,i(C( X)), Pnym) With

dim(X,,;) < 3. It was proved by Dadarlat and the author that this class
includes all simple real rank zero AH algebras with arbitrary but uniformly
bounded dimensions for the spaces X, ; (see [D1-2], [G1-4] and [DG]).

In this article, the AH algebras considered are not assumed to have real rank
zero. As pointed out above, they must have real rank either zero or one. In fact,
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in a strong sense, almost all of them have real rank one. The real rank zero C*-
algebras are the very special ones for which the space of traces (one part of the
invariant mentioned above) is completely determined by the ordered K-group
of the C*-algebra (the other part of the invariant). Not surprisingly, the lack
of the real rank zero property presents new essential difficulties. Presumably,
dimension one noncommutative spaces are much richer and more complicated
than dimension zero noncommutative spaces. In what follows, we would like
to explain one of the main differences between the real rank zero case and the
general case in the setting of simple AH algebras.

If A=1lim(A, = @fll Py iMiy, 7 (C(Xn.i))Pnis @n,m) is of real rank zero, then

Elliott and the author proved a decomposition result (see Theorem 2.21 of
[EG2]) which says that ¢, ,, (for m large enough) can be approximately de-
composed as a sum of two parts, ¢1 P ¢2; one part, ¢1, having a very small
support projection, and the other part, ¢-, factoring through a finite dimen-
sional algebra.

In §4 of the present paper, we will prove a decomposition theorem which
says that, for the simple AH algebra A above (with or without the real rank
zero condition), ¢y, n, (for m large enough) can be approximately decomposed
as a sum of three parts, ¢1 ® ¢o P ¢3: the part ¢; having a very small support
projection compared with the part ¢o; the part ¢ factoring through a finite
dimensional algebra; and the third part ¢ factoring through a direct sum of
matrix algebras over the interval [0,1]. (Note that, in the case of a real rank
zero inductive limit, the part ¢3 does not appear. In the general case, though,
the part ¢3 has a very large support projection compared with the part ¢ ®¢ps.)
With this decomposition theorem, we can often deal with the part ¢1 @ ¢2 by
using the techniques developed in the classification of the real rank zero case
(see [EG1-2], [G1-4], [D1-2] and [DG]).

This new decomposition theorem is much deeper. It reflects the real rank
one (as opposed to real rank zero) property of the simple C*-algebra. The
special case of the decomposition result that the spaces X, ; are already sup-
posed to be one-dimensional spaces is due to L. Li (see [Li3]). The proof for the
case of higher dimensional spaces is essentially more difficult. In particular, as
preparation, we need to prove certain combinatorial results (see §3) and also
the following result (see §2): Any homomorphism from C(X) to M (C(Y))
can be perturbed to a homomorphism whose maximum spectral multiplic-
ity (for the definition of this terminology, see 1.2.4 below) is not larger than
dim X + dimY’, provided that X # {pt} and X is path connected.

The special simplicial complexes used in our main reduction theorem are
the following spaces: {pt}, [0,1], S', S?, {Tr1x}s,, and {Trrrk}ss,,
where the spaces Ty are two-dimensional connected simplicial complexes
with HY(Tr7x) = 0 and H?(Ty; ) = ZZ/k, and the spaces Tyyry are three-
dimensional connected simplicial complexes with H*(Tyr7) =0 = H?(Ty11 1)
and H3(Tyyr ) = ZZ/k. (See 4.2 of [EG2] for details.)

The spaces Trrr and Trrri are needed to produce the torsion part of
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the K-groups of the inductive limit C*-algebras. Since the algebras
C(Trr.),C(Tirr.k), and C(S?) are not stably generated (see [Lo]), difficulties
occur in the construction of homomorphisms from these C*-algebras, when we
prove our main reduction theorem (and the isomorphism theorem in [EGL]).
In the case of real rank zero algebras, this difficulty can be avoided by using
unsuspended E-theory (see [D1-2] and [G1-4]) combined with a certain unique-
ness theorem — Theorem 2.29 of [EG2], which only involves homomorphisms
(instead of general completely positive linear maps). Roughly speaking, the
trouble is that a completely positive linear *-contraction, which is an “almost
homomorphism”—a G-§ multiplicative map (see 1.1.2 below for the definition
of this concept) for sufficiently large G and sufficiently small §—, may not be
automatically close to a homomorphism. As we mentioned above, after we ap-
proximately decompose ¢y, , as @1 ® p2 D ¢z, we will deal with the part ¢ @ @2,
by using the results and techniques from the real rank zero case, in particu-
lar by using Theorem 1.6.9 below—a strengthened version of Theorem 2.29 of
[EG2]. Therefore, we will consider the composition of the map ¢1 @ ¢2 and a
homomorphism from a matrix algebra over {pt}, [0,1], S, S? {Trrr}3,,
and {T777k}572y, to A,. We need this composition to be close to a homomor-
phism, but ¢; @ ¢4 is not supposed to be close to a homomorphism (it is close to
the homomorphism ¢,, ,,, in the case of real rank zero). To overcome the above
difficulty, we prove a theorem in §5—a kind of uniqueness theorem, which may
be roughly described as follows:

For any € > 0, positive integer N, and finite set FF C A = M (C(X)), where
X is one of the spaces {pt},[0,1],Trsk, Trrrk, and S%, there are a number
6 > 0, a finite set G C A, and a positive integer L, such that for any two
G- multiplicative ( see 1.1.2 below), completely positive, linear *-contractions
d, : Mp(C(X)) — B = M;(C(Y)) (where dim(Y) < N), if they define the
same map on the level of K-theory and also mod-p K-theory (this statement
will be made precise in §5), then there are a homomorphism A : A — M (B)
with finite dimensional image and a unitary u € Mp41(B) such that

(@@ A (f) —u@ @ N (Hu’l| <e

for all f € F.

This result is quite nontrivial, and may be expected to have more general ap-
plications. Some similar results appear in the literature (e.g., [EGLP, 3.1.4],
[D1, Thm A], [G4, 3.9]). But even for *-homomorphisms (which are G-¢ mul-
tiplicative for any G and ¢), all these results (except for contractible spaces)
require that the number L, the size of the matrix, depends on the maps ¢ and
.
Note that the theorem stated above does not hold if one replaces X by S,
even if both ¢ and ¢ are x-homomorphisms. (Fortunately, we do not need the
theorem for S! in this article, since C(S') is stably generated. But on the
other hand, the lack of such a theorem for S! causes a major difficulty in the

formulation and the proof of the uniqueness theorem involving homomorphisms
from C(S') to My (C (X)), in [EGL]— part 2 of this series.)
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With the above theorem, if a G- multiplicative, positive, linear x-contraction
¢ and a *-homomorphism (name it 1)) define the same map on the level of K-
theory and mod-p K-theory, then ¢®\ is close to a #-homomorphism (e.g., Aduo
(¢ ® A)) for some *-homomorphism A : A — M (B) with finite dimensional
image. In particular, the size L of the *-homomorphism A can be controlled.
This is essential for the construction of *-homomorphisms from A = M (C(X)),
where X is one of Try,Trrr,%, and 52, In particular, once L is fixed, we can
construct the decomposition of ¢y, ,,, as ¢1 B P2 G @3, as mentioned above, such
that the supporting projection of the part ¢- is larger than the supporting
projection of the part ¢; by the amplification of L times. Hence we can prove
that, the composition of the map ¢; ® ¢ and a homomorphism from a matrix
algebra over Trr,Trrr,%, and 52 to A, is close to a homomorphism (see
Theorems 5.32a and 5.32b below for details).

The theorem is also true for a general finite CW complex X, provided that
K;1(C(X)) is a torsion group.

(Note that for the space S (or the spaces {pt},[0,1]), we do not need such
a theorem, since any G- multiplicative, positive, linear #-contraction from
My (C(S1Y)) will automatically be close to a *-homomorphism if G is sufficiently
large and ¢ is sufficiently small.)

The above mentioned theorem and the decomposition theorem both play im-
portant roles in the proof of our main reduction theorem, and also in the proof
of the isomorphism theorem in [EGL].

The main results of this article and [EGL] were announced in [G1] and in El-
liott’s lecture at the International Congress of Mathematicians in Zurich (see
[ElL3]). Since then, several classes of simple inductive limit C*-algebras have
been classified (see [EGJS], [JS 1-2], and [Thl]). But all these later results
involve only inductive limits of subhomogeneous algebras with 1-dimensional
spectra. In particular, the Ky-groups have to be torsion free, since it is impos-
sible to produce the torsion in Ky-group with one-dimensional spectra alone,
even with subhomogeneous building blocks.

This article is organized as follows. In §1, we will introduce some notations,
collect some known results, prove some preliminary results, and discuss some
important preliminary ideas, which will be used in other sections. In particular,
in §1.5, we will discuss the general strategy in the proof of the decomposition
theorem, of which, the detailed proof will be given in in §2, §3 and §4. In §1.6,
we will prove some uniqueness theorem and factorization theorem which are
important in the proof of the main theorem. Even though the results in §1.6 are
new, most of the methods are modification of known techniques from [EG2],
[D2], [G4] and [DG]. In §2, we will prove the result about maximum spectral
multiplicities, which will be used in §4 and other papers. In §3, we will prove
certain results of a combinatorial nature. In §4, we will combine the results
from §2, §3, and the results in [Li2], to prove the decomposition theorem. In §5,
we will prove the result mentioned above concerning G-§ multiplicative maps.
In §6, we will use §4, §5 and §1.6 to prove our main reduction theorem. Our
main result can be generalized from the case of no dimension growth (i.e., Xy ;
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have uniformly bounded dimensions) to the case of very slow dimension growth.
Since the proof of this general case is much more tedious and complicated, we
will deal with this generalization in [G5], which can be regarded as an appendix
to this article.

ACKNOWLEDGEMENTS. The author would like to thank Professors M. Dadar-
lat, G. Elliott, L. Li, and H. Lin for helpful conversations. The author also like
to thank G. Elliott, L. Li and H. Lin for reading the article and making sug-
gestions to improve the readability of the article. In particular, L. Li suggested
to the author to make the pictures (e.g., in 3.6, 3.10 and 6.3) to explain the
ideas in the proof of some results; G. Elliott suggested to the author to write
a subsection §1.5 to explain the general strategy for proving a decomposition
theorem.

1 PREPARATION AND SOME PRELIMINARY IDEAS

We will introduce some conventions, general assumptions, and preliminary re-
sults in this section.

1.1 GENERAL ASSUMPTIONS ON INDUCTIVE LIMITS

1.1.1. If A and B are two C*-algebras, we use Map(A, B) to denote THE
SPACE OF ALL LINEAR, COMPLETELY POSITIVE #%-CONTRACTIONS from A to
B. 1If both A and B are unital, then Map(A, B); will denote the subset of
Map(A4, B) consisting of unital maps. By word “map”, we shall mean linear,
completely positive *-contraction between C*-algebras, or else we shall mean
continuous map between topological spaces, which one will be clear from the
context.

By A HOMOMORPHISM BETWEEN C'*—ALGEBRAS7 WILL BE MEANT A -
HOMOMORPHISM. Let Hom(A, B) denote the SPACE OF ALL HOMOMORPHISMS
from A to B. Similarly, if both A and B are unital, let Hom(A, B); denote the
subset of Hom(A4, B) consisting of unital homomorphisms.

DEFINITION 1.1.2. Let G C A be a finite set and § > 0. We shall say that
¢ € Map(A, B) is G-0 MULTIPLICATIVE if

[¢(ab) — p(a)p(b)|| < 6

for all a,b € G.
Sometimes, we use Map_s(A4, B) to denote all the G- multiplicative maps.

1.1.3. In the notation for an inductive system (A, ¢n.m), we understand
that ¢nm = Gm—1,m © Pm—2,m—1""*© Gn.nt1, where all ¢, ,,, : A, — A, are

homomorphisms.
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We shall assume that, for any summand A, in the direct sum A,, = @.", A%,
necessarily, ¢, n11(14: ) # 0, since, otherwise, we could simply delete Al from
A,, without changing the limit algebra.

1.14. If A, = @, A}, and A,, = ®D; A, we use ¢&7 to denote the partial
map of ¢, ,, from the i-th block A of A, to the j-th block A7, of A,,.

In this article, we will assume that all inductive limit C*-algebras are SIMPLE.
That is, the limit algebra has no nontrivial proper closed two sided ideals.
We will also assume that every inductive limit C*-algebra A = lign(An, Gnm)

coming into consideration is different both from My (C) (the matrix algebra
over C), and from K(H) (the algebra of all compact operators).
Since A = lim(4, = @, A%, ¢n,m) is simple, by 5.3.2(b) of [DN], we may

assume that ¢%7, (1,4:) # 0 for any blocks A7, and A7, where n < m.

1.1.5.  To avoid certain counter examples (see [V]) of the main result of
this article, we will restrict our attention, in this article, to inductive systems
satisfying the following VERY SLOW DIMENSION GROWTH CONDITION. This is
a strengthened form of the condition of slow dimension growth introduced in
[BDR].

If lim(4,, = @i PoiMpy, i) (C(Xn,i)) Paiy dnm) is a unital inductive limit sys-

tem, the very slow dimension growth condition is

im X, \3
(dim X, ;) }:07

li
11m max { rank(Pn’,L-)

n—-+00 %

where dim(X,, ;) denotes the (covering) dimension of X, ;.

In this article, we will also study non-unital inductive limit algebras. The
above formula must then be slightly modified. The very slow dimension growth
condition in the non-unital case is that, for any summand

Al = Py iMiy, 7 (C(Xn,i))Pn, of a fixed A,

im X 33
lim max{w} =0,

m—too i rank(b:{?m(lA;)

where ¢};7 is the partial map of ¢y, n, from A}, to A7,
(For a unital inductive limit, the two conditions above are equivalent. Of
course, both conditions are only proposed for the simple case.)

If the set {dim X, ;} is bounded, i.e, there is an M such that
dim X,; < M

for all n and 4, then the inductive system automatically satisfies the very slow
dimension growth condition, as we already assume that the limit algebra is not
M;(C) or K(H).
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We will prove our main reduction theorem for the case of uniformly bounded
dimensions in this article, since it is significantly simpler than the case of very
slow dimension growth. The general case will be discussed in [G5]—an ap-
pendix of this article. But the decomposition theorem will be proved for the
case of very slow dimension growth.

It must be noted that, without the above assumption on dimension growth,
the main theorem of this article does not hold (see [Vil]). We shall leave the
following question open: can the above condition of very slow dimension growth
be replaced by the similar (but weaker) condition of slow dimension growth (see
[BDR)), in the main theorem of this article?

1.1.6. By 2.3 of [Bl1], in the inductive limit

tn
A= hin(An = @ Pn,iM[mi] (C(Xn,i))Pn,ia ¢n,m)a

i=1

one can always replace the compact metrizable spaces X, ; by finite simplicial
complexes. Note that the replacement does not increase the dimensions of
the spaces. Therefore, in this article, WE WILL ALWAYS ASSUME THAT ALL
THE SPACES Xn’i IN A GIVEN INDUCTIVE SYSTEM ARE FINITE SIMPLICIAL
COMPLEXES. Also, WE WILL FURTHER ASSUME THAT ALL X, ; ARE PATH
CONNECTED. Otherwise, we will separate different components into different
direct summands. (Note that a finite simplicial complex has at most finitely
many path connected components.)

By SIMPLICIAL COMPLEX we mean finite simplicial complex or polyhedron; see
[St].

1.1.7.
(a) We use the notation #(-) to denote the cardinal number of the set, if the
argument is a finite set. Very often, the sets under consideration will be sets
with multiplicity, and then we shall also count multiplicity when we use the
notation #.
(b) We shall use a™* to denote a,---,a. For example,

——

k copies
{a™3,b~?} = {a,a,a,b,b}.

(c) int(-) is used to denote the integer part of a real number. We reserve the
notation [-] for equivalence classes in possibly different contexts.

(d) For any metric space X, any 29 € X and any ¢ > 0, let B.(zg) := {z €
X | d(z,2z0) < ¢} denote the open ball with radius ¢ and centre zg.

(e) Suppose that A is a C*-algebra, B C A is a subalgebra, F' C A is a (finite)
subset and let € > 0. If for each element f € F', there is an element g € B such
that || f — ¢g|| < &, then we shall say that F' is approximately contained in B to
within ¢, and denote this by F' C. B.
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(f) Let X be a compact metric space. For any § > 0, a finite set {z1,z2, - x,}
is said to be d-dense in X, if for any « € X, there is z; such that dist(z, z;) < d.
(g) We shall use e to denote any possible positive integer. To save notation,
v,y ,y" -+ oray,as,- - may be used for finite sequences if we do not care how
many terms are in the sequence. Similarly, Ay UAsU--- or A;NAsN--- may be
used for finite union or finite intersection. If there is a danger of confusion with
infinite sequence, union, or intersection, we will write them as a1, as, -, de,
ATUAU---UA,,or AiNAsN---A,.

(h) For A = @'_, M, (C(X;)), where X, are path connected simplicial com-
plexes, we use the notation r(A) to denote @'_, My, (C), which could be con-
sidered to be a subalgebra of A consisting of ¢-tuples of constant functions from
X; to M, (C) (i =1,2,---,t). Fix a base point 29 € X; for each X;, one can
define a map r : A — r(A) by

r(f1s 2o fo) = (f1(a), f2(a8), -+ fe(a?)) € r(A).

(i) For any two projections p,q € A, we use the notation [p] < [g] to denote
that p is unitarily equivalent to a sub projection of ¢q. And we use p ~ ¢ to
denote that p is unitarily equivalent to g.

1.2  SPECTRUM AND SPECTRAL VARIATION OF A HOMOMORPHISM

1.2.1. Let Y be a compact metrizable space. Let P € My, (C(Y)) be a
projection with rank(P) = k < k. For each y, there is a unitary u, € My, (C)
(depending on y) such that

where there are k 1’s on the diagonal. If the unitary u, can be chosen to be
continuous in y, then P is called a TRIVIAL PROJECTION.
It is well known that any projection P € My, (C(Y)) is locally trivial. That
is, for any yo € Y, there is an open set Uy, > yo, and there is a continuous
unitary-valued function

w: Uy — My, (€)

such that the above equation holds for u(y) (in place of u,) for any y € Uy,.
If P is trivial, then PMy, (C(X))P 2 M, (C(X)).

1.2.2. Let X be a compact metrizable space and ¢ : C(X) — PMy, (C(Y))P
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be a unital homomorphism. For any given point y € Y, there are points
z1(y), z2(y), -+, zx(y) € X, and a unitary U, € My, (C) such that

f(z1(y))

W(f)(y) = Py)U, Tt U P(y) € P(y) My, (C)P(y)

0

for all f € C(X). Equivalently, there are k rank one orthogonal projections
p1,D2, ", P With Zlepi = P(y) and z1(y), 22(y), - - -, zx(y) € X, such that

k

V() =D fla)p, V[ eCX).

i=1

Let us denote the set {zi1(y),z2(y), -, xx(y)}, counting multiplicities, by
SP1,. In other words, if a point is repeated in the diagonal of the above
matrix, it is included with the same multiplicity in SP%,. WE SHALL CALL
SP1, THE SPECTRUM OF % AT THE POINT y. Let us define the SPECTRUM OF
1, denoted by SP1, to be the closed subset

SPy := | J SPy, C X.

yey

Alternatively, SP1 is the complement of the spectrum of the kernel of v, con-
sidered as a closed ideal of C'(X). The map ¢ can be factored as

C(X) -5 C(SPy) 25 PMy, (C(Y))P
with 11 an injective homomorphism, where i denotes the inclusion SPy — X.
Also, it A = PMy, (C(Y))P, then we shall call the space Y the spectrum of
the algebra A, and write SPA = Y (= SP(id)).

1.2.3. In 1.2.2, if we group together all the repeated points in

{z1(y),22(y), -, 2x(y)}, and sum their corresponding projections, we can
write
1
V() =D Tiw) P (1 < k),
i=1

where {A1(y), A2(y), -+, \i(y)} is equal to {@1(y),z2(y), -, z(y)} as a set,
but A;(y) # Aj(y) if i # j; and each P; is the sum of the projections cor-
responding to A;(y). If A;(y) has multiplicity m (i.e., it appears m times in
{xl(y)7x2(y>7 T 7xk(y)})7 then rank(Pi) =m.
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DEFINITION 1.2.4. Let ¢,y, and P; be as above. The MAXIMUM SPECTRAL
MULTIPLICITY OF % AT THE POINT y is defined to be max;(rankP;). The
MAXIMUM SPECTRAL MULTIPLICITY OF % is defined to be the supremum of
the maximum spectral multiplicities of ¢ at the various points of Y.

The following result is the main theorem in §2, which says that we can make
the homomorphism not to have too large spectral multiplicities, up to a small
perturbation.

THEOREM 2.1. Let X andY be connected simplicial complexes and X # {pt}.
Let | = dim(X) 4+ dim(Y"). For any given finite set G C C(X), any € > 0, and
any unital homomorphism ¢ : C(X) — PM4(C(Y))P, where P € Mq(C(Y))
is a projection, there is a unital homomorphism ¢' : C(X) — PM.(C(Y))P
such that

(1) l¢(g) = ¢'(9)ll <& for all g € G;

(2) &' has mazimum spectral multiplicity at most [.

1.2.5. Set P*(X) = X x X x --- x X / ~, where the equivalence relation ~

k
is defined by (1,2, -,xx) ~ (), 25, -+, x},) if there is a permutation o of

{1,2,--+,k} such that x; = m;(i), for each 1 < ¢ < k. A metric d on X can be
extended to a metric on P*(X) by

d([l’l, L2, 7xk]7 [xlla x/Za T ,LC;C]) = H}Tin 1I£zagxk d(x“ x;(l))v
where o is taken from the set of all permutations, and [z1, - -, x] denotes the
equivalence class in P*(X) of (z1,---,xp).

1.2.6. Let X be a metric space with metric d. Two k-tuples of (possibly
repeating) points {z1, 2, -, 2t} C X and {2,25, -+, 2} } C X are said to BE
PAIRED WITHIN 7 if there is a permutation ¢ such that

(s, ) <1, i=1,2,-- k.
This is equivalent to the following. If one regards (1,2, -, 2;) and
(z}, @, -+, x}) as two points in P* X then

d([xlvx% T vxk}v [xllv‘r,% T ’x;c]) <n.

1.2.7. Let ¢ : C(X) — PMy,(C(Y))P be a unital homomorphism as in
1.2.5. Then

"y SPy,
defines a map Y — P*X, if one regards SP1), as an element of PkX. This
map is continuous. In term of this map and the metric d, let us define the
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SPECTRAL VARIATION of :

SPV(v) := diameter of the image of ™.

DEFINITION 1.2.8. We shall call the projection P; in 1.2.3 the SPECTRAL
PROJECTION OF ¢ AT y WITH RESPECT TO THE SPECTRAL ELEMENT \;(y). If
X7 C X is a subset of X, we shall call

> h

Xi(y)EXy

the SPECTRAL PROJECTION OF ¢ AT y CORRESPONDING TO THE SUBSET X3
(OR WITH RESPECT TO THE SUBSET Xj).

In general, for an open set U C X, the spectral projection P(y) of ¢ at y
corresponding to U does not depend on y continuously. But the following
lemma holds.

LEMMA 1.2.9. Let U C X be an open subset. Let ¢ : C(X) — Mo(C(Y)) be a
homomorphism. Suppose that W CY is an open subset such that

SPg, N (U\U) =10, VyeWw.
Then the function
y — spectral projection of ¢ aty correponding to U

is a continuous function on W. Furthermore, if W is connected then #(SP¢, N
U) (counting multiplicity) is the same for anyy € W, and the map y — SP¢, N
U € P'X is a continuous map on W, where | = #(SPp, NU).

Proof: Let P(y) denote the spectral projection of ¢ at y corresponding to the
open set U. Fix yo € W. Since SP¢, is a finite set, there is an open set

Uy c Uy C U(C X) such that SP¢,, NUy = SP¢, NU(= SP¢, N U), or in
other words, SP¢, C Uy U(X\U). Considering the open set Uy U (X\U), by
the continuity of the function

y+— SP¢, € PEX,
where k = rank(¢(1)), there is an open set W7 3 yo such that
(1) SP¢, C Uy U(X\U), Vye Wi,

Let x € C(X) be a function satisfying
(z) = 1 if el
A if zeX\U.
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Then from (1) and the definition of spectral projection it follows that

o(x)(y) = P(y), Yy € Wh.

In particular, P(y) is continuous at yo.
The additional part of the lemma follows from the continuity of P(y) and the
connectedness of .

(n
In the above proof, we used the following fact, a consequence of the continuity
of the map y — SP¢,. We state it separately for our future use.

LEMMA 1.2.10. Let X be a finite simplicial compler, X1 C X be a closed
subset, and ¢ : C(X) — M4(C(Y)) be a homomorphism. For any yo € Y, if
SPp, N X1 = (), then there is an open set W > yq such that SPp, N X1 = 0
for anyy e W.

Another equivalent statement is the following. Let U C X be an open subset.
For any yo € Y, if SPp,, C U, then there is an open set W > yo such that
SP¢, C U for anyy e W.

1.2.11. In fact the above lemma is a consequence of the following more general
principle: If ¢ : C(X) — M,(C) is a homomorphism satisfying SP¢ C U for a
certain open set U, then for any homomorphism v : C'(X) — M,(C) which is
close enough to ¢, we have SPyY C U. We state it as the following lemma.

LEMMA 1.2.12. Let F C C(X) be a finite set of elements which generate
C(X) as a C*-algebra. For any € > 0, there is a 6 > 0 such that if two
homomorphisms ¢, ¥ : C(X) — M4(C) satisfy

lo(f) =Nl <o, VfeF,

then SPY and SPp can be paired within e. In particular, SPY C U, where U
is the open set defined by U = {z € X | 3z’ € SP¢ with dist(z,z’) < e}.

1.2.13. For any C* algebra A (usually we let A = C(X) or A =
PM(C(X))P), any homomorphism ¢ : A — M,(C(Y)), and any closed subset
Y7 C Y, denote by ¢|y, the following composition:

restriction
) —

A2 My (Cy M, (C(Y1)).

(As usual, for a subset or subalgebra Ay C A, ¢|4, will be used to denote the
restriction of ¢ to A;. We believe that there will be no danger of confusion as

the meaning will be clear from the context.)
The following trivial fact will be used frequently.

LEMMA 1.2.14. Let Y1,Y3 C Y be two closed subsets. If ¢1 : A — M(C(Y7))
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and ¢ : A — Mp(C(Y2)) are two homomorphisms with ¢1ly,ny, = P2|vinYss
then for any a € A, the matriz-valued function y — ¢(a)(y), where

_J #1(a)(y) if yev
Aa)y) = { $2(a)(y) if yeYs,

is a continuous function on Y1 UYsy (i.e., it is an element of My (C(Y1 UY3)).
Furthermore, a — ¢(a) defines a homomorphism ¢ : A — M (C(Y1 UY32)).

1.2.15. Let X be a compact connected space and let @ be a projection of rank
n in Mn(C(X)). The WEAK VARIATION OF A FINITE SET F' C QMy(C(X))Q
is defined by

w(F) = Jup ueigfn) max [|ully (a)u” — 2(a)|

where II;,II; run through the set of irreducible representations of
QMy(C(X))Q into M, (C).

Let X; be compact connected spaces and Q; € M,,(C(X;)) be projections.
For a finite set F' C @, Q;My,(C(X;))Q;, define the WEAK VARIATION w(F)
to be max; w(m;(F)), where m; : @, QiM,,(C(X;))Q: — QiM,, (C(X;))Q; is
the natural project map onto the i-th block.

The set I is said to be WEAKLY APPROXIMATELY CONSTANT TO WITHIN ¢ if
w(F) < €. The other description of this concept can be found in [EG2, 1.4.11]
(see also [D2, 1.3]).

1.2.16. Let ¢ : M(C(X)) — PM;(C(Y))P be a unital homomorphism. Set
¢(e11) = p, where e1; is the canonical matrix unit corresponding to the upper
left corner. Set

A1 = Bley, My (C(X))er, + C(X) — pM(C(Y))p.

Then PM;(C(Y))P can be identified with pM;(C(Y))p ® M}, in such a way
that

® =1 @1y
Let us define
SP¢, := SP(¢1),,
SP¢ := SP¢1,
SPV(¢) := SPV(¢y) .
Suppose that X and Y are connected. Let @ be a projection in M (C (X))
and ¢ : QMi(C(X))Q — PM;(C(Y))P be a unital map. By the Dilation

Lemma (2.13 of [EG2]; see Lemma 1.3.1 below), there are an n, a projection
P, € M,(C(Y)), and a unital homomorphism

¢ : Mp(C(X)) — PIM,(C(Y)) Py
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such that R
¢ = dlomc(x)Q-
(Note that this implies that P is a subprojection of P;.) We define:

SP¢, := SP¢,,

SP¢ := SP¢,
SPV(¢) := SPV(¢) .
(Note that these definitions do not depend on the choice of the dilation ¢.)
The following lemma was essentially proved in [EG2, 3.27] (the additional part
is [EG 1.4.13)).

LEMMA 1.2.17. Let X be a path connected compact metric space. Let
DosP1,P2, ,Pn € Me(C(Y)) be mutually orthogonal projections such that
rank(p;) > rank(po), @ = 1,2,---,n. Let {x1,29, -, x,} be a g—dense sub-

set of X. If a homomorphism ¢ : C(X) — M4(C(Y)) is defined by
$(f) = do(f) @D f(z)ps,
i=1

where ¢g : C(X) — poMe(C(Y))po is an arbitrary homomorphism, then
SPV(¢) < 6. Consequently, if a finite set F C C(X) satisfies the condition
that || f(z) — f(2')|| <€, for any f € F, whenever dist(x,z") < 0, then ¢(F) is
weakly approximately constant to within €.

(For convenience, we will call such a homomorphism ¢ : C(X) — M, (C(Y)),
defined by (f) = Y-, f(z;)pi, a homomorphism defined by POINT EVALUA-
TIONS ON THE SET {x1,Z2,  ,Zn}.)

Proof: For any two points y,y" € Y, the sets SP¢, and SP¢,, have the following
subset in common:

{xivrank(m)’ x;rank(m), . ;rank(pn)}'

x
The remaining parts of SP¢, and SP¢,, are SP(¢¢), and SP(¢q),/, respectively,
which have at most rank(pg) elements.

It is easy to prove the following fact. For any a,b € X, the sets
{a,21,29, -+, x,} and {b,x1,x2, -+, 2,} can be paired within é. In fact, by
path connectedness of X and g-density of the set {z1, 22, -,z }, one can find
a sequence

Ay Tjyy Ljgy - 7zjk7b

beginning with a and ending with b such that each pair of consecutive terms
has distance smaller than 6. So {a,zj,, -, zj,_,,2; } can be paired with
{zj,zj,, -, z;.,b} (= {b,xj,, -,z }) one by one to within §. The other
parts of the sets are identical, each element can be paired with itself.
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Combining the above fact with the condition that rank(p;) > rank(pg) for any
i, we know that SP¢, and SP¢,, can be paired within §. That is, SPV(¢) < 4.
The rest of the lemma is obvious. Namely, for any two points y,y’, ¢(f)(y) is
approximately unitarily equivalent to ¢(f)(y’) to within e, by the same unitary
for all f € F (see [EG2, 1.4.13]).

1]

1.2.18. In the last part of the above lemma, one does not need ¢y to be
a homomorphism to guarantee ¢(F') to be weakly approximately constant to
within a small number. In fact, the following is true.

Suppose that all the notations are as in 1.2.17 except that the maps ¢ :
C(X) — poMe(C(Y))po and ¢ : C(X) — Me(C(Y)) are no longer ho-
momorphisms. Suppose that for any y € Y, there is a homomorphism
Yy : C(X) = po(y)Ma(C)po(y) such that

Po(f)(y) — Ly (NIl <&, Vf € F.

Then the set ¢(F) is weakly approximately constant to within 3e. One can
prove this claim as follows.

For any y € Y, define a homomorphism ¢, — M,(C) by ¢,(f) = ¥,(f) &
iy f(x;)pi- Then for any two points y,3’ € Y, as same as in Lemma 1.2.17,
SP(¢y,) and SP(¢,/) can be paired within §. Therefore, ¢, (f) is approximately
unitarily equivalent to ¢,/ (f) to within e, by the same unitary for all f € F.
On the other hand,

l6(F)(y) = dy(Hll <& and [6(/)Y) — ¢y (Sl <&,  VfEF.

Hence ¢(f)(y) is approximately unitarily equivalent to ¢(f)(y’) to within 3e,
by the same unitary for all f € F.

1.2.19. Suppose that F' C M (C(X)) is a finite set and € > 0. Let F' C C(X)
be the finite set consisting of all entries of elements in F" and &’ = £, where k&
is the order of the matrix algebra M (C(X)).

It is well known that, for any k x k matrix a = (a;;) € My(B) with entries
a;; € B, ||a|| < kmax;; ||a;;||. This implies the following two facts.

Fact 1. If ¢1, 91 € Map(C(X), B) are (complete positive) linear *-contraction
(as the notation in 1.1.1) which satisfy

l$1(f) = r (NIl <€, Vf e F,

then ¢ = ¢ ® idy € Map(Mi(C(X)),M(B)) and ¢ = 1 @ id), €
Map (M (C(X)), M (B)) satisfy

l6(f) = (DIl <e, VfeF

FAacT 2. Suppose that ¢; € Map(C(X), M.(C(Y))) is a (complete positive)
linear *-contraction. If ¢1(F") is weakly approximately constant to within &’,
then ¢y ® idg (F) is weakly approximately constant to within .
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Suppose that a homomorphism ¢; € Hom(C'(X), B) has a decomposition de-
scribed as follows. There exist mutually orthogonal projections p1,ps € B with
p1+p2 = 1p and 1 € Hom(C(X), p2 Bp2) such that

1(f) — proa(f)pr @ a(f)|| <€y VfeF.

Then there is a decomposition for ¢ := ¢ ® idy:

[6(f) = Pron (/) Pr v (f)ll <e, VfE€F,

where ¥ := 11 ® idg and P = p; ® 1.
In particular, if B = M4(C(Y')) and v is described by

W) =D flea)aly), VfeC(X),

where Y ¢; = p2 and «; : Y — X are continuous maps, then ¢ can be described
by

() =D aiy) © flaily), Vf € Mp(C(X)),

regarding My (Mo (C(Y))) as Mo(C(Y)) @ Mj,.

If a; are constant maps, the homomorphism 1 is called a homomorphism
defined by point evaluations as in Lemma 1.2.17. In this case, we will also call
the above ¥ a homomorphism defined by point evaluations.

From the above, we know that to decompose a homomorphism
¢ € Hom(Mp(C(X)),Ms(C(Y))), one only needs to decompose
P1:= Pley Mi(C(x))ers € Hom(C(X), p(e11) Ma(C(Y))(€11)).

1.3 FULL MATRIX ALGEBRAS, CORNERS, AND THE DILATION LEMMA

Some results in this article deal with a corner QMy(C(X))Q of the matrix
algebra My (C(X)). But using the following lemma and some other techniques,
we can reduce the problems to the case of a full matrix algebra My (C(X)).
The following dilation lemma is Lemma 2.13 of [EG2].

LeMMA 1.3.1. (cf. Lemma 2.13 of [EG2]) Let X and Y be any connected
finite CW complezes. If ¢ : QMp(C(X))Q — PM,(C(Y))P is a unital
homomorphism, then there are an ni, a projection P € M, (C(Y)), and a
unital homomorphism ¢ : Mp(C(X)) — PiM,,(C(Y))Py with the property
that QM (C(X))Q and PM,(C(Y))P can be identified as corner subalgebras
of Mp(C(X)) and PiM,,(C(Y))Py respectively (i.e., Q@ and P can be consid-
ered to be subprojections of 1y and P, respectively) and, furthermore, in such
a way that ¢ is the restriction of (5

If ¢ : QMy(C(X))Q — PM,(C(Y))P, (0 <t < 1) is a path of unital
homomorphisms, then there are PyM,,, (C(Y))Py (as above) and a path of unital
homomorphisms ¢, : My (C(X)) — PyM,, (C(Y))Py such that QM;(C(X))Q
and PM,(C(Y))P are corner subalgebras of My (C(X)) and PyM,,(C(Y))P,
respectively and ¢; is the restriction of qgt.
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DEFINITION 1.3.2. Let A be a C*-algebra. A sub-C*-algebra A7 C A will be
called a LIMIT CORNER SUBALGEBRA of A, if there is a sequence of increasing
projections

PlSPQSSPnSa

such that 4; = J,2, P, AP,.
Using Lemma 1.3.1, it is routine to prove the following lemma.

LEMMA 1.3.3. (cf. 4.24 of [EG2]) For any AH algebra A = lim(A4, =
@fil Py iMiy, i (C(Xni)) Pris @nm), there is an inductive limit A= lim([ln =

D, M{m}(C(Xn’i)),q;nﬁm) of full matriz algebras over {X, ;}, such that
A is isomorphic to a limit corner subalgebra of A In particular, each
Py iMpy, ;) (C(Xni)) Py is a corner subalgebra of My, 1 (C(Xn,i)) and ¢nm
is the restriction of qzzmm on A, = EBE; P iMip, i (C(Xni)) Pri-

Furthermore, A is stably isomorphic to A.

REMARK 1.3.4. In the above lemma, in general, the homomorphisms q?)n,m
cannot be chosen to be unital, even if all the homomorphisms ¢,, ,, are unital.
If A is unital, then A can be chosen to be the cut-down of A by a single
projection (rather than a sequence of projections).

REMARK 1.3.5. In Lemma 1.3.3, if A is simple and satisfies the very slow di-
mension growth condition, then so is A. Hence when we consider the nonunital
case, we may always assume that A is an inductive limit of direct sums of full
matrix algebras over C'(X,, ;) without loss of generality. Since the reduction
theorem in this paper will be proved without the assumption of unitality, we
may assume that the C*-algebra A is an inductive limit of full matrix algebras
over finite simplicial complexes. But even in this case, we still need to consider
the cut-down PM;(C(X))P of M;(C(X)) in some situations, since the image
of a trivial projection may not be trivial.

In the proof of the decomposition theorem in §4, we will NOT assume that A is
unital but we will assume that A is the inductive limit of full matrix algebras.
Note that a projection in M, (C(X)) corresponds to a complex vector bundle
over X. The following result is well known (see Chapter 8 of [Hu]). This result
is often useful when we reduce the proof of a result involving the cut-down
PM;(C(X))P to the special case of the full matrix algebra M,;(C(X)).

LEMMA 1.3.6. Let X be a connected simplicial complex and P € M;(C(X)) be
a non-zero projection. Let n = rank(P) + dim(X) and m = 2dim(X) + 1.

Then P is Murray-von Neumann equivalent to a subprojection of 1,,, and 1, is
Murray-von Neumann equivalent to a subprojection of P® P & --- P, where 1,

is a trivial projection with rank n. Therefore, PM;(C(X))P can be identified
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as a corner subalgebra of M,(C (X)), and M,(C(X)) can be identified as a
corner subalgebra of My, (PM;(C(X))P).

1.4 TOPOLOGICAL PRELIMINARIES

In this subsection, we will introduce some notations and results in the topology
of simplicial complexes. We will also introduce a well known method for the
construction of cross sections of a fibre bundle. The content of this subsection
may be found in [St], [Hu] and [Wh].

1.4.1. Let X be a connected simplicial complex. Endow X with a metric d as
follows.

For each m-simplex A, one can identify A with an n-simplex in IR"™ whose
edges are of length 1 (of course the identification should preserve the affine
structure of the simplices). (Such a simplex is the convex hull of n + 1 points
{zo, 21, -, 2} in R" with dist(z;,2;) = 1 for any ¢ # j € {0,1,---n}.) Such
an identification gives rise to a unique metric on A. The restriction of metric
d of X to A is defined to be the above metric for any simplex A C X. For
any two points z,y € X, d(z,y) is defined to be the length of the shortest
path connecting x and y. (The length is measured in individual simplexes, by
breaking the path into small pieces.)

If X is not connected, denote by L the maximum of the diameters of all the
connected components. Define d(z,y) = L+ 1, if  and y are in different com-
ponents. (Recall that all the simplicial complexes in this article are supposed
to be finite.)

1.4.2. For a simplex A, by dA, we denote the boundary of the simplex A,
which is the union of all proper faces of A. Note that if A is a single point—
zero dimensional simplex, then A = (). Obviously, dim(9A) = dim(A) — 1.
(We use the standard convention that the dimension of the empty space is —1.)
By interior(A), we denote A\OA. Let X be a simplicial complex. Obviously,
for each x € X, there is a unique simplex A such that x € interior(A), which
is the simplex A of lowest dimension with the condition that x € A. (Here
we use the fact that if two different simplices of the same dimension intersect,
then the intersection is a simplex of lower dimension.)

For any simplex A, define

Star(A) = U{interior(A') | A"NA #0}.
Then Star(A) is an open set which covers A.
We will use the following two open covers of the simplicial complex X.
(a) For any vertex « € X, let

W, = Star({z})(= U{z’ntem'or(A) | x € A}).

Obviously {Ww}ze\/ertex( X) is an open cover parameterized by vertices of X.
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In this open cover, the intersection W,, N Wy, N--- N Wy, is nonempty if and
only if 1, xo, -+, x) span a simplex of X.
(b) We denote the original simplicial structure of X by o. Introduce a barycen-
tric subdivision (X, 7) of (X, o).
Then for each simplex A of (X, o) (before subdivision), there is exactly one
point Ca € Vertex(X,7)—the barycenter of A, such that Ca € interior(A).
(Here interior(A) is clearly defined by referring A as a simplex of (X, 0).)
Define

Ua = Star(x,7)({Ca}).

As in (a), {Ua | A isasimplexof (X,0)} is an open cover. In fact,
Ua D interior(A). This open cover is parameterized by simplices of (X, o)
(also by vertices of (X, 7), since there is a one to one correspondence between
the vertices of (X, 7) and the simplices of (X, 0)).

This cover satisfies the following condition: The intersection Ua, NUa, N---N
Ua, is nonempty if and only if one can reorder the simplices, such that

A1CA2C"'An.

One can verify that the open cover in (b) is a refinement of the open cover in

(a).

1.4.3. It is well known that a simplicial complex X is locally contractible.
That is, for any point £ € X and an open neighborhood U 3> z, there is an
open neighborhood W 3 z with W C U such that W can be contracted to a
single point inside U. (One can prove this fact directly, using the metric in
1.4.1.)

One can endow different metrics on X, but all the metrics are required to
induce the same topology as the one in 1.4.1.

Using the local contractibility and the compactness of X, one can prove the
following fact.

For any simplicial complex X with a metric d (may be different from the metric
in 1.4.1), there are x 4 > 0 and a nondecreasing function p : (0,0x,4] — R*
such that the following are true.

(1) lims_g+ p(d) = 0, and

(2) for any 6 € (0,0x,4] and xg € X, the ball Bs(zy) with radius ¢ and centre xg
(see 1.1.7 (d) for the notation) can be contracted into a single point within the
ball B,s)(zo). Le., there is a continuous map «a : Bs(zo) x [0,1] — B,s)(zo)
such that

(i) a(z,0) = z for any = € Bs(zp),

(ii) a(x,1) =z for any x € Bs(zg).

The following lemma is a consequence of the above fact.

LEMMA 1.4.4. For any simplicial complex X with metric d, there are 6x q > 0
and a nondecreasing function p : (0,6x.4) — IR such that the following are

true.
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(1) limgs_,o+ p(0) =0, and

(2) for any ball Bs(xo) with radius 6 < dx 4, any simplex A (not assumed to
be a simplex in X ), and any continuous map f : OA — Bs(xg), there is a
continuous map g : A — Bs)(xo) such that g(y) = f(y) for any y € OA.

Proof: The simplex A can be identified with dA x [0,1]/0A x {1} in such a
way that A is identified with OA x {0}. Define the map g by

g(yvt) = O‘(f(y)vt) € BP(&)(:EO)ny € aAvt € [07 1]»

where « is the map in 1.4.3.
(cn

1.4.5. The following is a well known result in differential topology: Suppose
that M is an m-dimensional smooth manifold, N C M is an n-dimensional
submanifold. If Y is an I-dimensional simplicial complex with I < m — n, then
for any continuous map f :Y — M and any € > 0, there is a continuous map
g:Y — M such that

(i) g(Y)N N =0 and

(ii) dist(g(y), f(y)) <e, forany y € Y.

There is an analogous result in the case of a simplicial complex M and a sub-
complex N. Instead of the assumption that M is an m-dimensional smooth
manifold, let us suppose that M has the PROPERTY D(m): for each z € M,
there is a contractible open neighborhood U, 3 x such that U, \ {z} is (m —2)-
connected, i.e.,

(U \{2}) =0 forany ie€{0,1,---m—2}.

(We use the following convention: by mo(X) = 0, it will be meant that X is a
path connected nonempty space.)

Note that R™\{0} is (m — 2)-connected. Therefore, any m-dimensional mani-
fold has property D(m).

The following result is the relative version of Theorem 5.4.16 of [St] (see page
111 of [St]), which also holds according to the top of page 112 of [St].

PROPOSITION 1.4.6. Suppose that M is a simplicial complex with property
D(m), and N C M is a sub-simplicial complex. Suppose that Y is a simplicial
complex of dimension [ < m — dim(N), and suppose that Y7 C Y is a sub-
simplicial complex. Suppose that f : Y — M is a continuous map such that
f(Y1) N N = (. For any € > 0, there is a continuous map f; : ¥ — M such
that

(i) fl|Y1 = f|Y1a

(ii) f1(Y)N N =0, and

(iii) d(f(y), f1(y)) <e for any y € Y.

1.4.7. Let X, F' be two simplicial complexes.
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Let ' € Homeo(F) be a subgroup of the group of homeomorphisms of the
space F'.

Let us recall the definition of fibre bundle. A FIBRE BUNDLE OVER X WITH
FIBRE F' AND STRUCTURE GROUP I'; is a simplicial complex M with a contin-
uous surjection p : M — X such that the following is true. There is an open
cover U of X, and associated to each U € U, there is a homeomorphism

ty :p *(U) = UxF

(called a local trivialization of the bundle) such that

(1) Each t; takes the fibre of p~1(U) at x € U to the fibre of U x F at the
same point z—a trivialization of the restriction p~(U) of the fibre bundle to
U, i.e., the diagram

t
() < UxF

U

is commutative, where p; denotes the project map from the product U x F' to
the first factor U, and

(2) The given local trivializations differ fibre-wise only by homeomorphisms in
the structure group I': for any U,V e Y and x e U NV,

ty Ot‘_/—1|{w}><F € I' C Homeo(F).

Furthermore, we will also suppose that THE METRIC d OF F IS INVARIANT
UNDER THE ACTION OF ANY ELEMENT g € T, i.e., d(g(z),9(y)) = d(z,y) for
any xz,y € F. We will see, the fibre bundles constructed in §2, satisfy this
condition.

(Note that, if F' is the vector space R™ with Euclidean metric d, then d is
invariant under the action of O(n) C Homeo(F), but not invariant under the
action of Gl(n) C Homeo(F').)

A subset Fy C F is called T-INVARIANT if for any g € T', g(Fy) C Fy.

1.4.8. A CROSS SECTION of fibre bundle p : M — X is a continuous map
f: X — M such that

(po f)(x)=x forany z € X.

The following Theorem is a consequence of Proposition 1.4.6. The proof is a
standard argument often used in the construction of cross sections for fibre
bundles (see [Wh]). (In the literature such an argument is often taken for
granted.) We give it here for the convenience of the reader.
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THEOREM 1.4.9. Suppose that p : M — X is a fibre bundle with fibre F'.
Suppose that Fy C F is a T'-invariant sub-simplicial complex of F. Suppose
that F' has the property D(m) and dim(X) < m —dim(Fy). Then for any cross
section s : X — M and any € > 0, there is a cross section s; : X — M such
that the following two statements are true:

(1) (tu o s1)(z) ¢ {x} x F1 for any x € U € U, where U is the open cover of
X and {tu}veu is the local trivialization of the fibre bundle. That is, s1(X)
avoids Fy in each fibre;

(2) d(s1(x), s(x)) < € for any x € X, where the distance is taken in the fibre F.

Proof: If the fibre bundle is trivial, then the cross sections of the bundle can be
identified with maps from X to F. The conclusion follows immediately from
1.4.6.

For the general case, we will use the local trivializations.

For each open set U € U, using the trivialization

ty :p Y (U) - U x F,
each cross section f on U induces a continuous map fU :U — F by

fo(z) = pa(tu(f(x))),

where py : U x F — F' is the projection onto the second factor.

Suppose that d is as in 1.4.3 (see 1.4.4 also). That is, there is a nondecreasing
function p : (0,0r] — (0,00) such that lims_o+ p(6) = 0 and such that any
d-ball Bs(x) can be contracted to a single point within B, ().

Let dim(X) = n. Choose a finite sequence of positive numbers

Ep > Ep_l > Ep_og > >€1 >0 >0
as follows. Set €, = min{dp,e}. Then choose £, to satisfy
1 1
p(3en_1) < 36n and 3g,_1 < 3En-
Once ¢; is defined, then choose €;_1 to satisfy
1 1
p(3e1-1) < §El and 3¢,_1 < gfl-
Repeat this procedure until we choose € to satisfy
1 1
p(3e0) < 561 and 3gp < 561.

Let us refine the given simplicial complex structure on X in such a way that
each simplex A is covered by an open set U € U and that for any simplex A
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and an open set U € U which covers A, the map Sy|a : A — F, induced by
the cross section s, satisfies

diameter(5y (A)) < ep.

(Since the metric on F is invariant under the action of any element in I, the
above inequality holds or not does not depend on the choice of the open set
U which covers A. In what follows, we will use this fact many times without
saying so.)

We will apply Proposition 1.4.6 to each simplex of X from the lowest dimension
to the highest dimension.

For any [ € {0,1,---,n}, let us denote the I-skeleton of X by X(. So X(®) =
X, and X(© is the set of vertices of X.

STEP 1. Fix a vertex z € X and suppose that x € U € Y. Applying
Proposition 1.4.6 to {z} (in place of ¥ with Y; = ) and F ( in place of M
with N = Fy), there exists 3°(z) € F'\ F; such that

d(5°(x),5u(x)) < eo.
Any choice of §°(x) gives a cross section s on {z} by

s'(x) =ty (z,5(2)),

where (z,5°(x)) € {2} x F C U x F. Defining s” on all vertices, we obtain a
cross section s on X () such that

d(3y(x), 5u(x)) < e

for each 2z € U N X©),
STEP 2. Suppose that for I < n = dim(X), there is a cross section s' : X —
M such that for any U € U and any z € X N U, we have &, (x) ¢ Fy, and

(%) d(34(2),5u(x)) < &

Let us define a cross section st : X(U+1) — M as follows. We will work one
by one on each (I + 1)-simplex A.
First, we shall simply extend the cross section s!|sa to a cross section on A (see
Substep 2.1 below). Then, apply Proposition 1.4.6 to perturb the cross section
s'|a to avoid F} in each fibre (see Substep 2.2 below). Again, since Proposition
1.4.6 is only for maps (not for cross sections), we will use §},|0A : 9A — F to
replace s'|0A, as in Step 1.
SUBSTEP 2.1. Let A be an (I 4 1)-simplex. Suppose that A C U € Y. Then
8 loa : OA — F is a continuous map. Since () holds for any = € A, and
since

diameter(5y(A)) < eo,

we have
diameter(3},(0A)) < ;4 &1 + €o.
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Let 6 = &, + &, + o < 6p. Then there is a y € F such that 3}, (0A) C Bs(y).
Since p(8) < p(3e;) < 3ei41, by Lemma 1.4.4, 5, : 9A — F can be extended
to a map (still denoted by §!;)

§%J:A—>F,

such that 8, (A) C B%EHI (y). Consequently, the extended map 8!, also satisfies
that diameter (5}, (A)) < 2&;41.

SUBSTEP 2.2. Note that 8, (z) ¢ Fy for any # € OA. Applying Proposition
1.4.6 to A (in place of Y with subcomplex Y; = 0A) and to F (in the place of

M with subcomplex N = F}), we obtain a continuous map
A F

such that

(1) 8*+1(x) ¢ Fy for any = € A,

(2) d(3"*1(z), 8L, (x)) < e, for any z € A, and
(3) §*+10A = 3L |0A.

The map 3! defines a cross section s'*! by

s (x) =t (x, 37 (@),

After working out all the (I 4+ 1)-simplices, we obtain a cross section s'*! on
XU+D it is a continuous cross section because it is continuous on each (14 1)-
simplex and s!*1|0A = s!|0A from (3) above.

Recall that diameter(5y(A)) < o and diameter (5, (A)) < Z&/41. Combining
these facts with (x), we have

- - 2
() d(5y (@), 5u(x)) < e+ Jere + o
for any x € A. Combining (x*) and (2) above, we have

2
d(glzjrl(x% Su(z)) <e+ §5l+1 + 2g9 < €141
for any 2 € X1 N U. This is (%) for [ + 1 (in place of ).
STEP 3. By mathematical induction, we can define s! for each I = 0,1,---n as
the above. Let s; = s™ to finish the proof.
1]
The following relative version of the theorem is also true.

COROLLARY 1.4.10. Suppose that p : M — X is a fibre bundle with fibre F
and Fy is a T-invariant sub-simplicial complex of F. Suppose that F has the
property D(m) and that dim(X) < m — dim(Fy). Suppose that X; C X is a
sub-simplicial complex. Suppose that the cross section s : X — M satisfies that
(ty os)(x) ¢ {z} x F1 for any U € U and any x € X1 NU, where U and ty
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are as in the definition of fibre bundle in 1.4.7. Then for any € > 0, there is a
cross section s1 : X — M such that the following three statements are true:
(1) (ty o s1)(x) ¢ {z} x F1, for anyx € U and U € U;

(2) d(s1(x),s(x)) < e for any x € X, where the distance is taken inside the
fibre F';

(3) s1lx, = s|x, -

Proof: In the proof of Theorem 1.4.9, we have essentially proved this relative
version. If fact, in Step 2, we proved that a cross section on a simplex A can be
constructed within arbitrarily small distance of the original cross section such
that
(1) it avoids F} in each fibre, and
(2) it agrees with the original cross section on A, provided that the original
cross section avoids F; on OA.
This is a local version of the Corollary. To prove the Corollary, one only needs
to apply this local version, repeatedly, to the simplices A with A\OA C X\ X;,
from the lowest dimension to the highest dimension.

1]

1.5 ABOUT THE DECOMPOSITION THEOREM

In this subsection, we will briefly discuss the main ideas in the proof of the
decomposition theorem stated in §4. Mainly, we will review the ideas in the
proofs of special cases already in the literature (see especially [EG2, Theorem
2.21]), point out the additional difficulties in our new setting, and discuss how
to overcome these difficulties. This subsection could be skipped without any
logical gap, but we do not encourage the reader to do so, except for the expert
in the classification theory. By reading this subsection, the reader will get the
overall picture of the proof. In particular, how §2, §3, and the results of [Li2] fit
into the picture. We will also discuss some ideas in the proof of the combina-
torial results of §3. This subsection may also be helpful for understanding the
corresponding parts of [EG2], [Li3], and (perhaps) other papers. Even though
the discussion in this subsection is sketched, the proof of Lemma 1.5.4 and
Propositions 1.5.7 and 1.5.7” are complete. We will begin our discussion with
some very elementary facts.

