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Abstract.

We introduce a new bivariant cyclic theory for topological algebras,
called local cyclic cohomology. It is obtained from bivariant periodic
cyclic cohomology by an appropriate modification, which turns it into
a deformation invariant bifunctor on the stable diffeotopy category of
topological ind-algebras. We set up homological tools which allow the
explicit calculation of local cyclic cohomology. The theory turns out
to be well behaved for Banach- and C∗-algebras and possesses many
similarities with Kasparov’s bivariant operator K-theory. In partic-
ular, there exists a multiplicative bivariant Chern-Connes character
from bivariant K-theory to bivariant local cyclic cohomology.
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Introduction

A central topic of noncommutative geometry is the study of topological alge-
bras by means of homology theories. The most important of these theories
(and most elementary in terms of its definition) is topological K-theory. Vari-
ous other homology theories have been studied subsequently. This has mainly
been done to obtain a better understanding of K-theory itself by means of
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theories which either generalize the K-functor or which provide explicitely cal-
culable approximations of it. The latter is the case for cyclic homology, which
was introduced by Connes [Co1], and independently by Tsygan [FT], in order
to extend the classical theory of characteristic classes to operator K-theory,
respectively to algebraic K-theory. Concerning operator K-theory, which is
ZZ/2ZZ-graded by the Bott periodicity theorem, one is mainly interested in pe-
riodic cyclic theories. Periodic cyclic homology HP is defined as the homology
of a natural ZZ/2ZZ-graded chain complex ĈC∗ associated to each complex al-
gebra [Co1]. It can be expressed in terms of derived functors, which allows
(in principle) its explicit calculation [Co]. There exists a natural transforma-
tion ch : K∗ −→ HP∗, called the Chern-character, from K-theory to periodic
cyclic homology [Co1]. If this Chern-character comes close to an isomorphism
(after tensoring with lC), then periodic cyclic homology provides an explicitely
calculable approximation of the K-groups one is interested in.
It turns out, however, that the Chern-character is often quite degenerate for
Banach- and C∗-algebras. Unfortunately, this is the class of algebras, for which
the knowledge of the K-groups would be most significant. The main reason for
the degeneracy of Chern characters lies in the different functorial behavior
of K-theory and periodic cyclic homology: due to its algebraic nature, cyclic
homology possesses the continuity properties of K-theory only in a weak sense.
The essential properties of K-theory are:

• Invariance with respect to (continuous) homotopies

• Invariance under topologically nilpotent extensions
(infinitesimal deformations)

• Topological Morita invariance

• Excision

• Stability under passage to dense subalgebras which are closed under
holomorphic functional calculus.

• Compatibility with topological direct limits

Periodic cyclic homology verifies only a list of considerably weaker conditions:

• Invariance with respect to diffeotopies (smooth homotopies) [Co1], [Go]

• Invariance under nilpotent extensions [Go]

• Algebraic Morita invariance [Co1]

• Excision [CQ2]

In the sequel we will ignore the excision property. The lists of remaining prop-
erties will be called strong respectively weak axioms.
To illustrate some of the differences between the two theories we discuss two
well known examples.
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Example 1: While for the algebra of smooth functions on a compact manifold
M the periodic cyclic cohomology

HP ∗(C∞(M)) ≃ HdR
∗ (M)

coincides with the de Rham homology of M [Co1], the periodic cyclic cohomol-
ogy of the C∗-algebra of continuous functions on a compact space X is given
by

HP ∗(C(X)) ≃ C(X)′

the space of Radon measures on X [Ha]. Thus HP is not stable under passage
to dense, holomorphically closed subalgebras. Taking X = [0, 1], one sees more-
over that periodic cyclic (co)homology cannot be invariant under (continuous)
homotopies.
Example 2: The inclusion A →֒ Mn(A) of an algebra into its matrix algebra
gives rise to a (co)homology equivalence by the Morita-invariance of HP . In
contrast the inclusion B →֒ lim

n→∞
Mn(B) = B⊗C∗K (K the algebra of compact

operators on a Hilbert space) of a C∗-algebra into its stable matrix algebra
induces the zero map in periodic cyclic (co)homology [Wo]. Thus HP is not
topologically Morita invariant. Moreover, it does not commute with topological
direct limits. Finally it is known that periodic cyclic cohomology is not stable
under topologically nilpotent extensions or infinitesimal deformations.
In order to obtain a good homological approximation of K-theory one therefore
has to find a new cyclic homology theory which possesses a similar functorial
behavior and is still calculable by means of homological algebra.
In this paper we introduce such a theory, called local cyclic cohomology. It
is defined on the category of formal inductive limits of nice Fréchet algebras
(ind-Fréchet algebras). A well behaved bivariant Chern-Connes character with
values in bivariant local cyclic cohomology is constructed in [Pu2].
We proceed in two steps. In the first part of the paper we study diffeotopy
functors of topological ind-algebras which satisfy the weak axioms. Our main
result is a simple criterion, which guarantees that such a functor even satisfies
the strong axioms. In the second part of the paper we modify periodic cyclic
homology so that it satisfies this criterion and discuss the cyclic homology
theory thus obtained.
A new basic object that emerges here is the stable diffeotopy category of ind-
algebras (formal inductive limits of algebras). Its definition is in some sense
similar to that of the stable homotopy category of spectra [Ad]. We construct
first a triangulated prestable diffeotopy category, which possesses the usual
Puppe exact sequences, by inverting the smooth suspension functor. Then
we invert the morphisms with weakly contractible mapping cone to obtain
the stable diffeotopy category. The criterion mentioned before can now be
formulated as follows:
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Theorem 0.1. Let F be a functor on the category of ind-Fréchet algebras with
approximation property [LT], which satisfies the weak axioms. Suppose that F
is invariant under infinitesimal deformations and under stable diffeotopy, i.e.
that it factors through the stable diffeotopy category. Then F also satisfies the
strong axioms.

In order to understand why this result holds we have to explain the signif-
icance of infinitesimal deformations. The approach of Cuntz and Quillen to
periodic cyclic homology [CQ], [CQ1] emphasizes the invariance of the theory
under quasinilpotent extensions. The corresponding notion for Fréchet alge-
bras is that of a topologically nilpotent extension or infinitesimal deformation
[Pu1], see also [Me], which is defined as an extension of Fréchet algebras with
bounded linear section and topologically nilpotent kernel. Here a Fréchet al-
gebra is called topologically nilpotent if the family of its relatively compact
subsets is stable under taking multiplicative closures. Among the possible in-
finitesimal deformations of an algebra there is an initial or universal one [Pu],
provided one works in the more general context of formal inductive limits of
Fréchet algebras (or ind-Fréchet algebras). The universal infinitesimal defor-
mation functor T , which is left adjoint to the forgetful functor from ind-Fréchet
algebras to a category with the same objects but with a more general kind of
morphisms. These are the ”almost multiplicative maps” which were introduced
and studied in [Pu1]. By its very definition, every functor of ind-algebras, which
is invariant under infinitesimal deformations, will be functorial with respect to
almost multiplicative maps. This additional functoriality, which played already
a fundamental role in [Pu], gives us the means to verify the strong axioms. For
example, the inclusion of a dense, smooth subalgebra into a Banach algebra
(with approximation property) possesses an almost multiplicative inverse up to
stable diffeotopy. It is given by any family of linear regularization maps into
the subalgebra, which converges pointwise to the identity. Thus this inclusion
is turned by the given functor into an isomorphism.
It should be noted that there is an alternative way to introduce universal in-
finitesimal extensions, which is based on bornological algebras [Me]. This ap-
proach appears to be simpler, but does not seem to lead to homology theories
which are accessible to calculation or which possess nice continuity properties.
In order to obtain the results of this paper it is indispensable to work with
ind-algebras (see section three). It allows to replace a large and complicated
topological algebra by a large diagram of algebras of a very simple type. We
split thus the information encoded in the initial data into a purely combinato-
rial and an algebro-analytic part of very particular type. This is reminiscent
of algebraic topology where one replaces complicated spaces by model spaces
given by simple building blocks and combinatorial gluing data.
In the second part of the paper we apply the results obtained so far to the
functor given by bivariant periodic cyclic cohomology [CQ1]. For a pair of
Fréchet algebras (A,B) it is given in terms of the natural cyclic bicomplex by
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HP∗(A,B) := Mor∗Ho(ĈC(A), ĈC(B))

the group of chain homotopy classes of continuous chain maps of cyclic bi-
complexes. Periodic cyclic (co)homology satisfies the weak axioms above, as
mentioned at the beginning of the introduction. One can associate to it in a
canonical way a homology theory which is invariant under infinitesimal defor-
mations. This is analytic cyclic (co)homology

HCan
∗ (A,B) := Mor∗Ho(ĈC(T A), ĈC(T B))

which was defined in [Pu] and developed in great generality in [Me]. Then we
introduce the derived ind-category D which is obtained by localizing the chain
homotopy category of ZZ/2ZZ-graded ind-chain complexes with respect to chain
maps with weakly contractible mapping cone. Finally we define local cyclic
cohomology as

HCloc
∗ (A,B) := Mor∗D(ĈC(T A), ĈC(T B))

Thus, by construction, local cyclic cohomology satisfies the assumptions of
theorem (0.1). In particular, the first list of axioms holds for local cyclic coho-
mology, which behaves therefore very much like K-theory.
The second issue which distinguishes local cyclic cohomology among most other
cyclic theories is its computability in terms of homological algebra.
There is a spectral sequence calculating morphism groups in the derived ind-
category D which can be used to compute local cyclic cohomology groups.
If (C = “ lim

−→

i∈I

” Ci, C′ = “ lim
−→

j∈J

” C ′
j) is a pair of ind-chain complexes, then the

E2-term of the spectral sequence calculating Mor∗D(C, C′) is given by

E2
pq = Rp lim

←−

i∈I

lim
−→

j∈J

Mor∗Ho(Ci, C
′
j)

where Rp lim
←−

i∈I

denotes the p-th right derived functor of the inverse limit over I.

If the cardinalities of the index set I is not too large, then the spectral sequence
converges. A consequence of this result is the following theorem which is at the
basis of most calculations of local cyclic cohomology groups.

Theorem 0.2. (Limit theorem)
Suppose that the Banach algebra A is the topological direct limit of the countable
family of Banach algebras (An)n∈lN and suppose that A satisfies the approxi-
mation property (see (6.16)). Then there is a natural isomorphism

lim
n→∞

HCloc
∗ (An)

≃
−→ HCloc

∗ (A)

of local cyclic homology groups and a natural short exact sequence

0 −→ lim
←−
n

1 HC∗−1
loc (An) −→ HC∗

loc(A) −→ lim
←−
n

HC∗
loc(An) −→ 0

of local cyclic cohomology groups.
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Although it might seem that nothing has been gained in this way, because
one intractable cohomology group has been replaced by a limit of similarly in-
tractable objects, the spectral sequence proves to be a surprisingly efficient tool
for computations. The reason lies in the fact that, although the involved groups
are mostly unknown, the transition maps in the corresponding limits often turn
out to be quite accessible. We present a number of explicit calculations of local
cyclic cohomology groups, which illustrate this principle.
The content of the different sections is as follows. In section one we introduce
the notions of almost multiplicative morphism, topologically nilpotent exten-
sion, and universal infinitesimal deformation, which are used throughout the
paper. This material is taken from [Pu1]. In section two the stable diffeotopy
category of ind-algebras is introduced and section three presents various results
about the stable diffeotopy type of universal infinitesimal deformations. The
main theorem mentioned before is proved in section four. It is applied in sec-
tion five to periodic cyclic homology. After a short review of the known cyclic
homology theories we introduce local cyclic cohomology. In section six we de-
velop the tools for computing local cyclic cohomology groups. Various natural
transformations relating the different cyclic theories are discussed in section
seven, see also [Me1], and in section eight we give examples of calculations of
local cyclic cohomology. We present there also a partial solution of a problem
posed by A. Connes in [Co3]. More detailed information can be found in the
introductions to the various sections.
This paper is a completely revised and rewritten version of the preprint [Pu1].
A precursor of the theory presented here is asymptotic cyclic cohomology, which
was introduced in [CM] and developed in [Pu]. While it shares the good func-
torial properties of local cyclic cohomology, there is no way to calculate asymp-
totic cyclic cohomology by homological means.
The excision property of local cyclic cohomology is a consequence of excision in
analytic cyclic cohomology and is shown in [Pu2]. In that paper we construct
a multiplicative bivariant Chern-Connes character

chbiv : KK∗(−,−) −→ HCloc
∗ (−,−)

from Kasparov’s bivariant K-theory [Ka] to bivariant local cyclic cohomology.
This character provides a good approximation of (bivariant) K-theory. An
equivariant version of the bivariant Chern-Connes character and the compu-
tational tools developed in this paper are used in [Pu4] and [Pu5] to verify
the Kadison-Kaplansky idempotent conjecture in various cases. These applica-
tions show the potential power of local cyclic cohomology as a tool for solving
problems in noncommutative geometry. The present paper and the articles
[Pu2] and [Pu5] form the published version of the authors Habilitationsschrift
presented at the Westfälische Wilhelms-Universität Münster.
It is a pleasure for me to thank Joachim Cuntz for numerous discussions on the
subject of this paper. I thank Ralf Meyer for bringing his work [Me1] to my
attention.
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1 Topological ind-algebras and their
universal infinitesimal deformations

1.1 Nice Fréchet algebras

A convenient category of algebras to work with for the purpose of this paper
is the category of nice (or admissible) Fréchet algebras. These algebras are in
many ways similar to Banach algebras. In addition, they are stable under a
number of operations which cannot be performed in the category of Banach
algebras, for example, the passage to a dense, holomorphically closed subal-
gebra. (We decided to replace the name ”admissible Fréchet algebra” used in
[Pu] and [Pu1] by that of a ”nice Fréchet algebra” because the old terminology
seemed us too ugly.)

Definition 1.1. [Pu] A Fréchet algebra A is called nice iff there exists an open
neighborhood U of zero such that the multiplicative closure of any compact
subset of U is precompact in A.

The open set U is called an “open unit ball” for A. It is by no means unique.

The class of nice Fréchet algebras contains all Banach algebras and derived
subalgebras of Banach algebras [BC] and many Fréchet algebras which occur
as dense, holomorphically closed subalgebras of Banach algebras.

Nice Fréchet algebras share a number of properties with Banach algebras: the
spectrum of an element of a nice Fréchet-algebra is compact and nonempty
and holomorphic functional calculus is valid in nice Fréchet-algebras. (This is
most easily seen by noting that according to (1.5) a nice Fréchet algebra is the
algebraic direct limit of Banach algebras. Another proof can be found in [Pu],
section 1.)

The class of nice Fréchet algebras is closed under taking projective tensor prod-
ucts [Pu], (1.17). If A is nice with open unit ball U and if X is a compact space
then the Fréchet algebra C(X,A) is nice with open unit ball C(X,U).

1.2 Formal inductive limits

In the sequel we will work with certain diagrams of algebras. An appropriate
language to deal with such diagrams is provided by the notion of a formal
inductive limit.

Definition 1.2. Let C be a category. The category ind-C of ind-objects or
formal inductive limits over C is defined as follows.

The objects of ind-C are small directed diagrams over C:

Obind-C = {“ lim
−→

i∈I

”Ai

∣∣∣ I a partially ordered directed set }

= {Ai, fij : Ai → Aj , i ≤ j ∈ I
∣∣∣ fjk ◦ fij = fik}
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The morphisms between two ind-objects are given by

Morind-C(“ lim
−→

i∈I

”Ai, “ lim
−→

j∈J

”Bj) := lim
←−

i∈I

lim
−→

j∈J

MorC(Ai, Bj)

where the limits on the right hand side are taken in the category of sets.

There exists a fully faithful functor ι : C → ind-C which identifies C with the
full subcategory of constant ind-objects.

Lemma 1.3. In ind-C there exist arbitrary inductive limits over directed index
sets.

This is [SGA], I, 8.5.1. Inductive limits in an ind-category will be denoted
by Lim

−→
. Even if direct limits exist in C, they are usually different from the

corresponding direct limit in ind-C. If (Ai)i∈I is a small directed diagram in C
which is viewed as diagram of constant ind-objects, then

Lim
−→
i∈I

Ai ≃ “ lim
−→

i∈I

”Ai

as objects of ind-C. If F : C → C′ is a functor to a category in which direct limits
exist, then F possesses a unique extension F ′ : ind-C → C′ which commutes
with direct limits. One has

F ′(“ lim
−→

i∈I

”Ai) = lim
−→

i∈I

F (Ai)

1.3 Diagrams of compactly generated algebras

It is our aim to construct and study continuous functors on categories of topo-
logical algebras. By this we mean either functors which are determined by
their values on suitable families of dense subalgebras or more generally func-
tors which commute with topological direct limits. The first step towards the
construction of such functors will be the functorial replacement of ”large” al-
gebras by infinite diagrams of ”small” algebras of a particular type. Part of
the structure of a ”large” algebra will be encoded in the combinatorics of the
diagram and one is left with the study of ”small” algebras with peculiar proper-
ties. The natural choice for these ”small” algebras will be the Banach algebras
generated by the compact subsets of the original algebra.

Definition and Lemma 1.4. There exists a functor B from the category of
nice Fréchet algebras to the category of ind-Banach algebras which assigns to
a nice Fréchet algebra the diagram of minimal Banach completions of its com-
pactly generated subalgebras.

Proof: Let A be a nice Fréchet algebra and let U be an open unit ball for A.
Fix a compact subset S ⊂ U and denote by A[S] the subalgebra of A generated
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by S. There exists a largest submultiplicative seminorm on A[S] which satisfies
‖ S ‖≤ 1. For x ∈ A[S] it is given by

‖ x ‖= inf
x=

∑
aisi

∑
|ai|

where the infimum is taken over the set of all presentations x =
∑

aisi such
that ai ∈ lC and si ∈ S∞, the multiplicative closure of S. The completion
of A[S] with respect to this seminorm is a Banach algebra denoted by AS .
Any inclusion S ⊂ S′ ⊂ U of compact subsets of U gives rise to a bounded
homomorphism of Banach algebras AS → AS′ so that one obtains an ind-
Banach algebra

B(A,U) := “ lim
−→

S⊂U

S compact

”AS

Let f : A → A′ be a bounded homomorphism of nice Fréchet algebras and fix
open unit balls U ⊂ A and U ′ ⊂ A′. For S ⊂ U compact let S′ ⊂ U ′ be a
compact set which absorbs f(S∞) (S∞ denotes the multiplicative closure of S).
This is possible because S∞ is precompact (A is nice) and f is bounded. The
map f gives then rise to a bounded homomorphism AS → A′

S′ . The collection
of all these homomorphisms defines a morphism of ind-Banach algebras
f∗ : B(A,U) → B(A′, U ′). Applying this to the case f = id shows that the ind-
Banach algebra B(A,U) does not depend (up to unique isomorphism) on the
choice of U . It will henceforth be denoted by B(A). The construction above
shows furthermore that B(−) is a functor from the category of nice Fréchet
algebras to the category of ind-Banach algebras. 2

Lemma 1.5. There exists a natural transformation of functors

φ : B → ι

(see (1.2)). It is provided by the tautological homomorphism

B(A) = “ lim
−→

S⊂U

”AS → A

In fact lim
−→

S⊂U

AS = A in the category of abstract algebras.

Proof: The fact that the multiplicative closure of a compact subset S of a
unit ball of A is precompact implies that the inclusion A[S] → A extends to a
bounded homomorphism AS → A. These fit together to a bounded homomor-
phism

φA : B(A) → ι(A)

of ind-Fréchet algebras. It is clear that the homomorphisms φA define a natural
transformation as claimed by the lemma. In fact

lim
→
S

A[S]
≃
−→ lim

→
S

AS
≃
−→ A
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where the limit is taken in the category of abstract algebras. This yields the
second assertion. 2

Lemma 1.6. The functor B is fully faithful.

Proof: Let ψ : B(A) → B(A′) be a morphism of ind-Banach algebras. It gives
rise to a homomorphism

ψ′ : A = lim
−→
S

AS −→ lim
−→
S′

A′
S′ = A′

of abstract algebras which maps precompact sets to bounded sets and is there-
fore bounded. This defines a map morind−Alg(B(A), B(A′)) → morAlg(A,A′)
which is clearly inverse to the map on morphism sets induced by B. Therefore
the functor B is fully faithful. 2

The canonical extension of the functor B to the category of nice ind-Fréchet
algebras (1.2) will be denoted by the same letter. To study it in further detail
we introduce the following notion.

Definition 1.7. An ind-Banach algebra is called compact if it is isomorphic
to an ind-Banach algebra “ lim

−→

i∈I

”Ai satisfying the following condition: for every

i ∈ I there exists i′ ≥ i such that the structure homomorphism Ai → Ai′ is
compact.

The proof of the following results is facilitated by the technical

Lemma 1.8. Define a functor B′ from the category of nice Fréchet algebras to
the category of ind-Banach algebras by

B′(A) := “ lim
−→

S⊂U

S nullsequence

”AS

Then the canonical natural transformation B′ → B is an isomorphism of func-
tors.

Proof: This follows from the fact that every compact subset of a Fréchet space
is contained in the convex hull of a nullsequence. (A proof is given for example
in [Pu], (1.7).) The actual argument is however rather long and tedious and
quite close to the one given in the proof of [Pu], (5.8). 2

Lemma 1.9. Let A be a nice ind-Fréchet algebra. Then the ind-Banach algebra
B(A) is compact.

Proof: It suffices by lemma (1.8) to verify that B′(A) is compact for every nice
Fréchet algebra A. Let S be a nullsequence in U . As A is nice the multiplicative
closure of S is a nullsequence S∞ = (an)n∈lN. Choose a sequence (λn)n∈lN of
strictly positive real numbers tending to infinity such that S′ := (λnan)n∈lN is
still a nullsequence and let S′′ ⊂ U be a compact set absorbing S′. The induced
homomorphism AS → AS′′ of the Banach algebras generated by S respectively.
S′′ is then compact. 2
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Proposition 1.10. The functor B is right adjoint to the forgetful functor from
the category of compact ind-Banach algebras to the category of nice ind-Fréchet
algebras. In fact for every compact ind-Banach algebra A and every nice ind-
Fréchet algebra A′ the natural transformation φ (1.5) induces an isomorphism

Morind−alg(A, B(A′))
≃
−→ Morind−alg(A, A′)

Proof: This is an immediate consequence of the definitions. 2

Corollary 1.11. For every compact ind-Banach algebra A the canonical ho-

momorphism φA : B(A)
≃
−→ A is an isomorphism.

Proof: The corollary follows from (1.9) by applying twice the adjunction
formula (1.10). 2

Corollary 1.12. The canonical natural transformation

φB : B2 := B ◦ B
≃
−→ B

is an isomorphism of functors on the category of nice ind-Fréchet algebras.

Proof: This follows from (1.9) and (1.11). 2

1.4 Almost multiplicative maps

A fundamental property of operator K-theory and other homology theories
for topological algebras is the invariance under quasinilpotent extensions or
infinitesimal deformations. The Cuntz-Quillen approach to periodic cyclic ho-
mology [CQ], [CQ1] for example is based on the deformation invariance of the
theory.
Invariance under infinitesimal deformations is equivalent to the given theory
being functorial not only under homomorphisms between algebras but also un-
der homomorphisms between their quasinilpotent extensions. In other words,
a deformation invariant theory extends to a functor on the category obtained
by inverting epimorphisms with linear section and quasinilpotent kernel.
It is this ”extended functoriality” which makes deformation invariance relevant
for us and which will play a fundamental role in the present work.
The notions of (quasi)nilpotent extensions or infinitesimal deformations are
well known for abstract and adically complete algebras. We develop the cor-
responding notions for complete locally convex algebras in close analogy. The
existence of a universal quasinilpotent extension of adically complete algebras
allows to describe explicitely the morphisms in the extended category. These
correspond to linear maps f : R −→ S, for which products of a large number
of curvature terms [CQ]

ωf (a, a′) := f(a · a′) − f(a) · f(a′), a, a′ ∈ R,

(measuring the deviation from multiplicativity) are small. It is straightforward
to define the corresponding kind of morphisms for diagrams of Fréchet algebras
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which leads to the notion of an almost multiplicative map. As such maps are
stable under composition one obtains in this way a category. (In fact, we will
introduce two different notions of almost multiplicativity depending on whether
we are interested in uniform estimates or in estimates which are uniform on
compact subsets only.)
We construct the universal infinitesimal deformation functors in the topological
context as left adjoints of the corresponding forgetful functors to the almost
multiplicative categories. This allows finally to introduce the notions of topo-
logical nilpotence and of a topologically quasifree algebra.
The basic motivation to study the class of almost multiplicative maps is that it
contains a lot of interesting examples, in particular if one passes to diffeotopy
categories. Essentially all the results of section three follow immediately from
the existence of certain almost multiplicative morphisms in the stable diffeotopy
category. We will comment on this fact in the introduction to section three.
An important class of almost multiplicative maps is provided by the (linear)
asymptotic morphisms introduced by Connes and Higson [CH]. These are
used by them to construct a universal bivariant K-functor for C∗-algebras.
It will turn out that the stable diffeotopy category of universal infinitesimal
deformations possesses a lot of similarities with the Connes-Higson category.
The reason for introducing topologically quasifree ind-algebras lies in their
excellent homological behavior, which is similar to that of quasifree abstract
(or adically complete) algebras exploited in [CQ]. The fact that universal
infinitesimal deformations are topologically quasifree will allow us in section five
to topologize the cyclic complexes of ind-Fréchet algebras in a straightforward
way. The correct topologies on these complexes are not completely easy to find
otherwise.
While for us the notion of topological nilpotence plays a minor role (compared
to the notion of almost multiplicative morphisms), topological nilpotence is
at the heart of the approach to analytic cyclic cohomology for bornological
algebras presented by Meyer in his thesis [Me].
We begin by introducing a quite restrictive class of almost multiplicative maps.
It will be used to facilitate the construction of universal infinitesimal deforma-
tions.

Definition 1.13. For a linear map f : A → B of algebras and a subset T ⊂ A
put

ω(f, T ) := { f(aa′) − f(a)f(a′) | a, a′ ∈ T } ⊂ B

a) A bounded linear map f : A → B of Banach algebras is called strongly
almost multiplicative if

lim
n→∞

‖ ω(f, T )n ‖
1
n = 0

for any bounded subset T of A.

b) A bounded linear morphism Φ = (φij) : “ lim
−→

i∈I

”Ai → “ lim
−→

j∈J

”Bj of ind-

Banach algebras is called strongly almost multiplicative if for all i ∈ I

Documenta Mathematica 8 (2003) 143–245



156 Michael Puschnigg

and all bounded subsets Ti ⊂ Ai

lim
−→
j∈J

lim
n→∞

‖ ω(φij , Ti)
n ‖

1
n = 0

This is independent of the choice of the family of homomorphisms (φij)
representing the morphism Φ of ind-objects.

The more basic notion of almost multiplicativity is the following.

Definition 1.14. a) A bounded linear map f : A → B of nice Fréchet
algebras is called almost multiplicative if for every compact subset
K ⊂ A the multiplicative closure

ω(f,K)∞

of ω(f,K) is relatively compact in B.

b) A bounded linear morphism Ψ = (ψij) : “ lim
−→

i∈I

”Ai → “ lim
−→

j∈J

”Bj of nice

ind-Fréchet algebras is called almost multiplicative if for all i ∈ I and all
compact subsets Ki ⊂ Ai the multiplicative closure

ω(ψij ,Ki)
∞

is relatively compact for sufficiently large j ∈ J .

It follows immediately from the definitions that a bounded linear morphism
Ψ : A → A′ of nice ind-Fréchet algebras is almost multiplicative if and only
if B(Ψ) : B(A) → B(A′) is a strongly almost multiplicative morphism of
ind-Banach algebras.

Proposition 1.15. The composition of strongly almost multiplicative mor-
phisms of ind-Banach algebras is strongly almost multiplicative. Ind-Banach
algebras therefore form a category under strongly almost multiplicative bounded
linear morphisms. The same assertions hold for nice ind-Fréchet algebras and
almost multiplicative maps.

