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Abstract. A property of subshifts is described that allows to asso-
ciate to the subshift a distinguishied presentation by a compact Shannon
graph. For subshifts with this property and for the resulting invariantly
associated compact Shannon graphs and their λ-graph systems the term
‘Cantor horizon’ is proposed. The Dyck shifts are Cantor horizon. The
C∗-algebras that are obtained from the Cantor horizon λ-graph systems
of the Dyck shifts are separable, unital, nuclear, purely infinite and sim-
ple with UCT. The K-groups and Bowen-Franks groups of the Cantor
horizon λ-graph systems of the Dyck shifts are computed and it is found
that the K0-groups are not finitely generated.
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0. Introduction

Let Σ be a finite alphabet. On the shift space ΣZ one has the left-shift that
sends a point (σi)i∈Z

into the point (σi+1)i∈Z
. In symbolic dynamics one studies

the dynamical systems, called subshifts, that are obtained by restricting the
shift to a shift invariant closed subset of ΣZ. For an introduction to symbolic
dynamics see [Ki] or [LM]. A finite word in the symbols of Σ is said to be
admissible for the subshift X ⊂ ΣZ if it appears somewhere in a point of X.
A subshift is uniquely determined by its set of admissible words. Throughout
this paper, we denote by Z+ and N the set of all nonnegative integers and the
set of all positive integers respectively.
A directed graph G whose edges are labeled by symbols in the finite alphabet
Σ is called a Shannon graph if for every vertex u of G and for every α ∈ Σ, G
has at most one edge with initial vertex u and label α. We say that a Shannon
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graph G presents a subshift X if every vertex of G has a predecessor and a
successor and if the set of admissible words of X coincides with the set of label
sequences of finite paths on G. To a Shannon graph G there is associated a
topological Markov chain M(G). The state space of M(G) is the set of pairs
(u, α), where u is a vertex of G and α is the label of an edge of G with initial
vertex u. Here a transition from state (u, α) to state (v, β) is allowed if and
only if v is the final vertex of the edge with initial vertex u and label α. For
a vertex u of Shannon graph G we denote the forward context of u by Γ+(u).
Γ+(u) is the set of sequences in ΣN that are label sequences of infinite paths
in G that start at the vertex u. We say that a Shannon graph G is forward
separated if vertices of G, that have the same forward context, are identical.
The Shannon graphs that we consider in this paper are forward separated. We
always identify the vertices of a forward separated Shannon graph G with their
forward contexts, and then use on the vertex set of G the topology that is given
by the Hausdorff metric on the set of nonempty compact subsets of ΣN.
There is a one-to-one correspondence between forward-separated compact
Shannon graphs G such that every vertex has a predecessor and a class of
λ-graph systems [KM]. We recall that a λ-graph system is a directed labelled
Bratteli diagram with an additional structure. We write the vertex set of a
λ-graph system as

V =
⋃

n∈Z+

V−n.

Every edge with initial vertex in V−n, has its final vertex in V−n+1, n ∈ N.
It is required that every vertex has a predecessor and every vertex except the
vertex in V0 has a successor. In this paper we consider λ-graph-systems that
are forward separated Shannon graphs. Their additional structure is given by
a mapping

ι :
⋃

n∈N

V−n → V

such that

ι(V−n) = V−n+1, n ∈ N

that is compatible with the labeling, that is, if u is the initial vertex of an edge
with label α and final vertex v, then ι(u) is the intial vertex of an edge with
label α and final vertex ι(v).
Given a subshift X ⊂ ΣZ there is a one-to-one correspondence between the
compact forward separated Shannon graphs that present X, and the forward
separated Shannon λ-graph systems that present X. To describe this one-
to-one correspondence denote for a vertex v of a Shannon graph by vn the
set of initial segments of length n of the sequences in V, n ∈ N. The λ-graph
system that corresponds to the forward separated Shannon graph has as its
set V−n the set of vn, n ∈ Z+, v a vertex of G, and if in G there is an edge
with initial vertex u and final vertex v and label α then in the corresponding
λ-graph system there is an edge with initial vertex un, final vertex vn−1, n ∈ N,

Documenta Mathematica 8 (2003) 79–96



A Lambda-Graph System for the Dyck Shift . . . 81

and label α, the mapping ι of the corresponding λ-graph system deleting last
symbols.
λ-graph systems can be described by their symbolic matrix systems [Ma]

(M−n,−n−1, I−n,−n−1)n∈Z+
.