1.5.1. Let A and B be unital C*-algebras, and ¢ : A — B, a unital homomor-
phism. If P € B is a projection which commutes with the image of ¢, i.e., such
that

Po(a) — ¢p(a)P =0, Va € A,

then ¢(a) can be decomposed into two mutually orthogonal parts ¢(a)P =
Pé(a)P and ¢(a)(1 — P) = (1 - P)pla)(1 - P);

¢(a) = P¢(a)P + (1 = P)¢p(a)(1 - P).
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1.5.2. In 1.5.1, let us consider the case that A = C(X). Let F C C(X) be
a finite set. Let unital homomorphism ¢ : C(X) — B and projection P € B
be as in 1.5.1. Furthermore, suppose that there is a point zg € X such that
Po(f)P = ¢(f)P is approximately equal to f(xq)P to within € on F:

lo(f)P — f(zo)P| <&, VfeF
Then
|o(f) = (1 = P)o(f)(1 = P)@ f(xo)P|| <&, VfeEF

More generally, if there are mutually orthogonal projections Py, P, ---, P, € B,
which commute with ¢(C (X)), and points x1,z2,- -+, 2, € X such that

(%) lo(f)Pi— f(x:)Pi|| <e, VfeF, i=1,2--n,

then

(%) l6(f) = (1 =D P)e(HHA =Y P)e> fl)P| <e VfeF
=1 =1 =1

Here, we used the following fact: the norm of the summation of a set of mutu-
ally orthogonal elements in a C*-algebra is the maximum of the norms of all
individual elements in the set. In this paper, this fact will be used many times
without saying so.

EXAMPLE 1.5.3. Let F' C C(X) be a finite set, and £ > 0. Choose 1 > 0 such
that if dist(z,2’) < n, then |f(x) — f(z')| < ¢ for any f € F.

Let T1,%2, T € X be distinct points, and
Uy 3 z1,Us > xa,---,U, > x, be mutually disjoint open neighborhoods
with U; C By (x;) (= {z € X | dist(z,z;) <n}).

Consider the case that B = M4(C) and let ¢ : C(X) — M,(C) be a homo-
morphism. If P;, i = 1,2,---,n are the spectral projections corresponding to
the open sets U; (see Definition 1.2.4), then the projections P; commute with
#(C(X)) and satisfy (*) in 1.5.2. Therefore, the decomposition

n n

(%) le(f) = (=3 P)o((1 =D P)&) )Pl <e,

=1 i=1

holds for all f € F.

We remark that if #(SP¢ N U;) (counting multiplicities) is large, then, in the
decomposition, rank(P;)(= #(SP¢ N U;)) is large.

In the setting of 1.5.2, not only is (**) true for the original pro-
jections Py, P,---,P,, but also it is true for any subprojections
P < Pi,ps < Py,---.p, < P,, with € replaced by 3e. Namely, the fol-
lowing lemma holds.
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LEMMA 1.5.4. Let X be a compact metrizable space, and write A = C(X).
Let FF C A be a finite set. Let B be a unital C* -algebra, and ¢ : A — B
be a homomorphism. Let ¢ > 0. Suppose that there are mutually orthogo-

nal projections Py, Ps,---, P, in B and points x1,Ts, -, T, tn X such that
Po(f)=o(f)P; (i=1,2,---,n) for any f € C(X) and such that
(%) l6(f) P — f(zi)Pill <e (i=1,2,---,n) forany fe€F.

If p1,p2,- -+, pn are subprojections of Py, Ps,- -+, P, respectively, then
[¢(f) — (1 - Zpi)¢(f)(1 - sz) @ Zf(%)ﬁz” < 3¢,
i=1 i=1 i=1

forany f e F.

(Notice that the condition that the projections P; commute with ¢(f) does not
by itself imply that the p; almost commute with ¢(f), but this does follows if
(*) holds.)

Different versions of this lemma have appeared in a number of papers (espe-
cially, [Cu], [GL], [EGLP]).

Proof: The proof is a straightforward calculation.
One verifies directly that

H(ZPiW(f)(ZPi) _Zf(xi)PiH <e, VfeF

Hence on multiplying by 1 — Y p; and > p; (one on each side),

11 =Y "p)o(HQ_pll <e and (D p)e(f)(L =Y pi)ll <&, Vf € F;

on multiplying by " p; on both sides,

||(sz)¢(f)(zpz) - Zf(mz)sz <e, VfEF.

The desired conclusion follows from identity

S(f) = (X =D p)+ Y p)d(N)(X =D _pi)+ Y pi)-

n

REMARK 1.5.5. One may wonder why we need the decomposition given in the
preceding lemma. In fact, the decomposition (**) of 1.5.2, with the original
projections, has a better estimation. Why do we need to use subprojections?
The reason is as follows.

Suppose that the C*-algebra A = C(X), the finite set F© C A, the points
ri,To, -, T, € X, and the open sets Uy 3 x1,Us 2 xo,---,U, O x, are as in
1.5.3. Let us consider the case B = M,(C(Y)) (instead of M,(C) in 1.5.3),
where Y is a simplicial complex.
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Let ¢ : C(X) — Mo(C(Y)) be a unital homomorphism. As in 1.5.3, let P;(y)
denote the spectral projection of ¢|, corresponding to the open set U; (see
1.2.8). Then for each y € Y, we have the inequality (**) above,

n n n

() () — (1= Piw)d(HW) (A=Y Pi(y) &> _ f(x:)Pi(y)| <& Vf € F.

i=1 i=1 i=1

Unfortunately, P;(y) does not in general depend continuously on y, and so this
estimation does not give rise to a decomposition for ¢ globally.

On the other hand, one can construct a globally defined continuous projec-
tion p;(y) which is a subprojection of P;(y) at each point y, and is such
that rank(p;) is not much smaller than min,cy rank(P;(y)) (more precisely,
rank(p;) > minyey rank(P;(y)) — dim(Y")), by using the continuous selection
theorem of [DNNP] as 1.5.6 below.

Once this is done , then for each y € Y, applying the lemma, we have

||¢ sz )(1_sz @Zf xz pz | <3€7 Vf S
i=1

Since the projections p;(y) depend continuously on y, they define elements
p; € B. We can then rewrite the preceding estimate as

lo(f 1721» 1721)1 Z (z:)pill < 3¢, Vf € F.

i=1

1.5.6. We would like to discuss how to construct the projections p; referred to
in 1.5.5, using the selection theorem [DNNP 3.2].
To guarantee p; to have a large rank, we should assume that P;(y) has a large
rank at every point y. So let us assume that for some positive integer k; and
for every point y € Y,

#(SP¢, NU;) > k

equivalently, rank(P;(y)) > k;.
For the sake of simplicity, let us fix ¢ and write U for U; (U C X), P for P;, k
for k;, and p for the desired projection p;. So for every point y € Y,

#(SPp, NU) > k,

equivalently, rankP(y) > k. Let us construct a projection p(y), depending
continuously on y, such that rankp(y) > k — dim(Y") and p(y) < P(y) for each
yev.

For each fixed yo € Y, since SP¢, NU is a finite set, one can choose an
open set U’ C U’ C U such that SP¢, NU' = SP¢, NU. In particular,
SP¢,, N(U\U') = (). By Lemma 1.2.10, there is a connected open set W > yq
in Y such that o

SPo, N ([T\U') = 0, Wy € W.
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Let PY (y) be the spectral projection of ¢, corresponding to open set U’. By
Lemma 1.2.9, this depends continuously on y, and so defines a continuous
projection-valued function

PY . W — projections of M,(C).

Furthermore, P" (y) < P(y) for any y € Y and, for each y in the (connected)
subset W,

rank(P" (y)) = #(SP¢,, NU’) = #(SP¢,, NU) > k.

Once we have the above locally defined continuous projection-valued functions
P (y), the existence of a globally defined continuous projection-valued func-
tion p(y) follows from the following result.

PROPOSITION ([DNNP 3.2]). Let Y be a simplicial complex, and let k be a
positive integer. Suppose that VW is an open covering of Y such that for each
W € W, there is a continuous projection-valued map PV : W — M,(C)
satisfying

rankPV (y) > k forall ye W.

Then there is a continuous projection-valued map p:Y — My(C) such that
for eachy €Y,

rank p(y) >k —dim(Y), and

ply) < \{P"(y); Wew,yeWw}

Let p(y) be as given in the preceding proposition with respect to PV as defined
above. Then as P (y) < P(y) for each W, p(y) < P(y) also holds .

Recall, we write U for U;, P for P; and p for p;. So, we obtain a projection
p; such that p;(y) is a subprojection of P;(y) for every y. Since Pi(y), ¢ =

1,2,---,n, are the spectral projections corresponding to U;, i = 1,2,---n,
which are mutually disjoint, the projections P;(y), ¢ = 1,2, - - -, n, are mutually
orthogonal, and so are the projections p;, ¢ = 1,2,---,n. Combining this

construction with Lemma 1.5.4, we have the following result.

PROPOSITION 1.5.7.  Let X be a simplicial complex, and F C C(X) a fi-
nite subset. Suppose that € > 0 and n > 0 are as in 1.5.3, i.e., such that if
dist(z,x') < n, then |f(x) — f(2')| < & for any f € F.

Suppose that Uy,Us, - -+, Uy, are disjoint open neighborhoods of (distinct) points
x1,%2, &y € X, respectively, such that U; C By(z;) for all 1 < i < n.
Suppose that ¢ : C(X) — M4(C(Y)) is a unital homomorphism, where Y is a
simplicial complex, such that

#(SPp, NU;) > ki for1 <i<mn, and for ally €Y.
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Then there are mutually orthogonal projections p1,p2, -+, pn € Me(C(Y)) with
rank(p;) > k; — dim(Y') such that

6(f) = pod(f)po © Y flwi)pil <3e  forall f € F,

i=1
where po =1 =Y p;. Consequently,

n

rank(po) < (#(SPg,) — > ki) +n - dim(Y).
i=1

(Note that #(SP¢,)) is the order of the matriz algebra Mo(C(Y)).)
(In fact, the above is also true if one replaces M,(C(Y)) by PM.(C(Y))P,
with the exact same proof.)

1.5.8. Proposition 1.5.7 is implicitly contained in the proof of the main decom-
position theorem—Theorem 2.21 of [EG2], and explicitly stated as Theorem
2.3 of [Li3], for the case of dimension one. N

To use 1.5.7 to decompose a partial map QS:;f’m, C Mg (C( X)) —
My j)(C(Xo 5)) of the connecting homomorphism ¢, mr @ Apm — Ay in
the inductive system (A, @m,m’), we only need to write

¢f;f,m/ = ¢ ®idpn,g,

(see 1.2.9), and then decompose ¢ (cf. 1.2.19). In [EG2], we proved that such a
map ¢ (for m' large enough) satisfies the condition in Proposition 1.5.7, if the
inductive limit is of real rank zero. More precisely, we constructed mutually
disjoint open sets Uy, Us, - - -, U,,, with small diameter, such that Z?=1 k; is very
large compared with (#(SP¢,) — o ki), where k; = mingey #(SPo, N U;).
(See the open sets W; in the proof of Theorem 2.21 of [EG2].) Therefore,
in the above decomposition, the part E?:l f(z;)p;, which has rank at least
(3" ki) —n-dim(Y'), has much larger size than the size of the part po¢(f)po,
which has rank at most (#(SP¢,) — >.1" | ki) + n - dim(Y), if n - dim(Y) is
very small compared with #(SP¢, ). (Notice that if ¢ is not unital, then py =
¢(1)—>2i_, pi and #(SP¢,,) = rank¢(1).) (We should mention that n-dim(Y")
is automatically small from the construction. This is a kind of technical detail,
to which the reader should not pay much attention now. The number n depends
only on 7 above, but #(SP¢,) could be very large as m’ (for ¢, m/) is large.
In particular, it could be much larger than dim(Y") (note that ¥ = X,/ ; ), if
the inductive limit has slow dimension growth.)

The above construction is not trivial. It depends heavily on the real rank zero
property and Su’s result concerning spectral variation (see [Su]).

What was proved by this construction in [EG2] is the decomposition theorem
for the real rank zero case, as mentioned in the introduction.

1.5.9. For the case of a non real rank zero inductive system, we can not
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construct the mutually disjoint open set {U;} as described in 1.5.8. Notice
that in the decomposition described in 1.5.8, the major part 1 defined by

Y(f) :== i, f(z;)p; has property that

Nrank 1 Nrank o~
SPy, = (p1) ) (1)2)’ o rank( pn)}

i ’I’L

That is, the spectrum consists of several fixed points {x;}? ;(C X) with mul-
tiplicities. This kind of decomposition depends on the real rank zero property.
For the decomposition of the simple inductive limit algebras, we are forced to
allow the major part to have variable spectrum— SP, varies when y varies.
The following results can be proved exactly the same as the way Proposition
1.5.7 is proved (see 1.5.6 and 1.5.4). (Proposition 1.5.7 is a special case of the
following result by taking a;(y) = x;, the constant maps, and U;(y) = U; 3 x;,
the fixed open sets.)

PROPOSITION 1.5.7°. Let X be a simplicial complez, and F C C(X), a
finite subset. Suppose that € > 0 and n > 0 are as in 1.5.3, i.e., such that if
dist(z,x') < n, then |f(x) — f(2')| < e for any f € F.

Suppose that ay, a9, ---ay @ Y — X are continuous maps from a simplicial
complez Y to X. Suppose that Uyi(y),Us(y), -, Un(y) are mutually disjoint
open sets satisfying U; C By(a;(y)) and satisfying the following continuity
condition:

For any yo € Y and closed set F C U;(yo), there is an open set W 3 yq such
that F C U;(y) for any y € W.

Suppose that ¢ : C(X) — Mo(C(Y)) is a unital homomorphism such that

#(SPp, (\Uiy) = ki, Vie{l,2,---,n}, y€eY,

Then there are mutually orthogonal projections p1,pa, -+, pn € Me(C(Y)) with
rank(p;) > k; — dim(Y") such that

le(f) () — po(w)e(f ) @ Zf aW)pi)l <3e,  VfeF,

where po = 1 =Y p;. Consequently,

n

rank(po) < (#(SPg,) — > ki) +n dim(Y).

i=1

(Tt is easy to see that the proof of Proposition 1.5.7 (see 1.5.6) can be generalized
to this case. Notice that the above continuity condition for U;(y) assures that
U’ C Us(y) for any y € W, where U’ is described in 1.5.6 corresponding to o
and U = U;(yo). Then it will assure that PV (y) < P(y), where PV (y) is the
locally defined continuous projection-valued function described in 1.5.6.)
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1.5.10. In the above proposition, if one can choose the maps a; : ¥ — X
factoring through the interval [0, 1]—the best possible 1-dimensional space—as

a;: Y 45 00,1] -5 X,

then the part +, defined by ¥(f)(y) = Y i, f(ai(y))pi(y), factors through
C10,1] as

0x) 5 o(0.1) = (@M CO)N@ ).

where b* is induced by b: [0,1] — X and 1’ is defined by

() =D Fai)pi(y).
=1

In particular, if

n

(1) D ki >> (#(SP,) = > ki),

i=1

where k; = minyey #(SP¢, NU;), then we obtain a decomposition with major
part factoring through the interval algebras—direct sum of matrix algebras
over interval.

1.5.11. The ideal approach for obtaining a decomposition of ¢, »,y with ma-
jor part factoring through an interval algebra, is to reduce it to the setting
of Proposition 1.5.7’, that is, to construct continuous maps {«a;} (factoring
through interval) and the mutually disjoint open sets {U;} as described in
1.5.7, such that (1) in 1.5.10 holds for homomorphism ¢ induced from the
partial connecting homomorphism ¢;’f)m, described in 1.5.8.

Unfortunately, it seems impossible to realize such a construction globally.

A consequence of the property of «; described in Proposition 1.5.7’, is the
following property of «;, called property (Pairing):

PROPERTY (PAIRING): For each y € Y, there is a subset of SP¢,, which can
be paired with

{al(y)Nkl ) Q2 (y)Nkzﬂ T an(y)Nkn}

to within 7, counting multiplicities. (See 1.1.7 (b) for the notation x
Even though one can not construct the continuous maps {«;} (factoring
through interval [0, 1] and open sets {U; } to satisfy the conditions in Proposition
1.5.7" together with the condition (1) in 1.5.10, for the connecting homomor-
phisms in the simple inductive limit, Li constructed the maps {a;} to satisfy
the above weaker property (Pairing) and (1) in 1.5.10.

In fact, Li proves the following lemma.

Nk.)
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LEMMA. Suppose that im(A.,, ¢m, m/) is a simple AH-inductive limit with slow
dimension growth and with injective connecting homomorphisms. For any n >
0, and A,,, there are a § > 0 and an integer N > m, such that for any m’ > N,
SP(¢y3) i)y can be paired with

O(y) = {oa ()™, aa(y)~"2, -, o (y)~ "}

to within n, counting multiplicities, for certain continuous maps a; : Y — X
factoring through [0,1], where X = X,,; and Y = X, ;. Furthermore, if
PR O ) g hen Ty > int(OK L <2

k) y K, then T; > int(0K) and therefore L < %,
provided 6 K > 2, where int(6K) is the integer part of SK as in 1.1.7.

(This lemma is Theorem 2.19 (see also Remark 2.21) of [Li2]. The additional
part about the size of T; could be obtained by inspecting the proof of the
theorem (see 2.16 and 2.18 of [Li2]).) .

(Note that when we write ¢, = ¢ ® id[y, i), we have SP(¢,, ), = SP¢,.)

In particular, the condition (1) in 1.5.10 holds, since the right hand side is zero.
Therefore the following theorem will be useful for our setting, which is the first
theorem in §4.

we denote

THEOREM 4.1. Let X be a connected finite simplicial complex, and F C C(X)
be a finite set which generates C(X). For any € > 0, there is an n > 0 such
that the following statement is true.

Suppose that a unital homomorphism ¢ : C(X) — PM4(C(Y))P (rank(P) =
K) (where Y is a finite simplicial complex) satisfies the following condition:
There are L continuous maps

a1,G2, - ",0L : Y — X

such that for each y € Y, SP¢, and ©(y) can be paired within n, where

O(y) = {ar(y)™", az(y)™", -+ ar(y)~""}

and Ty, Ty, - -+, T, are positive integers with
Ty +To+ -+ T, = K = rank(P).

Let T = 25 (dim X + dim Y)3. It follows that there are L mutually orthogonal
projections py,pa, -+, 0. € PMe(C(Y))P such that

(i) 1(5)(w) = PO W)po(v) © i f(as(w)Ipi(v) | < & for any f € F and
y €Y, where pg = P — Zlepi;

(ii) lpo(y)e(f)(y) — o(f)WIpo(W)|| < & for any f € F and y € Y;

(1) rank(p;) > T; = T for 1 <i < L, and hence rank(py) < LT.

(In the above, i can be chosen to be any number satisfying that if dist(z, ") <
27, then |f(z) — f(2')| < §, Vf € F.)

(Note that we can not make the number T' in the above theorem as small as
dim(Y’), as in Proposition 1.5.7 or 1.5.7’, for some technical difficulties. This
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is the reason that we are forced to use the stronger condition of very slow
dimension growth instead of slow dimension growth in our main decomposition
theorem.)

1.5.12. The proof of the above theorem is much more difficult than that of
Proposition 1.5.7 or 1.5.7’. In particular, Theorem 2.1 (see §1.2 above), and
results in §3 are only for the purpose of proving the above theorem. With
these results in hand, the proof of Theorem 4.1 will be given in 4.2-4.19. Then
the main decomposition theorem described in the introduction—Theorems 4.35
and 4.37—will be proved based on Theorem 4.1 and the results from [Li2].
We would like to explain the difficulties, and how Theorem 2.1 and §3 will be
used to over come the difficulties.

Now, our notations are as in Theorem 4.1 above.

Fix i. Let U;j(y) = {# € X | dist(z,a;(y)) < n}, then from the condition of
Theorem 4.1, we have

#(SPo, NUi(y)) = Ti.

Let P;(y) be the spectral projection corresponding to the open set U;(y). This
is not a continuously defined projection. But using the same procedure in 1.5.6
(see 1.5.7 and 1.5.7"), one can construct a globally defined projection p;(y) such
that p;(y) < F;(y), and rank(p;(y)) = T; — dim(Y").

But unfortunately, those p;(y) are not mutually orthogonal, since U;(y) are not
mutually disjoint, and therefore P;(y) are not mutually orthogonal.

1.5.13. If we assume that the maximum spectral multiplicity of ¢ is at most
Q, then for each y € Y, we can divide the set SP¢, (with multiplicity)
into L mutually disjoint subsets Fi, Es,---, E, such that, for each A € FEj;,
dist(A, ai(y)) <mn, i =1,2,---, L, and such that

T, — Q< #(E) <T;+Q,i=1,2,---, L,

counting multiplicity. By {F;} being mutually disjoint, we mean that if an
element A\ € SP¢, has multiplicity k, then we put the entire & copies of A into
one of FE;, without separating them. (In the above, ¢, a;, T;, and L are all
from Theorem 4.1.)

(Note that if we require that #(E;) = T;, then we can not guarantee {FE;} are
mutually disjoint, because of spectral multiplicity.)

Then we can construct mutually disjoint open sets Uy (y), U2(y), - -+, UL (y) such
that E; C U;(y) and U;(y) C By(ai(y)). We can further assume that these

open sets have mutually disjoint closures. That is U;(y) N U;(y) = 0, for
27&]7 Za] € {1a2aaL}

(The open sets from such construction usually do not satisfy the continuity
condition in Proposition 1.5.7’, so we can not apply Proposition 1.5.7°. We
need to check the proof of it (e.g. the argument in 1.5.6) against our new
setting.)
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For each yp € Y, there is an open set W (yg) 2 yo such that

SP¢, C Ui(yo) U Uz(yo) U+~ UUL(yo), Yy € W(yo).

As in 1.5.6, one can construct the mutually orthogonal locally defined contin-
uous projection-valued functions

pVwo . W (yo) — projection of M,(C), i =1,2,---,L,

K2

where PiW(yO)(y) (y € W(yo)) are the spectral projections of ¢, corresponding
to open sets U;(yo) (or SP¢, NUi(yo)). Furthermore, rankPiW(yo) = #(E;) >
T, — Q.

(Note that we do not need to introduce the smaller open set U’ as in 1.5.6,
because it is automatically true that SPé, N(Ui(y0)\Ui(yo)) = 0, as {Ui(yo) }=y
are mutually disjoint and SP¢, C Ui(yo) U U2(yo) U --- U UL(¥0)-)

THEOREM 2.1 GUARANTEES THAT {2 IS CONTROLLED, IT IS AT MOST dim(X )+
dim(Y’), WHICH WILL BE VERY SMALL COMPARED WITH T}, IN OUR FUTURE
APPLICATION.

1.5.14. There is a finite subcover W = {W(y;)}; of the open cover {W (y)}yev
of Y.

We can use the selection theorem [DNNP 3.2] (see 1.5.6 above) to construct
global defined continuous projection valued functions p;(y), ¢ = 1,2,---, L, of
ranks at least T; — Q — dim(Y"), such that

(+) pi(y) < VAP Y (y) | y € W(y;) and W(y;) € W},

For any i1 # i2 € {1,2,---,L}, W(y;) € W, and y € W(y;), we have
Pi1 w )(ZU)LPi2 w )(y)

Unfortunately, when y € W (y;,) N W(y,,), we DO NOT have

B () LR ().

i1

Therefore, one CAN NOT conclude that p;, (y)Lp;,(y) from the above (*).
(Notice that, in the above, PiW(yO)(y) is the spectral projection of ¢, with
respect to the open set U;(yo) (not U;(y)), and in general, U;, (y;, )NUi, (y4,) # 0
if j1 # j2. In Propositions 1.5.7 and 1.5.7’, we do not have such problem, since
PW (y) is the spectral projection of U’, which is an open subset of U; (does not
depend on y) in the case of Proposition 1.5.7, or which is an open subset of
U;(yo) N U;(y) in the case of Proposition 1.5.7’; see 1.5.6 and the explanation
after Proposition 1.5.7’ for more details.)

1.5.15. For any W € W and y € W, define Q¥ (y), i = 1,2,---,L, to

be the spectral projections of ¢ at point y with respect to the open sets
N wyynweoy Uily;),i = 1,2,---, L. These are subprojections of PV (y).
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The advantage of using these projections is the following fact. For any
y € W(y;,) "N W(y;,), we DO have

QY W) (y) 1@l ) (y)

for any i1 # iy € {1,2,---, L}, because U;, (y;j,) N U, (yj,) = 0,

N wpnw 20y Ui 05) © Ui (W) and (g wiyyow )20y Vie (05) ©
Ui, (yj,) (the second inclusion follows from W (y;,) N W (y;,) # 0).

Then we apply the selection theorem to Q) (instead of PYV) to find globally
defined continuous projection-valued functions p;(y) such that

pi(y) < VAR (y) | y € W(y;) and W(y;) € W},
and such that

rank(pi(y) = min {rank(Q}(y)} - dim(Y).

(The readers may notice that Q! (y) are not continuous on W, so one can not
apply the selection theorem directly. But one can introduce the open subsets
U’ as in 1.5.6 for [, W ()W 0} Ui(y;) (instead of U;). We omit the details.)
This timea Piy (y)J—p’LQ (y) for any Z‘1 7é Z.2 € {1a 27 Ty L}

To guarantee rank(p;(y)) to be large—mot too much smaller than 73,
mingewew {rank(Q (y))} must be large.

1.5.16. Fixed yo € Y with W (yo) € W. Recall from the definitions of U;(yo)
and W(yo) (see 1.5.13),

SP¢, = (SP¢, N U1 (yo))U(SPp, NUsz(yo))U- - -U(SP¢, NU.(y0)) ,Vy € W (yo).

Define EZW(yD)(y) := SP¢, N Ui(yo)- (EW(yO)(yO) is the set F; in 1.5.13, with

yo in place of y.) Then for each y € W € W, {E¥ (y)}_, is a division of SP¢,
(in the terminology in §3, it will be called a grouping of SP¢, ).
From 1.5.15,

rank(QY (y)) = # [ SPg, N N Ui(y;)

{5: W(y;)nW#0}

=# N E"w).
{7: W(y; ) NW#0D}

Roughly speaking, for our construction in 1.5.15 to work, we need the following
condition.

CONDITION: For each y € Y, the number # (. yewewy EV (y)) is large—
not too much smaller than T;.
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(This condition is a little weaker than Q! (y) to be large. But we are going to
use some special open cover so that the above weaker condition will be enough.
We are not going to discuss details here, and the reader does not need to pay
much attention.)

But in 1.5.15, we only have #(E}Y (y)) > T; —. To obtain the above condition,
we need the combinatorial results in §3. We are going to discuss it now.

1.5.17. For an intersection to be large, it will be certainly natural to require
the number of sets involved in the intersection be as small as possible. As in
the setting of 1.5.16, we should require that for any y € Y, the number of sets
in W which cover y—#{W | y € W € W}— is not too large.

From the definition of covering dimension, we know that for any n-dimensional
compact metrizable space Y and any finite cover U of Y, there is a refined cover
Uy of U such that for any point y € Y, there are at most n + 1 open sets in U
to cover the point y. In particular, for a simplicial complex Y, the construct
of such open cover is given in 1.4.2 (a).

Let {Wy}ererteX(Y) be the open cover of Y given in 1.4.2(a). Recall that, for

any vertices yo, Y1, -, Yk, the intersection ﬂle Wy, is nonempty if and only if
Yo, Y1, - -, Yk share one simplex.

For any finite open cover, there is a finite open cover of the above form (for
some refined simplicial complex structure), refining the given open cover.
Without loss of generality, we can assume the open cover W = {W(y;)} in
1.5.14 is of the above form. Hence {y,} are vertices of the simplicial complex Y’
and W (y;) are the open sets W, defined above. Then the condition in 1.5.16
becomes the following.

For any simplex A of Y with vertices yo, Y1, ", Yk,

4 (EZ_W(yo)(y) N ElW(yl)(y) A---N EZVV(yk)(y)> >T, —C

for any y € Wi(yo) N W(y1) N -+ N W(yx), where C is not too large.
(In the proof of Theorem 4.1, the number C will be chosen to be
2801 4+ dim(Y)(dim(Y) + 1)), where Q is the maximum spectral multiplic-
ity which is bounded by dim(X) + dim(Y"), by Theorem 2.1.)

1.5.18. To make the discussion simpler, we suppose that the homomorphism
¢ has distinct spectrum at any point y € Y. That is, the maximum spectral
multiplicity of ¢ is one. (Of course, in the proof of Theorem 4.1 in §4, we will
not make this assumption.)

If the simplicial structure is sufficiently refined, by the distinct property of
the spectrum, we can assume the following holds: For any simplex A with
Z = Uerertex(A) W(y)( D A), there are continuous maps

Ay A,y A s Z— X,
where K = rank(P) as in Theorem 4.1, such that
SPo, = {A1(y); A2(y), -+, Ax(y)}, Vy €Y.
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Then for any y € Vertex(A), the division (or grouping) EZW (y)(y) of SP¢, gives
rise to a division (or grouping) F;(y) of {A1, A2, -+, Ax}. In the case of distinct
spectrum, the condition in 1.5.13 concerning #(E;) is #(E;(y)) = T;. The

condition at the end of 1.5.17 is

# N Ew|=n-c

yeVertex(a)

This is of course not true in general, unless we make some special arrangement.
But with the following lemma, we can always subdivide (or refine) the sim-
plicial complex and introduce the groupings of {A1, A, -+, Ax} for all newly
introduced vertices, to make the above true for any simplex of new simplicial
structure (after subdivision).
The following formal definition of grouping is in 3.2 of §3.
DEFINITION. Let E = {1,2,---, K} be an index set. Let Ty, T3, -+, T; be non
negative integers with

Th+T+---+T, =K.

A grouping of E of type (11,75, -+,T,) is a set of L mutually disjoint index
sets B, Fs,---, E, with

E=F UEU---UE,,

and #(E;) =T; for each 1 < j < L.

LEMMA. Suppose that (A,o) is a simplex, where o is the standard
simplicial structure of the simpler A. Suppose that for each wvertexr
x € Vertex(A,o), there is a grouping FEi(x),E2(x),---,E.(x) of E
of type (T1,Ts,---,T}).

It follows that there is a subdivision (A, T) of (A, o), and there is an extension
of the definition of the groupings of E for Vertex(A,c) to the groupings of E
(of type (Th, T, ---,Ty)) for Vertex(A,7) (D Vertex(A, o)) such that:

(1) For each newly introduced vertex x € Vertex(X, ),

Ej(z) C U E;(y), j=1,2,---,L.
ye Vertex(a,o)
(2) For any simplex Ay of (X, 7) (after subdivision),

dim(A)(dim(A) + 1)
: =12

# () Ei@) =T -

ze Vertex(A,)

1.5.19. Condition (1) above is important for the following reason. In 1.5.13,
when we define E; as a subset of SP¢,, we require that dist(),a;(y)) < n for
any A € E;. This condition guarantees that the projection P}V in 1.5.13 (or

QY in 1.5.16) satisfies that ¢ (f)(y) P/ (y) (or ¢(f)(y)QY (y)) is approximately
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equal to f(a;(y)) P! (y) (or f(a;(y))QY (y)) to within e, which is the condition
(*) in Lemma 1.5.4.

We consider the grouping of E as the grouping of the spectral functions
{A1, A2, -+, Ak} in 1.5.18. Then the condition (1) in the lemma implies the
following fact. If for any vertex yo € Vertex(A, ) and any element k € E;(yo),
we have dist(Ak(y),a:(y)) < n, Vy € A, then for any newly introduced
vertex y; € Vertex(A,7) and any element k' € FE;(y;1) (here E;(y1) is the
set FE; for the newly introduced grouping for the vertex y;), we still have
dist(Aw (y), ai(y)) <, Yy € A.

1.5.20. In fact, in the proof of Theorem 4.1, we need the relative version of the
result: Suppose that there are a subdivision (0A,7") of the boundary (0A, )
and groupings for all vertices in Vertex(9A,7’) (D Vertex(A, o)), such that
the above (1) holds for any vertex in Vertex(9A,7') and such that the above
(2) holds for any simplex A; of (JA,7') with dim(9A) in place of dim(A).
Then there is a subdivision (A,7) of (A, o), and groupings for all vertices
in Vertex(A,7) such that the above (1) and (2) hold and in addition, the
following holds: the restriction of (A, 7) onto the boundary A is (9A, 7') and
the grouping associated to any vertex in Vertex(0A,7)(= Vertex(9A,7’)) is
the same as the old one.

In §3, we will prove the above relative version. In fact, to prove the abso-
lute version will automatically force us to prove the stronger one—the relative
version.

Another complication comes from the multiplicities, since we can not assume
the spectrum to be distinct. In this case, even the definition of grouping needs
to be modified.

1.5.21. To give the readers some feeling about the lemma in 1.5.18, we shall
discuss the special case of dim(A) = 1. That is, A = [0, 1], the interval.

In this case, we have two groupings for the end points, {E1(0), E2(0),--- E.(0)}
and {E1(1), Ex(1),--- EL(1)} of E of type (T1,T5,---,T;). Then we need to
introduce a sequence of points

O=to<ti<to< - <tph1<tp,=1,

(this give rise to a subdivision of A = 1[0,1]) and define groupings
{E1(t}), Ea(t), - - EL(t;)} for j = 1,2,---n — 1 such that conditions (1) and
(2) in the lemma holds.

The condition (1) in the lemma means

E;(t;) C E;(0)UE;(1), Vie {1,2,---L}, j€{1,2,---,n—1}.
The condition (2) in the lemma means
#(Ei(t;) N Ei(tj4)) 2 T — 1,
i.e., for any 4, and any pair of adjacent points t;,t;1, the set E;(t;41) differs

from the set E;(t;) by at most one element.
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Let us discuss how to make the above (2) hold for Fy. Suppose that F4(0) and
E4(1) are different (otherwise, we do not need to do anything for them). We can
modify E;(0) to obtain E1(t1) as follows. Taking one element A in E;(1)\E1(0)
to replace an element p in F1(0)\E;(1), and define it to be E;(t1). So Fy(¢1)
contains A but not p. Since A ¢ E1(0), it must be in some E;(0), ¢ > 1. In the
set E;(0), after we take out A and put it into Eo(¢1), E; has one element less
than it should have, so we can put p in it, and call it F;(¢1). For j # 1 or 4,
E;(t1) should be the same as E£;(0). In such a way, we construct the grouping
for t1, which satisfies the above (2) for the pair 0,¢;. Furthermore, compare
to {F;(0)};, the new grouping {E;(t1)}; is one step closer to the grouping
{E;(1)};. Repeating the above construction (e.g., for ¢; in place of 0) we can
construct F;(t2) and so on. Finally, we will reach the grouping at the other
end point 1 € [0, 1].

If one does not require the condition (1), the above is the complete proof of
the lemma for the one-dimensional case.

1.5.22. Since we require the condition (1), when we add an element A\ €
E1(1)\E1(0) into E1(0) to define F;(¢1) (as in 1.5.21), we shall carefully choose
the element p € E1(0)\E1(1) to be replaced by A. In §3, we shall prove the
following assertion: For any A € F;(1)\E1(0), there is p € E1(0)\E1(1) to
satisfy the following condition: let F' = (F1(0)\{u}) U{A}; the set E\F can be
grouped into F}, ES, -+, E! (#(E!) =T,), in such a way that
E; C E;(0)U E;(1).

(Such an element y is the element we should choose.) This is Lemma 3.9 with
E;(0) U E;(1) in place of H;.

With the above ideas in mind, it should not be difficult (hopefully) to read

the first part of §3, which does not involve multiplicity. The main step of §3 is
contained in the proof of Lemma 3.11.

1.5.23. In the case with multiplicity, there are two possible ways of proceeding.
1. Define a grouping of
B= (" 050 o A7)

to be a (set theoretical) partition of E as a disjoint union of L sets F =
FEyUEyU---E,. Using this definition, we have to allow that, at different
vertices, the groupings may be of different types. That is, #(E;) may be
different for different vertices. (One can compare with T; —Q < #(E;) < T; +Q
in 1.5.13.)
2. Define a grouping of

E = {)\fl\/wl’ )\;wg’ . 7)\;11%

to be a collection of L subsets F1, Fs, -+, FE, with
ol o) i
E; ={\ p17)‘2p27"'a)‘kpk}a
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where 0 < pg < wj, such that

L
Zpizwi, foreach i =1,2,---,k.
j=1

The grouping is called to be of type (T1,T5,--,T.) if
k: .
#(EJ):sz:TJ7 for eaChj:1727~-~,L.
i=1

In this way, as will be seen, all the groupings corresponding to vertices of
a simplicial complex (as in the proof of Theorem 4.1), may be chosen to
be of the same type. But the conclusion (2) in the lemma should be modi-
fied. Instead of #(mzeVertex(Al) E;(x)), 1=1,2,---,L to be big, we require

#(ﬂmeVertex(Al)on(x))7 j=1,2,---, L, to be big, where for any set F' with

multiplicity, F' is the subset of F' consisting of all such elements X; that {\;"*}

are entirely inside F'. (See 3.22 for detailed definition of F )

In fact, either approaches can be carried out for our purpose. It turns out that
the second approach is shorter and more elegant. Therefore we shall take this
approach.

Even though, in our approach, it is allowed to separate some set {A7""} into
different groups F; of the grouping, we should still group as many whole sets
{)\J-ij} of the index set {AT™*, A2, ---, A"} as possible into the same set
E; of {Ey, Es, -, E,}. Assumption 3.27 and Lemma 3.28 are for this purpose.
(One needs to pay special attention to the definition and properties of G in
3.25.) Except this idea, all other parts of the proof are the same as the case of
multiplicity one.

1.5.24. Once we have the combinatorial results in §3, and the explanations
in 1.5.1-1.5.19, it will not be hard to understand the proof of Theorem 4.1,
though there are some other small techniques, which will be clearly explained
in the proof (see 4.2-4.19).

1.5.25. Combining Theorem 4.1 and the result of [Li2] (see the lemma stated
in 1.5.11), we can obtain a decomposition ¢1 @1 of ¢y, n,s (for m’ large enough)
such that the major part 1 factors through an interval algebra.

But to deal with the part ¢1, we should add to it, a relatively large (comparing
with ¢1) homomorphism ¢9, which factors through a finite dimensional C*-
algebra—or which is defined by certain point evaluations (on a d-dense subset
of X,,; for some small number ¢).

In [Li3], Li deals with this problem by another decomposition, taking such a
homomorphism out of the part 1. (She only proved the one dimensional case.)
We take a different approach. Going back to the construction of the maps «;
in [Li2] (see the lemma inside 1.5.11 above), we can choose sufficiently many
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of them to be constant maps (see Lemma 4.33 in §4 below). Therefore ¥
automatically has such a part defined by point evaluations.

We believe that our approach is easier to understand than Li’s approach, though
the spirit is the same. Furthermore, our decomposition is a quantitative version
(see Theorem 4.35), and is stronger than Li’s theorem even in the case of one
dimensional spaces. (This will be important in [EGL].)

We shall not use any result from [Li3]. But we encourage the reader to read
the short article [Li2], on which our proof heavily depends.

1.6 SOME UNIQUENESS THEOREMS AND A FACTORIZATION THEOREM

First, this subsection contains some uniqueness theorems. In general, a unique-
ness theorem states that, under certain conditions, two maps ¢, % : A — B (ho-
momorphisms or completely positive linear contractions between C*-algebras
A and B) are approximately unitarily equivalent to each other to within a given
small number € on a given finite set ' C A, that is, there is a unitary u € B
such that

lo(f) —uy(flu*l| <e, VfeF

This subsection also contains a factorization theorem, which says that, there
is a homomorphism (in the class of the so called unital simple embeddings)
between matrix algebras over (perhaps higher dimensional) spaces, which must
approximately factor through a sum of matrix algebras over the special spaces
{pt},[0,1], SY AT k3220 {Tr11,1 1225, and S?, by means of almost multiplica-
tive maps.

We put these two kinds of results together into one subsection, since the proofs
of them have some similarity. Also, in the proof of the factorization theorem,
we use some uniqueness theorems of this same subsection.

Most of the results are modifications of some results in the literature [EG2],
[D1-2], [G4] and [DG] (see [Phi], [GL], [Linl-2] and [EGLP] also). One of the
main theorems (Theorem 1.6.9) is a generalization of Theorem 2.29 of [EG2]—
the main uniqueness theorem in the classification of real rank zero AH algebras.
The proof given here is shorter than the proof given in [EG2]. Another main
theorem—Theorem 1.6.26 (see also Corollary 1.6.29) is a refinement of Lemma
2.2 of [D2] (see also Lemma 3.13 and 3.14 of [G4]). Both Theorem 1.6.9 and
Corollary 1.6.29 are important in the proof of our main results in §6.

The following well known result (see [Lo]) will be used frequently.

LEMMA 1.6.1. Suppose that A = @E:l My, (C(X;)), where X; = {pt},[0,1], or
SL. For any finite set F C A and any number € > 0, there is a finite set G C A
and there is a number 6 > 0 such that if C is a C*-algebra and ¢ € Map(A, C)
is a G-§ multiplicative map, then there is a homomorphism ¢’ € Hom(A,C)
satisfying

lo(f) —¢'(f)ll <e, VfeF.
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The following result is essentially contained in [EG2] (see [EG2, 2.11]) and is
stated as Theorem 1.2 of [D1] (see also [G4, 3.2 and 3.8]).

LEMMA 1.6.2.  ([D1, 1.2]) Let X be a finite simplicial complex. For any
finite subset F C C(X) and any number € > 0, there are a positive integer L,
a unital homomorphism 1 : C(X) — Mp(C(X)), and a unital homomorphism
p:C(X) = Mp1(C(X)) with finite dimensional image such that

[diag(f,7(f)) —u(f)l <&, VfeF

By the argument in 1.2.19, in the above lemma, the algebra C(X) can be
replaced by M, (C(X)).

LEMMA 1.6.3. Let X be a finite simplicial complex and A = M,,(C(X)). For
any finite subset F C A and any number € > 0, there are a positive integer
L, a unital homomorphism 7 : A — Mp(A)(= M,(C(X))), and a unital
homomorphism pn: A — Mp11(A) with finite dimensional image such that

[ diag(f,7(f)) = (NIl <&, VfeF

REMARK 1.6.4. In general, a unital homomorphism A : C(X) — B with finite
dimensional image is always of the form:

where {z;} is a finite subset of X, and {p;} C B is a set of mutually orthogonal
projections with Y p; = 15. A homomorphism A : A = M, (C(X)) — B with
finite dimensional image is of the form

M) =D pi® fla), Vf €M (C(X))

for a certain identification of A(14)BA(14) = (A(e11)BA(e11)) @ M,,(C), where
{pi} is a set of mutually orthogonal projections in A(e11)BA(e11).

The following Lemma is essentially proved in [D1, Lemma 1.4] (see [G4, The-
orem 3.9] also), using the idea from [Phi] and [GL].

LEMMA 1.6.5. Let X be a finite simplicial complex and A = M, (C(X)). For
a finite set F C M, (C(X)), a positive number € > 0 and a positive integer N,
there are a finite set G C M, (C(X)), a positive number 6 > 0 and a positive
integer L, such that the following is true.

For any unital C*-algebra B, any N + 1 completely positive G- multiplica-
tive linear x-contraction ¢o,¢1,-+ oy € Mapg_s5(A, B), there are a homo-
morphism A € Hom(A, M (B)) with finite dimensional image and a unitary
u € Mp4+1(B) such that

Idiag(do(f), A(f)) — udiag(on (f), A(F))u*|| <e+w, VfeF,
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where

w=max max |¢;(f)—¢;+1(f)|-

fEF 0<j<N—1

Proof: If we allow the number L to depend on the maps {¢;}, then this is
Lemma 1.4 of [D1]. In fact, in the proof of [D1, Lemma 1.4], the author proves
this stronger version of the lemma. We will not repeat the entire proof in [D1],
instead, we will only repeat the construction of G, ¢ in [D1] and at the same
time choose the number L.

Apply Lemma 1.6.3 to F' C A, § > 0 to obtain the integer L1, 7: A — Mg, (A)
and p : A — Mp,+1(A) as in Lemma 1.6.3. Then D := pu(A) is a finite
dimensional C*-subalgebra of My,+1(A). By Lemma 1.6.1, there are a finite
set Fi C D(C Mp,+1(A)) and a positive number §; > 0 such that if C' is any
C*-algebra and ¢ € Map(D, C) is any F;-6; multiplicative map, then there is
a homomorphism ¢’ € Hom(D, C') such that

€

19" (F) = (NIl < 3

From 1.2.19, there exist a finite set G C A and a positive number § >
0 such that if ¢ € Map(A, B) is G-0 multiplicative, then ¢ ® idp, 41 €
Map(Mr,+1(A), M1, +1(B)) is F}-6; multiplicative.

Let L := N(Lq + 1). The proof of [D1, Lemma 1.4] proves that such G, § and
L are as desired. (Notice that the size of the homomorphism 7 on line 9 of
page 122 of [D1] is the number L above.)

Vfeu(F) (C D).

1]
In Lemma 1.6.5, if we further assume that F' C A is weakly approximately con-
stant to within €, then one can replace the homomorphism A in Lemma 1.6.5 by
an arbitrary homomorphism with finite dimensional image of sufficiently large
size (with e replaced by 5¢). One can even use two different homomorphisms
(provided that the images of the matrix unit e1; under these two different homo-
morphisms are unitarily equivalent) for ¢g and ¢y, i.e., instead of diag(¢g, \)
and diag(¢n, A), one can use diag(dg, A1) and diag(¢n, A2) in the estimation.
Namely, we can prove the following result.

COROLLARY 1.6.6. Let X be a finite simplicial complex and A = M, (C(X)).
Suppose that e > 0 and that a finite set ' C M, (C(X)) is weakly approzimately
constant to within €. Suppose that N is a positive integer. Then there are a
finite set G C M, (C(X)), a positive number 6 > 0, and a positive integer L
such that the following is true.

For any unital C*-algebra B and projection p € B, any N+1 completely positive
G-6 multiplicative linear x-contractions ¢g, 1, -+, dn € Mapc_s(A, pBp), any
M A2 € Hom(A, (1 — p)B(1 — p)) with finite dimensional images and with
M(e11) ~ A2(eq1) (see 1.1.7(i)) and [A\'(e11)] > L-[p], there is a unitary u € B
such that

[ diag(¢o(f), A" (f)) — udiag(on (f), N (f))u*|| < be +w, Vf€EF,
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where

w=max max |¢;(f)—¢;+1(f)|-

fEF 0<j<N—1

Proof: Suppose that L and A : A — My, (pBp) are as in Lemma 1.6.5 for the
G-6 multiplicative maps ¢q, ¢1,- - ¢n € Map(A, pBp).
From 1.6.4, X is of the following form

=1

for a certain identification of A\(14)BA(14) = (A(e11)BA(e11)) ® M, (C), where
pi, i =1,2,- -+, s, are mutually orthogonal projections with >_7_, p; = Me11) €
My (pBp), and {z;} C X.

Fix a base point g € X. Since F' is weakly approximately constant to within
g, for each i, {f(z;)} rer is approximately unitarily equivalent to {f(xo)}rer
to within e, one by one by the same unitary. L.e., for each i, there is a unitary
v € M, (C) such that ||vf(z;)v* — f(x0)| <e, for any f € F.

Define new by newA(f) = >.7_; pi® f(xo) = E® f(z0), where E := A(e11) =
Ele pi- Then newl is approximately unitarily equivalent to the old A to
within € on F. Therefore, with this new), we still have

(1) [diag(¢o(f), A(f)) — uadiag(on (f), A(f)ul] <3 +w, VfeF,

for some unitary u; € Mr11(pBp).
Since Al(e11) ~ A2(e11), without loss of generality, we can assume that
)‘1|Mn(@) = >\2|M”(C)’ where M, (C) C M,(C(X)) (= A). In particular,
AM(14) = A2(14) and M (e11) = M(e11). Denote Al(e1r) by E’. Similar to
the case of \, we can assume that

M) =Y al @ 5, F € Mu(C(X)),

V()= 3 @ 5, VS € Mu(C(X))

for a certain identification of M (14)BA'(14) = (E'BE’) ® M, (C), where
{q}} and {¢?} are two sets of mutually orthogonal projections with > 7", ¢} =
Zzsil %‘2 =E€ (1 —p)B(l _p)7 and {le}7 {x%} CX.

Define A: A — A'(1,4)BA'(14) by

Af)=E"® f(xo), VfEF.

Similar to the argument for A, both Al and A2 are approximately unitarily
equivalent to A to within € on F.
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Since [E] < L-[p] < [E'] (= [A(e11)]), there is a sub-projection £y < E’ which
is unitarily equivalent to F.

Write A = p1 & po, where py(f) = E1 ® f(x0) and us(f) = (B — E1) ® f(x0).
Then p; is unitarily equivalent to A (strictly speaking, newl). From (1), we
have

[diag(¢o(f), u1(f)) — uadiag(on (f), pa (f)uzl| <3e+w, VfeF

for a unitary us € (p®FE1®1,)B(p®E1®1,). Notice that E;®1,, < F'®1, =
A(1a) < (1—p).
Therefore,

Idiag(¢o(f), A(f)) — usdiag(én (f), A(f)usll < 3e +w, Vf € F,

where ug :=u2s ® (E' —E1)®1,) € (p@ (E'®1,))B(p® (F' ®1,)).
We already know that both A! and A* are approximately unitarily equivalent
to A on F to within €, so we have

[diag(¢o(f), A'(f)) — udiag(on (), A*(f))u*|| < 5e +w, Vf € F,

for a unitary u € B.
1]

LEMMA 1.6.7. Suppose that A = My(C (X)), and F C A is weakly approxi-
mately constant to within €. Suppose that Ay is a C*-algebra, and two homo-
morphisms ¢ and ¢ € Hom(A, A1) are homotopic to each other. There are a
finite set G C Ay, a number 6 > 0, and a positive integer L > 0 such that the
following is true.

If B is a unital C*-algebra, p € B is a projection, \g € Map(A1,pBp) is G-0
multiplicative, Ay € Hom(Ay, (1 — p)B(1 — p)) is a homomorphism with finite
dimensional image satisfying [(A1 o ¢)(e11)] > L - [p], and A € Map(Ay, B) is
defined by A = Ao ® A1, then there is a unitary uw € B such that

A0 @) (f) —u(Ae)(flu| < 6e, VfeF

Proof: Since ¢ is homotopic to . There is a continuous path of ho-
momorphisms ¢;,0 < t < 1, such that ¢9 = ¢ and ¢; = . Choose
0=ty <ty <---ty_1 <ty =1 such that

||¢tj+1(f)_¢t](f)|| <g v.] € {Ovlva_l} and erF

Applying Corollary 1.6.6 to e, F' C A (which is weakly approximately constant
to within €), and the number N from the above, there are G; C A and § > 0
and L as in the Corollary 1.6.6.

The set G := U;LO #t;(G1) C Ay, 6 > 0 and number L are as desired.
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Suppose that A\g, \; are the maps satisfying the conditions described in the
lemma for G, d, and L as chosen above. Choosing the sequence of G'1-6 multi-
plicative maps in Corollary 1.6.6 to be Ago @i, (= Agod), Agodr,, -+, Ago iy (=
Ao © %), and the homomorphisms A! and A\? (with finite dimensional images)
to be Al = A\{ 0 ¢ and A2 = \; o7, and using that A = A\g @ A\;, we have

(Ao @)(f) —u(Aeg)(flu’| <be+w, VfEeF,

for a certain unitary v € B, where

w=max max ||(Aoo ., )(f) = (hoooy)(f)l <e,

feEF 0<j<N-1

since Ag is a contraction—mnorm decreasing map. So the Lemma follows. (Note
that if A is G-0 multiplicative, then \g o ¢, is G1-0 multiplicative. Also note
that we have the condition that [\ o ¢(e11)] > L - [p]. Another condition
A1 o@(err) ~ A1 ot(err) follows from the condition ¢ ~p, 1.)

(N
The author is indebted to Professor G. Elliott for pointing out the proof of the
following result to him.

LEMMA 1.6.8. Suppose that C' is a unital C*-algebra, and D C C is a finite
dimensional C*-subalgebra. For any finite set F C C' and any positive number
e > 0, there are a finite set G C C and a number § > 0 such that if B
is a unital C*-algebra, A € Map(C, B) is G-0 multiplicative, then there is a
N € Map(C, B) satisfying the following conditions.

1. N|p is a homomorphism.

2 V() - Af)ll <= VfeF.

Proof: Without loss of generality, we assume that ||f|| <1 for all f € F.

By Kasparov’s version of Stinespring Dilation Theorem, for the completely
positive linear x-contraction A : C' — B, there is a homomorphism ¢ : C —
M(B®K) such that A(f) = po(f)p for all f € F, where K is the algebra of all
compact operators on an infinite dimensional separable Hilbert space, M (B®K)
is the multiplier algebra of BQ K, and p=1g®e;; € BRK C M(B®K).
For the above A and ¢, it is straight forward to check that, for any fixed element
a € C,if [ Aa-a*) — A(@A(a")| < &, then [|pé(a)(1 —p)- (pb(a)(1 — p))*|| < 6.
Therefore, if we choose the finite set G to satisfy that G = G*, then the G-6-
multiplicativity of the map A implies the following property of the dilation ¢
and the cutting down projection p:

(%) I¢(a) = (pd(@)p + (1 = p)p(a)(1 = p))|| < 2V3, Vae G,

where 1 is the unit of M (B ® K).
By a well known perturbation technique (see [Gli] and [Br]), we have the follow-
ing: If G contains all matrix units e;; of each block of D and ¢ is small enough,
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then the above condition (*) implies that there is a unitary u € M(B®K) with
lu— 1| < 5, such that

up(D)u* CpM(B@K)p® (1 —p)M(B® K)(1 —p).

(One can obtain the above assertion by applying Lemma II1.3.2 of [Da] (or even
stronger result of [Ch]) with ¢(D) and pM (B K)p® (1 —p)M (B K)(1 —p)
in place of U and B in [Da, III.3.2], respectively.)
The map X : C — B, defined by N (f) = pud(f)u*p, is as desired.

1]
The following result can be considered to be a generalization of Theorem 2.29
of [EG 2].

THEOREM 1.6.9. Suppose that A = @;_, My, (C(X;)) and F C A is weakly
approximately constant to within €. Suppose that C is a C*-algebra, the homo-
morphisms ¢ and v € Hom(A,C) are homotopic to each other. There are a
finite set G C C, a number § > 0, and a positive integer L > 0 such that the
following is true.

If B is a unital C*-algebra, p € B is a projection, Ao € Map(C,pBp) is G-0
multiplicative, \y € Hom(C, (1 — p)B(1 — p)) is a homomorphism with finite
dimensional image satisfying that for each i € {1,2,--- s}, [(A1 0 ¢)(e};)] >

L - [p], where el is the matriz unit (of upper left corner ) of the i-th block,
My, (C(X;)), of A, then there is a unitary u € B such that

[(Ae@)(f) —u(Ao)(flu™|| <8¢, VfEF,
where A € Map(Ay, B) is defined by A = Ao @ A;.

Proof: Let ¢; be the homotopy between ¢ and . It is well known that there
is a unitary path u; € C such that

G1(1 1) = urpo(1 a0 )uy,

for all blocks A* = My, (C(X;)). Therefore, without loss of generality, we as-
sume that ¢(14:) = (1 4:), and that ¢|4: is homotopic to ¥|4: within the
corner ¢(14:)Cp(1:).