Proof: It suffices by the previous remark to verify the proposition in the case
of strongly almost multiplicative linear maps. For any linear map ϕ : R → S
of algebras let ωϕ(r, r′) := ϕ(rr′) − ϕ(r)ϕ(r′). If f : A → B and g : B → C
are linear maps of algebras then the deviation from multiplicativity of g ◦ f is
given by

ωg◦f (a, a′) = g(ωf (a, a′)) + ωg(f(a), f(a′))

If f and g are bounded linear maps of Banach algebras and if a0, . . . , a2n are
elements of the unit ball U of A then the previous equation and the ”Bianchi
identity” [CQ], (1.2)

ωf (a, a′) · f(a′′) = ωf (a, a′ · a′′) − ωf (a · a′, a′′) + f(a) · ω(a′, a′′)
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allow to express elements of ω(g ◦ f)n naturally in normal form as

ωg◦f (a1, a2) · . . . ·ωg◦f (a2n−1, a2n) =
∑

j

g(αj
0)ωg(α

j
1, α

j
2) · . . . ·ωg(α

j
2kj−1, α

j
2kj

)

where each element αj
i is of the form

αi = f(a′
0)ωf (a′

1, a
′
2) · . . . · ωf (a′

2li−1, a
′
2li), a′

0, . . . , a′
2li ∈ U

Moreover

♯ωf :=
2kj∑
i=0

li ≤ n , ♯ωg := kj ≤ n , ♯ωf + ♯ωg ≥ n

for all j and the number ♯j of summands is bounded by ♯j ≤ 9n. For all
this see [Pu] (5.1). An easy calculation allows to deduce from these estimates
that strongly almost multiplicative maps of Banach algebras are stable under
composition. 2

The following example provides a large number of almost multiplicative maps.
Moreover it gives a hint why the stable diffeotopy category of universal infinites-
imal deformations possesses similarities with the categories related to bivariant
K-theories [CH],[Hi].

Example 1.16. Let ft : A → B be a linear asymptotic morphism of Banach
algebras (or nice Fréchet-algebras) [CH], i.e. (ft),t≥0 is a bounded continuous
family of bounded linear maps such that

lim
t→∞

ft(aa′) − ft(a)ft(a
′) = 0 ∀a, a′ ∈ A

Let f̃ : A → Cb(lR+, B) be the associated linear map satisfying evalt ◦ f̃ = ft.
Then f̃ defines an almost multiplicative linear map

f̃ : A → “ lim
t→∞

” Cb([t,∞[, B)

The class of almost multiplicative maps is considerably larger than the class
of asymptotic morphisms. Whereas the curvature terms ωf (a, a′), a, a′ ∈ A
of a linear asymptotic morphism become arbitrarily small in norm, almost
multiplicativity means only that products of a large number of such terms
become small in norm. So in particular the spectral radius of the curvature
terms has to be arbitrarily small. This will explain an important difference
between the homotopy category of asymptotic morphisms, used in E-theory,
and the stable diffeotopy category of universal infinitesimal deformations: in the
latter one the universal deformation of a Banach algebra is often isomorphic to
the universal deformations of its dense and holomorphically closed subalgebras.
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1.5 Infinitesimal deformations and topologically nilpotent
algebras

With the notion of almost multiplicative morphism at hand one can intro-
duce the topological analogs of nilpotence, infinitesimal deformation and formal
smoothness.
As mentioned in the introduction of this section, Meyer has introduced a much
more general notion of topological nilpotence which plays a crucial role in his
approach to analytic cyclic cohomology for bornological algebras. We refer the
reader to [Me].
We give here a slightly less general definition than the one in [Pu1], which
suffices however for our purpose.

Definition 1.17. a) A Banach algebra A is strongly topologically
nilpotent if the multiplicative closure of every norm bounded subset is
norm bounded.

b) A Fréchet algebra A is topologically nilpotent if the multiplicative
closure of every relatively compact subset is relatively compact.

c) An ind-Banach algebra “ lim
−→

i∈I

”Ai is strongly topologically nilpotent if for

each i ∈ I and each bounded subset Ui ⊂ Ai there exists i′ ≥ i such that
the image of the multiplicative closure U∞

i in Ai′ is bounded.

d) A nice ind-Fréchet algebra “ lim
−→

j∈J

”Bj is topologically nilpotent if for each

j ∈ J and each compact subset Kj ⊂ Bj there exists j′ ≥ j such that the
image of the multiplicative closure K∞

j in Bj′ is relatively compact.

Note that a topologically nilpotent Fréchet algebra is necessarily nice, the al-
gebra itself being a possible open unit ball.

Definition 1.18. Let

0 → I → R
π

−→ S → 0

be an extension of nice ind-Fréchet algebras (ind-Banach algebras) which pos-
sesses a bounded linear section. In particular, the ind-Fréchet space underly-
ing R splits into the direct sum of I and S. Then R is called a (strong)
infinitesimal deformation of S iff I is (strongly) topologically nilpotent.

The generic example of a (strongly) almost multiplicative map is given by

Lemma 1.19. Let

0 → I → R
π

−→ S → 0

be a (strong) infinitesimal deformation of the nice ind-Fréchet algebra (ind-
Banach algebra) S. Then every bounded linear section of π is (strongly) almost
multiplicative.
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Proof: Obvious from the definitions. 2

We finally extend the notion of formal smoothness to the context of locally
convex ind-algebras.

Definition 1.20. A nice ind-Fréchet algebra (ind-Banach algebra) A is called
(strongly) topologically quasifree if

Morind−alg(A,R)
π∗−→ Morind−alg(A, S)

is surjective for any (strong) infinitesimal deformation π : R → S.

1.6 The universal infinitesimal deformation

In this section the universal infinitesimal deformation functor is introduced as
the adjoint of the forgetful functor to the category of ind-algebras under almost
multiplicative maps.

The construction of the universal infinitesimal deformation proceeds in two
steps. The existence of a universal strong deformation of ind-Banach algebras
is established first. Then the universal strong deformation of the diagram of
compactly generated subalgebras of a nice ind-Fréchet algebra is identified as
the universal deformation of the ind-algebra itself.

Theorem 1.21. The forgetful functor from the category of ind-Banach algebras
to the category with the same objects and strongly almost multiplicative linear
maps as morphisms possesses a left adjoint T ′, called the strong universal
infinitesimal deformation functor. This means that for all ind-Banach
algebras R, S there exists a natural and canonical isomorphism

Morind
alg

(T ′R, S)
≃
−→ Mor str

alm
mult

(R, S)

Proof: We proceed in several steps.

• We cite from [CQ], (1.2). Let R be an algebra and let TR := ⊕∞
k=1R

⊗k

be the tensor algebra over R. Let ρ : R → TR be the canonical linear
inclusion and let π : TR → R be the canonical algebra epimorphism
satisfying π ◦ ρ = IdR. The associated extension of algebras

0 → IR → TR
π
→ R → 0

is the universal linear split extension of R. The kernel IR is a twosided
ideal of TR and defines an adic filtration of TR. There is a canonical
isomorphism of filtered vector spaces

(TR, IR-adic filtration)
≃
←− (ΩevR,

1

2
degree filtration)
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between the tensor algebra over R and the module of algebraic differential
forms of even degree over R. It is given by the formulas

ρ(a0)ω(a1, a2) . . . ω(a2n−1, a2n) ←− a0da1 . . . da2n

ω(a1, a2) . . . ω(a2n−1, a2n) ←− da1 . . . da2n

where ω(a, a′) := ρ(aa′) − ρ(a)ρ(a′) ∈ IR is the curvature of ρ.

• Let R be a Banach algebra. For ǫ > 0 let ‖ − ‖ǫ be the largest sub-
multiplicative seminorm on TR satisfying ‖ ρ(a) ‖ǫ ≤ 2 ‖ a ‖R and
‖ ω(a, a′) ‖ǫ ≤ ǫ ‖ a ‖R · ‖ a′ ‖R. Denote the completion of TR with
respect to this seminorm by TRǫ. It is a Banach algebra. By construc-
tion ‖ − ‖ǫ ≤‖ − ‖ǫ′ for ǫ < ǫ′ so that the identity on TR extends
to a bounded homomorphism TRǫ′ → TRǫ of Banach algebras. Put
T ′R := ”lim

ǫ→0
”TRǫ. It is called the strong universal infinitesimal defor-

mation of R.

• Let ‖ − ‖ǫ,0 respectively ‖ − ‖ǫ,1 be the largest seminorms on TR satis-
fying

‖ ρ(a0)ω(a1, a2) . . . ω(a2n−1, a2n) ‖ǫ,0 ≤ ǫn ‖ a0 ‖R . . . ‖ a2n ‖R

respectively

‖ ρ(a0)ω(a1, a2) . . . ω(a2n−1, a2n) ‖ǫ,1 ≤ (2 + 2n) ǫn ‖ a0 ‖R . . . ‖ a2n ‖R

It follows from the Bianchi identity

ω(a, a′) ρ(a′′) = ω(a, a′a′′) − ω(aa′, a′′) + ρ(a)ω(a′, a′′)

that they satisfy
‖ xy ‖ǫ,0 ≤‖ x ‖ǫ,1 ‖ y ‖ǫ,0

for all x, y ∈ TR. With this it is not difficult to verify the estimates

‖ − ‖ǫ,0 ≤‖ − ‖4ǫ ≤‖ − ‖4ǫ,1

on TR.

• Let f : R → S be a bounded homomorphism of Banach algebras and let
Tf : TR → TS be the induced homomorphism of tensor algebras. It is
immediate from the definitions that given ǫ > 0 there exist ǫ′ > 0 and
C > 0 such that

‖ Tf(x) ‖ǫ′,1 ≤ C ‖ x ‖ǫ,0 ∀x ∈ TR

With the previous estimate this implies that Tf extends to a bounded
homomorphism

T ′f : T ′R −→ T ′S
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of ind-Banach algebras. This allows to define the strong universal in-
finitesimal deformation of an ind-Banach algebra as

T ′(“ lim
−→

i∈I

”Ri) := Lim
−→
i∈I

T ′Ri

• Let ϕ : R → S be a strongly almost multiplicative linear morphism from
a Banach algebra R to some ind-Banach algebra S := “ lim

−→

j∈J

”Sj . Let

ϕj : R → Sj be a bounded linear map representing ϕ and satisfying

lim
n→∞

(
‖ ωϕj

(U)n ‖Sj

) 1
n ≤

ǫ

8

where U denotes the unit ball of R. Fix n0 such that
‖ ωϕj

(U)n ‖Sj
≤

(
ǫ
4

)n
for n ≥ n0. Let Tϕj : TR → Sj be the algebra

homomorphism which is characterized by the condition Tϕj ◦ ρ = ϕj .
Then for arbitrary n one has the estimate

‖ Tϕj (ρ(U)ω(U,U)n) ‖Sj
≤ C(n, ǫ) ‖ ρ(U)ω(U,U)n ‖ ǫ

4
,0

with C(n, ǫ) =‖ ϕj ‖ ·(‖ ϕj ‖ + ‖ ϕj ‖2) n ·
(

ǫ
4

)−n
whereas for n ≥ n0 the

stronger estimate

‖ Tϕj (ρ(U)ω(U,U)n) ‖Sj
≤‖ ϕj ‖ · ‖ ρ(U)ω(U,U)n ‖ ǫ

4
,0

holds. This implies

‖ Tϕj(x) ‖Sj
≤ C ‖ x ‖ ǫ

4
,0

which shows with the previous estimates that Tϕj extends to a bounded
homomorphism T ′ϕj : TRǫ → Sj . Therefore ϕ induces a homomorphism

T ′ϕ : T ′R −→ S

of ind-Banach algebras. If φ : R −→ S is a strongly almost multi-
plicative morphism of ind-Banach algebras then one obtains similarly a
homomorphism of ind-Banach algebras

T ′ϕ : T ′R −→ S

This construction is natural and defines a canonical and natural map

Mor str
alm
mult

(R, S) −→ Morind
alg

(T ′R, S)

• Let R be a Banach algebra and consider the canonical linear embedding
ρ : R → T ′(R). It is bounded because ‖ ρ(U) ‖ǫ≤ 2 and strongly almost
multiplicative as

‖ ωρ(U,U)n ‖
1
n
ǫ ≤‖ ω(U,U)n ‖

1
n
ǫ ≤ ǫ
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where U denotes the unit ball of R. Similarly the canonical linear mor-
phism ρ : R → T ′R of ind-Banach algebras is strongly almost multi-
plicative. In particular, composition with homomorphisms of ind-Banach
algebras defines a canonical map

ρ∗ : Morind
alg

(T ′R, S) −→ Mor str
alm
mult

(R, S)

that is obviously inverse to the map constructed above. Therefore ρ∗ is
an isomorphism.

• Finally it is easy to show that

T ′ : Mor str

alm
mult

(R, S) −→ Morind
alg

(T ′R, T ′S)

φ → T ′φ

turns the strong universal infinitesimal deformation T ′ into a covariant
functor from the category of ind-Banach algebras with strongly almost
multiplicative morphisms to the category of ind-Banach algebras. The
previous considerations show also that it is left adjoint to the forgetful
functor.

2 The proof of the previous theorem gives no explicit description of the
seminorms defining the strong universal infinitesimal deformation of a Banach
algebra. If one works with formal inductive limits of Fréchet algebras instead
of Banach algebras such an explicit description can be given.

Definition and Lemma 1.22. Let R be a Banach algebra and let TR be
the tensor algebra over R. Denote by ‖ − ‖ǫ,m the largest seminorm on TR
satisfying

‖ ρ(a0)ω(a1, a2) . . . ω(a2n−1, a2n) ‖ǫ,m ≤ (2 + 2n)m ǫn ‖ a0 ‖ . . . ‖ a2n ‖

a) The seminorms ‖ − ‖ǫ,m are not submultiplicative but satisfy

‖ xy ‖ǫ,m ≤‖ x ‖ǫ,m+1 · ‖ y ‖ǫ,m

b) The completion of the tensor algebra TR with respect to the seminorms
‖ − ‖ǫ,m, m ∈ lN, is a nice Fréchet algebra TRǫ. An open unit ball of
TRǫ is given by the open unit ball with respect to the seminorm ‖ − ‖ǫ,1.

c) The formal inductive limit

T′R := “ lim
ǫ→0

”TRǫ

is isomorphic in the category of ind-Fréchet algebras to the strong uni-
versal infinitesimal deformation T ′R of R.
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Proof: Assertions a) and b) are shown in [Pu], (5.6). Assertion c) is a conse-
quence of the estimates

‖ − ‖ǫ,0 ≤‖ − ‖4ǫ ≤‖ − ‖4ǫ,1

obtained in the proof of (1.21) and the fact that ‖ − ‖ǫ′,m ≤ Cm ‖ − ‖ǫ,0 for
ǫ′ < ǫ. 2

Using the previous results the existence of a universal infinitesimal deformation
functor can be established.

Theorem 1.23. The forgetful functor from the category of nice ind-Fréchet
algebras to the category with the same objects and almost multiplicative linear
maps as morphisms possesses a left adjoint T , which is called the universal
infinitesimal deformation functor. This means that for all nice ind-Fréchet
algebras R, S there exists a natural and canonical isomorphism

Morind
alg

(T R, S)
≃
−→ Moralm

mult

(R, S)

The universal infinitesimal deformation functor is given by the composition

T = T ′ ◦ B

of the functor B (1.4), associating to an algebra the diagram of its compactly
generated subalgebras, and the strong universal infinitesimal deformation func-
tor T ′.

Proof: Put T := T ′ ◦ B. For any nice ind-Fréchet algebras R, S one has a
sequence of natural isomorphisms

Moralm
mult

(R, S)
≃
−→ Mor str

alm
mult

(B(R), B(S))

by the remark following (1.14)

Mor str
alm
mult

(B(R), B(S))
≃
−→ Morind

alg

(T R, B(S))

by the previous theorem and

Morind
alg

(T R, B(S))
≃
−→ Morind

alg

(T R, S)

by (1.10) and the following lemma. 2

Lemma 1.24. For any nice ind-Fréchet algebra R the ind-Banach algebra T R
is compact.

Proof: The ind-Banach algebra B(R) is compact by (1.9). In order to show
that T R = T ′B(R) is compact it suffices therefore to prove the following.
The homomorphism T ′f : T ′A → T ′B induced by a compact homomorphism
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f : A → B of Banach algebras is compact. As the notion of compactness is
stable under isomorphism one can pass to the morphism T′f : T′A → T′B of
ind-Fréchet algebras (1.22). The definition of the seminorms on this ind-algebra
show immediately that for given ǫ > 0 the homomorphisms Tf : TAǫ → TBǫ′

are compact for ǫ′ > 0 small enough. This establishes the lemma. 2

It remains to verify that the functors constructed in the previous theorems
merit their names and provide in fact (strong) infinitesimal deformations.

Lemma 1.25. Let A be a nice ind-Fréchet algebra. Then the canonical epi-
morphism π : T A → A (resp. π′ : T ′A → A) adjoint to the identity of A
via (1.21) (resp. (1.23)) is a (strong) infinitesimal deformation in the sense of
(1.18).

Proof: We show first that 0 → I ′A → T ′A
π

−→ A → 0 is a strong infinitesi-
mal deformation. By lemma (1.22) it suffices to verify the corresponding state-

ment for the extension 0 → I′A → T′A
π

−→ A → 0. Henceforth the notations
of (1.22) are used. Let S ⊂ IAǫ := Ker(π : TAǫ → A) be a bounded set.
Then for sufficiently small ǫ′ < ǫ the (bounded) image of S in TAǫ′ satisfies
‖ S ‖ǫ′,1 ≤ 1. The estimate ‖ xy ‖ǫ′,0 ≤‖ x ‖ǫ′,1 · ‖ y ‖ǫ′,0 allows then to deduce

that ‖ S∞ ‖ǫ′,0 < ∞. It follows that the image of S∞ in TAǫ′′ is bounded for

ǫ′′ < ǫ′ (compare the proof of (1.22)). Thus T ′A
π

−→ A is a strong infinitesimal

deformation of A. This result and (1.24) imply finally that T A
π

−→ A is an
infinitesimal deformation in the sense of (1.18). 2

One can now make precise in which sense the almost multiplicative maps of
(1.19) are generic.

Corollary 1.26. Every almost multiplicative map φ : A → B of nice ind-
Fréchet algebras factorizes as φ = f ◦ ψ where ψ : A → A′ is a bounded
linear section of an infinitesimal deformation π : A′ → A and f : A′ → B is
a homomorphism of ind-Fréchet algebras.

Finally the infinitesimal deformations given by the completed tensor algebras
will be characterized by a universal property.

Theorem 1.27. Let A be a nice ind-Fréchet algebra. The extension

0 → IA → T A
π

−→ A → 0

with the canonical linear section ρ : A → T A adjoint to the identity of T A via
(1.23) is the universal infinitesimal deformation of A in the following sense.
Let

0 → J → R
π′

−→ S → 0

be an infinitesimal deformation of S with fixed bounded linear section and let
f : A → S be a homomorphism of nice ind-Fréchet algebras. Then there exists
a unique homomorphism of extensions

0 → IA → T A
π

−→ A → 0
↓ ↓ ↓ f

0 → J → R
π′

−→ S → 0
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compatible with the given linear sections. In particular, T A is topologically
quasifree (1.20).
In a similar sense for a given ind-Banach algebra R the extension

0 → I ′R → T ′R
π

−→ R → 0

is the universal strong infinitesimal deformation of R. In particular, the ind-
Banach algebra T ′R is strongly topologically quasifree.

2 The stable diffeotopy category of ind-algebras

A diffeotopy is a homotopy which depends smoothly on its parameter. Dif-
feotopy is a finer equivalence relation than homotopy. For example, the algebra
of continuous functions on a closed interval vanishing at one endpoint is null-
homotopic but not nulldiffeotopic. Following closely some well known ideas of
homotopy theory (see [Ad])we set up in this chapter a stable diffeotopy cate-
gory of topological ind-algebras. Its construction proceeds in several steps. One
defines first an unstable diffeotopy category in a straightforward way. Then the
notions of suspension and mapping cone are introduced. The diffeotopy cat-
egory is stabilized by inverting the suspension functor which gives rise to a
prestable category which is already triangulated, i.e. which possesses long ex-
act Puppe sequences. The stable diffeotopy category of ind-algebras is finally
obtained from the prestable one by a category theoretic localization process
which is necessary to get rid of some pathologies related to weakly contractible
ind-algebras. We then present a criterion for detecting isomorphisms in the
stable diffeotopy category which will be frequently used in the rest of the pa-
per.
As mentioned before we begin by introducing the relation of diffeotopy between
homomorphisms of topological ind-algebras.

Definition 2.1. (Diffeotopy category)

a) Let C∞([0, 1]) be the nice nuclear Fréchet algebra of smooth functions on
the unit interval all of whose derivatives vanish at the endpoints. For an
ind-Fréchet algebra “ lim

−→

i∈I

”Ai let

C∞([0, 1], A) := “ lim
−→

i∈I

” C∞([0, 1], Ai) = “ lim
−→

i∈I

” C∞([0, 1]) ⊗π Ai

It is again an ind-Fréchet algebra.

b) Two homomorphisms A ⇉ A′ of ind-Fréchet algebras are called dif-
feotopic if they factorize as

A −→ C∞([0, 1], A′) ⇉ A′

where the homomorphisms on the right hand side are given by evaluation
at the endpoints. Diffeotopy is an equivalence relation. The equivalence
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classes are called diffeotopy classes of homomorphisms. The set of dif-
feotopy classes of homomorphisms between ind-Fréchet algebras A and
A′ is denoted by [A, A′].

c) The (unstable) diffeotopy category of ind-Fréchet algebras is the category
with ind-Fréchet algebras as objects and with diffeotopy classes of ind-
algebra homomorphisms as morphisms.

Now suspensions and mapping cones are defined which are necessary to trian-
gulate diffeotopy categories, i.e. to establish Puppe sequences.

Definition 2.2. (Suspension and mapping cone)

a) Let C∞(]0, 1[) be the nice nuclear Fréchet algebra of smooth functions
on the unit interval which vanish together with all their derivatives at
the endpoints. If A := “ lim

−→

i∈I

”Ai is an ind-Fréchet algebra then the ind-

Fréchet algebra

SA := “ lim
−→

i∈I

” C∞(]0, 1[, Ai) = “ lim
−→

i∈I

” C∞(]0, 1[) ⊗π Ai

is called the suspension of A. The suspension defines a functor of the
category of ind-Fréchet algebras to itself.

b) Let f : “ lim
−→

i∈I

”Ai −→ “ lim
−→

j∈J

”A′
j be a homomorphism of ind-Fréchet alge-

bras. Define a directed set K by

K := {(i, j, fij) | i ∈ I, j ∈ J, fij : Ai → A′
j represents f}

and by declaring (i, j, fij) ≤ (i′, j′, fi′j′) iff i ≤ i′, j ≤ j′ and the diagram

Ai′
fi′j′

−→ A′
j′

↑ ↑

Ai
fij

−→ A′
j

commutes. The mapping cone Cone(f) of f is the ind-Fréchet algebra

Cone(f) := “ lim
−→

K

”Cone(fij)

with

Cone(fij) := {(a, χ) ∈ Ai × C∞([0, 1[, A′
j) | fij(a) = χ(0)}

Here C∞([0, 1[) is the nice nuclear Fréchet subalgebra of C∞([0, 1]) con-
sisting of the functions vanishing at the endpoint 1 of the unit interval.
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Thus a morphism B → Cone(f) is given by a couple (ϕ, ν) consisting of
a homomorphism ϕ : B → A and a nulldiffeotopy ν of the composed map

B
ϕ

−→ A
f

−→ A′.
The suspension of an ind-algebra A is a special case of a mapping cone as
SA ≃ Cone(p) where p : C∞([0, 1[, A) → A is the evaluation at 0. The
mapping cone of a morphism f : A → A′ fits into a natural sequence of
homomorphisms

Sf
−→ SA′ s

−→ Cone(f)
p

−→ A
f

−→ A′

where s and p are defined on individual algebras of the formal inductive systems
by s : SA′

j → Cone(fij), s(χ) := (0, χ) and p : Cone(fij) → Ai, p(a, χ′) := a.
The mapping cone functor commutes with suspensions, i.e. there exists a

natural isomorphism Cone(Sf)
≃
−→ SCone(f).

In the next step the diffeotopy category shall be stabilized so that it becomes
a triangulated category with shift automorphism given by the inverse of the
suspension. In order to do so the suspension has to be made an automorphism
of the underlying category which leads to

Definition 2.3. (Prestable diffeotopy category) (See [Ma])
The prestable diffeotopy category of ind-Fréchet algebras is the additive cate-
gory with objects given by pairs (A, n) consisting of an ind-Fréchet algebra A
and an integer n and with the abelian groups

Mor∗((A, n), (A′, n′)) := lim
k→∞

[Sk−nA, Sk−n′

A′]

as morphisms. The transition maps in the limit are given by suspensions. The
shift functor T : T (A, n) := (A, n + 1) is an automorphism of the prestable
diffeotopy category and its inverse is canonically isomorphic to the suspension
functor: T−1 ≃ S.

The prestable diffeotopy category is in fact triangulated.

Lemma 2.4. The prestable diffeotopy category is a triangulated category [KS]
(1.5) in a natural way. The shift functor is given by the functor T of (2.3) and
a triangle in the prestable diffeotopy category is distinguished iff it is isomorphic
to a triangle of the form

SA′ s
−→ Cone(f)

p
−→ A

f
−→ A′

Proof: A classical result asserts that the homotopy category of pointed topo-
logical spaces becomes triangulated after inverting the suspension functor. Here
one declares a triangle to be distinguished iff it is isomorphic to a cofibration

sequence X
f

−→ Y −→ Cone(f) −→ ΣX. A proof of this can be found in
[Ma], Chapter 1 and Appendix II. Section 1.4 of [KS] might also be helpful.
The present lemma is obtained from this result by the following modifications.
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One restricts to locally compact spaces, considers the dual function algebras
and generalizes to arbitrary Fréchet algebras. Then one passes from algebras
to ind-algebras. Finally one replaces the homotopy relation by the finer dif-
feotopy relation. The demonstration that the various prestable categories ob-
tained along the way are triangulated carries over through each of these steps.
This yields the assertion. 2

As a consequence [KS], one obtains

Corollary 2.5. Every homomorphism of ind-Fréchet algebras induces a co-
variant and a contravariant long exact Puppe sequence in the prestable dif-
feotopy category.

The prestable diffeotopy category turns out to be too rigid for our purposes.
In fact there is a class of ind-algebras, the weakly contractible ones, which one
would like to be equivalent to zero in a reasonable stable diffeotopy category.

Definition 2.6. An ind-Fréchet algebra A = “ lim
−→

i∈I

”Ai is called weakly con-

tractible if for each i ∈ I there exists i′ ≥ i such that the structure homomor-
phism Ai → Ai′ is nulldiffeotopic. It is called stably weakly contractible if SkA
is weakly contractible for k >> 0.

Every direct limit (1.2) (in the category of ind-algebras) of weakly contractible
ind-algebras is weakly contractible.

Lemma 2.7. The family of stably weakly contractible ind-Fréchet algebras forms
a null system, [KS], 1.6.6, in the prestable diffeotopy category.

Proof: It is easily shown that the family N of stably weakly contractible
ind-algebras is closed under isomorphism in the prestable diffeotopy category.
If f : A → A′ is a stable homomorphism of weakly contractible ind-algebras
then it is almost immediate that Cone(f) is weakly contractible, too. 2

Finally we arrive at

Definition 2.8. (Stable diffeotopy category) (See [Ad], [Ma])
The smooth stable diffeotopy category of ind-Fréchet algebras is the triangu-

lated category obtained from the prestable diffeotopy category by inverting all
morphisms with stably weakly contractible mapping cone. A triangle in the
stable diffeotopy category is distinguished if it is isomorphic to the image of a
distinguished triangle in the prestable diffeotopy category.

It follows in particular that exact covariant and contravariant Puppe sequences
exist in the stable diffeotopy category.
In the sequel we will make use of the

Proposition 2.9. (Isomorphism criterion)
Let f : “ lim

−→

i∈I

”Ai −→ “ lim
−→

j∈J

”A′
j be a homomorphism of ind-Fréchet algebras

and suppose that the following conditions are satisfied: Every homomorphism
fij representing the restriction of f to Ai fits into a diagram
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Ai A′
j

Ai′ A′
j′

-
fij

-
fi′j′

@
@

@
@

@
@

@
@

@
@I

ψ

6 6

such that

• the vertical arrows are given by the structure homomorphisms of the cor-
responding ind-algebras.

• the horizontal arrows represent the restrictions of f to Ai respectively Ai′ .

• the diagram commutes up to diffeotopy.

Then the homomorphism f becomes an isomorphism in the stable diffeotopy
category.

