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Abstract. We establish the existence and uniqueness of finite free
resolutions - and their attendant Betti numbers - for graded commut-
ing d-tuples of Hilbert space operators. Our approach is based on the
notion of free cover of a (perhaps noncommutative) row contraction.
Free covers provide a flexible replacement for minimal dilations that
is better suited for higher-dimensional operator theory.

For example, every graded d-contraction that is finitely multi-cyclic
has a unique free cover of finite type - whose kernel is a Hilbert module
inheriting the same properties. This contrasts sharply with what can
be achieved by way of dilation theory (see Remark 2.5).
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1. Introduction

The central result of this paper establishes the existence and uniqueness of
finite free resolutions for commuting d-tuples of operators acting on a common
Hilbert space (Theorem 2.6). Commutativity is essential for that result, since
finite resolutions do not exist for noncommuting d-tuples.

On the other hand, we base the existence of free resolutions on a general
notion of free cover that is effective in a broader noncommutative context.
Since free covers have applications that go beyond the immediate needs of this
paper, and since we intend to take up such applications elsewhere, we present
the general version below (Theorem 2.4). In the following section we give
precise statements of these two results, we comment on how one passes from
the larger noncommutative category to the commutative one, and we relate
these results to previous work that has appeared in the literature. Section 3
concerns generators for Hilbert modules, in which we show that the examples
of primary interest are properly generated. The next two sections are devoted
to proofs of the main results - the existence and uniqueness of free covers and
of finite free resolutions. In Section 6 we discuss examples.
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2. Statement of results

A row contraction of dimension d is a d-tuple of operators (T1, . . . , Td) acting
on a common Hilbert space H that has norm at most 1 when viewed as an
operator from H ⊕ · · · ⊕ H to H. A d-contraction is a row contraction whose
operators mutually commute, TjTk = TkTj , 1 ≤ j, k ≤ d. In either case,
one can view H as a module over the noncommutative polynomial algebra
C〈zd, . . . , zd〉 by way of

f · ξ = f(T1, . . . , Td)ξ, f ∈ C〈z1, . . . , zd〉,

and H becomes a contractive Hilbert module in the sense that

‖z1 · ξ1 + · · · + zd · ξd‖
2 ≤ ‖ξ1‖

2 + · · · + ‖ξd‖
2, ξ1, . . . , ξd ∈ H.

The maps of this category are linear operators A ∈ B(H1,H2) that are homo-
morphisms of the module structure and satisfy ‖A‖ ≤ 1. It will be convenient
to refer to a Hilbert space endowed with such a module structure simply as a
Hilbert module.

Associated with every Hilbert module H there is an integer invariant that
we shall call the defect, defined as follows. Let Z · H denote the closure of the
range of the coordinate operators

Z · H = {z1ξ1 + · · · + zdξd : ξ1, . . . , ξd ∈ H}−.

Z · H is a closed submodule of H, hence the quotient H/(Z · H) is a Hilbert
module whose row contraction is (0, . . . , 0). One can identify H/(Z · H) more
concretely as a subspace of H in terms of the ambient operators T1, . . . , Td,

H/(Z · H) ∼ H ª (Z · H) = kerT ∗
1 ∩ · · · ∩ ker T ∗

d .

Definition 2.1. A Hilbert module H is said to be properly generated if H ª
(Z · H) is a generator:

H = span{f · ζ : f ∈ C〈z1, . . . , zd〉 ζ ∈ H ª (Z · H)}.

In general, the quotient Hilbert space H/(Z ·H) is called the defect space of H
and its dimension dim(H/(Z · H)) is called the defect.

The defect space of a finitely generated Hilbert module must be finite-
dimensional. Indeed, it is not hard to see that the defect is dominated by
the smallest possible number of generators. A fuller discussion of properly
generated Hilbert modules of finite defect will be found in Section 3.

The free objects of this category are defined as follows. Let Z be a Hilbert
space of dimension d = 1, 2, . . . and let F 2(Z) be the Fock space over Z,

F 2(Z) = C ⊕ Z ⊕ Z⊗2 ⊕ Z⊗3 ⊕ · · ·
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where Z⊗n denotes the full tensor product of n copies of Z. One can view F 2(Z)
as the completion of the tensor algebra over Z in a natural Hilbert space norm;
in turn, if we fix an orthonormal basis e1, . . . , ed for Z then we can define an
isomorphism of the noncommutative polynomial algebra C〈z1, . . . , zd〉 onto the
tensor algebra by sending zk to ek, k = 1, . . . , d. This allows us to realize
the Fock space as a completion of C〈z1, . . . , zd〉, on which the multiplication
operators associated with the coordinates z1, . . . , zd act as a row contraction.
We write this Hilbert module as F 2〈z1, . . . , zd〉; and when there is no possibility
of confusion about the dimension or choice of basis, we often use the more
compact F 2.