Apply Lemma 1.6.7 to ¢| 5+, 1| 4: and 7;(F), where 7; is the quotient map from
A to A to obtain Gy (C C), §; and L as G, § and L in Lemma 1.6.7. For
convenience, without loss of generality, we assume that ||g|| <1 for all g € G;.
Let E; = ¢(14). Consider the finite dimensional subalgebra
D:=C -E16C -Ey;®d---®dC-E; C C. Applying Lemma 1.6.8, there
are G C C with G D G and § > 0 with § < %1 such that if A\g € Map(C, pBp)
is G-6 multiplicative, then there is another map A\, € Map(C, pBp) satisfying
the following conditions.

1. The restriction Aj|p is a homomorphism.

2. I (f) = Ao(f)l < min(%,e), Vf € GiUG(F)Uy(F).
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As a consequence we also have

3. \j is G1-6; multiplicative.

The condition 1 above yields that {\((E;)};_, are mutually orthogonal projec-
tions.

Such G, § and L are as desired.

Suppose that A\ and \j are as above. Set A = A\j @ A\;. From Lemma 1.6.7
and the ways G1, 01 and L are chosen, there are unitaries u; € X' (E;) BN (E;)
such that

[N 0 ¢lai)(f) — us(X 0 9blai)(fHuf|| < Ge, Vf e Fi
Then the unitary u = @, u; ® (1 — >, N (E;)) satisfies

(A0 @)(f) —u(X o gp)(f)u”|| < Ge, VfEF.

Hence

lAo @)(f) —u(Aop)(flu™|| < 6e + 2 =8¢, Vf€F.
1]

REMARK 1.6.10. The version of Theorem 2.29 of [EG2] with A being a direct
sum of full matrix algebras is a direct consequence of the above theorem and
Corollary 2.24 of [EG2] (see [EG2, Theorem 2.21] also). In order to obtain
the general version of Theorem 2.29 of [EG2], one needs to apply the dilation
lemma [EG2, 2.13] and Lemma 1.6.8 above. (The number 8z should be changed
to 5 - 8¢ = 40 which is still better than 70¢ in [EG2].)

The following lemma is a direct consequence of Lemma 1.6.5.

LEMMA 1.6.11. Let X be a finite simplicial complex and A = C(X). Let
F C A be a finite set and € > 0. There are a finite set G C A and a number
6 > 0 with the following property.

If B is a unital C*-algebra, ¢r : A — B, 0 <t <1 is a continuous path of
G-0 multiplicative maps (i.e., ¢+ € Mapa_s(A, B)), then there are a positive
integer L, a homomorphism \ : A — M (B) with finite dimensional image,
and a unitary w € Mypy1(B) such that

(0 & A)(f) —u(pr ® N)(f)u*|| <e, VfeF.

The proof of the following corollary has some similarity to the proof of Corollary
1.6.6. Such method will be used frequently.

COROLLARY 1.6.12. Let X be a finite simplicial complex and A = C(X). Let
F C A be a finite set and € > 0. There are a finite set G C A and a number
& > 0 with the following property.

If B is a unital C*-algebra, p € B is a projection, ¢ : A — pBp, 0 <t <1lisa
continuous path of G-6 multiplicative maps , then there are a positive integer L

DOCUMENTA MATHEMATICA 7 (2002) 255-461



306 GuiHUA GONG

and a number n > 0 such that for any n-dense subset {x1,x9, -, xe} C X, any
set of mutually orthogonal projections {p1,pa,- -, pe} C BRK with [p;] > L-[p]
and p; Lp, we have

l¢o(f) ® Zf(fﬂi)pi —u(@(f)® Y flxi)piu*|| <e, VfEF,

=1

for a certain unitary u € (pBp1 B - pe)(BRIK)(p & p1 B -+ Do)

Proof: For the finite set F' C A, choose n small enough such that if dist(x, z") <
n, then || f(z) — f(2')|| < § for all f € F. Apply Lemma 1.6.11 to F' and §
to obtain G and ¢. For the path ¢, : A — pBp, there exist a positive integer
L, a homomorphism A : A — M/, (pBp), and a unitary u; € Mp4+1(pBp) as in
Lemma 1.6.11. That is

(B0 ® N)(f) — w1 (1 @ N)(f)ui]| < % VfeF.

From 1.6.4, X is of the form

l

A =D Fwia,

i=1

where {y1,y2, -,y C X, and {q1,q2, -+, @i} C Mr(pBp) is a set of mutually
orthogonal projections.

Since {x1,Z2, -+,Ze} is an n-dense subset of X, we can divide the set
{y1,y2, -,y } into a disjoint union of subsets X1 UXoU---UX, (some X; may
be empty) such that dist(y,z;) < n for any y € X;. Set p} := Zyjexi ¢; and
define X' : C(X) — M (pBp) by N(f) = >_;_, f(z:)p;. (Note that for some i,
p} might be 0.) Then from the way 7 is chosen, we have

IN() = A < % VfeF

Therefore,
[(do & N)(f) —ur(¢r & X)(fluil <e, VfeF

Our corollary follows from the fact [p;] < L - [p] < p;.

1]
If X does not contain any isolated point, then in the above corollary, we can
change the condition [p;] > L-[p] to a weaker condition [p;] > [p], by choosing 7
smaller. (Roughly speaking, this is true because 7 could be chosen so small that
if {x;} is n-dense, then there are at least L points of z; in the n/-neighborhood
of any point in X for a pre-given small number 7’. If X is a space of single
point, then this is not true.) Therefore, the number L does not appear in the
following corollary.

COROLLARY 1.6.13. Let X be a finite simplicial complex without any single
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point components, A = C(X). Let F C A be a finite set and € > 0. There are
a finite set G C A and a number 6 > 0 with the following property.

If B is a unital C*-algebra, p € B is a projection, ¢ : A — pBp, 0 <t <1,
is a continuous path of G-6 multiplicative maps , then there is a number n > 0
such that for any n-dense subset {x1,x2, -, ze} C X, any set of mutually
orthogonal projections {p1,p2, - +,Pe} C B ® K with [p;] > [p] and p; Lp, we
have

||¢O @foz z_U(bl )@Zf(xz)pz)U*”<€7 VfEF

i=1

for a certain unitary u € (pBp1 B - pe)(BRIK)(p®p1 B -+ D).

Proof: Let L and n; (in place of ) be as in Corollary 1.6.12. Let 7o be the
minimum of the diameters of path connected components of X, which is positive
since X has no single point component. And let 73 be a positive number such
that if dist(z, z’) < 3, then || f(z) — f(2')|| < e.

Define ' = min(ny,n2,7n3). Let n = u

Suppose that X’ = {z1, 22, -+, z¢} is an n-dense finite subset of X. Choose a
7n'-dense subset {zy,,2p,, -,z } C X’ such that dist(xy,,zx,) > %, if i # j.
(Such subset exists. It could be chosen to be a maximum subset of X’ such
that the distance of any two points in the set is at least %-. Then the 7’-density
follows from the maximality.) It is easy to see that there is a partition of X’
as X' = X; U X9 U---U X such that

X' QB%/(LU]%) Cc X; C X' ﬂBn/(CEki).

Since X' is n-dense and n = "—L
#(Xi) = #(X' N By (2,)) > L.

(Here we also use the fact that the connected component of zy, in X has
diameter at least 7’. )

Let pj, j = 1,2,---e, be the projections as in the corollary. Define ¢; =
Dsex; p]7 i = 1,2,---1. Then from [p;] > [p] and #(X;) > L, we have,
lad > L [pl.

Our corollary (with 3¢ in place of ¢) follows from an application of Corollary
1.6.12 to {xx,}'_; and {g;}!_;, and the estimation

. l
1> faipi = > flan)aill <e, VfeF.
=1 i=1

(The above estimation is a consequence of the way 73 is chosen and the fact
that X; C B,y (xy,) with o’ < n3.)
1]
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The following lemma is proved by applying Lemma 1.6.8.

LEMMA 1.6.14. Let A = P A* = @2:1 M1y (C(Xy)), where Xy are con-
nected simplicial complezes and {s(k)} are positive integers. For any finite
set G' C A, any number &' > 0, any finite sets G¥ C C(Xy) and any numbers
o >0,k =1,2,---1, there are a finite set G C A and a number § > 0 such that
if ¢ € Map(A, B) is G-0 multiplicative, then there is a map ¢’ € Map(A, B)
satisfying the following conditions.

(1) &' is G'-6'" multiplicative;

(2) |#'(5) — 6(g)ll < & for all g € G;

(3) {¢' (1)} _, are mutually orthogonal projections in B and ¢'(ek)) € B
are subprojections of ¢'(1,x) € B. And if each ¢} € Map(C(Xy),B) is
the restriction of ¢ on ef; M) (C(Xk))ek, = C(Xy), then one can identify
¢’ (1,40) B¢ (1 1) with ¢'(e}1) B¢’ (ef)) ® My such that

!
¢ = @Wf @ idg(x)

k=1

Furthermore, ¢% is G¥-0F Multiplicative.

Proof: The part of G}-6F multiplicativity of ¢¥ follows from the G’-§’ mul-
tiplicativity of ¢’ if we enlarge the set G’ and reduce the number ¢’ so that
G' D {g-eb | g € G¥} and & < 6¥. Also we can assume that G’ contains
{e};}—the set of all matrix units.

By Lemma 1.6.8, without loss of generality, we assume that the restriction
¢|EB; Moo(©) is a homomorphism.

Let 6% = 0l e € Map(C(Xx), é(ek)Bo(ely)). Then ¢ = Bl_, ot @iy
is defined by
Z¢ ei)(fij - 811)¢(€Ifj)7

where f = (fij)s(k)xs(k) € A"
Note that for the above f € A*, one can write f = 37, ‘el - (fij - efy) -
e’f]. Obviously, if we choose G to be the set of all the elements which can be
expressed as products of at most ten elements from the set G’, and if we choose
0 small enough, then (1) and (2) will hold for ¢’. (Notice that G’ contains all
the matrix units.)

1]
The following result follows from Lemma 1.6.14 and Corollary 1.6.12 (see also
1.2.19).

COROLLARY 1.6.15. Let A = EB,C 1 M) (C(X)), where Xy, are connected
finite simplicial complexes and s(k) are posztwe integers. Let F' C A be a finite
set and € > 0. There are a finite set G C A and a number § > 0 with the
following property.
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If B is a unital C*-algebra, p € B is a projection, ¢, : A — pBp, 0 <t <1 is
a continuous path of G-6 multiplicative maps , then there are a positive integer
L, and n > 0 such that for a homomorphism X\ : A — B ® K (with finite
dimensional image), there is a unitary u € B satisfying:

[0(f) & A(f) —u(or(f) &A™ <&, VfeF,

provided that A is of the following form: there are an n-dense subset
{z1,22, -, xe} C ]_[2:1 Xr (= SP(4)), and a set of mutually orthogonal

projections {p1,p2,---,De} C AP, k) (B ® KD, ek ) with [p;] > L - [pl,
such that

A=) pi®f(w), VfeA
i=1
under the identification A(14x)BA(14x) = (A(ef;)BA(ef)) ® My (C).

Proof: One can apply Lemma 1.6.14 to ¢, € Map(A, pBp|0,1]) to reduce the
problem to the case of A = C(X}) which is Corollary 1.6.12. (Here pBp|0, 1]
is defined to be the C*-algebra of continuous pBp valued functions on [0, 1].)

1]
For convenience, we introduce the following definitions.

DEFINITION 1.6.16. A homomorphism ¢ : A = @, M, (C(X;)) — B =
@?:1 M;,(C(Y;)) is called m-LARGE if for each partial map ¢ : A" =
M., (C(Xi)) — B? = M, (C(Yj)) of ¢,

rank(¢” (1 4:) > m - rank(14:)(= m - k;).

DEFINITION 1.6.17. Let X be a connected finite simplicial complex, A =
M (C(X)). A unital *-monomorphism ¢ : A — M;(A) is called a (UNITAL)
SIMPLE EMBEDDING if it is homotopic to the homomorphism id & A, where
A:A— M;_1(A) is defined by

/\(f) = diag(f(xO)’ f(xO)’ T f(xO))v

-1

for a fixed base point zg € X.

Let A =&;_, My, (C(X;)), where X; are connected finite simplicial complexes.
A unital *-monomorphism ¢ : A — M;(A) is called a (unital) simple embed-
ding, if ¢ is of the form ¢ = @@’ defined by

¢(f15f27"'7fn) = (¢1(f1)a¢2(f2)’"'7¢n(.fn))a

where the homomorphisms ¢° : A'(= My, (C(X;))) — M;(A?) are unital simple
embeddings.
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1.6.18. For each connected finite simplicial complex X, there is a three di-
mensional connected simplicial complex ¥ = Y; V Yy vV --- VY, such that
K*(X) = K*(Y), where Y; are the following special spaces: [0,1], S1,
{T11,6}70, {Tr11 k372, and S2.

The space [0, 1] could be avoided in the construction of Y. But we would like to
use the space [0, 1] for the following special case: If K%(X) = Z and K}(X) = 0
(e.g., X is contractible) and X is not the space of a single point, then we choose
Y =10,1]. When X is the space of a single point, choose Y = {pt}.

The following result is Lemma 2.1 of [D2] (see Lemma 3.13 and Lemma 3.14
of [G4] also).

LEMMA 1.6.19. ([D2, 2.1)) Let By = @j_, My(;)(C(Y;)), where Y are the
following spaces: {pt}, [0,1], S*, {T11x}3q, {Trrrk}5y, and S*. Let X be a
connected finite simplicial complex, let Y be the three dimensional space defined
in 1.6.18 with K*(X) = K*(Y), and let A= Mn(C(X)).

Let a : By — A be a homomorphism. For any finite sets G C By and F C A,
and any number 6 > 0, there exists a diagram

A 5 A
o
By — By

where

A = My(A), By = Ms(C(Y);

P 18 a homomorphism, as is a unital homomorphism, and ¢ is a unital simple
embedding (see 1.6.17);

B8 € Map(A, Bs) is F-§ multiplicative.

Moreover there exist homotopies ¥ €  Map(By,Bs[0,1]) and & €
Map(A, A’'[0,1]) such that ¥ is G-0 multiplicative, ® is F-§ multiplicative, and

\I/|1:’Q/J7 \If|0:ﬁoa1, <I>|0:a206 and (I)‘lzqﬁ.

(In the application of this lemma, it is important to require that ¢ is a unital
simple embedding. This requirement means that ¢ defines the same element in
kk(X,X) (connective KK theory) as the identity map id : A — A. Roughly
speaking, this lemma (and Theorem 6.26 below) means that an “identity map”
could factor through matrix algebras over Y — a special space of dimension
three.)

Proof: If one assumes that a; : By — A is m-large (see 1.6.16) for a number
m > 4dim(X), then this lemma becomes Lemma 2.1 of [D2]. We make use of

this special case to prove the general case as below.
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Define a unital simple embedding A : A — M,,(A) (m > 4dim(Y)) by

A(f) = diag(f, f(z0), f(x0), - -, f(z0)).

m—1

Then o) = Ao ay is m-large. Apply Lemma 2.1 of [D2]— the special case of
the lemma to o, A(F) C M,,(A) and G C B; to obtain the following diagram

My (A) 25 A

ﬂ/
T Ty
P

B 5 B

with homotopy paths ¥’ and ®" with properties described in the lemma for the
homomorphism «f, finite sets A(F') C M,,(A) and G C Bj.
Define B =p"0\, ¢ =¢' o\, ag = b, v =4/, ¥ =TV and & = &' o \. Then
we have the desired diagram with the desired properties.

(n

REMARK 1.6.20.  From the construction of ¢ and as in the proof of [D2,
Lemma 2.1], we know that ¢ and asy take trivial projections to trivial projec-
tions. But ¢ may not take trivial projections to trivial projections unless ay
does.

1.6.21. Let X and Y be path connected finite simplicial complexes, and
C = Mi(C(Y)),D = M(C(X)). Let g € X and yo € Y be fixed base points.
Then from Lemma 3.14 of [EG2], we have the following: any homomorphism
¢ € Hom(C, D) is homotopy equivalent to a homomorphism ¢’ € Hom(C, D)
(within Hom(C, D)) such that ¢/(CY) C D°, where C°, D, are the ideals of C
and D, respectively, which consist of matrix valued functions vanishing on the
base points (see 1.1.7(h)). In other words, there is a unitary U € M;(C) such
that

f(yo)
¢'(f)(@o) =U Two) U* e My(C) Vf eC.

0

Notice that if a homomorphism as is as desired in Lemma 1.6.19, then any
homomorphism, which is homotopic to as, is also as desired. Therefore, in
Lemma 1.6.19, we can require that the homomorphism «s : Ba(= Mg(C(Y)) —
A'(= ML(C(X))) is of the above form for certain base points yo € Y and
T € X.
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In the following, let us explain why we can also choose the homomorphism as
to be injective.

If X is the space of a single point, then Y is also the space of a single point by
our choice. And therefore, g is injective, since Bj is simple.

If the connected simplicial complex X is not a single point (i.e., dim(X) > 1),
then it can be proved that there is a continuous surjective map g : X — Y,
using the standard idea of Peano curve. In fact, one can assume that the map
g is homotopy trivial—one can make it factor through an interval.

On the other hand, by Theorem 6.4.4 of [DN], if L > 35(dim(X) + 1), then
for the unital homomorphism s : Mg(C(Y)) — M(C(X)), there is a homo-
morphism o : Mg(C(Y)) - Mr_s(C(X)) such that as is homotopic to the
homomorphism defined by

f = diag(a’(f), f(y0)),
Then as is homotopic to diag(a’, g*) defined by

f diag(a’(f), f o g),

since g is homotopy trivial. So we can replace ay by diag(a/,¢g*) which is
injective, since g is surjective.

Similarly, if SP(Bs) = Y is not a single point space (i.e., X is not the space
of a single point), then the homomorphism ¢ : By — By could be chosen to
be injective with in the same homotopy class of Hom(Bj, Bs), provided that
041(113;‘) # 0, for each block B! of B; (later on, we will always assume «;
satisfies this condition, since otherwise this block can be deleted from Bjy).

LEMMA 1.6.22. Let B = Mi(C(Y)), A = M;(C(X)). Suppose that a uni-
tal homomorphism o« : B — A satisfies a(BY) C A°, and takes any trivial
projections of B to trivial projections of A, where B® = M (Co(Y)) := {f €
Mp(C(Y)) | f(yo) = 0}, and A® = My(Co(X)) = {f € M)(C(X)) | f(0) =
0}, for some fized base points yo € Y and xg € X. Let By : B — M, (B) and
B1: A— M,(A) be unital homomorphisms defined by

Bo(f)(y) = diag(f(y), f(yo), -, f(yo)), V[ € B,

and
61(f)(l') = diag(f(a?),f(aio),~ ! '7f($0))> Vf € A

Then the following diagram commutes up to unitary equivalence.

A 25 M, (A)
o a®id,
B 2 M,(B).
Le., there is a unitary u € M, (A) such that
Broa = Aduo (a®id,) o f.
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Proof: (31 o « is defined by:

fr=a(f) = diag(a(f), a(f)(zo), - -, alf)(z0)),
and (o ®1id,,) o By is defined by:

f = diag(fa f(yo)a T f(y())) = dia‘g(a(f)v a(f(?JO))? e ,Oé(f(yo))),

where a(f(yo)) denotes the result of « acting on the constant function g =

f (o).
On the other hand, from a(B") C A°, we get

a(f)(@o) ~u diag(f(yo), -+, f(v0)),
—_——
L
k
and from the fact that a takes trivial projections to trivial projections, we get

diag(f(yo),---, f(yo)) ~u a(f(yo)),

L
k

where the symbol ~, means to be unitarily equivalent.

The following result is from [EG2] (see 5.10, 5.11 of [EG2]).

LEMMA 1.6.23. LetY = Y1VYaV---VY,,. Ifn is large enough, then any unital
homomorphism 8 : Mp(C(Y)) — My, (C(Y)) is homotopic to a homomorphism
B Mp(C(Y)) — M (C(Y)), which factors through @.", My, (C(Y;)), for
certain integers {k;}, as

m

B Mu(C(Y)) 25 @ My, (C(V:) 22 My (C(Y).
i=1

Furthermore, 31 and By above can be chosen to be injective.

Proof: If k = 1, then the lemma is Lemma 5.11 of [EG2]. (Notice that, we
choose both spaces X and Y in Lemma 5.11 of [EG2] to be the above space
Y. In addition, the spaces X; in Lemma 5.11 of [EG2] could be chosen to be
spaces Y; in our case, according to 5.10 of [EG2].)
For the general case, one writes 3 as b ® idg, where b = B|e,, v, (C(V))er,
C(Y) — B(e11)Mni(C(Y))B(e11), then apply Lemma 5.11 of [EG2] to b.
Furthermore, one can make (3; and (2 injective in the same way as in the end
of 1.6.21. (Or one observes that the maps 1 and [ constructed in Lemma
5.11 of [EG2] are already injective for our case.)

1]
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Combining Lemmas 1.6.19, 1.6.21, 1.6.22 and 1.6.23, we have the following
Lemma:

LEMMA 1.6.24. Let By = @j_, My(;)(C(Y;)), where Y; are spaces: {pt},
0,1], S*, {Trrk}52s, {THI,k}kzz, and S%. Let X be a connected finite simpli-
cial complea: and let A = My (C(X)).

Let ay : By — A be a homomorphism with ay(1p:) # 0 for each block Bt of
By. For any finite sets G C By and F C A, and any number § > 0, there exists
a diagram

A 5 A
bl
5 B,

where

A" = My, (A), and By is a direct sum of matriz algebras over the spaces: {pt},
0,1], S*, {Tr11}7%0, {Tr11,8}57%,, and S?;

1 is @ homomorphism, oo s a unital injective homomorphism, and ¢ is a unital
simple embedding (see 1.6.17).

B € Map(A, By) is F-§ multiplicative.

Moreover, there exist homotopies ¥ € Map(By,B2[0,1]) and & €
Map(A, A’'[0,1]) such that ¥ is G-6 multiplicative, ® is F-§ multiplicative, and

Uy =4, V|g=poa, ®lo=az0f and ®|; =¢

Furthermore, if X is not the space of a single point, then at least one of the
blocks of By has spectrum different from the space of single point and i can be
chosen to be injective.

Proof: Let
4 = A
o 0 T
B % B,

be the diagram described in Lemma 1.6.19 with homotopies ® and ¥. Let n
be the integer obtained by applying Lemma 1.6.23 to By = M, (C(Y)). Then
apply 1.6.22 to as : By — A’ to obtain a diagram

A2 ML (A

T T%@idn

By 2% M,(By).

which commutes up to homotopy. (Here we have the condition that ay takes
trivial projections to trivial projections from Remark 1.6.20. Also, oo is homo-
topic to a homomorphism which takes BY to A”0.)
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Furthermore, from Lemma 1.6.23, (y is homotopic to a homomorphism S|
factoring through a C*-algebra new Bs which is a direct sum of matrix algebras
over spaces {pt}, [0,1], S*, {Trr k150, {Trrr.k}7,, and S?. Now it is routine
to finish the construction of the diagram. We omit the details.

(n

1.6.25. Our next task is to add a homomorphism A : A — M,,(Bs) into the
diagram in Lemma 1.6.24 to obtain diagrams,

A
for e
-B1 U’@()\_O)al) ]\4-’”4"»1 (BQ)

and
PD((ag®idn)oN) /
A — M, 41(A)

\%B" .
ag®idy 41

My 4+1(Bs)

which are almost commutative up to unitary equivalence, using Corollary
1.6.15.

To do so, we make the following assumption.

ASSUMPTION: « : By — A is injective.

Let G; C By and F; C A be any finite sets, and € > 0. We will make the above
diagrams approximately commute on G; and Fi, respectively, to within &, up
to unitary equivalence.

Apply Corollary 1.6.15 to G1 C B; (in place of FF C A) and € > 0, to obtain
G C Bj and 4 (in place of the set G and the number §, respectively in Corollary
1.6.15). Similarly, apply Corollary 1.6.15 to F; C A (in place of FF C A) and
e > 0 to obtain FF C A and J2 (in place of the set G and the number § in
Corollary 1.6.15).

Let 6 = min(dy, d2).

Suppose that the diagram

A A
o 0 e
B -5 B

is the one constructed in Lemma 1.6.24 with homotopy path ¥ €
Map(By, B2[0,1]) between [ o «; and %, and homotopy path ® €
Map(A, A’[0,1]) between as o 8 and ¢, corresponding to the sets G C By,
F C A and the number § > 0.

Regarding the homotopy path ¥ as the homotopy path ¢; in Corollary 1.6.15,
we can obtain 71, L; as the numbers n and L in Corollary 1.6,15. Similarly,
replacing the above ¥ by ®, we obtain 7y, Ls.
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Notice that the injectivity of oy implies that, for each block B{ of By, SP(oﬂi) =
Yj(= SP(B7)). Therefore there is an 1y-dense subset {1, Za, - - - £ } of X such
that (J", SPad|,, is ni-dense in Yj for each j € {1,2,---,s}.

Define A; : A(= Mn(C(X))) — Myn(B2) by

A (f) = diag(1p, @ f(21), 1B, @ f(22),---, 1B, @ f(Tm))-

Then Aj ooy : By — M,,n(B2) is a homomorphism defined by the point
evaluations on the n;-dense subset |J;_, ;~, SPail,, C SPB;. Also (ap ®
idpy) oA+ A — Mpyn(A') is defined by point evaluations on the ns-dense
subset {z;}, C X.

Let L = max(L1,Ls) and n = mNL. Define A\ : A — M,(B2) =
My (Mpy,n(Bz)) by A = diag(A1, A1, -+, Ar).

L

Then, obviously, Ao«ay : By — M,,(Bs) satisfies the condition for A in Corollary
1.6.15, for the homotopy W, positive integer Li, and n; > 0. And so does
(g ®idy) oA : A — M, (A’) for &, Ly and 1.

Therefore, there are unitaries u; € My 41(B2) and us € My, 41 (A’) such that

((B@®A) e ar)(f) —ur(p & Aom))(flurl <e, Vf ey,

1(¢ & (a2 ®idn) 0 N))(f) — ua((ag @idni1) o (B & N)(flusll <&, Vf e FL.

In the diagram in Lemma 1.6.24, if we replace By by M, 1(Bs), A’ by
Myi1(A"), ¥ by Adug o (Y @ (Aoaq)), B by B& A, az by Adug o (az ®idn 1),
and finally ¢ by ¢ @ ((a2 ®id,) o A), then we have the diagram

A A
Foe s
—> BQ

for which, the lower left triangle is approximately commutative on G to within
¢ and the upper right triangle is approximately commutative on F; to within
€. Since G1 and [} are arbitrary finite subsets, we proved the following main
factorization result.

THEOREM 1.6.26. Let By = @;Zl My(5y(C(Y5)), where Y are spaces: {pt},
[0,1], SY, ATk}, {Tr11 k15, and S%. Let X be a connected finite simpli-
cial complex and let A = My (C(X)).

Let a1 : By — A be an injective homomorphism. For any finite sets G C By
and F C A, and for any numbers € > 0 and § > 0 there exists a diagram

A 5 A
bl
— B,
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where

A" = Mp(A), and By is a direct sum of matriz algebras over the spaces: {pt},
0,1], S, {Tr1 k3820, {Tr1rk}72s, and S%;

¥ is an injective homomorphism, as is a unital injective homomorphism, and
¢ is a unital simple embedding (see 1.6.17).

B € Map(A, Bs) is F-§ multiplicative.

Moreover

[(f) = (Boar)(f)l <e, VfeG;
lo(f) = (a2 0 B)(f)|| <&, Vf€EF.

COROLLARY 1.6.27. Theorem 1.6.26 still holds if one replaces the injectivity
condition of ay by the following condition:

For each block B! of By, either o is injective or ol (B1) is a finite dimensional
subalgebra of A.

(Of course, one still needs to assume that a1(1g;) # 0 for each block B{ of
B1 and that at least one block of Bs has spectrm;t different from the space of
single point (equivalently, X # {pt}) , if he wants the homomorphism ¢ to be
injective.

If one does not assume the above condition, he could still get the following
dichotomy condition for : For each block Bj of By and BY of Ba, either 1)3:*
is injective or YI'F has a finite dimensional image.)

Proof: Write By = B’ @ B” such that «; is injective on B’ and a4 (B”) C A is
of finite dimension.
Consider the finite dimensional algebra

D:= @ ((lp) - OPar(B") c A

BiCB

By Lemma 1.6.8, if § : A — B, is sufficiently multiplicative, then 3 is close
to such a map [’ that the restriction #'|p is a homomorphism. A’ can be
connected to the original 3 by a linear path. If the original map ( is sufficiently
multiplicative, then the connecting path, regarded as a map from A to B[0, 1],
is F-6 multiplicative for any pre-given finite set ' C A and number § > 0.
Therefore, with out loss of generality, we assume that §|p is a homomorphism
for the original map 3 in 1.6.24.

By Lemma 1.6.8 again, if ¥ : B; — Bs[0,1] is sufficiently multiplicative,
then W is close to a map ¥’ such that ¥|,(p,) is a homomorphism, where
r(By) is defined in 1.1.7(h). Note that ¥|; = ¢ is a homomorphism and
(Ylo)lrB) = Blp © (ai1lr(p,)) is also a homomorphism. From the proof of
Lemma 1.6.8, we can see that the above ¥’ can be chosen such that ¥'|; = ¥[;
and U'|g = ¥|y. Therefore, without loss of generality, we can assume that the
homotopy path ¥ in Lemma 1.6.24 satisfies that W[, g, is a homomorphism.
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Up to a unitary equivalence, we can further assume that W;(1p:) = ¥y (1p:)
for any ¢,t' € [0,1] and any block B} of Bj.
One can repeat the procedure in 1.6.25 to construct the homomorphism
A A — M,(A), defined by point evaluations on an n-dense subset
{z1, 22, ,xm} C X, to satisfy the condition that A o o] is defined by point
evaluations on an 7;-dense subset |JI*, SPoz{L” - SPB{ of sufficiently large
size, for each block B{ of the part B’. As in 1.6.25, we can define new/3 to
be 6@ A. At the same time, ¢ and as can also be defined as in 1.6.25. To
define 1, we need to consider two cases. For the blocks B{ in B’, ¢ can be
defined as in 1.6.25, since Ao a{ is defined by point evaluations on an 7;-dense
subset (of sufﬁciently large size). For the blocks Bj C B”, we define ¢ to be
(B® X) oaf = (newf3) o o]. (Note that (]q, () is a homomorphism.)

(cn

REMARK 1.6.28. Once the diagram in Theorem 1.6.26 (or Corollary 1.6.27)
exists for A" = M, (A), then for any L’ > L, one can construct a diagram with
the same property as in the theorem or the corollary with A" = M/(A). This
is easily seen from the following.

Let r(A) = Mn(C) and r : A — r(A) be as in 1.1.7(h). Let newBy =
oldB; @ r(A), newl = old @ r, new¢ = diag(oldg,ior,---,i07), newtp =

T
oldy @ (r o ), and newas = oldas @ diag(i,---,i), where i : r(A) — A C
e

My, _1(A) C Mp:(A) is the inclusion (note that r(A) is a subalgebra of A as in
1.1.7(h)), and oldBs, oldg3, old¢ and oldas are Bs, 8, ¢ and as, respectively,
from Lemma 1.6.26 or Corollary 1.6.27.

COROLLARY 1.6.29. Let By = @j_; My(;)(C(Y;)), where Y; are spaces: {pt},
[Ov 1]7 Slf {TH,k}zO:Q; {TUIJC}?:W and S®. Let A = @;:1 Ml(j)(O(Xj));
where X; are connected finite simplicial complex.

Let ay : By — A be a homomorphism satisfying the following condition:

For each pair of blocks Bt of By and A’ of A, either the partial map 051 18
injective or al’J (B?) is a finite dimensional subalgebra of AJ.

For any finite sets G C By and F C A, and for any numbers ¢ > 0 and § > 0,
there exists a diagram

A = A
e
s B

where
A" = Mp(A), and By is a direct sum of matriz algebras over the spaces: {pt},

0,1], S, AT 130, {1k}, and S%;
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1 is a homomorphism, as is a unital injective homomorphism, and ¢ is a unital
simple embedding (see 1.6.17).

B8 € Map(A, Bs) is F-§ multiplicative.

Moreover,

[0(f) = (Boan)(f)l <e, VfeG;
[6(f) = (a2 0 B)(f)I| <&, VfE€F.
If we further assume that o satisfies the condition that ai’j(lB{) £0€ Al for

any partial map ai’j : Bl — AJ of ay, then either the homomorphism v could
be chosen to be injective, or the spectra of all blocks of By could be chosen to
be the spaces of a single point.

Proof: We can construct the diagram for each block A7 of A, then put them
together in the obvious way. Using Remark 1.6.28, we can assume for each
block A7, A = M (A;) for the same L.

(cn
The following is Lemma 4.6 of [G4] (see Lemma 1.2 of [D2]).

LEMMA 1.6.30. Let A = @221 M ;)(C(X;)), where X; are connected finite
simplicial complexes. Let A’ = My (A). Let the algebra r(A) and the homo-
morphism r : A — r(A) be as in 1.1.7(h). Let B be a direct sum of matriz al-
gebras over finite simplicial complexes of dimension at most m. Let ¢ : A — A’
be a unital simple embedding (see Definition 1.6.17). For any (not necessarily
unital) (m - L)-large homomorphism ¢' : A — B, there is a homomorphism
A: A ®r(A) — B such that ¢’ is homotopic to Ao (¢ ).

Furthermore, \ could be chosen to satisfy the condition that for any block B7
with SP(B7) # {pt}, the partial map X+ : A’ ® r(A) — BI of X is injective as
remarked in 1.6.21.

(This lemma will be applied in conjunction with Lemma 1.6.26 or Corollary
1.6.29. From here, one can see the importance of the requirement that ¢ is a
unital simple embedding.)

REMARK 1.6.31. In order to apply Lemma 1.6.30 later, we would like to do
one more modification for Corollary 1.6.29. Let r : A — r(A) be as in 1.1.7(h).
Then the diagram in Corollary 1.6.29 could be modified to the following dia-
gram

A RN A @r(A)

Tal \QEBT TOIQEBM
B, " Bya r(A)
which satisfies that 8 @ r is F-6 multiplicative and
(W& (roa))(f) —((B@r)oar)(f)l <e, VfEeG;

[(p@r)(f) — (e @id) o (B®T))(f)|| <&, VfEF.
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In the application of 1.6.29 and 1.6.30 in the proof of our main reduction
theorem, we will still denote By @ r(A) by Ba, 8@ r by 8, ¢ @ (r o ay) by 9,
and as @ id by as. So the diagram is

A Ner(A)

[« % T

B - By .

2 SPECTRAL MULTIPLICITY

In this section, we will show how to perturb a homomorphism ¢ : C(X) —
PM(C(Y))P in such a way that the resulting homomorphism does not have
large spectral multiplicities (see 1.2.4). Namely, the following result will be
proved.

THEOREM 2.1. Let X andY be connected simplicial complexes with X # {pt}.
Set dim(X) + dim(Y') = 1. For any given finite set G C C(X), any € > 0, and
any unital homomorphism ¢ : C(X) — PM4(C(Y))P, where P € M4(C(Y))
is a projection, there is a unital homomorphism ¢ : C(X) — PM4(C(Y))P
such that

(1) 16(g) — &'(9)]l < & for all g € G, and

(2) &' has maximum spectral multiplicity at most .

2.2. Let k be a positive integer. Let Hom(C(X), My(C)); = F*¥X. The space
F*X is compact and metrizable. We can endow the space F*X with a fixed
metric d as below.

Choose a finite set {f;}1_; C C(X) which generates C'(X) as a C*-algebra (e.g.
one can embed X into R"™, then choose {f;} to be the coordinate functions).
For any ¢,v¢» € F*X which, by definition, are unital homomorphisms from
C(X) to My (C), define

n

(¢, ) = > llo(fi) = (fi)]-

=1

Without loss of generality, we can assume that the above finite set {f;}? ; C G.
On the other hand, F* X is a finite simplicial complex (see [DN], [Se] and [BI1]).

2.3. Let k = rank(P), where P is the projection in Theorem 2.1.

For any fixed y, there is a unitary u, € M,(C) such that P(y) = u,diag(1x,0)u;

(as in 1.2.1). Using this unitary, one can identify P(y)M,(C)P(y) with M} (C)
by sending a € P(y)M.(C)P(y) to the element in My(C) corresponding to
the upper left corner of uyau,. (Notice that for any a € P(y)M.(C)P(y), the

matrix
*

Uy Aty = uZP(y)aP(y)uy = uy P(y)uyu

*

yauyuZP(y)uy
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= diag(1y, 0)uyau,diag(1y,0)
(*)kxk O )
0 0 /)"
In this way, for any y € Y, the space Hom(C(X), P(y)M«(C)P(y))1 can be

identified with F'*X.
Consider the disjoint union

has the form

| Hom(C(X), P(y)Ms(C)P(y))

as a subspace of Hom(C(X), M¢(C)) x Y with the induced topology. Using the
above identification we can define a locally trivial fibre bundle

|J Hom(C(X), P(y)Ms(C)P(y))1
yey

Il

Y

with fibre F*X, as shown below, where 7 is the natural map sending any
element in the set Hom(C(X), P(y)M(C)P(y))1 to the point y.
For simplicity, write Ep := U Hom(C(X), P(y)M¢(C)P(y))1-

yey
For any point yo € Y, there are an open set U > y, and a continuous unitary
valued function u : U — M,(C) such that P(y) = u(y)diag(1x,0)u*(y). (See
1.2.1.) Let R : M4(C) — My (C) be the map taking any element in M,(C) to
the k x k upper left corner of the element. Let the trivialization ¢ty : 7~ (U) —
U x F¥X be defined as follows. For any ¢ € Hom(C(X), P(y)M.(C)P(y)), C
7Y (U), where y € U, define t,(¢) = (y,v), where ¢ € F¥X is defined by

P(f) = R(u™(y)o(f)u(y)) for any fe C(X).

(Again, u*(y)$(f)u(y) is of the form ( <*)(§Xk 8 )')

Since the set Y is compact, there is a finite cover Y = {U} of Y with the above
trivialization for each U. This defines a fibre bundle 7 : Ep — Y.
(See §1.4 for the definition and other materials of fibre bundle.)

2.4. In the above fibre bundle, the structure group I' C Homeo(F*X) could
be chosen to be the collection of all ¥ € Homeo(F*X) of the form: there is a
unitary u € My (C) such that

Y()(f) =u"o(f)u for any ¢ € FFX and feld(X).

One can see this as follows.
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Suppose that U and V are two open sets in U, and tyy and ¢ty are trivializations,
as in 2.3, defined by unitary valued functions v : U — M4(C) and v : V —
M, (C), respectively.

For any point y € U NV, the map ty o t(/l : F*X — FFX, can be computed
as below.

For any ¢ € F*X, define ¢ : C(X) — M,(C) by

s = (e ) v e o)

Then
and

Notice that

u(y)diag(1g, 0)u*(y) = P(y) = v(y)diag(1x,0)v*(y).

It follows that v*(y)u(y) commutes with diag(1x,0). This implies that this

matrix has the form
(wl ) kxk 0
0 Wa ’

where both w; and ws are unitaries. This shows that

tr oty (9)(f) = wig(flwr, Vo€ FFX, feC(X).

In other words, ty o t(/l erl.

Obviously, Hom(C(X), PM,(C(Y))P); can be regarded as a collection of con-
tinuous cross sections of the bundle 7 : Ep — Y.

Since for any elements a,b € My(C) and unitary u € My(C),

|luau® — ubu*|| = ||la — bl|,

it is easy to see that THE METRIC d ON F*X defined in 2.2 is INVARIANT UNDER
THE ACTION OF ANY ELEMENT IN I in the sense of 1.4.6.

2.5. There is a natural map
0:F*X — P*"X
defined as follows. For any ¢ € F*X given by ¢ : C(X) — My(C), define
0(¢) = SP(¢) € P*X,

counting multiplicities. (See 1.2.5 and 1.2.7.)
For each point & = [x1, 29, -, x1] € P*X, if the element 2; appears j; times
inxfori=1,2,---,k, then the MAXIMUM MULTIPLICITY of x is defined to be
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the maximum of ji1, pi2, - - -, ptr. The maximum multiplicity of a point ¢ € F*X
is defined to be the maximum multiplicity of 6(¢) € P*X, which agrees with
the maximum multiplicity of homomorphism ¢ : C(X) — M (C) defined in
1.2.4.

The homomorphism ¢ € Hom(C(X), PM,(C(Y))P); corresponds to a contin-
uous cross section f : Y — Ep. This correspondence is one to one. For any
cross section f : Y — Ep, any point y € Y, the maximum multiplicity of f(y)
is understood to be that obtained by regarding f(y) as an element in F*X by
an identification of Hom(C'(X), P(y)M,(C)P(y)); with F¥X. Note that the
maximum multiplicity of an element ¢ € F*X is invariant under the action of
any element of T'.

2.6. It is easy to see that for any finite set G C C(X) and e > 0, there is
an ¢’ > 0 such that if d(¢,,¢}) < &' for any y € Y, then [[¢(g) — ¢'(9)l| < ¢
for any g € G, where qﬁy,qb; € FFX are determined by an identification of
Hom(C(X), P(y)M.(C)P(y)); with F¥X, as above. (Again the choice of the
identification is not important, because the metric d is invariant under the
action of any element in T".)

Before proving Theorem 2.1, we prove the following weak version of Theorem
2.1.

LEMMA 2.7. Let X andY be as in Theorem 2.1. Let k > | = dim(X)+dim(Y").
For any given finite set G C C(X), any € > 0, and any unital homomor-
phism ¢ : C(X) — PMJ(C(Y))P, where P € Mo(C(Y)) is a projection with
rank(P) = k, there is a unital homomorphism ¢ : C(X) — PM.(C(Y))P
such that

(1) 16(9) — #'(9)]l <  for all g € G, and

(2) ¢ has maximum spectral multiplicity at most k — 1.

Comparing with Theorem 2.1, in the above result, we allow the maximum
spectral multiplicity of the resulting homomorphism to be larger than [— only
require it to be smaller than k = rank(P)—the maximum possible multiplicity.
Since we assume that all the generators f; of C(X) are inside the set G, Lemma
2.7 is equivalent to the following theorem.

LEMMA 2.8. Suppose that X,Y, and P are as in Theorem 2.1 and that
rank(P) = k > dim(X) + dim(Y'). For any € > 0 and any cross section
f:Y — Ep, there is a cross section f':Y — Ep such that

(1) d(f(y), ['(y)) <€ forally €Y, and

(2)  f'(y) has multiplicity at most k — 1 for ally €Y.

To prove our main theorem of this section—Theorem 2.1, we need the following
result. The proof of this result will be given after the proof of Theorem 2.1.

THEOREM 2.9. Suppose that X is a connected simplicial complex and X #
{pt}. For any e >0 and any x € F™X, there is a contractible open neighbor-
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hood U, 3 x with U, C B:(x) C F™X such that

mi(Uz\{z}) = 0

for any 0 <i <m — 2. In other words, F™X has property D(m) as in 1.4.3.
We will use Theorem 2.9 and Corollary 1.4.10 (see also Theorem 1.4.9) to prove

the following relative version of Lemma 2.8 (which gives rise to Lemma 2.8, by
taking Y1 =0).

LEMMA 2.10. Let X,Y, and P be as in Theorem 2.1, and Y1 C Y be a sub
simplicial complex. Suppose that rank(P) = k > dim(X) + dim(Y"). Suppose
that a cross section f 1Y — Ep satisfies the condition that f(y) has multiplicity
at most k — 1, for any y € Y1. It follows that for any € > 0, there is a cross
section f':Y — Ep such that

(1) d(f(y), f'(y)) <e forally €Y, and
(2)  f'(y) has multiplicity at most k — 1 for ally € Y.

Y)
(8) f'(y) = fly), for anyy € Y1.

Proof: Let Fy C FFX denote the subset of all elements of maximum multi-
plicity equal to k. In other words, a homomorphism in F has one dimensional
range. Obviously, F} is the set of all homomorphisms ¢ € Hom(C(X), My(C)),
which are of the form

for a certain point x € X. Hence Fj is homeomorphic to X, and dim(Fy) =
dim(X).
As mentioned in 2.5, the maximum multiplicity of an element of F¥X is in-
variant under the action of I'. So F} is an invariant subset under the action of
r.
The conclusion of the Lemma 2.10 follows from Corollary 1.4.10 with Ep — Y/,
FFX, Fy, Y, and k in place of M — X, F, F} , X; and m in Corollary 1.4.10,
respectively. (Note that, from Theorem 2.9, F*X has property D(k).)

[
The above lemma is equivalent to the following lemma (we stated it with pro-
jection @ instead of P to emphasis that we may use projections other than
P—we will use subprojections of P).

LEMMA 2.11. Let Yo C Y7 C Y be sub-simplicial complexes of Y. Let Q €
Mo (C(Y1)) be a projection with rank m > | = dim(X)+dim(Y"). For any given
finite set G C C(X), any € > 0, and any unital homomorphism ¢ : C(X) —
QM,(C(Y1))Q with the property that for any y € Yo, the multiplicity of ¢ aty
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is at most m—1, there is a unital homomorphism ¢’ : C(X) — QM. (C(Y1))Q
such that

(1) 1¥(9)(y) =¥ (9) ()|l < e forall g € G and y € Y1,

(2) Y has spectral multiplicity at most m — 1,

(3) V'lvy = Ylys-

In the proof of Theorem 2.1, we will not use Theorem 2.9 or Lemma 2.10
directly. We will use Lemma 2.11 instead. (So we do not need anything from
fibre bundles in the rest of the proof of Theorem 2.1.)

2.12 SKETCH OF THE IDEA OF THE PROOF OF THEOREM 2.1. Note that
the proof of Lemma 2.10 can not be used to prove Theorem 2.1 (or the fibre
bundle version of Theorem 2.1) in a straightforward way. For example, if we
let F; C F*X be the subset of all elements with maximum multiplicity at
least [ + 1 (instead of k), then dim(F;) may be very large— much larger than
dim(X). In fact, dim(F}) also depends on k and I.

In Lemma 2.11 (or Lemma 2.10), we have already perturbed the homomorphism
to avoid the largest possibility of maximum multiplicity—k. Next, we will
perturb it again to avoid the next largest possibility of maximum multiplicity—
k — 1. We will continue the procedure in this way.

In general, suppose that the homomorphism ¢ : C(X) — PM,(C(Y))P has
maximum multiplicity m, with [ < m < k, we will prove that ¢ can be ap-
proximated arbitrarily well by another homomorphism ¢’ with maximum mul-
tiplicity at most m — 1. Once this is done, Theorem 2.1 follows from a reverse
induction argument beginning with m = k > [. (Note that for the case k <1,
we have nothing to prove.)

To do the above, we need to work simplex by simplex. In fact, on each small
simplex, the homomorphism ¢ can be decomposed into a direct sum of several
homomorphisms €D, ¢;, such that the projections ¢;(1) has rank at most m.
Then we can apply Lemma 2.11 to each ¢; to avoid maximum multiplicity m.
With these ideas in mind, it will not be difficult for the reader to construct the
proof of Theorem 2.1. The complete detail will be contained in the next few
lemmas, in particular, see the proof of Lemma 2.16.

LEMMA 2.13. Suppose that P, X and Y are as in Theorem 2.1. For any
e > 0 and any positive integer d, there is a § > 0 such that if A C Y is a
simplex of dimension d, if P is regarded as a projection in Me(C(A)), and if
¥ : C(X) — PMo(C(OA))P is a homomorphism such that

1¥(9)(y) —¥(9) (W)l <0, VYgeG,yy €dA,

then there is a homomorphism ¢’ : C(X) — PM¢(C(A))P such that
(1) 19" (9)(y) =" (@) W)l <e, VgeG,y.y €A, and
(2) ¥'|oa = .

Proof: Note that P|a is a trivial projection, since a simplex A is contractible.
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So PM.(C(A))P = M(C(A)), where k = rank(P). The lemma follows from
the fact that
F*X = Hom(C(X), My(C))1

is a simplicial complex (see [DN] and [B]]), which is locally contractible (see
1.4.2 and 1.4.3).

(n
We need the following lemma, which is obviously true.

LEMMA 2.14. Suppose that ¢ : C(X) — PM(C(Y))P has mazimum spectral
multiplicity at most m. Then there existn > 0 and d > 0 such that the following
statement holds.

For any subset Z C'Y with diameter(Z) < n, and homomorphism ¢ : C(X) —
PM,(C(Z))P with the property that

[¥(9)(z) = d(9)(2)| <0, Vze Z,geq,

there is a decomposition of ¢ such as described below.

There are open sets O1,02,---,0; C X, with mutually disjoint closures
(i.e., O; N Oj =0, Vi # j), and there are mutually orthogonal projections
Q1,Qz2,-+,Qr € Mo(C(Z)) and homomorphisms ; : C(X) — Q;M«(C(2))Q;
such that

Lp=30 v

2. P(z2) =Y.', Qi(2),Vz € Z,

3. rank(Q;) < m, and

4. SPy; C O;  for alli.

Proof: One can prove it using the following fact. Suppose that SP¢ C UO;. If

1 is close enough to ¢, then SPy C UO; and #(SPoNO;) = #(SPY N O;) (see

1.2.12).

Q@; in the lemma should be chosen to be the spectral projections of i corre-

sponding to the open sets O; (see 1.2.9).

(Notice that Y is compact and that G C C'(X) contains a set of the generators.)
1]

LEMMA 2.15. Suppose that ¢ : C(X) — PMo(C(Y))P has mazimum spectral
multiplicity at most m. Then there existn > 0 and d > 0 such that the following
statement holds.

For any € > 0, any simplex A CY (of any simplicial decomposition of Y ) with
diameter(A) < n, and any homomorphism ) : C(X) — PM,(C(A))P with the
following properties:

(1) 14(9)(2) = d(9)(2)[| <6, Vz€ A g€, and

(ii) ¥|oa has mazimum multiplicity at most m — 1,

there exists a homomorphism ¢' : C(X) — PM4(C(A))P such that

(1) [[¥(9)(y) — ' (9)W)ll < forallg € G and y € A;
(2) Y has spectral multiplicity at most m — 1;
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(3) V'|oa = Vloa.

Proof: . Suppose that n and § are as in Lemma 2.14. If ¢ is as described in
this lemma, then one can obtain the decomposition 9 = 2221 1; of ¥ as in
Lemma 2.14.
Then we only need to apply Lemma 2.11 to each map 1, to obtain ¢} : C'(X) —
Q:M.(C(Z2))Q; to satisfy the conclusion of Lemma 2.11 with ¢;, A, A, and
Q; in place of 9, Y7, Yo, and @), respectively.
If € is small enough, then SP1; C O;, where the open sets O; are from Lemma
2.14. Hence the sum ¢’ = 22:1 Yl is as desired.

1]

LEMMA 2.16. Suppose that ¢ : C(X) — PMo(C(Y))P has mazimum spectral
multiplicity at most m > 1 = dim(X) +dim(Y"). For any simplicial subcomplex
Y1 C Y, with respect to any simplicial decomposition of Y, and any e > 0, there
is @ homomorphism ¢’ : C(X) — PM4(C(Y1))P with multiplicity at most m—1
such that

16"(9)(y) — ¢(a) (W)l <&, Vg€ G,yeVr

(In particular, the above is true for Y1 =Y .)

Proof: We will prove the lemma by induction on dim(Y7).

If dim(Y7) = 0, the lemma follows from the fact that, for a connected simplicial
complex X with X # {pt}, the subset of homomorphisms with distinct spec-
trum (maximum spectral multiplicity one) is dense in

Hom(C(X), My (C));.

Suppose that the lemma is true for any simplicial subcomplex of dimension n,
with respect to any simplicial decomposition.

Let Y7 C Y be a simplicial complex of dimension n + 1 < dim Y, with respect
to some simplicial decomposition of Y.

Let € > 0.

Let 01, 1 be the § and n of Lemma 2.15.

Apply Lemma 2.13 with n + 1 in place of d, and %min(g, 1) in place of €, to
find 9 as § in the lemma.

Choose 13 > 0 such that if dist(y,y’) < 72, then

© 16(9)(w) ~ 6(9) ()| <  min(e, 61,62), g € G.

Endow Y; with a simplicial complex structure such that diameter(A) <
min(ny, 1) for any simplex A of Y;. Let Y’ C Y] be the n-skeleton of Y3
with respect to the simplicial structure.

From the inductive assumption, there is a homomorphism ¢; : C(X) —
PM,(C(Y"))P, with multiplicity at most m — 1, such that

() llo1(9)(y) — o9 W)l < imin(& 01,02), Vg€ G andy €Y’ (xx)
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Consider a fixed simplex A C Y7 of top dimension (i.e., dim(A) =n + 1). Let
us extend ¢1]pa to A (notice that A C Y).

For any two points y,y’ € JA, applying (*) to the pair of points y and y’,
applying (**) to the points y and y’ separately, and combining all these three
inequalities together, we get

161(9)(®) ~ 41(9) )] < § min(=,81,52) < 82, ¥g € G-

By Lemma 2.13 and the way d9 is chosen, there is a homomorphism (let us
still denote it by ¢1) ¢1 : C(X) — PMe(C(A))P, which extends the original
®1loa, such that

(s55)  [91(9)) ~ 61(0)6)] < ymin(e,61), Vg€ G and yy €A

For any point y € A, choose a point y’ € A. Applying both (*) and (***)
to the pair (y,y’), applying (**) to the point 3’ € A C Y’ and combining all
these three inequalities together, we get

(see)  61(0)y) — S(9)(w)] < min(e,61), g € G and y € A,

Since 01 and 7; are chosen as in Lemma 2.15, and diameter(A) < ny, it follows
from (* * xx) and Lemma 2.15 that there is a homomorphism ¢’ : C(X) —
PM,(C(A))P such that

(1) [1¢'(9)(y) = d1(9) W)l < 36, Vg e Gandy € A.

(2) ¢’ has spectral multiplicity at most m — 1.

(3) ¢'loa = ¢1loa.

Combining (1) above with (****), yields

16/(6)(6) ~ 6(0) W) < > min(e,61) + 1= <2 Vg€ G and y € A

Carry out the above construction independently for each simplex A. Since the
definition of ¢’ on A is as same as ¢1, the definitions of ¢’ on different simplices
are agree on their intersection. By Lemma 1.2.14, this yields a homomorphism
over the whole set Y7. The lemma follows.

(cn
Obviously, Theorem 2.1 follows from Lemma 2.16 by reverse induction argu-
ment beginning with m = k. (Note that we only need Lemma 2.16 for the case
Y1=Y)
Now we are going to prove Theorem 2.9, which is the only missing part in the
proof of Theorem 2.1. The proof is somewhat similar to the proof of Theorem
6.4.2 of [DN]. It will therefore be convenient to recall some of the terminology
and notation of [DN]. (It will be important to consider a certain method of
decomposing the space F¥X.)

2.17.  Recall from 6.17 of [DN] (cf. 1.2.4 above) that there is a map A :
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X* x U(k) — FFX, defined as follows. If u € U(k) and (x1, 22, -, zx) € X*,
then

(M1, 2o, - 2, 1)) (f) = u o
f(xr)

for any f € C(X). Since A is surjective, F*X can be regarded as a quotient
space X¥ x U(k). Therefore, for convenience, a point in F¥X will be written
as

[z1, T2, ", Tk, U]
which means A\(z1, 2, -+, Tk, u).
With the above notation, it is easy to see that, if X is path connected and is

not a single point, then any element in F*X can be approximated arbitrarily
well by elements in F*X with distinct spectra.