Proof: A simple diagram chase shows that a morphism in the unstable dif-
feotopy category satisfies the criterion of the proposition iff its mapping cone
is weakly contractible. Therefore the morphisms under considerations are ex-
actly those belonging to the multiplicative system [KS], 1.6.7., associated to the
null system of weakly contractible ind-algebras. In particular, these morphisms
become isomorphisms in the stable diffeotopy category. 2

There seems to be no reason for stable diffeotopy equivalences to be preserved
under direct limits (in the category of ind-algebras). There is however a partial
result in this direction.

Proposition 2.10. Let I be a directed set. Let (Ai)i∈I , (Bi)i∈I be I-diagrams
of ind-Fréchet algebras and let f = (fi : Ai −→ Bi)i∈I be a morphism of
I-diagrams. Suppose that the isomorphism criterion (2.9) applies to each of
the morphisms fi, i ∈ I. Then it applies also to the morphism

Lim
−→
i∈I

(fi) : Lim
−→
i∈I

Ai −→ Lim
−→
i∈I

Bi

of direct limits which therefore is an isomorphism in the stable diffeotopy cate-
gory.

Proof: It is a tedious but straightforward exercise to show that

Lim
−→
i∈I

Cone(fi)
≃
−→ Cone(Lim

−→
i∈I

(fi)) is an isomorphism of ind-Fréchet al-

gebras. As noted above, a morphism of ind-algebras satisfies the isomorphism

Documenta Mathematica 8 (2003) 143–245



170 Michael Puschnigg

criterion iff it has a weakly contractible mapping cone. Therefore the assertion
follows from the fact that direct limits of weakly contractible ind-algebras are
weakly contractible. 2

3 The stable diffeotopy type of universal
infinitesimal deformations

In this section some of the main results of this paper are presented. They
describe the behavior of the universal infinitesimal deformations of nice ind-
Fréchet algebras viewed as objects of the stable diffeotopy category. Among
other things we show that under some mild technical assumptions the following
assertions hold:

• The inclusion A →֒ A of a dense and holomorphically closed subalgebra
of a nice Fréchet algebra induces a stable diffeotopy equivalence of its
universal infinitesimal deformations.

• The universal infinitesimal deformation of a topological direct limit of nice
Fréchet algebras is stably diffeotopy equivalent to the inductive limit of
the universal infinitesimal deformations of the individual algebras.

We will comment on these results in more detail in the introductions of the
corresponding subsections. Instead we want to indicate why they hold.
Consider an inclusion i : A →֒ A of a dense and holomorphically closed sub-
algebra of a nice Fréchet algebra. Suppose that a family of bounded linear
”regularization” maps s = (sα : A → A, α ∈ Λ) is given which approximate
the identity on A uniformly on compact subsets. The norms of the ”curvature”
terms {ωα(a, a′) = sα(aa′) − sα(a)sα(a′), a, a′ ∈ A, α ∈ Λ }, which measure
the deviation of s from multiplicativity, might be quite large in norm but their
spectral radii will be very small (as they are the same if measured in A or in
A). Therefore large powers of curvature terms, or in many situations even any
product of a large number of curvature terms, will be arbitrarily small in norm.
Consequently the family s of regularization maps is almost multiplicative and
defines a morphism T s : T A −→ T A of universal infinitesimal deformations
in the stable diffeotopy category. It turns out that the morphism T s provides
a stable diffeotopy inverse of the morphism T i : T A −→ T A of universal de-
formations induced by the inclusion of A into A. Thus the inclusion of a dense
and holomorphically closed subalgebra induces a stable diffeotopy equivalence
of universal infinitesimal deformations, provided that a sufficiently good family
of linear regularizations exists. In order to guarantee this we will make some
not too restrictive assumptions on the topological vector spaces underlying the
algebras under consideration.

3.1 The Grothendieck approximation property

It turns out that the majority of the results presented in this section require
that the topological vector spaces underlying the considered algebras verify a
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regularity condition. This condition is known as Grothendieck’s approximation
property [LT].

Definition 3.1. (Grothendieck approximation property) [LT]
Let E be a Fréchet space. Then E has the Grothendieck approximation prop-
erty if the finite rank operators are dense in L(E) with respect to the topology
of uniform convergence on compacta. Thus E possesses the approximation
property iff for each seminorm ‖ ‖ on E, for each ǫ > 0, and each compact set
K ⊂ E there exists a bounded linear selfmap φ ∈ L(E) of finite rank such that
sup
x∈K

‖φ(x) − x‖ < ǫ.

Examples of Fréchet-algebras whose underlying topological vector spaces have
the approximation property are

• nuclear Fréchet-algebras

• nuclear C∗-algebras

• lp-spaces

• separable, symmetrically normed operator ideals

• the reduced group C∗-algebra of a finitely generated free group.

The algebra of all bounded operators on an infinite dimensional Hilbert space,
on the contrary, does not have the approximation property.

3.2 Approximation by ind-algebras of countable type

In order to work with universal infinitesimal deformations of nice Fréchet alge-
bras it turns out to be indispensable to dispose of small models of their stable
diffeotopy type. In particular, one is interested in models which are given by a
countable formal inductive limit. Under not too restrictive assumptions, their
existence is guaranteed by

Theorem 3.2. (Approximation theorem)
Let A be a separable nice Fréchet algebra which possesses the Grothendieck

approximation property. Let U be a convex open unit ball of A.
Let 0 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ Vn ⊂ . . . be an increasing sequence of finite

dimensional subspaces of A such that
∞⋃

n=0
Vn is a dense subalgebra of A, and

let (λn)n∈lN be a strictly monotone increasing sequence of positive real numbers
such that lim

n→∞
λn = 1. Put Sn := Vn ∩ λnU . Then the canonical morphism

“ lim
n→∞

”ASn
→֒ B(A)

induces a stable diffeotopy equivalence of strong universal infinitesimal deforma-
tions. In particular, the universal infinitesimal deformation T A of A is stably
diffeotopy equivalent to a countable formal inductive limit of Banach algebras.
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Proof:

Recall that for a nice Fréchet algebra A one has T A = “ lim
S⊂U

ǫ→0

” (TAS)ǫ in the

notations of (1.4), (1.21) and (1.23), where S ranges over the family of compact
subsets of some fixed open unit ball U of A. We want to apply the isomorphism
criterion (2.9) to the morphism

T ′(“ lim
n→∞

” ASn
) = Lim

n→∞
T ′(ASn

) −→ T ′B(A) = T A

So it has to be shown that any structure morphism i : (TASn
)ǫn

−→ (TAS)ǫ′

fits into a diagram

(TASn
)ǫn

(TAS)ǫ′

(TASm
)ǫm

(TAS′)ǫ′′

j

-

i

i′

j′

-

@
@

@
@

@
@

@
@

@
@I

Tφ

6 6

where the homomorphisms i, j, i′, j′ are given by the structure maps and which
commutes up to diffeotopy.

By definition the identity homomorphism of TAS gives rise to morphisms
(TAS)ǫ′ −→ T ′AS ≃ T′AS = “ lim

ǫ1→0
” (TAS)ǫ1 . In order to define the di-

agonal morphism in the desired diagram it suffices therefore to construct a
bounded homomorphism Tφ : (TAS)ǫ1 −→ (TASm

)ǫm
for ǫ1 given and suit-

able m >> 0 large and ǫm > 0 small enough.

Fix ǫ with 0 < 4ǫ < ǫ1. As A possesses the Grothendieck approximation
property there exists a bounded finite rank selfmap φ of A which is close to
the identity on the (relatively compact) multiplicative closure S∞ of S. We
may suppose that φt := (1− t) · φ + t · Id satisfies ωφt

(S∞) ⊂ ǫU for t ∈ [0, 1]
and that φ(A) is contained in the dense subspace

⋃∞
n=0 Vn of A. In particular

φ(A) ⊂ Vm for some m >> 0.

By definition the Banach algebra AS is the completion of the subalgebra of
A generated by S with respect to the seminorm ‖a‖ := inf

∑
|λi| where the

infimum is taken over all presentations a =
∑

λi si of a with λi ∈ lC, si ∈ S∞.
It follows from this that φ induces a bounded linear map φ : AS −→ ASm

of
Banach spaces for sufficiently large m such that φ(A)

⋃
φ(A)2 ⊂ Vm. Fix such

m and let C0 be the norm of the linear map φ.
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Let a0, . . . , a2n ∈ AS . One finds in the notations of (1.21) and (1.22)

‖ Tφ(ρ(a0)ω(a1, a2) · . . . · ω(a2n−1, a2n)) ‖ǫm

≤‖ Tφ(ρ(a0)) ‖ǫm
·

n∏

i=1

‖ Tφ(ω(a2i−1, a2i)) ‖ǫm

because ‖ − ‖ǫm
is submultiplicative. The identity

Tφ(ω(a, a′)) = ̺(ωφ(a, a′)) + ω(φ(a), φ(a′))

shows then that

‖ Tφ(ω(a, a′)) ‖ǫm
≤ 2 ‖ ωφ(a, a′) ‖ASm

+ ǫm ‖ φ(a) ‖ASm
· ‖ φ(a′) ‖ASm

≤ (2 ·
m + 1

m
· ǫ + ǫm · C2

0 )· ‖ a ‖AS
· ‖ a′ ‖AS

So for ǫm sufficiently small

‖ Tφ(ρ(a0)ω(a1, a2)·. . .·ω(a2n−1, a2n)) ‖ǫm
≤ 2·C0·ǫ

n
1 · ‖ a0 ‖AS

· . . . · ‖ a2n ‖AS

from which the estimate

‖ Tφ(α) ‖ǫm
≤ C· ‖ α ‖ǫ1,0, ∀α ∈ (TAS)ǫ1

results. This establishes the existence of the diagonal morphism in the diagram.
The same kind of estimate shows that, after possibly modifying the choice of
m and ǫm, the one parameter family Tφt = T ((1 − t) · φ + t · Id) defines
a diffeotopy connecting the homomorphisms Tφ ◦ i and j from (TASn

)ǫn
to

(TASm
)ǫm

. Similarly the same family Tφt defines a diffeotopy between the
homomorphisms i′ ◦Tφ and j′ from (TAS)ǫ′ to (TAS′)ǫ′′ after choosing S′ and
ǫ′′ appropriately. This completes the proof.

2

Corollary 3.3. Let “ lim
−→

i∈I

”Ai be a formal inductive limit of nice Fréchet al-

gebras which possess the Grothendieck approximation property. Suppose that
for each i ∈ I a sequence (V i

n)n∈lN of finite dimensional subspaces of Ai and
a sequence (λi

n)n∈lN of real numbers has been chosen as in (3.2) and such that
the structure maps Ai → Aj , i ≤ j map

⋃
n V i

n into
⋃

n V j
n . Then the countable

ind-Banach algebras “ lim
n→∞

”Ai
Sn

form an inductive system, labeled by I, and

the natural morphism

Lim
−→
i∈I

(“ lim
n→∞

”Ai
Sn

) −→ Lim
−→
i∈I

B(Ai) = B(“ lim
−→

i∈I

”Ai)

induces a stable diffeotopy equivalence of strong universal infinitesimal defor-
mations.

Proof: The corollary follows from the proof of the previous theorem and
proposition (2.10). 2
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3.3 Smooth subalgebras

A fundamental question in the study of functors of topological algebras is their
compatibility with completions. Put differently, one asks how a functor be-
haves under passage to dense topological subalgebras. A prototype of such a
stability phenomenon occurs in topological K-theory which is well known to be
stable under passage to dense subalgebras which are closed under holomorphic
functional calculus. Here we investigate stability properties of the universal in-
finitesimal deformation functor with values in the stable diffeotopy category. To
this end we introduce a class of dense and holomorphically closed subalgebras
of a nice Fréchet algebra, called smooth subalgebras. It contains in particu-
lar the domains of densely defined unbounded derivations. Under rather mild
restrictions it is shown that the stable diffeotopy type of the universal infinites-
imal deformation of a nice Fréchet algebra does not change under passage to
smooth subalgebras. As a consequence, continuous homotopy equivalences of
nice Fréchet algebras give rise to stable diffeotopy equivalences of their universal
infinitesimal deformations.

Definition 3.4. Let i : A →֒ A be an inclusion of Fréchet algebras with dense
image and suppose that A is nice. Then A is called a smooth subalgebra
of A if there exists an open neighborhood U of 0 in A such that i−1(U) is an
open unit ball of A in the sense of (1.1).

In particular, smooth subalgebras of nice Fréchet algebras are nice. The condi-
tion of smoothness is quite restrictive. In fact, smooth subalgebras are closed
under holomorphic functional calculus.

Lemma 3.5. [Pu], (7.2). Let A ⊂ A be a smooth subalgebra of the nice Fréchet
algebra A. Then A is closed under holomorphic functional calculus in A.

The name ”smooth subalgebra” is motivated by the following example.

Lemma 3.6. [Pu], (7.4) Let A be a nice Fréchet algebra and let ∆ := {δi, i ∈ I}
be an at most countable set of unbounded derivations on A. Suppose that there
is a common dense domain dom(∆) of all finite compositions of derivations in
∆. Then every at most countable set Σ of graph seminorms

‖ a ‖k,f,m:=
∑

J⊂{1,... ,k}

‖
∏

j∈J

δf(j) (a) ‖m

defines a locally convex topology on dom(∆), where ‖ − ‖m ranges over a set
of seminorms defining the topology of A, J runs over the ordered subsets of
{1, . . . , k} and f is a map from the finite set {1, . . . , k} to the index set I.
Denote by AΣ the Fréchet algebra obtained by completion of this locally convex
algebra. Then AΣ is a smooth subalgebra of A.

Proof: We treat for simplicity the case k = 1, the reasoning in the general
case being similar. Therefore the topology on A is defined by the seminorms

‖ a ‖′m:=‖ ∂a ‖m + ‖ a ‖m
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Let U ⊂ A be an open unit ball. We claim that U ′ := U ∩ A is an open unit
ball in A. Let K ⊂ U ′ be compact and choose λ > 1 such that λK ⊂ U ′ which
is possible by the compactness of K. One finds for aj ∈ K

‖
n∏

1

aj ‖′m=‖
n∑

i=1

a1 · . . . · (∂ai) · . . . · an ‖m + ‖
n∏

1

aj ‖m

≤
n∑

i=1

λ1−n ‖
n∑

i=1

(λa1) · . . . · (∂ai) · . . . · (λan) ‖m +λ−n ‖
n∏

1

(λaj) ‖m

By hypothesis λK ⊂ U has relatively compact multiplicative closure in A.
Moreover ∂(K) ⊂ A is compact. An estimation of the sum above yields there-
fore

‖
n∏

1

aj ‖′m ≤ (λC0n + C1)λ
−n

If one treats the case k > 1 one sees that the number of summands after differ-
entiating a product of n factors k times equals nk which is of subexponential
growth in n so that the assertion holds then as well. 2

Another example of smooth subalgebras is provided by

Example 3.7. [Pu], (7.9) Let A be a separable C∗-algebra and let τ be an
(unbounded), densely defined, positive trace on A. Then its domain ℓ1(A, τ) is
a smooth subalgebra of A.

The basic result about smooth subalgebras is

Theorem 3.8. (Smooth subalgebra theorem)
Let A be a nice Fréchet algebra, let A be a smooth subalgebra of A and suppose
that at least one of the following conditions is satisfied

• There exists a family (ϕλ : A → A, λ ∈ Λ) of bounded linear maps,
labeled by a directed set Λ, such that {i ◦ ϕλ(x), λ ∈ Λ} is bounded and
lim
−→
λ∈Λ

i ◦ ϕλ(x) = x for all x ∈ A.

• A possesses the Grothendieck approximation property.

Then the inclusion
A −→ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: Let i : A →֒ A be the inclusion and let T i : T A → T A be the
induced homomorphism of universal infinitesimal deformations. We will apply
the isomorphism criterion (2.9) to show that T i is an isomorphism in the stable
diffeotopy category.
Fix an open unit ball U of A such that U ′ := i−1(U) is an open unit ball of
A. This is possible because A is a smooth subalgebra of A. Let S′ ⊂ U ′ and
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S ⊂ U be compact and let ǫ′ > 0, ǫ > 0 be such that Ti : (TAS′)ǫ′ → (TAS)ǫ

represents the restriction of T i to (TAS′)ǫ′ .
In order to verify the isomorphism criterion it suffices to show that this map
fits into a diagram

(TAS′)ǫ′ (TAS)ǫ

(TAS′
1
)ǫ′1

(TAS1
)ǫ1

-

Ti

T i
-

@
@

@
@

@
@

@
@

@
@I

Tφ

6 6

with the vertical arrows given by structure maps and which commutes up to
diffeotopy.
By our assumptions (and the theorem of Banach-Steinhaus in the first case
mentioned above) there exist bounded linear maps ϕ : A → A such that the
family i ◦ ϕt := (1 − t) · i ◦ ϕ + t · Id : A → A, 0 ≤ t ≤ 1 is arbitrarily
close to the identity on S∞ and i(S

′∞). In particular, one can find for given
ǫ0 > 0 a bounded linear map φ : A → A such that ωφt(S∞) ⊂ ǫ0U and

ωφt(i(S
′∞)) ⊂ ǫ0U for all t ∈ [0, 1]. Consequently ωφ(S∞) ⊂ ǫ0U

′ by our
choice of open unit balls.
The arguments given in the proof of theorem (3.2) apply word for word and
show that the homomorphism Tφ : TA −→ TA defines (for a suitable
choice of S′

1 ⊂ U ′ compact and ǫ′1 > 0) a bounded algebra homomorphism
Tφ : (TAS)ǫ −→ (TAS′

1
)ǫ′1

which makes the left lower triangle of the diagram
commute up to diffeotopy.
After choosing S1 ⊂ U and ǫ1 > 0 appropriately, the upper right triangle of
the diagram will also commute up to diffeotopy by a similar reasoning.
This completes the proof of the theorem. 2

Corollary 3.9. Let “ lim
−→

i∈I

”Ai be a nice ind-Fréchet algebra. For each i ∈ I let

Ai be a smooth subalgebra of Ai satisfying the assumptions of (3.8). Suppose
that the smooth subalgebras (Ai)i∈I form an inductive system “ lim

−→

i∈I

”Ai under

the structure maps of “ lim
−→

i∈I

”Ai. Then the canonical morphism

“ lim
−→

i∈I

”Ai −→ “ lim
−→

i∈I

”Ai
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induces a stable diffeotopy equivalence of universal deformations.

Proof: This follows from the proof of the previous theorem and proposition
(2.10). 2

3.3.1 Examples

Corollary 3.10. Let A be a nice Fréchet algebra which possesses the
Grothendieck approximation property. Let ∆ := {δi, i ∈ I} be an at most
countable set of unbounded derivations on A and let AΣ be one of the comple-
tions of dom(∆) introduced in (3.6). Then the inclusion

AΣ →֒ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: The corollary follows from (3.6) and (3.8). 2

Corollary 3.11. Let A be a nice Fréchet algebra and let (Φt)t∈lR be a contin-
uous one parameter group of automorphisms of A. Let ∆ be the corresponding
unbounded derivation with domain A∞ := {a ∈ A, Φt(a) ∈ C∞(lR, A)}. Then
the inclusion

A∞ →֒ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: Let uλ, λ ∈ Λ, be a family of smooth functions with compact support
on the real line which approach the delta distribution at 0. Then the family of
regularization maps ϕλ : A −→ A∞, ϕλ(a) :=

∫ ∞

−∞
uλ(t)Φt(a) dt satisfies the

conditions of (3.8). The conclusion follows. 2

Corollary 3.12. Let A be a nice ind-Fréchet algebra, let M be a smooth
compact manifold without boundary, and let k ≥ 0 be an integer. Then the
canonical morphisms

C∞(M,A) →֒ Ck(M,A) →֒ C(M,A)

of nice ind-Fréchet algebras induce stable diffeotopy equivalences of universal
infinitesimal deformations.

Proof: The corollary follows as before from (3.6) and (3.8) by noting that
C(M,A) is nice (1.1) and by using convolution with a family of smooth kernels
(kλ) on M × M , approaching the delta distribution along the diagonal, as
family of regularization maps (ϕλ). There is also a version for manifolds with
boundary. For the definition of the appropriate function spaces see [Pu], (7.7).

2
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Corollary 3.13. Let A be a nice ind-Fréchet algebra and let k ≥ 0 be an
integer. Then the canonical inclusions

C∞([0, 1],A) →֒ Ck([0, 1],A) →֒ C([0, 1],A)

of nice ind-Fréchet algebras induce stable diffeotopy equivalences of universal
infinitesimal deformations.

Proof: This is the case M = [0, 1] of (3.12) for manifolds with boundary. 2

Corollary 3.14. Let A be a separable C∗-algebra. Let τ be a densely de-
fined, positive, unbounded trace on A and let ℓ1(A, τ) be its domain. Then the
canonical inclusion

ℓ1(τ,A) →֒ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: By (3.7) the domain of τ is a smooth subalgebra of A. There exists a
bounded approximate unit (uλ), λ ∈ Λ, for A consisting of elements of the dense
twosided ideal ℓ1(τ,A). Left-multiplication with uλ provides the regularization
maps ϕλ asked for in (3.8). For details see [Pu], (7.9). 2

3.4 Topological direct limits

Another fundamental question in the study of functors of topological algebras
is their behavior with respect to topological direct limits. As is well known
topological K-theory commutes with arbitrary topological direct limits. Under
rather mild restrictions the universal infinitesimal deformation functor with
values in the stable diffeotopy category possesses a similar behavior.
It turns out that, under these restrictions, the universal infinitesimal deforma-
tion of a topological direct limit is stably diffeotopy equivalent to the direct
limit (in the ind-category of algebras) of the individual universal deformations.
This result provides an effective tool for calculations, as will be shown in a
number of examples.

Theorem 3.15. (Limit theorem)
Let “ lim

−→

λ∈Λ

”Aλ be a directed family of nice Fréchet algebras and let

f = lim
←

fλ : “ lim
−→

λ∈Λ

”Aλ −→ A

be a homomorphism to a nice Fréchet algebra A. Suppose that the following
conditions hold:

• A is separable and possesses the Grothendieck approximation property.

• The image Im(f) := lim
−→
λ∈Λ

fλ(Aλ) is dense in A.
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• There exist seminorms ‖ − ‖λ on Aλ, λ ∈ Λ, respectively ‖ − ‖ on A,
and a constant C such that

i) The set of elements of length less than 1 with respect to the seminorm
is an open unit ball for Aλ, λ ∈ Λ, respectively A.

ii)
Sup
λ′≥λ

‖ iλλ′(aλ) ‖λ′ < ∞

for all aλ ∈ Aλ, λ ∈ Λ.

iii)
lim
−→
λ∈Λ

‖ aλ ‖λ ≤ C ‖ f(a) ‖

for all
a = lim

−→
λ∈Λ

aλ ∈ lim
−→
λ∈Λ

Aλ

Then
f : “ lim

−→

λ∈Λ

”Aλ −→ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

During the proof we will several times make use of the following

Lemma 3.16. Let the assumptions of the previous theorem be valid. Then for
given K ⊂ Aλ compact and given ǫ > 0 there exists λ′ ∈ Λ such that
‖ iλλ′(a) ‖λ′ ≤ C· ‖ fλ(a) ‖A + ǫ for all a ∈ K. Here C denotes the constant
of the assumption of the previous theorem.

Proof: By the theorem of Banach-Steinhaus and our assumptions the family
{ iλλ′ : Aλ → (Aλ′ , ‖ − ‖λ′), λ′ ≥ λ }

⋃
{ fλ : Aλ → (A, ‖ − ‖A) } of bounded

linear maps on Aλ is equicontinuous. Accordingly there exists a seminorm
‖ − ‖′ on Aλ and a constant C ′ such that ‖ iλλ′(a) ‖λ′ ≤ C ′· ‖ a ‖′ and
‖ fλ(a) ‖A ≤ C ′· ‖ a ‖′ for all a ∈ Aλ and λ′ > λ. Choose a finite subset
{y1, . . . , yk} of K such that the balls with respect to ‖ − ‖′ around y1, . . . , yk

with radius ǫ
2C′(1+C) cover K. Choose finally λ′ > λ so large that one has

‖ iλλ′(yl) ‖λ′ ≤ C· ‖ fλ(yl) ‖A + ǫ
2 for all yl, 1 ≤ l ≤ k, which is possible by

the assumptions of the theorem. With these choices the desired estimates hold.
2

Proof of the theorem:
We want to apply the isomorphism criterion (2.9) to the morphism

T f : T (“ lim
−→

λ∈Λ

” Aλ) = Lim
−→
λ∈Λ

T Aλ −→ T A

of ind-Banach algebras. So let (TAλ
Sλ

)ǫλ
→ (TAS)ǫ′ be a homomorphism

representing T fλ where Sλ ⊂ Aλ and S ⊂ A are compact sets satisfying
‖ Sλ ‖Aλ

< 1 and ‖ S ‖A< 1 and ǫλ > 0, ǫ′ > 0. It has to be shown that this
map fits into a diagram of homomorphisms
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(TAλ
Sλ

)ǫλ
(TAS)ǫ′

(TAλ′

Sλ′
)ǫλ′ (TAS′)ǫ′′

-

-

@
@

@
@

@
@

@
@

@
@I

Tψ

6 6

which commutes up to diffeotopy.
Denote by S∞(S∞

λ ) the relatively compact multiplicative closures of S(Sλ).
Step 1:
Fix ǫ > 0 such that 4ǫ < ǫ′. As A possesses the Grothendieck approximation
property there exists a bounded linear selfmap φ ∈ L(A) of finite rank such that
φ(A) ⊂ lim

−→
µ

f(Aµ) and ‖ω(φt, S∞ ∪ fλ(S∞
λ ))‖A < ǫ

2C for all t ∈ [0, 1] where

φt := (1− t) · Id + t · φ and where C ≥ 1 is a constant as in the assumption of
the theorem.
Step 2:
As φ is of finite rank one finds a finite dimensional subspace V ⊂ Aµ for some
µ ≥ λ such that fµ : Aµ → A maps V onto φ(A). Let s : φ(A) → V be
any linear section of fµ : V → φ(A). The set K := ω(s ◦ φ, S∞) is then a
bounded and thus relatively compact subset of the finite dimensional space
W := V + V 2 ⊂ Aµ. Similarly K ′ :=

⋃1
t=0 ω((1 − t) · iλµ + t · s ◦ φ ◦ fλ, S∞

λ )
is a relatively compact subset of Aµ.
Step 3:
Choose according to the assumptions of the theorem and the previous lemma
some λ′ ∈ Λ such that ‖iµλ′(a)‖Aλ′ ≤ C ·‖fµ(a)‖A + ǫ

2 for all a ∈ K∪K ′ ⊂ Aµ.
Put finally

Ψ := iµλ′ ◦ s ◦ φ : A → Aλ′

Step 4:
We estimate the deviation of Ψ from multiplicativity on S∞.

ω(Ψ, S∞) = iµλ′(ω(s ◦ φ, S∞)) = iµλ′(K)

so that
‖ ω(Ψ, S∞) ‖λ′ = ‖ iµλ′(K) ‖λ′

≤ C· ‖ fµ(K) ‖A +
ǫ

2
= C· ‖ ω(φ, S∞) ‖A +

ǫ

2
< ǫ
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Step 5:
We estimate the deviation of χt := (1−t) · iλλ′ + t ·Ψ◦fλ from multiplicativity
on S∞

λ .

ω(χt, S∞
λ ) = iµλ′(ω((1 − t) · iλµ + t · s ◦ φ ◦ fλ, S∞

λ )) ⊂ iµλ′(K ′)

so that
‖ ω(χt, S∞

λ ) ‖λ′ ≤‖ iµλ′(K ′) ‖λ′

≤ C· ‖ fµ(K ′) ‖A +
ǫ

2
= C· ‖ ω(φt, fλ(S∞

λ )) ‖A +
ǫ

2
< ǫ

Step 6:
We finally estimate the deviation of µt := (1 − t) · IdA + t · fλ′ ◦ Ψ from
multiplicativity on S∞.

ω(µt, S∞) = ω(φt, S∞)

so that
‖ ω(µt, S∞) ‖A < ǫ

Step 7:
The arguments in the proof of (3.2) show then that for a suitable choice of
Sλ′ ⊂ Aλ′ , S′ ⊂ A and ǫλ′ , ǫ′′ > 0:

• Tψ : TA → TAλ′ induces a bounded homomorphism
Tψ : (TAS)ǫ′ −→ (TAλ′

Sλ′
)ǫλ′ by the estimates of step 4.