One forms free Hilbert modules of higher multiplicity by taking direct sums
of copies of F 2. More explicitly, let C be a Hilbert space of dimension r =
1, 2, . . . ,∞ and consider the Hilbert space F 2 ⊗ C. There is a unique Hilbert
module structure on F 2 ⊗ C satisfying

f · (ξ ⊗ ζ) = (f · ξ) ⊗ ζ, f ∈ C〈z1, . . . , zd〉, ξ ∈ F 2, ζ ∈ C,

making F 2 ⊗ C into a properly generated Hilbert module of defect r.
More generally, it is apparent that any homomorphism of Hilbert modules

A : H1 → H2 induces a contraction

Ȧ : H1/(Z · H1) → H2/(Z · H2)

that maps one defect space into the other.

Definition 2.2. Let H be a Hilbert module. By a cover of H we mean a
contractive homomorphism of Hilbert modules A : F → H that has dense
range and induces a unitary operator Ȧ : F/(Z · F ) → H/(Z · H) from one
defect space onto the other. A free cover of H is a cover A : F → H in which
F = F 2〈z1, . . . , zd〉 ⊗ C is a free Hilbert module.

Remark 2.3 (The Extremal Property of Covers). In general, if one is given
a contractive homomorphism with dense range A : F → H, there is no way
of relating the image A(F ª (Z · F )) to H ª (Z · H), even when A induces a

bijection Ȧ of one defect space onto the other. But since a cover is a contraction
that induces a unitary map of defect spaces, it follows that a cover must map
F ª (Z · F ) isometrically onto H ª (Z · H) (see Lemma 4.1). This extremal
property is critical, leading for example to the uniqueness assertion of Theorem
2.4 below.

It is not hard to give examples of finitely generated Hilbert modules H that
are degenerate in the sense that Z · H = H (see the proof of Proposition 3.4),
and in such cases, free covers A : F → H cannot exist when H 6= {0}. As we
will see momentarily, the notion of free cover is effective for Hilbert modules
that are properly generated. We emphasize that in a free cover A : F → H of
a finitely generated Hilbert module H with F = F 2 ⊗ C,

dim C = defect(F 2 ⊗ C) = defect H < ∞,
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so that for finitely generated Hilbert modules for which a free cover exists, the
free module associated with a free cover must be of finite defect. More generally,
we say that a diagram of Hilbert modules

F −→
A

G −→
B

H

is weakly exact at G if AF ⊂ ker B and the map A : F → ker B defines a
cover of kerB. This implies that AF is dense in ker B, but of course it asserts
somewhat more.

Any cover A : F → H of H can be converted into another one by composing
it with a unitary automorphism of F on the right. Two covers A : FA → H
and B : FB → H are said to be equivalent if there is a unitary isomorphism of
Hilbert modules U : FA → FB such that B = AU . Notice the one-sided nature
of this relation; in particular, two equivalent covers of a Hilbert module H
must have identical (non-closed) ranges. When combined with Proposition 3.2
below, the following result gives an effective characterization of the existence
of free covers.

Theorem 2.4. A contractive Hilbert module H over the noncommutative poly-
nomial algebra C〈z1, . . . , zd〉 has a free cover if, and only if, it is properly gen-
erated; and in that case all free covers of H are equivalent.

Remark 2.5 (The Rigidity of Dilation Theory). Let H be a pure, finitely gener-
ated, contractive Hilbert module over C〈z1, . . . , zd〉 (see [Arv98]). The methods
of dilation theory lead to the fact that, up to unitary equivalence of Hilbert
modules, H can be realized as a quotient of a free Hilbert module

H = (F 2〈z1, . . . , zd〉 ⊗ C)/M

where M is an invariant subspace of F 2 ⊗ C. In more explicit terms, there is
a contractive homomorphism L : F 2 ⊗ C → H of Hilbert modules such that
LL∗ = 1H . When such a realization is minimal, there is an appropriate sense
in which it is unique.