2.18. If X; C X is a subset, then define F*X; to be the subset of F¥X
consisting of those homomorphisms ¢ € Hom(C(X), M (C)) with SP(¢) C X,
as a set. Obviously, if X; is open (closed resp.), then F*X; is open (closed
resp.).
If Xy, X5, -+, X; are disjoint subspaces of X, and k1, ks, - - -, k; are nonnegative
integers with

ki+ka+--+k =k,

then define F(kl””"””’“)(Xl7 Xo,---, X;) to be the subset of F¥X consisting of
all ¢ with
#(SP(9) N X;) = k;

counting multiplicity. B B
Usually when we use the above notation, we suppose that X;, N X;, = 0 if
i1 # i, where X; is the closure of X;. In this case,

FrX,UXU--UX) = [ FORrm(Xg Xy, X))
kit+ko+-+ki=k

is a disjoint union of separate components.
2.19. For each i-tuple (ki, ko, -, k;) with
ki+ke+--+ki =k,

one can define G(khkz)..,’ki)(Ck) to be the collection of i-tuples (p1,pa,- -, p:)
of orthogonal projections p; € M;(C) with rank(p;) = k; (1 < j < i) and
Z;lej =1 € M(C). Note that if i = 2, G, k,)(C*) is the ordinary
complex Grassmannian manifold G, (CF) = Gy, (CF).
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For each fixed i-tuple (k1, ko, -, k;), there is a locally trivial fibre bundle

Fkl(Xl) XFkQ(XQ) X e XFk’(Xl) — F(kl’kr""”’ki)<X1,X2,~--,Xi)
!
G(kl,kz,"wki)(ck)'

2.20. For certain purposes, it is more convenient to use CW complexes
(instead of simplicial complexes).

For the terminology used below, see [Wh].

Suppose that (X, A) is a relative CW complex pair. If X is path connected,
then (X, A) is zero connected CW complex pair, no matter A is connected
or not. In particular, (X, A) is homotopy equivalent to (X, A), where X is
obtained from A by attaching finitely many cells of dimension > 1 (see Theorem
2.6 of Chapter five of [Wh]). This can not be done if one only uses simplicial
complex pair. (Note, we always assume our CW complexes to be finite CW
complexes without saying so.)

For a relative CW complex pair (X, A), define F'X C F™X to be the sub-
space consisting of those elements x € F™ X, with

SP(z) N A # 0.

(This is different from the set F'™ A (defined in 2.18) which consists of elements
x € F™X such that SP(z) C A.)

LEMMA 2.21. Suppose that (X, A) is a relative CW complex pair. Suppose
that X is obtained from A by attaching cells of dimension at least 1. It follows
that the inclusion

FyX — F"X
is m — 1 equivalent, i.e., i, : m;(F7X) — 7;j(F™X) is an isomorphism for
any 0 < j < m — 2 and a surjection for j = m — 1, where i, is induced by the
inclusion map.
The proof of this lemma is divided into two steps.

LEMMA 2.22. Lemma 2.21 is true if X is obtained from A by attaching several
cells of dimension 1.

Proof: Let X = AUeyUesU- - -Uey, where eq, e, - - -, e; are 1-cells with de; C A.
Then F™X\F}'X consists of those points whose spectra are contained in

o o o
epJuexy---Ue,

where each €j = e;\0¢; is homeomorphic to (0, 1).
In other words,

o

(k1,k2,ke) [ o 2
FmX\FXLX _ H Fkiska, ’t(€17€2,~'-,et).
ki+ka+-+ki=m
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For each ﬁxed ttuple (k1,ka, -+ k) with > k; = m, the space
(kl’ki’"’kf)( 62 et) is a smooth manifold. To see this, we can
consider the ﬁbre bundle

Fkl(é)l) % sz(ég) TR % Fkt(ét) N F(k17k2;""kt)(601’ 527...7 ét)
!
G(kl,k27"',kt)(c)

introduced in 2.19. Evidently, the fibre of the bundle is

FRier) x FF2(éa) x - x Frr(e;) = RM x R® x ... x RF

Note that the above fibre bundle has an obvious cross section (see [DN]). There-

fore, the fibre bundle can be regarded as a smooth vector bundle with the vector
2 2 2

space RFTF2t k¢ a5 the fibre. The zero section of the bundle has codimen-

sion

Rk 4kl >kt he+ k=

By a standard argument from topology, using the transversality theorem, the
lemma can be proved. (See [DN, 6.3.4] for details.)
1]

2.23. The next step is to prove Lemma 2.21 by induction, starting with 2.22.
Since the proof is a complete repetition of the proof of Theorem 6.4.2 of [DN],
we omit the detail—only point out how to define the collection W (n,r) in our
setting, and several small modifications.

Let W(1,0) = {A}—the set with single element: the space A. For r >
0, W(n,r) is the class of all finite CW complexes, each of which is obtained by
attaching at most one cell of dimension n to a space in W(n,r —1). Let

W(n+1,0) LJWnr

Lemma 2.22 says that F'X — F™X is m — 1 equivalent if X € W(2,0). In
applying the argument in [DN, 6.4.2], F7X is in place of F*(X) and F™X is
in place of F*+1(X). All the other parts of the proof follow from [DN]. The
only thing needs mentioning is that the inclusion

Fi(X\ay) — F'X

is l-equivalent, where aj is a set of finitely many points inside one of the
n-cells of X, and n > 2. To prove this statement, one needs to prove that
any continuous map from S to F7*X can be perturbed to a map from S! to
F(X\ar). To do this, he can first perturb a map to a piecewise linear map
for which the image will be one dimensional. And the resulting map can be
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easily perturbed again to a map whose spectrum avoids any given finite set of
points in any cell of dimension at least 2.
(n

2.24. Let X be a simplicial complex, and zy € X be a vertex.

Define X’ to be the sub-simplicial complex consisting of all the simplices A (
and their faces) with A 3 . Then X’ is contractible.

We also use zg to denote the point in F X defined by

o(f) = flzo) - 1m € My (C)

for each f € C(X).

We can easily prove the following claim: The map F"X'\{zo} — F™X' is
(m — 1) equivalent.

To see this, let

A =U{A | A is a simplex of X’ and g ¢ A}.

Then A is a sub-simplicial complex of X’. A may not be connected, but (X', A)
is 0-connected. In the notation of 1.4.2,

X' =Star({zg}) and A= Star({zo})\Star({zo}).

It is obvious that A — X’\{z(} is a homotopy equivalence. Therefore,
Fir X' — (F™X'")\{zo} is a homotopy equivalence. By Lemma 2.21, the claim
holds. In particular,

mi(F"X"\{xo}) =0

for any 0 <4 < m — 2, since F"™ X" is contractible. Equivalently,
mi(F™(X"\A)\{xo}) =0

for any 0 < ¢ < m — 2. Note that X"\ A is an open neighborhood of zg € X,
which is the interior of X’.

2.25. PROOF OF THEOREM 2.9. Suppose that

SP(‘T):{ >\17A17”'7A17 >\27>\27"'7>\27"’7 Aia)\h"'a)‘i }a
———

k1 ko ki

where A1, Ao, -+, \; € X are distinct points and kq + ko +- - -+ k; = m. Choose
mutually disjoint open sets Uy 3 A\1,Usz 3 Ag,---,U; 2 Ay, in X. Then there is
a locally trivial fibre bundle

FE(Uy) x F?(Uz) x - x F¥(Uy) - —  Foko k(U Uy, -, Us)
!
G(kl,k2,~~,ki)(e)'
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Note that Gk, ks, k) (C) = U(m)/(U(k1) x U(kz) x --- x U(k;)) is a smooth
manifold of dimension ¢ :=m? — 37", k7. There is a small contractible neigh-
borhood U, C B.(x) which is homeomorphic to the space

FRM (X)) x F*2(Xy) x --- FF(X;) x R,

where X7, Xo, -+, X; are mutually disjoint open subsets of X. The space X;
can be chosen so that X; is the simplicial complex X’ as in 2.24 corresponding
to vertex );, with respect to some simplicial decomposition of X.

The following fact is well known in topology. Suppose that X and Y are
connected CW complexes with base points xg,yo respectively. If X\{xo} is
l3-connected and X\{yo} is la-connected, then (X x Y)\{zo, yo} is (I1 +12+2)-
connected.

Combining this fact with 2.24, we conclude that U, \{z} is

dkj-2+t=m-2+t
j=1

connected. This ends the proof.

3 COMBINATORIAL RESULTS

In this section, we will prove certain results of a combinatorial nature, for the
preparation of the proof of the Decomposition Theorem—Theorem 4.1 of the
next section.

We will need the results in the case that certain multiplicities are general—mnot
just equal to one. For the sake of clarity, we will first state and prove the results
in the special case of multiplicity one. We will then consider the general case.

3.1.  Suppose that X is a simplicial complex. Let o denote the simplicial
complex structure of X—which tells what the simplices of X are, and what
the faces of each simplex of X are. In this section, we will use (X, o) to denote
the simplicial complex X with simplicial structure o, to emphasize that we
may endow the same space X with different simplicial complex structures.
In this section, we will reserve the notation, o, 7,01, 7, -, etc., for simplicial
complex structures.

Recall that, if A is a simplex, its boundary is denoted by 0A. For example, if
dim(A) = 0, i.e., A = {pt}, the set consisting of a single point, then A = {;
if dim(A) =1, i.e., A is an interval, then A is the set consisting of the two
extreme points of the interval. Let us also consider the set A\OA, and denote
it by interior(A).

If (X,0) is a simplicial complex, then for any point € X, there is a unique
simplex A such that x € interior(A).
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As usual, if each simplex of (X,07) is a union of certain simplices of (X, 02),
then we shall call o9 a subdivision of o1. This is equivalent to the property
that any simplex of (X, 03) is contained in a simplex of (X, o1).

The notation Vertex(X, o) (respectively, Vertex(A) ) will be used to denote
the set of vertices of (X, o) (or of the simplex A).

DEFINITION 3.2. Let F = {1,2,---, K} be an index set. (The index set F
can be any set with exactly K elements.) Let K7, Ko, ---, K, be non negative
integers with

Ki+Ky+- -+ K, =K

A GROUPING OF FE OF TYPE (K1, Ks, -, K,,) is a collection of m mutually
disjoint index sets 4, Es, - -+, E,, with

E=E UEyU---UE,,

and #(E;) = K; for each 1 < j <m. (Cf. 1.5.18.)

Usually, we will keep the tuple (K7, Ka, -, K,,) fixed and just call the collec-
tion E1, Fs, -+, E,, a grouping of E (without mentioning the type).

(Most of the time, K4, Ky, -- - K,, will be positive integers, i.e., nonzero. But
for convenience, we allow some numbers K; = 0, and then the corresponding
sets F; should be the empty set.)

3.3. Let (X,0) be a simplicial complex. Suppose that, associated to
each vertex x € X, there is a grouping E;(x), Ea(x), -, Ep(x) of E of type
(Ky,Ks,--,K,,). (In our application in the proof of Theorem 4.1, the index
set E will be the spectrum of a homomorphism at the given vertex, see 1.5.13,

1.5.17-1.5.22.)
Suppose that these groupings for all the vertices are chosen arbitrarily. Then,
in general, for a simplex A with vertices g, 1, -, 2y, the intersections

(| Ei@) =Ej(xo) NEj(x1) NN Ej(xn), j=1,2,--,m,
zeVertex(a)

may have very few elements—the sets E;(xo), Ej(z1),-- -, Ej(x,) may be very
different.
The purpose of this section is to introduce a subdivision (X, 7) of (X, o), and
to associate to each new vertex of (X, 7) a grouping to make the following true:
For any simplex A of (X, 7) (after the subdivision), for each j, the number of
elements in the intersection

N Ei

zeVertex(a)

is not much less than the number of elements in each individual set E;(x) (note
that #(E;(z)) = K, for each z); in other words, the groupings of adjacent
vertices (after subdivision) should be almost as the same as each other.
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First we will state the following lemma (the proof will be given in 3.15). Later
on, we will need a relative version of the lemma.

(See 1.5.17 to 1.5.23 for the explanations of the role of this lemma in §4. To
visualize the following lemma, see 1.5.21 for the explanation of the one dimen-
sional case.)

LEMMA 3.4. Let (X,0) be a simplicial complex consisting of a single simplex
X and its faces. Suppose that associated to each x € Vertex(X, o), there is a
grouping E\(x), E2(x), -+, Em(x) of E (of type (K1, Ka, -+, K))-

It follows that there is a subdivision (X,T) of (X,0), and associated to each
new vertex x € Vertex(X, 1), there is a grouping F1(x), Es(x), -, Enm(z) of E
(of type (K1, Ka,--+,Ky)), (for any old vertex of (X, o), the grouping should
not be changed), such that the following hold.

For each newly introduced vertex x € Vertex(X, 7),

M) M Eji(y) C Ej(z), J=1,2,--.m,
ye Vertex(X,o)

and

(2) Ej(z) C U E;(y), i=1.2..m.

ye Vertex(X,o)
For any simplex A of (X, 1) (after subdivision),

@ # N Bz e,

ze Vertex(n)

where n = dim X .
(When we apply this lemma in §4, the simplex X will be a simplex of a simplicial
complex Y, and K; >> (dimY)?3; from this it follows that

n(n+1)
4N Bz "D

zeVertex(a)

>> (dimY)?, j=1,2,---,m.)

REMARK 3.5. The inclusion Ej(z) C U, cVertex(x,s) £i(y) in the condition
(2) of Lemma 3.4 is important for our application in §4 (see 1.5.19 for the
explanation). We will put this inclusion into a more general context, 3.7. So
we will only discuss the condition (1) in this remark.

The inclusion ﬂerertex(X,a) E;(y) C E;(z) in the condition (1) above, will
not be used in our application in §4. But taking this inclusion as a part of the
conclusion will make the induction argument easier in the proof.

We would like to point out that the weak version of the above lemma with-
out requiring the inclusion in (1) will automatically imply the above stronger
version. (This can be seen from the proof of Corollary 3.14 below.)
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3.6. STRATEGY AND LOGISTICS OF THE PROOF OF LEMMA 3.4

We shall prove it by induction. So we assume that the lemma is true for simplex
of dimension at most n — 1, and prove the case that dim(X) = n.

First, we introduce a new vertex, which is the barycenter of X, and introduce
a model grouping Ejrodel pmedel ... pmodel of B for the new vertex.

We shall view X as many layers similar to the boundary 0X: X x {0},0X x
{t1},--+, and the top layer 9X x {1} is identified into a single point which
is the barycenter, where t1,to,---, is a finite sequence of increasing numbers
between 0 and 1 (the number of terms in this sequence depending in a certain
sense on the distance between the giving groupings at the vertices and the
model grouping at the barycenter). See the picture below.

0X x {tg}

0X x {tl}

0X x {0}

We will introduce a subdivision of each layer X x {t;} (identifying the layer as
a set with 0X and thereby endow it with a simplicial complex structure), and
a grouping for each vertex on this layer. The general principle we shall follow
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is: the higher the layer is, the closer the groupings are to the model grouping.
We should, gradually, change the groupings from each layer to the next higher
layer.

Let us explain it for the case dim(X) = 2 and dim(9X) = 1. Fix a ¢;, and
suppose that we have the simplicial structure and groupings for all vertices on
0X x {t;}. Let us using the following picture to show the vertices of X x {¢;}.

T4

Ts

0X x {t;}

@
I L2 T3

(Le., there are five 1-dimensional simplices [z1, 23], [22, 3], [x3, 4], [24, 25] and
[v5,21].)

Let us assume that the condition (3) holds for any simplex of X x {t;} with
dim(X) replaced by dim(0X). (We will also discuss the condition (1) below,
but not the condition (2).)

We shall construct simplicial structure and groupings on 90X x {¢;41}. To begin
with, let us provisionally define the simplicial structure on 0X x {t;1} to be
as the same as that on X X {t;}, as in the picture on the next page.

Fix an element A € E*% such that A ¢ ,_, E1(xx). (If such an element
does not exist, then the groupings are already good for E;. In other words,
Ei(xy) contains and therefore equals E7*°%! for every k. Then we should go
on to Fy or other parts.)

The grouping on the vertex y;,j = 1,---,5 will be taken to be either the
grouping on the corresponding vertex x;, if Eq(x;) 3 A, or the grouping on the
corresponding vertex z;, with a certain element of Ey(z;)\E{"°?! replaced by
A € Eedel if By (z;) # A. Lemma 3.9 below tells which element should be cho-
sen to be replaced. Of course the other part E;, t > 1 of the grouping must also
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be slightly modified. Lemma 3.9 also guarantees that such modification exists.
Subsections 3.7 and 3.8 give the definition used in 3.9. (This consideration are
all in order to ensure the condition (2).)

0X x {ti+1}

@
Y2

I T2 xIs

Now, m2=1 E1(yi) contains one more element of EJ*°%! than ﬂi:l Eq(xg),
namely, A. So for Fy, the groupings on X x {t; 1} are (globally) closer to the
model grouping than that on 9X x {¢;}.

But the groupings on 0X x {t;1} may not satisfy the condition (3) with dim(X)
replaced by dim(9X), as the groupings on 0X x {t;} do .

By the induction assumption, applied to each individual simplex of 0X x {t; 41}
(with the provisional simplicial structure), we can introduce a subdivision for
0X X {t;+1} and groupings for the new vertices to make the condition (3), with
dim(X) replaced by dim(90X), hold for 9X x {t;+1}. The picture now looks
like
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0X x {ti+1}
@ @
i Y2
@
x1 T2 Zs3

In this picture, yi,95,y5,y5, and y; are the new vertices introduced in the
subdivision.

(Of course this picture only shows a special case.)

It goes without saying that we wish to ensure the condition (1) (and also
the condition (2)) for the groupings associated to the new vertices inside each
provisional simplex of X X {t;11}. In the other words, when we introduce the
groupings for a new vertex inside a fixed provisional simplex of 90X x {t;+1}
(e.g., y4 inside [y2,ys]), for each k we should keep the intersection of the sets
Ej, over vertices of this simplex (e.g., Ex(y2) N Ex(ys3)) inside the set Fy, for the
new vertex (e.g., inside Ey(y})). This is the condition (1) for this provisional
simplex. The condition (1) for all the individual simplices implies that after the
subdivision, the intersection over the whole layer [, cVertex(x x {t:.,}) £1(¥) i
equal to the intersection over the vertices of provisional simplicial structure
ﬂizl Ei(yx), and therefore still contains one more element of E7"°%! than

MNi—1 E1(ax) (namely , X).
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One may notice that the subset 0X X [t;,t;11] is not automatically a simplicial
complex. We shall use Lemma 3.10 below to decompose it into a simplicial
complex.

Because we do not change much from the grouping of z; to the grouping of
y; and because we make (1) true when introduce groupings for new vertices
Y5, Y7, etc., the groupings for any simplex inside 90X x [t;, ¢; 1] will satisfy the
condition (3) (of course with dim(X) NOT replaced by dim(9X)).

Finally, let us mention that, we carry out the above construction separately for
F4, E5, etc. Once this has been done for 7, the same method can be used for
E5. The condition (1) will guarantee that when we work on Es, we will not
affect the condition (3) for E;, which was supposed to be already satisfied.
(The details will be contained in the proof of Lemma 3.11)

As we mentioned above, when we construct E;(y;) from Ej(z;), we need to
replace one element of E1(z;)\E°%! by the element A\ € ET°N\ Ey (z;). If we
choose an arbitrary element y € Eq(z;)\E7**% to be replaced by A to define
Ey(y;), then in general, E(y;) may not be extended to a grouping satisfying
the condition (2), in other words, there may not exist a grouping E1, Fa, - -, Ey,
of E of type (K1, Ks, -, K,,) such that By = Eq(y;) and

Ei C U B, k=12 m.
zeVertex(x)

So we need to give a condition to ensure that a subset F; C E can be extended
to a grouping satisfying condition (2). This will be discussed in 3.7 and 3.8.
(See condition (xx) in 3.8.)

The proof of Lemma 3.4 will be given in 3.7 to 3.16.

3.7. We will put the inclusion E;(z) C Uerertex(X,a) E;(y) in the condition
(2) of Lemma 3.4, into a more general form, as follows. (In fact, we will use
this more general form in our application.)

Suppose that Hy, Hs,---, Hy, are (not necessarily disjoint) subsets of E, sat-
isfying the following condition (called Condition (x)). For each subset I C
{1,2,'“,777,},

#(JH) =D K. (%)

icl i€l

It follows obviously that HyUHsU---UH,,, = E, since #(H1UHU---UH,,) >
doiny Ki = #(E).

From the Marriage Lemma of [HV] (or the Pairing Lemma in [Su]), the condi-
tion (*) is a necessary and sufficient condition for the existence of a grouping
Ey,Es, -+, E,, of E of type (K1, Ka, -+, K,,) with the condition E; C H;.
(Recall that, the Marriage Lemma of [HV] is stated as follows.

Suppose that there are two groups of K boys and K girls. Suppose that the
following condition holds:
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For any subset of K girls (K3 =1,2,---, K), there are at least Ky boys, each
of them knows at least one girl from this subset.

Then there is a way to arrange marriage between them such that each boy
marries one of the girls he knows.

Our claim above is a special case of this Marriage Lemma. One can see this as
follows. Suppose that the K girls are from m different clubs, and the -th club
has exactly K; girls. Number the boys by 1,2,---, K. Let us define the relation
consisting of a boy knowing a girl as follows. If j € H;, then the boy j knows
all the girls in the i-th club. Otherwise, he does not know any girl in the i-th
club. (Notice that the boy j could be in different H;, so he could know girls
from different clubs.) Obviously the condition (*) becomes the above condition
in the Marriage Lemma. So if the condition (x) holds, then there is a way to
arrange the marriage as in the lemma. One can define E; to be the set of boys
each of whom marries a girl from the i-th club. Obviously F; C H;. This
proves the sufficiency part of the condition. The necessary part is trivial.)

If we let H; = UyEVGI‘tQX(X,U) E;(y), then the inclusion in (2) of Lemma 3.4
becomes F;(x) C H; for each z € Vertex(X, o).

For any subset I C {1,2,---,m}, let

H; = U H,; .
iel
3.8. We say that a subset E1 C Hy, of K; elements, satisfies Condition (#x)
if for any I C {2,3,---,m},
(%) #(H\E1) > Y K; .
iel

(CAuTION: 1 ¢ I.) Again, from the Marriage Lemma, Ey C H; satisfies ()
if and only if F; can be extended to a grouping F, Es,---, E,, of E of type
(Kl, Ky, --- s Km) such that E; C H;.

LEMMA 3.9. Suppose that Eq, Fy (C Hy) are two subsets satisfying (xx). If
A € F1\Ey, then there is a p € E1\Fy such that

By = (Ex\{p}) U {A},
satisfies (xx).
Proof: Let G = F1 U{\}. Since E; satisfies (x%), necessarily,
#(HN\G) > Y Ki—1,
iel

for all subsets I C {2,3,---,m}. . B
Let H; = H:\G, i € {2,3,---,m}. And let Hr = U;erH; for any I C
{2,3,---,m}. The above inequality becomes #(H) > >, K; —1.
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Let Iy be a minimum subset of {2,3,---,m} such that
#(Hp)=> Ki—1.
i€l

Note that such set I exists, since if I = {2,3,---,m},
S

Using the fact that #(Hy,\F1) > > ;c; Ki , we can prove that
EinN H[O §Z Fi.

If it is not true, then G N Hy, C Fi, since A € F; and G = E; U {A}. And
therefore,

#(Hlo) (HIO\G) > # Hlo\Fl Z K;,

i€l

which contradicts with the above equation.
Choose any element p € (Ey N Hy,)\F1; we will prove that p is as desired in
the lemma. Le., the set

By = (Bx\{p}) U {A} = G\{p}

satisfies (+x). That is, for any J C {2,3,---,m}, #(H/\E}) > > .., K
The proof is divided into three cases.
(i) The case that J NIy = (. By the relations

ﬁf[ou,] = (HJ\.HIO) U ﬁIIO (disjoint union)

and

#(Hp,ug) Z K;—1,
ZGIOUJ

combined with the definition of I, one knows that

(a) #(HNHL) > K

icJ

which is stronger than the condition

#HN\E) =) K.

ieJ

(ii) The case that J C Iy. Obviously, for J = Iy, we have

#(HIO\E;.) = (HIO\G ZKl )

i€l
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since B} = G\{u} and p € H, N G.
So we can suppose that J S Ij.

By the minimality of Iy, we know that

#(HNG) > K; .

icJ

Therefore,

#HNE) =Y K.

ieJ
(iii) The general case. Let Jo = J N Iy, and J; = J\Jy. Then

(H,\E}) D (Hj;,\Hy,) U (Hj,\E}),

where the right hand side is a disjoint union since Jo C Ij.
Evidently, this case follows from (a) above and case (ii).

The following lemma is perhaps well known.

LEMMA 3.10. Let (X, 00) be a simplicial complez and (X,01) be a subdivision
of (X,00). It follows that there is a simplicial structure o of X x [0,1] such
that

(1) all vertices of (X x [0,1],0) are on three subsets X x {0}, X x {1}, and
X x {1};

(2) (X X [07 1]’0)|X><{0} = (ngo): and (X x [07 1]’0)|Xx{1} = (Xvo'l);

(3) For a simplex A of (X x[0,1],0), there is a simplex Ao of (X, 00) (caution:
we do not use (X,01)) such that

A C Ag x [O, 1],
as a subset.

Proof: We prove it by induction on dim(X).

If X is O-dimensional simplicial complex which consists of finitely many points,
the conclusion is obvious, since X x [0,1] is finitely many disjoint intervals.
(Note that, at this case, necessarily, (X,0¢) = (X,01).) For us to visualize
the general case later on, we introduce a new vertex (z, 3) € X x {4} for each
x € X. That is, we divide the interval {z} x [0, 1] into two simplices {z} x [0, 3]
and {z} x [3,1].

As the induction assumption, let us assume that the lemma is true for any
n-dimensional complex. Let dim(X) =n + 1.

Let X (™ be the n-skeleton of (X, o) (we use oo not o1 here). By the induction
assumption, there is a simplicial structure o’ of X(™ x [0, 1] such that

(1) all vertices of (X (™ x[0,1], ") are on three subsets X ™ x {0}, X (™) x {1},
and X x {1};
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(2) (X % [0,1],0")| xm x oy = (X, 00 x(m), and
(X(n) x [0, 1]70/)|X(n)><{1} = (X(n),01|x<n>)5

(3) For an simplex A of (X(™ x [0,1],0"), there is a simplex Aq of (X, aq)
such that

A C Agx [0,1],

as a subset.

Let us introduce the simplicial structure o on X X [0,1] such that
(X X [07 1]’0)‘X(’L)><[O,1] = (X(TL) X [07 1]70/)7 (X X [07 1]70-)‘X><{0} = (X700>7
and (X x [0,1],0)|[xx {13 = (X, 01).

Consider each A x [0, 1] for any (n + 1)-simplex A of (X, 0¢) (again, we use

oo not o1). From the above, we already have the simplicial structure on the
boundary

A(A x [0,1]) = (A x {0}) U (DA x [0,1]) U (A x {1}).

Namely, on A x {0}, we use og; on A x [0, 1], we use ¢’; and on A x {1}, we
use oy.

Let ¢ be the barycenter of A, introduce a new vertex C' = (¢, 3) € X x {3}.
The simplices of o on A x [0, 1] are of the following forms.

(i) C itself is a zero dimensional simplex;

(ii) Any simplex of the boundary 9(A x [0, 1]) is a simplex for o on A x [0, 1];
and

(iii) For any simplex A’ of the boundary 9(A %0, 1]), the convex hull of A’'U{C}
is a simplex of dimension (dim(A’) + 1) for o on A x [0, 1].

Define such simplicial structure for each (n + 1)-simplex separately, and put
them together give rise to a simplicial structure of X x [0, 1], which obviously
satisfies the conditions (1), (2), and (3).

(Note that the simplicial structure on OA x [0, 1] is as the same as o', therefore
the simplicial structure on A x [0,1] and on Ay x [0,1] for different (n + 1)-
dimensional simplices A and A; are compatible on the intersection (ANA7) x
[0,1].)

The following pictures may help the reader to visualize the construc-
tion. They are pictures only for the case n = 0, dim(A) = 1, and
dim(A x [0,1]) = 2.
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Suppose the simplicial structure for the boundary 9(A x [0,1]) is as follows.

(The dots represent vertices.)

® @ ®
[
o
o o L
A x {0} A x {1}
Then the simplicial structure on A x [0, 1] will be described by the following
picture.
.- . —9
N e
N | ~
™~ | -
\\ | e

™~ - g _—®

N =

/*\\\\\\
P RN ——9

/ | ™~
e ™~
~ | ~
/ | ™~
e ™~
(% ° ~e
A x {0} Ax {1} A x {1}
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The following lemma presents the main technical step of this section.

LEMMA 3.11. Suppose that {H;y, Ha,- -, Hy,} satisfies the condition (x). Sup-
pose that (X, o) is a simplicial complex consisting of a single simplex Ay and
its faces. Let (Y,0) = (0A,0), and (Y, T) be a subdivision of (Y,c). Suppose
that it is assigned, for each vertex x € (Y,7), a set E1(x) C Hy which satisfies
the condition (xx). Furthermore, suppose that for any simplex A of (Y, 1),

dimY(dimY + 1)

# N B | =K 5

ye Vertex(n)

It follows that there are a subdivision (X,7) of (X,0) and an assignment, for
each vertex x € Vertexr( X, T), a set E1(x) C Hy, satisfying condition (xx), with
the following conditions.

(1) (X, D)y = (Y,7), and for each vertex y € Vertex(Y,T), the assignment
E1(y) is as same as the original one.

(2) For any x € (X,7),

E1 (il?) D) n E1 (y) .
ye Vertex(y,r)
(3) For any simplex A of (X, 7T),

dim X (dim X + 1)
5 .

# (N Ei@) | > K-

ze Vertex(n)

Proof: The Lemma is proved by induction on the dimension of the simplex.
If dim(Ag) = 0, then Ay = {pt}, a set of single point, and Ay = ). Obviously,
the lemma holds by choosing any Fq(pt) C H; of K7 element to satisfy ().
Let us prove the 1-dimensional case. Logically, this part could be skipped. But
the proof of this case will be easier to visualize which can be used to understand
the general case.

Suppose that dim(Ag) = 1. Ay is a line segment [0, 1]. Divide [0, 1] into several
subintervals by

1
0:t8<t‘1)<t8<---<t2_1<t2:§:t}1<t(11_1<-~-<t§<t%<té:1.
(The natural number a is to be determined later.) The points {t; }iz0,1;j=1,2.a

will be the new vertices of (Ag,7). (Note that t0 is the same vertex as tl.)
Choose a model Ef*°d¢l C H; to satisfy (+*) and

Emedel 5 g1 (1) N By (1)),
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In fact, one can choose Ef"°4¢! to be either Ey(t3) or Fo(t3). (Note that t§ = 0
and t} = 1 are vertices of (Ag,a).)

Let G = E1(t) N Ey(t}) N Emedel. Without loss of generality, we can assume
that there is A € E°?\G. Otherwise, E7°%! = G = E(t3) = E1(t}), and
the conclusion already holds before introducing any subdivision.

By Lemma 3.9, if A ¢ Fy(t}) (i = 0,1), then there is a u € Ey(t}))\E7°%! such
that By (t)) U {\}\{u} satisfies (xx). Define

B = (Bt o oyt i 36 B
Then FEy(t}) D G U {\}. Therefore,

Ei(19) N Eq(t1) N BP0 2 By (tg) N Ex (tg) N BT o9l

Suppose that we already have the definitions of F1(t{) and Ei(t}), we can
define B4 (t?,,) and Ej(t} ;) exactly the same as above (i in place of 0, and
i+ 1 in place of 1), and obtain

Eq(t3,1) N Ex(tipg) N ETO% 2 Ey(t]) N En(t;) N Bl

Carrying out this procedure for at most finitely many times, we will reach
Ei(t2_ )N Ey(tL_)) N Epodel = pmedel Then define By (t!) = EMm°l. (Note
that t2 =tJ = 1)

For:=0,1;=0,1,2,---Ja— 1,

dim (Do) (dim(Ag) + 1)
2 )

#(El(t;l) N El(t§+1)) >K, —-1=K, —

since we take out at most one point from E () to define Ey (¢’ ). This proves
that the lemma holds for n = 1.

(Let us point out that for one dimensional case, the proof could be simpler.
We choose the above proof to present some idea for the general case below.)
Suppose that the lemma is true for any simplex of dimension < n — 1. We will
prove it for dim(X) = n. (One should compare to the explanation in 3.6.)
STEP 1. Identify Ag with 9A¢ x [0,1]/0A¢ x {1}. Regard 0A( as 0 x {0} C
0A¢ x [0,1]. Note that A x {1} is identified as a single point which is the
center of Ay, and is NOT a vertex of (Ag, o).

Choose 0 =ty < t; < --+ < t, = 1. (The natural number a is to be determined
later.)

We will first introduce some new vertices (for the subdivision (X, 7)) on 9Ag x
{t1},00¢ x {t2}, -+, 000 x {ts}, and define E; for those vertices.

Later on (in Step 4), we will consider each 0A X [t;,t;11] to be X x [0,1] in
Lemma 3.10, and introduce new vertices on 0A x { %} (in place of X x {1 }).
(We need to do this, because A x [t;,t;41] is not automatically a simplicial
complex.)
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Choose a model Ef*°del C H; to satisfy (xx). We also require that

E{nodel ) m F; (y) )
yeVertex(v,r)

(One can choose E°%! to be Fy(y) for any vertex y € Vertex(Y,7).)

Define F1{(z,1)} = Ef°del. (Note that {(z,1)} C 9A¢ x [0,1] is identified to
a single point, the center of Ay.)

The construction will be carried out in Step 2, 3 and 4. The procedure can be
outlined as follows. If we already have the construction of simplicial structure 7
for 0Ag x {t;—1} and the definition of E; on all vertices in Vertex(90Ag x {t;—1}),
then, to define the simplicial structure on dAg x [t;—1,t;] (in particular, to
introduce vertices on dAg x {t;}), and to define E; on the newly introduced
vertices (on 0Ag X {t;}), we will only use the simplicial structure and the
definition of E; on 9Ag X {t;—1}.

In this procedure, if there is a vertex x € Vertex(0A¢ x {t;_1},7) such that

Ey(a) # Byt

then we will require that

() N Ei(z)N B 2 N Ey(z)nEfodel

zeVertex(8Aox{t;:},7) zeVertex(8Aox{ti_1},7)

(That is, the sets E1’s on A x {t;} are globally closer to EJ"°%! than those
on 0Agy x {t;—1}.) Finally, within finitely many steps, we will reach that, for
certain ¢ — 1, and for all vertices « € Vertex(0Ag X {t;—1},7),

Ei(z) = Eodel

Then we choose t; = t, = 1, and choose any simplicial structure on Ay x
[ta—1,1]/0Ag x {1} with vertex set to be Vertex(0Ag X {t,—1}) UdAg x {1}.
Recall that the set 9A¢x {1} is identified as a single point with E (0Agx{1}) =
Einodel.)

Furthermore, in this procedure, we not only make (3) true for any simplex in
0Ag X [ti—1,t;], but also make the following stronger statement true for any
simplex A lies on 0Ag x {t;}:

(n—1)n .

(b) # ﬂ Ei(y) > K- 5

yeVertex(Aa)

(Note that n — 1 = dim(9A¢ x {t;}) = dim(9Ay).) This condition has to be
satisfied for the construction of the next step by induction.
STEP 2. We will do all the above construction only for 9Ag X [t, t1]. For the
other part of the construction, one uses induction argument with aid of (b)
(i.e., let t;_1 play the role of ty, and t; play the role of ¢;.)
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Let {(y1,%0), (y2.t0), - -, (Yp, to) } be the vertices of 0A¢ x {to} =Y. There is a
simplicial complex structure on 0Ag x {t1}, which is exactly the same as that of
(0Ap x {to}, T), since both 9Ag x {t1} and 0A( x {to} can be regarded as 0A.
We call such simplicial complex 7,.. Therefore, each point (y;,t1) (1 <i <p)
is a vertex of (0Ag X {t1}, 7). We will introduce more vertices later.

Let G = E1<y1, to) n El(yg, to) n---N E‘1<yp7 to) n E{'wdel. IfG = E{nodel7 then
E1(yi,to) = E7°%! for each 1 < i < p and the construction is done. So we
assume

G ;é E{nodel.

Choose A € Ef°de!l\G. When we define E;(z) for any vertex = € 0Ag x {t1},
it is always required that

Therefore, (a) holds for the pair {to,t1}.
For each point (y;,to), if A ¢ FE1(yi,to), by Lemma 3.9, there is u €
E1(yi, to) \E70%! such that (E1(yi,to) U {\})\{u} satisfies (+*). Define

oy | Ea(yisto) if A€ E(yito)
Bt ={ B i g

In this way, obviously, Fi(x) D G U {A} for each vertex z = (y;,t1) €
Vertex(aAo X {tl}, 7:1»?)

STEP 3. Note that the definition of F; on Vertex(0Ag x {t1}, T, ) may not
satisfies (b). Therefore we can not use the simplicial structure 7,. and the
definition of F; on Vertex(9Ag x {t1},T.) to construct simplicial structure
and the definition of E; for Ag x {t2}. We need to introduce a subdivision
for (0Ap x {t1},7,.) and the definitions of E; for new vertices to make (b)
true. (This step is not needed in the one dimensional case, since for any zero
dimensional simplex (which is a point), (b) automatically holds.)

Apply the induction assumption to each simplex of (0A¢ x {t1},7,.) with the
above definition of F; on Vertex(0Ag X {t1},7,.), from the simplices of the
lowest dimension ( dimension 1) to the simplices of the highest dimension (di-
mension n — 1). (Note that each such simplex has dimension at most n — 1.)
One should begin with each 1-simplex (with boundary being two points — two
0O-simplices), then each 2-simplex, and so on.

First, let e be any 1-simplex of (0Ag x {t1}, T,.) with boundary de = {vg,v; }.
Obviously, the condition of Lemma 3.11 automatically holds for simplex e in
place of Ay and de in place of Ay, since Je is zero-dimensional. By the
induction assumption, there is a subdivision (e, 7) of (e, 7,.) and the definition
of E; for each vertex of (e, 7) such that

(1) The definition of E; on the original vertices {vg, v;} are the same as before.
(2) For any « € Vertex(e, 7),

El(l‘) D El(’Uo) n El(ﬂl).
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(3) For any simplex ¢’ of (e,7) (a line segment of e)

dim(e)(dim(e) + 1) .

m Ei(z) > K; — 5

zeVertex(e)

After we have done the above procedure for each 1-simplex, we can do it for
each 2-simplex, since we already have simplicial structure and the definition of
FE, for the boundary of any 2-simplex as required in the condition of Lemma
3.11.

Going through this way, finally, one obtains a subdivision (0A¢ x {t1},7) of
(0Ag x {t1},7,.) and the definition of E; for each newly introduced vertex,
such that the following two statements hold.

1. For each old simplex A of (0Ag x {t1}, T») and any new vertex x € A,

(c) Ei(z) D m Ei(y) -

yeVertex(A,pre)
2. If Ais a simplex of (0A¢ x {t1},7), then

dimY (dimY + 1) (n—1)n
; =K -

# N Ew| = K-

yeVertex(a)

(This is the requirement (b) in Step 1.)

The first statement is the induction assumption of validity of (2) and the second
statement is the induction assumption of validity of (3).

STEP 4. In this step, we will apply Lemma 3.10 to define the simplicial struc-
ture 7 on 0Ag X [to, t1] and the definitions of E; on all vertices. Note that we
already have simplicial structure 7 on 0Ag x {to} and on 9Aq x {t1}. Further-
more, 7|pa,x{t;} is a subdivision of 7|pa,x s} if we regard both dAg x {to}
and 0Ag x {t1} as 0Ay. Apply Lemma 3.10 (with A in place of X) to obtain
the simplicial structure on A X [to, t1] (we only need to introduce new vertices
on 07 x {ffh}).

For each new vertex (u, 234) € 9A¢ x {231}, consider (u,tg) € 02 x {to}.
From 3.1, there is a unique simplex A of (0A¢ x {to},7) such that (u,tg) €
interior(A). Choose any vertex x of A and define Ey (u, 23%) = By (x).

So we have the simplicial structure 7 on 0Ag x [tg,t1] and the definition of
Ey(z) for each x € Vertex(0Ag X [to,t1]). We need to verify the condition (3).
Let A be any simplex of (0Ag x {to},7) with vertices {(uo,to), (u1,%0)," ",
(u;, to)}. Then

dimY (dimY + 1)
5 .

#(E1(uo, to) N E1(uy,to) N -+ N Eq(u, tg)) > K1 —
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Let G1 = E1 (UO, to) N E1 (Ul, to) n---N E1 (ui, to). From the above definition of
E; for vertices of 9Ag x {1} we know that if (u,t9) € A and (u, ) €
Vertex(0Aq x [0, 1], 7), then

t t
(d) E1(u, o+l

) D Gh.
Since each F4 (uj,t1) is either Ey(uj,to) or is obtained by replacing one element
of Eq(u;,to) by A, we have

#(Gl ﬂEl(uo,tl)ﬂEl(ul,tl()ﬂ---ﬂ)El(ui,tl))
> K _ dimY(dimY+1) /. 1
(e) S e eun’ ey
>Ki—"—5—-n
= K, — et

(Note that there are i +1 (< n) sets of {E1(uj,t1)}_, and, therefore, at most
i+ 1 points were taken out from Gj.)
Recall that 7 on Ag x {t1} is the subdivision of 7,.. By (c) of Step 3, we have

N Ey(z) > N Ev(y)

zeVertex(Ax{t},7) yeVertex(Ax{t:},7pre)

= El(’u,mtl) n El(ul,tl) n---N El(ui7t1).

(Note that (c) implies that the above “2” holds if the left hand side of “D>”
is replaced by Ej(z) for any x € Vertex(A x {t1},7), so it also holds for the
intersection of these Fj(x). In fact, the above “D” can be replaced by “=".)
Then combining it with (d), we have

m E1($) = Gl n El(’LLo,tl) n El(ul,tl) N---N El(ui,tl)
zeVertex(ax(to,t1],7)

which has at least K; — w elements by (e). Combining this fact with (3)
of Lemma 3.10, we know that the desired condition (3) holds for any simplex
of (6A0 X [to,tl], 7~')
Evidently, (2) holds from the construction.
Since (b) holds for A x {t1}, one can continue this procedure. This ends the
proof.

(]

COROLLARY 3.12. Suppose that {Hy, Ha,- -+, Hy,} satisfies the condition (*).
Suppose that (X, 0) is a simplicial complex consisting of a single simplex and
its faces. Suppose that there is assigned, for each vertexr x € (X,0), a set
Ey(x) C Hy which satisfies the condition (+x).

It follows that there are a subdivision (X,T) of (X,0) and an assignment, for
each new vertex x € Vertex(X,T), a set E1(x) C Hy, satisfying condition (xx),
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with the following conditions. (The definition of Eq for the old vertex should
not be changed.)
(1) For any x € Vertex(X, 1),

Ei(z) D N Ei(y) .

ye Vertex(X,o)

(2) For any simplex A of (X, ),

dim X (dim X + 1)

# N B |>K - 5

ze Vertex(n)

Proof: To prove this corollary, one needs to apply Lemma 3.11 to simplices
from the lowest dimension (e.g. dimension one simplex whose boundary consists
two vertices of (X, o)) to the highest dimension (e.g the simplex X itself with
boundary 0X). Each time, we only work on a single simplex A of (X, o). And
when we work on A, we should assume that we already have the subdivision
and the definition of F; on the boundary dA to satisfy the condition in Lemma
3.11 with dim(0A) in place of dim(Y").

1]

COROLLARY 3.13. Let (X,0) be a simplicial complex consisting of a single
simplex X and all its faces. Suppose that associated to each x € Vertex(X, o),
there is a grouping E1(x), Es(x), -+, Ep(x) of E.

It follows that there is a subdivision (X,7) of (X,0), and associated to each
new vertex x € Vertex(A, ), there is a grouping E1(z), E2(z), -+, Em(x) of E
(for any old vertex of (A, o), the grouping should not be changed), such that
the following hold.

For each newly introduced vertex x € Vertex(X, 1),
(2) Ej(‘r)c U Ej(y)7 J=12-,m.
ye Vertex(X,o)

For any simplex A of (X, 1) (after subdivision),

n(n+1)

(3) # [ B@)=K-——

ze Vertex(n)

where n = dim X.
(In this corollary, we do not require the condition (1) in Lemma 3.4. This will
be done in the next corollary.)

Proof:  Set Uerertex(X,a)Ej(y) = H;, j = 1,2,---,m. Then
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Hy, Hs, -, Hy, satisfy condition (x), and for each z € Vertex(X, o), F1(z) C
H, satisfies ().
Applying Corollary 3.12, we obtain the subdivision (X,7) and the definition
of Eyi(x), for each new vertex, to satisfy condition (xx), and (1) and (2) in the
Corollary 3.12.
For each new vertex x, since Ey(x) satisfies (x*), we can extend it to a grouping
Ey(z), Ex(x),- -, By (x) such that E;(x) C H;. Therefore this grouping satisfy
the condition (2) of our corollary.
The condition (3) follows from the condition (2) of Corollary 3.12. Thus the
corollary is proved.

1]

COROLLARY 3.14. Let (X,0) be a simplicial complez consisting of a single
simplex X and all its faces. Suppose that associated to each x € Vertex(X, o),
there is a grouping Ey(x), Ex(x), -+, Em(z) of E.

It follows that there is a subdivision (X,7) of (X,0), and associated to each
new vertex x € Vertex(A, 1), there is a grouping E1(x), Ex(z),- -, Ep(x) of E
(for any old vertex of (A, o), the grouping should not be changed), such that
the following hold.

For each newly introduced vertex x € Vertex(X, 1),

1) M E;(y) C Ej(z), j=1,2,---,m,
ye Vertex(X,o)

ye Vertex(X,o)
For any simplex A of (X, 1) (after subdivision),

n(nJrl)'

(3) # () B@)2EK-—

ze Vertex(n)

where n = dim X .
(Comparing this Corollary to Lemma 3.4, the only difference is that we require
(3) holds only for E; in the corollary.)

Proof: The only difference between this corollary and Corollary 3.13 is that we
require condition (1) holds. To make (1) hold, we need to do the following. Re-
serve all the subsets ﬂerertex(X,g) E;(y), j=1,2,---,m, which are supposed
to be in E;(x) (if we want the condition (1) to hold), for any newly introduced
vertex x; group the rest of the elements of E (using Corollary 3.13); and finally
put merertex(X o) Ei (y) into each Ej(x). The details are as follows.

Set nererteX(X,a) E;(y) :=D;, j=12,---,m. Then D;, j =1,2,---,m
are mutually disjoint. To see this, we fix a y € Vertex(X,o0), and notice
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that D; C E;(y), and E;(y), j = 1,2,---,m are mutually disjoint, from the
definition of grouping. Similarly, if j1 # jo, then D; N E;,(y) = 0, for any
y € Vertex(X, o).

Consider E' = E\(U,;D;) and the m-tuple

(K{vKéf t ’K?/’I’L) = (Kl - #(D1)7K2 - #(DQ)v' v 7Km - #(Dm))

For any y € Vertex(X, o), the grouping F1(y), E2(y), -, Em(y) of E of type
(K1, Ks, -+, K,) induces a grouping Ei(y), E5(y), -+, El (y) of E' of type
(K{, K3, -, K},), by setting EY(y) = E;(y)\D;.

Apply Corollary 3.13 to the simplex (X, o) and those groupings of E’, to obtain
a subdivision (X, 7) and groupings Ej(x), E4(z), -, E] () of E' for all newly
introduced vertices z € Vertex(X, 7) such that the following hold.

For each newly introduced vertex x € Vertex(X, 1),

(2) Ej(z) C U Ej(y), j=1,2,---,m.
yeVertex(X,o)

For any simplex A of (X, 7) (after subdivision),

: , ,_nln+1)
(3) # () B@)zK-—5—

zeVertex(a)

where n = dim X.
Finally, let E;(z) = £ U D; for any x € Vertex(X, 7). Then the desired condi-
tion (1) of the corollary means D; C E;(x), which is true from the definition.
Also the conditions (2) and (3) of the corollary follows from (2') and (3).

(]

COROLLARY 3.15. Suppose that (X,0) is a simplicial complex. Suppose that
for each vertex x € Vertex(X, o), there is a grouping E1(x), Ea(x), -, Ep(x)
of E.

It follows that there is a subdivision (X, 1) of (X,0), and there is an extension
of the definition of the groupings of E for Vertex(X, o) to the groupings of E
for Vertex(X, 1) D Vertex(X, o) such that the following properties hold.

For each newly introduced vertex x € Vertex(X,7), if x € A, where A is a
simplex of (X, o) (before subdivision), then

M) N Eji(y) C Ej(x), i=1,2,---.m,
ye Vertex(A,o)

and

(2) Ej({L‘)C U Ej(y), j=1,2,---,m.

ye Vertex(n,o)

DOCUMENTA MATHEMATICA 7 (2002) 255-461



SIMPLE INDUCTIVE LIMIT C*-ALGEBRAS, I 355

For any simplex Ay of (X, 1) (after subdivision),
+1
Q 4N BEE@zK- "D

ze Vertex(a,)

where n = dim X.
(The above (1) and (2) imply that for any x € Vertex(X, 7),

yeVertex(X,o) yeVertex(X,o)

Proof: The proof is exactly the same as that of Corollaries 3.13 and 3.14. In
fact, in the proof of Corollary 3.13, we were working simplex by simplex from
the lowest dimension to the highest dimension. As same as Corollary 3.13,
when we work on simplex A, we should suppose that, we have already done
with OA. The only difference is the following. We should choose the sets H;,
D; differently according to the simplex we are working on. For simplex A,
choose H; =, eVertex(a) Zi(¥): Di = NyeVertex(a) Lily), 1=1,2---,m.

1]
Lemma 3.4 is a special case of the following theorem.

THEOREM 3.16. Suppose that (X, o) is a simplicial complex. Suppose that for
each vertex x € Vertex(X,o), there is a grouping E1(x), Ea(x), -, En(z) of
E.

It follows that there is a subdivision (X, 1) of (X, o), and there is an extension
of the definition of the groupings of E for Vertex(X, o) to the groupings of E
for Vertex( X, 1) D Vertex(X, o) such that the following properties hold.

For each newly introduced vertexr x € Vertex(X,7), if x € A, where A is a
simplex of (X,0) (before subdivision), then

1) N Eji(y) C Ej(x), j=1,2,---,m,
ye Vertex(A,o)

ye Vertex(a,o)
For any simplex Ay of (X, 7T) (after subdivision),
n(n+1 .
@ # N Bz
ze Vertex(a,)

where n = dim X.
Proof: We will apply Corollary 3.15 to prove our theorem. First we can apply
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Corollary 3.15 to E; and (X, o) to make the condition (3) of the theorem hold
for Fy and any simplex of the subdivision, and also the conditions (1) and (2)
of the theorem hold. We call the simplicial structure after this step, 7.
Then we apply Corollary 3.15 to Ey (in place of E; ) and (X,7) (in place
of (X,0)). We call this new subdivision 72. Now (3) for Es holds for any
simplex of new subdivision 72. Furthermore (1) and (2) of Corollary 3.15 hold
for (X, 1) as the simplicial structure before subdivision (i.e., in place of (X, o))
and (X, 72) as the subdivision (i.e., in place of (X, 7)).
The important point is, (3) for E; holds for any simplex Ay of (X, 72), because
(3) for E; holds for the simplex Ay of (X, 1) which supports As (i.e., A1 D As),
and because (1) holds for 71 (in place of o) and 75 (in place of 7). So, now (3)
holds for both F; and Es.
(It is also obvious that (1) for o and 7o ( in place of 7) follows from (1) for o
and 71 (in place of 7), together with (1) for 71 (in place of o) and 75 (in place
of 7). The same thing also holds for (2).)
Repeating this procedure, we can define 73, 74, and so on, until 7,,,. Then (1),
(2), (3) hold for ¢ and 7,,, and any E;, j=1,2,---,m. Let 7 = 7.

1]

REMARK 3.17. Let us remark that, in the proof of Lemma 3.11 when we
construct the sets E1, simplex by simplex for (X, o), it is impossible to obtain

dim(A)(dim(A') + 1)
2 )

# ﬂ Ei(z) > K-

zeVertex(a’)

for each simplex A’ of subdivision (X, 7) of (X, o). (Explained below.)
But from the proof of Corollary 3.12, we can make the following hold,

dim(A)(dim(A) + 1)
2 b

# ﬂ E(x) > K-

zeVertex(a’)

where A is any simplex of (X, o) which support A’ (i.e., A’ C A as spaces).
In other words,

# ﬂ Ei(x) > Ki—

zeVertex(a’)

if A’ is a subspace of l-skeleton X of (X, o).
In the induction construction from dimension not larger than n—1 to dimension
n (see the proof of Lemma 3.11), in particular, from (0A¢ x {to},7) to (0Ag x
[to, t1],7), for any simplex A inside one of (0Aq x {to},7) and (0Ag x {t1},7),
we do have

ﬂ Ey(z) > Ky — (nTl)n’
zeVertex(a)
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from our construction (see condition (b) in the proof of Lemma 3.11). But for
simplices A which are not completely sitting inside one of (0Ag x {to},7) and
(0Ag x {t1},7), we do NOT have

(n—1)n
ﬂ Ei(x) ZKlfT,

zeVertex(a)

even if we assume dim(A) <n —1.

For the application we have in mind, we need the following strengthened form
of Theorem 3.16 (in fact, we will need the version of the following result which
allow multiplicities; see Theorem 3.32).

THEOREM 3.18. Let (X,0) be a simplicial compler and Y = XU be the I-

skeleton of X. Suppose that there is a subdivision (Y, 7) of (Y, o) and a grouping
for each vertex of (Y, 7) (and (X,0)), such that
(a) if A is a simplex of (Y, T), then

7 N Eily) | = K;—

ye Vertex(A,r)

(b) if A is a simplex of (Y,0) C (X,0), andy € A is a vertex of (Y,7), then

N Ej(z) C Ej(y) C U E;(x), j=1,2,--,m.
ve Verter(a,o) ze Vertez(a,o)

It follows that there is a subdivision (X, 7) of (X,0) and groupings for all the
vertices, such that

(1) (X,7)|y = (Y,7), and groupings on Vertex(Y,T) are the same as the old
ones.

(2) if A is a simplex of (X,0), and 1 € A is a newly introduced vertex of
(X,7), then

ﬂ E;(z) C Ej(z1) C U Ej(z), ji=12,-- m;
ze Vertex(a,o) ze Vertex(a,o)

(3) for each simplex A of (X, 7), if A is inside the I'-skeleton (X, o)) (I' > 1)
of (X,0), then

17!
# ﬂ Ej(x) > Kj_w. j=1,2,--,m.