Here M−n,−n−1 is the symbolic matrix

[M−n,−n−1(u, v)]u∈V
−n,v∈V

−n−1

that is given by setting M−n,−n−1(u, v) equal to α1 + · · ·+ αk if in V there is
an edge with initial vertex v and final vertex u with label αi, i = 1, . . . , k and
by setting M−n,−n−1(u, v) equal to zero otherwise. I−n,−n−1 is the zero-one
matrix

[I−n,−n−1(u, v)]u∈V
−n,v∈V

−n−1

that is given by setting I−n,−n−1(u, v) equal to one if ι(v) = u and by setting
I−n,−n−1(u, v) equal to zero otherwise. We remark that the time direction
considered here is opposite to the time direction in [Ma]. For symbolic matrix
systems there is a notion of strong shift equivalence [Ma] that extends the
notion of strong shift equivalence for transition matrices of topological Markov
shifts [Wi] and of the symbolic matrices of sofic systems [BK,N].
To a symbolic matrix system there are invariantly associated K-groups and
Bowen-Franks groups [Ma]. To describe them, let

Mn,n+1 = [Mn,n+1(u, v)]u∈V
−n,v∈V

−n−1

be the nonnegative matrix that is given by setting Mn,n+1(u, v) equal to zero if
M−n,−n−1(u, v) is zero, and by setting it equal to the number of the symbols
whose sum is M−n,−n−1(u, v) otherwise. We let In,n+1, n ∈ Z+ be I−n,−n−1.
Let m(n) be the cardinal number of the vertex set V−n. Also denote by
Īt
n,n+1, n ∈ Z+ the homomorphism from Z

m(n)/(M t
n−1,n − It

n−1,n)Zm(n−1) to

Z
m(n+1)/(M t

n,n+1 − It
n,n+1)Z

m(n) that is induced by It
n,n+1. Then

K0(M, I) = lim−→
n

{Zm(n+1)/(M t
n,n+1 − It

n,n+1)Z
m(n), Īt

n,n+1},

K1(M, I) = lim−→
n

{Ker(M t
n,n+1 − It

n,n+1) in Z
m(n), It

n,n+1}.

Let ZI be the group of the projective limit lim−→
n

{Zm(n), In,n+1}. The sequence

Mn,n+1 − In,n+1, n ∈ Z+ acts on it as an endomorphism, denoted by M − I.
The Bowen-Franks groups BF I(M, I), i = 0, 1 are defined by

BF 0(M, I) = ZI/(M − I)ZI , BF 1(M, I) = Ker(M − I) in ZI .
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Given a subshift X ⊂ ΣZ we use for x = (xi)i∈Z
∈ X notation like

x[j,k] = (xi)j≤i≤k,

and we set
X[j,k] = {x[j,k] | x ∈ X}, j, k ∈ Z, j < k,

using similar notations when indices range is infinite intervals. We denote the
forward context of a point x− in X(−∞,0] by Γ+(x−),

Γ+(x−) = {x+ ∈ X[1,∞) | (x−, x+) ∈ X}.

The set G(X) = {Γ+(x−) | x− ∈ X(−∞,0]} is the vertex set of a forward sepa-
rated Shannon graph that presents X. The λ-graph system of its closure was
introduced in [KM] as the canonical λ-graph system of the subshift X. It is
canonically associated to the subshift in the sense that a topological conju-
gacy of subshifts induces a strong shift equivalence of their canonical λ-graph
systems.
For a subshift X ⊂ ΣZ that is synchronizing [Kr] (or semisynchronizing [Kr] )
one has an intrinsically defined shift invariant dense subset Ps(X) of periodic
points of X, and one has associated to X the presenting forward separated
Shannon graph whose vertex set is the set of forward contexts Γ+(x), where
x is left asymptotic to a point in Ps(X). These Shannon graphs are canon-
ically associated to the synchronizing (or semisynchronizing) subshift, in the
sense that a topological conjugacy of subshifts induces a block conjugacy of
the topological Markov chains of the Shannon graphs and also a strong shift
equivalence [Ma] of the λ-graph systems of their closures. Prototype examples
of semisynchronizing subshifts are the Dyck shifts that can be defined via the
Dyck inverse monoids. The Dyck inverse monoid is the inverse monoid (with
zero) with generators αn, βn, 1 ≤ n ≤ N, and relations

αnβn = 1, 1 ≤ n ≤ N,

αnβm = 0, 1 ≤ n,m ≤ N, n 6= m

and the Dyck shift DN is defined as the subshift DN ⊂ {αn, βn | 1 ≤ n ≤ N}Z,
whose admissible words (γi)0≤i≤I satisfy the condition

∏

0≤i≤I

γi 6= 0.

In section 1 we introduce another class of subshifts X ⊂ ΣZ with an intrinsically
defined shift invariant dense set PCh(X) of periodic points. Again the Dyck
shifts serve here as prototypes. In the Dyck shift DN the points in PCh(DN )
are such that during a period there appears an event that has the potential
to influence even the most distant future. In other words, a point (xi)i∈Z

in
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DN with period p is in PCh(DN ) if the normal form of the word (xi)0≤i<p is a
word in the symbols αn, 1 ≤ n ≤ N. One can view here the record of an infinite
sequence of events as a point in a Cantor discontinuum. With this in mind,
we call the subshifts in this class Cantor horizon subshifts. The presenting
Shannon graph with vertex set the set of forward contexts Γ+(y−), where y−

is negatively asymptotic to a point in PCh(X), is canonically associated to the
Cantor horizon subshift X ⊂ ΣZ, and so is the λ-graph system of its closure,
that we call the Cantor horizon λ-graph system of X. The Cantor horizon
λ-graph system of a Cantor horizon subshift is a sub λ-graph system of its
canonical λ-graph system.
The K-groups and Bowen-Franks groups of the symbolic matrix system
(MDN , IDN ) for the canonical λ-graph systems of the Dyck shifts DN , N ≥ 2
were computed in [Ma2]. These are

K0(M
DN , IDN ) ∼=

∑

n∈N

Z, K1(M
DN , IDN ) ∼= 0,

BF 0(MDN , IDN ) ∼= 0, BF 1(MDN , IDN ) ∼=
∏

n∈N

Z.

