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ABSTRACT. A property of subshifts is described that allows to asso-
ciate to the subshift a distinguishied presentation by a compact Shannon
graph. For subshifts with this property and for the resulting invariantly
associated compact Shannon graphs and their A-graph systems the term
‘Cantor horizon’ is proposed. The Dyck shifts are Cantor horizon. The
C*-algebras that are obtained from the Cantor horizon A-graph systems
of the Dyck shifts are separable, unital, nuclear, purely infinite and sim-
ple with UCT. The K-groups and Bowen-Franks groups of the Cantor
horizon A-graph systems of the Dyck shifts are computed and it is found
that the Ky-groups are not finitely generated.
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0. INTRODUCTION

Let ¥ be a finite alphabet. On the shift space ©% one has the left-shift that
sends a point (0;),., into the point (¢4 1);c,. In symbolic dynamics one studies
the dynamical systems, called subshifts, that are obtained by restricting the
shift to a shift invariant closed subset of ¥Z. For an introduction to symbolic
dynamics see [Ki] or [LM]. A finite word in the symbols of ¥ is said to be
admissible for the subshift X C X? if it appears somewhere in a point of X.
A subshift is uniquely determined by its set of admissible words. Throughout
this paper, we denote by Z,; and N the set of all nonnegative integers and the
set of all positive integers respectively.

A directed graph G whose edges are labeled by symbols in the finite alphabet
3 is called a Shannon graph if for every vertex u of G and for every a € X, G
has at most one edge with initial vertex u and label a. We say that a Shannon
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graph G presents a subshift X if every vertex of G has a predecessor and a
successor and if the set of admissible words of X coincides with the set of label
sequences of finite paths on G. To a Shannon graph G there is associated a
topological Markov chain M (G). The state space of M(G) is the set of pairs
(u, ), where u is a vertex of G and « is the label of an edge of G with initial
vertex u. Here a transition from state (u,a) to state (v, ) is allowed if and
only if v is the final vertex of the edge with initial vertex u and label «. For
a vertex u of Shannon graph G' we denote the forward context of u by '™ (u).
['*(u) is the set of sequences in N that are label sequences of infinite paths
in G that start at the vertex u. We say that a Shannon graph G is forward
separated if vertices of GG, that have the same forward context, are identical.
The Shannon graphs that we consider in this paper are forward separated. We
always identify the vertices of a forward separated Shannon graph G with their
forward contexts, and then use on the vertex set of G the topology that is given
by the Hausdorff metric on the set of nonempty compact subsets of XN.

There is a one-to-one correspondence between forward-separated compact
Shannon graphs G such that every vertex has a predecessor and a class of
A-graph systems [KM]. We recall that a A-graph system is a directed labelled
Bratteli diagram with an additional structure. We write the vertex set of a

A-graph system as
V=] Vo

n€ly

Every edge with initial vertex in V_,, has its final vertex in V_,11,n € N.
It is required that every vertex has a predecessor and every vertex except the
vertex in Vj has a successor. In this paper we consider A-graph-systems that
are forward separated Shannon graphs. Their additional structure is given by
a mapping
L U V_,—>V
neN

such that
L(V—n) = V—n+1a neN

that is compatible with the labeling, that is, if u is the initial vertex of an edge
with label a and final vertex v, then ¢(u) is the intial vertex of an edge with
label « and final vertex ¢(v).

Given a subshift X C XZ there is a one-to-one correspondence between the
compact forward separated Shannon graphs that present X, and the forward
separated Shannon A-graph systems that present X. To describe this one-
to-one correspondence denote for a vertex v of a Shannon graph by v, the
set of initial segments of length n of the sequences in V,n € N. The A-graph
system that corresponds to the forward separated Shannon graph has as its
set V_,, the set of v,,n € Z,, v a vertex of G, and if in G there is an edge
with initial vertex u and final vertex v and label « then in the corresponding
A-graph system there is an edge with initial vertex u,, final vertex v,_1,n € N,
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and label «, the mapping ¢ of the corresponding A-graph system deleting last
symbols.
A-graph systems can be described by their symbolic matrix systems [Ma]

(an,fnfla Ifn,fnfl>n€ZJr .

