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Abstract. We give a necessary and sufficient condition for a mor-
phism between recollements of abelian categories to be an equivalence.
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1 Introduction

Recollements of abelian and triangulated categories play an important role in
geometry of singular spaces [3], in representation theory [4, 12], in polynomial
functors theory [8, 9, 14] and in ring theory, where recollements are known
as torsion, torsion-free theories [6]. A fundamental example of recollement of
abelian categories is due to MacPherson and Vilonen [10]. It first appeared as
an inductive step in the construction of perverse sheaves. The main motivation
for our work was to understand when a recollement can be obtained through
the construction of MacPherson and Vilonen.

A recollement situation consists of three abelian categories A′, A, A′′ together
with additive functors:

i∗

←−
j!

←−

A′ i∗−→ A
j∗

−→ A′′

i!

←−
j∗
←−

which satisfy the following conditions:
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i. j! is left adjoint to j∗ and j∗ is left adjoint to j∗

ii. the unit IdA′′ → j∗j! and the counit j∗j∗ → IdA′′ are isomorphisms

iii. i∗ is left adjoint to i∗ and i∗ is left adjoint to i!

iv. the unit IdA′ → i!i∗ and the counit i∗i∗ → IdA′ are isomorphisms

v. i∗ is an embedding onto the full subcategory of A with objects A such
that j∗A = 0.

In this case one says that A is a recollement of A′′ and A′. These notations will

be kept throughout the paper. Thus in any recollement situation, the category
i∗A

′ is a localizing and colocalizing subcategory of A in the sense of [5], and
the category A′′ is equivalent to the quotient category of A by i∗A

′.

If B is also a recollement of A′′ and A′, then a comparison functor A → B is an
exact functor which commutes with all the structural functors i∗, i∗, i

!, j!, j
∗, j∗.

According to [12, Theorem 2.5], a comparison functor between recollements of
triangulated categories is an equivalence of categories. Our example in Sec-
tion 2.2 shows that this is not necessarily the case for recollements of abelian
categories.
Our main result, Theorem 7.2, characterizes which comparisons of recollements
are equivalences of categories. As an application, we give a homological crite-
rion deciding when a recollement can be obtained through the construction of
MacPherson and Vilonen.
Theorem. A recollement situation of categories with enough projectives is

isomorphic to a MacPherson-Vilonen construction if and only if the following

two conditions hold.

i. There exists an exact functor r: A → A′ such that r ◦ i∗ = IdA′ .

ii. For any projective object V of the category A′, (L2i
∗)(i∗V ) = 0.

2 Examples

Our examples are related to polynomial functors. The relevance of this formal-
ism to polynomial functors was stressed by N. Kuhn [8].
We let A′ be the category of finite vector spaces over the field with two elements
F2, and we let A′′ be the category of finite vector spaces over F2 with involution,
or finite representations of Σ2 over F2.

2.1

In the first example, the category A is a category of diagrams of finite vector
spaces over F2:

(V1,H, V2, P ) : V1 ⇄ V2 ,
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where H: V1 → V2 and P : V2 → V1 are linear maps which satisfy: PHP = 0
and HPH = 0. The category A is equivalent to the category of quadratic
functors from finitely generated free abelian groups to vector spaces over F2.
It is a recollement for the following functors:

i∗(V1,H, V2, P ) = Coker (P ), j!(V, T ) = (VT , 1 + T, V, p)

i∗(V ) = (V, 0, 0, 0), j∗(V1,H, V2, P ) = (V2,HP − 1)

i!(V1,H, V2, P ) = Ker (H) , j∗(V, T ) = (V T , h, V, 1 + T ) ,

where V T = Ker (1 − T ), VT = Coker (1 − T ), h is the inclusion and p is the
quotient map. Note that the functor i∗ admits an obvious exact retraction r:
(V1,H, V2, P ) 7→ V1.

2.2 Comparison fails for abelian categories recollements

We now consider the full subcategory of the category A in Example 2.1, whose
objects satisfy the relation: PH = 0. This category is equivalent to the cate-
gory of quadratic functors from finite vector spaces to vector spaces over F2.
The same formulae define a recollement as well. As a result, the inclusion
of categories is a comparison functor. It is not, however, an equivalence of
categories.