In section 3 we determine the symbolic matrix system (MCh(D2), ICh(D2)) of
the Cantor horizon λ-graph system L

Ch(D2) of the Dyck shift D2, and we
compute its K-groups. Denoting the group of all Z-valued continuous functions
on the Cantor discontinuum C by C(C, Z) one has

K0(M
Ch(D2), ICh(D2)) ∼= Z/2Z ⊕ C(C, Z),

and one has
K1(M

Ch(D2), ICh(D2)) ∼= 0.

One can construct simple C∗-algebras from irreducible λ-graph systems [Ma3].
A λ-graph system is said to be irreducible if for a sequence v−n ∈ V−n, n ∈ Z+

of vertices with ι(v−n) = v−n+1 and for a vertex u, there exists an N ∈ Z+

such that there is a path from v−N to u. It is said to be aperiodic if for a vertex
u, there exists an N ∈ Z+ such that for all v ∈ V−N there exist paths from
v to u. The Cantor horizon λ-graph system L

Ch(D2) of the Dyck shift D2 is
irreducible and moreover aperiodic. Hence the resulting C∗-algebra O

LCh(D2) is
simple and purely infinite whose K0-group and K1-group are the above groups
K0(M

Ch(D2), ICh(D2)) and K1(M
Ch(D2), ICh(D2)) respectively (cf. [Ma3]). In

section 4, we compute the Bowen-Franks groups of the symbolic matrix system
(MCh(D2), ICh(D2)).
In section 5, we consider the K-groups and Bowen-Franks groups of the Dyck
shifts DN , N ≥ 2. Here one has

K0(M
Ch(DN ), ICh(DN )) ∼= Z/NZ ⊕ C(C, Z),

K1(M
Ch(DN ), ICh(DN )) ∼= 0.

Documenta Mathematica 8 (2003) 79–96



84 Wolfgang Krieger and Kengo Matsumoto

1. Subshifts with Cantor horizon lambda-graph systems

Denoting for a given subshift X ⊂ ΣZ, the right context of an admissible block
x[i,j], x ∈ X, i, j ∈ Z, i ≤ j, by Γ+(x[i,j]),

Γ+(x[i,j]) = {y+ ∈ X(j,∞) | (x[i,j], y
+) ∈ X[i,∞)}

and its left context by Γ−(x[i,j]),

Γ−(x[i,j]) = {y− ∈ X(−∞,i) | (y−, x[i,j]) ∈ X(−∞,j]},

we set

ω+(x[i,j]) =
⋂

y−∈Γ−(x[i,j])

{y+ ∈ X(j,∞) | (y−, x[i,j], y
+) ∈ X}.

Lemma 1.1. Let X̃ ⊂ Σ̃Z,X ⊂ ΣZ be subshifts and let ψ : X̃ → X be a

topological conjugacy. Let for some L ∈ Z+ ψ be given by a (2L+1)-block map

Ψ and ψ−1 be given by a (2L + 1)-block map Ψ̃. Let Ñ ∈ N, and let x̃ ∈ X̃ be

such that

(1.1) ω+(x̃
(−L−Ñ,−L]

) = ω+(x̃(−L−ñ,−L]), ñ ≥ Ñ .

Then for x = ψ(x̃) and N = Ñ + 2L,

(1.2) ω+(x(−N,0]) = ω+(x(−n,0]), n ≥ N.

Proof. Let n ≥ N, and let

(1.3) y+ ∈ ω+(x(−n,0]).

Let
ỹ+ = Ψ̃(x[−L,0], y

+).

One has

(1.4) ỹ+ ∈ ω+(x̃
(−Ñ−L,−L]

),

which implies that
y+ ∈ ω+(x(−N,0]),

confirming (1.2). We note that by (1.1) one has that (1.4) follows from

ỹ+ ∈ ω+(x̃(−ñ−L,−L]),

which in turn follows from (1.3). ¤

Let X ⊂ ΣZ be a subshift and P (X) be its set of periodic points. Denote by
Pa(X) the set of x ∈ P (X) such that there is an N ∈ N such that

ω+(x(−N,0]) = ω+(x(−n,0]), n ≥ N.
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Lemma 1.2. Let X̃ ⊂ Σ̃Z,X ⊂ ΣZ be subshifts and let ψ : X̃ → X be a

topological conjugacy. Then

ψ(Pa(X̃)) = Pa(X).