Here M_,, _,_1 is the symbolic matrix

[M—n,—n—l (u, U)]uevfn,vEanfl

that is given by setting M_,, _,,_1(u,v) equal to o + - -+ + a, if in V' there is
an edge with initial vertex v and final vertex u with label «;,2 = 1,...,k and
by setting M_,, _n_1(u,v) equal to zero otherwise. I_,, _,,_; is the zero-one
matrix

[I,n’,n,1 (u, U)]uEan,vernfl

that is given by setting I_,, _»_1(u,v) equal to one if ((v) = v and by setting
I, _n_1(u,v) equal to zero otherwise. We remark that the time direction
considered here is opposite to the time direction in [Ma]. For symbolic matrix
systems there is a notion of strong shift equivalence [Ma] that extends the
notion of strong shift equivalence for transition matrices of topological Markov
shifts [Wi] and of the symbolic matrices of sofic systems [BK,N].

To a symbolic matrix system there are invariantly associated K-groups and
Bowen-Franks groups [Ma]. To describe them, let

Mn7n+1 = [Mn,n-i-l (Uv U)]uevfmvev,n,l

be the nonnegative matrix that is given by setting M, »+1(u, v) equal to zero if
M —n_1(u,v) is zero, and by setting it equal to the number of the symbols
whose sum is M_,, _,_1(u,v) otherwise. We let I, p11,n € Zy be I_p, 1.
Let m(n) be the cardinal number of the vertex set V_,. Also denote by
I ,11,n € Z the homomorphism from Z™™ /(M!_, , — It | )Z™"=Y to

n n—1,n

zme D J(ME Ly = IE ) Z™™ that s induced by I, ;. Then

KO(Ma I) = h_H}{Zm(n+l)/(M:L,n+l - Iz,n+1)Zm(n)7 jrtl,n-&-l}’

Ky(M, I) = lim{Ker(My, 1 — I yy) in 2700154 )

Let Z; be the group of the projective limit li_rr;{Zm("), I, n+1}. The sequence

My nt1 — Innt1,n € Z4 acts on it as an endomorphism, denoted by M — I.
The Bowen-Franks groups BF!(M,I),i = 0,1 are defined by

BF°(M,I)=17;/(M - I)Zr, BFY(M,I)=Ker(M —1I) in Z.
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Given a subshift X C ¥ we use for z = (7i);e7 € X notation like

Tk = (xi)jgigku

and we set
Xijw =Azpu |z € X},  jkeZ, j<k,

using similar notations when indices range is infinite intervals. We denote the
forward context of a point ™ in X(_ o] by 't (xz),

Iz )={z" ¢ X1,00) | (x7,2") € X}.

The set G(X) = {T'"(27) | 27 € X(_oo,0} is the vertex set of a forward sepa-
rated Shannon graph that presents X. The A-graph system of its closure was
introduced in [KM] as the canonical A-graph system of the subshift X. It is
canonically associated to the subshift in the sense that a topological conju-
gacy of subshifts induces a strong shift equivalence of their canonical A-graph
systems.

For a subshift X C %% that is synchronizing [Kr] (or semisynchronizing [Kr] )
one has an intrinsically defined shift invariant dense subset Ps(X) of periodic
points of X, and one has associated to X the presenting forward separated
Shannon graph whose vertex set is the set of forward contexts I'"(z), where
x is left asymptotic to a point in Ps(X). These Shannon graphs are canon-
ically associated to the synchronizing (or semisynchronizing) subshift, in the
sense that a topological conjugacy of subshifts induces a block conjugacy of
the topological Markov chains of the Shannon graphs and also a strong shift
equivalence [Ma] of the A-graph systems of their closures. Prototype examples
of semisynchronizing subshifts are the Dyck shifts that can be defined via the
Dyck inverse monoids. The Dyck inverse monoid is the inverse monoid (with
zero) with generators ay,, 3,1 < n < N, and relations

apfBn =1, 1 <n<N,
anfBm =0, 1<nm<N, n#m

and the Dyck shift Dy is defined as the subshift Dy C {ay,, 3, | 1 <n < N},
whose admissible words (v;)<;<; satisfy the condition

H vi # 0.