3 The construction of MacPherson and Vilonen [10]

3.1

Let A′ and A′′ be abelian categories. Let F : A′′ → A′ be a right exact
functor, let G: A′′ → A′ be a left exact functor and let ξ: F → G be a
natural transformation. Define the category A(ξ) as follows. The objects of
A(ξ) are tuples (X,V, α, β), where X is in A′′, V is in A′, α : F (X) → V and
β : V → G(X) are morphisms in A′ such that the following diagram commutes:

F (X)
ξX //

α
""DD

DD
DD

DD
G(X)

V

β

<<zzzzzzzz

.

A morphism from (X,V, α, β) to (X ′, V ′, α′, β′) is a pair (f, ϕ), where f : X →
X ′ is a morphism in A′′ and ϕ: V → V ′ is a morphism in A′, such that the
following diagram commutes:

F (X)
α //

F (f)

²²

V
β //

ϕ

²²

G(X)

G(f)

²²
F (X ′)

α′

// V ′
β′

// G(X ′)

.
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The category A(ξ) comes with functors:

i∗(X,V, α, β) = Coker (α) , j!(X) = (X,F (X), IdF (X), ξX) ,

i∗(V ) = (0, V, 0, 0) , j∗(X,V, α, β) = X ,

i!(X,V, α, β) = Ker (β) , j∗(X) = (X,G(X), ξX , IdG(X)) .

The functor i∗ has a retraction functor r:

r(X,V, α, β) = V .

The category A(ξ) is abelian in such a way that the functors r and j∗ are
exact. The above data define a recollement. Note that we recover the natural
transformation ξ from the retraction r and the recollement data as:

F = rj! G = rj∗ ξ ≃ rN .

The category A depends only [10, Proposition 1.2] on the class of the extension

0 → i!j! → F
ξ
→ G → i∗j∗ → 0 ,

image by r of the exact sequence (4).

3.2

We now consider two particular cases of this construction, already known to
Grothendieck (see [1]). Let F : A′′ → A′ be a right exact functor. Take ξ:
F → 0 to be the transformation into the trivial functor. The corresponding
construction is denoted by A′

⋊F A′′. Thus objects of this category are triples
(V,X, α), where V and X are objects of A′ and A′′ respectively and α is a
morphism α: F (X) → V of the category A′. Note that i∗j∗ = 0 and i!j! ∼= F .
Moreover, i! and j∗ are exact functors.
Similarly, let B′ and B′′ be abelian categories and let G: B′′ → B′ be a left
exact functor. We take ξ: 0 → G to be the natural transformation from
the trivial functor. The corresponding recollement is denoted by B′

⋉G B′′.
Objects of this category are triples (B′′, B′, β : B′ → G(B′′)). Assuming now
B′ = A′′, B′′ = A′ and G : A′ → A′′ is right adjoint to F , the category
A′

⋊F A′′ = A′′
⋉G A′ fits into two different recollement situations.

4 General properties of recollements

Most of the properties in this section can probably be found in [3] or other
references. We list them for convenience. Note however that, when they are
not a consequence of [5], they are usually stated and proved in the context of
triangulated categories. We consistently provide statements (and a few proofs)
in the context of abelian categories and derived functors.
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4.1 First properties

We remark as usual that taking opposite categories results in the exchange of
j! and i∗ with j∗ and i! respectively. This is referred to as duality. For instance,
the relation j∗i∗ = 0 - a consequence of (v) - yields the dual relation i!j∗ = 0.

Proposition 4.1 In any recollement situation:

i∗j! = 0 , i!j∗ = 0.

Proposition 4.2 The units and counits of adjonction give rise to exact se-

quences of natural transformations:

j!j
∗ ǫ
→ IdA → i∗i

∗ → 0 (1)

0 → i∗i
! → IdA

η
→ j∗j

∗ . (2)

We now recall the definition of the norm N : j! → j∗. For any X, Y in A′′,
there are natural isomorphisms:

HomA(j!X, j∗Y ) ∼= HomA′′(X, j∗j∗Y ) ∼= HomA′′(X,Y ).

For Y = X, let NX : j!X → j∗X be the map corresponding to the identity of
X. It is a natural transformation [3, 1.4.6.2]. The norm N is thus defined so
that: Nj∗ = η ◦ ǫ. Hence:

N ∼= N(j∗j∗) = (Nj∗)j∗ ∼= (η◦ǫ)j∗ = ηj∗◦ǫj∗ ∼= ǫj∗ and, dually N ∼= ηj! . (3)

The image of the norm is a functor

j!∗ := Im (N : j! → j∗) : A′′ → A .