2
ze Vertex(a,7)

Proof: If one does not require (1) (i.e., if it is allowed to introduce more vertices
into (Y, 7)), then the theorem is Theorem 3.16 (see 3.17 also).
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Recall, in the proof of Theorem 3.16, we first constructed a subdivision (X, 77)
and the groupings to make the above (3) hold for E;. Then based on (X, 7),
we constructed a new subdivision (X, 72) and groupings to make the above (3)
hold also for Fs, and so on. If we use the same procedure to prove Theorem
3.18, we will encounter a difficulty in the second step. We have no problem
for the first step, since we can begin with what we already have on (X® 7)
and work on each of the simplexes of dimension larger than ! (see Lemma 3.11,
the proof of Corollary 3.12 and Remark 3.17). But for the second step, the
condition (a) may not hold for I-skeleton (X, 71)") of (X, 71). So we need to
start with the simplex of the lowest dimension, which forced us to introduce
vertices on (Y,7) = (X®, 7).

The following small trick can be used to avoid the difficulty mentioned above.
Consider simplex A. Suppose that the subdivision (0A,7) and the groupings
for those vertices are chosen. Identify A with A x [0,1]/0A x {1} as in the
proof of Lemma 3.11. Choose a point tg € (0, 1), and write

A = A x [0,£0] U (A x [to, 1]/0A x {1}).

Substitute A by A=** = 9A x [tg,1]/0A x {1}. The simplicial structure 7,.
and the groupings on A" = JA x {to} should be endowed the same as 7 and
the groupings on A = 9A x {0}. Then apply Theorem 3.16 to A=**. One may
introduce new vertices on (A x {to},7,.), but no new vertices are introduced
on A = 9A x {0}. Finally, for the part 9A x [0, tg], same as in the Step 4 of
the proof of Lemma 3.11, we apply Lemma 3.10 to make this part a simplicial
complex, in which we do not introduce any new vertices on A x {0}.

1]

3.19. For convenience, define

Ei(A)= () Ej), j=1,2,---,m

zeVertex(a)
for each simplex A of (X, 7). Then (3) of 3.18 becomes

' +1
pE@) > K-
if A is in the I’-skeleton of (X, o) (I > 1).

3.20. We need a different version of Theorem 3.18 which allows multiplicity.
Let wy,ws, -+, wy be a k-tuple of positive integers. Let

E — {Afl\/wl’ )\QNUIQ’ .. , )\;wk

be an index set with multiplicity and A; # A; if 4 # j. (See 1.1.7 (b) for the
notation A~".) Let wi+wo+---+wp = K. (3.2 is a special case with each w; =
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1.) Let K3, Ko, - -, K, be non negative integers with K; + Ko+-- -+ K,, = K.
Suppose that

~rd ~rd ~pd
Ej:{A1p17A2p27"'a)‘kpk}a j:172a"'7m7

where pg are nonnegative integers. If {Ey, Es, -+, E,,, } satisfies

k
Zpg:Kj for each j =1,2,---,m, and
i=1

ZP{:wi for each i =1,2,---,k,
j=1

then we call {F, Ea,---,E,;} A GROUPING OF E OF TYPE (K1, Ky, -+, Kp,),
or just a grouping of F.

3.21. It is convenient to use the notations of union, intersection etc. for the
sets with multiplicity. A is called a SUBSET OF E if A is of the form

{)‘Ttl7)\2Nt23 T )‘thk}

with 0 < t; < w;, for each 1 < ¢ < k. Note that if all ¢; = 0, then A is called
the EMPTY SET. If ¢; = w;, then A = E. Let B be another subset of E of form
{ATP A2, A% ) A is a SUBSET OF B (denoted by A C B) if t; < s;
for all 4. In general, define THE UNION, INTERSECTION, AND DIFFERENCE OF
TWO SUBSETS A AND B OF FE as follows.

AUB = {)\Tmax(tl,sl)) A;max(t2,52)7 . /\kwmax(tk,sk)}

ANB = {)\rlvmin(tl,sl)7 )\;min(tmsz)7 o ))\;min(tk,sk)}

A\B _ {)\flvrnfexx((),tl751)7 A;max(o,t2732)7 L 7/\;max(o,tkfsk)} .

(The definitions of union and intersection can be easily generalized to finitely
many subsets of E.)

WARNING 1: BN (A\B) may be a nonempty set.

WARNING 2: The assumption that {E;, Es,--- E,,} is a grouping of E does
NOT imply that U™, E; = E or that E; N E;y = 0 for i #4'. (See 3.20.)

But A\B = A\(A N B) still holds.

3.22. Let (X, 0) be a simplicial complex. Suppose that each vertex z € X is
associated with a grouping {E1, Ea, - - -, E,, }, satisfying

k
#(E;) =) vl =K.
=1
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(Recall that, for the notation of #, we count multiplicity.)

In Theorem 3.18, we introduced subdivisions (X, 7) of (X, o), and groupings
for newly introduced vertices to make #(E;(A)) large, for all simplices A of
(X, 7). In order to prove the decomposition theorem in the next section, we
need a stronger result, since the multiplicity of the spectrum of the homomor-
phism is involved. (See §2. We can not always perturb the map to have distinct
spectrum, like the one dimensional case.) Fortunately, this stronger result can
be proved in the same way as that for Theorem 3.18, with a few modifications.
For any subset F' = {\["*,AJ"2,--- ] A\."*} C E, define

F= {/\1~vl7)‘2~U27 T 7)‘;%}7
where
- U; if U; = Wj
t 0 if u; < w; .

That is, F is the set of all those elements Ai, which are entirely inside F'.
Evidently,

Ei(a) = () Ei.

zeVertex(a)

Instead of the condition that E;(A) is large (see 3.18 and 3.19), we need to
make E’j(A) large for any simplex A of (X, 7). For this purpose, on (z) should
be large for each vertex of (X, o) at the beginning.

3.23. For each set F' = {\T"', A", .- A\"*} C E, define
F= D057, 0
where

v — w; if u; >0
T 0 lfU,:O

Obviously,

o —

FCFCF.

3.24. Let Hy, Hs, -, H,, (not necessarily disjoint) be finite subsets of F sat-
isfying condition () in 3.7, and E = Hy U Hy U --- U H,,. Suppose that

}oIi:Hi:f{i foreach i =1,2,---,m.
In what follows, we will require that
E; C Hy, j=1,2,---,m
(comparing with the condition (2) in Theorem 3.18).

DOCUMENTA MATHEMATICA 7 (2002) 255-461



SIMPLE INDUCTIVE LIMIT C*-ALGEBRAS, I 361

3.25. For each subset I C {1,2,---,m}, define

H;=|JH;.
JEI
Let G7 = NjerH;. Then define
Gr=6)\J &
J2r

Another way to define Gy is by
Gr={NeE| e H,;ifand only if i € I'}.
(Note that G; may be an empty set for some I.) Obviously,
G;=Gr=GrcH; = H; = Hy.

IfINJ=0,then H;NG; = 0.
Furthermore, for any A € F, there is a unique set I (defined by I = {i | A € H,})
such that A € G;. Hence F is a disjoint union of

{Gr,0 AT cC{1,2,---,m}}.

Similarly, we have

H= |J G,
JNIAQ

3.26. Under the above partition G of E, two elements A, u € E are in the
same part, if and only if the following is true. For any ¢ = 1,2,---,m, either
H; contains both A and p, or H; contains none of A and pu.

For any Ey, B} C Hy, if #(E1 NGy) = #(E1NGy) for any I C {1,2,---,m},
then from the end of 3.25,

#ELNH) = Y #(ENGy) = Y #(B1NGy) = #(E NH)

JNI#Q JNI#Q

for any I C {1,2,---,m}. Hence #(H;\E1) = #(H;\E}]). At this circum-
stance, either both of E; and Ejp satisfy (xx) in 3.8, or both of them do not
satisfy (%) in 3.8.

Note that H; = Ur5;Gy. A grouping {E1, Ea,- - Ep,} satisfies E; C H; (i =
1,2,-+-m) if and only if for any i ¢ I, F; N Gy = (.

FOR THE REST OF THE SECTION, LET > max(wi,ws, -, W;,) BE A FIXED
NUMBER, WHERE w1, Ws, -+ +, W, ARE THE MULTIPLICITIES IN E. Note that for
our application, sometimes, we have to allow ) to be larger than the maximum
multiplicity.
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ASSUMPTION 3.27. For each grouping {E1(z), Ea(x),- -, En(x)}, we always
assume that

BB (@) > #(B(z) - MQ = K; — MQ, i=12..m.

where M = 2™ — 1. We not only require each initial grouping for (X, o) to
satisfy the above assumption, but also require any new groupings for vertices
of (X, 7) to satisfy the assumption.

Since M = 2™ — 1, there are totally M non-empty subsets I C {1,2,---,m}.
If the grouping {F1, Es, - - -, Ep, } satisfies

o

#(Ej ﬂG[) > #(E] ﬁG]) - Q

for all j = 1,2,---,m and for all I C {1,2,---,m}, then it also satisfies As-
sumption 3.27.

LEMMA 3.28. If{Ey, Ea,---,Ey} is a grouping of E with E; C H;, then there
is a grouping {E1{, Eb, -+, El } of E satisfying Assumption 3.27, and

E C H;, E SE; orall i=1,2,---,m.
1 (%) '3 7 f )<~y )

Proof: The proof is straight forward. Consider E}, E}.---, E/ to be m boxes
with no element at the beginning, and put each element of E into one of the
boxes, following the procedures described below.

Step 1. Put all the elements of l%i into box E! for each i = 1,2,---,m. (Thus
Step 2. Fix I C {1,2,---,m}. For the set E, if there is a \; € G;\(F] UE} U
---UE!)) such that

#(Ei mG]) + w; § #(El OG[),

where w; is the multiplicity of A; in E, then put the entire set {\;"} into Ej.

(Note that if 1 ¢ I, then E1 NGy = (). Hence for I, we need not do anything
for F.) Repeat this procedure until no such 4 exists. Thus, so far,

#(ENGr) = #(E,NGr) > #(E:NGp) — (2 —1).

For the same I above, repeat the above construction for the set Ej, then Ef,
etc.

After this step has been completed for each I, (it is done for each set I sepa-
rately) we have the following:

#(ENGr)=#(E,NGy) > #(E;NGy) — (- 1).
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Step 3. Put what left for each G from the previous steps, arbitrarily into the
boxes

ElE, - E
to make the following condition hold:

#(E; N G]) = #(Ej N G[)

From the end of 3.26, E! C H; is a consequence of the above equation. (Note
that E; C H;.) Evidently, {E{, E),---, E.,} is as desired.
(n

3.29. A set Ey(C Hy) of Ky elements is said to satisfy the condition (), if
there is a grouping (F1, Ea,- -+, E,,) of E (of type (K1, Ko, -+ K,,)), E; C H;,
satisfying Assumption 3.27.

Obviously, ( * ) implies (k).

The following corollary is a direct consequence of Lemma 3.28.

COROLLARY 3.30. For any set E1 (C Hy) satisfying (xx), there is a set E{ (C
Hy) satisfying (x x x) such that

Ei D.Eo‘l.

Proof: Since E; satisfies (xx), we can extend E; to a grouping {F1, Ea, -+, Ep,}
of E such that F; C H; for each <. By Lemma 3.28, there is a grouping
{El, Eb, -+, El} satisfying Assumption 3.27, and E] C H; for each i. This is
condition (* * x) for F.

(0

LEMMA 3.31. Let Ey and Fy be two sets satisfying condition (x * ). Suppose
that there is a A € E such that

{ANw} Cﬁl\-EOH?

where w s the multiplicity of X\ in E. Then there are (perhaps repeating)
elements p1, o, - -, e € E1\F1, where t = w — #({A\~"} N Ey), such that

By = (BEy U™ D\, piz, -+ e}
satisfies (xx) and

#(ENEYNGD) > #(E NG — (w+9Q)
> #(E,NGr) —2Q

for each I C {1,2,---,m}. As a consequence,

#(E NEy) > #(By) — 2MQ.
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Proof: Let t1 = #({\~"} N Ey). Then t; < w. Applying Lemma 3.9 ¢ :=
w — 1 times, one can obtain a (possibly repeating) set T’ = {v1,v9, -+, 14} C
El\Fl C El\Fl, such that

Ey = (Br U{A™I\T

satisfies (k).
From 3.26, if another set T' = {p1, pto, -+, e} C El\}%l, satisfies that

#(TNGr) =#(T"'NGr)

for each I C {1,2,---,m}, then E] = (E1 U{A~"})\T also satisfies (xx).

T C El\ﬁ‘l will be constructed to satisfy the following condition. For each
Ic{1,2,---,m},
#(TNGr)=#T' NGy),

and (T N (E1\T)) N Gy is either empty or {u;°} for a certain p; €
{p1,p2, -+, ue}. (Note that TN (E1\T) may not be empty, since we are dealing
with sets with multiplicities.)

To do the above, write

(EN\FY) NG = {0 AL, L )

) 19

Then put each of the sets {\7*'},{A],**},-- -, entirely into 7" one by one until
we can not do it without violating the restriction

#(Tﬂ G]) < #(T’ N G]).

Then make T to satisfy #(T' N G;) = #(T" N Gr) by putting part of {\; >}
into T if necessary. ’
Since #(T") < w, combining with the above condition for (7'N (E1\T)) N G,
after a moment thinking, one can obtain,

#((E\T)° N Gy) > #FE N Gy) — (w+ Q).

(In fact, E1\(E{\T)° C T U (T N (E\T)), and (I' U (T N (E1\T))) N Gy has at
most w + £ elements.)
Hence

#(ENE)NGy) = #E NG — (w+ Q).

[n

The following is the main result of this section. Together with Lemma 3.28, it
will be used in §4.
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THEOREM 3.32. Let (X,0) be a simplicial complez, and Y = XU the I-
skeleton of X. Suppose that (Y,7) is a subdivision of (Y,o0) and, for each
vertex y € Vertex(Y, ), there is a grouping E1(y), E2(y), -, Em(y) of E (of
type (K1, Ka,---, Kpn)). Suppose that the groupings satisfy the following three
conditions:

(a) For each simplex A of (Y,7), andi=1,2,--- ,m,

o

#(Ei(A) > K; — (MQ+ MQdimY - (dimY + 1)),

where M = 2™ — 1.
(b) Ei(x) C H;, i=1,2,---,m, for each x € Vertex(Y, 7).

(¢) Each grouping, for a vertex of (Y, ), satisfies Assumption 3.27.

It follows that there exist a subdivision (X, 7) of (X,0) and a grouping for each
vertex of (X, T), satisfying the following conditions.

(1) (X,7)|y = (Y,7), and each grouping on Vertex(Y,T) is as same as the old
one.

(2) Ei(x) C H;, i = 1,2,---,m, for each x € Vertex(X,7), and if A is a
simplex of (X,o) (before the subdivision), and x € A is a newly introduced
vertex of (X, T), then

E@) > () Ew.
ye Vertex(any,r)

(3) For each simplex A of (X,7), if A is inside the I'-skeleton (X, o)), (I >
1), of (X,0), then

#(E;(A) > K; — (MQ+ MQU(I +1)).
(4) Each grouping on Vertex(X,T) satisfies Assumption 3.27.

Proof: (Sketch) The proof is the same as the one of 3.18 (see 3.11 to 3.18), using
Lemma 3.31 to replace Lemma 3.9. The arguments in 3.12 — 3.18 are easily
adopted in this new setting. We only give the proof for the part corresponding
to 3.11 and sketch the differences for other parts.

As in 3.11, consider only one simplex X = A with Y = /A, and only one set
E1 (’JC) .

Similar to Step 1 of 3.11, choose EJ*°%! to satisfy condition (* * *) and

o model o
Eq D) m Eq (J}) .

zeVertex(8Ao,7)

Replace (a) of 3.11 by
o o model o o model
N Er(z)NEr ) 2 N (Er(z)NEy )

zeVertex(aax{t;},7) zeVertex(dAax{t,_1},7)
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Keeping the notations in 3.11, in Step 2, replace G by

o model

G =FEi(y1,to) NEy(y2,t0) N - NE(yp, to) NEL

o model
ftG=F , then define

Ey(yi, t) = Ey™o% i=1,2,---,p.

o mode o model

1
Suppose that G # E; . Choose \ € E; \G. Let w be the multiplicity
of A\. Then

o model

o~y c BN
For each (yi, to), if A e f%1 (yi, to), then define (yi, tl) =F (yi, to) (as in Step

2 of 3.11). If A ¢ Eol(yi,to), apply Lemma 3.31 to obtain Ej satisfying(sx),
E{ > GU{ ™"} and

(4) #(E] NEy) > #(Ey) — 2MQ.

Then we can apply Corollary 3.29 to find EY satisfying (x * %) and EO’{’ D L%i
Define

Ei(yist1) = EY.
Then

Ey(yi,t1) DE, 5 GU{A™™}.
The arguments in Step 3 and Step 4 of 3.11 can also be employed here. (Of

course, at many places (not all places), one needs to replace E; by F;.) The
estimation (e) in Step 4 of 3.11 will be changed to

#(El(uo, to)ﬂEl(’u,l, to)ﬂ' . -ﬂEl(uZ-, to)ﬂEl(uO, tl)ﬂEl(ul, tl)ﬁ- . ﬂEl(ui, tl))
> Ky — [MQ+ MQdimY - (dimY + 1)] — 2MQ(i + 1)
=K —[MQ+MQ-(n—1)-n]—2MQ-n
=K, — [MQ+MQ-n-(n+1)]

(Here we used the above estimation (A) which is from Lemma 3.31.)

Since F1(y;,t1) satisfies (% * %), all the other parts (e.g., induction arguments)
in 3.11—3.18 can go through easily. In the part corresponding to the proof of
Corollary 3.14, the definition of D; should be changed to

zeVertex(a)
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WE REMARK THAT IN §4, WE WILL ONLY USE THE THEOREM OF THE CASE
THAT X = A, A SINGLE SIMPLEX WITH Y = 0A.

REMARK 3.33. The condition E;(x) C H; in (2) can be strengthened as

Ej(z) C U Ei(y),

yeVertex(Any,r)

where A is a simplex of (X, o) (before the subdivision) such that x € A is a
newly introduced vertex. (The notation is from 3.23.)

4  DECOMPOSITION THEOREMS

In this section, we will prove the decomposition theorems which are needed for
the proof of our main Reduction Theorem and the main results in [EGL]. The
following Theorem 4.1 is one version of the Decomposition Theorem. After
Theorem 4.1 has been proved, we will use [Li 2] to verify that the condition
of Theorem 4.1 holds for connecting homomorphisms ¢, ,,, (for each fixed n,
m should be large enough), with the maps a1, as, - - ar(see below) factoring
through interval [0,1] or the single point space {pt}. In such a way, we can
prove our main decomposition theorems (Theorem 4.35 and Theorem 4.37).

THEOREM 4.1. Let X be a connected finite simplicial complezx, and F C C(X)
be a finite set which generates C(X). For any e > 0, there is an n > 0 such
that the following statement is true.

Suppose that a unital homomorphism ¢ : C(X) — PMg/(C(Y))P (rank(P) =
K) (where Y is a finite simplicial complex) satisfies the following condition:
There are L continuous maps

Qa1,Q2, --,0L : Yy — X

such that for each y € Y, SP¢, and ©(y) can be paired within n, where

O(y) = {ar(y)™", az(y)™", -+ ar(y)~""}

and Ty, Ts,---, T, are positive integers with
Ty+ T+ -+ T, = K = rank(P).

(See 1.1.7(b) for notation x~".) Let T = 2" (dim X +dimY')3. It follows that
there are L mutually orthogonal projections p1,pa,--+,p, € PMg/(C(Y))P
such that

(i) 116(£) ()=o) S () W)po(y) © X1, f(ai))pi)]| < e, for any f € F and
y €Y, where pg = P — ZZ'L:1 i}

(ii) lpo(y)o(f)(y) — o(f)(W)po(y)|| < € for any f € F and y € Y;

(1ii) rank(p;) > T; — T for 1 <i < L, and hence rank(py) < LT.
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4.2. In the above theorem, some of the p; may be zero projections if T; < T.
But when the theorem is applied later in this article, the positive integers T;
are always very large compared with 7' = 2F(dim X + dimY)3.

The proof of this theorem will be divided into several small steps. The results
in §2 and §3 will be used. In fact, §2 and §3 will only be used in the proof of
Theorem 4.1, no other place in this paper or [EGL]. (The results in §2 have
some other applications.)

4.3. The theorem is trivial if X = {pt}, applying Theorem 1.2 of [Hu,Chapter
8]. Without loss of generality, we assume that X # {pt}. By the results in
82, we can assume that ¢ has maximum spectral multiplicity at most Q :=
dim X +dimY.

4.4. For any € > 0, there is an > 0 such that for any xi,25 € X, if
dist(x1,z2) < 2n, then

€
|f(331)—f(x2)|<§ for all f € F.
We will prove that this 7 is as desired.
4.5.  Recall, from 1.2.5, for any positive integer n, P™X is the symmetric
product of n-copies of X. Also, any element A € PXX can be considered as a
set with multiplicity. So SP¢, € PXX.
Suppose that A} € PF1 X, Ay € PF2X, ... A, € P** X. Write

Al = {)\17A27"'7A1€1}

Ao = { ki1, Mer25 s Moy kn )

A = {41 At

as sets with multiplicity. By abusing the notation, we use {A1, Aa, -+, At} to
denote

{A17A2a"'7Ak17 Akl-‘rlv Y Akl-‘rkza """ ) )\k1+k2+~~~+kt}7

which defines an element in P*rFkz++k X
(Note that {A1,Ag, -+, A} = AfUAU---U Ay, if {A;} are mutually disjoint.
See 3.21 for the definition of unions of sets with multiplicity.)
4.6. For any fixed point y € Y, write
SPo, = {AT" A2 AT}
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with A\; # A; if ¢ # j. Note that wi +ws+ -+ +w, = K. We denote the above
k by t, to indicate that this integer depends on y. Define

L. :
(a) Q(y) = Z 1<£g1jn§ty dlSt()\i7 )\J)

Then 6(y) > 0 for any y € Y. (Of course, 8(y), in general, does not depend on
y continuously.)
For each i = 1,2, ---,t,, there is an open set U(y,i) 3 \; such that

(b) diameter(U(y,i)) < min <2(dlmnY—|—1)’ 9(y)> .

Then, obviously,
(0) dist(U(y, 1), Uy, 7)) > 20(y) TR
Applying Lemma 1.2.10, there is an (connected) open neighborhood O(y) of y
such that
sPo, c U HJU@2- JU.t)
for all ¥ € O(y). Define the continuous maps
Ay O(y) — PU(y 1) (C P X)

Ay : O(y) — P™2U(y,2) (C P2 X)

Ay, : O(y) — P U(y,1) (C P"vX)
by Ai(y') = SP¢,, NU(y,i). Then
SPd)y’ = {Al(yl)7 AQ(y/)a Ty Aty (y/)}

for each y' € O(y). Later on, we will use the disjoint open cover

Uy, HJUw.2)J---JUwt,) > SPo,,

of SP¢,, to decompose SP¢,, into a disjoint union of SP¢,, N U(y,t) and
to identify the elements in each set SP¢,, N U(y,t) as a single element with
multiplicity wy.

We further require that O(y) is so small that

. n
d ter(a; (O S oV
(c) fameter(a;(O(y))) < 57Ty
where a; : Y — X is any one of the continuous maps ay,as,---,a,, appeared

in Theorem 4.1.
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4.7.  Considering the open cover {O(y)},ey of Y, where the open sets O(y)
are from 4.6, there exists a finite sub-cover

0= {017023 o '70'} - {O(y)}y€Y7

of Y.

Without loss of generality, we assume that the simplicial complex structure
(Y,0) of Y satisfies the following condition, because we can always refine it if
necessary.

For each simplex A of (Y, o), the closure of

Star(A) := U interior(A’)
A'NAFED

can be covered by an open set O; € O, where
interior(A") = A"\OA'.
(Note that Star(A) is an open set, see 1.4.2)

4.8. For each y € Y, in order to construct pi(y), p2(y), -+, p.(y), as in The-
orem 4.1, we need to split SP¢, into L sets Ey(y), Ea(y), -, E(y) such that
each set E;(y) is contained in an open ball of a;(y) with small radius (smaller
than 27n) and that #(F;(y)) = T;, 1 < i < L, where a; and T; are maps
and positive integers appeared in Theorem 4.1. Since Ey(y), E2(y), -, EL(y)
may have non-empty intersection (because of the mu1t1p11c1ty of the spectrum)
we need to introduce certain subsets of them, which are E1 C Ei(y), EQ -
Es(y), -, EL C E.(y), in the notations of 3.22. This will become pre-
cise when the index set with multiplicity is introduced later. The projections
p1(y),p2(y), -, pr(y), to be constructed, will be certain sub-projections of the
spectral projections corresponding to Eo'l,J%g, e ,]% ©, respectively. (See Defini-
tion 1.2.8 for the spectral projection.)

Following §3, a split of SP¢, into L sets E1(y), E2(y), -+, EL(y) will be called
a GROUPING of SP¢,. THE WORD “GROUPING” IS RESERVED ONLY FOR THIS
PURPOSE.

Recall, from 4.6, SP¢,, can be written as a disjoint union

SP¢,, = (SP¢, NU(y,1)) | J(SPo, NU(y,2)) -+ J(SPe, NU(y.t,)).

And the elements in each set SP¢,,NU (y,t) can be identified as a single element
with multiplicity. This will serve as the index set for the groupings. To avoid
confusion, the above decomposition is NOT called a “grouping” of SP¢,,

is called a DECOMPOSITION instead.

In the next few paragraphs, we apply §3 to construct a subdivision (Y, 7) of
(Y, o) and useful groupings for all vertices y € Vertex(Y, 7).
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4.9. Let A be a simplex of (Y, o) and

O(yl)vO(yQ)a o 'vO(yi)v

the list of all open sets in O, each of which covers A. Suppose that

0(y1) < 0(y2) <--- < 0(yi).

From 4.6, for any y € A C Ni_;0(yx), and j € {1,2,---,i},

SPe, c U(y;. )| JU w2 JU ;. t,)-

Cramv: If j < j" € {1,2,---,i}, then each open set U(y;,t) (t = 1,2---,t, )

ty,
intersects with at most one of {U(y;,s)} 2]

Proof of the Claim: Suppose that the claim is not true, that is, for some
te€{1,2,---,t, }, there are two different 51,52 € {1,2--- ,tyj,} such that

U(yj,t) N U(yj’a Sl) 7é 0 and U(yj7t) N U(yj’a 52) 7é 0.

Together with the fact that diameter(U(y;,t)) < 0(y;) (see (b) in 4.6), it yields

dist(U(y;7,51),U(yjr, s2)) < 0(y;).

This contradicts with (c) in 4.6 which gives

dist(U(y;, 1), Uy, s2)) > 20(y;0) > 0(y;).

(Recall 8(y;) < 6(y,-).) This proves the claim.

Still suppose that j < j'. From the claim, we have the following. For each
y € A, if two different elements of SP¢, are identified as a single element in
the decomposition

Uy, VJU w2 JU s t,)

(i.e., if these two elements are in the same open set U(y;,t) for some t €
{1,2,---,t,,}), then these two elements are also identified as a single element
in the decomposition

Uy, D JU w2 JU W 1y,)

(i.e., these two elements are also in the same open set U(y;, s) for some s €
{172’ e ’tyj/})'

Therefore, the decompositions of SP¢,, corresponding to y; and y; are the finest
and coarsest decompositions, respectively, among all the above decompositions
(corresponding to y1,¥ya,--,y:). The coarsest decomposition will be used to
decompose SP¢, into several sets. The elements in each of the sets will be

DOCUMENTA MATHEMATICA 7 (2002) 255-461



372 GuiHUA GONG

identified as a single element with multiplicity. Denote 6(y;) by 0(A). (Recall
that O(y1),0(y2),---,0(y;) is the list of all open sets in O, each of which
covers A. Therefore, 6(y;) — the maximum of all {6(y;)}}—, — depends only

on A.)
Introduce the following notations.

A(A,2)(y) = Ul(yi, 2) N SPg,,

AA, tA)(y) = Ulyis ty,) N SP,,
where ta = t,,. Recall (see 4.6) that SP¢, is written as
SPo,, = AT AT, AT
where k =tA =t,,. Since y € A C O(y;),
#(A(A 1) (y)) = wy, 1<t<ta,
counting multiplicity. Define set
A(A) = {A(A 1) A(A,2)72, - A(A R)T4

where k = ta. That is, identify all the elements of SP¢, in A(A,t)(y) as a
single element (denoted by A(A,t)) with the multiplicity.

As above, we will use A(A,)(y) for two purposes. It is a subset of SP¢,, or it
is a single element in A(A) which repeats w; times.

Strictly speaking, w; (t = 1,2,---,ta) should be written as w¢(A), and the set
A(A) should be written as

{A(A, 1)~ (B A(A,2)~w2(B) L A(A k)~ ()Y When there is a danger of
confusion, we will use w;(A) instead of w;.

4.10. Let Y/ C Y be a path connected subspace. Usually we will let Y’
be either an open or a closed subset. Suppose that there are positive integers
U1, Us, - -+, up and continuous maps

AY' )Y - P“X, i=1,2,---,t,
such that {SP¢, },cy can be decomposed as

for all y € Y'. We say that THE ABOVE DECOMPOSITION OF {SP¢, },cy"
SATISFIES THE CONDITION (S) (S stands for separation) if
(S): there are mutually disjoint open sets Uy, Us, - --,U; C X satisfying

AY' D)y) c U, WyeY', i=12--t
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Define
AY) = {AY, )~ A 2)~ 2 JA(Y 1)

where u; = #(A(Y’,4)), counting multiplicity. Again, A(Y”, s)(y) is used for
two purposes. It is regarded as a subset of SP¢, or as a single element of A(Y”)
with multiplicity wus.

In fact, if Uy, Us, - - - Uy are open sets, with mutually disjoint closure, such that
SP¢, CUy WU U---UU, Yy €Y', then #(SP¢, NU;), y € Y’ are constants,
denoted by u;, (note that Y’ is path connected). Furthermore, the maps

AY' i)Y - PYX, i=1,2,---t,

defined by A(Y',i)(y) = SP¢, NU;, are continuous, and they determine a
decomposition of {SP¢, },cy as

SP(by = {A(Y,, 1)(y>7 A(Ylv 2)(y)v e 7A(Y,7 t)(y)}

satisfying the condition (S). (See Lemmas 1.2.9 and 1.2.10.)
For any y € Y’, a grouping F1, Es, -+, E, of SP¢, induces a UNIQUE grouping

EAYD gAY gAY of A(Y7), defined by
EZA(YI) = {A(Ylv 1)NU17A(Y/7 2)NU27 e 7A(Y/7t)Nvt}7 1= ]-7 27 e 7L7

where v; = #(E; N A(Y’, j)(y)), counting multiplicity. (Here the intersection
of sets is defined as for the sets with multiplicity, as in 3.21.)

On the other hand, let Ey, Fa,- -, E;, be a grouping of A(Y"’). Define a group-
ing of the set SP¢,, for any y € Y’ in the following way. For any j = 1,2,---, L,
if the part E; (for the grouping of A(Y”’)) contains exactly w elements of
{A(Y’,s)~"} (w < wusg), then the part E; (for the grouping of the set of
SP¢, ) contains exactly w elements (counting multiplicity) which are contained
in A(Y’,s)(y). Since these w elements are to be chosen, the induced grouping
is not unique. But we will always fix one of them for use.

Let Eq1, Fs, -+, E, be a grouping of

AY")y ={AY, 1)~ A(Y',2)~ 2, JAY 1) )

Define l%l,l%g, e ,I%L as in 3.22.
Although the subsets of SP¢, corresponding to E; are not unique, the subsets

of SP¢, corresponding to EOz are unique. We denote them by ﬁ}l\y Also,

#(EOJZ) = #(Eo'i|y) counting multiplicity. Note that we use E’Z|y instead of Eol(y)
for the following reason (also see the next paragraph). We reserve the notation
{Ei(y)}i=, for the grouping of SP¢, which is associated to a vertex y in a
certain simplicial complex (Y, 7). (7 is a subdivision of ¢.)

Suppose that y € Y'. Let E1(y), F2(y), - E.(y) be a grouping of SP¢,. Then
it induces a grouping ElA(YI)(y),Ef(Y,)(y)y~E24(Y/)(y) of A(Y’) as above.
The sets EO’ZA(Y )(y) are well defined as subsets of A(Y’). (WARNING: oiA(Y )(y)
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are not subsets of SP¢,.) Also, from the last paragraph, the sets EOA(Y)(y)|Z

are well defined as subsets of SP¢, for any z € Y’ (may be different from y).
Furthermore, #(E;" () = #EY (y)].).

K3
In the next few paragraphs, each grouping of SP¢, can be referred as a grouping
of A(Y") for different space Y’ and different decomposition A(Y”) provided that

y €Y', or vise versa.

4.11. Note that the collection of sets {A(A,4)}i2, (in 4.9) could be regarded
as a decomposition of SP¢,, y € A (see 4.6 also). And this decomposition
satisfies condition (S) for A in place of Y’; therefore 4.10 can be applied to
A(A) as A(Y).

As mentioned in 4.8, we will introduce the groupings of SP¢, for all vertices
of a certain subdivision of (Y,c). As in section 3, for a simplex A of (Y,0),
once we have the subdivision (9A, 1) of (OA, o) and groupings for all vertices in
Vertex(0A, 7), then we can define the subdivision (A, 7) of (A, o) and introduce
the groupings for all newly introduced vertices. One may notice that, in section
3, for different vertices, the index sets involved are the SAME. But in the setting
here, the index sets SP¢, are DIFFERENT for different vertices y. So some
special care should be taken.

Suppose that (A,o) is a simplicial complex consisting of a single sim-
plex A and all its faces. Suppose that there is a subdivision (9A,7) of
(0A,0) and the groupings E1(y), F2(y), -+, E.(y) of SP¢, for all vertices
y € Vertex(0A,T) (see notation in 3.1-3.3). ATTENTION: When we intro-
duce a grouping F1(z), Ea(z), -, E,(z) of SP¢, for any newly introduced ver-
tex z € interior(A) = A\OA, THE FOLLOWING PROCEDURE WILL ALWAYS BE
USED.

First, as in 4.10, we can regard the groupings E;(y), E2(y), -+, E.(y) of
SP¢, as groupings E{\(A)(y),EQ(A) (y),-- -,Ei\(A)(y) of A(A) for all vertices

y € Vertex(0A, 7). (Then the set E?(A)(y)ﬂEZA(A) (y')N- -, as asubset of A(A),
makes sense, for vertices y,y’, - - - € Vertex(9A, 7). Also {E’?(A)(y) %, are sub-
sets of A(A).) Then we use these groupings of the SAME index set, A(A), apply-
ing the results from section 3 (see 3.32), to introduce subdivision (A, 7) of (A, o)
and groupings of A(A) for all newly introduced vertices z € A\OA. Finally,
theses groupings of A(A) will induce the groupings E;(z), Ea(z), -+, EL(2) of
SP¢, as in 4.10 (not unique, but we fix one of them for our use). Furthermore,

as in 4.10, ]E%f(A)(z), E%Q(A)(z), e EQ(A)(Z) are well defined subsets of A(A)
and L%{X(A)(zﬂz/7 EO’Q(A) )|y, BN (2)|» are well defined subsets of SP¢,,

for any 2’ € A (not necessarily a vertex).

4.12. Let A’ be a face of A. Then for y € A’ C A, both A(A’) and A(A) can
be viewed as decompositions of SP¢,. Recall, in 4.9, the decomposition corre-
sponding to A(A) is the coarsest decomposition among those corresponding to
O(yj;) such that O(y;) D A and that O(y;) € O. Since A’ C A, any open set
in O which covers A will also cover A’. Therefore, the decomposition of SP¢,
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corresponding to A(A’) is coarser than that corresponding to A(A). That is,
each set A(A’,s)(y) is a finite union of certain sets,

AA ) UJAA LW -

as subsets of SP¢,. (Notice that if w = ws(A’) is the multiplicity appeared
in A(A") for A(A',s) and wy = wi(A) is the multiplicity appeared in A(A) for
A(A,t), then w, = wy, + wy, + - -+, a finite sum.)

It follows that if y € A" C A and Ei(y), Fa(y), -+, EL(y) is a grouping of
SP¢,, then

EX S @)l BV )y
regarded as subsets of SP¢,, for any y' € A’. Now we are ready to construct
the subdivision (Y, 7) of (Y, o), and the grouping for each vertex of (Y, o) and
each vertex of the complex (Y, 7) (after subdivision).
Since the notations y1,¥ys, -+, ye have been already used for the open cover
O = {01),0(y1),--,0(ye)}, we use 21, 22,--- to denote the points in Y,
especially the vertices of certain simplicial structure.

4.13. Let @ = dim X + dimY, M = 2 — 1, where L is the number of
the continuous maps {a;} appeared in the statement of 4.1. Note that all the
multiplicities w; appearing in any of A(A) do not exceed €, by 4.3 and the
construction of A(A) (see 4.6 and 4.9).

For each vertex z € Vertex(Y, o), by the condition of Theorem 4.1, SP¢, and

O(2) = {a1(2)™", az(2)~™, -+ 4y (2)7*}

can be paired within 7. Therefore, we can define a grouping
Epre1(2), Epre2(2),- -+, Epre . (2) of SP@,, with T1, Ty, - - -, T, elements, respec-
tively, counting multiplicity, such that

(1) dist(A, a;(2)) <n

if A € Epre,i(2), where 7 is as in 4.4. (We denote them by E,,..; because this
grouping will be modified later.)

We can regard such a grouping of SP¢, as a grouping of A(A), where A 3 z is
a simplex.

First we regard it as the grouping of A({z}), where {z} is the 0-dimensional
simplex of (Y, o) corresponding to vertex z. By Lemma 3.28, we can modify
the grouping to satisfy the Assumption 3.27. Then this modified grouping of
A({z}) could induce a grouping on SP¢,, for which the condition (1) above
may not hold. But if we carefully choose the sets H; in Lemma 3.28, we could
still guarantee that any elements A € E; are close to a;(z) (see (2) below). In
this subsection, we will also introduce the sets H;(A) to serve as the sets H; of
Lemma 3.28 and Theorem 3.32, when we construct groupings on A from the
groupings on 0A, by applying Theorem 3.32.
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For each vertex zp € Vertex(Y,o), the notation {zp} is used to denote the
corresponding zero dimensional simplex of (Y, o). The above grouping induces

a grouping {EA({?O})} of

pre,i

A{z0}) = {A({z0}, ™ A({z0},2)72, -+ A({zo}, toy) 200 )

Define subsets Hy({z0}), H2({z0}), -+, Hr.({z0}) of A({z0}) as follows. For any
i=1,2,---,L, H;({z0}) is the collection of all
A({zo},t)~" (C A({20})) satisfying

A{z0},t)(20) C {x o dist(z, a;(20)) < np+ (dlm%—l—l) .77} )

Note that each set A({20},%)(20) (as a subset of certain U(y,,t), from 4.9) has
diameter at most 57y < @myg (see (b) in 4.6). Combining this fact
with (1) above, we know that if \y € Epei(20) and Ay € A({z0},t)(20), then

) dist(}, ai(20)) <7+ (diln++1)

for any A € A({#0},t)(20). That means Eﬁ}é{j‘)}) C Hi({z0})-

By Lemma 3.28, the above grouping can be modified to another grouping
EMEN of A({20}) satisfying

o A({z
(B, ({z0})

(This is Assumption 3.27.) And E?({ZO}) C H;({20}) still holds, regarded as a
grouping of A({zo}).

The above grouping of A({zp}) could induce a grouping
E1(20), Ba(20),- -+, Ev(20) of SP¢, (see 4.10 and 4.11). This grouping
will be used as the grouping for vertex zg. Even though (1) may not hold for
A in the new E;(29), (2) holds for any A in the new F;(zp), from the definition
of H;({z}), and E*D ¢ H;({z}).

For each simplex A of (Y, o), let us also define the subsets Hq(A), Hy(A),- -,
H,(A) of A(A) as follows. For each j =1,2,---,L, H;(A) is the collection of
all such A(A,¢)~* (C A(A)) that A(A,t)(z), as a subset of SP¢,, satisfies

) > T, — MQ.

dim(A) +1

A(A ) (2) C {x: dist(z,a:i(2)) <n+ @mY +1)

-}

for any z € A. These sets will serve as the sets Hy, Ho,---, H, when we apply
Theorem 3.32.

The following fact follows directly from the definition of A(A,¢) and H;(A),
which will be used in 4.14:

Suppose that z € A. A grouping E1, Es,--- Er, of SP¢,, regarded as a grouping
of A(A), satisfies E; C H;(A) if and only if for any A € E; (as a subset of
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SP¢,), for the index ¢ satisfying A € A(A,t)(z) (such ¢ exists; see 4.9), we have
{A(A, ) B} € Hy(D).

4.14. Beginning with the simplicial structure (Y, o) and the above groupings
for all 0-dimensional simplex (i.e., vertex) of (Y, o), we will construct a sub-
division (Y,7) of (Y,0) and the groupings for newly introduced vertices. We
will refine (Y, o), simplex by simplex, from the lowest dimension to the highest
dimension by use of Theorem 3.32.
To avoid confusion, use I',T'1, 'y, I, ete. to denote the simplices of (Y, 1), af-
ter subdivision, and reserve the notations A, A’, Ay, etc. for the simplices of
(Y, o)—with original simplicial complex structure ¢ introduced in 4.7.
As the induction assumption, we suppose that there are a subdivision (9A, 1)
of (0A, o) and the groupings of SP¢, for all vertices z € Vertex(0A, 7) with
the following properties.
(1) If A’ is a proper face of (A,0) (by a proper face of A, we mean a face
A" with A’ C 9A) and z € A’, then the grouping of A(A’), induced by the
grouping of SP¢, satisfies

E; C HZ(AI)

In other words, E;\(A/)(z) C H;(A").
(2) Let T" be a simplex of (OA, 7) with vertices zq, z1,---,2;. I T C A/, where
A’ is a proper face of A, then

# (BN o) BN (o) 1 B )

>T; — [MQ+ MQdim A’ (dim A" + 1)]
(> T, — [MQ+ MQdim OA(dim 0A + 1)]) .
(3) For each vertex z of (OA, 1), Assumption 3.27 holds. ILe.,

o

#EM (2) > T, — MO

for any proper face A’ of A with z € A,

(In the above conditions (1), (2) and (3), {E;\(A/)(z) 7, are regarded as group-
ings of the set A(A’) (with multiplicity); see 4.11.)

Now we define the subdivision (A, 7) of (A, o) and the groupings for all newly
introduced vertices. The restriction of the simplicial structure (A,7) on 9A
will be the same as (OA, 7), that is, we will only introduce new vertices inside
interior(A) = A\OA. We need to define the groupings as groupings of A(A).
Then they will induce groupings of SP¢,.

Claim: For any vertex z of (9A,7), if the grouping of SP¢, is regarded as the
grouping of A(A), then

(1) Ei(z) Cc Hy(A) for i =1,2,---, L. In other words, E?(A)(z) C H;(A).
Proof of the Claim: Let y be the point y; in the definition of A(A) in 4.9. Then
A C O(y) € O. (We avoid the notation y;, since 7 is used for E; above. So we
use y instead.)
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Let A € E;(z). Since z € 9A, there is a proper face A’ of A such that
z € A'. By (1) above, E;(z) C H;(A’) (regarded as a grouping of A(A')).
From the end of 4.13, there is an index s such that A € A(A’,s)(z) and that
{A(A7, 5)~ws(ADY © H(A).

Recall, from 4.12, A(A’, s)(2’) is a finite union A(A,t1)(z") UA(A,t2)(z")U- -+,
for any 2’ € A’ C A. Hence, there is an index ¢ such that

A e AA ) (2) C AA)8)(2),

where both A(A,¢)(z) and A(A’,s)(z) are regarded as subsets of SP¢,. To
prove the claim, by the end of 4.13, we only need to prove {A(A,t)~"+(A)}
H;(A). From the definition of H;(A), this is equivalent to

dim(A) + 1

(A) A(A ) (z1) C {a: dist(z,a:(21)) <n+ m

-1}
for any z; € A. From {A(A/,s)~*:(A)} ¢ H;(A’) and the definition of H;(A'),

we have

dim(A’) +1

AA)s)(2") C {x: dist(z,a;(2")) <n+ (@Y +1)

n}

for any 2z’ € A’. In the above, if we choose 2z’ = z—the vertex in the claim—
(and note that A(A,t)(z) C A(A’,s)(z)), then
dim(A’) +1

(a) AA ) (2) C{z: dist(z,a:(2)) <n+ @my 1)

n}.

On the other hand, from (d) in 4.6, we have

Ui

(b) diameter(a;(A)) < diameter(ai(O(y))) < 55—y

And from (b) in 4.6, we have

(c) diameter(U(y,t)) < m

From 4.6 and 4.9, A(A,t)(z1) C U(y,t) for any z; € A C O(y). Combining
this with (c) above, for any p € A(A,t)(z1) (21 € A), we have

dist(p, A(A, 1) (2)) < m.

Then combining it with (a) above, we have

(dim(A") + 1)n n
(dimY +1) 2(dimY +1)°

dist(p,ai(z)) <n+
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Finally, combining it with (b),

) _ (dim(A") + 1)n n n
dist(u, ai(z0)) <+ = 57 Y 3@my 3 1) T 3@my £ 1)
< dim(A) +1
- (dimY +1)’

since dim(A’) < dim(A) — 1. Note that z; € A and p € A(A,t)(z1) are
arbitrary, this proves (A) and the Claim.

Suppose that I" is a simplex of (OA, 7) with vertices 2o, 21, - - - z;. Suppose that
I' C A/, where A’ is a face of A. As mentioned in 4.12,

oA oA(A
BN @) c BNV (2).
as a subset of SP¢_, for all 2/ € A’ and all z = 2¢, 21, - -, z;. Therefore, from
(2) and (3) above, we have the following (2’) and (3’).

(@) # (BN (20) nEMY () 0 n BH ()
= # (B o)l NN ()] 0o nENS (z))0)

> # (B} o)l BN ()] 00BN (2)10)

o

= # (BM) () nEM) a1 00BN ()
— [MQ 4+ MQdim dA(dim DA + 1)),

for every simplex I' C (0A, 7) with vertices zg, 21, -, 2;.
(3’) The Assumptmn 3.27 holds for the grouping {E;(z)}~, regarded as a
grouping of A(A), i

#END(2) > T, - M9,

where z is a vertex of (0A, 7).

Apply Theorem 3.32 to obtain a subdivision (A, 7) of (A, o), and, for each
newly introduced vertex z € A, a grouping Ei(z), E2(2), - E.(z) of SPg¢,
such that (1), (2) and (3) hold with the version obtained by replacing A’ by A,
and dim(9A) by dim A. (As mentioned in 4.11, for each vertex z, we should
first get the groupings of A(A), then this grouping induces a grouping of SP¢,.)
Using Mathematical Induction, combined with 4.13, we obtain our subdivision
(Y,7) of (Y,0) and the groupings.

We summarize what we obtained in 4.13 and 4.14 as in the following proposi-
tion.

PROPOSITION: There is a subdivision (Y,7) of (Y,0), and for all vertices
z € Vertex(Y, ), there are groupings E1(z), Ea(z2), -+, Er(z) of SP¢, of type
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(Th, T, --+,TL) (i-e., #(Ei(2)) =T; Vi) such that the following are true.

(1) If A is a simplex of (Y,o) (before subdivision) and z € A, then the
grouping (E{\(A)(z),EQ(A)(z), . -~EIL\(A)(Z)) of A(A), induced by the grouping
(E1(2), Eo(2), -+, EL(2)) of SP$,, satisfies

EM®(z) c Hy(A).

(2) Let T' be a simplex of (Y, T) with vertices zo,z1,--,2;. If T C A, where A
is a simplex of (Y, o) (before subdivision), then

# (BMD o) BN ) n - BN ()

>T; — [MQ+ MQdim A(dim A + 1)]
(> T — [MQ + MQdim Y (dim Y + 1)]) .

(We do not need the condition (3) any more.)

4.15. For the simplicial complex (Y, 7), there is a finite open cover
{W(T): T is asimplex of (Y,7)}

of Y, with the following properties.

(a) W(T') D interior(I") = T\JT.

(b) If W(T'1) N W(T'y) # 0, then either I'; is a face of T's or 'y is a face of T';.
(Such open cover has been constructed in 1.4.2 (b).)

For any simplex I', we will construct an open set O(I') D T and introduce a
decomposition Z(I") of {SP¢, },co(r), which is the finest possible decomposition
satisfying the condition (S) for I' in place Y’ in 4.10.

Recall that K = rank(P), and y +— SP¢, defines a map SP¢:Y — PEX. We
will prove the following easy fact.

CLAIM 1: SP¢|r := U,erSP¢, (C X) has at most K connected components.
(For K = 1, the claim says that the image of a connected space I" under a
continuous map SP¢ : I' — P'X = X is connected. This is a trivial fact.)
Proof of Claim 1: Suppose that by the contrary, SP¢|r has more than
K connected components. Write SPo|r = X3 U Xo U --- U Xg41, where

X1, X5, -+, XKg41 are mutually disjoint non empty closed subsets (which are
not necessary connected).
There are open sets Uy, Us, - - -, Uk +1 with mutually disjoint closures such that

U; D X;. Then for any z € I', SP¢, C UiK:{lUi. By Lemma 1.2.9, for each 1,
#(SP¢, NU;) is a nonzero constant. Hence #(SP¢,) > K + 1, contradicting
with #(SP¢,) = K = rank(P), counting multiplicity. This proves the claim.

We are back to our construction of open set O(I") and decomposition Z(T").
Write SPo|r = X3 UXoU---U Xy, where X3, X5, -+, X; (with ¢ < K) are mu-
tually disjoint connected components of SP¢|r. Choose open sets Uy, U, - - -, Uy
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with mutually disjoint closures such that X; C U;. By Lemma 1.2.9, there is
an open set O(I") D T such that SP¢|ory C UL, U;.
As in 4.10, define

E(T,t)(z) =SPp,NU;, Vz€ O), i =1,2,---t.
This gives a decomposition
SP¢, = {E(T',1)(2),E(T,2)(2), -, E(T,t)(2)}, Yz € O(T).

Let ¢; = #(E(T, i), counting multiplicity. And write

(1]

(1) := {E(T,1)~,E(T,2)~, - E(T, 1)~}

Note that the above decomposition satisfies condition (S) in 4.10 as the decom-
position of spectrum on O(T") (not only on T"). In 4.16 below, when we apply
4.10, we will use U(T") (a subset of O(T")) in place of Y’ of 4.10. Obviously,
Z(T") is the finest decomposition among all the decompositions of (SP¢,).er
satisfying condition (S) on T', since each X; is connected. In particular, if
z € I' C A, where A is a simplex of (Y, o) (before subdivision), then the de-
composition of SP¢, corresponding to =(I") is finer than the decomposition of
SP¢, corresponding to A(A).

We will use the following fact later.

CrLAam 2: If IV C T is a face, then for any z € O(I) N O(T'), the decomposi-
tion of SP¢, corresponding to Z(I") is finer than the decomposition of SP¢,
corresponding to Z(T).

Proof of Claim 2: The Claim follows from the definition of Z(I") and the fact
that any connected component of SP¢|r is completely contained in a connected
component of SP@|p.

4.16. For each simplex I', define U(T") = W(I') n O(T").
{U); T isasimplexof (Y,7)} is an open covering of Y since U(I') D
interior(T").
For each U = U(T'), we will define mutually orthogonal projection valued func-
tions

P/, PY ..., PY: UT) >y~ { sub-projections of P(y)}.

Then apply Proposition 3.2 of [DNNP] to construct the globally defined pro-
jections p1,ps,---,p, for our Theorem 4.1.

(ATTENTION: For each vertex z of (Y, 7), we have a grouping

Ey(2),Ez(2),- -, Er(2) of SP¢,. It will induce a grouping of =(T"), as in 4.10,
if ' 3 2. In the following construction of PY(y), this grouping will be used.
That is, we will use the decomposition of SP¢, corresponding to Z(T"). The de-
composition of SP¢, corresponding to A(A) will NOT be used in the definition
of PY(y) at all— it is only used in the estimation of rank(PY).

In the definition of the grouping E1(2), E2(2),-- -, EL(z) of SP¢,, it involves the
decomposition of SP¢, corresponding to A(A). But once it has been defined, it
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makes sense by itself without the decomposition of SP¢, corresponding to A(A)
as a reference (though EO};A (&)
the reference).)

Back to our construction. For each y € U (= U(T")) and each i = 1,2,---, L,

define PY(y) to be the spectral projection of ¢y corresponding to

(2)|» only makes sense with the decomposition as

(O_E(F)<Z0) ﬁEO'Z-E(F)(Zl) A---N ?(F)(zj)) s

where zp,21,---,%; are all vertices of I', and the notations EO’iE(F)(z) and
L%f(r)(zﬂy are as in 4.10. (That is, ﬁ}f(r) (z) is a subset of Z(I") and Eo’f(r)(z)|y
is a subset of SP¢,.)

By Lemma 1.2.9, the above functions PY(y) depend on y continuously. In
fact, for each i and any y € U(T') C Y, PY(y) is the spectral projection of
¢, corresponding to an open subset (of X)— in the notation of 4.15 (see the
paragraph after the proof of Claim 1 in 4.15), the open subset is the union of

all open subsets U; C X such that
E(T,j) € EF(20) nEF () 0o nEF T (3)(C E(T)),

(Note that when we apply Lemma 1.2.9, we use the fact that {U;} have mutu-
ally disjoint closures and SP¢, C (JU; from 4.15.) Recall, the decomposition
of SP¢, corresponding to Z(T") is finer than any decomposition of SP¢, corre-
sponding to A(A), if I' C A. Therefore, E°i5(r)(20)|z DEO;\(A)(ZOMZ, regarded as
a subset of SP¢,, for any vertex zg € I' and any point z € I'. By Condition (2)
of the grouping (see 4.14),

rank(P) > Tj — [MQ + MQdimY (dim Y + 1)]

for each U.

The projections PY,i = 1,2,---, L are mutually orthogonal, since they are
spectral projections corresponding to mutually disjoint subsets of X.

Let IV be a face of ' and z € U(I') N U(I). By Claim 2 in 4.15, opposite to
the case of decompositions corresponding to A(A) and A(A’), the decomposi-
tion of SP¢, corresponding to =(I") is finer than that corresponding to Z(T").
Therefore,

o=(T o= (T

L; ( )(ZO)|y CE; ( )(ZO)‘y
for all zy € Vertex(I",7) C Vertex(I',7). Combining it with the fact that
Vertex(I', 7) C Vertex(T', 7), we get

SE(T SE(I
N =D |y N EC) ]

z;eVertex(T',r) zjeVertex(1/,7)
Consequently,
PO < PI(y) if y € UD) NUT).
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Finally, from the condition (1) of the groupings (see the proposition in the end
of 4.14) and the definition of H;(A), we have

2E(T . im
(EEO@) 1y < {x disth aily) <n+ G -n=2n},

where A is any simplex of (Y,0) satisfying T' C A. Therefore, P (y) is the
spectral projection of ¢, corresponding to a subset of

{X; dist(A a;(y)) <2n} C X.
We have proved the following lemma.

LEMMA 4.17. There is a collection U of finitely many open sets which covers
Y. For each open set U € U, there are mutually orthogonal projection valued
continuous functions

PY PV, ... . PY: U3y { sub-projections of P(y)}

with the following properties.
(1) If Uy, Us €U, and Uy NUy # O, then either

P{(2) < P2(2)
is true for alli=1,2,--- L and all z € Uy NUs, or
P (z) < P (2)
is true for alli=1,2,--- L and all z € Uy N U;.
(2) rank(PY (z)) > T; — [MQ + MQdim Y (dim Y 4 1)].
(3) Each PY(z) is a spectral projection of ¢, corresponding to a subset of

{N; dist(\ a:(2)) < 2n}.