0<i<I

In section 1 we introduce another class of subshifts X C %% with an intrinsically
defined shift invariant dense set Pop(X) of periodic points. Again the Dyck
shifts serve here as prototypes. In the Dyck shift Dy the points in Pop(Dy)
are such that during a period there appears an event that has the potential
to influence even the most distant future. In other words, a point (z;);., in
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Dy with period p is in Pop(Dy) if the normal form of the word (z;)y<;,, is a
word in the symbols a.,, 1 < n < N. One can view here the record of an infinite
sequence of events as a point in a Cantor discontinuum. With this in mind,
we call the subshifts in this class Cantor horizon subshifts. The presenting
Shannon graph with vertex set the set of forward contexts I'"(y~), where y~
is negatively asymptotic to a point in Pgop,(X), is canonically associated to the
Cantor horizon subshift X C X%, and so is the A-graph system of its closure,
that we call the Cantor horizon A-graph system of X. The Cantor horizon
A-graph system of a Cantor horizon subshift is a sub A-graph system of its
canonical A-graph system.

The K-groups and Bowen-Franks groups of the symbolic matrix system
(MP~ TP~ for the canonical A-graph systems of the Dyck shifts Dy, N > 2
were computed in [Ma2]. These are

Ko(MPx, 1P 2 377, Ky (MPY, 1P%) 2,
neN

BFO(MP~ 1PNy =0,  BF'(MPV 1Pv) =[] Z.
neN

In section 3 we determine the symbolic matrix system (MER(P2) [CR(D2)) of
the Cantor horizon A-graph system £¢7(P2) of the Dyck shift D,, and we
compute its K-groups. Denoting the group of all Z-valued continuous functions
on the Cantor discontinuum € by C(€,Z) one has

Ko(MChD2) [CMD2)y = 7,197, & C(€, Z),

and one has
Kl(MCh(Dz)JCh(Dz)) o ().

One can construct simple C*-algebras from irreducible A-graph systems [Ma3].
A A-graph system is said to be irreducible if for a sequence v_,, € V_,,,n € Z,
of vertices with ¢(v_,) = v_,41 and for a vertex u, there exists an N € Z
such that there is a path from v_y to u. It is said to be aperiodic if for a vertex
u, there exists an N € Z, such that for all v € V_y there exist paths from
v to u. The Cantor horizon A-graph system £C"*(P2) of the Dyck shift Dy is
irreducible and moreover aperiodic. Hence the resulting C*-algebra Ogacn(p,) is
simple and purely infinite whose Ky-group and K;-group are the above groups
Ko(MEMDP2) TCMD2)) and K, (MEMP2) JEMD2)) regpectively (cf. [Ma3]). In
section 4, we compute the Bowen-Franks groups of the symbolic matrix system
(MChD2) [Ch(D2)y,

In section 5, we consider the K-groups and Bowen-Franks groups of the Dyck
shifts Dy, N > 2. Here one has

Ko(MEMPN) [CMDN)Y = 7, /N7, ¢ O(C, Z),
Ky (MEMPN) [OMDPN)) =
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1. SUBSHIFTS WITH CANTOR HORIZON LAMBDA-GRAPH SYSTEMS
Denoting for a given subshift X C X%, the right context of an admissible block
x[i,j]7w € X7i7.j € Zal < j7 by F+($[Z,j})7

T () = {y™ € X(joo) | (#1151, ¥7) € Xjiroo) }
and its left context by I'™ (z[; 5),

T (2p,5) =y~ € X(cooi) | W 205,57) € X(—oo, }s
we set
g = () T € Xpoo) | (8 2p,97) € XD
Yy~ €L (i)

LEMMA 1.1. Let X C EZ,X C Y% be subshifts and let 1 : X = X bea
topological conjugacy. Let for some L € Z4 ¢ be given by a (2L + 1)-block map
U and =1 be given by a (2L + 1)-block map V. Let N € N, and let & € X be
such that

(11) w+(j(_L_j\77_L]) = w+('i‘(fL7ﬁ,fL])a n>N.

Then for x = ¢(x) and N = N + 2L,
(1.2) w"'(x(_N’O]) = w+(9c(_n70])7 n > N.