• Tχt, 0 ≤ t ≤ 1 defines a diffeotopy between TΨ ◦ Tfλ and Tiλλ′ by the
estimates of step 5.

• Tµt : (TAS)ǫ′ −→ (TAS′)ǫ′′ , 0 ≤ t ≤ 1, defines a diffeotopy between
Tfλ′ ◦ TΨ and the structure homomorphism by the estimates of step 6.

This establishes the desired diagram. The theorem is therefore proved. 2

Note that for nice Fréchet algebras with Grothendieck approximation prop-
erty the smooth subalgebra theorem (3.8) is a consequence of the previous
direct limit theorem, applied to the constant inductive family given by the
fixed smooth subalgebra.
As a special case of the limit theorem we obtain

Corollary 3.17. Let “ lim
−→

λ∈Λ

”Aλ be a directed family of nice Fréchet algebras.

Suppose that there exist seminorms ‖ − ‖λ on Aλ, λ ∈ Λ, such that the set of
elements of length less than 1 is an open unit ball for Aλ, and such that

lim
−→

λ∈Λ

‖ a ‖λ = 0

for all a ∈ lim
−→

λ∈Λ

Aλ. Then the universal infinitesimal deformation

T (“ lim
−→

λ∈Λ

”Aλ) = Lim
−→

λ∈Λ

T Aλ

is a weakly contractible ind-Fréchet algebra.
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Proof: The given conditions are equivalent to the assertion that the con-
stant morphism “ lim

−→

λ∈Λ

” Aλ −→ 0 satisfies the assumptions of the limit theo-

rem (3.15). The proof of this theorem shows therefore that the isomorphism
criterion (2.9) applies to the constant morphism T (“ lim

−→

λ∈Λ

” Aλ) −→ T (0) = 0.

This implies our claim. 2

3.4.1 Examples

The theorem allows to determine the stable diffeotopy type of universal in-
finitesimal deformations of numerous algebras which occur as topological direct
limits. We present some examples.
Let H be a separable, infinite dimensional Hilbert space and let B(H) be the
algebra of bounded linear operators on H. It is well known that every nontrivial
twosided ideal J of B(H) satisfies F ⊂ J ⊂ K, i.e. contains the smallest
nonzero ideal F of finite rank operators and is contained in the largest ideal
K of all compact operators. An ideal J is called symmetrically normed if
it is complete with respect to a norm ‖ ‖J which satisfies the characteristic
inequality ‖AXB‖J ≤ ‖A‖B(H) · ‖X‖J · ‖B‖B(H) for all X ∈ J , A,B ∈ B(H),
and ‖P‖J = ‖PB(H)‖ = 1 for some (and therefore every) rank one projection
P ∈ B(H). It follows easily from the definition that the inclusion J →֒B(H) is
a bounded map of Banach spaces and that ‖ ‖B(H) ≤ ‖ ‖J on J . This implies
that (J , ‖ ‖J ) is a nonunital Banach algebra. It is known that J is separable
if and only if the ideal F of finite rank operators is dense in J . (For all this
consider [Co] and the references therein).

Corollary 3.18. Let J be a separable, symmetrically normed operator ideal
in B(H). Let i : “ lim

n→∞
”Mn( lC) → J be a homomorphism of ind-Banach

algebras sending the matrix units (ekk), k ∈ lN, to the orthogonal projections
onto the lines spanned by the vectors of some orthonormal basis of H. Then

i : “ lim
n→∞

”Mn( lC) −→ J

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: First of all J possesses the Grothendieck approximation property.
To see this consider the contraction with a finite rank projection P . It de-
fines a linear selfmap of J of norm one because of the characteristic inequal-
ity ‖PXP‖J ≤ ‖P‖B(H)‖X‖J ‖P‖B(H) = ‖X‖J . As the finite rank oper-
ators are dense in J (J is separable) it suffices to prove that for every fi-
nite set {A1, .., Ak} of finite rank operators and every ǫ > 0 there exists a
finite rank projection P satisfying ‖PAiP − Ai‖J < ǫ for 1 ≤ i ≤ k. Ev-
ery finite rank operator can be written as a product of three such operators:
Ai = BiCiDi. Therefore ‖PAiP − Ai‖J ≤ ‖PBi − Bi‖B(H)‖Ci‖J ‖DiP‖B(H)

+‖Bi‖B(H)‖Ci‖J ‖DiP − Di‖B(H) so that the claim has only to be verified for
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the operator norm for which it is obvious. Actually this argument shows also
that the image of i is dense in J .

As any two norms on the finite dimensional algebras Mn( lC) are equivalent
the ind-Fréchet algebra “ lim

n→∞
” Mn( lC) does not depend (up to isomorphism)

on the choice of the norms on the algebras Mn( lC), n ∈ lN. If we choose the
norms obtained from the norm on J by restriction to lim

n→∞
i(Mn( lC)) then the

corollary follows immediately from theorem (3.15). 2

Corollary 3.19. Let the notations of (3.18) be valid. Then for any nice
ind-Fréchet algebra A the homomorphism

Id ⊗ i : Lim
n→∞

Mn(A) = Lim
n→∞

A⊗π Mn( lC) −→ A⊗π J

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: Let A = “ lim
−→

i∈I

”Ai. A reasoning similar to the proof of (3.18) shows

that the isomorphism criterion (2.9) applies to the morphisms
T (Lim

n→∞
Mn(Ai)) −→ T (Ai⊗π J ) for all i ∈ I. Proposition (2.10) implies then

that T (Lim
n→∞

Mn(A)) −→ T (A⊗π J ) is a stable diffeotopy equivalence as well.
2

Corollary 3.20. Let A be a C∗-algebra. Let i : “ lim
n→∞

”Mn( lC) → K(H) be

an inclusion as defined in (3.18). Then the homomorphism

Id ⊗ i : “ lim
n→∞

”Mn(A) = “ lim
n→∞

”A ⊗π Mn( lC) −→ A ⊗C∗ K(H)

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

The proof is similar to that of (3.19).

Corollary 3.21. Let “ lim
n→∞

”An be an inductive system of separable

C∗-algebras and let A be the enveloping C∗-algebra of the algebraic direct limit
lim

n→∞
An. Suppose that A possesses the Grothendieck approximation property.

Then the canonical homomorphism

“ lim
n→∞

”An −→ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: Obvious from (3.15) and the fact that lim
n→∞

‖ an ‖An
= ‖ a ‖A for all

a = lim
n→∞

an ∈ A. 2
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4 Diffeotopy functors on categories of ind-algebras

In this section we summarize what we obtained so far concerning our original
goal of improving invariance and stability properties of functors of topological
algebras. The results underline the crucial role played by the stable diffeotopy
category in this question. We consider functors of nice ind-Fréchet algebras,
which are invariant under diffeotopy, under infinitesimal deformations, and un-
der passage to infinite matrix algebras. Suppose in addition that the given
functor is not only invariant under diffeotopy, i.e. factors through the unsta-
ble diffeotopy category, but that it factors even through the stable diffeotopy
category. Then it possesses in fact a number of remarkable properties:

• Continuous homotopy invariance

• Invariance under passage to dense smooth subalgebras (in the presence
of the approximation property)

• Topological Morita invariance, i.e. invariance under passage to comple-
tions of the infinite matrix algebra over the given algebra

Thus the fact that a matrix stable and deformation invariant functor factors
through the stable diffeotopy category ensures already that it behaves in many
ways like K-theory. It turns out that among these three required properties
the factorization property is the crucial one. Suppose that F is any functor
on the ind-category of nice Fréchet algebras which factors through the stable
diffeotopy category. Then there is a universal matrix stable and deformation
invariant functor associated to it, given by the composition

F ′ := F ◦ T ◦ M∞ ≃ F ◦ M∞ ◦ T

with the universal infinitesimal deformation functor T and the infinite matrix
functor M∞. This functor will possess all the properties listed above.
The universal example of a stable diffeotopy functor is the tautological functor
from the category of nice ind-Fréchet algebras to the stable diffeotopy category.
The functor T ◦ M∞ with values in the stable diffeotopy category has therefore
a lot of similarities with the (bivariant) K-functor.
It might be interesting to compare this functor to other functors and categories
that have been constructed as models of bivariant K-theory such as Higson’s
category [Hi],[Cu], the category of asymptotic morphisms of Connes and Higson
[CH], and the bivariant theories introduced by Cuntz in [Cu1]. There is however
an important difference between all these theories and the one considered in
the present paper because we completely ignore the excision problem. A closer
study of these questions has to be undertaken elsewhere.
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Definition 4.1. Let F be a functor on the ind-category of nice Fréchet alge-
bras.

a) F is said to factor through the stable diffeotopy category if it is isomorphic
to a functor of the form F ′◦i where i is the canonical functor to the stable
diffeotopy category.

b) F is called invariant under infinitesimal deformations, if for every topo-
logically nilpotent extension of nice ind-Fréchet algebras

0 −→ N −→ A −→ B −→ 0

the induced morphism

F (A)
≃
−→ F (B)

is an isomorphism.

c) For a nice ind-Fréchet algebra A let

M∞(A) := Lim
n→∞

Mn(A)

be its infinite matrix algebra with structure maps Mn →֒ Mn+1 given
by the ”inclusion of the upper left corner”. The functor F is called
matrix-stable if it turns the canonical morphism A −→ M∞(A) into an
isomorphism.

Theorem 4.2. Let F be a functor on the ind-category of nice Fréchet algebras
which satisfies the following conditions:

• F factors through the stable diffeotopy category

• F is invariant under infinitesimal deformations

• F is matrix stable

Then the following assertions hold

a) F is a homotopy functor, i.e. if f, f ′ : A −→ A′ are continuously
homotopic homomorphisms of nice ind-Fréchet algebras then

F (f) = F (f ′)

b) If A →֒ B is the inclusion of a smooth subalgebra into a nice Fréchet
algebra possessing the Grothendieck approximation property, then

F (A)
≃
−→ F (B)

is an isomorphism.
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b)’ If
A = “ lim

−→

i∈I

”Ai −→ “ lim
−→

i∈I

”Bi = B

is a morphism of I-diagrams of nice Fréchet algebras such that Ai →֒ Bi

is the inclusion of a smooth subalgebra and such that Bi possesses the
Grothendieck approximation property for all i ∈ I, then

F (A)
≃
−→ F (B)

is an isomorphism.

c) Let J be a separable, symmetrically normed operator ideal and let
j : lC → J be a homomorphism which maps 1 to a projection of rank one.
Then

F (Id ⊗π j) : F (A)
≃
−→ F (A⊗π J )

is an isomorphism for every nice ind-Fréchet algebra A.

c)’ Let K(H) be the algebra of compact operators on a separable Hilbert space
and let i : lC → K(H) be a homomorphism which maps 1 to a projection
of rank one. Then

F (Id ⊗C∗ i) : F (B)
≃
−→ F (B ⊗C∗ K(H))

is an isomorphism for every ind-C∗-algebra B.

Suppose in addition that F commutes with direct limits (Recall that direct limits
exist in any ind-category). Then moreover the following is true.

d) If (Ai)i∈I is a directed family of nice Fréchet algebras such that the topo-
logical direct limit lim

−→
i∈I

Ai exists in the category of nice Fréchet algebras

and possesses the Grothendieck approximation property, then the natural
morphism

lim
−→
i∈I

F (Ai)
≃
−→ F (lim

−→
i∈I

Ai)

is an isomorphism.

It should be noted that assertions a) b) and d) do not require the matrix
stability of the functor under consideration.
Proof: For a nice ind-Fréchet algebra A denote by π : T A −→ A the canon-
ical epimorphism adjoint to the identity map of A (1.23). For any morphism
f : A −→ B of nice ind-Fréchet algebras there is the commutative diagram

F (T A)
F (T f)
−→ F (T B)

F (π) ↓ ↓ F (π)

F (A)
F (f)
−→ F (B)
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The invariance of F under infinitesimal deformations implies that the verti-
cal arrows of the diagram are isomorphisms (1.25). Suppose now that the
morphism f induces a stable diffeotopy equivalence of universal infinitesimal
deformations, i.e. T f : T A −→ T B is a stable diffeotopy equivalence. Then
the upper horizontal map in the diagram becomes an isomorphism, because F
factors through the stable diffeotopy category. Thus one may conclude that
F (f) : F (A) −→ F (B) is an isomorphism.
We now prove assertion a) of the theorem. By the smooth subalgebra
theorem (3.8) the previous arguments apply to the inclusion of algebras

C∞([0, 1], A) −→ C([0, 1], A) so that F (C∞([0, 1], A))
≃
−→ F (C([0, 1], A))

is an isomorphism. Any evaluation homomorphism C∞([0, 1], A) −→ A is a
diffeotopy equivalence and therefore turned by F into an isomorphism. Al-
together this shows that any evaluation homomorphism C([0, 1], A) −→ A

induces an isomorphism F (C([0, 1], A))
≃
−→ F (A). This statement is equiva-

lent to the homotopy invariance of F . Assertions b), c) and d) follow from the
previous discussion and the smooth subalgebra theorem (3.8), respectively the
direct limit theorem (3.15) and its corollaries (3.18) and (3.19). 2

We now make some observations concerning the problem of constructing func-
tors which satisfy the conditions of the previous theorem. It turns out that one
can associate in a universal way to any functor F on the ind-category of nice
Fréchet algebras, which factors through the stable diffeotopy category, a functor
F ′, which is matrix stable and invariant under infinitesimal deformations. The
modified functor F ′ will be shown to satisfy the assertions of theorem (4.2).
This result shows the crucial role played by the stable diffeotopy category in
the search for functors of topological algebras with good homotopy, stability,
and continuity properties.

Theorem 4.3. Let F be a functor on the ind-category of nice Fréchet algebras
and suppose that F factors through the stable diffeotopy category. Let

F ′ := F ◦ T ◦ M∞

be the functor obtained by composition with the universal infinitesimal defor-
mation functor T and the infinite matrix functor M∞. Then the functor F ′ is
matrix stable, invariant under infinitesimal deformations, and satisfies all the
assertions of Theorem (4.2).

Remark 4.4. If one ignores Morita invariance there is a similar statement for
the functor F ′′ := F ◦ T . It is universal among all functors which are invariant
under infinitesimal deformations and equipped with a natural transformation to
F . It satisfies assertions a), b) and d) of Theorem(4.2).

Proof: We show first that F ′ is matrix stable. So let A be an ind-Fréchet
algebra and let A −→ M∞(A) be the canonical inclusion. The induced homo-
morphism M∞(A) −→ M∞(M∞(A)) is known to be a diffeotopy equivalence.
As the universal deformation functor preserves the relation of diffeotopy and
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as F is diffeotopy invariant, the conclusion follows. We verify next that F ′ is
invariant under infinitesimal deformations. So let

0 −→ N −→ A −→ B −→ 0

be an infinitesimal deformation of B. It follows that

0 −→ M∞(N ) −→ M∞(A) −→ M∞(B) −→ 0

is again an infinitesimal deformation. (Note that this has only to be verified for
finite matrices of fixed size.) Applying the universal infinitesimal deformation
functor T one obtains a morphism

T (M∞(A)) −→ T (M∞(B))

which is a diffeotopy equivalence by the universal properties of T (1.27).
Applying the diffeotopy invariant functor F one concludes that

F ′(A) −→ F ′(B)

is an isomorphism. Let finally f : A −→ B be a morphism of ind-algebras, such
that for each n ∈ lN the isomorphism criterion (2.9) applies to the morphism

T (Mn(f)) : T (Mn(A)) −→ T (Mn(B))

In particular T (Mn(f)) is a stable diffeotopy equivalence. By (2.10) the direct
limit

T (M∞(f)) : T (M∞(A)) −→ T (M∞(B))

of these morphisms is again a stable diffeotopy equivalence. Consequently the
induced map

F ′(f) : F ′(A) −→ F ′(B)

is an isomorphism. The condition is satisfied in the following cases: For the
inclusion of a smooth subalgebra (a diagram of smooth subalgebras) as in (3.8),
for any of the morphisms M∞(A) −→ A ⊗π J or M∞(B) −→ B ⊗C∗ K(H)
considered in (3.18) and (3.19), and for the morphism Lim

−→
i∈I

Ai −→ A of a family

(Ai)i∈I into a topological direct limit A, which possesses the Grothendieck
approximation property (3.15). If, in the latter case, the functor F commutes
in addition with direct limits, one deduces further from

F ′(Lim
−→
i∈I

Ai) = F (T (M∞(Lim
−→
i∈I

Ai))) = F (Lim
−→
i∈I

T (M∞(Ai))) = Lim
−→
i∈I

F ′(Ai)

that
Lim
−→
i∈I

F ′(Ai) −→ F ′(A)

is an isomorphism. 2

It should be noted that there is no reason for the functor F ′ to factor through
the stable diffeotopy category in the way asked for in (4.1) although the original
functor F does so. The reason lies in the fact that the suspension and universal
infinitesimal deformation functors do not commute in any reasonable sense.
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Corollary 4.5. Consider the functor from the ind-category of nice Fréchet
algebras to the stable diffeotopy category which associates to a nice ind-Fréchet
algebra the universal infinitesimal deformation of its infinite matrix algebra.
This functor is homotopy invariant, invariant under passage to smooth subal-
gebras (in the presence of the approximation property), and topologically Morita
invariant (invariant under projective tensor products with separable symmetri-
cally normed operator ideals or under the C∗-tensor product with the algebra
of compact operators in the case of ind-C∗-algebras).

In particular, this functor shows many similarities with a bivariant K-functor.
The basic difference from a K-functor is that the present functor has no reason
to satisfy excision.

5 Local cyclic cohomology

We apply now the ideas of the previous section in order to improve the ho-
motopy, stability, and continuity properties of continuous periodic cyclic coho-
mology. Continuous periodic cyclic (co)homology has the following drawbacks
which prevent it from being a good approximative model of K-theory. It is
not invariant under continuous homotopies, it is not stable under tensoriza-
tion with general operator ideals, it is not stable under passage to smooth
subalgebras, and it is not compatible with topological direct limits. The con-
siderations of the previous section suggest how to modify continuous periodic
cyclic (co)homology in order to obtain a cyclic theory which does not have
the mentioned disadvantages. The new cyclic theory should be invariant un-
der infinitesimal deformations and should factor through the stable diffeotopy
category of ind-algebras. There is indeed a canonical choice for a homology
theory which satisfies these conditions. This is local cyclic (co)homology. The
drawbacks mentioned before disappear under the passage from periodic to local
cyclic cohomology. So it possesses in fact many properties which are typical
for bivariant K-theory [Ka]. Besides this it will turn out to be accessible to
direct computation. Local cyclic cohomology becomes thus a valuable tool for
the study of problems in noncommutative geometry.

5.1 Cyclic cohomology theories

We recall some well known facts about various cyclic homology theories.

Periodic cyclic cohomology [Co1], [FT]

For a complex algebra A define the A-bimodule of algebraic differential forms
by

ΩnA := Ã ⊗ A⊗n, ΩA :=
⊕
n

ΩnA

with Ã := A ⊕ lC1 the algebra obtained from A by adjoining a unit. The A-
bimodule structure on ΩA is the obvious one. The Hochschild complex of A is
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given by

C∗(A) := (Ω∗A, b)

with Hochschild differential

b(a0⊗. . .⊗an) :=

n−1∑

i=0

(−1)ia0⊗. . .⊗aiai+1⊗. . .⊗an + (−1)nana0⊗. . .⊗an−1

which equals

b(ωda) = (−1)|ω|[ω, a]

Its homology HH∗(A,A) := H∗(C∗(A)) is called the Hochschild homology of
A. There is a canonical isomorphism

HH∗(A,A) ≃ TorÃ⊗Ãop

∗ (A,A)

Associated to the Hochschild complex there is the contractible ZZ/2-graded
cyclic bicomplex

CC∗(A) :=

(⊕

n∈ZZ

Ω∗+2nA, b + B

)

where the Connes differential B is given by

B(a0 ⊗ . . . ⊗ an) :=

n∑

j=0

(−1)jn 1 ⊗ aj ⊗ . . . ⊗ an ⊗ a0 ⊗ . . . ⊗ aj−1

The Hodge-filtration of the cyclic bicomplex is the descending filtration defined
by the subcomplexes

FilkHodge CC∗(A) :=
(
bΩkA

⊕
Ω≥kA, b + B

)

generated by algebraic differential forms of degree at least k.
The periodic cyclic bicomplex ĈC∗(A) of a complex algebra is the completion
of the cyclic bicomplex CC∗(A) with respect to the Hodge filtration:

ĈC∗(A) := lim
←−
n

CC∗(A)/F ilnHodgeCC∗(A)

Its homology HP∗(A) := H∗(ĈC∗(A)) is called the periodic cyclic homology
of A. The cohomology HP ∗(A) of the dual chain complex is the periodic
cyclic cohomology of A. The relation between periodic cyclic and Hochschild
homology, which can be computed as a derived functor, allows the explicit
calculation of periodic cyclic cohomology groups.
Cuntz and Quillen [CQ1] propose an approach to periodic cyclic (co)homology
which emphasizes the ZZ/2ZZ-periodicity and the stability of the theory under
nilpotent extensions. Moreover they work throughout in a bivariant setting.
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For a complex algebra A consider the universal linear split extension

0 → IA → TA :=
⊕

n

A⊗n → A → 0

of A [CQ]. The completion T̂A := lim
←−

TA/IAn of the tensor algebra with

respect to the corresponding adic topology is the universal topologically nilpo-
tent extension of A in the category of adically complete algebras. It is quasifree
[CQ] in the sense that every topologically nilpotent extension of it possesses a
multiplicative linear section.
The X-complex [CQ1] of A is the ZZ/2ZZ-graded chain complex

X∗(A) := −→ A
∂0−→ Ω1A/[Ω1A,A]

∂1−→ A −→

∂0(a) = da, ∂1(a
0da1) = [a0, a1]

The X-complex of an adically complete algebra Â = lim
←−

A/In is defined as

the adically complete chain complex X∗(Â) := lim
←−

X∗(A/In).

Cuntz and Quillen introduce the bivariant periodic cyclic cohomology of a pair
of algebras (A,B) as [CQ1]

HP∗(A,B) := MorHo (X∗(T̂A), X∗(T̂B))

where Ho denotes the homotopy category of adically complete ZZ/2ZZ-graded
chain complexes. This functor coincides in the case A = lC (resp. B = lC) with
the periodic cyclic homology (resp. cohomology) as defined by Connes.
Bivariant periodic cyclic cohomology is a bifunctor on the category of abstract
(and more generally of adically complete) complex algebras. Its fundamental
properties are

• Homotopy invariance with respect to polynomial homotopies [Co1], [Go]

• Invariance under nilpotent extensions [Go]

• Morita invariance [Co1]

• Excision [CQ2]

The invariance under nilpotent extensions implies that the projection

ĈC∗(T̂A) := lim
←−

n

ĈC∗(TA/IAn) −→ ĈC∗(A)

is a quasiisomorphism (in fact a chain homotopy equivalence). As mentioned

before, the algebra T̂A is quasifree [CQ], which is equivalent to the fact that
it is of projective dimension at most one as bimodule over itself. It follows
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that the columns and therefore the total complex of Fil2HodgeĈC∗(T̂A) are
contractible, so that the projection

ĈC∗(T̂A) −→ ĈC∗(T̂A)/F il2HodgeĈC∗(T̂A) ≃ X∗(T̂A)

is a quasiisomorphism (in fact a chain homotopy equivalence), too. This estab-
lishes the equivalence of the different approaches to periodic cyclic cohomology.
Any reasonable definition of a cyclic cohomology theory for topological alge-
bras has to take the topologies of the underlying algebras into account. This
is usually done by topologizing the cyclic complexes and by passing then to
its completions. Several such theories have been proposed, in particular the
following ones.

Continuous periodic cyclic cohomology [Co1]

Let A be a locally convex algebra with jointly continuous multiplication. The
A-bimodule of continuous differential forms is given by

ΩnA := Ã ⊗π A⊗n
π ΩA :=

⊕
n

ΩnA

The continuous Hochschild, cyclic and periodic cyclic complexes are defined
similarly to the corresponding algebraic complexes by using continuous instead
of algebraic differential forms. The homology HP∗ of the continuous periodic
cylic bicomplex ĈC is called continuous periodic cyclic homology, the cohomol-
ogy HP ∗ of the dual complex of bounded linear functionals on ĈC is called
the continuous periodic cyclic cohomology. It is calculated in the same way
as the cyclic groups of abstract algebras with the noteworthy difference that
topologically projective resolutions [Co1] have to be used for the computation
of Hochschild groups.
The Cuntz-Quillen approach in the continuous case goes as follows. One con-
siders the universal extension

0 → IA → TA := ⊕A⊗πn → A → 0

of complete, locally convex algebras with bounded linear section and denotes
by T̂A := lim

←−
TA/IAn its I-adic completion.

The X-complex is given in the continuous case by

X∗(A) := (A ⊕ Ω1A/[Ω1A,A], ∂)

Bivariant periodic cyclic cohomology is then defined as

HP∗(A,B) := MorHo (X∗(T̂A), X∗(T̂B))

the group of morphisms of the X-complexes in the homotopy category of com-
plexes of complete locally convex vector spaces. As before these bivariant
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groups coincide with the ones introduced by Connes if one of the variables
equals lC.
The fundamental properties of bivariant continuous periodic cyclic cohomology
are

• Diffeotopy invariance [Co1],

• Invariance under nilpotent extensions [Go],

• Morita invariance [Co1]

• Excision with respect to extensions with bounded linear section [Cu2]

• Existence of a Chern-character K∗ −→ HP∗ on topological K-theory with
values in continuous periodic cyclic homology [Co1]

• Existence of a Chern-Connes character for finitely summable Fredholm
modules with values in continuous periodic cyclic cohomology [Co1]

Whereas continuous periodic cyclic (co)homology is rather well behaved for
nuclear Fréchet algebras it has several serious drawbacks if one intends to use
it as approximation to the K-functor for Banach- or C∗-algebras.

• The continuous periodic cyclic cohomology of a nuclear C∗-algebra A
equals the space of bounded traces on A [Ha]. Thus for a compact Haus-
dorff space X the cohomology HP ∗(C(X)) of the C∗-algebra C(X) of
continuous functions on X equals the space C(X)′ of Radon measures on
X. Consequently continuous periodic cyclic cohomology is not invariant
under continuous homotopies as HP ∗(C([0, 1])) = C([0, 1])′ is infinite
dimensional whereas HP ∗( lC) = lC.

• The continuous periodic cyclic (co)homology of stable C∗-algebras
A ≃ A ⊗C∗ K(H) vanishes altogether [Wo] while K-groups remain
unaffected under stabilization.

• In the cases mentioned above the Chern-character with values in con-
tinuous periodic cyclic homology is obviously far from being rationally
injective.

Entire cyclic cohomology [Co2]

The search for a Chern-character in K-homology for not necessarily finitely
summable Fredholm modules led Connes [Co2] to the definition of entire cyclic
cohomology. For a Banach algebra A let ΩAǫ be the completion of the space
ΩA =

⊕
n

Ã ⊗π A⊗n
π with respect to the family of seminorms

∑

n

([
n

2
]!)−1 · R−n· ‖ − ‖

⊗π(n+1)
A , R > 1
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(For later use we introduce also the spaces ΩAǫ,r, r < 1, as the completions of

ΩA with respect to the seminorms
∑

n ([n
2 ]!)−1 · (1 + n)m · rn· ‖ − ‖

⊗π(n+1)
A for

m ∈ lN.) The entire cyclic bicomplex CCǫ
∗ is defined in the usual way using

the space ΩAǫ instead of continuous differential forms. Its (co)homology is the
entire cyclic (co)homology of A. The bivariant entire cyclic cohomology groups
of a pair are defined as

HCǫ
∗(A,B) := MorHo (CCǫ

∗(A), CCǫ
∗(B))

There are similar complexes CCǫ,r
∗ , r < 1 based on the spaces ΩAǫ,r. Their

cohomology will be denoted by HC∗
ǫ,r(B) := H∗(CCǫ,r

∗ (B)).
In the Cuntz-Quillen approach entire cyclic cohomology can be described in
terms of the strong universal infinitesimal deformation functor T ′ (1.21) as

HCǫ
∗(A, B) = MorHo (X∗(T

′A), X∗(T
′B))

where the morphisms are taken in the homotopy category Ho of ind-complexes
(5.2). This explains why Connes’ definition of CCǫ

∗(A) is natural.
The basic properties of entire cyclic (co)homology are

• Diffeotopy invariance [Co2]

• Invariance under strongly topologically nilpotent extensions [Pu1]

• Morita invariance [Co]

• Excision with respect to extensions with bounded linear section [Pu2]

• Existence of a Chern character K∗ −→ HCǫ
∗ on topological K-theory with

values in entire cyclic homology [Co2].