4.18. For i = 1,2,---, L, applying Proposition 3.2 of [DNNP] to {PY}rcu,
there exist continuous projection valued functions

pgj,pg, e ,pLU : Y 5y — { sub-projections of P(y)}

such that
pi(y) < \/{P(v); ye U cu}
and that

rank(p;)) >T, — [MQ+MQdimY (dimY +1)] —dimY >T; - T .

(Note that T' = 2*(dim X + dimY)3.)
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By Condition (1) of 4.17, for each v,
span{PY; y e U e U} = P

for a certain Uy > y which does not depend on 4. Therefore, {p;(y)}r_, are
mutually orthogonal since {PZ-UO }-_, are mutually orthogonal.

4.19. We will prove that the above projections {p;}_; and po = P —> 1| p;
are as desired in Theorem 4.1. This is a routine calculation, as in the proof of
Theorem 2.7 of [GL1] or the last part of the proof of Theorem 2.21 of [EG2].
(See 1.5.4 and 1.5.7 also.) Since we need an extra property of podpo (described
in 4.20 below), we write down the complete proof.

For each y € Y, as mentioned in 4.18, there exists an open set Uy € U with
Up > y such that

span{PiU; yeUeZ/{}:PiUO, 1=1,2,---, L.
Let P;(y) = PiU” (y). Then
pi(y) < Pi(y), i=1,2--,L,
and each P;(y) is the spectral projection corresponding to a certain subset of
{A A€ SPg,, dist(\ ai(y)) < 2n} .

Let mutually different elements wi,u2, -+, us € SP¢, be the list of spec-
tra which are not in the set of those spectra belonging to the projec-
tions {P;(y)}f_,. Let ¢i1,qo,---,¢s be spectral projections corresponding to
{p1},{p2}, -+, {us}, respectively. (The rank of each ¢; is the multiplicity of u;
in SP¢,.) Then

P(y) = ZPi(y) - Z%’-

Therefore,

L

po(y) = P(y) = 3 _pily) = 3 _(Piy) = piw)) + D _ai

i=1

Since the spectra belonging to P;(y) are within distance 27 of a;(y), by the way
7 is chosen in 4.4, for each f € F,

601 ) = [ S P+ 3 fuall < 5.

Therefore, for each f € F, |[po(y)6(f)(y) — ¢(f)()po(y)]| < %, and

() IpoWNol) — (3 S (Ply) = piw) + 3 Fudall < 5.

i=1
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Also, for all f € F,

lpi(y)d(f)(y) — flai(y)pi(y) < 5  and

lo(f)(W)pi(y) — flai(y))pi(v)l < 5-

Let P’ =Y":_, pi. Then

g )WpoW)ll = I 32521 pi (W) (f) W)po(v)]

1P (y)¢
| ( )6(F) () = pi(y) f(ai())po W) + | iz pi(y) f (@i (y))po ()

INIA

Similarly, for all f € F,

IPo @)W P W < .

Also,
1P (y)o( @f (a;(y il < -

Combining all the above estimations, we have, for f € F

[6(f)(y) — poly)é( @@f a;i(y)ps (W) < 3 +3+§:

This ends the proof of Theorem 4.1.

1]
ATTENTION: In fact, we proved that the conclusion of Theorem 4.1 holds not
only for f in the finite set F', but also for any f satisfying the condition that if
dist(x,2") < 2, then || f(z) — f(2")|| < 5.

REMARK 4.20. The following is the (x) from 4.19:
() llpo()o(f)(W)po(y) — [Z flai)(Pily) —pi(y)) + Zf(ﬂi)%‘]” < g

Recall that for any z, 2’ € X, if dist(x,2") < 27, then

If@) - f@)] < 5

for all f € F.
Note that fy C(X) = po(y)Me(C)po(y), defined by

&y(f) = 22y flai(y))(Pi(y) — piy)) + 327_, f(1i)ai, is a homomorphism. By
1.2.18, we have the following claim.
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CraM: Let {x1, o, -, x,} be an n-dense subset of X. Suppose that mutually
orthogonal projections pl,p2,---,p" € (P — po) Mg (C(Y))(P — po) satisfy

rank(p’) > rank(pp).

Let 1 : C(X) — (po@p' @p* @ - & p" )M/ (C(Y))(po ©p* ©p* @ --- @ p")
be the positive linear map defined by

¥(9) = pod(g)po & Y g(z:)p" |

i=1

for all g € C(X). Then ¢(F) is weakly approximately constant to within e.
This fact will be used later.

REMARK 4.21. The proof of Theorem 4.1 is very long and complicated.
We point out that the following direct approaches will encounter difficulties.
(These discussions have appeared in §1.5.)

1. One may let PY(y) be the spectral projections corresponding to the open
sets

{A; dist(A, ai(y)) <n}

and make use of Proposition 3.2 of [DNNP] to construct the projection p;.
The trouble is that such {p;}£_; are not mutually orthogonal since P/ are not
mutually orthogonal.

2. For each sufficiently small neighborhood U, applying the theorem about
spectral multiplicity from §2, one can construct mutually orthogonal projec-
tions { PY (y) }£_, with relatively large rank such that each PY(y) is the spectral
projection corresponding to a subset of

{A; dist(A, ai(y)) < n}

But one cannot guarantee that the projection associated to \/{PY; U > y} is
orthogonal to the projection associated to \/{PjU; U >y}, for i # j. So one
still can not obtain orthogonal projections {p;}}_;.

3. One may try to define py, ps,- -, p., one by one. For example, after py(y) is
defined, try to choose P (y) to be orthogonal to p;(y) and to be the spectral
projection of a certain subset of X. Then this subset can not be chosen to be
a subset of {\; dist(\, az2(y)) < n} since some spectra may have been taken
out when pi(y) is defined. In fact, this subset can be chosen to be a subset
of {); dist(\,az(y)) < 2n}. In this way, when we define PY(y), it will be a
spectral projection corresponding to a subset of

{X; dist(A, a;(y)) <i-n}.

In order for the theorem to hold, L-n needs to be small, which makes 1 depend
on L. This is not useful at all for the application.
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REMARK 4.22. Note that in 4.19, when we prove that the projections {p;}% ;
satisfy the desired conditions (i) and (ii) of Theorem 4.1, we only use the
property that for any y € Y, p;(y), ¢ = 1,2,---, L, are subprojections of
Pi(y),i=1,2,---, L, respectively. This means, (i) and (ii) of Theorem 4.1 hold
for any set of projections {p.}£ , with p; <p;, i =1,2,---, L. So we have the
freedom to replace any p; by its subprojection (with suitable rank). This fact
is important for the discussion below and in 4.41 and 4.44.

In what follows, we will use the fact that, for the projections in Mg, (C(Y)) of
rank at least dim(Y’), cancellation always holds. That is , if three projections
p,q and 7 in M, (C(Y)) satisfy that rank(p) > dim(Y"), rank(g) > dim(Y") and
p@r is Murry von Neumann equivalent to ¢ r, then p is Murry von Neumann
equivalent to q.

(a) In fact, in 4.19, rank(p;) for our projections p; satisfy the stronger condition
(see 4.18):

rank(p;) > T; — [MQ+ MQdimY (dimY + 1)] — dim Y.

From Theorem 1.2 of [Hu, Chapter 8], there is a trivial projection p; < p; such
that

rank(p;) > rank(p;) —dimY
> T — [MQ+ MQdim Y (dimY +1)] — 2dim Y.

That is, rank(p}) is still larger than T; — T, where T' = 2%(dim X + dimY)3.
(In fact it is larger than T; — T+ 2dimY".) In Theorem 4.1, replacing p; by pi,
one makes all the projections {p;}_; trivial.

(b) Suppose that there is an iy € {1,2,---,L} such that T;, > T + dimY.
Suppose that the projections p1,psa,---,p, are trivial as in (a). In particular,
suppose that rank(p;,) > T;, — T + 2dimY as mentioned in (a). By [Hu],
P e Mg/(C(Y)) (the total projection of the target algebra PM g/ (C(Y))P in
Theorem 4.1) can be written in the form

q @ (trivial projection),

where ¢ is of rank T;, — T 4+ dim Y. It follows from [Hu], that there is a sub-
projection p; of p;, which is unitarily equivalent to ¢. Replacing p;, by pj,
and keeping all the other projections p;, then P will be unitarily equivalent to
a projection of the form

L
@ p; @ (trivial projection).
i=1

Therefore, pg = P — @;_, p; is a trivial projection. (Note that rank(pg) >
dimY".)

In other words, in Theorem 4.1, we can choose all the projections pg, p1,- - -, Dz
to be trivial except one of them, p;,, where iy # 0. In particular, py is a trivial
projection, as comparing with (a) above.
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The following theorem is proved in [EGL].

THEOREM 4.23. ([EGL]) Let A = lim (A, ¢n.m) be an inductive limit C*-
n—oo

algebra  (not necessarily unital) with

[2%
Ap = P Mg (C(Xn0)),
i=1

where X, ; are simplicial complexs. Then one can write A = lim (B, Y m)

n—oo
with

tn
B, = @ M{n,z} (C(Ynﬂ))’
=1

where Y, ; are (not necessarily connected) simplicial complexs, with dim(Y,, ;) <
dim(X,, ;), such that all the connecting maps ¥ m are injective.

Furthermore, if (Ay, ¢n.m) satisfies the very slow dimension growth condition,
then so does (By,, ¥n,m,)-

4.24. WITHOUT LOSS OF GENERALITY, IN THE REST OF THIS ARTICLE, WE
WILL ASSUME THAT THE CONNECTING MAPS d)n,m IN THE INDUCTIVE LIMIT
SYSTEM ARE INJECTIVE. Without this assumption one can still prove all the
theorems in this paper by modifying our arguments, and by passing to some
good subsets of X, ;. But this assumption makes the discussions much simpler.
As mentioned in 1.1.5, we will suppose that the inductive limit algebra
A= lim (4, = @, My, )(C(Xni)), $n,m) satisfies the very slow dimension

n—oo

growth condition.

4.25.  As a consequence of Theorem 4.1 and the lemma inside 1.5.11— a
result due to Li—, one can obtain a decomposition for each (partial map of a)
connecting map qﬁﬁﬂm (m large enough), with the major part factoring though
an interval algebra. But for our application, we need a certain part of the
decomposition to be defined by point evaluations and (even if it is not large
absolutely) to be relatively large compared to the “bad” part po¢pg, where pg
is the projection in Theorem 4.1, and ¢ is the map corresponding to ¢5;7, (see
1.2.18 and 1.2.19), i.e., ¢ = @47 ey At ey, -

Following Section 2 of [Li3] (see the proof of Theorem 2.28 in [Li3]), we can
prove our main Decomposition Theorem (see Theorem 4.37 below). [Li3] only
proves the special case that X, ; = graphs (one dimensional spaces). Although
the idea behind Li’s proof is reasonably simple and clear (see the explanation in
2.29 of [Li3]), the proof itself is complicated and long. It combines several diffi-
culties together. For convenience in the higher dimensional case, we will give a
slightly different approach. (See 1.5.25 for the explanation of the difference be-
tween our approach and Li’s approach.) Our proof will be a little shorter, and
perhaps easier to follow (hopefully). More importantly, using this approach, we
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will be able to prove the Decomposition Theorem for any homomorphism pro-
vided that the homomorphism satisfies a certain quantitative condition (see
Theorem 4.35 below). (Li’s theorem is for the homomorphism ¢, ., with m
sufficiently large.) This slightly stronger version of the theorem is needed in
[EGL] to prove the Uniqueness Theorem. It should be emphasized that our
proof is essentially the same as Li’s proof in spirit.

The idea behind our proof is roughly as follows.

In [Li2, 2.18-2.19] (see 1.5.11), Li proves that for fixed n > 0, for m large
enough, and for any (partial) connecting map (;Si;fm—denoted by ¢—, there
are L continuous maps (1, 02,---,0. 1 Y (= Xy ;) — X (= X,,,i), factoring
through the interval [0, 1], such that for each y € Y, the set SP¢,, and the set

O(y) = {/61(y)~L2762(y)~L27 o ’/BL—l(y)NLQ,ﬂL(y)NLQJFLl}

can be paired within 7, where L could be very large compared with
L -2 (dim(X) + dim(Y))3, if the inductive limit system satisfies the very
slow dimension growth condition.

What we are going to prove is that, if SP¢, and ©(y) can be paired within 7,
then they can still be paired within some small number (e.g., 27), if one changes
a number—a small number compared with L—of maps (3; to ARBITRARY maps
(in particular, to constant maps), provided that X is path connected and ¢ has
a certain spectral distribution property related to the number n and another
number § (see 4.26 below). (Note that, how many maps are allowed to be
changed, also depends on 1 and §.) (Those constant maps form the part of
the homomorphism defined by point evaluations.) At first sight, it might seem
impossible for this to be true. But, with the spectral distribution property of
the homomorphism ¢, Lemma 2.15 of [Li2] (see Lemma 4.29 below) says that if
¢ and another homomorphism ) (in the application, 1 should be chosen to be
a homomorphism with the family of spectral functions ©(y), i.e., SPy, = O(y)
for all y € Y') are close on the level of AfIT, then their spectra SP¢, and SP,
can be paired within a small number. On the other hand, changing a very few
spectral functions (no matter how large a change in each function), will NOT
create a big change on the level of AffT (see 4.28 and the claims in 4.31 below).
Since the results of [Li 2] are not of a quantitative nature—they are for con-
necting homomorphisms ¢y, ., with m large—, we can not apply them (2.18
and 2.19 of [Li 2]) directly. So we repeat part of the arguments in [Li 2].

The above method will lead us to Lemma 4.33 (see 4.26—4.33 for details). Then
our main decomposition theorems—Theorem 4.35 and Theorem 4.37— will be
more or less consequences.

Finally we remark that, in our decomposition, we cannot require that both
parts of the decomposition be homomorphisms as in 2.28 of [Li3], since in
general, C'(X) is not stably generated (see [Lo]).

4.26. For the reader’s convenience, we will quote some notations, terminolo-
gies and results from [Lil] and [Li2].
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The following notation is inspired by a similar notation in [Lil].

For any >0, § >0, a homomorphism ¢: PM,(C(X))P — QM (C(Y))Q is
said to have the property sdp(7,d) (SPECTRAL DISTRIBUTION PROPERTY WITH
RESPECT TO 7 AND 0) if for any n—ball

B, (z) := {2’ € X; dist(2’,2) <n} C X
and any point y € Y,

counting multiplicity.

(Attension: The property sdp(r, ) in [Lil] corresponds to sdp(-,d) above.)
Any homomorphism ¢ : & My(C(X)) — @&M;(C(Y)) is said to have the
property sdp(n, d) if each partial map has sdp(n, d).

4.27. The following notations can be found in Section 2 of [Li2]. Let X be a
connected simplicial complex. For any closed set X1 C X, M > 0, let

1 if re Xy
Xo, @) =4 1— M -dist(z, X1) if dist(z, X7) < 3
0 if dist(z,X1) > 57

For n > 0and § > 0, let

Hi(n) = {Xxl,% : X1 C X closed }.

Then there is a finite set H C Hy(n) such that for all h € Hy(n), dist(h, H) < 2
(the distance is the distance defined by uniform norm). Denote such set by
H(n,d,X) (C C(X)). Although such a set is not unique, we fix one for each
triple (7,6, X) for our purpose. (As pointed out in [Lil], the existence of such
finite set H(n,d, X) follows from equi-continuity of the functions in H1(n).)

4.28. For a unital C*-algebra A, let TA denote the space of all tracial states
of A, ie., 7 € TA if and only if 7 is a positive linear map from A to C, with
7(zy) = 7(yx) and 7(1) = 1. AHHT A is the collection of all the affine maps from
TA to R.

Any unital homomorphism ¢ : A — B induces an affine map

AffT¢ : AfTA — AffTB.

It is well known, for any connected metrizable space X and any projection

ABT(PM,(C(X))P) = AT(C(X)) = CR(X).

We would like to quote some easy facts about the AT map from [Lil] and
[Li2].
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If $: C(X) — PM;(C(Y))P is a unital homomorphism and rank(P) = k, then
AffT¢ : C(X) — C(Y) is given by

AfiT¢(f) =

=

!
Z¢(f)u‘7

where each ¢(f);; is the diagonal entry of ¢(f) € PM;(C(Y))P C M;(C(Y))
at the place (4,1)
For a continuous map 3:Y — X, let 5* : C(X) — C(Y) be defined by

B (f)=fop (e C(Y)) forany f e C(X).

Suppose that (1, 82,---0; : Y — X are continuous maps. If ¢ : C(X) —
M;(C(Y)) is a homomorphism with {3;}._, as the set of spectral functions,

(e.g., ¥ is defined by ¢(f) = diag(B (f), B5(f),---, 5} (f)),) then

l
Zﬁ:(f).

(Let H C CR(X) be a finite subset satisfying || f|| < 1 for any f € H. If one
modifies the above homomorphism 1 to a new homomorphism ’, by replacing
k functions from the set of spectral functions {3;}._; by other functions (from
Y to X), then

—] =

AfITY(f) =

IART () — ART(F)] < &, vf e B

In particular, this modification (from 1 to 1’) does not create a big change on
the level of AffT, provided that k is very small compared with [, as mentioned
in 4.25.)

For a unital homomorphism ¢ : C(X) — PM;(C(Y))P with rank(P) = k,
quoting from 1.9 of [Lil], we have

AffT¢(f)(y):% > f@y).
zi(y)eSPg,

Consider e, : PM;(C(Y))P — P(y)M(C)P(y) (= Myqni(p)(C)), which is
the homomorphism defined by evaluation at the point y. Then from the above
paragraph, we know that AffT'(e, o ¢) depends only on SP¢,. We can denote
ey 0 ¢ by ¢|, ( this is the homomorphism ¢|,; in 1.2.13 for the single point set

{y}).

LEMMA 4.29. ([L12,2.15]) Suppose that two wunital homomorphisms
¢: C(X)— PM(C(Y)P and ¢ : C(X) — QMi(C(Y))Q with rank(P) =
rank(Q), satisfy the following two conditions:

(1) ¢ has the property sdp(z5,0);

(2) ||AfTé(h) — AT (R)|| < §, for all h € H(n, 5, X).
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Then SP¢, and SPi,, can be paired within 1 foranyy €Y.

(Notice that, no matter how small the ¢ is , the above conditions (1) and (2)
do not imply the other assumption rank(P) = rank(Q), which is necessary for
our conclusion.)

Proof: If P = @, this is exactly 2.15 of [Li2]. (Notice that, we use z5 in place of
lsl of [Li2 2.15], so our conclusion is that, SP¢, and SP, can be paired within
(instead of n). Also notice that the set H in [Li2 2.15] is chosen to be the
same as the above set H(n, 4, X).)

To see the general case, fix y € Y. We can consider two maps ¢|, and |, which
are unital homomorphisms from C(X) to C*-algebras which are isomorphic to
the same C*-algebra M, q,,(p)(C). (Note that rank(P) = rank(Q).) The
conditions (1) and (2) above imply the same conditions for ¢|, and |,, since
AffT¢(h)(y) = AFT(¢|,)(h). Therefore, by 2.15 of [Li 2], SP¢, = SP(¢l,) and
SPy, = SP(3|,) can be paired within 7.

(If one checks the proof of 2.15 of [Li2] carefully, then he will easily recognize
that the above Lemma is already proved there.)

LS

[n

4.30. In the following paragraphs (4.30—4.32), we will apply the materials
from 2.8 — 2.10 of [Li2].

For any n > 0 and ¢ > 0, from 2.9 of [Li2], there exist a continuous map
a: [0,1] — X, and a unital positive linear map £ : C[0,1] — C(X) such that

. 5
l€oa”(£) = £l < 1.

for each f € H(n,d, X), where o* : C(X) — C][0,1] is induced by «. Further-

more, we can choose a such that image(a) is z5-dense in X.

For av: [0,1] — X, there is a o > 0 such that |t — /| < 20 implies that

. n
dist(a(t), a(t)) < ==.
ist(alt), alt))) < -
For a fixed space X, the number ¢ depends only on 7 and J, since so does the
continuous map a. We denote the number o by o(n, ).

4.31. Let H = o*(H(n,6,X)) C C[0,1]. For the finite set H and 2 >0,

there is an integer N (as in Theorem 2.1 of [Li2]) such that for any positive
linear map ¢ : C[0,1] — C(Y), and for any r > N, there are r continuous maps

617627“.5/87’ 1Y — [071]
such that

<0
16

SOEES AN

for all f € H, where 8 : C[0,1] — C(Y) is induced by ;.
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We will also assume ﬁ < gz Then we can prove the following claim.
CrAm 1: For any r > N, 1f

HC(f) - B

then for any other two continuous maps 7,75 : ¥ — [0,1],

for all fe H,

) -~
‘c HQ(Zﬂ )+ +T§(f)> <g VieR
Proof of the claim: The claim follows from
k-5 (S 0|
1 . o o
7;@« ;;ﬁi (f)r+2;ﬂi(f)||
+| st + )
1) 5 1) )

for any f € H. In the above estimation, we use the facts that ||f|| < 1,
185(F)]| < 1 and [|7 (f)]] <1 for any f € H.

In the above claim, if we replace the condition r > N by the condi-
tion » > mN, then in the conclusion, we can allow 2m continuous maps
T1, T2, ,Tom : Y — [0,1], instead of two maps. Namely, the following
claim can be proved in exactly the same way.

CramM 2: For any r > mN, if

1 ) _
_ = * — H
H<<f> r;@ (f)” <16 v feH,
then for any 2m continuous maps 71,72, -+, Tom : ¥ — [0, 1],
2m 5 ~
HC( _1"+2m <;ﬁ +i_217'z‘<f)> <3 VfeH.

4.32. Let n = int ( G 5)> + 1, where int(-) denote the integer part of the

number (see 1.1.7 (c)).
Divide [0, 1] into n intervals such that each of them has length at most o (1, d).
Choose n points

tiyta, 5y,
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one from each of the intervals. Let z; = a(t;) € X, i =1,2,---,m. Then the
set

{$1,$2, e 73377,}

is T%—dense in X by the way o is chosen in 4.30.

From the above discussion, for fixed n > 0, > 0, and the space X, we can find
o, & ,0,N,n,H(n,6,X),H, the set {t,t,---,t,} C [0,1], and the 15-dense set
{z1,29, -, 2} C X. All of them depend only on n,d, and the space X.

LEMMA 4.33. For any connected simplicial complex X, any numbersn > 0 and
& > 0, there are integers n, N, a continuous map « : [0,1] — X, and finitely
many points {ti,ta, -, tn} C [0,1] with {a(t1), a(ts), -, atn)} 75-dense in
X, such that the following is true. (Denote L :=n(N +2).)

If a unital homomorphism ¢ : C(X) — PMi(C(Y))P satisfies the following
two conditions:

(i) ¢ has the property sdp(5,0);

(ii) rankp(1) := K > L? = (n(N + 2))?,

and write K = LLo+ Ly with Ly = mt(%) and 0 < Ly < L, (note that L < Lo,
since K > L?,)

then there are L continuous functions

ﬂlaﬂ?f"yﬁnaﬁnﬁ-lf'WﬂL: Y — [Oal]

such that
(1) Bily) =t; for 1 <i<n;
(2) For each y €Y, SPgby and the set

O(y) = {Oéo/Bl (y)~L27 aoﬂg(y)"L27 .. aO‘O/BL—l(y)NLQ,OéoﬂL(y)NLQJrLl}

can be paired within 3.

(3) If Y is a connected finite simplicial complex and Y # {pt}, then the map
Bnt1: Y — [0,1]—the first nonconstant map above—, is a surjection.

(This lemma is similar to Lemma 2.18 of [Li2], but we require some of the
functions 8; (1 <i < n) to be constant functions.)

(ATTENTION: To apply Theorem 4.1, one only needs SP¢, and ©(y) to be
paired within 7. The advantage of using 7 is the following. If ¢ is another
homomorphism such that SPv, and SP¢, can be paired within Z for any y,
then we can apply Theorem 4.1 to both ¢ and i without requiring v to have
the property sdp(z5,d). This observation will not be used in the proof of the
main theorem of this paper. But it will be used in the proof of the Uniqueness
Theorem in [EGL] (part IT of the series), see 4.41-4.48 below.)

Proof: Follow the notations in 4.26 — 4.32. Let
¢: Cl0,1] — C(Y)
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be defined by ¢ = AffT'¢p.£. Since K — 2nLs > nloN, there are K — 2nlo
continuous maps

V1,725 Yk —2nLy - Y — [07 ]-]
such that

1 K—2nLo

HC(f)m Z i (f)

i=1

-0
16

for all f € H. Let
ﬁhﬁ?)"'aﬁn: Y — [071]

be defined by B;(y) = t;. Then by Claim 2 of 4.31 (taking m = nLs),

H<<f> -z ( 3 272‘(f)+2L225E‘(f)>
i=1

i=1

| >

<

for all f € H C C[0,1]. Therefore,

H(Coa*)(f) - % ( _Z (aoyi)"(f) 4+ 2L2 Z(aoﬁi)*(f)>

0
i=1 i=1 8

for all f € H(n,d,X). On the other hand, by 4.30 and ¢ = AfiT¢.¢,

. 5
IATS(f) = (Coa™) (Nl < 4¢ for f e H(n,d,X).
One can define a unital homomorphism ¢ : C(X) — M (C(Y)) with
{oeoyi }ET2 2 U {(of3)~252 )7, as the family of the spectral functions. Then
from 4.28,

n

ARTY() = 4 ( 3 (a) () + 2Lzz(aoﬁi)*(f)> .

i=1 i=1

Hence,

1) ) 0
IART(f) — ARTO(f) < ¢ + 1= < 3

for all f € H(n,d, X). Note that rank(P) = K. By Lemma 4.29, SP¢, and
SPy, =
{05061 (y)N2L2 ) aOﬂQ (y)N2L27 Tt Oloﬁn (y)N2L2 y QoY1 (y)7 Tty QYL —2nrL, (y)}

can be paired within 7.

Note that in our lemma, we only need Ly copies of each constant maps ;
(1 =1,2,---,n). One may wonder why we put 2L copies of each of maps ;
in the above set. The reason is that, after taking out Lo copies of 3;, we still
want the set O(y) to have enough elements in each small interval of length o,
and the other Lo copies of §; can serve for this purpose.
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Consider the following set (of K — nLs elements)

{/8sz (y),ﬂ;Lz (y)7 R ;Lz (y)7 ’Yl(y)vrm(y)v Ty YK—2nLy (y)}

In each interval of [0,1] of length o, there are at least Lo points (counting
multiplicities) in the above set.

The following argument appeared in 2.18 of [Li2].

For each fixed y, we can rearrange all the elements in the above set in the
increasing order. ILe., write them as v{(y),v5(¥), -, Vi _nz,(¥) such that for
each fixed y

VW) W)s - Ve, W)} =
= {Bi()~"2, Ba(w)™ "2 B ()2 ()2 (Y), Ye—2nns ()}

(as a set with multiplicity), and such that

0<%y <) < <Vi_ @) <1

It is easy to prove that v/(y), 1 < i < K — nLy are continuous (real-valued)
functions, using the following well known fact repeatedly: For any two real-
valued continuous functions f and g, the functions max(f, g) and min(f, g) are
also continuous.

We can put each group of Lo consecutive functions of {7/} (beginning with
smallest one) together except the last Lo + Ly functions which will be put into
a single group—the last group. Then we replace all the functions in a same
group by the smallest function in the group. Namely, let

’ ’ ’
Bnt1 = Y15 Bnt2 = Yog+1s" " B = Y(L—n—1)Lo+1 *

Then from the fact that in each interval of [0,1] of length o, there are at least
Ly points (counting multiplicity) in the set {v](y),v2(¥), - Vx—nr, ()}, We
know that {71 (y)a ’yé (y)v e 77;(7?7,L2 (y)} and

{Bnr ()", Brga(w)™"2, -+ Bua ()™, Buy)~ 2T}

can be paired within 20. Recall that |t —t'| < 20 implies that dist(«(t), a(t’)) <
15 Hence

{aoﬂl (y)N2L27 0062 (y)~2L2’ ) aaﬂn(y)NzLQa
oY1 (Y), @oY2(Y), -+, XY —2n2, ()}

and

O(y) = {04051 (y)NLQ, Oéoﬂg(y)NLQ’ e ,aoﬂn(y)NL2,
QcBo1(y)712, o eBua ()2 oy ()
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can be paired within 75. Therefore, SP¢, and ©(y) can be paired within
N4 n - 5m
1716 < 16

Note that {aoB1(y), aeB2(y), -, asB,(y)} is {5 dense in X. From the proof

of Lemma 1.2.17, if we replace only one map (say (,+1) by an arbitrary map
from Y to [0,1], then the new ©(y) can be paired with the old ©(y) to within
2. As a consequence, we still have that SP¢,, and the new ©(y) can be paired
within ?—g + g < Z. In particular, if Y is a connected finite simplicial complex
which is not a single point, then (3,11 could be chosen to be a surjection, again
using the Peano curve.

1]

4.34. Fix a large positive integer J. We require that the decomposition in
4.1 to satisfy the condition

J - (rank(po) + 2dim(Y)) < rank(p;), Vi > 1.

To do so, we need rank(¢(1)) to be large enough. We describe it as follows.
For a connected simplicial complex X, and for numbers n > 0 and § > 0, let
N,n and a : [0,1] — X be as in Lemma 4.33. Let L = n(N +2). Suppose that
¢ : C(X) — M(C(Y)) is a homomorphism. If ¢ has the property sdp(z5,d)
and

rank(¢(1)) > 2JL? - 28 (dim X + dim Y + 1)3,

then there are continuous functions

61)/627"'7/8L: Y — [Oal]

(as in Lemma 4.33) such that SP¢, and the set
{aoBr(y)™"2, oBa(y)™ 2, aofBi1(y)™ "2, aef (y) 211 }
can be paired within 7, where
Ly = int (%) >2JL - 25(dim X + dimY + 1)?,
and 0 < Ly < L. For any given set F' C C(X), if n is chosen as in Theorem

4.1 (see 4.4), then by Theorem 4.1, there are mutually orthogonal projections

p1,p2,- -+, and po = $(1) — 3;_, p; such that
(1) Forall fe Fandy €Y,

lo(£)(y) — po(y)o(f)(y)po(y) ® @ flai(y)pi(y)ll < &

(2) For each i = 1,2,---, L, rank(p;) > Ly — 2*(dim X + dim Y + 1)3, and

J(rank(pg) +2dim(Y)) < J(L-2(dim X +dimY +1)* + 2dim Y) < rank(p;).
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By [Hu], po ®po ® -+ ® po is (unitarily) equivalent to a subprojection of p;,

J
since every complex vector bundle (over Y') of dimension J - rank(pg) is a sub-

bundle of any vector bundle (over Y') of dimension at least J-rank(pg)+dim(Y").
We denote this fact by J[po] < [pi].
Let Qo =po, @1 =p1+p2+-+ +pp and Q2 = ppy1 + pni2+ -+ po. Then

d(1) = Qo+ Q1 + Q2.

Let ¢0 N C(X) ad QQMk(O(Y))Qo, ¢1 . O(X) — Qle(C(Y))Ql and ¢2 .
C(X) — QaMy(C(Y))Q2 be defined by

do(f)(y) = pod(f)(y)po,

¢1(f) = flaBi(y))p;, and

i=1

$2(N) = > flaeBi(y))pi-

1=n—+1

Then we have the following facts.
(a) ¢2 is a homomorphism factoring through C10,1] as

B+ O(X) =5 C[0,1] <2 Qo My (C(Y))Qo.

Furthermore, if Y # {pt}, then & is injective. (This follows from the surjection

of ﬁn+1 )
(b) Note that

04051(9) =T, 04052@) =2, " 7a°ﬁn(y) =Tn

are n constant maps with {z,zs, -, z,} n-dense in X. By the claim in 4.20,
(¢o ® ¢1)(F) is approximately constant to within e. (Note that ¢¢ is not a
homomorphism, it is a completely positive linear #-contraction.)

Furthermore, if n < ¢, then the set {1, 22, -+, 2,} is e-dense in X.
Therefore, we have proved the following theorem.

THEOREM 4.35. Let X be a connected finite simplicial complex, and e > n > 0.
For any 6 > 0, there is an integer L > 0 such that the following holds.
Suppose that F C C(X) is a finite set such that dist(x,x") < 2n implies | f(x) —
f@")| < § forall feF.

If ¢ : C(X) — Mp(C(Y)) is a homomorphism with the property sdp(z5,9),
and rank(¢p(1)) > 2J - L? - 25(dim X + dimY + 1)3, where Y is a con-
nected finite simplicial complex and J is any fized positive integer, then there
are three mutually orthogonal projections Qq,Q1,Q2 € Mi(C(Y)), a map
¢o € Map(C(X), QoM (C(Y))Qo)1 and two homomorphisms
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¢1 € Hom(C(X), Q1 M(C(Y))Q1)1 and ¢p2 € Hom(C(X), QaMp(C(Y))Q2)1
such that

(1) 9(1) = Qo + Q1 + Q2;

(2) |6(f) — do(f) ® ¢1(f) ® g2(f)Il <€ for all f € F;

(3) The homomorphism ¢ factors through C|0,1] as

¢ : C(X) =5 C[0,1] 2 QoM (C(Y))Qo.

Furthermore, if Y # {pt}, then &y is injective;

(4) The set (¢o @ ¢1)(F) is approximately constant to within €;

(5) Q1 = p1+ -+ pn, with J[Qo] < [ps] (i = 1,2---n), ¢g is defined by
do(f) = Qod(f)Qo, and ¢1 is defined by

n

$1(f) = flaipi, ¥f € C(X),

i=1

where po, P1, -+ Pn are mutually orthogonal projections and {x1, 22, - x,} C X
is an e-dense subset of X. (Again by J[p] < [q], we mean that p®p®--- B p
| ——
J
is (unitarily) equivalent to a subprojection of q.)
Furthermore, we can choose any two of projections Qo, Q1, Q2 to be trivial, if we
wish. If ¢(1) is trivial, then all of them can be chosen to be trivial projections.

(This is remark 4.22.)

4.36. Let a simple C*-algebra A be an inductive limit of matrix algebras
over simplicial complexes (A4, = @ﬁ’;l My, 5(C(Xn,i)), $n,m) with injective
homomorphisms. Suppose that this inductive limit system possesses the very
slow dimension growth condition.

In what follows, we will use the material from 1.2.19.

Fix A, finite set F, = @', Fi C A,, and ¢ > 0. Let ¢’ = £

i= mazi<i<i, {[n,d}"
Let F'* C C(X,) be the finite set consisting of all the entries of elements in
F! (C My, 4(C(Xn4))). Let n >0 (n <€) be such that if z,2' € X,,; (i =
1,2---t,) and dist(z,z') < 27, then |f(x) — f(a')| < % for any f € F"".
For the above n > 0, there is a § > 0 such that for sufficiently large m,
each partial map (bi;)jm : A% — AJ has the property sdp(g5,0). (This is a
consequence of simplicity of the algebra A and injectivity of ¢y, .,. See [DNNP],
[Ell], [Lil1-2] for details.)
For these numbers n and 6, and the simplicial complexes X, ;, there are
L(i), i = 1,2,---,t,, as in Theorem 4.35. (Note that the numbers L; only
depend on 7, § and the spaces.) Let L = max; L(). Fix a positive integer J.
By the very slow dimension growth condition, there is an integer M such that
for any m > M,

rankgis,, (Ly,)

2J - L% - 2"(dim X,, ; + dim X, ; + 1)3.
vank(Ly,) > (dim X, ; + dim X, ; + 1)
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As in 1.2.16, (also see 1.2.19) each partial map

b AL — OhT (L a: )AL, @57 (14:) can be written as ¢ © 1, ) for some
homomorphism ¢ : C(X,,;) — EA} E, where E = qbi;)jm(eu), and eqq is the
canonical matrix unit corresponding to the upper left corner. The map ¢’ also
has the property sdp(g}, ).
Applying Theorem 4.35 to F'* C C(X,.;), 1, 6, and ¢’ (as the above) and using
1.2.19, one can obtain the following Theorem.

THEOREM 4.37. For any A,, finite set F = @fll F' C A, positive in-
teger J, and number ¢ > 0, there are an A,,, mutually orthogonal projec-

tions Qo,Q1, Q2 € Ap, with Qo + Q1 + Q2 = dn.m(14,), a unital map o €
Map(An, QoAmQo)1, and unital homomorphisms 1 € Hom(A,, Q1AmQ1)1,
o € Hom(Ap, Q2AmQ2)1, such that

(1) [ fn,m(f) = %o (f) © 1 (f) ® 2(f)]| <€ forall f € F;
(2) The set (o © ¥1)(F) is weakly approximately constant to within €;

(3) The homomorphism 1o factors through @Ell My, 5(C10,1]) as
a ¢
1!]2 DA, o @M[n,z] (C[Oa 1]) —= Q2AmQ27
i=1

and &» satisfies the following condition: if X,,; # {pt}, then §§’j
M, 7(C[0,1]) — AJ, is injective;

(4) Each partial map g’ = AL — Qp? Al Qy’ (where Qg = Yo’ (1ai)) is
of the form 1y @ idpy, k) with vy : C(Xpn:) — qoAl,qo (where gy = wé’j(ell)
is a projection). FEach partial map ¥ : Al — QYA QY (where Q% =
wi’j(lA;)) is of the form ¢ ® idj, 1) and ¥} : Al — pbI A phd (where pt =
Y (e11)), satisfies the following

n

Ui =Y fi)pi

i=1

for any f € C(X,, ), where p1,---,pn are mutually orthogonal projections with
P =pi14- - +pn, and with J-[qo] < [ps] (s=1,2---n) and {x1, 22, -2, } C
Xn,i is an e-dense subset in X,, ;.

(When we apply this theorem in Section 6, Qo + @1 will be chosen to be a
trivial projection.)

DEFINITION 4.38. Let A = PM;(C(X))P, and L be a positive integer and
7 > 0. A homomorphism A: A — B = QM;,(C(Y))Q is said TO BE DEFINED
BY POINT EVALUATIONS OF SIZE AT LEAST L AT AN 7-DENSE SUBSET if there
are mutually orthogonal projections Q1,Qs2,--,Q, with rank(@;) > L, an
n-dense subset {z1,z9, -+, z,} C X, and unital homomorphisms \; : A —
Q;BQ;, i=1,2,---,n such that

(1) A1) = S0, Qs and A = B, A
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(2) The homomorphisms \; factor through P(x;)M;(C)P(x;) (= Mrank(P)(C))
as

A= N, o ey, : PM(C(X)) P25 P ) My (C) P(a,) ~-Q, BQ,
where e, are evaluation maps defined by e; (f) = f(z;) and
/\; € Hom(Mrank(p) (C)a QzBQz)l
We will also call the above homomorphism A to have the PROPERTY PE(L, 7).
(PE stands for point evaluation.)
A homomorphism A : A — B = QM;, (C(Y))Q is said TO CONTAIN A PART OF

POINT EVALUATION AT POINT z OF SIZE AT LEAST L, if A = A1 @ X/, where )\;
factor through P(z)M;(C)P(z) as

M = N o ey : PMy(C(X))P=<2P(2) Mi(C) P(2) 25Q1 BQs,

and \] is a unital homomorphism with rank(Q;) > L.
The following result is a corollary of Theorem 4.37, and will also be used in the
proof of our main reduction theorem.

COROLLARY 4.39. For any A,, finite set F = @fll F' C A,, positive
integer J, any numbers € > 0 and n > 0, and any projection P = ©P! €
®AL | there are an A,,, mutually orthogonal projections Qq, Q1,Q2 € A,, with
Qo+Q1+Q2 = dn.m(1a,), aunital map o € Map(Ay, QoAnQo)1, and unital
homomorphisms ;1 € Hom(An, Q1AmQ1)1, Y2 € Hom(A,, QaAnQ2)1, such
that

Part I:

(1) [6nm(f) = Golf) & 61(f) @ ba(f)]| <  for all f € F;

(2) The homomorphism s factors through a direct sum of matriz algebras over
C10,1] as

tn
Vst A 5 @D Mip 1 (C10,1)) <2 Q2 AmQo,
=1

and & satisfies the condition that, if X, ; # {pt}, then f;’j : My, 4 (C[0,1]) —

Al is injective. N

(3) For any blocks Al C A,, Al C A, and for the partial maps ¥y’ and
i’j, we have that 1/)é’j(1A3L) = Qé’j i a projection and 1/)13 has the property

PE(J - rank(Q§”), n).

(4) The set (o ® 1) (F) is weakly approximately constant to within €.

Part 1I: .

Yo? (P') and g (1ai — P*) are mutually orthogonal projections, and the de-

composition of ¢, ,, = Gnmlpa,p as the direct sum of ¢y = Yolpa,p,

V] = 1|pa, p, and Yy :=a|pa, p satisfies the following conditions:

(1) N6y () — () & 04 (F) © B4 )] < & for all f € PFP = P E P,

(2) The homomorphism ¥} factors through a C*-algebra C' which is a direct

sum of matriz algebras over C[0,1] as

Wyt PAP 5 O 2 QA Qh,
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and &, satisfies the following condition, if X, ; # {pt}, then 70— Al s
injective, where QY = 1o(P).

(3) For any blocks Al C A,, Al, C A,,, and for the partial maps 1, and
w;i7j, we have that ¢(/)i’j(Pi) = Q;f’j is a projection and z/Jlli’j has property
PE(J - mnk(Qéf’j), 7).

Proof: Obviously, the first part of the corollary follows from Theorem 4.37.
To prove the second part, we only need to perturb 1y € Map(A, QoBQo)1 to
newy such that the restriction newiyp|p is a homomorphism, where

D:=EPc-PraC- 14 - P)

is a finite dimensional subalgebra of A,,.
By Lemma 1.6.8, such perturbation exists if ¢y is sufficiently multiplicative,
which is automatically true if the set F' is large enough and the number € is
small enough, using the next lemma.
(Note that C := &, (P)(&~ 1 Mp, 7(C[0,1]))€1(P) is still a direct sum of matrix
algebras over C[0, 1], since all the projections in M,(C[0,1]) are trivial.)

1]

LEMMA 4.40. Let A be a unital C*-algebra. Suppose that G C A is a finite set
containing 14, and G1 = G x G := {gh | g € G,h € G}. Suppose that 6 > 0,
and &' = 3 Hfl;lla where |G| = maxgea{lg|l}-

Suppose that B is a unital C*-algebra and p € B is a projection. If a
homomorphism ¢ € Hom(A,B) and two maps ¢1 € Map(A,pBp), P2
Map(A, (1 —p)B(1 — p)) satisfy

16(9) — d1(9) & ¢2(9)|| < &', Vg€ Gy,
then both ¢1 and ¢o are G-6 multiplicative.

Proof: The proof is straight forward, we omit it.

Theorem 4.37 and Corollary 4.39 will be used in the proof of our Main Reduc-
tion Theorem in this article. Theorem 4.35 will be used in the proof of the
Uniqueness Theorem in [EGL]. The rest of this section will not be used in this
paper. They are important to [EGL].

4.41. In the rest of this section, we will compare the decompositions of two
different homomorphisms. Such comparison will be used in the proof of the
Uniqueness Theorem in [EGL].

Let X,n,0,¢,{0:}}—,, and O(y) be as in 4.34. (Take J = 1.
¢ : C(X) = Mp(C(Y)) is as in Theorem 4.35, and 1) : C(X)
another homomorphism with ¢(1) =¢(1). If

) Suppose that
— M(C(Y)) is

IABT6(f) — AT ()] <
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for all f € H(n,d,X), then by Lemma 4.29, SP¢, and SP%, can be paired
within 7. Since SP¢, and ©(y) can be paired within 7, SP¢, and ©(y) can be
paired within n. Similar to 4.34, by Theorem 4.1, there are mutually orthogonal

projections 41,92, s qn,qn+1, """, 4L and do = ’(/}(1) - Z»le qi such that
(1) Forally € Y and f € F,

10 (f)(y) — a0 (f)(y)q0 @ Z FlaoBi () g < e.
i=1

(2) rank(qp) + 2dim(Y") < rank(g;).

As Remark 4.22; we can choose projections p; for ¢ and ¢; for i to be trivial
projections with rank(p;) = rank(g;). (Note that, in 4.34, the number Lo
and Lo + Ly, which serve as T;, i = 1,2,---,L (i.e., T; = Lo, for 1 <4 <
L—1, and Ty, = Lo + L;) in Theorem 4.1, are very larger.) Therefore, there
is a unitary u € My (C(Y)) such that

UQzU*:pza 1217277-[/

Let ¢ = Aduoty. Then

() () = ot () (y)po & Z flaeBi(y))pill < e
i=1

forallyeY and f € F.

Note that the above decomposition has the same form as that of ¢, even with
the same projections p; and the part > ;_, f(aoB:i(y))p;. Also, in the part
iy f(aoBi(y))pi, there is a map defined by point evaluations:

n

¢ (f)=>_ fz:)pi,

i=1

with {z1, 22, -, 2, } n-dense in X, and rank(p;) > rank(pg) + 2dim(Y"). This
means that two different homomorphisms which are close at the level of AffT
can be decomposed in the same way. This result will be useful in the proof of
the Uniqueness Theorem for certain spaces X with K;(C(X)) a torsion group.
We summarize what we obtained as the following proposition which will be used
in the proof of the Uniqueness Theorem for certain spaces X with K;(C(X))
a torsion group.

PRrOPOSITION 4.42. Let X be a connected simplicial complex, ¢ > 0, and
F C C(X) be a finite set.

Suppose that n € (0,¢) satisfies that if dist(x,z") < 2n, then |f(z) — f(z')| < §
forall f e F.

For any § > 0, there is an integer L > 0 and a finite set H C AffT(C(X))(=
C(X)) such that the following holds.
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If g,9p: C(X) — Mp(C(Y)) are homomorphisms with properties
(a) ¢ has sdp(

(b) rank(¢(1))
(¢c) ¢(1) = (1) a

5.0)
32
2 L? - 25(dim X + dimY + 1)3;

|AfTS(h) — ATV < § o Vhem,

then there are two orthogonal projections Qo,Q1 € M(C(Y)), two
maps ¢, € Map(C(X),QoMr(C(Y))Qo)1, a homomorphism ¢ €
Hom(C(X), Q1 M (C(Y))Q1)1, and a unitary u € Mi(C(Y)) such that

(1) (1) =9¥(1) = Qo + Q1;

(2) 16(1) — do(f) ® 1(£)]| < &, and ||(Adu o ¥)(f) — bo(f) & S1(PIl < ¢ for
all f € F;

(3) 1 factors through C[0,1].

(4) Qo = po+p1+- - +pn with rank(pg) +2dim(Y) < rank(p;) (i=1,2---n),
and ¢g and Yy are defined by

Go(f) = pod(flpo + Y flai)pi, Vf € C(X),

i=1

do(f) = po(Aduo ) (f)po + > flai)ps, Vf € C(X),

i=1

where po, p1, - -+ pn are mutually orthogonal projections and {x1, 29, -z} C X
is an e-dense subset in X.

(Comparing with Theorem 4.35, the maps ¢¢ and ¢; in 4.35 have been put
together to form the map ¢ in the above proposition.)

(In [EGL], we will prove that the above ¢ and 1y are approximately unitarily
equivalent to each other to within some small number (under the condition
KK(¢) = KK (1)), then so also are ¢ and 1.)

4.43. The above proposition is not strong enough to prove the Uniqueness
Theorem for homomorphisms from C(S!) to My(C(Y)), since K;(C(S')) is
infinite. Before we conclude this section, we introduce a result which can be
used to deal with this case (i.e, the case S!).

We will discuss briefly what the problem is, and how to solve the problem.
Suppose that ¢ and v are two homomorphisms from C(S!) to another C*-
algebra, For ¢ and ¥ to be approximately unitarily equivalent to each other,
they should agree not only on AffT(C(S?')) and K,.(C(S%)), but also on the
determinant functions. That is, ¢(z)1(z)* should have only a small variation in
the determinant, where z € C(S?) is the standard generator. (All these things
will be made precise in [EGL].) This idea has appeared in [Ell2] and [NT].
Roughly speaking, if ¢ and 1 agree (approximately) to within ¢ at the level of
the determinant (this will also be made precise in [EGL]), then the maps po¢pg
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rank(¢(1)) _
rank(po) -
the level of the determinant. So for the decomposition to be useful for the

proof of the uniqueness theorem, rank(pg) should not be too small compared
with rank(¢(1)). (This will be the property (2) of Theorem 4.45 below.) On
the other hand, in the decompositions of ¢ and Adu o 1, we also need the
homomorphism defined by point evaluations, which by Proposition 4.42 is the
same for both of these decompositions, to be large in order to absorb the parts
pogpo and po(Adu o ¥)pg. This will be the property (3) of Theorem 4.45.
Therefore, rank(pg) should not be too large either.

To do that, besides the property sdp(25,d), we also need sdp property for an

and po(Adu o ¢)pg from Proposition 4.42 agree only to within

32>
extra pair (32 .0 ), where 7 depends on §. For those readers who are familiar with
[Ell2] and [NT], we encourage them to compare the sdp property for the two
pairs (g5,0) and (32 ,0), with the conditions of Theorem 4 of [El12], and Lemma
2.3 and Theorem 2.4 of [NT], in the following way. In Theorem 4 of [Ell2] (see
page 100 of [ElI2]), roughly speaking, the sentence on lines 16-20 corresponds
to our property sdp(s"—27 5), and the sentence on lines 21-22 corresponds to our
property sdp(g5,9). That is, % corresponds to our gL (or {& in some sense),
% corresponds to our §, = corresponds to our 5,

Similarly, in Lemma 2.3 of [NT], condition (1) corresponds to our sdp(zL

and § corresponds to our é.
32 5)
35 5). Also in Theorem 2.4 of [NT],
0) and condition (3) corresponds to

and condition (2) corresponds to our sdp(z%
condition (2) corresponds to our sdp(z%
our sdp(%,g).

Such a construction will be given in 4.44 below.

In 4.44, we will first describe the condition that ¢ should satisfy. Then we will
carry out the construction in three steps.

In Step 1, we will follow the procedure in 4.34, to decompose ¢ into po@po & ¢1,
corresponding to the property sdp( 32,5) (not sdp(z5,9)). (Here, the map ¢;
is ¢1 D ¢o in the notation of 4.34 or 4.35.)

In Step 2, we will take a part p’¢1p’ out of ¢1 and add it to pgdpg to obtain
PypPy, where Py = pg +p’. The rest of ¢ will be defined to be new¢;. In this
way, we can get the projection Py with suitable size (neither too small nor too
large). The size depends on ¢, which explains why 7 depends on 4.

In Step 3. we will prove that new¢; can be decomposed again in such a way
that the point evaluation part of its decomposition is sufficiently large that it
can be used to control Py¢pPy, in the proof of the uniqueness theorem in [EGL].
(See the property (3) of Theorem 4.45.) The property sdp(ss,d) is used in this
step.

327

327

4.44. Let F C C(X) be a finite set, ¢ > 0 and 1 > 0. Suppose that the
positive number n < £ satisfies the condition that, if dist(z,z") < 27, then

|£(2) = F@)l < 5.

For any 6 > 0, consider the pair (7, §) as in 4.33. Let N,n be as in 4.33. Instead
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of choosing L = n(N + 2), we choose
L > max{n(N +2), 3,2, ﬁ}

Consider ¢ = g~ < min(g,e1). Let positive number 7 < 7 satisfy that, if

dist(z,z’) < 27, then !
1f(2) = f@)]l <

W

Let 0 > 0 be any number. Then for the pair (7, 5), there exists an integer L
playing the role of L as in Lemma 4.33. We can assume L > L. Let

A =6L% 25 (dim X + M +1)3,

where M is a positive integer.

Now let Y be a simplicial complex with dimY < M, and ¢ : C(X) —
PM(C(Y))P be a unital homomorphism satisfying the following two con-
ditions:

(a) ¢ has both sdp(z5,0) and sdp(%, 5);

(b) rank(P) > A.

We will construct a decomposition for ¢.

STEP 1. By the discussion in 4.34 corresponding to sdp(%, 5), there is a set

@(y) = {Oéoﬁl (y)~L27aoﬂ2(y)~Lz’ . aoﬁi—l(y)NLz,Oloﬂi(y)NLerLl} ’

Lo = int (M) > int (ﬁ) ,
L L

such that SP¢, and ©(y) can be paired within 7.

As in 4.34, there are mutually orthogonal projections pg and P; = Zf:l p; and
a homomorphism ¢ : C(X) — PyM(C(Y))P, such that

(1) ll6(f) = pod(fpo © o1 (f)l <€ < g,

(2) rank(po) < L - 25 (dim X + M +1)® < int (GAL>

where ¢, is defined by

where

$1(F)(y) =Y flaeBi(y))pi

i=1

with rank(p;) > Lo — 25 (dim X + M +1)3.

STEP 2. We will take a part p’¢1p’ out from ¢; and add it into pg¢pg, such
rank(p)

that the projection Py = py + p’ has rank about T

, which is neither too
large nor too small. (Here we use L not L.)
There exists a projection p’ satisfying the following two conditions.

(C) pl = Zlep;;7 with p; <p“ 1= 1727...7L.
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(d) rank(p’) = int (&%(P)) (here we use L, not L), where L was chosen in

the beginning of this subsection.
We can make the above (d) hold for the following reason. First,

rank(ipi) > rank(P) — int (6/\L> > int (mnkL(P)> + Ldim(Y).

So one can choose non negative integers ki, ko,-- -, k; such that Zii:l k; =
int (%k(m) and that k; < rank(p;) — dim(Y"). Therefore, by [Hu|, we can

choose trivial projections p; < p; with rank(p;) = k;.
Define
Po=po®p and newP, = P, oyp.

Note that p’ is a sub-projection of P; = Zlepi. Define new¢y : C(X) —
newP; My, (C(Y))newP; by

(newer (£))(y) = Y FlaeBi(y))(pi © p}).
=1

newP; and new¢; are still denoted by P; and ¢1, respectively. Evidently, the
following are true.

(1) Mm—ﬂwﬂ%@ﬁuw<ﬁ.
(2) % < rank(FPy) <2 -int (ranlz(P)) .

(Notice that, to get the above decomposition, one only needs the condition
that SP¢, and ©(y) can be paired within 7 (see the way 7 is chosen in 4.4
for Theorem 4.1 and the way 7 is chosen above). On the other hand, SPg,
and O(y) can be paired within g in our case. So if 1) satisfies the condition
that SPvy, and SP¢, can be paired within g, then the above decomposition
also holds for 1, as discussed in 4.41. In particular, for a certain unitary u,
Adu o1 can have same form of decomposition as ¢ does— same projection Py
and even exactly the same part of the above ¢;. This will be used in 4.46 and
Proposition 4.47.)

STEP 3. Now, we can decompose ¢; again to obtain a large part of the homo-
morphism defined by point evaluations, which will be used to absorb the part
of Py Py, in the proof of the uniqueness theorem in [EGL].

For the compact metric space X, and n > 0 (now we use 1 not 1), there exists
a finite n-dense subset {x1, 22, -+, 2y} such that dist(z;,z;) > n, if ¢ # j.
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(Such set could be chosen to be a maximum set of finite many points which
have mutual distance at least 1. Then the n-density of the set follows from the
maximality.)

We will prove the following claim.

CraiM: There are mutually orthogonal projections ¢1,q2, -+, ¢m < P; with
rank(q;) > rank(Py) + dim(Y"), such that

for all f e F.