Proof. Apply Lemma 1.1. ¤

By Lemma 1.1 the following property of a subshift X ⊂ ΣZ is invariant under
topological conjugacy : For x ∈ X and N ∈ N such that

ω+(x(−N,0]) = ω+(x(−n,0]), n ≥ N

there exists an M ∈ N such that

ω+(x[−M,0)) = ω+(x[−m,0)), m ≥ M.

For a subshift X ⊂ ΣZ with this property we consider the subgraph GCh(X)
of G(X) with vertices Γ+(u−) where u− ∈ X(−∞,0] is negatively asymptotic to
a point in PCh(X) = P (X)\Pa(X). If here GCh(X) presents X then we say
that X is a Cantor horizon subshift, and we call the λ-graph system of the
closure of GCh(X) the Cantor horizon λ-graph system of X. By Lemma 1.2
the Cantor horizon property is an invariant of topological conjugacy and the
Cantor horizon λ-graph system is invariantly associated to the Cantor horizon
subshift.

2. The Dyck shift

We consider the Dyck shift D2 with alphabet Σ = Σ− ∪ Σ+ where Σ− =
{α0, α1},Σ

+ = {β0, β1}. A periodic point x of D2 with period p is not in
Pa(D2) precisely if for some i ∈ Z the normal form of the word (xi+q)0≤q<p is
a word in the symbols of Σ−, in other words, if the multiplier of x in the sense
of [HI] is negative. We also note that periodic points with negative multipliers
give rise to the same irreducible component of GCh(D2) precisely if they have
the same multiplier.
We describe the Cantor horizon λ-graph system L

Ch(D2) of D2: The vertices at
level l are given by the words of length l in the symbols of Σ−. The mapping ι
deletes the first symbol of a word. A word (αi(n))1≤n≤l accepts βi precisely if
i(l) = i, i = 0, 1, effecting a transition to the word (αi(n))1≤n<l, and it accepts
αi, effecting a transition to the word (αi(n))2≤n≤l. The forward context of the
word a = (αi(n))1≤n≤l contains precisely all words c = (γn)1≤n≤l in symbols

of Σ such that (a, c) is admissible for D2. In describing the Cantor horizon
symbolic matrix system (M, I) of the Dyck shift and the resulting nonnegative
matrix system (M, I) we use the reverse lexcographic order on the words in the

symbols in Σ−, that is, we assign to a word (αi(n))1≤n≤l ∈ Σ−[1,l]
the number

∑

1≤n≤l

i(n)2n−1.
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One has then

M0,−1 = [β0 + α0 + α1, β1 + α0 + α1] = [α0 + α1 + β0, α0 + α1 + β1],

I0,−1 = [1, 1].

For l ∈ Z+ and a ∈ {α0, α1, β0, β1}, let Il(a) be the 2l × 2l diago-
nal matrix with diagonal entries a, and Sl(a) be the 2l−1 × 2l+1 matrix
[Sl(a)(i, j)]1≤i≤2l−1,1≤j≤2l+1 where Sl(a)(i, j) is a for j = 4i, 4i−1, 4i−2, 4i−3,
and is otherwise zero.

Proposition 2.1. For l = 1, 2, . . . , the matrix M−l,−l−1 is a 2l × 2l+1 rect-

angular matrix that is given as the block matrix:

(2.1) M−l,−l−1 =

[
Sl(α0)
Sl(α1)

]
+ [ Il(β0) | Il(β1) ]

and

(2.2) I−l,−l−1(i, j) =

{
1 (j = 2i − 1, 2i),

0 elsewhere.

Proof. The first summand in (2.1) describes the transitions that arise when a
vertex accepts a symbol in Σ+. The second summand arises from the transitions
that arise when a vertex accepts a symbol in Σ−, the arrangement of the
components of the matrix as well as (2.2) being a component of the ordering
of the vertices at level l and l − 1. ¤

We note that the λ-graph systems of the closures of the irreducible components
of GCh(X) are identical.

Proposition 2.2. The λ-graph system LCh(D2) for (M, I) is irreducible and

aperiodic.

Proof. Let V−l, l ∈ Z+ be the vertex set of the λ-graph system L
Ch(D2). For

any vertex u of V−l, there are labeled edges from each of the vertices in V−2l

to the vertex u. This implies that (M, I) is aperiodic. ¤

3. Computation of the K-groups

Let Ml,l+1 for l ∈ Z+ be the nonnegative matrix obtained from M−l,−l−1 by
setting all the symbols of the components of M−l,−l−1 equal to 1. The matrix
Il,l+1 for l ∈ Z+ is defined to be I−l,−l−1. For l > 1 and 1 ≤ i ≤ 2l−2 let

ai(l) = [ai(l)n]2
l

n=1 be the vector that is given by

ai(l)n =

{
1 (n = 4i − 3, 4i − 2, 4i − 1, 4i),

0 elsewhere.
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Define for 1 < l ∈ N El as the 2l × 2l-matrix whose i−th column vector and
whose (2l−1 + i)−th column vector are both equal to ai(l), 1 ≤ i ≤ 2l−2, the
other column vectors being equal to zero vectors.