Proposition 4.3 In any recollement situation: i∗j!∗ = 0 , i!j!∗ = 0 .

Proof. Use Proposition 4.1 and apply i∗ to the epi j! → j!∗. 2

Proposition 4.4 In any recollement situation, there is a short exact sequence

of natural transformations

0 → i∗i
!j! → j!

N
→ j∗ → i∗i

∗j∗ → 0 . (4)

Proof. Precompose the exact sequence (1) with j∗. Precomposition is exact,
hence one gets the following exact sequence:

j! → j∗ → i∗i
∗j∗ → 0 ,

where the left arrow is the norm N according to (3). Dually, there is an exact
sequence:

0 → i∗i
!j! → j!

N
→ j∗ .

Splicing the two sequences together gives the result. 2

Applying the snake lemma, one gets the following strong restriction on the
functors i!j! and i∗j∗ of a recollement situation.
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Corollary 4.5 For any short exact sequence in A′′:

0 → X → Y → Z → 0

there is an exact sequence in A′:

i!j!(X) → i!j!(Y ) → i!j!(Z) → i∗j∗(X) → i∗j∗(Y ) → i∗j∗(Z)

4.2 Homological properties

In this section we investigate the derived functors of the functors in a rec-
ollement situation. We use the following convention throughout this section:
When mentioning left derived functors L−, the category A, and thus the cat-
egories A′ and A′′, have enough projectives, and, similarly, when mentioning
right derived functors R−, the categories A, A′ and A′′ have enough injectives.
Most of the proofs consist in applying long exact sequences for derived functors
to Section 4.1’s exact sequences.

Proposition 4.6 For each integer n ≥ 1:

j∗(Lnj!) = 0 , j∗(Rnj∗) = 0 .

Proposition 4.7
(L1i

∗)i∗ = 0 , (R1i!)i∗ = 0 (5)

(L1i
∗)j! = 0 , (R1i!)j∗ = 0 (6)

(L1i
∗)j!∗ = i!j! , (R1i!)j!∗ = i∗j∗ (7)

Proposition 4.8 There is a natural exact sequence:

0 → Ext1A′(i∗A, V ) → Ext1A(A, i∗V )
η

−→ HomA′((L1i
∗)A, V ) →

→ Ext2A′(i∗A, V ) → Ext2A(A, i∗V ) .

Proof. This follows from the spectral sequence for the derived functors of the
composite functors:

E2
pq = Extp

A′(Lqi
∗(A), V ) =⇒ Extp+q

A
(A, i∗V ) . (8)

2

Proposition 4.9 Let A be an object in Ker i∗. The counit ǫA: j!j
∗A → A

is epi and its kernel is in i∗A
′. Indeed, if A has enough projectives, there is a

short exact sequence:

0 → i∗(L1i
∗)A → j!j

∗A
ǫA−→ A → 0 . (9)

We prove the dual statement:

Documenta Mathematica 9 (2004) 41–56



Recollements Comparison 47

Proposition 4.10 Let A be an object in Ker i!. The unit ηA: A → j∗j
∗A is

mono and its cokernel is in i∗A
′. Indeed, if A has enough injectives, there is a

short exact sequence:

0 → A
ηA

−→ j∗j
∗A → i∗(R

1i!)A → 0 . (10)

Proof. When i!A = 0, the exact sequence (2) simplifies to a short exact se-
quence:

0 → A
ηA

−→ j∗j
∗A → Coker ηA → 0 . (11)

First applying the exact functor j∗, and using that j∗η is an iso, we see that
j∗(Coker ηA) = 0. Thus Coker ηA is in i∗A

′. Suppose that A has enough
injectives. Applying now the left exact functor i!, the long exact sequence for
right derived functors gives an exact sequence:

0 → i!A → i!j∗j
∗A → i!Coker ηA → (R1i!)A → (R1i!)j∗j

∗A .

Proposition 4.1 and (6) give an isomorphism i!Coker (ηA) ∼= R1i!(A). 2

4.3 Description of the image of j∗, j!∗, j!

Since j∗j! ∼= j∗j∗ ∼= j∗j!∗ ∼= IdA′′ , the functors j!, j∗, j!∗: A′′ → A are full
embeddings. The next result describes the essential image of each of them.

