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ABSTRACT. This paper deals with Arakelov vector bundles over an
arithmetic curve, i.e. over the set of places of a number field. The
main result is that for each semistable bundle E, there is a bundle F
such that F® F' has at least a certain slope, but no global sections. It
is motivated by an analogous theorem of Faltings for vector bundles
over algebraic curves and contains the Minkowski-Hlawka theorem on
sphere packings as a special case. The proof uses an adelic version of
Siegel’s mean value formula.
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INTRODUCTION

G. Faltings has proved that for each semistable vector bundle E over an al-
gebraic curve of genus g, there is another vector bundle F' such that £ ® F
has slope g — 1 and no global sections. (Note that any vector bundle of slope
> g—1 has global sections by Riemann-Roch.) See [ﬁ] and [E] where this result
is interpreted in terms of theta functions and used for a new construction of
moduli schemes of vector bundles.

In the present paper, an arithmetic analogue of that theorem is proposed. The
algebraic curve is replaced by the set X of all places of a number field K; we
call X an arithmetic curve. Vector bundles are replaced by so-called Arakelov
bundles, cf. section H In the special case K = Q, Arakelov bundles without
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116 N. HOFFMANN

global sections are lattice sphere packings, and the slope p measures the packing
density.

We will see at the end of section @ that the maximal slope of Arakelov bundles
of rank n without global sections is d(logn+ O(1))/2+ (logd)/2 where d is the
degree and 0 is the discriminant of K. Now the main result is:

THEOREM 0.1 Let £ be a semistable Arakelov bundle over the arithmetic curve
X. For each n > 0 there is an Arakelov bundle F of rank n satisfying

logo

d
wE®F) > i(logn—logw— 1—1log2) +

such that € @ F has no nonzero global sections.

The proof is inspired by (and generalises) the Minkowski-Hlawka existence
theorem for sphere packings; in particular, it is not constructive. The principal
ingredients are integration over a space of Arakelov bundles (with respect to
some Tamagawa measure) and an adelic version of Siegel’s mean value formula.
Section E explains the latter, section E contains all we need about Arakelov
bundles, and the main results are proved and discussed in section E

This paper is a condensed and slightly improved part of the author’s Ph.D.
thesis [ﬂ] I would like to thank my adviser G. Faltings for his suggestions; the
work is based on his ideas. It was supported by a grant of the Max-Planck-
Institut in Bonn.

1 NOTATION

Let K be a number field of degree d over Q and with ring of integers Of.
Let X = Spec(Ok) U X be the set of places of K; this might be called an
‘arithmetic curve’ in the sense of Arakelov geometry. X, consists of r; real
and ro complex places with 71 +2rs = d. w(K) is the number of roots of unity
in K.

For every place v € X, we endow the corresponding completion K, of K with
the map | . |, : K, — Rxq defined by p(a-S) = |aly - 1(S) for a Haar measure 4
on K,. This is the normalised valuation if v is finite, the usual absolute value
if v is real and its square if v is complex. The well known product formula
[I,cx lale = 1 holds for every 0 # a € K. On the adele ring A, we have the
divisor map div : A — R, that maps each adele a = (a,)yex to the collection
(|aw]v)vex of its valuations.

Let O, be the set of those a € K, which satisfy |a|, < 1; this is the ring of
integers in K, for finite v and the unit disc for infinite v. Let O, denote the
product [, x Oy; this is the set of all adeles a with div(a) < 1. By D <1 for
an element D = (D,)yex of RY), we always mean D, < 1 for all v.

We fix a canonical Haar measure \, on K, as follows:

o If v is finite, we normalise by A,(O,) = 1.

o If v is real, we take for A, the usual Lebesgue measure on R.
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TENSOR PRODUCTS WITHOUT SECTIONS 117

e If v is complex, we let A, come from the real volume form idz A dz on C.
In other words, we take twice the usual Lebesgue measure.

This gives us a canonical Haar measure A := [] .y A, on A, We have
AMA/K) = Vo where 0 = 0 /g denotes (the absolute value of) the discriminant.
More details on this measure can be found in [[Z], section 2.1.

Let V,, = % be the volume of the unit ball in R™. For v € X, we
denote by O] the unit ball with respect to the standard scalar product on K.
Observe that this is not the n-fold Cartesian product of O, C K,. Similarly,
O} = [l,ex Oy is not the n-fold product of Oy C A. Tts volume A"(O}) is

VI (2" Vay,)"2.