• Existence of a Chern-Connes character for Θ-summable Fredholm
modules with values in entire cyclic cohomology [Co2].

Entire cyclic (co)homology can be characterized as the universal functor asso-
ciated to periodic cyclic (co)homology which is invariant under strong infinites-
imal deformations.
Considered as a functor on Banach- resp. C∗-algebras, entire cyclic cohomology
has similar drawbacks as the continuous cyclic theory. Again the cohomology
of a nuclear C∗-algebra coincides with the space of continuous traces [Kh].
Thus entire cyclic cohomology cannot be homotopy invariant. Moreover it
vanishes identically on nuclear stable C∗-algebras. Finally it turns out to be
very difficult to calculate entire cyclic cohomology groups directly in terms of
their definition.
A basic problem, which actually motivated Connes to introduce cyclic cohomol-
ogy [Co1] was the search for a Chern-character on K-homology and ultimately
for a bivariant Chern-Connes character on Kasparov’s bivariant K-theory [Ka].
The target theory of such a character must necessarily be invariant under con-
tinuous homotopies. Therefore there cannot exist a bivariant Chern-Connes
character with values in any of the cyclic theories discussed so far.
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Analytic cyclic cohomology [Pu], [Me]

Let T be the universal infinitesimal deformation functor (1.23) on the category
of nice Fréchet algebras. The bivariant analytic cyclic cohomology of a pair of
such algebras is defined [Pu], section 5, as

HC∗
an(A, B) := Mor∗Ho(X(T A), X(T B))

The basic properties of analytic cyclic (co)homology are

• Diffeotopy invariance

• Invariance under topologically nilpotent extensions

• Morita invariance

• Excision with respect to extensions with bounded linear section [Pu2],
[Me]

• Existence of a Chern character K∗ −→ HCǫ
∗ on topological K-theory with

values in analytic cyclic homology.

• Existence of a Chern-Connes character for arbitrary Fredholm modules
with values in analytic cyclic cohomology [Me].

Analytic cyclic (co)homology can be characterized by its invariance under topo-
logically nilpotent extensions in a similar way as the entire theory is character-
ized by its invariance under strong infinitesimal deformations.
In [Me] Meyer develops analytic cyclic cohomology in much greater generality
for bornological algebras and shows that most of its properties continue to hold
in this broader context. In the case of the precompact bornology he recovers
the theory introduced in [Pu].
Analytic cyclic cohomology is quite similar to the entire cyclic theory. The main
difference is the existence of a Chern-Connes character for arbitrary Fredholm
modules with values in analytic cyclic cohomology. Consequently it is pos-
sible to construct interesting analytic cyclic cocycles on general Banach- and
C∗-algebras. Explicit calculations of cohomology groups turn out to be quite
difficult, however. It remains an open problem, whether analytic cyclic coho-
mology is invariant under continuous homotopies [Me]. In particular, one does
not know whether there exists a bivariant Chern-Connes character with values
in analytic cyclic cohomology.

Asymptotic cyclic cohomology [CM], [Pu]

Asymptotic cyclic cohomology was introduced by Connes and Moscovici in
[CM] and developed further in [Pu]. The novelty is the introduction of an
asymptotic parameter space with one end at ”infinity”. An asymptotic cocycle
should be thought of as a family of densely defined cyclic cocycles indexed by
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the parameter space whose domain of definition grows larger and larger as the
parameter tends to infinity.
Before we give the definition of the asymptotic theory we have to recall some
notation from [Pu]. A DG-object (differential graded object) will be an integer-
graded object equipped with a differential d of degree one satisfying d2 = 0.
Any morphism of DG objects is supposed to preserve gradings and to commute
with the differentials. If A is a nice Fréchet algebra, then the ind-complex
X∗(ΩT A) is a DG-object in an obvious way. Let M be a smooth manifold
and let U = (Uα)α∈I be a cover of M by relatively compact open sets. For an
ind-Fréchet space V = “ lim

−→

i∈I

”Vi define an ind-DG-module by

E(U,V) := Ker(
∏

α

ΩdR(Uα) ⊗π V −→
∏

α,β

ΩdR(Uα ∩ Uβ) ⊗π V )

Up to canonical isomorphism, this formal inductive limit does not depend on
the choice of U and will henceforth be denoted by E(M,V). If M itself is
compact, then E(M,V) is isomorphic to the space ΩdR(M)⊗π V of differential
forms on M with coefficients in V, but for open M this is not the case.
Let U be a fundamental system of neighborhoods of ∞, ordered by inclusion,
in the manifold lRn

+, n >> 0, equipped with the topology of [Pu] (1.1). Put
E(U ,V) := Lim

−→
U∈U

E(U, V). If V is a ind-DG-complex, then so is E(U ,V).

The asymptotic cyclic cohomology of a pair (A,B) of nice Fréchet algebras is
defined as

HCα
∗ (A,B) := MorDG

Ho (X∗(ΩT A), E(U , X∗(ΩT B)))

Asymptotic cyclic cohomology possesses the following properties.

• Continuous homotopy invariance [Pu] (6.15)

• Invariance under topologically nilpotent extensions [Pu1]

• Invariance under passage to certain smooth subalgebras [Pu] (7.1)

• Topological Morita invariance [Pu] (7.10)

• Excision with respect to extensions with bounded linear section [Pu2]

• Existence of a multiplicative bivariant Chern-Connes character
KK∗ −→ HCα

∗ on bivariant K-theory with values in bivariant asymptotic
cyclic cohomology. [Pu] (10.1)

So asymptotic cyclic cohomology possesses most of the properties one would
like to have for a reasonable cyclic theory of topological algebras. The main
drawback of the asymptotic theory lies in the fact that, just as for entire or
analytic cyclic cohomology, there are no methods to calculate it directly by
homological methods.
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We will pass now from algebras to ind-algebras and will generalize various cyclic
theories to this context. Cyclic homology theories for ind-algebras take their
value in suitable homotopy categories of ind-complexes which we introduce
next.

5.2 Homotopy categories of chain-complexes

We introduce some homotopy categories of chain complexes which are similar
to the diffeotopy categories of algebras treated in section 2.
Let A be a fixed additive category. We let C be the category of ZZ/2ZZ-graded
ind-complexes over A, i.e. the category of formal inductive limits of
ZZ/2ZZ-graded chain complexes over A.

Definition 5.1. The homotopy category Ho of ZZ/2ZZ-graded ind-complexes
over A is the category with the same objects as C and with homotopy classes
of chain maps (of degree k ∈ ZZ/2ZZ) as morphisms (of degree k ∈ ZZ/2ZZ):

Mork(“ lim
−→

i∈I

” C
(i)
∗ , “ lim

−→

j∈J

” D
(j)
∗ ) :=

= Hk(Hom ∗
C(“ lim

−→

i∈I

” C(i), “ lim
−→

j∈J

” D(j)))

= Hk(lim
←−

i∈I

lim
−→

j∈J

Hom ∗
A(C(i), D(j))),

Hom ∗
A(C•,D•) :=

(∏

l

Hom A(Cl,Dl+∗), ∂

)

with
∂(φ) := ∂D ◦ φ − (−1)deg(φ)φ ◦ ∂C

Definition 5.2. Let f : “ lim
−→

i∈I

” Ci
∗ −→ “ lim

−→

j∈J

” C ′j
∗ be a morphism of ind-

complexes. Define a directed set K of triples (i, j, fij), i ∈ I, j ∈ J,

fij : Ci
∗ → C ′j

∗ in the same way as in (2.2) and define the mapping cone of f
as the ind-complex

Cone(f) := “ lim
−→

K

” Cone(fij)

where

Cone(fij)∗ := (Ci
∗[1] ⊕ C ′j

∗, ∂Ci
∗
[1] ◦ π1 ⊕ fij ◦ π1 + ∂C′j

∗
◦ π2)

is the cone of the individual chain map fij . There are obvious morphisms of
ind-complexes

“ lim
−→

j∈J

” C ′j
∗ −→ Cone(f), Cone(f) −→ “ lim

−→

i∈I

” Ci
∗[1]
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Lemma 5.3. Call a triangle X → Y → Z → X[1] in Ho distinguished if it is

isomorphic to a triangle of the form C
f

−→ C ′ → Cone(f). Equipped with this
family of distinguished triangles, the homotopy category Ho of ind-complexes
becomes a triangulated category.

For a proof see [KS], 1.4.

Definition 5.4. An ind-complex “ lim
−→

i∈I

” Ci
∗ is called weakly contractible if for

each i ∈ I there exists i′ ≥ i, such that the structure map Ci
∗ → Ci′

∗ is
nullhomotopic.

The family of weakly contractible ind-complexes defines a nullsystem in Ho.

Definition 5.5. (Derived ind-category)
The derived ind-category D of ZZ/2ZZ-graded ind-complexes over A is the local-
ization of the triangulated homotopy category Ho of ind-complexes obtained
by inverting the morphisms with weakly contractible mapping cone. It be-
comes a triangulated category by declaring a triangle in D distinguished if it
is isomorphic to the image of a distinguished triangle in Ho.

The isomorphism criteria (2.9) and (2.10) apply verbatim to morphisms in the
derived ind-category.

5.3 Cyclic cohomology theories of ind-algebras

Continuous periodic cyclic cohomology

The continuous periodic cyclic bicomplex defines a functor from the category of
complete, locally convex algebras with jointly continuous multiplication to the
category of complexes of complete, locally convex vector spaces. We still denote
by ĈC∗ the unique extension of this functor to the corresponding ind-categories
which commutes with direct limits. Thus one has

ĈC∗(“ lim
−→

i∈I

”Ai) = “ lim
−→

i∈I

” ĈC∗(Ai)

The bivariant continuous periodic cyclic cohomology of a pair

(A, B) = (“ lim
−→

i∈I

”Ai, “ lim
−→

j∈J

”Bj)

of ind-algebras is then defined as

HP∗(A, B) := Mor∗Ho(ĈC(A), ĈC(B))

the graded group of morphisms between the cyclic complexes in the homotopy
category of ind-complexes. This group can be calculated as the cohomology of
the single complex

lim
←−
i∈I

lim
−→
j∈J

Hom∗(ĈC(Ai), ĈC(Bj))
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The Cuntz and Quillen approach generalizes similarly to ind-algebras and yields

HP∗(A, B) ≃ Mor∗Ho(X(T̂A), X(T̂B))

the group of morphisms between the corresponding X-complexes of I-adic com-
pletions.
The Cartan homotopy formula [Go] shows that diffeotopic morphisms of
ind-algebras induce chain homotopic maps of the corresponding cyclic ind-
complexes. Therefore continuous periodic cyclic cohomology is invariant under
diffeotopy, i.e. it descends to a functor from the unstable diffeotopy category
of ind-algebras (2.1) to the chain homotopy category of ind-complexes.

Entire, analytic, and asymptotic cyclic cohomology

In a similar way the entire (analytic) cyclic bicomplex and entire (analytic,
asymptotic) cyclic (co)homology can be naturally extended to ind-algebras.
The Cuntz-Quillen approach provides a description of entire (analytic) cyclic
cohomology of ind-Banach algebras (nice ind-Fréchet algebras) in terms of the
(strong) universal infinitesimal deformation functor T ′ (1.21) (resp. T (1.23))
as follows:

HCǫ
∗(A, B) ≃ Mor∗Ho(X(T ′A), X(T ′B))

HCan
∗ (A, B) ≃ Mor∗Ho(X(T A), X(T B))

HCα
∗ (A,B) := MorDG

Ho (X∗(ΩT A), E(U , X∗(ΩT B)))

This shows the invariance of the entire (analytic) cyclic theory under strongly
topologically nilpotent extensions (topologically nilpotent extensions). In fact
there is the following characterization of entire (analytic) cyclic theory in terms
of this invariance.

Lemma 5.6. Let F : ind − alg −→ Ho be a functor which is invariant under
strongly topologically nilpotent extensions (topologically nilpotent extensions)

and let Φ : F → ĈC∗ be a natural transformation to periodic cyclic homology.
Then F factors uniquely through entire (analytic) cyclic homology.

Proof: The canonical map ĈC∗(T
′A) −→ X(T ′A) (respectively

ĈC∗(T A) −→ X(T A)) is a deformation retraction, because T ′A (re-
spectively T A) is strongly topologically quasifree (respectively topologically
quasifree) (1.25), [CQ1]. The lemma follows then from a look at the natural
commutative diagram

F (T ′A)
≃
−→ F (A)

Φ ↓ ↓ Φ

CCǫ
∗(A)

≃
−→ X∗(T ′A)

≃
←− ĈC∗(T ′A) −→

π∗

ĈC∗(A)
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respectively

F (T A)
≃
−→ F (A)

Φ ↓ ↓ Φ

CCan
∗ (A)

≃
−→ X∗(T A)

≃
←− ĈC∗(T A) −→

π∗

ĈC∗(A)

and the fact that the transformations of the bottom lines coincide with the
chain homotopy classes of the canonical morphisms of the cyclic complexes. 2

5.4 Local cyclic cohomology

We are going to modify continuous periodic cyclic (co)homology in order to
obtain a cyclic theory satisfying continuous homotopy invariance, topological
Morita invariance, invariance under passage to smooth subalgebras, and com-
patibility with topological direct limits.
The results of section four tell us that a functor on the ind-category of nice
Fréchet algebras possesses the desired properties provided

• It is invariant under infinitesimal deformations
(topologically nilpotent extensions).

• It is matrix stable

• It factors through the stable diffeotopy category of ind-algebras.

Among the cyclic theories presented so far, analytic cyclic cohomology is char-
acterized by its invariance under infinitesimal deformations. Moreover it is
matrix stable. In order to obtain a cyclic theory which satisfies in addition the
last condition we make the

Definition 5.7. (Local cyclic cohomology)
Let T be the universal infinitesimal deformation functor (1.23) on the category
of nice ind-Fréchet algebras and let D be the derived ind-category (5.5) of the
category of complete, locally convex vector spaces. The bivariant local cyclic
cohomology of a pair (A, B) of nice ind-Fréchet algebras is defined as

HCloc
∗ (A, B) := Mor∗D(X(T A), X(T B))

the group of morphisms in the derived ind-category between the X-complexes of
the universal infinitesimal deformations of the given ind-algebras. The groups

HCloc
∗ (A) := HCloc

∗ ( lC, A)

respectively

HC∗
loc(A) := HCloc

∗ (A, lC)

are called the local cyclic homology, respectively local cyclic cohomology of A.
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An immediate consequence of the definition is the existence of a composition
product.

Proposition 5.8. (Composition products)
Bivariant local cyclic cohomology is a bifunctor on the ind-category of nice

Fréchet algebras. The composition of morphisms in the derived ind-category
defines a natural associative composition product

◦ : HCloc
∗ (A, B) ⊗ HCloc

∗ (B, C) −→ HCloc
∗ (A, C)

With this product the bivariant local cyclic cohomology HCloc
∗ (A, A) becomes

a unital ring, and the bivariant groups HCloc
∗ (A, B) become HCloc

∗ (A, A)-
HCloc

∗ (B, B)-bimodules. A bivariant local cyclic cohomology class is called a
HCloc-equivalence if the corresponding morphism of complexes in the derived
ind-category is an isomorphism.

By its very definition, local cyclic cohomology satisfies the conditions mentioned
before. This is shown in the following two propositions.

Proposition 5.9. Consider the continuous periodic cyclic bicomplex as a func-
tor on the ind-category of nice Fréchet algebras with values in the derived ind-
category. Then this functor factors through the stable diffeotopy category of
ind-algebras.

Proof: The Cartan homotopy formula [Go], [CQ] shows that the functor ĈC∗

is invariant under diffeotopy. According to Cuntz [Cu2] continuous periodic
cyclic cohomology satisfies excision for extensions with bounded linear section.
In particular, a homomorphism f : A −→ B of Fréchet algebras induces a nat-
ural chain homotopy equivalence ĈC∗(Conef) −→ Cone(ĈC∗(f))[1]. Due to
the naturality of its homotopy inverse this result carries over to ind-Fréchet al-
gebras. This proves that the continuous periodic cyclic bicomplex ĈC∗ defines
a homological functor on the prestable diffeotopy category (2.3). It remains to
verify that this functor vanishes on weakly contractible ind-algebras which is
evident from the definition of the derived ind-category and the Cartan homo-
topy formula in periodic cyclic homology. 2

The proposition shows that theorem (4.3) applies to the functor ĈC∗. In

particular, the functor ĈC∗ ◦ T ◦ M∞ with values in the derived ind-category
possesses all the properties listed in theorem (4.2). It remains to identify it
with local cyclic cohomology.

Lemma 5.10. Let T be the universal infinitesimal deformation functor (1.23)
and let M∞ be the infinite matrix functor (4.1) on the ind-category of nice
Fréchet algebras. There is an isomorphism of functors

ĈC∗ ◦ T ◦ M∞
≃
−→ X∗ ◦ T ◦ M∞

≃
−→ X∗ ◦ T

with values in the homotopy category of ind-complexes. Here the transformation
on the right hand side is given by the contraction with the trace [Co1].
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Proof: We work in the homotopy category of ind-complexes. The universal
infinitesimal deformation of any ind-algebra is topologically quasifree, which
implies by [CQ1] that

ĈC∗ ◦ T ◦ M∞
≃
−→ X∗ ◦ T ◦ M∞

is an isomorphism of functors. By making use of excision in analytic cyclic
cohomology [Pu2], it suffices to verify that the contraction with the trace
τ∗ : X∗T (M∞A) −→ X∗T A is an isomorphism for unital A. In this case τ∗
factors as

X∗T (M∞A)
µ

−→ X∗T (M∞ lC) ⊗π X∗T A
τ⊗Id
−→ X∗T A

where the coproduct µ is an isomorphism by [Pu3]. It remains thus to ver-
ify that τ∗ : X∗T (M∞ lC) −→ X∗T lC ≃ lC is an isomorphism. It factorizes
again as X∗T (M∞ lC) −→ X∗(M∞ lC) −→ lC. The first map is an isomorphism
because M∞ lC is topologically quasifree [CQ], and the second map is an iso-
morphism by the Morita invariance of cyclic homology. The lemma is proved.

2

Corollary 5.11. The functor X∗ ◦ T : ind − alg −→ D from the ind-
category of nice Fréchet algebras to the derived ind-category (5.5) is invariant
under infinitesimal deformations, matrix stable, and factors through the stable
diffeotopy category in the sense of (4.1).

We are ready to list the basic properties of local cyclic (co)homology.

Theorem 5.12. (Homotopy Invariance)
Bivariant local cyclic cohomology is invariant under continuous homotopies,

i.e. for a nice ind-Fréchet algebra A any evaluation homomorphism

eval : C([0, 1], A) −→ A

defines a HCloc-equivalence

eval∗ ∈ HCloc
∗ (C([0, 1], A), A)

Proof: This follows from (5.11), (5.7) and (4.2). 2

Theorem 5.13. (Excision) [Pu2]
Every extension

0 −→ I −→ A −→ B −→ 0

of nice ind-Fréchet algebras, which admits a local linear section ([Pu2],(5.12)),
gives rise to natural long exact sequences

HCloc
∗ (−, I) −→ HCloc

∗ (−, A) −→ HCloc
∗ (−, B)

∂ ↑ ↓ ∂

HCloc
∗+1(−, B) ←− HCloc

∗+1(−, A) ←− HCloc
∗+1(−, I)
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and
HCloc

∗ (I, −) ←− HCloc
∗ (A, −) ←− HCloc

∗ (B, −)

∂ ↓ ↑ ∂

HCloc
∗+1(B, −) −→ HCloc

∗+1(A, −) −→ HCloc
∗+1(I, −)

of local cyclic cohomology groups.

This is [Pu2], (5.12).

Theorem 5.14. (Topological Morita Invariance)
Let A be a nice ind-Fréchet algebra and let B be an ind-C∗-algebra.

a) Let

i : A −→ Mn(A)

be a homomorphism which is given by exterior multiplication with a rank
one projector in Mn( lC). Then

i∗ ∈ HCloc
0 (A, Mn(A))

is a HCloc-equivalence.

b) Let J be a separable, symmetrically normed operator ideal and let

i′ : A −→ A⊗π J

be a homomorphism which is given by exterior multiplication with a rank
one projector in J . Then

i′∗ ∈ HCloc
0 (A, A⊗π J )

is a HCloc-equivalence.

c) Let K be the C∗-algebra of compact operators and let

i′′ : B −→ B ⊗C∗ K

be a homomorphism which is given by exterior multiplication with a rank
one projector in K. Then

i′′∗ ∈ HCloc
0 (B, B ⊗C∗ K)

is a HCloc-equivalence.

Proof: This follows from (5.11), (5.7) and (4.2). 2
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Theorem 5.15. (Invariance under passage to smooth subalgebras)
Let A be a smooth subalgebra (3.4) of a nice Fréchet algebra A. If the inclusion

i : A →֒ A

satisfies the conditions of (3.8) then

i∗ ∈ HCloc
0 (A, A)

is a HCloc-equivalence. This is in particular the case if A possesses the
Grothendieck approximation property. A similar assertion holds for the in-
clusion of I-diagrams of smooth subalgebras satisfying the conditions of (3.8).

Proof: This follows from (5.7), (5.11), and (4.2). 2

In particular the algebra inclusions mentioned in (3.10) up to (3.14) induce
HCloc-equivalences.
According to [Pu3], there exists a natural exterior product on bivariant pe-
riodic, entire, analytic, and asymptotic cyclic cohomology. There is also a
corresponding product in local cyclic cohomology.

Theorem 5.16. (Exterior products)
There exists a natural and associative exterior product

× : HCloc
∗ (A, C) ⊗ HCloc

∗ (B, D) −→ HCloc
∗ (A⊗π B, C ⊗π D)

on bivariant local cyclic cohomology of unital ind-algebras. The exterior prod-
uct is compatible with the composition product in the sense that local cyclic
cohomology classes α, β, α′, β′ satisfy

(α ◦ β) × (α′ ◦ β′) = (α × α′) ◦ (β × β′)

whenever these expressions are defined.

Proof: According to [Pu3] there exist natural continuous chain maps

µ : XT (A⊗π B) −→ X(T A) ⊗π X(T B)

and
ν : X(T A) ⊗π X(T B) −→ XT (A⊗π B)

which are naturally chain homotopy inverse to each other. On the level of chain
maps of ind-complexes the exterior product is defined as

α × β := νA′,B′ ◦ (α ⊗π β) ◦ µA,B

The induced map on homology gives rise to the exterior product on analytic
cyclic (co)homology. Its compatibility with the composition product follows
immediately from the fact that the chain maps µ and ν are chain homotopy
inverse to each other. Let ϕ : X(T A) −→ X(T B) be a chain map with weakly
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contractible mapping cone and let C be a nice unital ind-Fréchet algebra. The
mapping cone of ϕ× IdC : X(T (A⊗π C)) −→ X(T (B⊗π C)) is then chain ho-
motopy equivalent to the weakly contractible ind-complex Cone(ϕ)⊗π X(T C)
and therefore weakly contractible itself. It follows that the transformation ×
descends to an exterior product on local cyclic (co)homology. 2

Proposition 5.17. (Chern character) [Co1]
The Chern character map of [Co1], [CQ1], defines a natural transformation

ch : K∗ −→ HCloc
∗

from topological K-theory to local cyclic homology.

Proof: This follows from [Co2] and [CQ1]. 2

Theorem 5.18. (Bivariant Chern-Connes character) [Pu2]

a) There exists a natural transformation of bifunctors on the category of
separable C∗-algebras

chbiv : KK∗(−,−) −→ HCloc
∗ (−,−)

from Kasparov’s bivariant KK-theory to bivariant local cyclic cohomology
called the bivariant Chern-Connes character.

b) It is uniquely characterized by the following two properties:

– If f : A → B is a homomorphism of C∗-algebras with associated
class [f ] ∈ KK0(A,B), then

chbiv([f ]) = f∗

– If ǫ : 0 → I → A → B → 0 is an extension of C∗-algebras with
completely positive section and associated class [ǫ] ∈ KK1(B, I),
and if [δ] ∈ HP 1(B, I) denotes the boundary map in local cyclic
homology then

chbiv([ǫ]) = [δ]

c) The bivariant Chern-Connes character is multiplicative up to a period
factor 2πi.
For any separable C∗-algebras A,B,C the diagram

KKj(A,B) ⊗ KKl(B,C)
◦

−→ KKj+l(A,C)

↓ chbiv ⊗ chbiv ↓ chbiv

HCj
lc(A,B) ⊗ HCl

lc(B,C) −→
1

(2πi)jl ◦
HCj+l

lc (A,C)
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commutes, where the upper horizontal map is the Kasparov product and
the lower horizontal map is given by 1

(2πi)jl times the composition product.

(See [Pu] for an explanation of the factor 2πi).

d) (Grothendieck-Riemann-Roch Theorem)

Let
ch′ := 1

(2πi)j ch : Kj −→ HCloc
j

be the normalized Chern character on K-theory, and let α ∈ KKl(A,B).
Then the diagram

Kj(A)
−⊗α
−→ Kj+l(B)

↓ ch′ ↓ ch′

HCloc
j (A) −→

−◦
1

(2πi)jl chbiv(α)
HCloc

j+l(B)

commutes.

e) Let 0 → I → A → B → 0 be an extension of separable C∗-algebras with
completely positive section. Then the bivariant Chern-Connes character
is compatible with long exact sequences, i.e. the diagrams

−→ KKj(−, B)
δ

−→ KKj−1(−, I) −→

↓ chbiv ↓ chbiv

−→ HCj
loc(−, B) −→

(2πi)jδ
HCj−1

loc (−, I) −→

and

←− KKj+1(B,−)
δ

←− KKj(I,−) ←−

↓ chbiv ↓ chbiv

←− HCj+1
loc (B,−) ←−

(2πi)jδ
HCj

loc(I,−) ←−

commute.

Proof: This is [Pu2], (6.3). 2

6 Calculation of local cyclic cohomology groups

The other issue that distinguishes local cyclic cohomology from most cyclic the-
ories is its computability in terms of homological algebra. Striking examples of
such calculations are given in [Pu4] and [Pu5]. No computational tools similar
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to the ones presented here are available for entire, analytic, or asymptotic cyclic
cohomology. Its nice functorial properties and its computability by homological
methods make local cyclic cohomology a rather accessible invariant for a large
class of algebras.

6.1 Calculation of morphism groups in the derived ind-category

The aim of this section is the construction of a natural spectral sequence which
calculates morphism groups in the derived ind-category. The strategy for ob-
taining such a spectral sequence is well known [Bo], and we just have to adapt
it to the setting of this paper. The idea behind it is subsumed in

Definition and Lemma 6.1. Let C be a triangulated category, let N be a
nullsystem in C and denote by C/N the corresponding quotient triangulated
category.

a) An object X ∈ ob C is called N-colocal if MorC(X,N) = 0, ∀N ∈ N.

b) Suppose that X is N-colocal. Then the canonical map

MorC(X,Y )
≃
−→ MorC/N(X,Y )

is an isomorphism for all Y ∈ ob C = ob C/N.

c) Let X ∈ ob C and suppose that there exists a morphism f : P (X) → X
from an N-colocal object P (X) to X such that Cone(f) ∈ N. Then

(f∗) : MorC/N(X,Y )
≃
−→ MorC(P (X), Y )

is an isomorphism for all Y ∈ ob C.

d) If the morphisms described in c) exist for every X ∈ ob C = ob C/N,
then

P : C/N −→ C, X −→ P (X)

becomes a functor which is left adjoint to the forgetful functor C −→ C/N.

In the sequel this lemma will be applied to the nullsystem of weakly contractible
ind-complexes in the triangulated homotopy category of ind-complexes over an
additive category.

Example 6.2. Let A be a fixed additive category and let C be the category
of ZZ/2ZZ-graded ind-complexes over A. The associated homotopy category is
denoted by Ho and its derived ind-category by D. Let finally N be the nullsystem
of weakly contractible ind-complexes in Ho. Then

• Every constant ind-complex (i.e. every ordinary chain complex over A)
is N-colocal.
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• The direct limit (in C) of N-colocal ind-complexes is not necessarily
N-colocal.