For l > 1 and 1 ≤ i ≤ 2l−1 let bi(l) = [bi(l)n]2
l

n=1 be the vector that is given by

bi(l)n =

{
1 (n = 2i − 1, 2i),

0 elsewhere.

Define for 1 < l ∈ N Fl as the 2l ×2l-matrix whose i−th column vector is equal
to bi(l), 1 ≤ i ≤ 2l−1, the other column vectors being equal to zero vectors.
One has

(3.1) It
l,l+1El = El+1I

t
l,l+1, It

l,l+1Fl = Fl+1I
t
l,l+1, l > 1.

Let Il denote the unit matrix of size 2l. Define a 2l × 2l−1 matrix Hl,l−1 by
setting

Hl,l−1 =

[
Il−1

−Il−1

]
, l > 1.

Lemma 3.1. For l > 1 one has

(El − Fl)Hl,l−1 = −It
l−1,l.

Proof. One has
ElHl,l−1 = 0, FlHl,l−1 = It

l−1,l.

¤

Set y1(2) =




1
1
1
1


 , y2(2) =




1
1
0
0


 , y3(2) =




0
1
1
1


 , y4(2) =




0
0
0
1


 , and define

inductively for l > 2 vectors yi(l), 1 ≤ i ≤ 2l, where

(3.2) yi(l) = It
l−1,lyi(l − 1), 1 ≤ i ≤ 2l−1

and

(3.3) yi(l) = Hl,l−1yi−2l−2(l − 1), 2l−1 < i ≤ 2l−1 + 2l−2

where one defines the vectors

yi(l) = [yi(l)n]
2l

n=1, 2l−1 + 2l−2 < i ≤ 2l

by setting
(3.4)

y2l−1+2l−2+i(l)n
=





1 (n = 4i − 1, 4i, 2l−1 + 2i),

−1 (n = 2l−1 + 4i − 1, 2l−1 + 4i),

0 elsewhere,

1 ≤ i ≤ 2l−3
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and by setting

(3.5) y2l−1+2l−2+2l−3+i(l)n
=

{
1 (n = 2l−1 + 2l−2 + 2i),

0 elsewhere,
1 ≤ i ≤ 2l−3.

Define for l > 2, Tl as the 2l ×2l-matrix whose column vectors yi(l), 1 ≤ i ≤ 2l.
Here y1(l) has all components equal to 1, that is, y1(l) is the eigenvector of
El − Fl for the eigenvalue 1. Also the vectors

yi(l), 2l−1 + 2l−2 < i ≤ 2l

are linearly independent vectors in the kernel of El − Fl and one sees from
(3.1), (3.2), (3.3), (3.4) and (3.5) that Tl is invertible and that T−1

l (El − Fl)Tl

is a matrix that is in a normal form. This normal form is a Jordan form in
the sense that by conjugation with a suitable permutation matrix, followed by
a conjugation with a suitable diagonal matrix whose entries are 1 or −1, the
matrix assumes a Jordan form with Jordan blocks arranged along the diagonal.
There will be one Jordan block of length 1 for the eigenvalue 1, and there will
be 2l−1 Jordan blocks for the eigenvalue 0, and if one lists these by decreasing
length then the k−th Jordan block for the eigenvalue 0 has length l − µ(k)
where µ(k) be given by 2µ(k)−1 < k ≤ 2µ(k), 1 ≤ k ≤ 2l−2.
By an elementary column operation we will mean the addition or subtraction
of one column vector from another or the exchange of two column vectors.

Lemma 3.2. Let l ∈ N and let K be a 2l × 2l-matrix with column vectors

zi, 1 ≤ i ≤ 2l,
zi = bi(l), 1 ≤ i ≤ 2l−1,

and column vectors

z2l−1+i = [z2l−1+i,n]
2l

n=1
, 1 ≤ i ≤ 2l−1

such that

z2l−1+i,2j−1 = z2l−1+i,2j = 0, 1 ≤ j < i,

z2l−1+i,2i−1 = 0, z2l−1+i,2i = 1,

z2l−1+i,2j−1 = 0, z2l−1+i,2j ∈ {−1, 0, 1}, i < j ≤ 2l−1.

Then K can be converted into the unit matrix by a sequence of elementary

column operations.