2 A MEAN VALUE FORMULA

The following proposition is a generalisation of Siegel’s mean value formula
to an adelic setting: With real numbers and integers instead of adeles and
elements of K, Siegel has already stated it in [@], and an elementary proof is
given in [ﬁ} (In the special case [ = 1, a similar question is studied in [E])

ProproOSITION 2.1 Let 1 <1 < n, and let f be a nonnegative measurable func-
tion on the space Mat,,, ;(A) of n x | adele matrices. Then

nxl
> fgdndrtg =0 [ pant )
S, (A)/SL, (K) Merf(%x:zl(ff) Mat,  ,(A)

where T is the unique Sl,, (A)-invariant probability measure on Sl,,(A)/Sl, (K).

Proof: The case [ =1 is done in section 3.4 of [@], and the general case can
be deduced along the same lines from earlier sections of this book. We sketch
the main arguments here; more details are given in [ﬂ], section 3.2.

Let G be the algebraic group Sl,, over the ground field K, and denote by 74 the
Tamagawa measure on G(A) or any quotient by a discrete subgroup. The two
measures 7 and 7 on Sl,(A)/Sl, (K) coincide because the Tamagawa number
of G is one.

G acts on the affine space Mat,, ,; by left multiplication. Denote the first [
columns of the n x n identity matrix by E € Mat,,, ;(K), and let H C G be
the stabiliser of E. This algebraic group H is a semi-direct product of Sl,,_;
and Mat;, ,,_;y. Hence section 2.4 of [@] gives us a Tamagawa measure 7y on
H(A), and the Tamagawa number of H is also one.

Again by section 2.4 of [[Ld], we have a Tamagawa measure 7¢,/ 5 on G(A)/H(A)
as well, and it satisfies 7¢ = 7q/p - T in the sense defined there. In particular,
this implies

/ f(g- B) drag) = / f(g- E)dren(g).

G(A)/H(K) G(A)/H(A)
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118 N. HOFFMANN

It is easy to see that the left hand sides of this equation and of () coincide.
According to lemma 3.4.1 of [, the right hand sides coincide, too. o

3 ARAKELOV VECTOR BUNDLES

Recall that a (Euclidean) lattice is a free Z-module A of finite rank together
with a scalar product on A ®R. This is the special case K = Q of the following
notion:

DEFINITION 3.1 An Arakelov (vector) bundle € over our arithmetic curve X =
Spec(Ok )UX « is a finitely generated projective O g-module £p,. endowed with

o a Euclidean scalar product (_,_)¢ ,, on the real vector space k., for every
real place v € X, and

o a Hermitian scalar product (_,_)¢ , on the complex vector space £, for
every complex place v € X

where £4 := Ep, ® A for every Og-algebra A.

A first example is the trivial Arakelov line bundle O. More generally, the trivial
Arakelov vector bundle O™ consists of the free module OF together with the
standard scalar products at the infinite places.

We say that £’ is a subbundle of £ and write £’ C & if é’éK is a direct summand
in £o, and the scalar product on £ is the restriction of the one on £k, for
every infinite place v. Hence every vector subspace of £k is the generic fibre
of one and only one subbundle of £.

From the data belonging to an Arakelov bundle £, we can define a map

- llew : €k, — Rxo
for every place v € X:

o If v is finite, let |e|lg,, be the minimum of the valuations |al, of those
elements a € K, for which e lies in the subset a - £p, of £k, . This is the
nonarchimedean norm corresponding to £p, .

o If v is real, we put |le||g,, := v/ (e, €}y, SO we just take the norm coming
from the given scalar product.

o If v is complex, we put |le||g, := (e, €), which is the square of the norm
coming from our Hermitian scalar product.

Taken together, they yield a divisor map
dive : Ey — R)Z(O e=(ey) — (llevllew)-

Although O, is not an Ogk-algebra, we will use the notation £p,, namely for
the compact set defined by

o, = {e €&y dng(e) < 1}.
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TENSOR PRODUCTS WITHOUT SECTIONS 119

Recall that these norms are used in the definition of the Arakelov degree: If £
is an Arakelov line bundle and 0 # [ € Li a nonzero generic section, then

deg(L) := —log [] lllc.0
veX

and the degree of an Arakelov vector bundle £ is by definition the degree of
the Arakelov line bundle det(&). p(€) := deg(€)/rk(€) is called the slope of £.
One can form the tensor product of two Arakelov bundles in a natural manner,
and it has the property u(€ ® F) = u(€) + pu(F).