In fact, if limits of colocal ind-complexes were colocal, then all ind-complexes
would be colocal as they are limits of constant ind-complexes. In particular,
weakly contractible ind-complexes would be genuinely contractible, which is
not the case.
We will construct now a canonical colocal model for the direct limit of a fam-
ily of colocal ind-complexes. It will serve for calculations in the derived ind-
category.
The notations of the previous example will be used throughout this section.

Definition 6.3. Let C = (Ci)i∈I be a directed family of ZZ/2ZZ-graded ind-
complexes

Ci := “ lim
−→

Ji

” Cji
∗

over an additive category A. (In other words C is an ind-object over C.)

Let F be the set of triples (I ′, ϕ, f) such that

1) I ′ is a finite directed subset of I.

2) ϕ : I ′ →
∐

i∈I′

Ji is a map such that ϕ(i) ∈ Ji for all i ∈ I ′.

3) f is a collection of morphisms fii′ : C
ϕ(i)
∗ −→ C

ϕ(i′)
∗ , i < i′ ∈ I ′

representing the structure maps Ci → Ci′ and such that
fi′i′′ ◦ fii′ = fii′′ for i < i′ < i′′ ∈ I ′.

The set F is partially ordered by putting (I ′, ϕ, f) ≤ (I ′′, ϕ′, f ′) iff

1) I ′ ⊂ I ′′

2) ϕ(i) ≤ ϕ′(i) for all i ∈ I ′

3) For all i < i′ ∈ I ′ the diagram
C

ϕ′(i)
∗

f ′

ii′−→ C
ϕ′(i′)
∗

↑ ↑

C
ϕ(i)
∗

fii′−→ Cϕ(i′)

commutes,

where the vertical arrows are given by the structure maps of the
ind-objects Ci and Ci′ , respectively. With this order F becomes in
fact a directed set.

For (I ′, ϕ, f) ∈ F define a bicomplex P
(I′,ϕ,f)
∗∗ with underlying bigraded

object

P (I′,ϕ,f)
pq :=

⊕

i0>...>ip

i0,... ,ip∈I′

Cϕ(ip)
q , p ∈ lN, q ∈ ZZ/2ZZ,

and with differentials ∂′, ∂′′ given as follows:

∂′ :=

p∑

k=0

(−1)k ∂k : P (I′,ϕ,f)
pq −→ P

(I′,ϕ,f)
(p−1)q
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where the face maps ∂k, 0 ≤ k ≤ p, act on the indices (i0, . . . , ip) by
deleting the k-th element of the string and on the corresponding objects
by the identity if k < p respectively by the morphism
fipip−1

: Cq
ϕ(ip) → Cq

ϕ(ip−1) if k = p.

The second differential ∂′′ is given by

∂′′ : P
(I′,ϕ,f)
pq −→ P

(I′,ϕ,f)
p(q−1)

∂′′ := (−1)p · dq

where dq : Cq
ϕ(ip) → Cq−1

ϕ(ip) is the differential in the complex C
ϕ(ip)
∗ .

The total ZZ/2ZZ-graded chain complexes

P
(I′,ϕ,f)
∗ :=

(⊕

p

P
(I′,ϕ,f)
p,∗−p , d = ∂′ + ∂′′

)

form an ind-complex

P(C) := “ lim
−→

F

” P
(I′,ϕ,f)
∗

It is called the canonical resolution of C.

Lemma 6.4. Let I be a directed set. The canonical resolution (6.3) defines a
functor

P : CI −→ C

from the category of I-diagrams over C to C.

The canonical resolution provides a model for the direct limit of the family
C = (Ci)i∈I in the following sense:

Lemma 6.5. Let C = (Ci)i∈I be a directed system of ZZ/2ZZ-graded ind-
complexes over A, let Lim

−→
i∈I

Ci be its direct limit in the category of ind-complexes,

and let P(C) be its canonical resolution. There exists a canonical morphism

P(C) −→ Lim
−→
i∈I

Ci

of ind-complexes with weakly contractible mapping cone. If C −→ C′ is a mor-
phism of I-diagrams of ind-complexes, then the corresponding diagram

P(C) −→ Lim
−→
i∈I

Ci

↓ ↓
P(C′) −→ Lim

−→
i∈I

C
′
i

commutes.
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Proof: Consider the ind-complex

“ lim
−→

F

” E
(I′,ϕ,f)
∗ , E

(I′,ϕ,f)
∗ := C

ϕ(i′)
∗

where i′ is the largest element of the finite directed set I ′ (the transition mor-

phism E
(I′,ϕ,f)
∗ −→ E

(I′′,ϕ′,f ′)
∗ equals f ′

i′i′′). An easy verification shows that
this ind-complex is a direct limit of the family C = (Ci)i∈I :

“ lim
−→

F

” E
(I′,ϕ,f)
∗ ≃ Lim

−→
I

Ci

Let

π : P(C) = “ lim
−→

F

” P
(I′,ϕ,f)
∗ −→ “ lim

−→

F

” E
(I′,ϕ,f)
∗

be the morphism of ind-complexes which is given on the level of the individual
complexes Pα

∗ , α = (I ′, ϕ, f) ∈ F , as follows:

πα :
⊕

p

⊕

i0>...>ip

i0,... ,ip∈I′

C
ϕ(ip)
∗ −→ C

ϕ(i′)
∗

equals zero on direct summands corresponding to strings i0 > . . . > ip with

p > 0 and is otherwise given by fi0i′ : C
ϕ(i0)
∗ −→ C

ϕ(i′)
∗ .

The cone of this morphism equals Cone π ≃ “ lim
−→

F

” Cone πα. We are going to

show that Cone πα is contractible for each α ∈ F which implies that Cone π is
weakly contractible (it will not be genuinely contractible in general).
Let sα : Eα

∗ −→ Pα
∗ be the morphism of ZZ/2ZZ-graded objects of A which

identifies Eα
∗ = C

ϕ(i′)
∗ with the summand of Pα

∗ corresponding to the string
i0 = i′. Let furthermore χα : Pα

∗ −→ Pα
∗+1 be the operator which vanishes

on direct summands corresponding to strings i0 > . . . > ip with i0 = i′ and
identifies otherwise the direct summand corresponding to i0 > . . . > ip with
the direct summand corresponding to i′ > i0 > . . . > ip. The morphism

hα : (Cone πα)∗ = Pα
∗ [1] ⊕ Eα

∗ −→ Pα
∗+1[1] ⊕ Eα

∗+1 = (Cone πα)∗+1

hα :=

(
−χα ◦ (Id − sα ◦ πα) −χα ◦ (∂ ◦ sα − sα ◦ ∂) + sα

0 0

)

defines then a contracting homotopy of Cone πα. The naturality of the con-
struction with respect to morphisms of I-diagrams is obvious. 2

Lemma 6.6. Let C = (Ci)i∈I be a directed family of ZZ/2ZZ-graded ind-
complexes over A with canonical resolution P(C) and let C

′ be some other
ZZ/2ZZ-graded ind-complex over A. Let Q∗(C,C′) :=

∏
p

Qp,∗−p(C,C′) be the
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ZZ/2ZZ-graded total complex associated to the bicomplex of abelian groups

Qpq(C,C′) :=
∏

i0>...>ip
i0,... ,ip∈I

Homq
ind-A

(Cip
,C′), p ∈ lN, q ∈ ZZ/2ZZ,

where Homq
ind-A

(Cip
,C′) denotes the morphisms of degree q ∈ ZZ/2ZZ of the

graded ind-objects over A underlying the ind-complexes Cip
and C

′. The differ-
entials are given on the one hand by the simplicial differential ∂′ :=

∑
(−1)k∂k,

deleting the appropriate index from the indexing strings and acting in the
straightforward manner on the corresponding direct factor, and on the other
hand by the differential ∂′′(Φ) := Φ◦∂Cip

− (−1)|Φ|∂C′ ◦Φ of the Hom-complex
Hom∗

ind-A(Cip
,C′). Then there is a natural isomorphism

Mor∗Ho(P(C),C′) ≃ H∗(Q•(C,C′))

i.e. the graded group of morphisms from P(C) to C
′ in the homotopy category

of ind-complexes is given by the homology of Q∗(C,C′).

Proof: The graded group of morphisms between two objects C, C
′ of the

homotopy category Ho of ZZ/2ZZ-graded ind-complexes over A can be calculated
as the homology of the Hom-complex Hom∗

ind-A(C, C
′). Therefore one finds

Morn
Ho (P(C),C′)

= Hn(Hom∗
ind-A(P(C),C′) )

= Hn(lim
←−
F

lim
−→

J

Hom∗
A (C(I′,ϕ,f), C ′ j ) )

= Hn(lim
←−
F

lim
−→

J

Hom∗
A (

⊕

p

⊕

i0>...>ip

i0,... ,ip∈I′

Cϕ(ip) [−p], C ′ j ))

= Hn(lim
←−
F

lim
−→

J

∏

p

∏

i0>...>ip

i0,... ,ip∈I′

Hom∗
A (Cϕ(ip) [−p], C ′ j ) )

= Hn(lim
←−
F

∏

p

∏

i0>...>ip

i0,... ,ip∈I′

lim
−→

J

Hom∗
A (Cϕ(ip) [−p], C ′ j ))

because direct limits and finite products commute

= Hn(
∏

p

∏

i0>...>ip
i0,... ,ip∈I

lim
←−
Jip

lim
−→

J

Hom∗
A (C(jip ) [−p], C ′ j ) )

= Hn(
∏

p

∏

i0>...>ip
i0,... ,ip∈I

Hom∗
ind-A (Cip

[−p], C
′ ))
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= Hn(
∏

p

Qp,∗−p (C,C′) )

= Hn(Q∗ (C,C′) )

2

The following result justifies the introduction of the canonical resolution.

Proposition 6.7. Let N be the nullsystem of weakly contractible ind-complexes
in the homotopy category Ho of ZZ/2ZZ-graded ind-complexes over A. If
C = (Ci)i∈I is a directed family of N-colocal ind-complexes, then its canon-
ical resolution P(C) is N-colocal as well.

Proof: Let C
′ be a weakly contractible ZZ/2ZZ-graded ind-complex. According

to lemma (6.6)

Mor∗Ho (P(C), C
′) ≃ H∗(Q•(C, C

′) )

The weak contractibility of C
′ implies that the columns of the bicomplex

Q∗∗(C, C
′) are acyclic. In fact their homology equals

∏

i0>...>ip
i0,... ,ip∈I

Morq
Ho

(Cip
,C′) = 0

The total complex Q∗(C, C
′) is then acyclic as well which proves the claim. 2

The following theorem provides the basis for most calculations in the derived
ind-category.

Theorem 6.8. Let C = (Ci)i∈I be a directed family of ZZ/2ZZ-graded ind-
complexes over A. Suppose that the ind-complexes (Ci)i∈I are colocal with
respect to the nullsystem of weakly contractible ind-complexes and let C

′ be
some ind-complex.

a) There exists a spectral sequence (Epq
r , dr ) with E2-term

Epq
2 = Rp lim

←−
i∈I

Morq
Ho

(Ci, C
′ )

which is natural in C ∈ CI and C
′
∗ ∈ Ho. Here Rp lim

←−
i∈I

denotes the p-th

right derived functor of the inverse limit functor lim
←−
i∈I

.

b) Suppose that the higher derived limits Rp lim
←−
i∈I

vanish for p >> 0. Then

the spectral sequence converges to

Epq
∞ = Grp Morp+q

D
(Lim

−→
i∈I

Ci, C
′ )
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c) Suppose that the directed set I is countable. Then the spectral sequence
collapses and gives rise to a natural short exact sequence

0 → lim
←−
i∈I

1 Morn−1
Ho

(Ci, C
′ ) → Morn

D (Lim
−→
i∈I

Ci, C
′ ) →

→ lim
←−
i∈I

Morn
Ho (Ci, C

′ ) → 0

Proof: Consider the chain complex Q∗ (C,C′) introduced in (6.6). We calcu-
late its homology in two different ways. By lemma (6.6)

H∗(Q•(C,C′)) ≃ Mor∗Ho(P(C),C′)

As the ind-complexes Ci, i ∈ I, are N -colocal by assumption, the ind-complex
P(C) itself is N -colocal by proposition (6.7). Therefore lemma (6.1) applies
and shows that the canonical map

Mor∗Ho(P(C),C′)
≃
−→ Mor∗D(P(C),C′)

is an isomorphism. By lemma (6.5) the canonical morphism

π : P(C) −→ Lim
−→
i∈I

Ci

defines an isomorphism in the derived ind-category D so that one obtains

Mor∗D(P(C),C′)
≃
←− Mor∗D(Lim

−→
i∈I

Ci,C
′)

This shows finally that

H∗(Q•(C,C′)) ≃ Mor∗D(Lim
−→
i∈I

Ci, C
′ )

We now exhibit a natural filtration of the complex Q∗(C,C′) and calculate its
homology by the associated spectral sequence.
The bicomplex Q∗∗ ( C, C

′ ) possesses a natural descending filtration with asso-
ciated graded modules given by the columns Qp∗, p ≥ 0. We take (Epq

r , dr ) to
be the spectral sequence associated to the corresponding filtration of the total
complex Q∗ ( C,C′ ). For the E1-term one obtains

Epq
1 = Hq(Qp∗ ( C, C

′ ), ∂′′ )

= Hq (
∏

i0>...>ip
i0,... ,ip∈I

Hom∗
ind-A(Cip

, C
′) )

=
∏

i0>...>ip
i0,... ,ip∈I

Morq
Ho

(Cip
, C

′ )
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For the E2-term one finds

Epq
2 = Hp (

∏

i0>...>i∗
i0,... ,i∗∈I

Morq
Ho

(Ci∗ , C
′ ), ∂′ )

This latter complex equals the standard complex calculating the higher inverse
limits of the system

Morq
Ho

(Ci, C
′ ), i ∈ I

so that one obtains finally

Epq
2 = Rp lim

←−
i∈I

Morq
Ho

(Ci, C
′ )

b) The vanishing of the higher inverse limits Rp lim
←−
i∈I

for p >> 0 implies that the

projective system H∗(Q ( C,C′ )/F ilkQ ( C,C′ )), k ∈ lN, satisfies the Mittag-
Leffler condition. In particular

H∗(Q ( C,C′ ))
≃
−→ lim

←−
k

H∗(Q ( C,C′ )/F ilk ( C,C′ ) )

i.e. the spectral sequence converges.
c) Is an immediate consequence of a) and b) and the fact that for countable I
the higher inverse limits Rp lim

←−
i∈I

vanish in degree p > 1. 2

In all applications we will deal exclusively with countable ind-complexes and
therefore will only make use of part c) of the theorem.
Remark: In [Pu1] I erroneously claimed that the spectral sequence above
converges in general. In fact there is no reason why that should be the case. I
thank Ralf Meyer for pointing this out to me. However, in all situations where
the spectral sequence can be calculated, the condition of b) is automatically
satisfied so that no convergence problem arises.
The following consequences of the previous theorem will be particularly useful.

Theorem 6.9. Let C = “ lim
−→

i∈I

”Ci, C
′ = “ lim

−→

j∈J

”C ′
j be ZZ/2ZZ-graded ind-

complexes over A. Suppose that I is countable. Then there exists a short exact
sequence

0 → lim
←−
i∈I

1 lim
−→
j∈J

Morn−1
Ho

(Ci, C ′
j ) → Morn

D (C, C
′ ) →

→ lim
←−
i∈I

lim
−→
j∈J

Morn
Ho (Ci, C ′

j ) → 0

where Ho denotes the homotopy category of ZZ/2ZZ-graded chain complexes and
D denotes the derived ind-category over A.
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Proof: Identify each chain complex Ci, i ∈ I, with the associated constant
ind-complex Ci, which is N-colocal (6.2). The direct limit of the corresponding
family of constant ind-complexes equals

Lim
−→
i∈I

Ci ≃ C

Theorem (6.8) therefore applies and yields the assertion as there are natural
isomorphisms

Morn
Ho (Ci, C

′ ) ≃ Hn(Hom∗
ind-A(Ci, C

′ ) ) = Hn(lim
−→
j∈J

Hom∗
A(Ci, C ′

j ) )

≃ lim
−→
j∈J

Hn(Hom∗
A(Ci, C ′

j ) ) ≃ lim
−→
j∈J

Morn
Ho (Ci, C ′

j )

2

By a similar reasoning we obtain

Theorem 6.10. Let C = “ lim
−→

i∈I

”Ci be a ZZ/2ZZ-graded ind-complex and let

(C′
j), j ∈ J, be a directed family of ZZ/2ZZ-graded ind-complexes over A. Sup-

pose that I is countable. Then there exists a short exact sequence

0 → lim
←−
i∈I

1 lim
−→
j∈J

Morn−1
Ho

(Ci, C
′
j ) → Morn

D (C, Lim
−→
j∈J

C
′
j ) →

→ lim
←−
i∈I

lim
−→
j∈J

Morn
Ho (Ci, C

′
j ) → 0

where Ho denotes the homotopy category of ZZ/2ZZ-graded ind-complexes and
D denotes the derived ind-category over A.

Whereas the previous result is needed for computations, the following one al-
lows to treat direct limits.

Theorem 6.11. Let C = (Ci)i∈I be a directed family of ZZ/2ZZ-graded ind-
complexes and let C

′ be a ZZ/2ZZ-graded ind-complex over A. Suppose that I is
countable. Then there exists a short exact sequence

0 → lim
←−
i∈I

1 Morn−1
D

(Ci, C
′ ) → Morn

D (Lim
−→
i∈I

Ci, C
′ ) →

→ lim
←−
i∈I

Morn
D (Ci, C

′ ) → 0

For the proof of the theorem we need

Lemma 6.12. Every countable chain C0 → C1 → . . . of ind-objects

Ci = “ lim
−→

Ji

”C
(i)
ji

is isomorphic to a chain C′
0 → C′

1 → . . . of ind-objects with
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one and the same index set (equal to J) and morphisms C′
n → C′

n+1 given by

families C ′(n)
j → C ′(n+1)

j , j ∈ J, such that the diagrams

C ′(n)
j′ → C ′(n+1)

j′

↑ ↑

C ′(n)
j → C ′(n+1)

j

commute for all j < j′ ∈ J .

Proof: Let J be the set of sequences (fk : C
(k)
jk

→ C
(k+1)
jk+1

)k∈lN of composable

morphisms such that fk is representing the restriction of Ck → Ck+1 to C
(k)
jk

.
The set J is partially ordered (and directed) in an obvious way. Define ind-

objects C′
k, k ∈ lN, with index set J , by putting C′

k := “ lim
−→

J

” C
(k)
jk

and define

morphisms C′
n → C′

n+1, n ∈ lN, of ind-objects by the family (πn(α)), α ∈ J,

given by the n-th element πn(α) = fn : C
(n)
jn

→ C
(n+1)
jn+1

of the sequence α.
There is a straightforward morphism of infinite chains of ind-objects from
(C′

0 → C′
1 → . . . ) to (C0 → C1 → . . . ), which is easily seen to be an iso-

morphism. 2

Proof of theorem (6.11):

Let C = (Ci)i∈I be a directed family of ZZ/2ZZ-graded ind-complexes, labeled by
the countable index set I. After passage to a cofinal subset, which does not af-
fect the statement of the theorem, we may assume that I = lN. By the previous
lemma, we may further assume that C is given by a countable directed family of
J-diagrams of complexes for some large directed set J . The canonical resolution
of an ind-complex (6.3) is functorial on diagrams of complexes (6.4), so that
we obtain a countable directed family P(Ci) of ZZ/2ZZ-graded ind-complexes.
Each of these ind-complexes is colocal with respect to the nullsystem of weakly
contractible ind-complexes (6.7). Theorem (6.8) applies therefore and yields
for any ZZ/2ZZ-graded ind-complex C

′ a short exact sequence

0 → lim
←−
i∈I

1 Morn−1
Ho

(P(Ci), C
′ ) → Morn

D (Lim
−→
i∈I

P(Ci), C
′ ) →

→ lim
←−
i∈I

Morn
Ho (P(Ci), C

′ ) → 0

The canonical projections πi : P(Ci) → Ci are natural in the sense that they
give rise to a morphism of directed families (6.5). The cone of the induced mor-
phism π : Lim

−→
i∈I

P(Ci) −→ Lim
−→
i∈I

Ci of direct limits equals the direct limit of the

cones of the morphisms πi. Because these cones are weakly contractible (6.5),
the same holds for the cone of the morphism π. This morphism is therefore an
isomorphism in the derived ind-category. As the groups Morn

Ho (P(Ci), C
′ )

equal Morn
D (Ci, C

′ ) by (6.7) and (6.1), the short exact sequence finally takes
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the form

0 → lim
←−
i∈I

1 Morn−1
D

(Ci, C
′ ) → Morn

D (Lim
−→
i∈I

Ci, C
′ ) →

→ lim
←−
i∈I

Morn
D (Ci, C

′ ) → 0

2

6.2 Applications to local cyclic cohomology

The following results provide the basic tools for explicit calculations of local
cyclic cohomology groups.

Theorem 6.13. (Approximation Theorem)
Let A be a nice separable Fréchet algebra which possesses the Grothendieck

approximation property and let U be a convex open unit ball of A.
Let V0 ⊂ . . . ⊂ Vn ⊂ . . . be an increasing sequence of finite dimen-

sional subspaces of A such that
∞⋃

n=0
Vn is a dense subalgebra of A, and let

(λn)n∈lN, (rn)n∈lN, be monotone decreasing sequences of positive real numbers
such that lim

n→∞
λn = 1, lim

n→∞
rn = 0. Denote by An the Banach algebra obtained

by completion of the subalgebra A generated by Vn with respect to the largest
submultiplicative seminorm satisfying ‖ λnVn ∩ U ‖≤ 1. Let (TA)r, respec-
tively HC∗

ǫ,r, be the completions of the tensor algebra, respectively the cyclic
bicomplex, introduced in (1.22), respectively in the section about entire cyclic
cohomology.
Then there exists a natural isomorphism

lim
n→∞

HCǫ
∗(An)

≃
−→ HCloc

∗ (A)

of homology groups and a natural exact sequence

0 −→ lim
←−

n

1 HC∗−1
ǫ,rn

(An) −→ HC∗
loc(A) −→ lim

←−
n

HC∗
ǫ,rn

(An) −→ 0

or
0 −→ lim

←−
n

1 H∗−1(X((TAn)rn)) −→ HC∗
loc(A) −→

−→ lim
←−

n

H∗(X((TAn)rn)) −→ 0

of cohomology groups. Thus the local cyclic (co)homology groups of a nice
Fréchet algebra A with approximation property can be expressed in terms
of suitable cyclic (co)homology groups of the approximating Banach algebras
An, n ∈ lN. A similar statement holds if the modified entire cyclic complexes
of the approximating algebras are replaced by the corresponding analytic cyclic
complexes.
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Corollary 6.14. Let A be a Banach algebra which possesses the Grothendieck
approximation property. Let S ⊂ A be a finite set which generates a dense
subalgebra A′ of A and let for λ > 1 be Aλ the completion of A′ with respect to
the largest submultiplicative seminorm satisfying ‖ S ‖≤ λ. Then there exists
a natural isomorphism

lim
λ→1

HCǫ
∗(Aλ)

≃
−→ HCloc

∗ (A)

of homology groups and a natural exact sequence

0 −→ lim
←−
λ, r

1 HC∗−1
ǫ,r (Aλ) −→ HC∗

loc(A) −→ lim
←−
λ, r

HC∗
ǫ,r(Aλ) −→ 0

or
0 −→ lim

←−
λ, r

1 H∗−1(X((TAλ)r)) −→ HC∗
loc(A) −→

−→ lim
←−
λ, r

H∗(X((TAλ)r)) −→ 0

of cohomology groups.

Remark 6.15. It should be noted that although entire and analytic cyclic co-
homology groups are usually very difficult to compute, a direct or inverse limit
of such groups can be quite accessible to calculation.

Proof: By the approximation theorem for ind-algebras (3.2) there are isomor-
phisms

“ lim
−→
n

” (TAn)rn
≃
−→ Lim

−→
n

T ′(An)
≃
−→ T ′B(A) = T (A)

in the stable diffeotopy category. Passing to continuous cyclic bicomplexes and
noting that the ind-algebra “ lim

−→
n

” (TAn)rn is strictly topologically quasifree,

one obtains an isomorphism

“ lim
−→
n

” X∗((TAn)rn)
≃
−→ X∗(T A)

in the derived ind-category. As the ind-complex X∗(T ( lC)) is chain homotopy
equivalent to the constant ind-complex lC, which is N -colocal by (6.2), the

first assertion follows from the identity lim
−→

H∗(Ci)
≃
−→ Mor∗D( lC, ”lim

−→
”Ci).

The second assertion is a consequence of (6.9). The equivalence of the two
exact sequences follows from the comparison of the Connes and Cuntz-Quillen
approach to cyclic homology [CQ1], [Pu] (5.27). 2

Theorem 6.16. (Limit Theorem)
Let “ lim

−→

λ∈Λ

”Aλ be a countable directed family of nice Fréchet algebras and let

f = lim
←

fλ : “ lim
−→

λ∈Λ

”Aλ −→ A
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be a homomorphism to a nice Fréchet algebra A. Suppose that the following
conditions hold:

• A is separable and possesses the Grothendieck approximation property.

• The image Im(f) := lim
−→
λ∈Λ

fλ(Aλ) is dense in A.

• There exist seminorms ‖ − ‖λ on Aλ, λ ∈ Λ, respectively ‖ − ‖ on A,
and a constant C such that

i) The set of elements of length less than 1 with respect to the seminorm
is an open unit ball for Aλ, λ ∈ Λ, respectively A.

ii)
lim
−→
λ∈Λ

‖ aλ ‖λ ≤ C ‖ f(a) ‖

for all
a = lim

−→
λ∈Λ

aλ ∈ lim
−→
λ∈Λ

Aλ

Then there exists a natural isomorphism

lim
−→
λ∈Λ

HCloc
∗ (Aλ)

≃
−→ HCloc

∗ (A)

of local cyclic homology groups and for any nice ind-Fréchet algebra B a natural
exact sequence

0 −→ lim
←−
λ∈Λ

1 HCloc
∗−1(Aλ, B) −→ HCloc

∗ (A, B) −→

−→ lim
←−
λ∈Λ

HCloc
∗ (Aλ, B) −→ 0

of bivariant local cyclic cohomology groups.

Proof: This follows from the limit theorem for ind-algebras (3.15), theorem
(6.11), and the remark about the colocality of X∗(T lC) made in the proof of
the previous theorem. 2

7 Relations between cyclic cohomology theories

The various cyclic cohomology theories are related by a number of natural
transformations. These fall into two groups: transformations of functors of one
variable, i.e. of homology or cohomology, and transformations of bifunctors.
All transformations preserve exterior products and in the bivariant case they
preserve composition products as well. We will also comment on comparison
results for the various cyclic theories.
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For an ind-Banach algebra R the identity of its tensor algebra induces a natural
bounded homomorphism T ′R −→ T̂R of completed tensor algebras and thus a
natural transformation T ′ −→ T̂ of functors. Recall the functor B associating
to a nice ind-Fréchet algebra the diagram of associated compactly generated
Banach algebras and the transformation B → ι to the identity functor (1.5).
Using these one obtains natural transformations

T = T ′ ◦ B −→ T ′ ◦ ι = T ′ −→ T̂

for ind-Banach algebras and

T = T ′ ◦ B −→ T̂ ◦ B −→ T̂

for nice ind-Fréchet algebras. Passing to X-complexes and taking (co)homology
groups we end up with the following

Proposition 7.1. There exist canonical natural transformations

HCan
∗ (−) −→ HCǫ

∗(−) −→ HP∗(−)

of cyclic homology theories for (ind-)Banach algebras, respectively

HCan
∗ (−) −→ HP∗(−)

of cyclic homology theories for nice (ind-)Fréchet algebras. All these trans-
formations are compatible with exterior products and with the Chern-character
from topological K-theory.

Proposition 7.2. There exist canonical natural transformations

HP ∗(−) −→ HC∗
ǫ (−) −→ HC∗

an(−)

of cyclic cohomology theories for (ind-)Banach algebras, respectively

HP ∗(−) −→ HC∗
an(−)

of cyclic cohomology theories for nice (ind-)Fréchet algebras. All these trans-
formations are compatible with exterior products.