Proof. Let the vector cj = [cj,n]
2l

n=1, 1 ≤ j ≤ 2l−1, be given by

cj,n =

{
1 (n = 2j),

0 elsewhere.
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and denote by K[j], 1 ≤ j ≤ 2l−1 the matrix that is obtained by replacing
in the matrix K the last j column vectors by the vectors c2l−1−i, j ≥ i ≥ 1.
K[1] is equal to K and K[j], 1 < j ≤ 2l−1, can be obtained from K[j − 1] by
subtracting from and adding to the (2l − j)-th column appropriate selections
of the the (2l − i)-th columns, 1 ≤ i ≤ j. K[2l−1] has as its first 2l−1 column
vectors the vectors bi(l), 1 ≤ i ≤ 2l−1, and as its last 2l−1 column vectors
the vectors ci(l), 1 ≤ i ≤ 2l−1, and can be converted into the unit matrix by
elementary column operations. ¤

Lemma 3.3. Let l ∈ N and let K be a 2l × 2l-matrix with column vectors

zi, 1 ≤ i ≤ 2l,
zi = bi(l), 1 ≤ i ≤ 2l−1,

and column vectors

z2l−1+i = [z2l−1+i,n]
2l

n=1
, 1 < i ≤ 2l−1

such that

(z2l−1+i,2j−1,z2l−1+i,2j) ∈ {(0, 0), (1, 1)}, 1 ≤ j < i,

z2l−1+i,2i−1 = 0, z2l−1+i,2i = 1,

(z2l−1+i,2j−1,z2l−1+i,2j) ∈ {(−1,−1), (0, 0), (1, 1), (0, 1), (0,−1)}, i < j < 2l−1.

Then K can be converted into the unit matrix by a sequence of elementary

column operations.

Proof. For all i, 2l−1 < i ≤ 2l, one subtracts from the i-th column of K and
adds to the i-th column of K appropriate selections of the first 2l−1 columns
of K to obtain a matrix to which Lemma 3.2 applies. ¤

Proposition 3.4. The matrix Tl is unimodular.

Proof. The matrix T2 can be converted into the unit matrix by elementary
column operations. The proof is by induction on l. Assume that the matrix
Tl−1, l > 2 can be converted into the unit matrix by a sequence of elementary
column operations. Then by (3.2) the matrix Tl can be converted by a sequence
of elementary column operations into a matrix whose first 2l−1 column vectors
are the vectors bi(l), 1 ≤ i ≤ 2l−1 and whose last 2l−1 column vectors are those
of the matrix Tl, and by (3.2),(3.3) and (3.4) Lemma 3.3 is applicable to this
matrix. ¤

Define a 2l × 2l matrix Ll by setting

Ll = Il + El − Fl, l > 1.

Denote by 0k,l the 2k × 2l matrix with entries 0’s. Also define permutation
matrices Pl(i, j), 1 ≤ i, j ≤ 2l, l > 1, by

Pl(i, 2
l − i + 1) = 1, 1 ≤ i ≤ 2l,

and set

Bl+1 =

[
Ll 0l,l

PlLlPl 0l,l

]
.
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Lemma 3.5. Bl+1 = [M t
l,l+1 − It

l,l+1 | 0l+1,l ] , l > 1.

Proof. This follows from Proposition 2.1. ¤

Define 2l+1 × 2l+1 matrices J(l + 1) and Ul+1 by setting

J(l + 1) =

[
T−1

l LlTl 0l,l

0l,l 0l,l

]
, Ul+1 =

[
Tl 0l,l

PlTl Il

]
.

Lemma 3.6. Ul+1 is unimodular and

U−1
l+1Bl+1Ul+1 = J(l + 1), l > 1.

Proof. One has

U−1
l+1 =

[
T−1

l 0l,l

−Pl Il

]

and further
[

T−1
l 0l,l

−Pl Il

] [
Ll 0l,l

PlLlPl 0l,l

] [
Tl 0l,l

PlTl Il

]
=

[
T−1

l LlTl 0l,l

0l,l 0l,l

]
.

¤

Define a 2l+1 × 2l matrix Gl+1,l by setting

Gl+1,l =

[
Il

0l,l

]
, l > 1.

One has

It
l,l+1Tl = Tl+1Gl+1,l,(3.6)

It
l,l+1PlTl = Pl+1Tl+1Gl+1,l.(3.7)

Define a 2l+1 × 2l matrix Jl+1,l by setting

Jl+1,l =

[
Gl,l−1 0l,l−1

0l,l−1 It
l−1,l

]
, l > 1.

Lemma 3.7. It
l,l+1Ul = Ul+1Jl+1,l, l > 1.

Proof. From (3.6) and (3.7), it follows that

[
It
l−1,l 0l,l−1

0l,l−1 It
l−1,l

][
Tl−l 0l,l−1

Pl−1Tl−1 Il−1

]
=

[
TlGl,l−1 0l,l−1

PlTlGl,l−1 It
l−1,l

]

=

[
Tl 0l,l

PlTl Il

][
Gl,l−1 0l,l−1

0l,l−1 It
l−1,l

]
.

¤
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Lemma 3.8.
Jl+1,lJ(l) = J(l + 1)Jl+1,l, l > 1.

Proof. By (3.1)
It
l−1,lLl−1 = LlI

t
l−1,l

and by (3.6)
T−1

l+1I
t
l,l+1Tl = Gl+1,lT

−1
l .