Proof. Let n > N, and let

(1.3) yt e w (T n0)-
Let B

?)+ = ‘I’(UC[—L,O];Z/+)~
One has
(1.4) gt e w(i(iﬁ%i”),

which implies that
yt e w+(m(—N,0]),
confirming (1.2). We note that by (1.1) one has that (1.4) follows from
g ewt (@ a-r,-1),
which in turn follows from (1.3). O

Let X C Y% be a subshift and P(X) be its set of periodic points. Denote by
P,(X) the set of x € P(X) such that there is an N € N such that

wh(zn0) =W (@(n0), n > N.
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LEMMA 1.2. Let X C Y2, X C X be subshifts and let ¢ : X — X be a
topological conjugacy. Then

Proof. Apply Lemma 1.1. O

By Lemma 1.1 the following property of a subshift X C % is invariant under
topological conjugacy : For x € X and N € N such that

wh(zno) =wh(@no), n>N
there exists an M € N such that

wh(z—m0) = wH (T2m0), m > M.

For a subshift X C Y% with this property we consider the subgraph Gcp,(X)
of G(X) with vertices I'* (u™) where u~ € X(_ ) is negatively asymptotic to
a point in Pop(X) = P(X)\P,(X). If here Gop(X) presents X then we say
that X is a Cantor horizon subshift, and we call the A-graph system of the
closure of G¢p(X) the Cantor horizon A-graph system of X. By Lemma 1.2
the Cantor horizon property is an invariant of topological conjugacy and the
Cantor horizon A-graph system is invariantly associated to the Cantor horizon
subshift.

2. THE DYCK SHIFT

We consider the Dyck shift Dy with alphabet ¥ = Y~ U X where ¥~ =
{ag, a1}, 5" = {Bo, 1} A periodic point x of Dy with period p is not in
P, (D) precisely if for some 7 € Z the normal form of the word (z;44)o<q<p 1S
a word in the symbols of X7, in other words, if the multiplier of z in the sense
of [HI] is negative. We also note that periodic points with negative multipliers
give rise to the same irreducible component of G¢yp,(D2) precisely if they have
the same multiplier.

We describe the Cantor horizon A-graph system £¢"(P2) of Dy: The vertices at
level [ are given by the words of length [ in the symbols of ¥~. The mapping ¢
deletes the first symbol of a word. A word (c(n))1<n<i accepts 3; precisely if
i(l) = i,i = 0,1, effecting a transition to the word (c;(,))1<n<i, and it accepts
a;, effecting a transition to the word (;(n))2<n<i- The forward context of the
word a = ((n))1<n<i contains precisely all words ¢ = (Vn);<,<; in symbols
of ¥ such that (a,c) is admissible for Dy. In describing the Cantor horizon
symbolic matrix system (M, I) of the Dyck shift and the resulting nonnegative

matrix system (M, I') we use the reverse lexcographic order on the words in the

]

symbols in X7, that is, we assign to a word (a;(n))1<n<i € =" the number

> in)2n

1<n<lI
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One has then

Mo,—1=1[Bo+ a0+ a1, Bi+ag+ai]=[a +ar+ G, oo+ ar+ G,
In—1 =11, 1].

For | € Zy and a € {ag,a1,B0,01}, let Ij(a) be the 2! x 2! diago-
nal matrix with diagonal entries a, and Sj(a) be the 2!=! x 2!*! matrix
[Si(a)(i, j)]1<i<2i-1,1<j<oi+1 Where S;(a)(i,j) is a for j = 4i,4i—1,4i—2,4i -3,
and is otherwise zero.

PROPOSITION 2.1. Forl =1,2,..., the matrit M_; ;1 is a 2\ x 211 rect-
angular matriz that is given as the block matrix:

@) Morir = [ﬁjggfi] +[1(Bo) | Ti(Br)]

and

1 (j=2i—1,29),
0 elsewhere.

(2.2) Iy 1(i,j) = {

Proof. The first summand in (2.1) describes the transitions that arise when a
vertex accepts a symbol in 1. The second summand arises from the transitions
that arise when a vertex accepts a symbol in X7, the arrangement of the
components of the matrix as well as (2.2) being a component of the ordering
of the vertices at level [ and [ — 1. [

We note that the A-graph systems of the closures of the irreducible components
of Gop(X) are identical.

PROPOSITION 2.2. The A-graph system £°"P2) for (M, I) is irreducible and
aperiodic.