Proposition 4.11 The functors j!, j∗, j!∗ : A′′ → A induce the following

equivalences of categories:

j!∗ : A′′ → {A ∈ A | i∗(A) = 0 = i!(A)},

j! : A′′ → {A ∈ A | i∗(A) = 0 = L1i
∗(A)},

j∗ : A′′ → {A ∈ A | i!(A) = 0 = R1i!(A)}.

4.4 A monomorphism on Ext-groups

Since j∗ : A → A′′ is an exact functor, it induces an homomorphism

Extn
A(A,B) → Extn

A′′(j∗A, j∗B), n ≥ 0.

It is well-known that when A and B are simple objects, this map is injective
for n = 1 (see for example [8, Proposition 4.12 ]). The following more general
result holds.

Proposition 4.12 Let A,B ∈ A be objects for which i∗A = 0 and i!B = 0.
Suppose j∗A 6= 0 and j∗B 6= 0. Then

Ext1A(A,B) → Ext1A′′(j∗A, j∗B)

is a monomorphism.
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5 Description of Ker i∗ and Ker i!

Let Ker i! be the full subcategory of objects A of A such that i!A = 0, and let
Ker i∗ be the full subcategory of objects A of A such that i∗A = 0. In this
section, we describe these subcategories of A in terms of the categories A′, A′′,
and the functors i∗j∗, i!j! between them, through the following construction:

Definition 5.1 Let T : A′′ → A′ be an additive functor between abelian cat-

egories. The category M(T ) has objects triples (X,V, α) where X is in A′′,

V is in A′, and α: V → TX is a monomorphism. A map from (X,V, α)
to (X ′, V ′, α′) is a pair of morphisms (f, ϕ) such that the following diagram

commutes:

V
α //

ϕ

²²

T (X)

T (f)

²²
V ′

α′

// T (X ′) .

The following theorem is inspired by [13].

Theorem 5.2 In a recollement with enough projectives, the functor A 7→
(j∗A, i∗A, i∗ηA : i∗A → i∗j∗j

∗A) is an equivalence from the category Ker i!

to the category M(i∗j∗).

Proof. First, we show that the functor is well defined. Apply the functor i∗ on
the short exact sequence (11). There results an exact sequence:

L1i
∗(Coker ηA) → i∗A → i∗j∗j

∗(A) → i∗Coker ηA → 0 .

whose left term cancels by Proposition 4.10 and (5). The map i∗ηA is thus
mono.

Next, we define the quasi-inverse: M(i∗j∗) → Ker i!. To an object (X,V, α),
it associates the kernel A(X,V, α) of the composite of epis:

j∗X
ǫj∗
→ i∗i

∗j∗X → Coker i∗α .

That is, A(X,V, α) fits in the following map of extensions:

0 // j!∗X // j∗X // i∗i∗j∗X // 0

0 // j!∗X //

=

OO

A(X,V, α) //

OO

i∗V //

i∗α

OO

0 .

To a map (f, ϕ), it associates the map induced by j∗(f).

We leave the verifications to the reader, with the help of the isomorphism
Nj∗ ∼= ǫ ◦ η. 2

The dual study of the category Ker i∗ leads to the following.
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Theorem 5.3 In a recollement with enough injectives, the functor A 7→
(j∗A, i!Ker ǫA, i!Ker ǫA → i!j!j

∗A) is an equivalence from the category Ker i∗

to the category M(i!j!).

This time, the quasi-inverse fits in the following map of extensions:

0 // i∗i!j!X //

²²

j!X //

²²

j!∗X //

=

²²

0

0 // Coker (i∗α) // A(X,V, α) // j!∗X // 0 .

Note (Proposition 4.9) that when the recollement has enough projectives,
i!Ker ǫA is nothing but (L1i

∗)A.

6 Recollements as linear extensions

The exact sequence (2) tells that every object A in A sits in a short exact
sequence:

0 → Ker ηA → A
ηA

→ Im ηA → 0 .

where Ker ηA
∼= i∗i

!A is in i∗A
′ and Im ηA

∼= A/i∗i
!A is in Ker i!. We denote

by G the category encoding these data from the recollement situation. That
is, objects of the category G are triples (A,U, e) of an object A in Ker i!, an
object U in A′ and an extension class e in the group Ext1A(A, i∗U). A map
from (A,U, e) to (A′, U ′, e′) is a pair of morphism (α : A → A′, β : U → U ′)
such that: α∗e′ = (i∗β)∗e in the group Ext1A(A′, i∗U). It comes with a functor:

A → G B 7→ (Im ηB , i!B, [0 → Ker ηB → B
η

−→ Im ηB → 0]) .