Moreover, the notion of stability is based on slopes: For 1 <[ < rk(€), denote
by pilhy the supremum (in fact it is the maximum) of the slopes p(&’) of
subbundles £ C € of rank I. £ is said to be stable if it < 12(€) holds for all
I < 1k(€), and semistable if pbhx < p(€) for all 1.

To each projective variety over K endowed with a metrized line bundle, one
can associate a zeta function as in [E] or ] We recall its definition in the
special case of Grassmannians associated to Arakelov bundles:

DEFINITION 3.2 If £ is an Arakelov bundle over X and | < rk(€) is a positive
integer, then we define

Ss):= Y exp(s-deg(e).
g'ce
rk(£7)=l

The growth of these zeta functions is related to the stability of £. More pre-
cisely, we have the following asymptotic bound:

LEMMA 3.3 There is a constant C = C (&) such that

¢)(s) < O exp(s - Ll (€))
for all sufficiently large real numbers s.

Proof: Fix £ and I. Denote by N(T') the number of subbundles £’ C & of rank
[ and degree at least —T'. There are C1,Cs € R such that
N(T) < exp(C1T + Cs)

holds for all T € R. (Embedding the Grassmannian into a projective space,
this follows easily from [[J]. See [], lemma 3.4.8 for more details.)

If we order the summands of ( él) according to their magnitude, we thus get

D) £ YN (0@ + v+ 1) e (5 (ll(€) — )
v=0
exp(s - 1D N O

But the last sum is a convergent geometric series for all s > C; and decreases
as s grows, so it is bounded for s > C7 + 1. |
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120 N. HOFFMANN

4 THE MAIN THEOREM

The global sections of an Arakelov bundle £ over X = Spec(Ok) U X are by
definition the elements of the finite set

&) :=E&k Néo, C &x.

Note that in the special case K = Q, an Arakelov bundle without nonzero
global sections is nothing but a (lattice) sphere packing: T'(£) = 0 means that
the (closed) balls of radius 1/2 centered at the points of the lattice & are
disjoint. Here larger degree corresponds to denser packings.

THEOREM 4.1 Let £ be an Arakelov bundle over the arithmetic curve X. If an
integer n > 1k(€) and an Arakelov line bundle L satisfy

rk(€)

K* nl
1> ot (B2 ) el des(£),
=1

then there is an Arakelov bundle F of rank n and determinant L such that
rE®F)=0.

Proof: Note that any global section of £ ® F is already a global section of
&' @ F for a unique minimal subbundle £ C £, namely the subbundle whose
generic fibre is the image of the induced map (Fx )% — Ex. We are going
to average the number of these sections (up to K*) for a fixed subbundle &’ of
rank [.

Fix one particular Arakelov bundle F of rank n and determinant £. Choose
linear isomorphisms ¢g : K' — & and ¢ : K™ — Fi and let

¢ : Mat,, ., (K) -~ (&' @ F)k

be their tensor product. Our notation will not distinguish these maps from
their canonical extensions to completions or adeles.

For each g € Sl,,(A), we denote by gF the Arakelov bundle corresponding to the
K-lattice ¢x(gK™) C Fu. More precisely, gF is the unique Arakelov bundle
satisfying (9F)a = Fa, (9F)o, = Fo, and (9F)x = ¢x(gK™). This gives the
usual identification between Sl,,(A)/Sl,(K) and the space of Arakelov bundles
of rank n and fixed determinant together with local trivialisations.