Proof. Let V_;,1 € Z be the vertex set of the A-graph system £¢"P2). For
any vertex u of V_;, there are labeled edges from each of the vertices in V_g
to the vertex w. This implies that (M, I) is aperiodic. O

3. COMPUTATION OF THE K-GROUPS

Let M 41 for | € Z4 be the nonnegative matrix obtained from M_; _;_; by
setting all the symbols of the components of M_; _;_; equal to 1. The matrix
Ij 41 for I € Z4 is defined to be I_; ;1. For [ > 1 and 1 < ¢ < 21=2 et

a;(l) = [ai(l)n]i;l be the vector that is given by

1 (n=4i—3,4i—2,4i—1,4),
ai(l), =

0 elsewhere.
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Define for 1 < I € N E; as the 2! x 2!-matrix whose i—th column vector and
whose (27! 4 i)—th column vector are both equal to a;(I),1 < i < 2!72, the
other column vectors being equal to zero vectors.

For I >1and 1 <i <271 let b;(1) = [bz(l)n]g:1 be the vector that is given by

b, = { 1 (n=2i—1,2i),

0 elsewhere.

Define for 1 < [ € N F} as the 2! x 2"-matrix whose i—th column vector is equal

to b;(1),1 <i < 2!=1 the other column vectors being equal to zero vectors.
One has

(3.1) L Br = Bl g, Ly By = Froadi g, I>1

Let I; denote the unit matrix of size 2!. Define a 2! x 21 matrix H;;—1 by
setting
I,

Hy_1 = [—Iz )

] , [ >1.
LEMMA 3.1. Forl > 1 one has

(B — F)H -1 = _Iltfl,l'

Proof. One has
EH ;1 =0, FHy ;= 1771,#

O

1 1 0 0
1 1 1 0

Set y1(2) = 1 ) 92(2) = 0 i y3(2) = 1 ) y4(2) = 0 ) and deﬁne
1 0 1 1

inductively for I > 2 vectors y;(l), 1 <1 < 2!, where

(3:2) i) = I_y il = 1), 1<i<2!

and

(3.3) yi(l) = Hyy1y;_or—2(1— 1), 271 < i < o7t 4 ol=2

where one defines the vectors

yil) = [ (1),)2 9=l 4 9l=2 < j < 9

n=1’

by setting
(3.4)
1 (n=4i—1,4i,2"71 4 2i),
Yo o2 5(1), =¢ =1 (n=2""1+4i—1,2"71 + 4i), 1<i<2=3

0 elsewhere,

DOCUMENTA MATHEMATICA 8 (2003) 79-96



88 WOLFGANG KRIEGER AND KENGO MATSUMOTO

and by setting

1 (n=2"1 4272 4+ 2j),

1<i<273
0 elsewhere, -

(35) y21*1+2l*2+21*3+i(l)n = {

Define for [ > 2, T; as the 2! x 2/-matrix whose column vectors y;(1),1 < i < 2.
Here y; (1) has all components equal to 1, that is, y1(l) is the eigenvector of
E; — F; for the eigenvalue 1. Also the vectors

yi(l), 2t 42lm? <<

are linearly independent vectors in the kernel of E; — F; and one sees from
(3.1), (3.2), (3.3), (3.4) and (3.5) that T; is invertible and that T, *(E; — F})T}
is a matrix that is in a normal form. This normal form is a Jordan form in
the sense that by conjugation with a suitable permutation matrix, followed by
a conjugation with a suitable diagonal matrix whose entries are 1 or —1, the
matrix assumes a Jordan form with Jordan blocks arranged along the diagonal.
There will be one Jordan block of length 1 for the eigenvalue 1, and there will
be 2/=1 Jordan blocks for the eigenvalue 0, and if one lists these by decreasing
length then the k—th Jordan block for the eigenvalue 0 has length | — (k)
where (k) be given by 2#F) =1 < | < 20(k) 1 < | < 2072,

By an elementary column operation we will mean the addition or subtraction
of one column vector from another or the exchange of two column vectors.

LEMMA 3.2. Let I € N and let K be a 2! x 2'-matriz with column vectors
Zi, 1 § { S 2l7

Zi = bl(l), 1< < 2l_1,
and column vectors
2! . -1
Zol—144 = [Z2l*1+i,n]n:17 1 S 1 S 2

such that

Zoi-14495-1 = Zai-144 25 =0, 1<y <,

Zoi-14;9i—1 =0, Zoi-1449; = 1,

. -1
22l71+i,2j—1 = O, 221—1_;’_2‘,2]' S {71,0, 1}, 1<) S 2 .