Because of the Yoneda correspondence between extensions and elements in
Ext1, this functor induces an equivalence of categories to G from the following
category B. The objects of B are those of A, and a map in HomB(B,B′) is a
class of maps in HomA(B,B′) inducing the same map in G.

We claim that A → B defines a linear extension of categories in the sense of
Baues and Wirsching. For completeness, we now recall what we need from this
theory (however, the following defining properties might be better understood
by just looking at our example).

Definition 6.1 [2, IV.3] Let B be a category and let D : Bop × B → Ab be a
bifunctor with abelian groups values. We say that

0 // D // C
p // B // 0 (12)

is a linear extension of the category B by D if the following conditions hold:

i. C is a category and p is a functor. Moreover C and B have the same
objects, p is the identity on objects and p is surjective on morphisms.
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ii. For any objects c and d in B, the abelian group D(c, d) acts on the set
HomC(c, d). Moreover p(f0) = p(g0) if and only if there is unique α in
D(c, d) such that: g0 = f0 + α. Here for each f0 : c → d in C and
α ∈ D(c, d) we write f0 + α for the action of α on f0.

iii. The action satisfies the linear distributivity law: for two composable maps
f0 and g0 in C

(f0 + α)(g0 + β) = f0g0 + f∗β + g∗α ,

where f = p(f0) and g = p(g0).

A morphism between two linear extensions

0 // D //

φ1

²²

C
p //

φ0

²²

B //

φ

²²

0

0 // D′ // C′
p′

// B′ // 0

consists of functors φ and φ0, such that φp = p′φ0, together with a natural
transformation φ1 : D → D′ ◦ (φop × φ) such that:

φ0(f0 + α) = φ0(f0) + φ1(α)

for all f0 : c → d in C and α in D(c, d).

The following properties of linear extensions are relevant to our problem.

i. If B is a small category, there is [2, IV.6] a canonical bijection

M(B,D) ∼= H2(B,D).

from the set of equivalence classes of linear extensions of B by D and the
second cohomology group H2(B,D) of B with coefficients in D.

ii. The functor p reflects isomorphisms and yields a bijection on the sets of
isomorphism classes Iso(C) ∼= Iso(B).

iii. Let (φ1, φ0, φ) be a morphism of linear extensions. Suppose that φ1(c, d)
is an isomorphism for any c and d in B. Then φ is an equivalence of
categories if and only if φ0 is an equivalence of categories.

iv. If B is an additive category and D is a biadditive bifunctor, then the
category C is additive [7, Proposition 3.4].

We now describe recollements in terms of linear extensions.

Proposition 6.2 Let D be the bifunctor defined on B by:

D(B,B′) := HomA(B/i∗i
!B, i∗i

!B′) .

The category A is a linear extension of B by D.
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Proof. It reduces to the following. Two maps of extensions:

0 // U //

²²

A

f

²²
g

²²

// X //

²²

0

0 // U ′ // A′ // X ′ // 0

agree on the side vertical arrows if and only if their difference f − g factors
through a map in the group Hom(X,U ′). 2

The results of Section 5 shows that the categories A′, A′′ and the functors
i∗j∗, i!j! of the recollement situation determine the category Ker i!. We now
show that it does determine the bifunctor D as well. For an object B in B, let
((X,V, α), U) be its image under the composite:

B ≃ G → Ker i! ×A′ ≃ M(i∗j∗) ×A′ .

That is: X = j∗A, V = i∗A, for A = B/i∗i
!B, U = i!B. Then:

D(B,B′) := HomA(A, i∗U
′) = HomA′(i∗A,U ′) = HomA′(V,U ′) . (13)

7 A comparison theorem

We have seen in Section 2.2 an example of a comparison functor which is not
an equivalence of categories. However, a comparison functor E indeed yields
an equivalence from Ker (i∗ : A1 → A′) to Ker (i∗ : A2 → A′), and similarly
for Ker i!. If E is an equivalence of categories, then clearly E commutes with
the derived functors R•i! and L•i

∗. This observation leads to the following
definition.

Definition 7.1 Let (A′,A1,A
′′) and (A′,A2,A

′′) be two recollement situa-

tions. Assume that the categories A1,A2,A
′,A′′ have enough projective ob-

jects. A comparison functor E: A1 → A2 is left admissible if the following

diagram commutes.