There exist various Chern characters in K-homology [Co], which are defined
for suitable classes of Fredholm modules and take values in the different cyclic
cohomology theories. A detailed study of the relations between these characters
will be the content of another paper.
The compatibility of the transformations with exterior products is clear because
these are induced by explicit natural chain maps of cyclic complexes which are
continuous with respect to all relevant topologies.
It arises the question to what extent these transformations are equivalences.
The comparison problem turns out to be simpler for cohomology than for ho-
mology. In [Me1] Meyer obtains a number of results concerning this problem.
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He presents examples of nice Fréchet algebras for which analytic and continu-
ous periodic cyclic homology are different. The simplest example he provides is
given by the algebra S(ZZ) of sequences of rapid decay. One should also expect
that there exist Banach algebras for which analytic, entire, and continuous pe-
riodic cyclic homology are different from each other. However no such examples
have been exhibited so far. In Meyer’s example the continuous periodic and
analytic cohomology groups are different as well.

In [Me] Meyer constructs a Chern character for arbitrary Fredholm modules
with values in analytic cyclic cohomology. The character is compatible with
the index pairing. This allows to exhibit nontrivial analytic cyclic cocycles for
large classes of Banach and even C∗-algebras. However there seem to be no
methods to determine the corresponding cohomology groups. On the one hand
the foregoing discussion shows in particular that HC∗

an(K(H)) does not vanish.
On the other hand the results of Haagerup [Ha] and Khalkhali [Kh] imply that
the entire cyclic cohomology groups of a nuclear C∗-algebra are isomorphic to
the space of continuous traces on that algebra. Therefore HC∗

ǫ (K(H)) vanishes.
Thus the natural transformation HC∗

an −→ HC∗
ǫ from analytic to entire cyclic

cohomology cannot be an equivalence.

We come now to the transformations relating bivariant cyclic theories.

Proposition 7.3. There exist canonical natural transformations

HCan
∗ (−,−) −→ HCα

∗ (−,−) −→ HCloc
∗ (−,−)

of bivariant cyclic cohomology theories of nice (ind-)Fréchet algebras. All these
transformations are compatible with composition and exterior products.

Proof: Let Ho −→ D be the canonical functor from the homotopy category
of ind-complexes to the derived ind-category. It induces a natural map

MorHo(X∗T (−),X∗T (−)) −→ MorD(X∗T (−),X∗T (−))

of morphism groups which defines the desired transformation from bivariant
analytic to bivariant local cyclic cohomology. The compatibility with composi-
tion products follows from the compatibility of functors with the composition
of morphisms and the compatibility with exterior products is a consequence of
the construction of the product in local cyclic cohomology. A bit more work is
needed to construct the desired transformations of asymptotic cyclic cohomol-
ogy. Let DG-Ho be the homotopy category of ind-complexes of DG-modules
and let DG-D be the localization of this homotopy category with respect to the
null system given by weakly contractible ind-complexes of DG-modules. Let

MorHo(X∗(T A), X∗(T B)) −→ MorDG-Ho(X∗(ΩT A), E(U , X∗(T B)))

be the transformation which extends a given morphism of ind-complexes ϕ to
the morphism of DG-ind-complexes that equals ϕ⊗1 in degree zero and vanishes
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in positive degrees. By [Pu], (4.14), the canonical projection of X∗(ΩT B) onto
its degree zero subspace induces a natural isomorphism

MorDG-Ho(X∗(ΩT A), E(U , X∗(ΩT B)))

↓≃

MorDG-Ho(X∗(ΩT A), E(U , X∗(T B)))

By composition one obtains a natural transformation

MorHo(X∗T (−), X∗T (−)) −→ MorDG-Ho(X∗(ΩT (−)), E(U , X∗(ΩT (−))))

from bivariant analytic to bivariant asymptotic cyclic cohomology.

The fact that the ordered family of neighborhoods of ∞ in lRn
+ contains a

cofinal family of convex open sets, the Cartan homotopy formula [Pu], (4.11),
(4.12) for the asymptotic parameter space, and the isomorphism criterion (2.9)
imply that

Id ⊗ 1 : X∗(ΩT (−)) −→ E(U , X∗(ΩT (−)))

is an isomorphism in DG-D. Then the canonical functor DG-Ho −→ DG-D
induces a natural map

HCα
∗ (A,B) = MorDG-Ho(X∗(ΩT A), E(U , X∗(ΩT B)))

−→ MorDG-D(X∗(ΩT A), E(U , X∗(ΩT B)))

≃ MorDG-D(X∗(ΩT A),X∗(ΩT B)) ≃ MorDG-D(X∗(T A),X∗(T B))

by [Pu], (6.9) and (4.14)

≃ MorD(X∗(T A),X∗(T B)) = HCloc
∗ (A,B)

It is obvious that this map defines a natural transformation. The composi-
tion HCan

∗ −→ HCα
∗ −→ HCloc

∗ clearly coincides with the transformation
described at the beginning of the proof. 2

Corollary 7.4. (Functoriality under linear asymptotic morphisms)
Let ft : A −→ B, t > 0, be a linear asymptotic morphism of nice Fréchet-

algebras [CH]. Then f induces a natural element f∗ ∈ HCloc
0 (A,B) depending

only on the continuous homotopy class of f . Moreover (g ◦ f)∗ = g∗ ◦ f∗ under
the composition product. Consequently local cyclic cohomology of nice Fréchet-
algebras is functorial under linear asymptotic morphisms.

Proof: This follows from the corresponding statement for asymptotic cyclic
cohomology [Pu], (6.11), by applying the natural transformation to bivariant
local cyclic cohomology. 2
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Lemma 7.5. In all the previously mentioned cyclic theories there exist canonical
natural equivalences

H∗(−)
≃
−→ H∗( lC,−)

and

H∗(−)
≃
−→ H∗(−, lC)

between homology resp. cohomology groups and suitable bivariant cohomology
groups. These are compatible with exterior products and with the natural trans-
formations between the various cyclic theories.

Proof: This follows from the fact that the canonical chain map

lC = X∗( lC) −→ X∗(T lC), 1 → ch(e)

is an isomorphism in the homotopy category of ind-complexes [CQ1]. 2

In particular, one obtains from (7.3) canonical natural transformations

HCan
∗ (−) −→ HCα

∗ (−) −→ HCloc
∗ (−)

in homology and

HC∗
an(−) −→ HC∗

α(−) −→ HC∗
loc(−)

in cohomology.
Concerning the transformations of homology groups one finds

Proposition 7.6. The canonical natural transformations

HCan
∗ (−)

≃
−→ HCα

∗ (−) and HCα
∗ (−)

≃
−→ HCloc

∗ (−)

are natural equivalences.

Proof: The first assertion is shown in [Pu], (6.9). The ind-complex X∗(T lC)
is isomorphic to the constant ind-complex lC ([CQ1]) and thus N-colocal (6.2).

Therefore HCan
∗ (−)

≃
−→ HCloc

∗ (−) is an isomorphism by (6.1) which implies
the second assertion. 2

Not much is known about the comparison between bivariant analytic and bi-
variant asymptotic or local cyclic cohomology. The basic unsolved question is
whether analytic cyclic cohomology is invariant under continuous homotopies
[Me] as it is the case for the asymptotic and local theories.
Finally a remark about the comparison between bivariant asymptotic and local
cyclic cohomology. The functorial properties of both theories are identical (with
the exception of the results depending on the approximation property). Recall
that local cyclic cohomology was obtained from the analytic cyclic theory by
turning it into a functor which factors through the stable diffeotopy category.
This latter was obtained by inverting morphisms of ind-algebras with weakly
contractible mapping cone. Asymptotic cyclic cohomology can be interpreted
in a similar way. It is constructed by making analytic cyclic cohomology factor

Documenta Mathematica 8 (2003) 143–245



224 Michael Puschnigg

through the category of ind-algebras obtained by inverting morphisms with
weakly contractible mapping cone labeled by a countable index set. So there
is some reason to believe that both theories coincide for certain sufficiently
”small” algebras.
We finally summarize the natural transformations between the various cyclic
homology and cohomology theories in the diagrams

HP∗(−) ←− HCǫ
∗(−) ←− HCan

∗ (−)

HCan
∗ (−)

≃
−→ HCα

∗ (−)
≃
−→ HCloc

∗ (−)

and
HP ∗(−) −→ HC∗

ǫ (−) −→ HC∗
an(−)

HC∗
an(−) −→ HC∗

α(−) −→ HC∗
loc(−)

All transformations are compatible with exterior products and the transforma-
tions in homology are compatible with the Chern character from K-theory.

8 Examples

In this last section we give some simple but characteristic examples of explicit
calculations of local cyclic cohomology groups. They illustrate the abstract
computation scheme developed in section 6. Examples of a similar but more
involved nature can be found [Pu4] and [Pu5]. We finally apply local cyclic
cohomology to obtain a partial solution of a problem on n-traces formulated in
[Co3].
The general idea is to realize the local cyclic (co)homology HCloc(A) of a
given algebra A as a limit of the (co)homology groups HCloc(An) of a count-
able directed family (An), n ∈ lN, of approximating algebras of a simpler
type. Whereas it is usually not possible to compute these approximating
(co)homology groups, the transition maps in this directed family often turn
out to be amenable to study. And they are all one needs to determine the limit
one is interested in.
In the presence of the approximation property one can try to proceed as follows.
1) One looks for a dense subalgebra A of A with nice homological properties. By
this we mean for example that A is of finite Hochschild-homological dimension.
Consequently FilkHodge(ĈC∗(A) will be contractible for k >> 0. If one is lucky

the quotient complex ĈC(A)/F ilkHodge(ĈC∗(A) can be identified up to chain
homotopy equivalence with a complex with known homology.
2) One chooses an increasing family 0 ⊂ V1 ⊂ . . . ⊂ Vn ⊂ . . . of finite dimen-
sional subspaces of A such that

⋃
Vn is a dense subalgebra of A and constructs

the enveloping approximating Banach algebras (An), n ∈ lN, as in (3.15). By
the approximation theorem (6.13) the canonical morphism

“ lim
n→∞

” CCǫ
∗(An) ∼ “ lim

n→∞
” X∗(T An) −→ X∗(T A)
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is then an isomorphism in the derived ind-category. If one is very lucky the
vanishing result of step one carries over to the Banach completions An, n ∈ lN,
so that

“ lim
n→∞

” FilkHodgeCCǫ
∗(An)

becomes contractible for k >> 0.
3) If one is able to get a good hold of the Banach algebras An, n ∈ lN, con-
structed in step two, one can identify the formal inductive limit

“ lim
n→∞

” CCǫ
∗(An)/F ilkHodgeCCǫ

∗(An) ∼ X∗(T A)

(up to chain homotopy equivalence) with a well known small chain complex.
This is how we will proceed in our first example, the algebra of holomorphic
functions on an annulus, where all three steps can be carried out without any
difficulty. In the second example, the C∗-algebra of continuous functions on a
compact metrizable space, there is no really good choice for a dense subalgebra
of finite homological dimension. For special types of spaces like smooth mani-
folds or finite simplicial complexes there are many more or less natural choices
of dense smooth subalgebras. But none of these possess topologically projec-
tive resolutions which allow to carry out the second step above. For a compact
subset X ⊂ lRn the optimal choice seems to take the subalgebra of polynomial
functions in C(X) as dense subalgebra and to take the rings of bounded holo-
morphic functions on a sequence of smaller and smaller Grauert tubes around
X as approximating Banach algebras. But the lack of a nice contracting ho-
motopy of the acyclic Koszul complex on such a tube makes it impossible to
follow the strategy outlined above. We approximate instead a given compact
space by a sequence of smooth compact manifolds with boundary and use the
limit theorem (6.16) to reduce to the case of the algebra of smooth functions
on a manifold. The local cyclic cohomology of these algebras can be calculated
by the diffeotopy invariance and excision property of the theory.
In the third example we finally treat a noncommutative algebra, the reduced
group C∗-algebra C∗

r (Fn) of a finitely generated free group. In this case it is
easy to follow the first two steps outlined above, the dense subalgebra in ques-
tion being obviously the group ring. The third step however cannot be carried
out directly because one has no control of the approximating Banach algebras
constructed in step two. We calculate instead the local cyclic cohomology of
a smooth dense Banach subalgebra A(Fn) of C∗

r (Fn), introduced by Haagerup
[Ha1], which can be done by the strategy outlined above. We refer then to the
smooth subalgebra theorem (3.8) to deduce the corresponding result for the
group C∗-algebra.
We want to make a remark on the possibility of using the outlined strategy
(and in particular the second step of it) in concrete calculations. Suppose that
a dense subalgebra A of finite homological dimension d of a Banach algebra A
is given. If d = 1, i.e. if A is quasifree [CQ], then “ lim

n→∞
” Fild+1

HodgeCCǫ
∗(An)

will be contractible for any approximating sequence An, n ∈ lN, as constructed
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above (8.8). We want to emphasize however that this is an exceptional phe-
nomenon and usually does not occur in homological dimension d > 1. Take for
example A = ℓ1(Γ), the Banach convolution algebra of a finitely generated dis-
crete group Γ, and choose as dense subalgebra the group ring A = lC[Γ]. Then
the Hochschild homological dimension d of A equals the homological dimension
of the group Γ. The assertion that “ lim

n→∞
” Fild+1

HodgeCCǫ
∗(An) is contractible

for some d and some approximating sequence (An), n ∈ lN, implies however
that every cohomology class in H∗(Γ, lC) can be represented by group cocycles
which are of subexponential growth with respect to any word metric on Γ, and
this is rarely the case. A notable exception, where the described strategy in
fact works, is the class of hyperbolic and nonpositively curved groups [Pu4],
[Pu5].
It should be noted that in the presented examples the images of the approximat-
ing Banach algebras An, n ∈ lN, are not closed under holomorphic functional
calculus in the ambient Banach algebra A. Dense and holomorphically closed
subalgebras play a central role in K-theory but do not seem to be relevant in
questions related to cyclic cohomology.

8.1 Rings of holomorphic functions on an annulus

Let UR := {z ∈ lC, R−1 < |z| < R}, R > 1, be the R-annulus in the complex
plane. It is known that every domain in lC with infinite cyclic fundamental
group is biholomorphically equivalent to exactly one R-annulus. We consider
the algebra

O(U)R := O(U)R ∩ C(UR)

of holomorphic functions on the annulus which extend continuously to its
boundary. It is a unital Banach algebra with respect to the maximum norm.
We are going to determine the local cyclic cohomology of O(U)R. It is well
known that the Banach algebras O(UR), R > 1, possess the Grothendieck
approximation property and contain the ring of Laurent polynomials as a dense
subalgebra. The algebra O(UR) is a topological direct limit of the family
O(UR′), R′ > R, in the sense of (3.15). Therefore we deduce from the limit
theorem (6.16) that the canonical chain map

Lim
R′→R

X∗T (O(UR′)) −→ X∗T (O(UR))

is an isomorphism in the derived ind-category. One might have the impression
that nothing has been gained by this because a complex which is quite hard
to analyze has been replaced by a limit of similar complexes. It turns out
however that the transition maps in the above limit are quite accessible to
computation. So the limit Lim

R′→R
X∗T (O(UR′)) can be calculated although one

has essentially no information about the individual complexes in the underlying
directed family. Phenomena of this kind often arise in calculations of local cyclic
cohomology groups and show the importance of the approximation and limit
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theorems in explicit computations. In fact these theorems distinguish local
cyclic cohomology among the known cyclic theories.
In order to carry out the computation we need to recall the reduced tensor
algebra and reduced infinitesimal deformations. The reduced tensor algebra of
a unital algebra A is RA := T̃A/(1−ρ(1A)). The functor R(−) is characterized
as the left adjoint of the forgetful functor to the category of unital algebras
with unital linear maps as morphisms. The reduced universal infinitesimal
deformation RA := T̃ A/(1 − ρ(1A)) of a nice unital ind-Fréchet algebra A
is characterized similarly by an obvious universal property. The natural map
of X-complexes of universal deformations X∗(T A) −→ X∗(RA) is a chain
homotopy equivalence.

Lemma 8.1. Let A = lC[z, z−1] be the ring of Laurent polynomials and consider
the norms ‖

∑
n

anzn ‖r:=
∑
n
|an| · r|n|, r > 1. Let ‖ − ‖r

N,m be the largest

seminorm on the reduced tensor algebra RA satisfying

‖ ρ(zk0)ω(zk1 , zk2) · . . . · ω(zk2n−1 , zk2n) ‖r
N,m ≤ (2 + 2n)m · N−n · rk1+...+k2n

Let ϕ : A → RA be the algebra homomorphism which splits the canonical
projection
π : RA → A and is characterized by

ϕ(z) = ρ(z), ϕ(z−1) = ϕ(z)−1 = ρ(z−1)
∞∑

n=0
ω(z, z−1)n

Then for given r′ > r > 1 there exists N0 >> 0 and constants Cm,m ∈ lN,
such that

‖ ϕ(f) ‖r
N,m ≤ Cm· ‖ f ‖r′

for all f ∈ A and N ≥ N0.

Proof: The straightforward calculation based on the Bianchi-identity
ω(a, a′)ρ(a′′) = ω(a, a′a′′) − ω(aa′, a′′) + ρ(a)ω(a′, a′′) is left to the reader.
2

Lemma 8.2. Denote by R the reduced infinitesimal deformation functor. The
canonical projection

π : Lim
R′→R

R(O(UR′)) −→ “ lim
R′→R

” (O(UR′))

is a diffeotopy equivalence of ind-algebras. Consequently the projection

π∗ : Lim
R′→R

X∗T (O(UR′)) −→ “ lim
R′→R

”X∗(O(UR′))

is a chain homotopy equivalence of ind-complexes.

Proof: Denote by Ar the completion of the algebra A of Laurent polynomials
with respect to the norm ‖ − ‖r introduced in (8.1). It follows from Cauchy’s
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integral formula that the ind-algebra “ lim
R′→R

” (O(UR′)) is canonically isomor-

phic to “ lim
R′→R

” AR′ . By the estimates of the previous lemma the reduced

universal infinitesimal deformation π : Lim
R′→R

R(AR′) −→ “ lim
R′→R

” AR′ pos-

sesses a multiplicative section. Consequently the ind-algebras “ lim
R′→R

” AR′

and “ lim
R′→R

”O(UR′) are topologically quasifree. This implies the first asser-

tion and the second assertion follows from the Cartan homotopy formula for
the X-complexes of quasifree algebras [CQ1] and the fact that the canonical
morphism Lim

R′→R
X∗T (O(UR′)) −→ Lim

R′→R
X∗R(O(UR′)) is a chain homotopy

equivalence. 2

Proposition 8.3. Let O(UR), R > 1, be the Banach algebra of holomorphic
functions on the annulus

UR = {z ∈ lC, R−1 < |z| < R}

which extend continuously to its boundary. Then there is a canonical isomor-
phism

X∗T (O(UR))
≃
−→ lC

⊕
lC[1]

in the derived ind-category. For any pair of nice ind-Fréchet algebras (A, B)
there are canonical and natural isomorphisms

HCloc
∗ (O(UR) ⊗π A, B) ≃ HCloc

∗ (A, B) ⊕ HCloc
∗+1(A, B)

and
HCloc

∗ (A, O(UR) ⊗π B) ≃ HCloc
∗ (A, B) ⊕ HCloc

∗+1(A, B)

of bivariant local cyclic cohomology groups.

Proof: It is not easy to determine the precise structure of the complexes
X∗(O(UR)), R > 1. Using Cauchy’s integral formula and the fact that the
inclusion maps O(UR′) → O(UR′′) for R′ > R′′ > 1 are nuclear, one may
conclude at least that the identity map on the space of algebraic differential
forms over the ring of Laurent polynomials induces an isomorphism of ind-
complexes

“ lim
R′→R

” X∗(O(UR′))
≃
−→ “ lim

R′→R
” Ω∗

dR(O(UR′))

where Ω∗
dR(O(UR′)) denotes the analytic de Rham complex on the open annulus

O(UR′). It is obvious from de Rham theory that the latter is chain homotopy
equivalent to lC

⊕
lC[1]. So in the end one obtains a chain of isomorphisms

X∗T (O(UR))
≃
←− Lim

R′→R
X∗T (O(UR′))

≃
−→ “ lim

R′→R
” X∗(O(UR′))

“ lim
R′→R

” X∗(O(UR′))
≃
−→ “ lim

R′→R
” Ω∗

dR(O(UR′))
≃
−→ lC

⊕
lC[1]
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in the derived ind-category. 2

We note that neither the periodic, nor the analytic or asymptotic cyclic co-
homology groups of the algebras O(UR) seem to be known. The analytic and
asymptotic cyclic homology groups on the other hand coincide of course with
the local ones computed here.
Thus in the example considered above the existence of a dense subalgebra of
A of finite (Hochschild)-homological dimension d = 1 implies the contractabil-
ity of the limit Lim

n→∞
Fild+1

HodgeCCan
∗ (An) in an approximating sequence An of

Banach subalgebras of A. It should be noted that this phenomenon is rather
exceptional and in some sense peculiar to subalgebras of homological dimension
at most one (quasifree algebras).

8.2 Commutative C∗-algebras

As another example we calculate the bivariant local cyclic cohomology of sep-
arable commutative C∗-algebras (see also [Pu], Chapter 11). It would be nice
to apply directly the computational methods developed in this paper. Despite
serious efforts I was not able to do this and therefore we have to refer in addi-
tion to the excision property [Pu2] of local cyclic cohomology. Using excision
we obtain

Proposition 8.4. Let M be a smooth compact manifold with (possibly empty)
boundary. Then there is a natural chain homotopy equivalence

CCan
∗ (C∞(M))

∼
−→ H∗(M, lC)

from the analytic cyclic bicomplex of C∞(M) to the ZZ/2ZZ-graded sheaf coho-
mology groups of M , viewed as complex with vanishing differentials.

Proof: We proceed in several steps.

• Let (M,∂M) be a smooth compact Riemannian manifold with boundary
and let C∞(M,∂M) respectively C∞

0 (M,∂M) be the algebras of smooth
functions on M vanishing along ∂M , respectively vanishing of infinite
order along ∂M . We claim that the inclusion

C∞
0 (M,∂M) →֒ C∞(M,∂M)

is a diffeotopy equivalence and that the induced morphism

Ω∗
dR(M,∂M) −→ Ω0,dR(M,∂M)

of the associated de Rham complexes is a chain homotopy equivalence. In
fact let ϕ : lR+ → lR+ be a strictly monotone increasing smooth homeo-
morphism of the real halfline which is a diffeomorphism outside the origin,
equals the identity outside [0, 1], and has vanishing Taylor series at the
origin. An open tubular neighborhood W of ∂M in M can be identified
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with ∂M × lR+. One can extend the smooth homeomorphism Id × ϕ of
∂M × lR+ to a smooth homeomorphism ψ of M by putting it equal to the
identity outside W . The algebra homomorphism ψ∗ : C∞(M) −→ C∞(M)
maps C∞(M,∂M) to C∞

0 (M,∂M) and is obviously an inverse to the in-
clusion C∞

0 (M,∂M) →֒ C∞(M,∂M) up to diffeotopy. By applying the
Cartan homotopy formula one obtains the corresponding statement for
the de Rham complexes.

• Let (M,∂M) be a smooth compact n-dimensional manifold with (possibly
empty) boundary ∂M . We assume without loss of generality that M is
connected.

Every appropriate Morse function on M provides a filtration

Dn = M0 ⊂ M1 ⊂ . . . ⊂ Mj = M

such that for i = 0, . . . , j − 1

– Mi is a codimension 0 submanifold with corners of M which does
not intersect the boundary ∂M .

– The extension of nice nuclear Fréchet algebras

0 → C∞(Mi+1,Mi) → C∞(Mi+1) → C∞(Mi) → 0

possesses a bounded linear section.

–

C∞
0 (Mi+1,Mi) ≃ C∞

0 (Dk × Dn−k, ∂(Dk) × Dn−k)

≃ C∞
0 (Dk, ∂(Dk)) ⊗π C∞(Dn−k)

• Suppose that a filtration of (M,∂M) as constructed before is given. We
show by induction over i that the canonical chain map

CCan
∗ (C∞(M)) −→ Ω∗

dR(M)

obtained by antisymmetrization of differential forms [Co] is a chain ho-
motopy equivalence. Consider the commutative diagram

CCan
∗ (C∞(Mi+1,Mi)) → CCan

∗ (C∞(Mi+1)) → CCan
∗ (C∞(Mi))

↓ ↓ ↓

Ω∗
dR(Mi+1,Mi) → Ω∗

dR(Mi+1) → Ω∗
dR(Mi)

of complexes. By the excision theorem in analytic cyclic (co)homology
[Pu2] the upper line is a distinguished triangle. The lower line is an
exact sequence of complexes with bounded linear section and is thus a
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distinguished triangle as well. By the properties of the filtration of M ,
the induction hypothesis, and the five lemma it suffices to verify that

CCan
∗ (C∞(Dn)) −→ Ω∗

dR(Dn)

and
CCan

∗ (C∞
0 (Dk × Dn−k, ∂(Dk) × Dn−k))

↓

Ω∗
0,dR(Dk × Dn−k, ∂(Dk) × Dn−k)

are chain homotopy equivalences. By the Cartan homotopy formulas for
the analytic cyclic bicomplex and the de Rham complex the last statement
is equivalent to the assertion that

CCan
∗ (C∞

0 (Dk, ∂(Dk))) −→ Ω∗
0,dR(Dk, ∂(Dk))

is a chain homotopy equivalence. This follows however from a simple
induction over k making use of the Cartan homotopy formulas, excision
in analytic cyclic cohomology, and the arguments in the first part of this
demonstration.

• The classical theorems of de Rham and Hodge imply that for a smooth
compact manifold without boundary there is a chain homotopy equiva-
lence Ω∗

dR(M)
∼
−→ H∗(M, lC) where H∗(M, lC) is viewed as complex with

zero differentials. We present here the proof of A. Weil which neatly cov-
ers the case of manifolds with boundary. Choose a Riemannian metric on
M and let U = (U0, . . . , Uk) be a finite open cover of M by geodesically
convex balls (semiballs) such that no ball with center in the interior meets
the boundary of M . Consider the bicomplex

Čpq(U ,Ω∗) :=
∏

i0<...<ip

Ωq
dR(Ui0 ∩ . . . ∩ Uip

)

with differentials given by the Čech-differential in the horizontal and the
de Rham differential in the vertical direction. On the one hand there is
a canonical embedding Ω∗

dR(M) →֒ Č∗(U ,Ω∗) into the first column of
Č∗(U ,Ω∗) given by restriction of differential forms. The fact that sheaves
of differential forms are fine allows to deduce that Ω∗

dR(M) becomes a re-
tract of Č∗(U ,Ω∗). On the other hand there is a canonical embedding
Č∗(U , lC) →֒ Č∗(U ,Ω∗) of the Čech complex of U with coefficients in the
constant sheaf lC into the first line of Č∗(U ,Ω∗). The fact that any inter-
section of the balls Ui, 0 ≤ i ≤ k, is geodesically convex and the Cartan
homotopy formula show, that Č∗(U , lC) is a retract of Č∗(U ,Ω∗) as well.
Therefore the de Rham complex Ω∗

dR(M) is chain homotopy equivalent
to the finite dimensional complex Č∗(U , lC) and in particular to the com-
plex with vanishing differentials given by the cohomology of the latter
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one. As U is a Leray cover the cohomology of Č∗(U , lC) coincides with
H∗(M, lC). Altogether we have shown that the analytic cyclic bicomplex
CCan

∗ (C∞(M)) of C∞(M) is chain homotopy equivalent to the complex
with vanishing differentials H∗(M, lC) given by the ZZ/2ZZ-graded sheaf
cohomology of M with coefficients in lC. The naturality of the chain map
is clear.

2

Proposition 8.5. Let X be a compact metrizable space and let C(X) be the
C∗-algebra of continuous functions on X.

a) There exists a projective system (Mn, ∂Mn), n ∈ lN, of smooth manifolds
(with boundary) and smooth maps, and a continuous map

lim
←−

fn : X −→ “ lim
←−

”(Mn, ∂Mn)

such that the family { f−1
n (Un), Un ⊂ Mn open, n ∈ lN } forms a basis of

the topology of X and such that the induced morphism

“ lim
n→∞

” C∞(Mn) −→ C(X)

satisfies the assumptions of the limit theorem (6.16).

b) There is an isomorphism

“ lim
n→∞

”H∗(Mn, lC)
≃
−→ X∗T (C(X))

in the derived ind-category. Here H∗(Mn, lC) denotes the sheaf cohomol-
ogy of Mn, viewed as ZZ/2ZZ-graded complex with zero differentials.

c) If A is a nice ind-Fréchet algebra, then there is a similar isomorphism

“ lim
n→∞

”H∗(Mn, lC) ⊗ X∗T (A)
≃
−→ X∗T (C(X, A))

in the derived ind-category, which is natural in A.