Then K can be converted into the unit matriz by a sequence of elementary
column operations.

1
Proof. Let the vector ¢; = [cjm]izl, 1< j <271 be given by

{ 1 (n=2j),
Cjn =

0 elsewhere.
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and denote by K[j],1 < j < 2!=! the matrix that is obtained by replacing
in the matrix K the last j column vectors by the vectors coi-1_;,7 > ¢ > 1.
K[1] is equal to K and K[j],1 < j < 2!~!, can be obtained from K[j — 1] by
subtracting from and adding to the (2 — j)-th column appropriate selections
of the the (2! — 7)-th columns, 1 <i < j. K[27!] has as its first 2/~! column
vectors the vectors b;(1),1 < i < 21_17 and as its last 2/~ column vectors
the vectors ¢;(1),1 <4 < 271 and can be converted into the unit matrix by
elementary column operations. [

LEMMA 3.3. Let ] € N and let K be a 2! x 2'-matriz with column vectors
2,1 <i <2

Z; = bl(l), 1< < 2l_1,
and column vectors
2! . -1
Zgi-1yi = [Zo-14inl s 1<i<2
such that
(zo1-1 i 25— 1,220-144,25) € {(0,0),(1,1)}, 1<j <y,
Zot-1442i—1 = 0, Zoi-1442; = 1,

(Z2l_1+i,2j715221_1+i,2j) c {(—1, —1), (O, 0), (1, 1), (07 1), (07 —1)}, ’L < j < 2l_1.
Then K can be converted into the unit matriz by a sequence of elementary
column operations.

Proof. For all i,2!=1 < i < 2!, one subtracts from the i-th column of K and
adds to the i-th column of K appropriate selections of the first 2!~ columns
of K to obtain a matrix to which Lemma 3.2 applies. [

PROPOSITION 3.4. The matrixz T} is unimodular.

Proof. The matrix T5 can be converted into the unit matrix by elementary
column operations. The proof is by induction on [. Assume that the matrix
T;—1,1 > 2 can be converted into the unit matrix by a sequence of elementary
column operations. Then by (3.2) the matrix 7} can be converted by a sequence
of elementary column operations into a matrix whose first 2/~! column vectors
are the vectors b;(1),1 < i < 2!=1 and whose last 2!~ column vectors are those
of the matrix 7;, and by (3.2),(3.3) and (3.4) Lemma 3.3 is applicable to this
matrix. 0O

Define a 2! x 2! matrix L; by setting
L= +FE —F, [>1.

Denote by 0y the 2% x 2! matrix with entries 0’s. Also define permutation
matrices Py(i,),1 <i,5 <2',1>1, by

P2 —i+1)=1, 1<i<?2,

and set

_ L 01,
Braa = {PZLZPI Ol,l:| '
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LEMMA 3.5. Biyy = [M{; = 1If; 0 | O], 1> 1
Proof. This follows from Proposition 2.1. O
Define 2/+1 x 2!+ matrices J(I + 1) and U;1; by setting

T7'L,/T, 0 T, 0
sy = [Tt Gl o=

LEMMA 3.6. U4 is unimodular and

Ui Bl = J(1+1),  1>1

Proof. One has i

[T o
H1T | opT |

and further

{Tll 01,1][ L Ol,l] [ T Ol,l_[TllLlTl 01,1}
-P I PLiP O | | PTy Iy '

s )

O

Define a 271 x 2! matrix Gj41, by setting

Gz+1,l={ll], [>1
01,1

One has

(3.6) Ilt,l-i-lTl = Tl-&-lGl—i-l,la

Iy Py = PraTi G .
Define a 271 x 2! matrix J;;1; by setting

| Gri—1 01—t
JH-l,l - |:0l,l1 Ilt—17l:| ) I >1.

LEMMA 3.7. Ilt,l—i-lUl = Ul+1Jl+1,la [>1.
Proof. From (3.6) and (3.7), it follows that

Iy Oiea Ty Opi—1| _ | TiGri—1 O
Opir If g, | [ P-1Tien D PTG I}y,

_ | T O | [Gri-1 Oy
PTy I | [ O If g,
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LEMMA 3.8.
Jl+1’l<](l) = J(l + 1)J1+1’l7 > 1.