Observe that the generic fibre of &' ® gF is ¢(gMat,,;(K)). A generic section
is not in £&” ® gF for any £’ C &’ if and only if the corresponding matrix
has rank [. So according to the mean value formula of section E, the average
number of global sections

dr(g)

K*F ! K*F 1"
card (& *®gf)\ U (" @gF)

K 1" ’ K*
Sl (A)/SL, (K) erge
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TENSOR PRODUCTS WITHOUT SECTIONS 121

is equal to the integral

/2 / (fi odivgigr o @) d <t (2)

Mat,, ., (A)

Here the function fx : R)Z(O — R>¢ is defined by

fie(D) = 1/card{a € K* : div(a)-D <1} ifD<1

0 otherwise

with the convention 1/00 = 0.
In order to compute (E), we start with the local transformation formula

X ({M € Mat, (K o1 < 60 ersr < o)) =
XU (Me KM ias< Ml <)) - [det@ikesn.

for all ¢, c2 € R>¢. Regarding this as a relation between measures on R>¢ and
taking the product over all places v € X, we get the equation

(divergr 0 ¢) A" = expdeg(E' @ F) - (divem ) A™ (3)

of measures on R)go. Hence the integrals of fx with respect to these measures
also coincide: B

K* Onl

[ Uodiversro ) ax<! expnden(e’) + 1aeg() A (0.

Mat A)

71.><l(

We substitute this for the integral in (E) A summation over all nonzero sub-
bundles £ C € yields

card (K*F(é'f?*g}') \O> dr(g) =

Sln (A)/Sln (K)
rk(&)

K* nl
= > o7 (n) exp(l deg(F)) - A (%) -
=1

But the right hand side was assumed to be less than one, so there there has to
be a g € Sl,(A) with T'(E ® gF) = 0. O

In order to apply this theorem, one needs to compute \V(K*OY/K*) for
N > 2. We start with the special case K = Q. Here each adele a € O outside
a set of measure zero has a rational multiple in O with valuation one at all
finite places, and this multiple is unique up to sign. Hence we conclude

N (QOFY _ Wy NN\ 7Ny _ VN
(B =5 T e ) = oy

p prime
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122 N. HOFFMANN

In particular, the special case K = Q and £ = O of the theorem above is
precisely the Minkowski-Hlawka existence theorem for sphere packings [E], §15.
For a general number field K, we note that the roots of unity preserve OY.
Then we apply Stirling’s formula to the factorials occurring via the unit ball
volumes and get

* dN/2 ri1+rs)/2
A (BEONY AN(OF) _ (2me\ ™R R 1
K* - wK) T \UN TN 2r2/2q(K)

Using such a bound and the asymptotic statement @ about Cél), one can
deduce the following corollary of theorem @

COROLLARY 4.2 Let the Arakelov bundle £ over X be given. If n is a suffi-
ciently large integer and p is a real number satisfying

log0

d
D (&) +p < E(logn +logl —logm — 1 —log2) +
for all 1 <1 <1k(E), then there is an Arakelov bundle F of rank n and slope
larger than p such that I'(E @ F) = 0.

If £ is semistable, this gives the theorem .1 stated in the introduction. Here
is some evidence that these bounds are not too far from being optimal:

PROPOSITION 4.3 Assume given € > 0 and a nonzero Arakelov bundle €. Let
n > n(e) be a sufficiently large integer, and let p be a real number such that

d log 0
D () +p > §(logn+logl —logm —1+41log2+e¢€)+ =89

holds for at least one integer 1 <1 <1k(E). Then there is no Arakelov bundle
F of rank n and slope p with T'(E @ F) = 0.

Proof: Fix such an [ and a subbundle £ C £ of rank [ and slope uﬁfgx(s ). For
each F of rank n and slope u, we consider the Arakelov bundle 7/ := & @ F
of rank nl. By Stirling’s formula, the hypotheses on n and p imply

exp deg(F') - XM (OR!) > gnid . nt/2,

Now choose a K-linear isomorphism ¢ : K™ = F} and extend it to adeles.
Applying the global transformation formula (E), we get

)\nl((b—lf(/:)A) > 2nld . )\nl(Anl/Knl)

According to Minkowski’s theorem on lattice points in convex sets (in an adelic
version like [L]], theorem 3), ¢~1(Fp, ) N K™ # {0} follows. This means that
F' — and hence £ ® F — must have a nonzero global section. O

Observe that the lower bound @ and the upper bound @ differ only by the
constant dlog2. So up to this constant, the maximal slope of such tensor
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TENSOR PRODUCTS WITHOUT SECTIONS 123

products without global sections is determined by the stability of &£, more
precisely by the ug])w(f,’).

Taking £ = O, we get lower and upper bounds for the maximal slope of
Arakelov bundles without global sections, as mentioned in the introduction. In
the special case £ = O and K = Q of lattice sphere packings, [E] states that
no essential improvement of corollary @ is known whereas several people have

improved the other bound @ by constants.
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