Proof of the claim:

First, we know that the set (SP¢;), is obtained by deleting rank(P,) points
(counting multiplicity) from the set ©(y). Also SP¢, and ©(y) can be paired

within J. Recall that,

@(y) = {Oéoﬁl (y)NLz’ 04062(y)'\‘L27 - aa°ﬁi—1(y)wL2,Oéoﬁ;j(y)NLT‘rLl}

m m m

G1(f) = (PL=>Y_a)e1(NNPr =D a) @Y flw)ai

i=1 i=1 i=1

<e€

is the set corresponding to ¢ and the pair (7,0) in 4.33. And recall that

Ly = int (ranTl}(P)) From (a), ¢ has the property sdp(z5,d). So ©(y) has the

property sdp(z5 + g, d). But (SP¢,), is obtained by deleting

k) (<20 (P42 D)

points from O(y). (Note that 1 < g.) Therefore, in the (g5 + g)—ball of any
point in X, (SP¢,), contains at least

5 36
0 - rank(P) — Zrank(P) = Zrank(P)
points (counting multiplicity). That is, ¢1 has the property sdp(g5 + g, 39,
Therefore ¢; has the property sdp(7, %), since 7 < 7.
Set U; = B%(xi), i =1,2,---.m. Then U;, i = 1,2,---,m are mutually
disjoint open sets, since dist(x;,x;) > 7, if i # j. By the property sdp(7, :1—5)
of ¢1, forany y € Y,

) 2
#(SP(¢1)y NU;) > 3Zrank(P) > Zrank(P) +3dimY > rank(Py) + 3dim(Y).

The claim follows from the following proposition:

PROPOSITION. Let X be a simplicial complex, and F C C(X) a finite subset.
Let e >0 and n > 0 be such that if dist(x,z') < 2n, then |f(x) — f(2")] < § for
any f € F.

Suppose that Uy,Us,--- Uy are disjoint open mneighborhoods of points
T, T2, -, Tm € X, respectively, such that U; C By(z;) for all 1 < ¢ < m.
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Suppose that ¢ : C(X) — PM4(C(Y))P is a unital homomorphism, where Y
is a simplicial complex, such that

#(SPp, NU;) > ki, for1<i<m and for ally €Y.

Then there are mutually orthogonal projections q1,qa, -+, qm € PM4(C(Y))P
with rank(q;) > k; — dim(Y') such that

m

6(f) = pod(f)po & Y f(wi)aill <e,  forall f €F,

i=1

where pg = P — > ¢;.

This is Proposition 1.5.7 of this paper (see 1.5.4—1.5.6 for the proof). Since the
expert reader may skip §1.5, we point out that the above result was essentially
proved in [EG2, Theorem 2.21].

So we obtain the projections g; with

rank(g;) > min(#(SP(¢1), N U;)) — dim(Y') > rank(pg) + 2 dim(Y").
y
Summarizing the above, we obtain the following theorem.

THEOREM 4.45. Let FF C C(X) be a finite set, ¢ > 0, €1 > 0, and let M be
a positive integer (in the application in [EGL], we will let M = 3). Let the
positive number n < 5 satisfy that, if dist(x,z") < 2, then

€
1 () = f@)Il < 3 for all f € F.
Let 6 > 0 be any positive number. There is an integer L > max{%, %, Eil} satis-
fying the following condition. The rest of the theorem describes this condition.
Suppose that 1) > 0 satisfies that, if dist(z,x’) < 27, then

15) = £ < 577 for all f € F

For any 6> 0, there is a positive integer A such that if a unital homomor-
phism ¢ : C(X) — PMi(C(Y))P (with dimY < M) satisfies the following
conditions

(a) ¢ has the properties sdp(z5,0) and sdp(
(b) rank(P) > A,

then there are projections Py, P, € PMy(C(Y))P (with Py + P, = P) and a
homomorphism ¢1 : C(X) — PLMi(C(Y))Py such that

(1) 6(f) = Pod(f)Po ® 1 (f)ll < 4f for all f € F;

(2) rank(Py) > %’“P);

(8) There are mutually orthogonal projections qi,qa, -, qm € PLM(C(Y))P;
and an n-dense finite subset {x1, 22, -+, xm} C X with the following properties.

,0);

a1
32
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(i) rank(q;) > rank(Py) + 2dim(Y), i =1,2,---,m;

(ii) ¢ (f) — (Pr = 3230 @) () (P Zzzl %)@ZZ’; f(xi)all < e for all
fer.

4.46.  Let 77 and & be as in 4.44 (or 4.45), and H(7},6,X) C C(X) the
subset defined in 4.27. Suppose that ¢ : C(X) — PM(C(Y))P satisfies
the conditions (a) and (b) in Theorem 4.45. And suppose that 9 : C(X) —
PM(C(Y))P is another homomorphism satisfying

AT G(h) — AITY ()] <

)

= | Sn

for all h € H (7,6, X). Similar to 4.41, there is a unitary u € PM(C(Y))P
such that

|Aduct)(f) — PoAdustp(f) Py @ ¢1] < VfeF

1
4L’
where Py and ¢; are exactly the same as those for ¢ in Theorem 4.45. (See the
end of step 2 of 4.44.)

So we have the following proposition.

PROPOSITION 4.47. Let F C C(X) be a finite set, € > 0, 1 > 0, and let M
be a positive integer (in the application in [EGL], we will let M = 3). Let the
positive number n < 5 satisfy that, if dist(x,z") < 2, then

1) = 1 < 5 Jor all f € F.

Let § > 0 be any positive number. There is an integer L > max{g, = é
satisfying the following condition. The rest of the proposition describes this
condition.

Suppose that 7 > 0 satisfies that, if dist(x,z’) < 21j, then

1

15) ~ FG) < 517 for all f € F.
For any & > 0, there is a positive integer A and a finite set H C AffT(C(X))(=
C(X)) such that if unital homomorphisms ¢, : C(X) — PMp(C(Y))P (with
dimY < M) satisfy the following conditions:

(a) ¢ has the properties sdp(5,0) and sdp(35, 5);

(b) rank(P) > A;

(c) | AFT$(h) — AFTw(R)| < §. Wh € H,

then there are projections Po,Pl € PMk(C(Y))P (with Py + P, = P), a ho-
momorphism ¢, : C(X) — PiMp(C(Y))Py factoring through C[0,1], and a
unitary w € PM(C(Y))P such that

(1) [6() — Pod(£) Py & 61 (/)| < 2 and

|(Adu o ¥)(f) — Po(Adu o ) (f)Py & o1 (f)|| < 4 for all f € F;
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(2) rank(Py) > %’CUD);

(8) There are mutually orthogonal projections qi,qa, -, qm € PLMp(C(Y))P;
and an n-dense finite subset {x1,2a,+,xm} C X with the following properties.
(1) rank(q;) > rank(Po) + 2 dim(Y');

(i) o1 (f) — (Pr = 3200 @) () (Pr = 200 @) @ 2200 f(aa)aill < e for all
fer.

In order to be consistent in notation with the application in [EGL], let us
rewrite the above proposition in the following form.

PROPOSITION 4.47°. For any finite set ' C C(X), € > 0, g1 > 0, there is a
number n > 0 with the property described below.

For any 6 > 0, there are an integer K > g and a a number n > 0 satisfying
the following condition.

For any § > 0, there is a positive integer L and a finite set H C AffT(C(X))(H
can be chosen to be H(7,0,X) in 4.27) such that if two unital homomorphisms
o, 1 C(X) — PM(C(Y))P (with dimY < 3) satisfy the following condi-
tions:

(a) ¢ has the properties sdp(z5,d) and sdp(%, 8);

(b) rank(P) > L;

(¢) |AfFTH(h) — AT (h)|| < §, Vh € H,

then there are projections Py, Py € PMy(C(Y))P (with Py + P, = P), a ho-
momorphism ¢, : C(X) — PiMp(C(Y))Py factoring through C[0,1], and a
unitary u € PMi(C(Y))P such that

(1) |6(f) = Pod(f)Po ® d1(f)|l < 75z and

[(Adu o) (f) — Po(Aduoy)(f)Po & ¢1(f)|| < g5 for all f € F;

(2) rank(Py) > %’m;

(8) There are mutually orthogonal projections qi,q2, -, qm € PLMp(C(Y))Py
and an S-dense finite subset {x1,22, -+, xym} C X with the following proper-
ties.

(1) rank(q;) > rank(Po) + 2 dim(Y');

(ii) |61 (f) — (Pr = 3200 @) () (Pr = 3200 @) @ 2000 f(a)aill < e for all
fer.

(Notice that in the above statement, we change the notation L and A to K and
L respectively. Also, in condition (3), we change 7-density to S--density.)

4.48. Proposition 4.47" will be used in the proof of the Uniqueness Theorem
in [EGL]. Namely, we will prove that, under certain conditions about KK(¢)
and KK(¢) and the determinants of ¢(z) and ¢ (z) (see (4) of Theorem 2.4 of
[NT] ), where z € C(S!) is the standard generator,

Pop(f)Po @ > f(xi)ai, feF

i=1
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is approximately unitarily equivalent to

PoAduc(f)Po@ Y f(x:)a, feF
i=1

Therefore, {¢(f), f € F} is approximately unitarily equivalent to {(f), f €
F}. In [EGL], we need both of the following conditions:

rank(P)
L

In comparison with Theorem 2.4 of [NT], in the Uniqueness Theorem in [EGL],
we also have a condition similar to (4) of Theorem 2.4 of [NT]. But this condi-

tion will be useful only when it is combined with the condition (2) above (see
[EGL] for details).

rank(FPp) > and [:] > [Po] in Ko(C(Y)).

5 ALMOST MULTIPLICATIVE MAPS

In this section, we study almost multiplicative maps
¢ € Map (M, (C(X)), My, (C(Y))),

where X =Ty7 5, Tr11,, OF 52, and Y is a simplicial complex of dimension at
most M with M a fixed number. In this section, all the simplicial complexes
are assumed to have dimension at most M.

5.1. Suppose that By, Ba,---, By, -+ are unital C*-algebras. Let B =
+2 B,,. Then the multiplier algebra M (B) of B is [['>% B,,. The Six Term
Exact Sequence associated to

0— B — M(B) — M(B)/B — 0
breaks into two exact sequences
0 — Ko(B) — Ko(M(B)) — Ko(M(B)/B) — 0 and
0 — K1(B) — K1(M(B)) — K1(M(B))/B — 0.

since each projection (or unitary) in M,, (M (B)/B) can be lifted to a projection
(or a unitary) in M, (M (B)).
Furthermore,

+oo +oo
Ko(B) = D Ko(Bn) and Ky(B) = P K:1(B).
n=1 n=1
But in general, it is NOT true that

+o0 too
Ko(M(B)) = [[ Ko(Bn)  or  Ki(M(B)) =[] K1(Bun)
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In fact, Ko(M(B)) is a subgroup of [[/™ Ko(B,). But K;(M(B)) is more
complicated. In the first part of this section, we will calculate the K-theory of
M(B) (and of M (B)/B) for the case

B, = Mkn (C(Xn))v

where X, are simplicial complexes of dimension at most M. For convenience,
we always suppose that the spaces X,, are connected.

5.2. Consider S' = {z; |z2| =1} C C. Let
Fo (SN {=1}) x [0,1] — S"\{~1}
be defined by
F(e? t) = e'? —T <0<
Then |t — t'| < ¢ implies
|F(x,t) — F(x,t")] < 7e.

This fact implies the following. If u and v are unitaries such that ||u —v| < 1,
then there is a path of unitaries u; with ug = u, u; = v such that |t —t'| < e
implies |Jur — up || < we.

Let SU(n)(C U(n)) denote the collection of n x n unitaries with determinant
1. Let SU,(X) denote the collection of continuous functions from X to SU(n).
Note SUp(X) € Up(X) C Mn(C(X)).

From the proof of Theorem 3.3 (and Lemma 3.1) of [Phi2] (in particular ()
in Step 4 of 3.3 of [Phi2]), one can prove the following useful fact.

LEMMA 5.3. ([PHI2]) For each positive integer M, there is an M’ > 0 sat-
isfying the following condition. For any connected finite CW-complex X of
dimension at most M, and u,v € SU,(X), if u and v can be connected to each
other in U, (X), then there is a path u; € SU,(X) such that

1. ug =u,uy =v and

2. [t —t'| < e implies |Juy — up || < M'-e.

(Note that M’ does not depend on n, the size of the unitaries.)

5.4. Let B, = M, (C(X,)), dim(X,) < M. Let B = @, B,. Then we
can describe Ko(M(B)) as below. Let (Ko(By,), Ko(Bn)t,1p,) be the scaled

ordered K-group of B, (see 1.2 of [EG2]). Let II K(B,,) be the subgroup of
:2 Ky(B,,) consisting of elements

“+oo
($1,$2, oy Tyt ) S H K()(Bn)
n=1

with the property that there is a positive integer L such that
—L[an] <xp < L[an} S Ko(Bn)
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for all n.
e 5.5, Ko (I115 Ba) = T Ko(Ba).

Proof: Any element in K (H:z Bn) is of the form [p] — [¢], where p,q €
M, (H:ﬁ Bn) are projections. Let

+oo
b= (p17p27"'7pn7"')7 q= (Q17QZa"'an"') S ML (HBrL> .

Then [p] — [¢] € Ko (H:er Bn> corresponds to the element

([pl] - [ql]v [pQ] - [qQ]v ) [pn} - [Qn}, o ) € HbKO(Bn)

We will prove that this correspondence is bijective.
Surjectivity: Let

(1] = [a1]s [p2) = [az], -+ s [pa] = [an], -+ +) € T Ko(Bn).
Then there is an L > M such that

—L[1g,] <[pn] - lgn] < L[18,], Vn.

Therefore,
—L -k, <rank(p,) —rank(q,) < L - ky, Vn.

It is well known that (see [Hu]) any vector bundle of dimension M + T over
an M dimensional space has a T" dimensional trivial sub-bundle. Thus one can
replace p,, by pl,, qn by ¢, with properties

[pn] <2L0p,], lg,] <2L{p,] and

[p/n] - [Q'In] = [pn] — [gn] in Ko(Bn).
([P1] = [q1], [P5) — [d5], - - ) is in the image of the correspondence, since every
element [p),] < 2L[1p, ] can be realized by a projection in My, (B,,) (recall that
L > M).
Ingectivity. Let p = (p1,p2, ,Pn, ) and ¢ = (q1,92, **,qn, ) be
projections in ML( :er Bn). Suppose that for each n, [p,] = [gn] €

Ko(B,,). We have to prove that [(p1,p2, *,Pn, )] = [(q1,92, ", qn, )] €
Ko ( it Bn)
Without loss of generality, assume that L > M. Let 1,, € M, (B,,) be the unit.
By [Hu], for each n, the projection p, @ 1,, is unitary equivalent to g, @ 1,.
That is, there is a unitary u, € Ms,(By,) such that g, ® 1, = up(pn & 1,)u.
Hence the unitary u = (uj,ug, -, Up, ) € MQL(HZE B,,) satisfies ¢ 1 =
u(p ® 1)u*. It follows that [g] = [p].

1]
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5.6. Let X be a finite CW complex. Then K;(C(X)) = K'(X) is defined to
be the collection of homotopy equivalence classes of continuous maps from X
to U(o0), denoted by [X,U(c0)], (or from X to U(n), denoted by [X,U(n)],
for n large enough). Consider the fibration

SU(n) — U(n) -2 1,

where S' C C is the unit circle, b is defined by sending a unitary to its de-
terminant, and SU(n) is the special unitary group consisting the unitaries of

determinant 1. The fibration has a splitting S! ¥ U(n), defined by

z

a1 1
St . € U(n).

1

One can identify U(n) with SU(n) x S by U(n) > u — ((b7! ob(u))*u,b(u)) €
SU(n) x St.

Therefore, [X,U(n)] = [X,SU(n)] & [X,S!] as a group. We use notation
SK;(C(X)) or SK'(X) to denote [X,SU(n)], n large enough, and 7!(X) to
denote [X, S']. Then

K, (C(X)) = SK1(C(X)) ® 7! (X).
(The splitting is not a natural splitting.)

5.7. Let {X,} be a sequence of connected finite CW complexes of dimension
at most M. Let B,, = My, (C(X,)). Define a map

“+oo “+o0
T K3 (H Bn> —>HKan by
n=1 n=1

T[(U1,UQ,"',Un,"')] = ([Ul],[u2];"'7[Un]a"')a

where (u1,ug, -+, Uy, ) is a unitary in M, (H:fl Bn). If L > M, then any

element in Ky (B,,) can be realized by a unitary in M, (B,,). Based on this fact,
we know that 7 is surjective. We will prove that

+oo +o00o
0— Kert — K <H Bn> — HKan — 0

n=1 n=1

is a splitting exact sequence. A splitting
+oo +oo
7 [ KiBn — Ky (H Bn>
n=1 n=1
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will be defined such that 707 = id on [[/> K B,,. By 5.6,
KB, = SK|B, ® ' (X,).

Hence we define 7 on [[> SK;B,, and [['> 7'(X,,) separately.
Ifxe H:ﬁ SK; B, is represented by a sequence of unitaries

uy € ML(Bl)a U2 € ML(BQ)7 T, Up € ML(Bn)a Ty

each with determinant 1, then define

+oo
T(x) = [(ur, ug, -+ Up, )] € K1 (H Bn> )
n=1

To see that 7 is well defined, let vy,va, -+, vy, - be another sequence with
determinant 1 and

[un] = [Un] in Ki(By).

Without loss of generality, we assume that L > M. By Lemma 5.3, for each
n, there is a unitary path wu, such that u,(0) = uy, u,(1) = vy, and |Jun,(t) —
un ()] < M-t —t'|, Vt € [0,1], where M’ is a constant which does not depend
on n. Obviously,

+oo
(ur(t), ua(t), - ualt), ) € M Ba)) © C([0,1)).

n=1

Hence
(w1, w2, Up, )] = [(vi, 02, -+, U,y -]

That is, the above map is well defined.

(Warning: It is not enough to prove that each u,, can be connected to vy, since
a sequence of paths, each connecting u, and v, (n =1,2,--+), only defines an
element in M, ([]1>(B, ® C[0,1])), but

+o0 Foo
(H Bn> 0,1 ¢ [[B.@c,1]). )
n=1 n=1

The following claim is a well known folklore result in topology. Since we can
not find a precise reference, we present a proof here.

Claim: For any connected simplicial complex X, the cohomotopy group 7! (X)
is a finitely generated free abelian group.

Proof of the claim. Let X be the 1-skeleton of X. Then X is homotopy
equivalent to a finite wedge of S*. Evidently, 7' (X)) is a finitely generated
free abelian group. (In comparison with the above cohomotopy group, we point
out that the fundamental group 71 (X ™)) of a finite wedge X of S is a free
group (not a free abelian group).)
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On the other hand, we can prove that
i mH(X) - (X W),

induced by the inclusion i : X(1) — X is an injective map as below. Once this
is done, the claim follows from the result in group theory that any subgroup of
a free abelian group is still a free abelian group.

Let us prove the injectivity of i*. Suppose that f, g: X — S! are two maps
satisfying that

(1) = *(lg)),

where [f], [g] € 7!(X) are elements represented by f and g, respectively. Then
flxa is homotopic to g|ya). Let F: XM x [0,1] — S* be a homotopy path
connecting f|,a and g|,q). That is

Flxw 0 = flxo and  Flya), oy = glxo-

We are going to extend the homotopy F' to a homotopy on the entire space
X X [0,1]. The construction is done by induction. Suppose that F' has been
extended to a homotopy (let us still denote it by F) F : X x [0,1] —
St between f|ym and g|x) on the n-skeleton (where n > 1) of X. Le.,
Flxmxqoy = flxm and F|xm w g1} = glxe. We need to prove that it can be
extended to a homotopy on the (n+ 1)-skeleton. Let A be any (n+ 1)-simplex.
Then 0A € X™. Let G : A x [0,1]JUA x {0} UA x {1} — S* be defined by

F(x) if x€dAx]0,1]
Gx)=< f(z) if xeAx{0}
g(z) if xeAx{1}.
Then G(z) is a continuous map from 9(A x [0,1]) to St. Since m,11(S?) =0
and O(A x [0,1]) = S™*L, G can be extended to a map G : A x [0,1] — S*.
Define F' on each simplex A to be this G. Then F is the desired extension.
This ends the proof of the claim.

Let us go back to the construction of 7 on [[1 7(X,,). Let 2§ € X3, 23 €
Xy, ---,29 € X,,, ---, be chosen as the base points of the spaces. Let

On1,0n2, , Onye, 0 Xy — St
be the functions representing the generators
[On1]s [On2]s o) [One,] € 7Tl(Xn)~
Suppose that
0n;(20)=1€ 8" CC, =12t
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For any element (21,29, -, 2y, ) € [ 71(X,,), define 7(z) as below. Let
Uy, € B, be defined by

0n,1(y)ml : 9n,2(y)m2 e an,tn (y)mt"

1
Un(y) = 5 € M, (C)
1 knXkpn
for each y € X,,, where mj,mo,---,m;, are integers with
(*) Ty = ml[en,l] + mg[en,g} + e+ my, [9n,tn] S 7T1(Xn).
Define

+oo
f‘(q;) = [(ul’U2’...7un7...)] € K; (H Bn> .

Since each 71(X,,) is a free abelian group, the expression (x) for x,, is unique. It
is easy to check that 7 on H:ﬁ 71(X,,) is a well defined group homomorphism.
It is straight forward to check that

“+oo “+o0
ToT=1id: H T (X,) — H 7 (X,)
n=1

n=1
And that
+o0 T
Tof=id: H SKi(By) — H SKi(Bn).
n=1 n=1
That is,

+oo —+oo
ToF=id: H K\ (B,) — H Ki(By,).
n=1 n=1

The splitting 7 : [[1>5 K1(B,,) — K, (H:ﬁ Bn) of the exact sequence

+oo “+oo
0 — Ker(t) — K (H Bn> = H KB, — 0

n=1 n=1

gives an isomorphism

+oo +oo
K, (H Bn> = [[ K1Bn ® Ker(r).
n=1

n=1

5.8. In order to identify Ker(7), suppose that

+oo
u=[(u1,us, -, Upn, )] € K3 (H Bn>
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satisfies that
+oo

T(u) =0¢€ [] K1B,.

n=1

Note that any unitary matrix v € Me(C) can be connected to 1 € M,(C), by
a path v(¢) satisfying that, if |t — ¢/| < &, then

lv(t) — vt < 2me.

Based on this fact, we have

+oo
[(u, uz, )] = [(u] (a7)ur, w5 (2)uz, )] € K (H Bn) '

Therefore, without loss of generality, we assume that
un(ay) =1 € My (By),

where 29 € X,, are the base points.
Since 7(u) = 0, if we assume L > M, then each w, can be connected to
1 € M, (B,). This implies that the map

determinant(u,,) : X, — S*
is homotopy trivial. Therefore, this map can be lifted to a unique map
det(u,): X, — R
such that det(u,)(z%) =0 € R and
exp(2midet(u,)) = determinant(u.,).
Let [T X,, be the disjoint union of X,, and Map (][ X,,,R), the set of all con-
tinuous maps [ : [[ X, — IR with f(z) = 0 for all 2. Let Map, ([[ X,,,R),
be the set of those maps with bounded images.

Map( +jX”’R>o
= b
Map, (] x.R)_

Define a map d : Ker(r) —

i = (8] dtl) | det)

We will prove that d is a well defined isomorphism.
Suppose that u can be represented by another unitary

+oo
(’01,’02,"',’07“"') S ML (H Bn)
n=1
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with v(20) =1 € M, (B,,). Then for the unit of a certain matrix algebra over

+oo B
—+oo
1., €M, (H Bn> :

n=1"—""
n=1

we have that, the element
+oo
(1 &Liua @1, u, ®1,00) € Mgy, (H Bn>
n=1
can be connected to the element
+oo
(1@ 1Lva @1, 0, @L,--) € Myyy, (H Bn)
n=1

by a unitary path

+00
(ur (), ua(t), - un(t), ) € (MHLl (H Bn>> ® C[0,1].
n=1

We need to prove that

(det(ul) —det(vy) det(up) —det(vy)  det(un) —det(vy) )
k1 ’ ko T kny, ’

has a uniformly bounded image in IR. This follows from the following fact. If
two unitaries wy, we € M, 4., )k, (C) satisfying [w; —wo| < e < 1, then

|determinant (wjws) — 1| < w(L 4 L1 )kpe.

Now, we have to prove that d is an isomorphism.
Obviously, d is surjective. In fact, for any function

+oo
(flvaa"'vfn»"') 6:[\/J:ap (HR> )
0

n=1

let u e K ( :z Bn> be the element represented by

+oo +oo
(exp(2mif1), exp(2mifa),- - -, exp(2mify), - -) € H B, = H M, (C(X,)).
n=1 n=1

Then d(u) = [(f1, f2, =+, fas )]

Finally, we have to prove that d is injective. Suppose that u € Ker(r) is

represented by
+oo
(u17u27"'7un7"') S ML <H Bn)

n=1

DOCUMENTA MATHEMATICA 7 (2002) 255-461



SIMPLE INDUCTIVE LIMIT C*-ALGEBRAS, I 421

satisfying

(det(ul) det(uz) det(m)f_,) € Map, (HX”’]R) .
0

ki 7 ke 77 kg

Let f, = %) X, — R and

2mi fr,

Up = exTp € My, (C(X,)).

Then viu, € SUrg,(X,), ie., it has determinant 1 every where. Since
(f1, f2, -+, fn, ) is of uniformly bounded image, we know that

(u17u27"'7u’na"') and (vi‘ul,v;u%w-v;ium'”)

can be connected by a continuous path in

(ML (ﬁo Bn>> ® C[0,1].

Therefore, u = [(viu1,viua, - viuy,,--+)]. The latter is zero by Lemma 5.3
and the fact that v € Ker(7).
Summarizing the above, we obtain

Map( e Xn,]R)o
Map, (11,7 X IR) |

LEMMA 5.9. K; ( :3 Bn) = Zi‘i K1B, @

Map (H:iol X, IR)O

Map, ( :;z X, R)o.

+oo +oo
=[[sKiB.o [['(Xn) &
n=1 n=1

COROLLARY 5.10.

+o0 +oo +oo +oo
K, (H Bn/EBBn> = (H Kan/@Kan> =
n=1 n=1 n=1 n=1

Map (]_[::; Xn, ]R)O
Ma'pb ( :2 XH;R>0

5.11.  From [Sch], for any C*-algebra A in the bootstrap class and any C*-
algebra B (not necessarily separable), there is a splitting short exact sequence

0 — K.(A) @ K.(B) — K.(A® B) — Tor(K.(A), K.(B)) — 0.

Let A = Co(Wy), where Wy, = Tir as in the introduction. Wy is used for
Tr1 1 only when involving mod k K-theory K. (B,Z/k). From the definition

K.(B,7/k) == K.(A® B),
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one has
0— Ko(B)®Z/k — Ko(B,7L/k) — Tor(ZL/k, K, (B)) — 0
and
0— Ky1(B)®7Z/k — K1(B,7L/k) — Tor(ZZ/k, Ko(B)) — 0.
Since G ® ZZ/k can be identified with the cokernel of
leliye)
and Tor(7Z/k,G) can be identified with the kernel of
a2t a,
one has the following well known exact sequences

Ko(B) 2% Ko(B) — Ko(B,7Z/k) — K\(B) ~5 K\(B)

and
K1(B) 25 K1(B) — K1(B,7Z/k) — Ko(B) =5 Ko(B).
5.12.  Let {X,}}2, B, = M, (C(X,)) be as above, and B = @, B,,,

M(B) =12 B, Q(B) = M(B)/B.
From Lemma 5.5 and Corollary 5.10, we have

Ko(Q(B)) = I Ko(B,)/ ® Ko(B,) and

“+o0
°°K<B>} Map (115 X0, R)
K (B,) Map, (L1,%5 X, ).

K1(Q(B)) = {

It is easy to see that the map

Map( oo Xn,]R) Map( o Xn,]R)
0 0

—

Mapb( o0 Xn,IR)O Mapb( +o00 Xn,IR)

n=1 n=1

0

is an isomorphism.

Any torsion element z,, € Ky(B,,) can be realized as a formal difference of two
projections p,q € My, (By,) of the same rank. (The rank of a projection makes
sense since X, are connected. Also for any element x € Ky(B,,) represented
by [p] — [g], we define rank(z) = rank(p) — rank(q), which is always a (possibly
negative) integer.) By [Hul, if a projection p € M,(C(X,)) has rank larger
than dim(X,,) + r, then p has a trivial sub projection of rank r. Therefore,
any torsion element x,, € Ky(B,,) can be realized as a formal difference of two
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projections p,q € M (By,) if L > dim(X,,). Based on this fact, one can directly
compute that

+oo “+o0
Kernel (HbKO(Bn) xk, HbKO(Bn)) = Kernel (H Ko(B) “5 T KO(BH)) .
n=1 n=1

Fixed a positive integer k. let © = (1,20, ,%n, ) € [[12% Ko(B,). For
each element z, € Ky(B,), one can write rank(z,) = k- M - 1, + r,, where
I, is a (possibly negative) integer, M is the maximum of {dim(X,)},, and
0<k-M<r, <2k-M. Let p, be the trivial rank one projection in B,,. Then
x, can be written as k- M - I,,[pn] + [¢n], Where ¢, is a projection of rank r,,.
Therefore, = can can be written as 2 = 2/ + 2", where 2’ € k([ Ko(B,))
and " € I, Ko(By). As a consequence, one can compute that

Cokernel (HbKO(Bn) xk, HbKO(Bn)>

o0 400
= Cokernel (H Ko(By) RalA H KO(Bn)> .
n=1 n=1

Combined with 5.11, yields

+oo +oo
Ko(Q(B), 72/k) = [ Ko(Bus Z/k) | €@ Ko(Ba, Z/K),
n=1 n=1

and

“+oo +oo
K(Q(B), 2/k) = [ K1(Ba, /%) | €D K (Ba, 22/ ).

n=1

5.13. Following [DG], denote
+oo
K(A)=K.(A) & @ K.(AZ/n).
n=2
For any finite CW complex X and two KK-elements «, 3 € KK(C(X), A),
from [DL] (also see [DG]), we know that a = (3 if and only if
a, =Py K(C(X)) — K(A).

We will discuss the special cases of X = {pt},[0,1], Trr ., Trr1x and S?, where
Trrk, Trrrk are defined in the Introduction. (See §4 of [EG2] for details.) (The
case X = {pt} or [0, 1] is similar to the case X = 5?2, so we will not discuss the
spaces {pt} and [0, 1] separately.)

From [DL], there is an isomorphism

KK(C(X),B) — Homy (K(C(X)), K(B)),
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where Homy (K (C(X)), K(B)) is the set of systems of group homomorphisms

which is compatible with all the Bockstein Operations (see [DL] for details).
For any fixed finite CW complex X, an element o € KK(C(X), B) is deter-
mined by the system of maps

o K (C(X),7ZZ/n) — K.(B,7ZZ/n), n=10,2,3,---

n

which are induced by «. In fact o would be determined by a few maps from
the above list—all the other maps in the system {a} 129 : K(C(X)) — K(B)
would be completely determined by these few maps via the Bockstein Opera-
tions. We will choose those few maps for the cases X = {pt}, [0,1], S, Ty,
or Tryg k-
1. X = S%. Then

K(C(8%) — K(B)

is completely determined by
Ko(C(S8%)) — Ko(B)
via the Bockstein Operation
Ko(C(8%) — Ko(C(S?),Z/k)
Kol(B) — Ko(B%ﬂ/k)

since the top horizontal map is surjective. (Note that K;(C(S?)) and
K1(C(S?),7L/k) are trivial groups.) Therefore,

KK(C(S2), B) = Hom(Ko(C(5?)), Ko(B)).

(This is also a well known consequence of the Universal Coefficient Theorem.)
(The case X = {pt} or [0,1] is similar to the above case.)

2. X = T]],k. Let TC(TI]JC) =~ C and let Oo(Tij) be the ideal of C(T]],k)
consisting of the continuous functions vanishing at the base point. (See 1.6 of
[EG2] and 1.1.7 for the notations.) Consider the splitting exact sequence

0 — Ko(Co(Tr1,k)) — Ko(C(Tr1k)) — Ko(rC(Trrx)) — 0.
Each KK-element o € KK (C(T11,%), B) induces two group homomorphisms
ad: Ko(rC(Trry)) (= 7Z) — Ko(B) and

aj : Ki((C(Trrx), Z)k) (= %Z)k) — K1(B,7Z/k).
This induces a map

KK (C(Ti1,x),B) —Hom(Ko(rC(T11,x)),Ko(B)) @ Hom (K1 (C(Tr1,k), %/ k), K1 (B, Z/k))
= Hom(z,ko(B)) @ Hom(z/k, K1 (B,%/k)).
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It can be verified that any two homomorphisms

: K()(’I“C(T][)k,)) (: Z) — Ko(B) and

oo

«

oy« Ky(C(Trrr), 7ZZ)k) (= %)k) — K,(B,7Z/k)

induces a unique system of homomorphisms in Homp (K(C(T1k)), K(B)).
Therefore, the above map is an isomorphism.
Another way to see it, is as follows. Note that

K1(C(Ty1 ), Z/k) = Ko(Co(Tr1.1)) C Ko(C(Tr1 1))
Considering
K1(B) 2% K1 (B) — K1(B,7/k) — Ko(B) 25 Ko(B),
we obtain
Hom(K1(C(Ty1 1), Z/k), K1(B, ZZ/k))
=~ Hom(Ko(Co(Ti1.1)), Ko(B)) ® Ext(Ko(Co(Tirx)), K1(B)).

Then from the Universal Coefficient Theorem,

KK(C(Tr1.4), B)

=~ Hom(Ko(C(T11.1)), Ko(B)) & Ext(Ko(C(Ti1.)), K1(B))

Hom(Ko(rC(Tr1,1)), Ko(B)) & Hom(Ko(Co(T1rk)), Ko(B))
®Bxt(Ko(Co(Tr1x)), K1(B)).

IR

(Note that K1(C(Trr,x)) = 0.) Hence one can see again, the map mentioned
above is an isomorphism.

3. X = Tk Also, let rC(Trrry) = € and let Co(Trrr k) be the ideal
consisting of functions vanishing at the base point. Notice that

Ko(C(Trrrk) =72 and Ko(Co(Trr1k), ZZ/k) = ZZ/E.
By the splitting exact sequence
0—=KoCo(Tr11,),22/k) — KoC(Tr11k),2Z/k) — Ko(rC(T111k),2L/k) — 0O
we know that each o € KK(C(Trr1,%), B) induces an element
oy : Ko(Co(Tirnw), Z/k) — Ko(B,ZL/k).

It can be proved that
KK(C(Tr1x),B)

= Hom(Ko(C(T111.x)), Ko(B)) @ Hom(Ko(Co(Tr11 1), Z/k), Ko(B, Z/k))

= Hom(Z, Ko(B)) @ Hom(Z/k, Ko(B, Z/k)),
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as what we did for Ty .

(Notice that the map K1(C(Trrrx)) — Ki1(B) is completely determined by the
map Ko(Co(T[]]’k), Z/k) — Ko(B7Z/k‘))

Summarizing the above, we have the following.

For any two elements o, 8 € KK (C(X), B), a = ( if and only if

(1) o) =8y : Ko(C(X)) — Ko(B), when X = 52

(2) o) = B0 : Ko(rC(X)) — Ko(B) and of = 8} Ki(C(X),Z/k) —
K1(B,7L/k), when X = Trr1;

(3) o) = B3 : Ko(C(X)) — Ko(B) and of) = 3 : Ko(Co(X),Z/k) —
Ko(B,E/]{)), when X = TIII,k:~

Therefore, we have the following lemma.

LEMMA 5.14. Let A = PM[(C(X))P, and X one Of {pt}, [O, 1],T117k,T1117k,
or S?. Let a,3 € KK(A, B), where B is a C*-algebra. Then a = (3 if and
only if the following hold:

1. When X = {pt}, [0,1] or S?,

Ay = 6* N Ko(A) — K()(B),
2. When X = T[[’k,
ay = B 1 Ko(A) — Ko(B) and

o, =B, 1 Ki(A7Z)k) — K\(B,7Z/k);
3. WhenX:TH],k,

ay = By Ko(A) — Ko(B) and
an =B 0 Ko(A,ZZJk) — Ko(B,Z/k).
Combined with Theorem 6.1 of [DG], yields the following lemma.
LEMMA 5.15. Let A = PM(C(X))P, and X, one of {pt},[0,1], Tk, Tr11,k
or S?, and let B be any C*-algebra. Let ¢, € Hom(A, B). Suppose that the
following statements hold.

1. When X = {pt},[0,1] or S2,

(0]« = [¥]« : Ko(A) — Ko(B);

[Bl« = [¥]« : Ko(A) — Ko(B) and
[qb]* = ["/’]* : KI(A,Z/k) — Kl(B, Z//{),

(@]« = [V« : Ko(A) — Ko(B) and
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[QS]* = [1/1]* : KO(sz/k) - KO(Ba Z/k)

1t follows that, for any finite set F' C A and any number € > 0, there exist
n € IN, n € Hom(A, M,(B)) with finite dimensional image and a unitary
u € My41(B) such that

[u(¢(a) @ p(a))u® —(a) & pla)l| < e

foralla € F.

5.16. Fix A = PM;(C(X))P, X = {pt},[0,1], Trr, Trrrx or S?. Then A is
stably isomorphic to C(X). By 5.14, an element o € KK (A, B) is completely
determined by

ad: Ko(A) = Ko(B),

o Ko(A,7Z)k) — Ko(B,7Z/k), and
ap : K\(A,7Z)k) — K,(B,7Z/k).
Note that, for any C*-algebra A,

Ko(A® C(Wy, x SY)) =2 Ko(A) @ K1(A) ® Ko(A, 7ZZ/k) & K1(A,7Z/k).
Each projection p € Mo, (A ® C(W), x S')) defines an element
[p] € Ko(A) ® K1(A) ® Ko(A,7Z/k) ® K1(A,7ZZ/k) C K(A).

This defines a map from the set of projections in |J;—y Moo (A @ C(Wj, x S1))
to K(A).

For any finite set P C (Jp—y Moo(A ® C(Wy, x S1)) of projections, denoted
by PK(A) the finite subset of K(A) consisting of elements coming from the
projections p € P, that is

PE(A) = {[p] € K(A)| p € P}.

In particular, if A = PM;(C(X))P,X = Trr, or Trrr,k, then we can choose
a finite set of projections P4 C Me(A @ C(W), x S')) such that the set {[p] €
Ko(A)® K1(A) & Ko(A,ZZ/k) ® K1(A,7ZL/k) | p € Pa} = PaK(A) generates
Kold) & Ky(A) & Ko(A,ZK) & K\(A,Z/k) C K(A). For X = {pt}, [0,1]
or S%, choose P4 C M,(A) such that {[p] € Ko(A) | p € Pa} generates
Ko(A) C K(A). We will use P to denote Py if there is no danger of confusion.

5.17. Let A = PM;(C(X))P,X = {pt},[o,l],T]],k,T]]],k or 52, and P C
MJ(A® C(Wy x SY)) or P C My(A) be as in 5.16. There are a finite subset
G(P) € A and a number §(P) > 0 such that if B is any C*-algebra and
¢ € Map(A, B) is G(P) — 6(P) multiplicative, then

(6 @ @) - (6 2@ < 2. VpeP.
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where id is the identity map on M, (C(Wj x S1)) or on M4(C). Hence for any
p € P, there is a projection ¢ € My(B ® C(W), x S1)) (or ¢ € Me(B) ) such
that

(6 ®id)(p) — gl < ;

So ¢ defines an element in K(B). (If ¢’ is another projection satisfying the
same condition, then ||¢ — ¢'|| < 1, hence ¢’ is unitarily equivalent to q.)
Therefore, if ¢ is G(P) — §(P) multiplicative, then it induces a map

6. : PE(A) — K(B).

Note that such G(P) and §(P) could be defined for any finite set P C Moo (A)U
My (A® C(SY)) UlUrey Moo (A ® C(W), x S1)) of projections.

THEOREM 5.18.  Let X be one of the spaces {pt},[0,1), Trs k, Trrr or S2.
Let A = PM;(C(X))P and P be as in 5.16. For any finite set F' C A, any
positive number € > 0, and any positive integer M , there are a finite set G C A
(G D G(P) large enough ), a positive number § > 0 (6 < §(P) small enough),
and a positive integer L (large enough) such that the following statement is
true.

If ¢,9p € Map(A, B) are G-6 multiplicative and

where B = QM,(C(Y))Q with dim(Y') < M, then there is a homomorphism
v € Hom(A, ML(B)), with finite dimensional image, and there is a unitary
u € Mp4+1(B) such that

[u(gp @ v)(a)u” — (b @ rv)(a)l <e, VfeF

Proof: We first prove the theorem for the case B = M4(C(Y)). Then we apply
Lemma 1.3.6 to reduce the general case to this special case.

We prove the theorem by contradiction.

Let G(P) CGy C G C --- C Gy, C -+ be a sequence of finite subsets with

UG, = unit ball of A.

Let 6(P) > 61 > 63 > --- > &, > --- be a sequence of positive numbers with
6p — 0. Let Ly < Ly < --- < L, < --- be a sequence of positive integers with
L, — 4o0.

Suppose that the theorem does not hold for (G,,d,, L,). That is, there exist
a C*-algebra B, = My, (C(Y,,)) and two G,-d,, multiplicative maps

(bnaz/]n: A_’Bn
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with (¢n)s = (n)s : PE(A) — K(B,) and

inf sup [[u(¢n ® v)(a)u” — (P ©V)(@)] = &, ()

v,u a€EF

where v runs over all subsets of Hom(A, My, (B,)) consisting of those homo-
morphisms with ﬁnite dimensional images, and u runs over U(M,, +1(By)).
The above {¢, },125, {tn },125 induce two homomorphisms

+oo +oo
b A— HBn/EBanQ(B)
n=1 n=1

We will prove that KK (¢) = KK (1). R
1. X = {pt},[0,1] or S?. By Lemma 5.14, K K(¢) is completely determined by

([0]:)0 : Ko(A) — Ko(Q(B)).
From 5.12,

Ko(Q(B)) = I, Ko(B /@ Ko(B

That is, the above ([¢],) is completely determined by the component ([¢,]+)3.
From the condition that

[@n]s = [thn]s : PE(A) — K(Bn)

and the condition that the group generated by PK (A) is K¢(A), we know that
KK(¢) = KK(¢). ~
2. X =Ti1 . By Lemma 5.14, KK (¢) is completely determined by

([61.)3 : Ko(A) — Ko(Q(B)) and

([0 )i+ K1 (A, Z/k) — K1(Q(B), Z[k).
Furthermore, by 5.12,

n=1

Again, ([¢].)3 and ([¢].)% are completely determined by the components cor-
responding to [¢y].. And from [¢n], = [thn]« on PK(A), we obtain KK (¢) =
KK(¢). (Note that, we also use the fact that PK(A) generates a subgroup of
K(A) containing KO(A) and K7(A,7Z/k).) (The subgroup of K(A) generated
by PK(A) also contains K;(A), though we do not use this fact.)

3. X = Tyrr. Tt can be proved that KK (¢) = KK(i)) as above. Note that
Ko(Bu, 7ZZ/k) = T1:2 Ko(Bn, /%) @, Ko(Bn, Z/k), by 5.12.
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By Lemma 5.15, there are a positive integer L and a homomorphism 7 :
A — Mp(I12 Ba/ @, By) with finite dimensional image, and a unitary

i€ My (T1S B/ @1 B,), such that
g

la(¢ & P)(a)i" — (¥ & 7)(a)|| < 5

for all @ € F. Since v has finite dimensional image, one can find a sequence of
homomorphisms
Up: A— Mp(B,)

of finite dimensional images such that {v,,};>] induces 7. One can also lift 7
to a sequence of unitaries u, € My 1(B,). Then if n is large enough, we have

[tn(dn @ vn)(a)uy, — (Yn & vn)(a)|| <e

for all @ € F. This contradicts with (x) if one choose n to satisfy L, > L.
Now we apply Lemma 1.3.6 to prove the general case. Let G, § and L; (in
place of L) be as above for the case of full matrix algebras over C(Y') with
dim(Y) < M. Choose L = (2M + 2)L; — 1. We will verify that G,d and
L satisfies the condition of the theorem even for B = QM,(C(Y))Q—cutting
down of full matrix algebras by projections, as follows.

Let n = rank(Q) + dim(Y) and m = 2M + 1. Then by Lemma 1.3.6,
QM,(C(Y))Q can be identified as a corner subalgebra of M,(C(Y)), and
M, (C(Y)) can be identified as corner subalgebra of M,,(QM,(C(Y))Q).

If ¢,9 € Map,_;5(A, B) satisfy the condition in the theorem, then regarding
B as a corner subalgebra of M, (C(Y)), we can regard ¢,1 as elements in
Map_s5(4, M, (C(Y"))) which still satisfy the condition. Hence from the above
special case of the theorem, there are v : A — M, (M,(C(Y))) and a unitary
uy € My, +1(M,(C(Y))) such that

lui (¢ ® v)(a)u; — (Y ®v)(a)| <e, VaceF.

Also, M,,(C(Y)) can be regarded as a corner subalgebra of M., (QM,.(C(Y))Q),
so ¢ ® v and ¥ H v can be regarded as maps from A to
M, 1(Mpn (QM(C(Y))Q)) = Mpi1(QMo(C(Y))Q). Therefore, there is
a unitary u € M, 41(B)

lu(p ® v)(a)u™ — (Y dv)(a)| <e, VaeF.
1]

REMARK 5.19. The theorem is not true for X = S, even if we assume that
both ¢ and v are homomorphisms. A counterexample is given below .
Let ¢n, ¥, : C(S') — C[0,1] be defined by

Su(£)(t) = F(2™)  and  Pa(f)(t) = F(D).
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Then KK(¢,) = KK(i,,). Let F = {z} and ¢ = 1, where z € C(5!) is a
canonical generator. One can prove that there is no integer L which is good

for all (¢n,%y) as in Theorem 5.18, by using the variation of determinant.

5.20. If X is any finite CW complex such that K;(C(X)) is a torsion group,
then Theorem 5.18 holds for X — one needs to choose P4 accordingly, which
is described below.

Suppose that mq, ma,---,m; are the degrees of all the torsion elements in
Ky(A) and K;(A). Let m be the least common multiple of my,ma,---,m;.
Since K;(A) is a torsion group, similar to the discussion in 5.13, an element
«a € KK(A, B) is completely determined by the K-theory maps

a’: KO(A) I KO(B)v
ag . Ko(A,7Z/p) — Ko(B,7Z/p),
1

Qp - Kl(Aa Z/p) - Kl(Ba Z/p)7
where p are all the numbers with p|m. (In particular, the map o' : K;(A) —
K1(B) is determined by the above maps.)

One can choose P to be a finite set of projections in
Mo(A) UUpjn Mo(A ® C(W), & S1)) such that the set PK(A) (defined in

5.16) generates a sub group containing the group

Ko(A) & P K.(A Z/k).

k|lm

Similar to the proof of Theorem 5.18, we can prove the following theorem,
since, to determine a KK-element o € K K (A, B), one does not need the map
from K;(A). (G(P) and §(P) can be chosen accordingly as in 5.17.)

THEOREM 5.21. Suppose that X is a finite CW complex with K1(X) a torsion
group. Suppose that A = PM;(C(X))P and P are as in 5.20. For any finite
set F' C A, positive number £ > 0, and positive integer M, there are a finite
set G C A (G D G(P) large enough ), a positive number § > 0 (§ < 6(P)
small enough), and a positive integer L (large enough) such that the following
statement s true.

If ¢,9p € Map(A, B) are G(P)-0(P) multiplicative and

D = Py : PK(A) - K(B)a

where B = QM,(C(Y))Q with dim(Y) < M, then there is a homomorphism
v € Hom(A, ML(B)) with finite dimensional image, and there is a unitary
u € Mp4+1(B) such that

[u(¢ @ v)(a)u” — (b B rv)(a)] <e
foralla € F.
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The following is a direct consequence of Theorem 5.18.

COROLLARY 5.22. Let A = C(X), where X is one of the spaces:
[0,1],8%, Tr1x or Trrrx, and let P be as in 5.16. For any finite set F C C(X),
any positive number € > 0 and any positive integer M, there are a finite set
G C C(X) (G > G(P) large enough), positive numbers 6 > 0 (6 < §(P) small
enough) and n > 0 (small enough) such that the following statement is true.
Let B= M,(C(Y)) with dim(Y') < M, and p € B, a projection.

If ¢,¢ € Map(C(X),pBp) are G-6 multiplicative maps inducing the same maps
¢ = Vs PK(C(X)) — K(B), and {x1,22, - -,2,} is an n-dense subset
of X, and q1,q2," -+, qn are mutually orthogonal projections in (1 — p)B(1 — p)
with rank(q;) > rank(p), then there is a unitary

UEPONOPRD D) B ©pd - ©qn)

such that

H¢<f> @Y flzi)g —u (wf) ® Zf(wnqi) u'|<e, VfEF
=1 i=1

In particular, if 1 is a homomorphism, then there is a homomorphism qg €
Hom(C(X),(p® @1 ®q2@ - ®¢u)Blp® @1 ® g2 @+~ B ¢y)) (defined by ¢(f) =
u(Y(f) @ Xiy f(xi)gi) u*) such that

H&(f) - <¢(f) ® zfm)qi)

i=1

<g, vV felF.

Proof: Since X is not the space of a single point, we can assume that X,
as a metric space, satisfies that diameter(X) = 1. Apply Theorem 5.18 to
the finite set F' C A, the positive number % and the integer M to obtain
G, 6, L as in Theorem 5.18. Choose a positive number 1 < ﬁ such that if
dist(z,z") < 8ML? -1, then || f(z) — f(z')|| < § for all f € F.

Let {1,223, +,2,} be an n-dense subset of X and let ¢1,q2, -+, ¢, € (1 —
p)B(1 — p) be mutually orthogonal projections with rank(g;) > rank(p). Sim-
ilar to the proof of Corollary 1.6.13, one can find a 8ML - n-dense sub-
set {zr,, Ty, -+, Tk, } C {21,22," -, Ty} and mutually orthogonal projections
@Q1,Q2,- -+, Q; with rank(Q;) > ML - rank(p), such that

n l
I Zf(l‘i)qz‘ - Zf(xk-j)lel < %, VfeF.
=1

J=1

Since rank(Q;) > M L - rank(p), it follows that [Q;] > L - [p].
Again, similar to the proofs of Corollaries 1.6.12 and 1.6.13, it can be proved
that a homomorphism v € Hom(A, M, (pBp)) with finite dimensional image
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(from 5.18) can be perturbed, at the expense of at most § on the finite set F,
to a homomorphism 2’ which is of the form

!
V(f) = Z f(an,)d;

with [¢}] <[Q;] (SOME OF THE PROJECTIONS ¢} COULD BE ZERO). Hence the
corollary follows (see the proof of Corollary 1.6.12).

(]
By the discussion in 1.2.19, we have the following corollary.

COROLLARY 5.23. Let A = M;(C(X)), where X is one of the spaces:
[0,1),8%, Tr1x or Trirk, and let P be as in 5.16. For any finite set F C A,
any positive number € > 0 and any positive integer M, there are a finite set
G C A (G D G(P) large enough), numbers § > 0 (§ < 6(P) small enough) and
1> 0 (small enough) such that the following statement is true.

Let B= M,(C(Y)) with dim(Y) < M, and p € B a projection.

If ¢, € Map(A,pBp) are G-0 multiplicative maps inducing the same map
¢« = PK(A) — K(B), and {z1,x2, -, zy} is an n-dense subset of X,
and

W=D O R=0:DHS O, =0, DS D,
l l l

are mutually orthogonal projections in (1 —p)B(1—p) with rank(q;) > rank(p),
then there is a unitary

UeEPPNPRD - Dp)BPpOa ©qpd - ®qn)

such that

<e, VfePF

6N @Y ¢ @ fla) —u (wf) oY qe f(m)) w’

=1 i=1

In particular, if ¥ is a homomorphism, then there is a homomorphism é €
Hom(C(X),(p® @1 ®¢@® - D) BpO®@a1 D2 @+ B qyn)) such that

(
‘é(f) - <</>(f) < zn: 4 ® f(sm))

i=1

<&, vV feF.

Proof: Thanks to Lemma 1.6.8, we can always assume that the two maps ¢ and
1) satisfy the condition that ¢| Mi(C) and 9| My(C) re homomorphisms. Using

the condition ¢, = ¢, : PK(A) — K(B), we can assume
€)= Yy
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after conjugating with a unit.
Now the corollary follows from the following claim.
CrAIM: For any finite set F' C A = M;(C(X)), any € > 0, there are a finite set
G C A and a positive number § > 0 such that if a map ¢ : A — B is G-0 mul-
tiplicative and (b‘Ml(C) is a homomorphism, then there are a map ¢, : C(X) —
¢(e11)Bo(er1) and an identification of ¢(1)Be(1) = M;(¢(e11)Bo(er1)) such
that

l6(f) = (1@ 1)(f)l <e VfeF.

Furthermore, if G; C C(X) and §; > 0 are a pregiven finite set and a pregiven
positive number, then one can modify the set G and the number § so that the
map ¢1 above can be chosen to be G1-6; multiplicative.

Proof of Claim: Suppose 1 € F. Let Fy = {a;j|(aij)ixi € F}(C C(X)) be the
set of all entries of the elements in F. Let G = {(b;;)ix1 = >_ bijei; | bij € F1 U
G1 C C(X)}( C A) and § = min (557,61). Suppose that ¢ : M;(C(X)) — B
is G-0 multiplicative. Let

$1 = Bles, My (x))ers : C(X) — @(e11)Bo(err).

Obviously the G-0 multiplicativity of ¢ implies the G1-d; multiplicativity of ¢ .
Identify ¢(1)B¢(1) = (¢(e11)Bo(e11)) ® M; by sending ¢(e;;) to e;; € My C
(¢p(e11)Be(e11)) ® M;. Under this identification, we have

(1 @ 1y)( Z¢ (ei1)p1(aiz)plers),

where a = (a;;)ixi € M(C(X)). On the other hand, writing a =
> eni(aijeir)er; and using the G-d multiplicativity of ¢, we have

I6(a) = (61 @ 1)(@)l| < D ld(ers(aszen)ers) — dlen)di(as)dle;)l|

i

= llé(eri(aizenn)ers) — dlea)dlaizer)dlers)|
i

<> 2=2%<e
i

This proves the Claim.
Applying the Claim, one can reduce the proof to the case A = C(X) which is
Corollary 5.22.

[

DEFINITION 5.24. Let A be a unital C*-algebra, let

P C My(A)UM(A®C(S UM (A® C(Wy, x SY))
k=2
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be a finite set of projections, and let G(P), §(P) be as in 5.17. A G(P) — §(P)
multiplicative map ¢ : A — B is called QUASI-PK-HOMOMORPHISM if there is
a homomorphism ¢ : A — B with ¢(14) = ¢¥(14) such that

(0]« =[]« : PK(A) — K(B).

Using the above definition and Definition 4.38, we can restate the second part
of Corollary 5.23 as below.

LEMMA 5.25. Let A = M;(C(X)), where X is one of the spaces:
[0,1),8%, Trrx or Trrrk, and let P be as in 5.16. For any finite set F C A,
any positive number € > 0 and any positive integer M, there are a finite set
G C A (G D G(P) large enough), positive numbers 6 > 0 (§ < §(P) small
enough) and n > 0 (small enough) such that the following statement is true.