A′

=

²²

Ker i!
L1i∗oo

E

²²
A′ Ker i!

L1i∗
oo

A right admissible comparison functor is defined similarly by using the functors

R1i! and the categories Ker i∗.

Theorem 7.2 Let E be a comparison functor between categories with enough

injectives and projectives. The following conditions are equivalent

i. E is right admissible

Documenta Mathematica 9 (2004) 41–56



52 V. Franjou and T. Pirashvili

ii. E is left admissible

iii. E is an equivalence of categories.

Proof. It is clear that iii) implies both conditions i) and ii). We only show that
ii) implies iii). A dual argument shows that i) implies iii). By Section 6, the
functor E yields a commutative diagram of linear extensions

0 // D1
//

²²

A1
//

E

²²

B1
//

²²

0

0 // D2
// A2

// B2
// 0

First we show that E yields an equivalence of categories B1 → B2. By Section
6 it suffices to show that E yields an equivalence G1 → G2. When there are
enough projectives, E yields an equivalence on Ker i! (Theorem 5.2). The
induced map

Ext1A1
(A, i∗U) → Ext1A2

(E(A), i∗U)

is an isomorphism for U in A′ and A in Ker i!, thanks to Proposition 4.8 and
the five-lemma. Once B1 and B2 are identified, we use the computation (13) to
conclude that the morphism of bifunctors D1 → D2 is an isomorphism. The
rest is a consequence of the properties of linear extensions of categories. 2

8 Recollement pré-héréditaire

8.1 pre-hereditary recollement

Definition 8.1 A recollement situation with enough projectives is

pre-hereditary if for any projective object V of the category A′:

(L2i
∗)(i∗V ) = 0 .

Proposition 8.2 In a pre-hereditary recollement situation: (L2i
∗)i∗ = 0.

Proof. By (5) the functor (L2i
∗)i∗ is right exact. If it vanishes on projective

objects, it vanishes on all objects. 2

Lemma 8.3 In a pre-hereditary recollement situation there is an isomorphism

of functors

(L1i
∗)j∗ ∼= i!j!.

Proof. Apply the functor i∗ to the short exact sequence:

0 → j!∗ → j∗ → i∗i
∗j∗ → 0 .

By (5), L1i
∗ vanishes on i∗i

∗j∗, and by hypothesis L2i
∗ vanishes on i∗i

∗j∗.
Hence the long exact sequence for left derived functors yields an isomorphism:
(L1i

∗)j!∗ ∼= (L1i
∗)j∗. The result follows by (7). 2
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Theorem 8.4 Let (A′,A,A′′) and (A′,B,A′′) be two pre-hereditary recolle-

ment situations and let E : A → B be a comparison functor. Then E is

admissible and hence is an equivalence of categories.

Proof. We have to prove that L1i
∗ has the same value on A and EA, provided

that i!A = 0. For such an A, there is a short exact sequence (11). Applying
the functor i∗ results in an exact sequence:

L2i
∗(Coker ηA) → L1i

∗(A) → L1i
∗(j∗j

∗A) → L1i
∗(Coker ηA)

whose right term cancels by Proposition 4.10 and (5), and whose left term can-
cels by Proposition 8.2. This gives an isomorphism: L1i

∗(A) ∼= (L1i
∗)j∗j

∗(A).
Lemma 8.3 finishes the proof. 2

8.2 MacPherson-Vilonen recollements

The following proposition is a formalized version of the construction of projec-
tives in [11, Proposition 2.5].

Proposition 8.5 Let A(F
ξ
→ G) be a MacPherson-Vilonen recollement. As-

sume further that the left exact functor G has a left adjoint G∗. Then the exact

functor r has a left adjoint r∗defined by:

r∗V = (G∗V, FG∗V ⊕ V, (1, 0), ξG∗V ⊕ ηV )

where in this formula η denotes the unit of adjonction: idA′ → GG∗. In

particular, there is a short exact sequence:

0 → j!G
∗ → r∗ → i∗ → 0 . (14)

Proof. Necessarily, j∗r∗ = (rj!)
∗ = G∗. Then check. 2

Proposition 8.6 Every MacPherson-Vilonen recollement with enough projec-

tives is pre-hereditary .