Proof: It is well known that the Gelfand transform, which assigns to a
commutative C∗-algebra its spectrum, defines an antiequivalence between
the category of commutative C∗-algebras and the category of locally com-
pact Hausdorff spaces. Under the Gelfand transform separable algebras cor-
respond to metrizable spaces. Let X be a compact metrizable space, let
A = C(X) be the separable C∗-algebra of continuous functions on X, and
let (an), n ∈ lN, a0 = 1, be a countable system of selfadjoint elements gener-
ating a dense involutive subalgebra of A. For each n ∈ lN let An ⊂ A be the
C∗-subalgebra generated by {a0, . . . , an}. Then A = lim

n→∞
An as C∗-algebras.

The map in : Sp(An) →֒ lRn, which associates to a character χ ∈ Sp(An)
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the n-tuple (χ(a1), . . . χ(an)) defines a faithful embedding of Sp(An) into eu-
clidean n-space. Denote by Xn its image. Then πn+1(Xn+1) = Xn where
πn+1 : lRn+1 → lRn is the projection onto the first n coordinates. Let finally
Mn be a family of smooth manifolds with boundary satisfying the following
conditions for all n ∈ lN:

• Mn is a smooth codimension zero submanifold with boundary of lRn.

•
◦

Mn is an open neighborhood of Xn

• Mn is contained in a 1
n -neighborhood of Xn.

• πn+1(Mn+1) ⊂ Mn.

It is then clear that the family (Mn) satisfies the second assertion of part
a) of the proposition. Let (Un), n ∈ lN, be a countable family of finite open
covers of X such that

⋃
n {U, U ∈ Un} forms a basis of the topology of X

and choose for each n a partition of unity subordinate to Un. If one takes as
a countable generating system for C(X) the family of functions occurring in
these partitions of unity, then a corresponding family of manifolds will also
satisfy the first claim. Assertion b) is just a special case of c) which we show
now. Let A = “ lim

−→

i∈I

” Ai be a nice ind-Fréchet algebra. Then for fixed i ∈ I the

morphism
lim

n→∞
C∞(Mn, Ai) −→ C(X,Ai)

satisfies the conditions of theorem (6.16). Consequently, the isomorphism cri-
terion (2.9) applies to the morphism

Lim
n→∞

X∗T (C∞(Mn, Ai)) −→ X∗T (C(X,Ai))

We deduce therefore from proposition (2.10) that the canonical morphism of
ind-complexes

Lim
n→∞

X∗T (C∞(Mn,A)) ≃ Lim
−→
i∈I

(
Lim
n→∞

X∗T (C∞(Mn, Ai))
)

−→

−→ Lim
−→
i∈I

(X∗T (C(X,Ai))) ≃ X∗T (C(X,A))

is an isomorphism in the derived ind-category. By the Eilenberg-Zilber theorem
for cyclic complexes, [Pu3] and (5.16), there is a chain homotopy equivalence
of ind-complexes

Lim
n→∞

X∗T (C∞(Mn,A)) ≃ Lim
n→∞

X∗T (C∞(Mn)) ⊗π X∗T (A)

The previous proposition and (2.10) show then that in the derived ind-category
there are isomorphisms

Lim
n→∞

X∗T (C∞(Mn)) ⊗π X∗T (A)
≃
−→
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Lim
n→∞

(H∗(Mn, lC) ⊗π X∗T (A)) ≃
(
“ lim

n→∞
” H∗(Mn, lC)

)
⊗ X∗T (A)

Altogether one obtains the desired isomorphism

(
“ lim

n→∞
” H∗(Mn, lC)

)
⊗ X∗T (A)

≃
−→ X∗T (C(X,A))

Its naturality is obvious. 2

Theorem 8.6. Let X,Y be locally compact metrizable spaces and let
C0(X), C0(Y ) be the corresponding C∗-algebras of continuous functions van-
ishing at infinity. For a locally compact space denote by H∗

c (−,F) its sheaf
cohomology with compact supports and coefficients in the sheaf F .

a) The even(odd) local cyclic homology groups of C0(X) are naturally iso-
morphic to the direct sum of the even(odd) sheaf cohomology groups of X
with compact supports and complex coefficients

HCloc
∗ (C0(X))

≃
−→

⊕
n∈ZZ

H∗+2n
c (X, lC)

b) The even(odd) local cyclic cohomology groups of C0(X) are naturally iso-
morphic to the direct product of the even(odd) Borel-Moore homology
groups of X with compact supports and complex coefficients [BM]

HC∗
loc(C0(X))

≃
−→

∏
n∈ZZ

Hc
∗+2n(X, lC)

c) The even(odd) bivariant local cyclic cohomology groups of the pair
(C0(X), C0(Y )) are naturally isomorphic to the space of even(odd) linear
maps from the direct sum of the sheaf cohomology groups of X with com-
pact supports and complex coefficients to corresponding direct sum of the
sheaf cohomology groups of Y

HCloc
∗ (C0(X), C0(Y )) ≃ Hom∗

(⊕

n∈ZZ

H∗+2n
c (X, lC),

⊕

m∈ZZ

H∗+2m
c (Y, lC)

)

d) Let A be a nice ind-Fréchet algebra. Then there is a natural isomorphism

HCloc
∗ (C0(X,A))

≃
−→

⊕
n∈ZZ

H∗+2n
c (X,HCloc

∗ (A))

which identifies the local cyclic homology groups of the ind-algebra of A-
valued continuous functions on X vanishing at infinity with the direct
sum of the sheaf cohomology groups of X with compact supports and co-
efficients in the constant sheaf HCloc

∗ (A).
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e) Let B be a further nice ind-Fréchet algebra. Then there is a natural
isomorphism

HCloc
∗ (C0(X,A), B)

≃
−→ Hom∗

( ⊕
n∈ZZ

H∗+2n
c (X, lC),HCloc

∗ (A,B)

)

There is a certain asymmetry in the statements concerning homology and co-
homology which is due to the fact, that maps from but not into a direct limit
are characterized by a universal property.
For the proof we will need the

Lemma 8.7. Let C, C′ be ZZ/2ZZ-graded ind-complexes of complete, locally con-

vex vector spaces. Suppose that C = “ lim
−→

i∈I

”C
(i)
∗ is a formal inductive limit

of finite dimensional complexes C
(i)
∗ with vanishing differentials and that C′

is colocal (see (6.1)) with respect to the nullsystem of weakly contractible ind-
complexes. Then the following holds

a) The ind-complex C ⊗π C′ is N -colocal.

b) For any ind-complex C′′ there is a natural isomorphism

Mor∗Ho(C ⊗π C′, C′′) ≃ Mor∗V ect(lim
−→

i∈I

C
(i)
∗ , Mor∗Ho(C

′, C′′))

where on the right hand side the morphisms are taken in the category
V ect of abstract ZZ/2ZZ-graded vector spaces.

Proof: Let C′ = “ lim
−→

j∈J

” C
(j)

∗ , C′′ = “ lim
−→

k∈K

” C
(k)

∗ be ind-complexes. Then

Mor∗Ho(C ⊗π C′, C′′) = H∗(lim
←−

I×J

lim
−→

K

Homcont(C
(i) ⊗ C

(j)
, C

(k)
))

= H∗(lim
←−

I×J

lim
−→

K

HomV ect(C
(i), Homcont(C

(j)
, C

(k)
))

= H∗(HomV ect(lim
−→

I

C(i), lim
←−

J

lim
−→

K

Homcont(C
(j)

, C
(k)

) )

because the complexes C(i), i ∈ I, are finite dimensional

= Hom∗
V ect(lim

−→

I

C(i), H∗(lim
←−

J

lim
−→

K

Homcont(C
(j)

, C
(k)

) ))

because the differentials of the complexes C(i), i ∈ I, vanish

= Hom∗
V ect(lim

−→

I

C(i), Mor∗Ho(C
′, C′′))
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which proves the second assertion. If C′ happens to be N -colocal, then for
weakly contractible ind-complexes C′′ one has Mor∗Ho(C

′, C′′) = 0 so that
Mor∗Ho(C ⊗π C′, C′′) = 0 by the previous calculation. This implies the first
assertion. 2

Proof of theorem (8.6):
Let X and Y be compact metrizable spaces and let A,B be nice ind-Fréchet
algebras. We begin by calculating the local cyclic cohomology of the pair
(C(X,A), B). Let (Mn)n∈lN be an approximating family of manifolds for X as
constructed in (8.5). Then the projection maps fn : X → Mn give rise to an
isomorphism

lim
n→∞

H∗(Mn, lC) ≃ lim
n→∞

H∗(Č(Mn, lC)) ≃ H∗( lim
n→∞

Č(Mn, lC))

≃ H∗(Č(X, lC)) ≃ H∗(X, lC)

by (8.5) a) where Č(−, lC) denotes the Čech-complex calculating the co-
homology of the constant sheaf lC. According to proposition (8.5) there
is an isomorphism X∗T (C(X,A)) ≃ “ lim

n→∞
” H∗(Mn, lC) ⊗π X∗(T A) in

the derived ind-category. Let P(X∗(T A)) be an N -colocal model of
X∗(T A). Then “ lim

n→∞
” H∗(Mn, lC) ⊗π P(X∗(T A)) is an N -colocal model of

“ lim
n→∞

” H∗(Mn, lC)⊗π X∗(T A) by (8.7), (6.5) and (2.10). With these remarks

in mind one finds

HCloc
∗ (C(X,A), B) = MorD(X∗(T C(X,A)), X∗(T B))

= MorD(“ lim
n→∞

”H∗(Mn, lC) ⊗π X∗(T A), X∗(T B))

= MorHo(“ lim
n→∞

” H∗(Mn, lC) ⊗π P(X∗(T A)), X∗(T B))

= Hom∗
V ect( lim

n→∞
H∗(Mn, lC), MorHo(P(X∗(T A)), X∗(T B)))

by lemma (8.7)

= Hom∗
V ect( lim

n→∞
H∗(Mn, lC), MorD(X∗(T A), X∗(T B)))

= Hom∗
V ect( lim

n→∞
H∗(Mn, lC), HCloc

∗ (A, B))

= Hom∗
V ect(H

∗(X, lC), HCloc
∗ (A, B))

where H∗(X, lC) =
⊕

n H∗+2n(X, lC) is the ZZ/2ZZ-graded sheaf cohomology of
X with coefficients in lC. For d) one finds similarly

HCloc
∗ (C(X,A)) = MorD( lC, X∗(T C(X,A)))

≃ MorD( lC, “ lim
n→∞

” H∗(Mn, lC) ⊗π X∗(T A))

≃ lim
n→∞

H∗(Mn, lC) ⊗ MorD( lC, X∗(T A))
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≃ lim
n→∞

H∗(Mn, lC) ⊗ HCloc
∗ (A) ≃ H∗(X, HCloc

∗ (A))

Finally assertion c) follows from d) and e) by taking A = lC, B = C(Y ) while a)
and b) are special cases of c). This establishes the theorem for compact spaces.
The locally compact case follows easily by using the excision property of local
cyclic cohomology.

2

8.3 Reduced C∗-algebras of free groups

We will calculate the local cyclic cohomology of the reduced group C∗-algebra
of a finitely generated free group. (See also [Pu], Chapter 11.)
Let Fn be a free group on n generators. The action by left translation induces
a unitary action on the Hilbert space H = ℓ2(Fn) of square integrable func-
tions. Consider the corresponding representation of the group algebra lC[Fn]
on H. The enveloping C∗-algebra of its image is the reduced group-C∗-algebra
C∗

r (Fn). It is well known that C∗
r (Fn) possesses the Grothendieck approxima-

tion property [Ha1]. So we can make use of the approximation theorem (6.13).
Moreover the dense subalgebra lC[Fn] is quasifree [CQ]. The formal part of our
calculation is the content of

Lemma 8.8. Let R be a dense, finitely generated, unital, and quasifree sub-
algebra of the nice Fréchet algebra A with open unit ball U . Suppose that A
possesses the Grothendieck approximation property. Let V be a finite dimen-
sional subspace containing 1 and generating R as an algebra and denote by
An the completion of R with respect to the largest submultiplicative seminorm
satisfying ‖ V n∩U ‖≤ 1+ 1

n . Then the canonical morphisms of ind-complexes

“ lim
n→∞

”X∗(An)
≃
←− Lim

n→∞
X∗(T An)

≃
−→ X∗(T A)

are isomorphisms in the derived ind-category.

Proof: Because R is quasifree, there exists a connection ∇ in the sense of
Cuntz-Quillen [CQ] on Ω1R. It extends to a connection on Ω+R by the for-
mula ∇(a0da1 . . . dan) := a0∇(da1)da2 . . . dan. A connection gives rise to a

contracting chain homotopy of the subcomplex Fil2HodgeĈC∗(R) of the periodic

cyclic bicomplex of R, which is given by the formula h =
∞∑

k=0

(−∇◦B)k ◦∇, as

well as to an explicit linear section s of the quotient map p : ĈC∗(R) → X∗(R)
satisfying s ◦ p = Id − b ◦ ∇ on forms of degree one. Under the assump-
tions of the lemma these linear maps extend for given n to bounded lin-
ear operators h : Fil2HodgeCCan

∗ (An) −→ Fil2HodgeCCan
∗+1(An′) respectively

s : X∗(An) −→ CCan
∗ (An′), n′ >> n. In order to show this one writes ev-

ery element of R as a linear combination of products of a finite generating set
S ⊂ V ∩ U and makes use of the formula

∇(d(s1 . . . sN )) =
∑

s1 . . . sk−1∇(dsk)sk+1 . . . sN

+
∑

s1 . . . sk−1dskd(sk+1 . . . sN )
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Note that because the elements s1, . . . , sN belong to a finite subset of R, the
differential forms ∇(dsk) ∈ Ω2R are finite in number. Details of the straight-
forward calculation can be found in [Pu], (11.22), (11.23). It follows from this
result that Lim

n→∞
CCan

∗ (An) ∼ Lim
n→∞

X∗(T An) −→ “ lim
n→∞

” X∗(An) is a chain

homotopy equivalence of ind-complexes. This establishes the first part of the
assertion. The second part follows from the limit theorem (6.16). 2

Unfortunately it is often difficult to apply this result directly because one has
no information about the auxiliary algebras An used in the lemma. In the case
A = C∗

r (Fn), R = lC[Fn], I do not see how to calculate the homology of the
complexes X∗(An) directly. It seems therefore to be preferable to pass first
of all to a sufficiently large but well understood Banach subalgebra of C∗

r (Fn)
containing lC[Fn], and to apply the previous lemma to the latter subalgebra.
Such a good Banach subalgebra has been constructed by Haagerup [Ha1].

Proposition 8.9. (Haagerup) Let Fn be a free group on n generators s1, . . . sn

and let | − |S be the corresponding word length function. Let A(Fn) be the
completion of the group ring lC[Fn] with respect to the seminorms

‖
∑

agug ‖2
k =

∑
|ag|

2 · (1 + |g|S)2k, k ∈ lN,

Then A(Fn) is a nice Fréchet subalgebra of the reduced group C∗-algebra
C∗

r (Fn). Moreover it coincides with the domain of an unbounded derivation
on C∗

r (Fn).

Applying the smooth subalgebra theorem (3.8) and lemma (8.8), we deduce
from Haagerup’s result

Proposition 8.10. Let Fn be a free group on n generators s1, . . . , sn. Let
A(Fn) be the associated Haagerup algebra and let V be the linear span of
s±1
1 , . . . , s±1

n in lC[Γ] ⊂ A(Fn). Let Ak(Fn) be the Banach subalgebras of A(Fn)
introduced in lemma (8.8). Then there is an isomorphism

“ lim
k→∞

”X∗(Ak(Fn)) ≃ X∗(T C∗
r (Fn))

in the derived ind-category.

Lemma 8.11. In the notations of 8.10 the continuous linear map

Ak(Fn)n −→ X1(Ak(Fn))

(a1, . . . , an) −→ a1ds1 + . . . + andsn

induces an isomorphism

“ lim
k→∞

”Ak(Fn)n ≃
−→ “ lim

k→∞
”X1(Ak(Fn))

of ind-Fréchet spaces.
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Proof: We use the notations of (8.8) and (8.10). Let ∇ be the unique con-
nection on Ω1( lC[Fn]) satisfying ∇(dsi) = 0 for i = 1, . . . , n. The image of the
associated linear embedding s : X1( lC[Fn]) −→ Ω1( lC[Fn]) coincides then with
the subspace (Id − b ◦ ∇)Ω1( lC[Fn]) = lC[Fn]ds1 + . . . + lC[Fn]dsn of Ω1( lC[Fn]).
The lemma follows from the fact (8.8) that s extends to a bounded morphism
“ lim

k→∞
”X1(Ak(Fn)) −→ “ lim

k→∞
” Ω1Ak(Fn) of ind-Fréchet spaces (8.8). 2

From now on this identification of “ lim
k→∞

” X1(Ak(Fn)) will be understood. We

determine the homotopy type of the ind-complex “ lim
k→∞

” X∗(Ak(Fn)) in two

steps.

Lemma 8.12. Let Fn be a free group on n generators s1, . . . , sn.
Let h′ : X∗( lC[Fn]) → X∗+1( lC[Fn]) be the linear operator which vanishes on X1

and maps the element g ∈ Fn ⊂ lC[Fn] = X0( lC[Fn]) to uvd(u−1) ∈ X1( lC[Fn])
if g = uvu−1 is the unique reduced presentation of g in terms of the generators
s±1
1 , . . . , s±1

n such that the first letter of v is different from the inverse of its
last letter.

a) The operator π′ := Id− (h′ ◦ ∂ + ∂ ◦ h′) defines a deformation retraction
of X∗( lC[Fn]) onto the direct sum X ′

∗( lC[Fn])hom

⊕
X ′

∗( lC[Fn])inhom of the
following subcomplexes. The finite dimensional subcomplex X ′

∗( lC[Fn])hom

which is given by the linear span of 1 ∈ X0( lC[Γ]) and the finite set
{s−1

i dsi, i = 1, . . . , n} ⊂ X1( lC[Γ]). It has vanishing differential and
is thus isomorphic to the ZZ/2ZZ-graded vector space H∗(Fn, lC), viewed as
trivial chain complex. The subcomplex X ′

∗( lC[Fn])inhom which is given
by the linear span of the nontrivial elements g ∈ Fn ⊂ X0( lC[Fn]),
for which the first letter of the reduced word representing g is differ-
ent from the inverse of its last letter, and of the elements of the form
g′dsi, g′′d(s−1

i ) ∈ X1( lC[Fn]), i = 1, . . . , n such that the first and last let-
ter of the reduced word representing g′ (respectively g′′) is different from
s−1

i (respectively si).

b) The operator π′ is continuous in the sense that it gives rise to a defor-
mation retraction of completed complexes

“ lim
k→∞

”X ′
∗(Ak(Fn))hom

π′ : “ lim
k→∞

”X∗(Ak(Fn)) −→ ⊕

“ lim
k→∞

”X ′
∗(Ak(Fn))inhom

This follows from a straightforward calculation.

Lemma 8.13. There is an isomorphism of ind-complexes

“ lim
k→∞

”X ′
∗(Ak(Fn))hom ≃ H∗(Fn, lC) ≃ lC ⊕ lCn[1]

whereas the ind-complex “ lim
k→∞

”X ′
∗(Ak(Fn))inhom is contractible.
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Proof: We show the second assertion, the first being obvious from the def-
initions made in (8.12). Let g, g′dsi, g′′ds−1

i , (g, g′, g′′ ∈ Fn) be generating
elements of the complex X ′

∗( lC[Fn])inhom and suppose that they are repre-
sented by reduced words. Then there occur no cancellations under multipli-
cation of (g′, si) → g′si and (g′′, s−1

i ) → g′′s−1
i and under cyclic permuta-

tions of the letters of g, g′si and g′′s−1
i . Due to this the underlying spaces

of the complex X ′
∗( lC[Fn])inhom can be interpreted as subspaces of the ten-

sor algebra over the vector space with basis s±1
1 , . . . , s±1

n and the differentials
can be described in terms of the action of the appropriate cyclic group on
the tensor powers of the basis elements. Thus one finds that the differential
∂0 : X ′

0( lC[Fn])inhom → X ′
1( lC[Fn])inhom corresponds to the cyclic averaging op-

erator N and that the differential ∂1 : X ′
1( lC[Fn])inhom → X ′

0( lC[Fn])inhom cor-
responds to the operator 1−T where T generates the cyclic action. This shows
that X ′

∗( lC[Fn])inhom is acyclic, i.e. has vanishing homology. A contracting
homotopy operator can be given on generating elements of length n + 1 by the
formulas h′′

0 = 1
n+1 (Tn−1+2Tn−2+. . .+(n−1)T+1), respectively h′′

1 = 1
n+1 ·1.

A simple calculation shows that this contracting homotopy operator is continu-
ous with respect to the topology of the ind-complex “ lim

k→∞
” X ′

∗(Ak(Fn))inhom,

whence the result. 2

We can summarize now what we have obtained in the following

Theorem 8.14. a) Let Fn be a free group on n generators and let C∗
r (Fn)

be its reduced group C∗-algebra. Then there is a canonical isomorphism

X∗(T C∗
r (Fn))

≃
←− H∗(Fn, lC) ≃ lC

⊕
lCn[1]

in the derived ind-category.

b) Let F ′, F ′′ be finitely generated free groups and let A, B be nice ind-
Fréchet algebras. Then there is a canonical isomorphism between

HCloc
∗ (C∗

r (F ′) ⊗π A, C∗
r (F ′′) ⊗π B)

and
Hom∗(H∗(F

′, lC), H∗(F
′′, lC)) ⊗ HCloc

∗ (A, B)

which is natural in A and B.

Proof: The first assertion follows from (8.10), (8.12) and (8.13). The
Eilenberg-Zilber theorem for cyclic bicomplexes provides a chain homotopy
equivalence (5.16)

X∗(T (C∗
r (F ) ⊗π A))

≃
−→ X∗(T (C∗

r (F )) ⊗π X∗(T A)

A careful look at the morphism X∗(T C∗
r (Fn))

≃
←− H∗(Fn, lC) of the first asser-

tion shows that it is the composition of a morphism with weakly contractible
mapping cone and a series of chain homotopy equivalences. Therefore its map-
ping cone is weakly contractible. Thus the isomorphism criterion (2.10) applies
to the chain map H∗(Fn, lC)⊗X∗(T A) −→ X∗(T (C∗

r (F ))⊗π X∗(T A) showing
that the latter is an isomorphism in the derived ind-category. 2
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8.4 n-traces and analytic traces on Banach algebras

In his monumental paper [Co3] Alain Connes introduced a special type of
densely defined unbounded cyclic cocycles on Banach algebras, called n-traces.
Every n-trace defines an additive functional on the K-theory of the underlying
algebra, and represents thus a sensitive tool to detect nontrivial elements in
K-groups. In [Co3] it is asked whether n-traces can be viewed as cocycles of
a suitable cohomology theory and in particular how to define a cohomology
relation between n-traces. We give here a partial answer for algebras with
approximation property. This was inspired by a remark of Alain Connes.
First we recall the

Definition 8.15. Let A be a Banach algebra.

a) (A. Connes) [Co3]
An n-trace on A is a cyclic n-cocycle τ : ΩnA → lC on a dense subalgebra
A of A such that for any a1, . . . , an ∈ A there exists C(a1, . . . , an) < ∞
such that

|τ((x1da1) · (x2da2) · . . . · (xndan))| ≤ C(a1, . . . , an) · ‖x1‖A · . . . · ‖xn‖A

for all xi ∈ A.

b) An analytic trace on A is a cocycle τ ′ on the cyclic bicomplex CC∗(A) of
a dense subalgebra A of A, such that for every finite subset S ⊂ A there
exist constants Cn(S), n ∈ lN, satisfying

|τ ′((x1da1) · (x2da2) · . . . · (xndan))| ≤ Cn(S) · (
n

2
)! · ‖x1‖A · . . . · ‖xn‖A

for all x1, . . . , xn ∈ A, a1, . . . , an ∈ S and

lim
n→∞

Cn(S)
1
n = 0

In particular every n-trace is analytic.

Now our result is

Theorem 8.16. Let A be a separable Banach algebra with approximation prop-
erty. Then every analytic trace τn on A defines a unique local cyclic cohomology
class

[τn] ∈ HCn
loc(A)

The linear functional on Kn(A) associated to τn by [Co3] coincides with the
Chern character pairing (5.17) with the class [τn] in local cyclic cohomology.

Proof: Let τ be an analytic trace on A. Denote by A its dense domain
of definition and let 0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vm ⊂ . . . be a chain of finite
dimensional subspaces of A whose union is a dense subalgebra of A. Following
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(6.13) choose strictly monotone decreasing sequences (λn), (rn), n ∈ lN, such
that lim

n→∞
λn = 1 and lim

n→∞
rn = 0, and denote by An the completion of

the subalgebra A[Vn] of A ⊂ A generated by Vn with respect to the largest
submultiplicative seminorm satisfying ‖ Vn ∩U ‖≤ λn (U the open unit ball of
A). Denote by (TAn)(rn) the completed tensor algebras introduced in (1.22).

We claim that the analytic trace τ defines a cocycle on the ind-complex

“ lim
n→∞

” X∗((TAn)rn)

The natural inclusions of algebras TA[V1] ⊂ . . . ⊂ TA[Vn] ⊂ . . . ⊂ TA induce
chain maps lim

n→∞
X∗(TA[Vn]) −→ lim

n→∞
CC∗(A[Vn]) −→ CC∗(A) where the

first chain map is the normalized Cuntz-Quillen projection. The analytic trace
yields therefore a cocycle τ ′ ∈ lim

←−
n

X∗(TA[Vn]) and it remains to check that τ ′

is continuous, i.e. extends to a functional on the completion X∗((TAn)rn) of
X∗(TAn). As the Cuntz-Quillen projection is continuous ([Pu], 5.25) it suffices
to prove the estimates

|τ(a0da1 . . . dak)| ≤ C(m) · (
k

2
)! · (rn)

k
2

for some constant C(m) and all k ∈ lN, a0, . . . , ak ∈ K∞
n , the multi-

plicative closure of Kn := Vn ∩ λ−1
n U ⊂ A. The set Kn ⊂ Vn being

bounded, there exist finitely many elements c1, . . . , cl ∈ Vn such that Kn

is contained in the circled convex hull of S := {c1, . . . , cl}. The estimate
|φk((x1da1) · . . . · (xkdak))| ≤ Ck(S) · (k

2 )! · ‖x1‖ · . . . · ‖xk‖ for all x1, . . . , xk ∈ A

and a1, . . . , ak ∈ Kn follows. Let now a1, . . . , ak ∈ K∞
n . This means that these

elements can be written as products aj = b1
j . . . b

lj
j with bi

j ∈ Kn. In particu-

lar daj = Σ
lj
i=1b

1
j . . . bi−1

j dbi
jb

i+1
j . . . b

lj
j . As by construction ‖Kn‖A ≤ λ−1

n the
continuity property i) of the analytic trace implies

|τ(a0da1 . . . dak)| ≤ (Πk
j=1lj) · λ

−(Σk
j=1lj−k)

n · (
k

2
)! · Ck(S)

≤ (
k

2
)! · Ck(S) · (λn)k · Πk

j=1lj(λn)−lj ≤ (
k

2
)! · Ck(S) · C(λn)k

for a suitable constant C(λn) and all k.

Because (Ck(S)
1
k · r−1

n · C(λn))k ≤ C ′(n) by condition ii), one has

|τ(a0da1 . . . dak)| ≤ C ′(n) · (
k

2
)! · rk

n

for all k, and the claim follows. Thus τ defines an element of

Mor∗Ho(“ lim
n→∞

” X∗((TAn)rn), lC)
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As the canonical morphism

“ lim
n→∞

” X∗((TAn)rn) −→ X∗(T A)

is an isomorphism in the derived ind-category by the approximation theorem
(6.13), the analytic trace τ defines a cohomology class

[τ ] ∈ Mor∗D(“ lim
n→∞

” X∗((TAn)rn), lC) ≃ Mor∗D(X∗(T A), lC) = HC∗
loc(A)

This establishes the theorem.
2
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