Therefore by (3.6)

Gl,l−1T
−1
l−1Ll−1Tl−1 = T−1

l It
l−1,lLl−1Tl−1

= T−1
l LlI

t
l−1,lTl−1

= T−1
l LlTlGl,l−1

and therefore

[
Gl,l−1 0l,l−1

0l,l−1 It
l−1,l

] [
T−1

l−1Ll−1Tl−1 0l,l−1

0l,l−1 0l,l−1

]

=

[
Gl,l−1T

−1
l−1Ll−1Tl−1 0l,l−1

0l,l−1 0l,l−1

]

=

[
T−1

l LlTlGl,l−1 0l,l−1

0l,l−1 0l,l−1

]

=

[
T−1

l LlTl 0l,l−1

0l,l−1 0l,l−1

] [
Gl,l−1 0l,l−1

0l,l−1 It
l−1,l

]
.

¤

By the preceding lemma, the matrix Jl+1,l induces a homomorphism

J̄l+1,l : Z
2l

/J(l)Z2l

→ Z
2l+1

/J(l + 1)Z2l+1

and by Proposition 3.4 and Lemma 3.6 the matrix Ul, as BlZ
2l

= (M t
l−1,l −

It
l−1,l)Z

2l−1

, induces a homomorphism

Ūl : Z
2l

/J(l)Z2l

→ Z
2l

/BlZ
2l

.

Lemma 3.9. The diagram :

Z
2l

/(M t
l−1,l − It

l−1,l)Z
2l−1 Īt

l,l+1
−−−−→ Z

2l+1

/(M t
l,l+1 − It

l,l+1)Z
2l

Ūl

x Ūl+1

x

Z
2l

/J(l)Z2l J̄l+1,l

−−−−→ Z
2l+1

/J(l + 1)Z2l+1
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is commutative.

Proof. Apply Lemma 3.7. ¤

Define a diagonal matrix D(l) by setting

D(l) = diag(2,

2l−1︷ ︸︸ ︷
1, 1, . . . , 1), l ∈ N.

As J(l+1)Z2l+1

= D(l)Z2l

⊕(

2l

︷ ︸︸ ︷
0, . . . , 0) and hence Z

2l+1

/J(l+1)Z2l+1 ∼= Z/2Z⊕

Z
2l

, through the map ϕl ⊕ id where ϕl : Z
2l

/D(l)Z2l

→ Z/2Z is defined by

ϕl([(xi)
2l

i=1]) = [x1] (mod 2), we have

Proposition 3.10. The following diagram is commutative:

Z
2l

/J(l)Z2l J̄l+1,l

−−−−→ Z
2l+1

/J(l + 1)Z2l+1

ϕl−1⊕id

y ϕl⊕id

y

Z/2Z ⊕ Z
2l−1 id⊕It

l−1,l

−−−−−−→ Z/2Z ⊕ Z
2l

.

Corollary 3.11.

lim−→
l

{Z2l+1

/(M t
l,l+1 − It

l,l+1)Z
2l

, Īt
l,l+1}

∼= Z/2Z ⊕ C(C, Z).

Proof. As the group of the inductive limit: lim−→
l

{It
l,l+1 : Z

2l

→ Z
2l+1

} is isomor-

phic to C(C, Z), we get the assertion. ¤

Theorem 3.12.

K0(M, I) ∼= Z/2Z ⊕ C(C, Z), K1(M, I) ∼= 0.

By Proposition 2.2, the Cantor horizon λ-graph system LCh(D2) of D2 is ape-
riodic so that the C∗-algebra O

LCh(D2) associated with the λ-graph system
LCh(D2) is simple and purely infinite ([Ma3;Proposition 4.9]). It satisfies the
UCT by [Ma3;Proposition 5.6] (cf.[Bro],[RS]). By [Ma3;Theorem 5.5], the K-
groups Ki(OLCh(D2)) are isomorphic to the K-groups Ki(M, I) so that we get

Corollary 3.13. The C∗-algebra O
LCh(D2) associated with the λ-graph sys-

tem L
Ch(D2) is separable, unital, nuclear, simple, purely infinite with UCT such

that

K0(OLCh(D2)) ∼= Z/2Z ⊕ C(C, Z), K1(OLCh(D2)) ∼= 0.
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4. Computation of the Bowen-Franks groups

We compute next the Bowen-Franks groups BF 0(M, I) and BF 0(M, I).

Lemma 4.1. Ext1
Z
(C(C, Z), Z) ∼= 0.

Proof. From [Ro] (cf.[Sch;Theorem 1.3]) one has that for an inductive sequence
{Gi} of abelian groups there exists a natural short exact sequence

0 → lim
←−

1HomZ(Gi, Z) → Ext1
Z
(lim
−→

Gi, Z) → lim
←−

Ext1
Z
(Gi, Z) → 0.

The lemma follows therefore from C(C, Z) = lim−→
l

{It
l,l+1 : Z

2l

→ Z
2l+1

} and

Ext1
Z
(Z2l

, Z) = lim
←−

1HomZ(Z2l

, Z) = 0. ¤

As in [Ma;Theorem 9.6], one has the following lemma that provides a universal
coefficient type theorem.

Lemma 4.2. For i = 0, 1 there exists an exact sequence

0 → Ext1
Z
(Ki(M, I), Z) → BF i(M, I) → HomZ(Ki+1(M, I), Z) → 0.