Proof. Apply the functor i∗ to the short exact sequence (14). Part of the
resulting long exact sequence is an exact sequence:

(L2i
∗)r∗ → (L2i

∗)i∗ → (L1i
∗)j!G

∗ ,

whose right term cancels by (6). To conclude, if P is a projective in A′, then
r∗P is a projective in A, because r∗ is left adjoint to an exact functor. 2

This leads to the following characterization of MacPherson-Vilonen recolle-
ments. A special case appeared in [15, Proposition 2.6]
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Theorem 8.7 A recollement situation of categories with enough projectives is

isomorphic to a MacPherson-Vilonen construction if and only if the recollement

is pre-hereditary and there exists an exact functor r: A → A′ such that r ◦ i∗ =
IdA′ .

Proof. Consider a recollement with such an exact retraction functor r. The nat-
ural transformation N : j! → j∗ yields a transformation rN from the right exact
functor rj! to the left exact functor rj∗. Thus we can form the MacPherson-

Vilonen construction A(rj!
rN
→ rj∗). We define a functor E: A → A(rj!

rN
→ rj∗)

by:
E(A) = (j∗(A), r(A), r(ǫA), r(ηA)).

One checks with Section 3 and (3) that E is a comparison functor. By Propo-
sition 8.6, A(rN) is pre-hereditary. If A is also pre-hereditary, Theorem 8.4
applies. 2

Remark. Similarly one can define pre-cohereditary recollements by the condi-
tion R2i!(i∗V ) = 0 for any injective V in A′. We leave to the reader to dualize
the above results.

8.3 The case when i∗j∗ = 0 or i!j! = 0

In this section, we characterize the recollements A = A′
⋊F A′′ of Section 3.2.

Proposition 8.8 For a recollement with enough projectives, the following are

equivalent:

i. The functor i∗ is exact.

ii. i!j! = 0.

Dually, for a recollement with enough injectives, the following are equivalent:

i. The functor i! is exact.

ii. i∗j∗ = 0.

Proof. We prove the second assertion. Assume that i! is exact. Applying i! to
the epimorphism j∗ → i∗i

∗j∗ gets an epimorphism 0 = i!j∗ → i!i∗i
∗j∗ ∼= i∗j∗.

Assume conversely that i∗j∗ = 0 and suppose that the recollement has enough
injectives. We first prove that R1i!(A) = 0 when i!A = 0. By Proposition 4.10,
if i!A = 0, there is an epimorphism j∗j

∗A → Coker ηA
∼= i∗(R

1i!)(A). Applying
the right exact functor i∗, we get an epimorphism i∗j∗j

∗(A) → (R1i!)(A).
Next, we apply i! to the short exact sequence (2). It yields an exact sequence:

0 → i!
≃
→ i! → i!Im η → (R1i!)i∗i

! → R1i! → (R1i!)Im η .

By (5), (R1i!)i∗i
! = 0, so that: i!Im η = 0. It results that (R1i!)Im η = 0 as

well, and finally that R1i! = 0. 2

As an application we recover [1, Proposition 2.4].
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Proposition 8.9 Every recollement situation with enough projectives, such

that: i!j! = 0, is equivalent to A′
⋉i∗j∗ A

′′. Dually, every recollement situation

with enough injectives, such that: i∗j∗ = 0, is equivalent to A′
⋊i!j! A

′′.

Proof. When the recollement has enough projectives, Theorem 8.7 applies for
r = i∗. 2

Corollary 8.10 Let A′,A,A′′ be a recollement situation with enough projec-

tive or enough injectives. If the norm N : j! → j∗ is an isomorphism, then

A ∼= A′ ×A′′.

Proof. By Proposition 4.4: i∗j∗ = i!j! = 0. Then we apply Proposition 8.9. 2
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perverse sheaves. Ann. scient. Éc. Norm. Sup. 20 (1987), 311–324.

[12] B. Parshall, L. Scott. Derived Categories, Quasi-Hereditary Algebras
and Algebraic Groups. Carlton University Mathematical notes 3 (1988),
1-104.

[13] T. Pirashvili. On quadtratic functors. Bull. Ac. Sc. Georgian SSR 129
(1988), 485–488.

[14] T. Pirashvili. Polynomial functors. Trudy Tbiliss. Mat. Inst. Razmadze
Akad. Nauk Gruzin. SSR 91 (1988), 55–66.

[15] K. Vilonen. Perverse sheaves and finite dimensional algebras. Transac-
tions A.M.S. 341 (1994), 665–676

Vincent Franjou
Université de Nantes
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