Let B = Mo(C(Y)) with dim(Y) < M, and let p € B be a projection. If
¢ € Map(A,pBp) is a G-6 multiplicative quasi-PK-homomorphism, and A\ €
Hom(A, (1 — p)B(1 — B)) has the property PE(rank(p), n), then there is a

homomorphism ¢ € Hom(A, B) such that

16(f) — (b @ N(f)| <&, VfeF.

Furthermore if Y is a connected simplicial complex different from the single
point space, then ¢ can be chosen to be injective.

Proof: The main body of the lemma is a restatement of Corollary 5.23. So
we only need to prove the last sentence of the lemma. We need the following
fact: Let X = [0,1],52%,Trx or Trrr, and let Y be a connected finite sim-
plicial complex different from {pt}. If Ay : M;(C(X)) — p1Mo(C(Y))p; is a
homomorphism defined by the point evaluation at a point x; € X as

Ezl

My (C(X)) — Mi(C) — p1 Mo (C(Y))pr,

then A; is homotopic to an injective homomorphism \; : M;(C(X)) —
p1 Mo (C(Y))p1. (Again, this fact can be proved by using the Peano Curve.)
€

Let n’ be as the 7 desired in the main body of the lemma for $ (in place of

). We can also assume that n’ satisfies the condition that if dist(z,z’) < 7/,
then || f(z) — f(2)|| < § for all f € F. Choose n = %/. Suppose that A €
Hom(A, (1 — p)B(1 — p)) has the property PE(rank(p),n). Write A\ = @._; \;,
where

A Mi(C(X) = Mi(C) 5 piBpi,

are point evaluations at an n-dense set {z1,z2, -, z,} and ¢; are unital ho-
momorphisms.

Let p; be a projection with minimum rank among all the projections
P1,P2, ", Pn. Let ¢ € Map(A,pBp) be a G-6 multiplicative quasi-PK-
homomorphism. Then ¢ & Ay € Map(4, (p © p1)B(p & p1)) is also a G-6
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multiplicative quasi-PK-homomorphism. Furthermore, from the above fact,
it defines the same map on the level of PK(A) as an injective homomor-
phism ¢ € Hom(A, (p ® p1)B(p @ p1)). On the other hand, N = @, _, \;
has the properties PE(rank(p), 2n) and PE(rank(p;),2n), since A = @, \;
has PE(rank(p),n), and rank(p;) < rank(p;), ¢ = 2,---,n. Similar to the
proof of Corollary 5.22, X can be perturbed to a homomorphism M\’ which
has the property PE(rank(p) + rank(p1),4n) at the expense of at most 5 on
the finite set F'. Note that 4n = 7, and ) is injective. Hence the homomor-
phism Aduo (¢ & \’) (for a certain unitary u), as desired in the main body
of the lemma, is also injective.

(n

LEMMA 5.26. Let X and Y be connected finite simplicial complexes. Sup-
pose that ¢1 : PM}C(O(X))P — QlMl(C(Y))Ql and ¢2 : PMk(C(X))P —
Q2M;(C(Y))Q2 are unital homomorphisms, where P, Q1, and Q2 are projec-
tions with

rank(Q2) — rank(@Q1) > 2dim(Y") - rank(P).

Then there exists a homomorphism 1 : PM,(C(X))P — M4(C(Y)) such that

[¢] = [d2] =[] € KK(C(X),C(Y)).

Proof:  First, we suppose that A = C(X). As in Lemma 3.14 of [EG 2]
(see Remark 1.6.21 above), we can assume that ¢1(Co(X)) € M;(Co(Y)) and
$2(Co(X)) € Mi(Co(Y)), where Co(X) and Cy(Y) are sets of functions van-
ishing on fixed base points of X and Y, respectively. Hence ¢; defines an
element kk(¢;) € kk(Y, X) (see [DN]). Furthermore, [¢;] € KK(C(X),C(Y))
is completely determined by kk(¢;) and ¢i.([14]) € Ko(B). Let o = kk(¢p2) —
kk(¢1) € kk(Y,X) (note that kk(Y, X) is an abelian group, see [DN]). Since
rank(Q2)—rank(Q1) > 2dim(Y’), by [Hu], there is a projection Q3 € M4(C(Y"))
such that [Q3] = [Q2] — [@1] € Ko(C(Y)). By Theorem 4.11 of [DN] or Lemma
3.16 of [EG2], there is a unital homomorphism v : C(X) — Q3M.(C(Y))Q3
to realize o € kk(Y, X). Obviously 1 is as desired.
For the general case, using the Dilation Lemma (Lemma 1.3.1), one can prove
that [¢;] € KK(C(X),C(Y)) can be realized by homomorphism ¢} : C(X) —
M, (C(Y)). This reduces the proof to the above case.

(]

REMARK 5.27. In the above lemma, if Q1 < @2, then one can choose ¥ to

satisfy 1(14) = Q2 — Q1.
LEMMA 5.28. Let X be a finite simplicial complez, and A = PM;(C(X))P.
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For any finite set

P CM(A)UM,(A®C(S"))U | ) Ma(A® C(Wi x S1)),
k=2

there are a finite set G C A and a number § > 0, such that the following is
true.

If Y is a simplicial complex, Q > Q1 are two projections in Me(C(Y)) with
rank(Q) — rank(Q1) > 2dim(Y)rank(P), and two unital homomorphisms ¢ €
Hom(A,QMJ.(C(Y)Q)1, ¢1 € Hom(A, Q1 M.(C(Y))Q1)1 and a unital map
a2 € Map(A, (Q — Q1)Me(C(Y))(Q — Q1))1 satisfy that

(%) [6(f) — o1(f) ® d2(f)] <6, VgeEG,
then there is a homomorphism 1) : A — (Q — Q1) Mo (C(Y))(Q — Q1) such that

[¢] = [¢2)« : PE(A) — K(C(Y)).

In other words, ¢2 is a quasi-PK-homomorphism.

(Notice that, from Lemma 4.40, if G is large enough and ¢ is small enough,
then (*) above implies that

¢2 € Map(A, (Q—Q1)M.(C(Y))(Q—Q1))1 is G(P) — 6(P) multiplicative, and
hence [¢2]« : PK(A) — K(C(Y)) makes sense.)

Proof: 1If G is large enough and ¢ is small enough, then (*) implies
[P2]s = [8]x — [¢1]s : PE(A) — K(C(Y)).

Then the lemma follows from Lemma 5.26 and Remark 5.27.
]

REMARK 5.29. In Corollary 4.39, we can choose ¢ (or 1) such that wé’j (or
woi’j ) is a quasi-PK-homomorphism for any pre-given set of projections

P C My(A)UM,(A® C(S'))U G My(A® C(W, x SY).
k=2

To do so, by Lemma 5.28, one only needs to choose the projection Qé’j to have
rank at least 2dim(X,, ;) - rank(14: ). But from the construction in 4.34, we
have freedom to do so.

LEMMA 5.30. Fiz a positive integer M. Suppose that B = @;_, M;,(C(Y3)),
where Y; are the spaces: {pt},[0,1], S, Trr.x, Tr11 .k, S*. For any finite set G C
B and positive number € > 0, there exist a finite set G1 C B, numbers §; > 0
and n > 0 such that the following is true.

Ifamapoa=0)Pa:B— A= @;:1 My, (C(X;)), with dim(X;) < M,
satisfies the following conditions:
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(1) ag is G1-061 multiplicative, {ag(1gi)}i_, are mutually orthogonal projec-
tions, and oy is a homomorphism with finite dimensional image (i.e., defined
by point evaluations);

(2) For any block B* with Y; = Trrx, Tirrk or S* and any block A7, the
partial map aé’j 18 quasi-PK-homomorphism, where P is the set of projec-
tions associated to B' as in 5.16, and the homomorphism o/i’j has the property
PE(ranka’ (15:), 1);

then there is a unital homomorphism o' : B — «a(1p)Aa(1p) such that

a'(g) —alg)l| <&, VgeG.

Proof: We only need to perturb all the individual maps a7 to homomorphisms
o7 within abI(1pi)Ala®I(1p:).
For a block of B? with spectrum {pt}, [0,1] or S', such perturbation exists
by Lemma 1.6.1. For a block of B* with spectrum Trr g Trrr e or 52, such
perturbation exists by Lemma 5.25.

(n

LEMMA 5.31. Let M be a fized positive integer. Let B = M;(C(Y)),Y =
Tr1kTrrrg or S2. Let the set of projections P C My(B)UM¢(BRC (W x S1))
be as in 5.16.

Let A = RM;, (C(X))R with dim(X) < M, where R € M;,(C(X)) is a pro-
jection. Let o : B — A be an injective homomorphism. Let a finite set of
projections P’ be given by P’ := (a ® id)(P) C Me(A) U My(A® C(W), x S1)).
Let n > 0. Choose 1 > 0 such that if a finite set {x1,29, -+, 2} C X is
m-dense in X, then |J!_, SPay, is n-dense in Y. (Such my exists because of
injectivity of a.)

For any finite subset G1 C B and any number §; > 0, there are a finite subset
Gy C A and a number 6o > 0 such that the following are true.

Let C = Mo (Z) with dim(Z) < M.

(1) If o : A — QoCQo is a G- multiplicative quasi-P’'K-homomorphism
and Yo(a(1p)) is a projection, then 1o« is a G1-01 multiplicative quasi-PK -
homomorphism.

(2) If 1 : A — Q1CQ1 has the property PE(J - L, n1), where J = rank(R),
then Yy1oa: B — Y1(a(lp))Cy1(a(lp)) has property PE(L, n).

In particular, if 11 has the property PE(J - rank(Qo), m1 ), (this is the condition
(8) of Corollary 4.39), then 11 o« has the property PE(rank((vooa)(1g)), n).
(Note that rank((¢Yooa)(1p)) < rank(Qq).) Consequently, if we further assume
that G1, 61 and n are as those chosen in 5.30 for a finite set G C B and
e > 0, and Q1 is orthogonal to Qq, then there is a homomorphism ¢ : B —

(Qo ® Q1)C(Qo @ Q1) such that
l(g) — (Yo @ Y1)(alg))]| <&, Vg€ G.
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Proof: (1) holds if we choose G2 D a(G) and 3 < d;.

(2) follows from the following fact: if a homomorphism ¢ : RM;, (C(X))R —
M;(C(Z)) contains a part of point evaluation at a point € X of size at least
L (see Definition 4.38), then for any y € SPa, C Y, ¢ o a contains a part of
point evaluation at point y of size at least

rank(r)’
1]

The following two theorems are important for the proof of our main theorem.

THEOREM  5.32A. Let M be a positive integer. Let
lim (A, = @f;l My i (C(Xni)), &nm) be a simple inductive limit with

injective connecting homomorphisms ¢ m and with dim(X,, ;) < M, for any
n,i. Let B = @;_, M;,(C(Y;)), where Y; are the spaces: {pt},[0,1],S*, Trs k.
T[[[,k, and 52,

Suppose that a homomorphism « : B — A,, satisfies the following DICHOTOMY
CONDITION:

For any block B* of B and any block A}, of A,, either the partial map o :
B' — Al is injective or it has a finite dimensional image.

Denote a(1) = R(= @ RY) € A,(= @ AL). For any finite sets G C B
and F C RA,R, any positive number ¢ > 0, and any positive integer L,
there are A,, and mutually orthogonal projections Qq,Q1,Q2 € A, with
Snm(R) = Qo + Q1 + Q2, a unital map 0y € Map(RAL,R, QoAmQo)1, two
unital homomorphisms 61 € Hom(RA, R, Q1A Q1)1 and

¢ € Hom(RA,R, Q2AnQ2)1 such that

(1) ”qbn,m(f) - (QO(f) + el(f) + f(f))” <¢, Vf er;

(2) there is a homomorphism ay : B — (Qo ® Q1) Am (Qo ® Q1) such that

lei(g) = (6o + 1) ca(g)|| <&, Vg €G;

(8) 6 is F' — ¢ multiplicative and 01 satisfies that for any nonzero projection
(including any rank 1 projection) e € R'A® R

0y ([el) > L1657 (R")],

(the condition (3) will be used when we apply Theorem 1.6.9 in the proof of the
Main Theorem);

(4) € factors through a C*-algebra C'—a direct sum of matriz algebras over
C[0,1] or C— as

f : RAnR & i’ QZAmQQa

and the partial maps of & satisfy the dichotomy condition;
(5) the partial maps of ay satisfies the dichotomy condition.

Proof: Let E% = a®J(1p:) € Al. Let
I=1{(i,j) | @™ : B* — AJ has finite dimensional image}.
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Let the subalgebra D C A,, = @ A, be defined by

D:@ P o(BYo P o(C-15) C@A{L.

(i.5)el (i,5)¢1

Notice that D is a finite dimensional subalgebra of A,, containing the mutually
orthogonal projections {E* = a®J(1p,)}; ;.

Apply part 2 of Corollary 4.39 for sufficiently large set F' C RA, R, sufficiently
small number &’ > 0 and 1’ > 0, and positive integer J = L - max; rank(R"), to
obtain A,, and the decomposition 0o@®01DE of Gn.m|ra, r as VY| BY, in 4.39.
By Lemma 1.6.8, we can assume that the restriction 6y|p is a homomorphism.
The condition (1) follows if we choose F’ D F, and &’ < ¢.

The F — e multiplicativity of 6y in (3) follows from Lemma 4.40, if F’ is large
enough and ¢’ is small enough, and the desired property of 8; in (3) follows
from the choice of J and Lemma 5.31.

To construct «; as desired in the condition (2), we need to construct

o/i’j’k . B — 09 (EV) AR 3R (BB,
where 0 = 0y @ 01, to satisfy
lay”*(g) = 67* 0 ™ (g)| <&, VgeG.

The construction are divided into three cases.
1. If (4,4) € I, then 67 o a®J is already a homomorphism and can be chosen
to be o/i’j ®,
2. If (i,j) ¢ I, and Y; = [0,1] or S, then the existence of a7/ follows from
Lemma 1.6.1 and Lemma 4.40, if F’ is large enough and ¢’ is small enough.
(See Lemma 5.30 also.) In fact, in this case, the map 0{)’k o a®J itself can
be perturbed to a homomorphism. On the other hand, the homomorphism
0% o a7 is defined by the point evaluations on an 7-dense set for a certain
small number 7. Evidently, such a homomorphism 67 o a®7 from M, (C/(S*))
or M;,(C([0,1])) (to AX) can be perturbed to an injective homomorphism,
provided that 7 is sufficiently small and that the path connected simplicial
complex X, . is not the space of a single point. Therefore, in this case, the
homomorphism o’ * can be chosen to be injective.
3. If (i,5) ¢ I, and Y; = Tyr g, Trrrx or S?, then o' is injective, and the
existence of ai’j * follows from Lemma 5.30 and the choice of J, if F’ is large
enough and ¢’ is small enough, and if we choose 7' to be the number 7; in
Lemma 5.31 corresponding to the 1 in Lemma 5.30. The homomorphism ok
can also be chosen to be injective, if X,, ; is not the space of a single point,
according to the last part of Lemma 5.25. N
Finally, define the partial map o of oy to be @ i o’ 7* to complete the con-
struction. Obviously, it follows, from the discussion of the injectivity in case 2
and case 3, that a; satisfies the dichotomy condition.

1]
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THEOREM  5.32B. Let M be a positive integer. Let
lim (A, = @f;l My i (C(Xni)), &nm) be a simple inductive limit with

injective connecting homomorphisms ¢n m and with dim(X,, ;) < M, for any
n,i. Let B = @;_; M;,(C(Y;)), where Y; are the spaces:{pt},[0,1],S*, Trs k.
T][[,k, and 52,

Suppose that a homomorphism « : B — A,, satisfies the following DICHOTOMY
CONDITION

For any block B* of B and any block Al of A,, either the partial map o :
B — Al is injective or it has a finite dimensional image.

For any finite sets G C B and F C A,, and any number ¢ > 0, there
are An, and mutually orthogonal projections P,Q € Ay, with ¢nm(la,) =
P+ Q, a unital map 0 € Map(A,, PA,,P)1, and a unital homomorphism
¢ € Hom(A,,QA,,Q)1 such that

(1) lfnm () = (O(F) @ (NI <&, VfeF;

(2) there is a homomorphism a1 : B — PA,, P such that

lar(g) = (Boa)(9)l <&, VgeG;

(8) O(F) is weakly approximately constant to within &;

(4) € factors through a C*-algebra C'—a direct sum of matriz algebras over
C[0,1] or C— as

€0 A, S50 QA,.Q,

and the partial maps of & satisfy the dichotomy condition;
(5) the partial maps of a1 satisfy the dichotomy condition.
The proof is similar to the proof of Theorem 5.32a, we omit it.

6 'THE PROOF OF THE MAIN THEOREM

In this section, we will combine §4, §5 and §1.6 to prove our Main Theorem —
the Reduction Theorem.

The following is Proposition 3.1 of [D2].

PROPOSITION 6.1. ([D2, 3.1]) Consider the diagram

¢1,2 $2,3 Pn,n+41
Al 5 A2 [k _>An .t An+1 — s e
B B B
T‘” \1 Tﬂz \2 Ce Ta" \n T"‘nJrl \‘
P12 Y23 Yn,n+1
B 2 B, 2% ... B, "™ By —ee

where A,,, B,, are C*-algebras, ¢n nt1, Unnt1 are homomorphisms and oy, By,
are linear x-contractions.
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Suppose that F,, C A,, E, C By, are finite sets satisfying the following condi-
tions.

¢n7n+l(Fn) U an-i-l(En-l-l) C Fn+17 wmn—i-l (En) U Bn(Fn) - En-i-lv

and Uy 1 (dn,oo(Fr)) and U, (¥n,o(En)) are the unit balls of A =
Hm(Ay, ¢nm) and B = Hm(By, ¥n,m), respectively. Suppose that there is a
sequence 1,2, -+ of positive numbers with Y e, < 400 such that o, and By,
are F,-e, multiplicative and E, -, multiplicative, respectively, and

1@n.n1(f) = ansroBu(f)l <en, and |[Ynni1(g) = Bnoan(g)ll <en

forall f € F, and g € E,.
Then A is isomorphic to B.

LEMMA 6.2. Let lim(4,, = @Ell My, i (C(Xni)), &nm) be a simple inductive
limit C*-algebra with ¢y, ., injective, where X, ; are path connected finite sim-
plicial complexes with uniformly bounded dimensions. Let C*-algebra C be a
direct sum of matriz algebras over the spaces: {pt},[0,1],S*, Trs x, Trrrx and
S2, and ¢ : C — A, be an injective homomorphism. Then for any finite set
F C C and € > 0, there is a positive integer N > n such that for any m > N,
there is a homomorphism ¢ : C — A,, satisfying the following conditions.

(1) ¥(16:) = (bnm © )(1c4), for any block C' of C.

(2) 19(f) = (bnmod)(f)l <e, VfeF

(8) ¥ satisfies the following dichotomy condition:

For any block C* of C and AJ, of A, either 1% is injective or %I has finite
dimensional image.

(For the proof of the main theorem of this article—Theorem 6.3 below, we only
need this lemma for the case that C' is a direct sum of matrix algebras over
spaces {pt} and [0,1]. The full generality of the lemma will be used in the
proof of Corollary 6.11 below.)

Proof: We only need to prove for the case that C' has only one block C' =
M (C(X)). And, by the discussion in 1.2.19, this case can further be reduced
to the case C = C(X).

For the finite set F' C C, there is an n > 0 such that if dist(¢,¢") < 4, then

lf(t) — f(t)| <e, VfeF

Let (X,0) be a simplicial decomposition of X such that for any simplex A C
(X, 0),diameter(A) < . We call a simplex A a top simplex if A is not a proper
face of any simplex. Obviously, A is a top simplex if and only if the interior

A is an open subset of X.
From [DNNP, Proposition 2.1], using the injectivity of ¢ and ¢y, um,, it follows

that there is an integer N > n such that for any open set A — the interior of
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a top simplex A C (X, 0), one has
SP(pnmod)yN A # 0.

We can define the homomorphism 1 : C — A, for each block A7 of A,,
separately. That is, we need to define 17 : C — AJ | then let ¢ := 7.

If SP(A47,) = X,,; = {pt}, then the partial map (¢, o ¢)7 has finite di-
mensional image, and we can define it to be ¥’. Hence we assume that the
connected finite simplicial complex X, ; is not the space of single point {pt}.
Let a = (an,m © ¢)J 0 — Agn'

Let Y be the union of all such top simplices A that A N SPa is uncountable.

Let Z be the union of all simplices A which are not top simplices. Both Y and
Z are closed subset of X. Let Ay, As,---,4A; be the list of all top simplices
such that A; ¢ Y,i=1,2,--- 1. Then

X=YUA UAy---UA,

(This fact will be used later.) (Here we use the fact that X is equal to the
union of all top simplices, since each simplex is a face of a top simplex.)

For each A;, Ai N SPa is a countable nonempty set. There is a point z; and
an open disk U; = Bg,(x;) 2 x; such that

o

We can assume that U; C A;. Obviously, 0A; is a deformation retract of
Ai\Ui-
Set (X\ (Uéle,-)) NSPa =T. Then SPa =T U {x1,x2, -, 2}
Define a function g : T — Y U Z(C X) as below.
Let ¢’ : Z — Y U Z be the identity map, that is,
J(2) =z, Vz € Z.
We will extend the map ¢’ to a map (let us still denote it by g’).
g X\ (U U) — YuZ
For each top simplex A C Y, extend ¢'|aa to a map ¢’ : A — A satisfying
J(TNA)=A.
(Such extension exists since T'N A s uncountable, see Lemma 2.6 of [EGL].)

For any simplex A;, i = 1,2,---,1, one can extend ¢g'|spa to amap ¢’ : A\U; —
0A,;, since A, is a deformation retract of A;\U;.
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Thus we obtain the extension g’ : X\ (Uélei) — Y UZ. Let g = ¢'|7. Then
g(T)DY, and dist(g(z),z)<n, VreT.

Since SPa = T U {1, 22, -, 2}, there are homomorphisms ag : C(T) — AJ,
and o; : C = CO({x;}) — AJ,, 7 =1,2,---,1, with mutually orthogonal images,

such that l

a(f) = ao(flr) + > _(flwy), Vf € CX).

i=1

Define 3y : C(Y U Z) — Al by
Bo(f) =ao(foyg), VfeCUZ),

where g : T — Y U Z is defined as above. For each A;, there is a surjective
map g; : Xpmj — A, since X,, ; # {pt}. Define g; : C(A;) — AJ, by

Bi(f)(x) = f(gi(x)) - i( 1),  Vf € C(A),z € Xon j-

Then, obviously, we have

(1) Bo(Leyuz)) = ao(le(ry), and Bi(1oa,)) = ai(1g), for i =1,2,--- 1.
From the way 7 is chosen and the properties that dist(g(z),z) < n for any
x € T, and that diameter(A;) < n for any i = 1,2,---,1, we have

(2) 11Bo(flyuz) — ao(flT)ll < &, and [|Bi(fla,) — ai(flz)ll < € for i =
1,2,---,l,and f € F.

Finally, let the partial homomorphism 17 : C'(X) — A7 be defined by

m

l
¢ (f) = Bo(Flvoz) + D _Bilfla).

Since T' C SPag and the map g : T — Y U Z satisfies ¢g(T) D Y, we have
SP(8p) D Y. Hence SPyJ = SPB, UUL_,SPB; D Y UU!_|A; = X. That is, ¢
is injective.
The property (1) follows from (1’) and (2) follows from (2').

1]
We will use 5.32a, 5.32b, 1.6.9, 1.6.29, 1.6.30 to prove the following main the-
orem of this article.

THEOREM 6.3. Suppose that lim(A,, = EBZ;l Miy,,5(C(Xni)), &n,m) s a simple
inductive limit C*-algebra with dim(X,, ;) < M for a fized positive integer M.
Then there is another inductive system (B, = @™, My (C(Ynyi)), Onm)
with the same limit algebra as the above system, where all Y, ; are spaces of
forms {pt},[0,1], 8,52, T1rk, or Trr1 k-

Proof: Without loss of generality, assume that the spaces X,, ; are connected

finite simplicial complexes and the connecting maps ¢, are injective (see
Theorem 4.23).
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Let ¢ > €2 > €3 > --- > 0 be a sequence of positive numbers satisfying
>en < Fo0.
We need to construct the intertwining diagram

F1 Fa Fy, Fri1

N N N N

?s(1),5(2) ?5(2),5(3) Ps(n),s(n+1)
A1) —= A2 == e Ay - Agtnyry — -
o N e e for N e N
P12 P2,3 Y, n41
By 23 Bs 23 ... B, iy Brg1  — e
U U U U
Eq Eo E, Ent1

satisfying the following conditions.

(0.1) (Ag(n)s Ps(n).s(m)) is a sub-inductive system of (A,,¢nm). (Bn,¥nm)
is an inductive system of matrix algebras over the spaces: {pt},|0,1],S?,
{Tir0 320 AT111.0 3325, S%.

(0.2) Choose {a;;}52; C Ay and {b;;}32; C B; to be countable dense subsets
of the unit balls of Ay(;) and B, respectively. F;, are subsets of the unit balls
of Ay, and E, are subsets of the unit balls of B, satisfying

n+1
¢s(n),s(n+1)<Fn) U1 (En+1) U U ¢s(i),s(n+1)({aila Q52,504 n+1}) C Fn+1
i=1

and

n+1
Ynont1 (En) U Bn(Fr) U U Vi n+1({bi1, biz, -+, bi ng1}) C Enga.

i=1

(Here we use the convention that ¢, , =id: A, — A,.)
(0.3) B, are F,, — 2¢,, multiplicative and «,, are homomorphisms.

(0.4) |[¥nnt1(g) — Bn o an(9)| < 2e, for all ¢ € E,, and
||¢s(n),s(n+1)(f) —any1 0 Bu(f)Il < 12e, for all f € F),.

(0.5) For any block B!, of B,, and any block Az (n) Of Ag(n), the map abd satisfies
the following dichotomy condition:

either a%7 is injective or o’ has a finite dimensional image.

The diagram will be constructed inductively.

First, let By = {0}, Ayq) = A1, an = 0. Let by; =0 € By for j = 1,2,---,
and let {a1;}52; be a countable dense subset of the unit ball of A,(;). And let
FE = {bu} = By and F; = {au} C As(1)~
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As an inductive assumption, assume that we already have the diagram

Fy Py F,
no no 1
5(1),5(2) 5(2),5(3)

Agy  —7 Agey 0 o — Ay

Tal O TQQ N2 NP TQ”

By Y1z By Y23 ... — B,

U U

Ey Es En

and, for each i = 1,2---,n, we have countable dense subsets {a;;}?2, C

unit ball of A(;) and {b;;}52; C unit ball of B; to satisfy the conditions (0.1)-
(0.5) above. We have to construct the next piece of the diagram,

Ps(n),s(n+1)
—

F, C As(n) As(n+1) B Fn+1
[ A,

Yn,n+1
E, C B, - B DBy,

to satisfy the conditions (0.1)-(0.5).
Our construction are divided into several steps. In order to provide the reader
with a whole picture of the construction, we first give an outline of it. Then
the detailed construction will follow.

OUTLINE OF THE CONSTRUCTION. We will construct the following diagram.

¢—= PiAm, Py R B (n+ DPDA gt yPrmy s (n+1)P1)
&1 d)
RPs(n),m € 3
' > > D— @Q2) Aty @)

) ) RAm, R\

my,m
@} 904'01\\ %¢m2,9(n+1) @
As(n‘)_—g——_’POAmlpo 00101 A

| RA,R— — — = Qo+Q1)AgnQo+Q1)
o Cs o ol o, (44
T / -
v B

B,
This large picture consists of several smaller diagrams, each of which is called
a sub-diagram. There are two kinds of sub-diagrams. The sub-diagrams of
the first kind are labeled by the numbers 1, 2, 3 and the letter u (in the
centers of the sub-diagrams). These sub-diagrams are almost commutative in
some sense. For example, the one in the center of the large picture, labeled
by the letter u consists of two composite maps (6g + 61) o (Ao ') o 8 and
(6o + 01) © (P ,ma|Poa,,, By)- They are almost equal to each other on a given
finite set up to unitary equivalence.
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The sub-diagrams of the second kind are those two labeled by “~ ¢4(n),m,” and
“~ Gms,s(nt1)” - They describe the approximate decompositions of the given

maps “(bs(n),m.l77 and “¢m2,s(n+1)|RAm2 R’

All the maps in the above picture are homomorphisms except 3, 6, and 6 +
01 (which are represented by broken line arrows). These maps are linear -
contractions which are almost multiplicative on some given finite sets (i.e., on
the sets F,, C Ay, I := 0(F,) C PyA,, Po, or a certain (large enough) finite
subset I/ C RA,,,R2) to within given small numbers (i.e., &, or some related
small numbers).

The sub-diagrams labeled by the numbers 1,2, and 3 are approximately com-
mutative on certain given finite sets (i.e., E, C By, G :== ¢(E,)UB(F) C B
(F is from the above paragraph)) to within a small number (i.e., £,). The sub-
diagram labeled by the letter u is approximately commutative on a finite set
(F :=0(F,)) to within a given small number (9¢,,) up to unitary equivalence.

The sub-diagrams labeled by “~ ¢g(n) m,” and “~ ¢y, s(n41)” are approximate
decompositions of @s(n) m, and ¢, s(nt1)|RA,., R, Tespectively. (E.g., the direct
sum 6 @ (2 0 {1) of the two maps 6 and & o £y is close to ¢y(p),m, to within a
small number ¢,, on a given finite set F),.)

The above decomposition of ¢4(,) ., and the almost commutative sub-diagram
labeled by the number 1 are obtained in Step 1 in the detailed proof, applying
Theorem 5.32b to Ay, and o, : B, — Ayy) (and to the finite sets E),
and F),). The main purpose of this step is to make the set §(F,,) := F weakly
approximately constant to within e, (the other part {30 of the decomposition
factors through an interval algebra C'), which will be useful later when we apply
Theorem 1.6.9. (If one assumes in the beginning that the set F, is weakly
approximately constant to within ¢, then he does not need this step.)

The sub-diagrams labeled by 2 or u will be explained by another picture later.
The almost commutative sub-diagram labeled by the number 3 and the decom-
position of ¢, s(ny1)|RA., R (-8, “% Gy s(n1)” in the picture), are obtained
in Step 4, applying Theorem 5.32a to RA,,,R and Aoa’ : B — RA,,, R (and
certain finite subsets of B and RA,,,R). The purpose of applying Theorem
5.32a is to construct the map 6y + 61 to satisfy the condition in Theorem 1.6.9
for the two homotopic homomorphisms A o (¢ © ) and ¢, m,|pyA,,, P, i the
next picture, and therefore to obtain the almost commutative sub-diagram up
to unitary equivalence—the sub-diagram labeled by u—, (the other part £40&3
of the decomposition factors through an interval algebra D).

In order to get the parts of the sub-diagram labeled by 2 and u, we need to
start with a : By, — PyApm, Po. We describe it in the next picture.
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RA,.,R e Qo+ Q1) Ay Qo+Q1)

A(= PyAp, Po)—2 BT 0y (A) @ r(A)

™~

By Corollary 1.6.29 (see 1.6.31 also), applied to the homomorphism « from the
first picture, we obtain the almost commutative sub-diagrams labeled by the
numbers 2 and 4. Then we apply Lemma 1.6.30 to obtain the sub-diagram
labeled by the letter h which commutes up to homotopy equivalence. By The-
orem 1.6.9 and the property of the map 6y + 61 (from Theorem 5.32a), this
sub-diagram leads to the sub-diagram labeled by w in the first picture.

With the first picture in mind, we define

Bn+1:C@B@D7

"/Jn,nJrl = (51 © an) SERURSS (53 © d)mmﬂz |P0Am1 Py © a)v
Bn = &1 @ (6 © 9) D (63 © ¢m1,m2‘P0Am1P0 o 9)7

and
an+1 = (¢m1,s(n+1) ‘PIA'mlPl o 52) @ (Adu o a”) @ 54

In the definitions of ¢, 41 and a,41, we use solid line arrows only since these
maps are supposed to be homomorphisms (but in the definition of 3,,, we can
use broken line arrows).

One can easily verify the conditions (0.1)—(0.5) except that the map
By s(n+1)| Py A, P © &2 may not automatically satisfy the dichotomy condition
(0.5), for which we have to apply Lemma 6.2 to make some modification.
DETAILS OF THE CONSTRUCTION. The above outline can be used as a guide
to understand the following construction. But the proof below is complete by
itself. (We encourage readers to compare the following detailed proof with the
two diagrams in the outline.)

Among the conditions in the induction assumption, only the dichotomy condi-
tion (0.5) of «, is used in the following construction.

STEP 1. By Theorem 5.32b, applied to o, : B, — Agny, En C Bp, Fry C Ay,
and € > 0, there are 4,,, (m1 > s(n)), two orthogonal projections Py, Py € A,
with g(n)m, (1a,(,,) = Po+ P and Py trivial, a C*-algebra C' — a direct sum
of matrix algebras over C[0, 1] or C—, a unital map 6 € Map (A, PoAm, Po)1,
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a unital homomorphism & € Hom(A,,),C)1, an injective unital homomor-
phism & € Hom(C, P1 A, P1); and a (not necessarily unital) homomor-
phism « € Hom(B,,, PyAnm, Po) such that

(11) [ftmym () — 0 & (2 0 &) ()| < &0 for all f € F

(1.2) 0 is Fy,-e,, multiplicative and F := 6(F,,) is weakly approximately constant
to within &,,.

(1.3) [[ag) — O 0 an(g)ll <en for all g € E,.

(1.4) Both a : B,, — PyA,,, Po and & : C — Py A, Py satisfy the dichotomy
condition in (0.5).

(Thus we finished the construction of the sub-diagrams labeled by the number
“1” and “% @4(n),m, " of the large diagram in the outline.)

Let all the blocks of C' be parts of C'*-algebra B,;. That is,

B +1 = C @ (some other blocks).

The map 3, : Agn) — Br+1 and the homomorphism ¢y, 11 : By — By are
defined by

Bn = 51 : As(n) - C(C Bn-‘rl) and q/)n,n—i-l = El ocan: B, —C ( C Bn+1)

for the blocks of C' ( C B,41). For this part, 3, is also a homomorphism.
STEP 2. Let A = PyA,,, Py, F = 6(F,). Since Py is a trivial projection,

A= @ Mli (C(Xmlﬂ))

Let rA:= @ M;,(C) C A, and r : A — rA be the homomorphism defined by
evaluation at certain base points z € X,,, ; (see 1.1.7(h)).

Applying Corollary 1.6.29 (see Remark 1.6.31 also) to o : B, — A (notice
that « satisfies the dichotomy condition), E,, C B, and F' C A, we obtain the
following diagram:

A ML) @A)

N e

B, -5 B
such that
(2.1) B is a direct sum of matrix algebras over {pt},[0,1], S, Trs x, Trr1.k, OF
52,

(2.2) ' is an injective homomorphism, and (3 is an F-&,, multiplicative map.
(23) ¢ : A — Mp(A) is a unital simple embedding. r : A — r(A) is the
homomorphism defined by evaluations as in 1.1.7(h).

(2.4) [IFoalg) — (o) <enforall g€ En,  [(@@7)(f) —a’ o B < en
for all f € F(:=0(F)).

(Thus we finished the construction of the sub-diagrams labeled by the number
“2” and “4” of the second diagram in the outline.)

Let all the blocks B be also parts of B, 11, that is,

B,+1 = C & B & (some other blocks).

DOCUMENTA MATHEMATICA 7 (2002) 255-461



450 GUIHUA GONG
The maps B, : Agtn) — Bnt1,¥nnt1 0 By — Bpy are defined by

Bui=P008: Ay AL B (CBuy)

and
Ypnt1 =9 : B, — B (C Bpt1)

for the blocks of B(C By,+1). This part of 3, is F,-2¢, multiplicative, since
is Fy,-&, multiplicative, § is F-¢, multiplicative, and F' = (F},).

STEP 3. By the simplicity of lim(A,, ¢n,m), for m large enough, the homo-
morphism ¢y, m|py ,,, P, 18 4M-large in the sense of 1.6.16. By Lemma 1.6.30,
applied to ¢ ®r : A — Mp(A) ® r(A), there is an A,,, and unital homo-
morphism A : My (A) @ r(A) — RA,, R, where R = ¢y m, (Po) (write R as
@, R € @, AJ,,) such that the diagram

RAm, R

e P

A(= PyAnm, Py) oOr My (A) ®r(A)

satisfies the following conditions:
(3.1) For each block AJ, , the partial map

NI Mp(A)@r(A) — RIA} R

is non zero. Furthermore, either it is injective or it has finite dimensional image
— depending on whether SP(47, ) is a single point space.

m

(3.2) Ao (¢ @ r) is homotopy equivalent to

QS/ = ¢7n1,m2 |A-

(Thus we finished the construction of the sub-diagram labeled by the letter “h”
of the second diagram in the outline.)

STEP 4. Applying Theorem 1.6.9 to the finite set ' C A (which is weakly
approximately constant to within £,), and to two homotopic homomorphisms

¢ and Ao(p®r): A— RA,,R

(with RA,,, R in place of C'), we obtain a finite set F’ C RA,,, R, § > 0 and
L > 0 as in the Theorem 1.6.9.
Let G :=¢(FE,) U B(F) C B. By Theorem 5.32a, applied to RA,,, R,

Aoad' : B— RA,,R
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(which satisfies the dichotomy condition by (2.2) and (3.1)), finite sets G C
B, F' C RAp, R, min(e,,d) > 0 (in place of €), and L > 0, there are A,(,41),
mutually orthogonal projections Qo,Q1,Q2 € A1) With ¢p, s(ni1)(R) =
Qo + Q1 + Q2, a C*-algebra D — a direct sum of matrix algebras over
C[0,1]—, a unital map 6y € Map(RA, R, QoAs(n+1)Qo) and four unital homo-
morphisms 6; € HOHI(RAmZR,QlAS(n_H)Ql)l, & e HOm(RAm2R,D)1,€4 S
Hom(D, Q2As(n41)Q@2)1, and o € Hom(B, (Qo+ Q1) As(n+1)(Qo+Q1))1 such
that the following are true:

(4.1) 61y a1y () — (B0 +01) & (€4 0&)) ()] < 2 for all f € F' C RA, R.
(4.2) [ (g) — (o + 601) o Ao &/ (g)]| < &y, for all g € G.

(4.3) By is F'-min(e,, §) multiplicative and 6, satisfies that

617 (la) > L - (657 (R")]

for any non zero projection ¢ € R'A,,, R'.

(4.4) Both a” : B — (Qo + Q1) As(n+1)(Qo + Q1) and &4 : D — Q2 A(n41)Q2
satisfy the dichotomy condition (0.5).

(Thus we finished the construction of the sub-diagrams labeled by the number
“37 and “~ ¢y, s(nt1)” Of the large diagram in the outline. Combined with
Step 2 and Step 3, these two sub-diagrams will lead to the sub-diagram labeled
by the letter “u” of the large diagram as below.)

By the end of 1.1.4, for any blocks A?, Afnz and any non zero projection e €

At gk (e) € AR is a non zero projection. As a consequence of (4.3), we

have
[(010¢")(e)] > L-[0o(R)] (= L-[Qol),

(Recall that ¢’ = ¢, m,|a). Therefore, 8y and 6, (in place of Ag and Aq)
satisfy the condition in Theorem 1.6.9. By Theorem 1.6.9, there is a unitary

u € (Qo + Q1)As(n+1)(Qo + Q1) such that
(60 +61) 0 ¢'(f) — Aduo (6g + 1) o Xo (p@7)(f)|| < 8en,  VfEF

Combining it with the second inequality of (2.4), we have
(4.5) (6o 4+ 01) 0 &' (f) — Aduo (Bg + 61) o Ao o B(f)] < 9en, vVfePF.
STEP 5. Finally, let all the blocks of D be the rest of B,,;1. Namely, let

Bn+1:C@B@D,

where C'is from Step 1, B is from Step 2, and D is from Step 4.

We already have the definitions of 3,, : Agn) — Bpy1 and ¥p ny1 @ By — Baga
for those blocks of C' @ B C By41 (from Step 1 and Step 2). The definitions of
Bn and v, n41 for blocks of D, and the homomorphism oy,4+1:C® B G D —
Ag(ns1) Will be given below.

The part of 3, : Ayn) — D (C Bpy1) is defined by

ﬂn:§30¢/091A5(n)LALRAmQR&D,
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(Recall that A = PyA,,, Py and ¢’ = ¢y, m,|a.) Since 0 is F,-¢,, multiplicative,
and ¢’ and &3 are homomorphisms, we know that this part of 3, is Fj-&,
multiplicative.

The part of ¥y, 41 : By, — D (C Bp41) is defined by

wn,n-l-l:§3O¢loa:Bni>Ai>RAm2Ri>D

which is a homomorphism. The homomorphism a1 :CS&B & D — Ay
is defined as follows.
Consider the composition

5 1"
¢" 0 &1 C =5 PiAm, Pt = Gy sini1)(P1) Asinin)Pma smr) (P1),

where Py and &y are from Step 1, ¢" = ¢, s(n+1)lPya,, - Using the di-
chotomy condition of £, by Lemma 6.2, there is a homomorphism 7 : C —
¢m1,s(n+1)(Pl)As(n+1)¢m1,s(n+1) (Pl) such that

(5.1)  7(f) = (@" 0 &)l <en, VfE€&(Fn)CC,and

(5.2) T satisfies the dichotomy condition (0.5).

Define

an+1|C =7:C— ¢m1,s(n+1) (Pl)As(n+l)¢m1,s(n+l) (P1)7
tnt1lp =Aduoa” : B == (Qo + Q1) As(ni1)(Qo + Q1) Adu

where o is from Step 4, and define

O"rL+1|D = 54 D — QQAs(nJrl)QQ-
Finally, choose {a,11 ;}321 C Ag(nr1) and {bnt1 ;152 C Buy1 to be countable

dense subsets of unit balls of A1) and By, 41, respectively. And choose

n+1

Fn+1 = ¢s(n),s(n+1)(Fn) ) an+1(En+1) U U ¢s(i),s(n+1)({aila A2, ", A4 n+1})
=1

and

n+1
En+1 = wn,n—i-l(En) ) Bn(Fn) U U ¢i,n+1({bi17 biQa ) bi n+1})-
=1

Thus we obtain the following diagram:

¢3(n),s(n+1)
-—

F, C As(n) As(n+1) ) Fn+1
T@n \5‘71 Tan#»l
E,C By ias Bny1 D Enyr -

STEP 6. Now we need to verify all the conditions (0.1)—(0.5) for the above
diagram.
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(0.1)—(0.2) hold from the construction (see the constructions of B, C, D in Step
1, Step 2 and Step 4, and E,, 11, F}, 41 in the end of Step 5.)

(0.3) follows from the end of Step 1, the end of Step 2, and the part of the
definition of 3, for D from Step 5.

(0.5) follows from (4.4) and (5.2).

So we only need to verify (0.4).

Combining (1.1) with (4.1), we have

[6s(n).s(n+1)(f) = [(¢" 0&20£1) & (60 +01) 0 ¢' 00) & (§a0 &30 9" 0 O)](f)]

< Ep+éEn =28,

for all f € F, (recall that ¢ = ¢m1’s(n+1)|P1Amlpl,¢/ = ¢m1’m2\p014m1p0).
Combined with (4.2), (4.5), (5.1) and the definitions of 3,, and «;,11, the pro-

ceeding inequality yields

||¢s(n),s(n+1)(f) - (anJrl © 5n)(f)|| < 9ep +&n + 26, = 126, Vf € F,.

Combining (1.3), the first inequality of (2.4), and the definitions of 3, and
Yn.nt+1, We have

”wn,n-i-l(g) - ﬂn o an(g)H <é&p+en =2¢e, v.g ck,.

So we obtain (0.4).
The theorem follows from Proposition 6.1.
(n

REMARK 6.4. In the proof of the above theorem, if there is at least one block
of By+1 having spectrum of forms S*, Ty, Trrrk, or S?, then we can chose
the map ¥, nt+1 to be injective (e.g., the map 1 in Step 2 can be chosen to
be injective). Hence, in general, we can make the maps ¢, m, in the inductive
system (B, ¥n.m), injective. (Note that if no space of S, Trk, Trrr or S?
appears, then it is easy to make the maps injective; see Theorem 2.2.1 of [Li2]).

REMARK 6.5. By Lemma 1.3.3, our main result Theorem 6.3 also holds for
general simple AH inductive limit C*-algebras

lim(A, = @, PuiMpn.i(C(X0.:))Pais énm) with uniformly bounded dimen-
sions of X, ;, where P,; € My, (C(X,,;)) are projections. That is, such
an AH algebra can be written as an inductive limit of a system (B, =
@f;l niMn iy (C(Yni))Qni, Yn,m), where Y, ; are the spaces:

{pt},[0,1], S, Ty1 g, Trrrr and S?, and Q,,; € M{y,,i3(C(Yn,:)) are projections.

6.6. Suppose that a simple C*-algebra A is an inductive limit of matrix
algebras over X, ;, where X, ; are the spaces of forms {pt},[0,1], S, S? Ty
or Trrr k. Suppose that K, (A) is torsion free. Then it can be proved that for
each fixed algebra A,,, integer N > 0, there is an A,, such that

vankgi, (L )

>N
rank(lA%) =0
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and that (¢n m)«(torK.(A,)) = 0. Based on this, using the argument
from §4 of [G2], we know that for any FF C A,,e > 0, if N is large
enough, then the above ¢,, ,, is homotopic to a homomorphism ¢ : A4, —
Gnm(La, ) Amdnm(1a,) satistying ¢(F) C. C, where C is a direct sum of ma-
trix algebras over spaces {pt}, [0, 1] and S!. (See [G1] and the proof of Lemma
5.6 of [EGL] also.) Using the above fact, the following Corollary is a direct
consequence of our Main Theorem and its proof. (In fact, since the algebras
My (C), My (C[0,1]) and My(C(S')) are stably generated, the proof is much
simpler (see §3 of [Li3]).

COROLLARY 6.7. Suppose that A is a simple C*-algebra which is an inductive
limit of an AH system with uniformly bounded dimensions of local spectra.
If K.(A) is torsion free, then it is an inductive limit of matriz algebras over

C(Sh).

Combining the above corollary with [E12] (see [NT] also), we have the following
theorem.

THEOREM 6.8. Suppose that A= lim (An:@filPn’iM[n,i](C(Xm))anqbn,m)

and B = lim (B, = @, Qn,iMin,iy(C(Yni))Qn.is nm) are unital simple
n—oo

inductive limit algebras with uniformly bounded dimensions of local spectra X, ;

and Y, ;, respectively. Suppose that K.(A) = K.(B) are torsion free.

Suppose that there is an isomorphism of ordered groups

¢o: KopA— KoB
taking [1] € KoA into [1] € KoB, that there is a group isomorphism
¢ : K1A— KB
and that there is an isomorphism between compact convexr sets
¢r: TB —TA,

where TA and T B denote the simplices of tracial states of A and B, respectively.
Suppose that ¢pg and ¢ are compatible, in the sense that

T(¢Og) = ¢T(T)(g)7 g € KgA, 1€ TB.

It follows that there exists an isomorphism
¢: A— B
giving rise to ¢g, d1, Or-

REMARK 6.9. Since the C*-algebras C(Ty;x), C(Trrrx) and C(S?) are not
stably generated, our proof heavily depends on the results that, certain G-
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multiplicative maps (with parts of point evaluations of sufficiently large sizes)
are approximated by true homomorphisms in §5. We believe that such results
should play important role in the future study of general simple C*-algebras
(with or without real rank zero property).

REMARK 6.10.  From a result of J. Villadsen, [V1], one knows that the
restriction on the dimensions of the spaces X, ; can not be removed.

In [G5]—an appendix to this article, we will show that the condition of uni-
formly bounded dimensions of local spectra can be replaced by the condition
of very slow dimension growth. The main difficulty for this case is that we can
not obtain the homomorphism from B,, to A,(,) as the homomorphism a, in
the above proof. (The «,, in this case will be only a sufficiently multiplicative
map.) But we can still construct homomorphisms v, : B, — Bpi1, if we
carefully choose «,, and (3,. This case does not create essential difficulty, but
makes the proof much longer. We refer it to [G5] , a separate appendix to this
paper.

It could be an improvement if one can replace the very slow dimension growth
condition by the slow dimension growth condition. The author believes that
the theorem is also true for this case. In fact, if one can prove the corresponding
decomposition results (see Section 4) for the AH-algebras with slow dimension
growth, then the Main Theorem in this article would also hold, by the same
proof as in [G5].

COROLLARY 6.11. Suppose that A = lim (4, = D) My i (C( X)) bnom)
is a simple inductive limit C*-algebras. Suppose that each of the spaces X, ;
is of the forms: {pt},[0,1],S8Y,S% Ti1x or Tirrk. And suppose that all the
connecting maps ¢ m are injective. For any F C A,,e > 0, if m is large
enough, then there are two mutually orthogonal projections P,Q € A, and two
homomorphisms ¢ : A, — PA,P and ¢ : A, — QA,,Q such that

(1) lonm(f) = (@@ P)(f)Il <& for all f € F;

(2) ¢(F) is weakly approzimately constant to within £ and SPV(¢) < &;

(8) ¥ factors through matrixz algebras over C|0,1].
Furthermore, if for some i, j, the partial map ¢§ﬂm : Al — Al is homotopic
to a homomorphism with finite dimensional image, then the part ¢ of the
decomposition ¢ B corresponding to this partial map can be chosen to be zero
(or, equivalently, ¢-3  itself is close to a homomorphism factoring through a

n,m

matriz algebra over C[0,1]).

Proof: Tt follows from the corollary of 2.3 of [Su] that for any M;(C(X)),
€ > 0, there are &1 > 0 and a finite subset F' of self adjoint elements
of Mi(C(X)) (ie.,, F C (M;(C(X)))s.a) such that for any homomorphism
¢ M(C(X)) — M, (C(Y)), if ¢(F) is weakly approximately constant to
within €1, then SPV(¢) < e. Therefore, for the desired condition (2) above, we
only need to make ¢(F') weakly approximately constant to within min(e,e1).
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To simplify the notation, we still denote min(e,e1) by e.

Now, the main body of the corollary follows from Lemma 6.2 and Theorem
5.32b. Namely, first apply Lemma 6.2 to id : A, — A, (in place of ¢) and A,
in place of both B and A, to find A,, (in place of A4,,) and homomorphism
a: A, — A,, such that « satisfies the dichotomy condition and such that «
is sufficiently close to ¢, ,, on the finite set F'. Then apply Lemma 5.32b to
A, and F C A,, (in place of B and G C B), A,, and ¢, ,, (F) C Ay, (in place
of A, and F C A), and o : A,, — A,,, (in place of o : B — A,,) to construct
the desired decomposition. (Note that we use the following trivial fact: If two
maps ¢1, ¢ : A, — A, are approximately equal to each other to within £; on
the finite set F' and the set ¢1(F’) is weakly approximately constant to within
€9, then the set ¢o(F') is weakly approximately constant to within 2e1 + €5.)
For the last part of the Corollary, one needs to notice the following facts.

(i) In the additional parts of Corollaries 5.22 and 5.23, if the homomorphisms 1)
are homomorphisms with finite dimensional images, then the homomorphisms ¢
in the corollaries 5.22 and 5.23 are also homomorphisms with finite dimensional
images.

(ii) In Lemma 5.28, if both ¢ and ¢; are homomorphisms factoring through
interval algebras (this condition implies that they are homotopic to homomor-
phisms with finite dimensional images), then the homomorphism ¢ in Lemma
5.28 (with [¢)]. = [¢p2]«) can be chosen to be a homomorphism with finite
dimensional image.

With the above facts, if qbﬁﬂm is homotopic to a homomorphism with finite
dimensional image and if X,,; # S!, then the corresponding part of ¢ in our
corollary could be chosen to be a homomorphism with finite dimensional image,
and therefore it can also factor through matrix algebras over C[0,1]. So, we
can put it together with the part ¢) and hence the part ¢ disappears from the
decomposition of this partial map. This proves the additional part for the case
X # St

For the case that X,,; = S, the additional part of the corollary follows from
the following claim.

Claim: For any unitary u € A% and any € > 0, there is an integer N > n such
that if m > N, and if qﬁw ( ) is in the path connected component of the unit
in the unitary group of ¢%J o (LA VAL o m(lA;)v then there is a self adjoint
element a € ¢4, (141 ) A7, ¢W (14: ) such that

77 (1) — €27 < e

(Obviously, if gzﬁi’j is homotopic to a homomorphism with finite dimensional
image, then QSW (u) is in the path connected component of the unit element
in the unitary group of (ﬁ{f (La: VAT, (b” (1a:)-)

The proof of the above claim is exactly the same as the proof of the main
theorem of [Phi3]: the simple inductive limit C*-algebra in our corollary has
exponential rank at most 1 + . We omit the details.
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We point out that, in [EGL], we will only need this result for the case X, ; =
S2. Since dim(S?) < 2, PM,(C(5?%))P has exponential rank at most 1 + .
Therefore, the claim for the case X,, ; = 52 (Xni= S1) is trivial.

1]
By Lemma 1.3.3, the above corollary also holds for the case of
A =@, PuiMp, 3(C(Xn:)) P, instead of A, = @™, My, i(C(Xni))-
COROLLARY 6.12. Suppose that A = lim (4, @ " PriMipy, i (C(Xn,i)) Prsis

n—oo
Gn.m) is a simple inductive limit C*-algebra. Suppose that each of the spaces
X,.i is of the forms: {pt},[0,1],S, 5%, T, or Tirr. And suppose that all
the connecting maps ¢n. ., are injective. For any F' C A,,e > 0, if m is large
enough, then there are two mutually orthogonal projections P,Q € A,, and two
homomorphisms ¢ : A, — PA,P and ¢ : A, — QA,,Q such that
(1) [nm(f) = (6@ ) () < & for all f € F;
(2) ¢(F) is weakly approximately constant to within € and SPV(¢) < &;
(3) ¥ factors through matriz algebras over C|0, 1].
Furthermore, if for some i, j, the partial map d)iﬂm : Al — Al is homotopic
to a homomorphism with finite dimensional image, then the part ¢ of the
decomposition ¢ B corresponding to this partial map can be chosen to be zero
(or, equivalently, Zﬂm itself is close to a homomorphism factoring through a
matriz algebra over C[0,1]).

Proof: By Lemma 1.3.3, there is an inductive system

tn
A= lim (A, = P My (C(Xn i), Snm)

i=1
such that each P, ;Mp, )(C(Xp:))Pn: is a corner of My, ;1 (C(X,,:)) and
Onm = q@n,m|pnyiM[n,i](C(Xn‘i))pm. A is simple since it is stably isomorphic
to a simple C*-algebra A. qgnym are injective since ¢y, ,, are injective. Apply
Corollary 6.11 to F' U {1A$L}§11 c A, C A, and 7 > 0 to obtain ¢ and ¥ as
the homomorphisms ¢ and v in Corollary 6.11. Since

||(q5 + /‘E)(lA;) - (Zgn,m(lA;)

9
< -, Vi,
‘ 4 ?

there is a unitary u € A, such that ||u — 1|| < 5 and
u((¢ + 1;)(114;'}))”* = én,m(lA;) = Pnm(Lai), Vi

Finally, let . .
¢ =(Aduo¢)la, and ¢ = (Aduot))|a,

to obtain our corollary.
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