Proof. By (3.1)
Ilt—l,lLl—l = LlIlt—l,l
and by (3.6)

—1 7t _ -1
Tl+11l,l+1Tl = Gl-HJTl :

Therefore by (3.6)

G T\ LTy =Ty LTy
=T, ' Ludi_y  Tia
=T, "LiTiGii—1

and therefore

|:Gl,l1 01,11} {7}_111417111 01,11}

UNESR 0r,1-1 01,1-1
_ (Gl T\ LiaTiy 0pa
i 07,1—1 07,1-1
_ [T ' LiTGri—r 01y
I Ori—1 Ori-1
[T 0 ] [Grier O
01 Op—1 | [ Oni—1 Tfq; )"

O

By the preceding lemma, the matrix J;4;; induces a homomorphism
T 122 )0z = 2¥ J I+ 1)z

and by Proposition 3.4 and Lemma 3.6 the matrix Uy, as BiZ2' = (M}, -
I lﬁl’l)ZQZ_l, induces a homomorphism
Uz )70z — 72 /B 7.

LEMMA 3.9. The diagram :

l -1 I_ty I+1 L
72 /(Mlt—l,l - Ilt—u)Zz R 72 /(Mlt,l+1 - Ilt,l+1)Z2

ULT UH»IT

Z2L/J(Z)Z2l ﬂ) ZzH—l/J(l + 1)Z

ol+1
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18 commutative.
Proof. Apply Lemma 3.7. O
Define a diagonal matrix D(I) by setting

2l-1
—
D(l) = diag(2,1,1,...,1), leN.

2l
——
As J(1+1)Z¥ " = D(1)Z¥ ®(0, . ..,0) and hence Z2 " /J(1+1)22" =~ 7./2Z&
ZQZ, through the map ¢; @ id where ¢; : ZQL/D(Z)ZQZ — Z/27 is defined by
L
¢i([(zi)i21]) = [21] (mod 2), we have

PRrROPOSITION 3.10. The following diagram is commutative:

7210z 2 20 )zt

¢L—1€Bidl LszBidl

gl—1 id@lf,lyl ol
7227 —_— VAPYAY/

COROLLARY 3.11.

lim{Z2 " /(M}y — I)Z% T} = 2/22 6 C(C, Z).
l

Proof. As the group of the inductive limit: lm{/f,,, : 7 — 72"} is isomor-
!
phic to C(€,Z), we get the assertion. O

THEOREM 3.12.

Ko(M,I) 2 7)22.6 C(¢,2),  Ki(M,I)=0.

By Proposition 2.2, the Cantor horizon A-graph system £67(P2) of Dy is ape-
riodic so that the C*-algebra Ogcnp,) associated with the A-graph system
£EMP2) is simple and purely infinite ([Ma3;Proposition 4.9]). Tt satisfies the
UCT by [Ma3;Proposition 5.6] (cf.[Bro],[RS]). By [Ma3;Theorem 5.5], the K-
groups K;(Ogconn,)) are isomorphic to the K-groups K;(M,I) so that we get

COROLLARY 3.13. The C*-algebra Ogcnip,) associated with the A-graph sys-

tem £CMDP2) s separable, unital, nuclear, simple, purely infinite with UCT such
that
Ko(Ogonwsy) 2Z/27 ¢ C(C,7Z), K1(Ogony) =0.
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4. COMPUTATION OF THE BOWEN-FRANKS GROUPS
We compute next the Bowen-Franks groups BF°(M,I) and BF°(M,I).
LEMMA 4.1. BExty(C(¢,7Z),Z) 0.

Proof. From [Ro] (cf.[Sch;Theorem 1.3]) one has that for an inductive sequence
{G;} of abelian groups there exists a natural short exact sequence

0 — lim'Homy (G}, Z) — Exty(limGy, Z) — limExt% (G, Z) — 0.

The lemma follows therefore from C(€,Z) = lm{/lf,,, : 72 - Z2l+1} and
l
Ext}(Z?,Z) = lim'Homg(Z* ,Z) =0. O

As in [Ma;Theorem 9.6], one has the following lemma that provides a universal
coefficient type theorem.