Theorem 4.3.
BF 0(M, I) ∼= Z/2Z.

Proof. By Theorem 3.12 and by Lemma 4.2 one has

BF 0(M, I) ∼= Ext1
Z
(Z/2Z, Z) ⊕ Ext1

Z
(C(C, Z), Z).

As Ext1
Z
(Z/2Z, Z) ∼= Z/2Z, the theorem follows from Lemma 4.1. ¤

Theorem 4.4.
BF 1(M, I) ∼= HomZ(C(C, Z), Z).

Proof. HomZ(Z/2Z, Z) is trivial. Therefore by Theorem 3.12

HomZ(K0(M, I)) ∼= HomZ(C(C, Z), Z).

Since the group K1(M, I) is trivial, by Lemma 4.2, one gets

BF 1(M, I) ∼= HomZ(C(C, Z), Z).

¤

As the Bowen-Franks groups BF 0(M, I) and BF 1(M, I) are isomorphic
to the Ext-groups Ext1(O

LCh(D2))(= Ext(O
LCh(D2))) and Ext0(O

LCh(D2))(=
Ext(O

LCh(D2) ⊗ C0(R)) for the C∗-algebra O
LCh(D2) (cf. [Ma3]), we obtain

Corollary 4.5.

Ext1(O
LCh(D2)) ∼= Z/2Z, Ext0(O

LCh(D2)) ∼= HomZ(C(C, Z), Z).
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5. General Dyck shifts

One can extend the preceding results for the Dyck shift D2 to the general
Dyck shifts DN with 2N symbols αn, βn, 1 ≤ n ≤ N, for N > 2, generalizing
the previous discussions for the case of N = 2. We will briefly explain this.
We consider the Cantor horizon λ-graph system LCh(DN ) of DN as in the

previous case and write its symbolic matrix system (M
Ch(DN )
−l,−l−1, I

Ch(DN )
−l,−l−1) as

(Ml,l+1, Il,l+1). We define the nonnegative matrices Ml,l+1, Il,l+1, l ∈ Z+ in a

similar way. The size of the matrices Ml,l+1, Il,l+1 is N l×N l+1. Let I
(N)
l be the

unit matrix with size N l. For l > 1 and 1 ≤ i ≤ N l−2 let a
(N)
i (l) = [a

(N)
i (l)

n
]N

l

n=1

be the vector that is given by

a
(N)
i (l)

n
=

{
1 (N2(i − 1) + 1 ≤ n ≤ N2i),

0 elsewhere.

Define for 1 < l ∈ N E
(N)
l as the N l × N l-matrix whose i−th, (N l−1 + i)−th,

(2N l−1 + i)−th, . . . , ((N − 1)N l−1 + i)−th column vectors are all equal to

a
(N)
i (l), 1 ≤ i ≤ N l−2, the other column vectors being equal to zero vectors.

Let b
(N)
i (l) = [b

(N)
i (l)

n
]N

l

n=1 be the vector that is given by

b
(N)
i (l)

n
=

{
1 (N(i − 1) + 1 ≤ n ≤ Ni),

0 elsewhere.

Define for 1 < l ∈ N F
(N)
l as the N l × N l-matrix whose i−th column vector

is equal to b
(N)
i (l), 1 ≤ i ≤ N l−1, the other column vectors being equal to zero

vectors.
Define a N l × N l matrix by

L
(N)
l = I

(N)
l + E

(N)
l − F

(N)
l , l ∈ N.

Also define permutation matrices P
(N),k
l , k = 1, 2, . . . , N − 1, by

P
(N),k
l (i,N l − i + 1 − (k − 1)) = 1, 1 ≤ i ≤ N l,

where 1 ≤ N l − i + 1 − (k − 1) ≤ N l is taken mod N l. Denote by 0k,l the
Nk × N l matrix with entries 0’s.
We define an N l+1 × N l+1 matrix B

(N)
l+1 by

B
(N)
l+1 = [M t

l,l+1 − It
l,l+1 | 0l+1,l],

that is written as the block matrix



L
(N)
l 0l,l

P
(N),1
l L

(N)
l P

(N),1
l 0l,l

...
...

P
(N),N−1
l L

(N)
l P

(N),N−1
l 0l,l


 .

By an argument that is similar to the one of the previous sections, one can
conclude then
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Theorem 5.1.

K0(M, I) ∼= Z/NZ ⊕ C(C, Z), K1(M, I) ∼= 0,

BF 0(M, I) ∼= Z/NZ, BF 1(M, I) ∼= HomZ(C(C, Z), Z).

Corollary 5.2. The C∗-algebra O
LCh(DN ) associated with the Cantor horizon

λ-graph system L
Ch(DN ) of DN is separable, unital, nuclear, simple, purely

infinite such that

K0(OLCh(DN )) ∼= Z/NZ ⊕ C(C, Z), K1(OLCh(DN )) ∼= 0,

Ext1(O
LCh(DN )) ∼= Z/NZ, Ext0(O

LCh(DN )) ∼= HomZ(C(C, Z), Z).
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