LEMMA 4.2. Fori = 0,1 there exists an exact sequence
0 — Bxty,(K;(M,I),7Z) — BF{(M,I) — Homg(K;41(M,I),Z) — 0.
THEOREM 4.3.
BF°(M,I) = Z/2Z.
Proof. By Theorem 3.12 and by Lemma 4.2 one has
BF°(M,I) = Exty,(Z/2Z,7) ® Exty(C(¢,Z),Z).
As Exty,(Z/27,7) = 7./27, the theorem follows from Lemma 4.1. [

THEOREM 4.4.
BFY(M,I) = Homyz(C(¢,Z), 7).

Proof. Homg(Z/2Z,Z) is trivial. Therefore by Theorem 3.12
Homy (Ko(M,I)) = Homgz(C(€,Z),7Z).
Since the group Ky (M, I) is trivial, by Lemma 4.2, one gets
BFY(M,I) = Homgz(C(¢,Z), 7).

d

As the Bowen-Franks groups BF°(M,I) and BF'(M,I) are isomorphic
to the Ext-groups Ext'(Ogcnny))(= Ext(Ogcnpy)) and Ext®(Ogeninsy )(=
Ext(Ogonny @ Co(R)) for the C*-algebra Ogacn(py) (cf. [Ma3]), we obtain

COROLLARY 4.5.

Extl(ogcmnz)) ~7/27, EXtO(OSCh(D2)) >~ Homy(C(€,7),7).
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5. GENERAL DYCK SHIFTS

One can extend the preceding results for the Dyck shift Dy to the general
Dyck shifts Dy with 2N symbols au,, 8,,1 < n < N, for N > 2, generalizing
the previous discussions for the case of N = 2. We will briefly explain this.
We consider the Cantor horizon A-graph system £CMP~) of Dy as in the
previous case and write its symbolic matrix system (Mff‘(_’:l’f Llfl}f(_ll)l_vl) ) as
(My 41,11 141). We define the nonnegative matrices M; 41, ;41,1 € Z4 in a
similar way. The size of the matrices M; 41, 141 is NUx N1 Let IZ(N) be the
unit matrix with size N'. For l > land 1 <4 < N'=2 et aEN)(l) = [al(-N)(l)n]ﬁil
be the vector that is given by

AN { 1 (N2(i—1)+1<n< N2%),

¢ 0 elsewhere.

Define for 1 <! € N El(N) as the N! x N'l-matrix whose i—th, (N'~! +4)—th,
(2N'=! 4+ 4)—th, ..., (N — 1)N'=! 4 i)—th column vectors are all equal to
(V)

a; '(1),1 <i< N'=2_ the other column vectors being equal to zero vectors.

Let ng)(l) = [bEN)(l)n]flV;l be the vector that is given by
1 (NG—1)+1<n<Ni),
b(N)(l)n _ { (N (i ) <n < Ni)

‘ 0 elsewhere.

Define for 1 <l € N Fl(N) as the N! x N'-matrix whose i—th column vector

is equal to bEN)(l), 1 <i < N'71 the other column vectors being equal to zero

vectors.
Define a N* x N! matrix by

LV =1+ EM -FN e
Also define permutation matrices PZ(N)’k7 k=1,2,...,N —1, by
PRGN 41— (k—1))=1, 1<i<N,

where 1 < N! —i +1— (k- 1) < N! is taken mod N'. Denote by O, the
NF x N! matrix with entries 0’s.

We define an N1 x N1 matrix Bl(ivl) by

N
Bl(+1) = [M} 11— I | O],

that is written as the block matrix
L) 01
PZ(N)JLZ(N)PZ(N)J 0Lt
Pl(N),N—lLl(.N)Pl(N),N—l 0; z

By an argument that is similar to the one of the previous sections, one can
conclude then
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THEOREM 5.1.

Ko(M,I)2Z/NZ & C(¢,Z), Ki(M,I)=0,
BF°(M,I)~7/NZ, BF'(M,I) = Homyz(C(€,Z), 7).

COROLLARY 5.2. The C*-algebra O scnipy) associated with the Cantor horizon
A-graph system £CMPN) of Dy is separable, unital, nuclear, simple, purely
infinite such that

KO(OECh(DN)) ~7Z/NZ @ C(¢,Z), Kl(Ogch(DN)) >~ (0,
Eth(Ogch(DN)) ~7/NZ, EXtO(OECh(DN)) = Homy(C(€,Z),Z).
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