The problem with this realization of H as a quotient of a free Hilbert mod-
ule is that the coefficient space C is often infinite-dimensional; moreover, the
connecting map L is only rarely a cover. Indeed, in order for C to be finite-
dimensional it is necessary and sufficient that the “defect operator” of H,
namely

(2.1) ∆ = (1H − T1T
∗
1 − · · · − TdT

∗
d )1/2,

should be of finite rank. The fact is that this finiteness condition often fails,
even when the underlying operators of H commute.

For example, any invariant subspace K ⊆ H2 of the rank-one free commu-
tative Hilbert module H2, that is also invariant under the gauge group Γ0 (see
the following paragraphs), becomes a finitely generated graded Hilbert module
whose operators T1, . . . , Td are the restrictions of the d-shift to K. However,
the defect operator of such a K is of infinite rank in every nontrivial case -
namely, whenever K is nonzero and of infinite codimension in H2. Thus, even
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though dilation theory provides a realization of K as the quotient of another
free commutative Hilbert module K ∼= (H2 ⊗ C)/M , the free Hilbert module
H2 ⊗ C must have infinite defect.

One may conclude from these observations that dilation theory is too rigid
to provide an effective representation of finitely generated Hilbert modules as
quotients of free modules of finite defect, and a straightforward application of
dilation theory cannot lead to finite free resolutions in multivariable operator
theory. Our purpose below is to initiate an approach to the existence of free
resolutions that is based on free covers.

We first discuss grading in the general noncommutative context. By a grading
on a Hilbert module H we mean a strongly continuous unitary representation
of the circle group Γ : T → B(H) that is related to the ambient row contraction
as follows

(2.2) Γ(λ)TkΓ(λ)∗ = λTk, λ ∈ T, k = 1, . . . , d.

Thus we are restricting ourselves to gradings in which the given operators
T1, . . . , Td are all of degree one. The group Γ is called the gauge group of the
Hilbert module H. While there are many gradings of H that satisfy (2.2),
when we refer to H as a graded Hilbert module it is implicit that a particular
gauge group has been singled out. A graded morphism A : H1 → H2 of graded
Hilbert modules is a homomorphism A ∈ hom(H1,H2) that is of degree zero
in the sense that

AΓ1(λ) = Γ2(λ)A, λ ∈ T,

Γk denoting the gauge group of Hk.
The natural gauge group of F 2(Z) is defined by

Γ0(λ) =

∞
∑

n=0

λnEn

where En is the projection onto Z⊗n. Thus, F 2 = F 2〈z1, . . . , zd〉 becomes a
graded contractive Hilbert module over C〈z1, . . . , zd〉 of defect 1. More generally,
let F = F 2 ⊗ C be a free Hilbert module of higher defect. Since the ambient
operators U1, . . . , Ud of F 2 generate an irreducible C∗-algebra, one readily ver-
ifies that the most general strongly continuous unitary representation Γ of the
circle group on F that satisfies Γ(λ)(Uk⊗1C)Γ(λ)∗ = λUk⊗1C for k = 1, . . . , d
must decompose into a tensor product of representations

Γ(λ) = Γ0(λ) ⊗ W (λ), λ ∈ T,

where W is an arbitrary strongly continuous unitary representation of T on the
coefficient space C. It will be convenient to refer to a Hilbert space C that has
been endowed with such a group W as a graded Hilbert space.

In order to discuss free resolutions, we shift attention to the more restricted
category whose objects are graded Hilbert modules over the commutative poly-
nomial algebra C[z1, . . . , zd] and whose maps are graded morphisms. In this
context, one replaces the noncommutative free module F 2 = F 2〈z1, . . . , zd〉
with its commutative counterpart H2 = H2[z1, . . . , zd], namely the completion
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of C[z1, . . . , zd] in its natural norm. While this notation differs from the no-
tation H2(Cd) used in [Arv98] and [Arv00], it is more useful for our purposes
here. The commutative free Hilbert module H2 is realized as a quotient of F 2

as follows. Consider the the operator A ∈ B(F 2,H2) obtained by closing the
map that sends a noncommutative polynomial f ∈ C〈z1, . . . , zd〉 to its commu-

tative image f̃ ∈ C[zd, . . . , zd]. This operator is a graded partial isometry with
range H2, whose kernel is the closure of the commutator ideal in C〈z1, . . . , zd〉,

(2.3) K = span{f · (zjzk − zkzj) · g : 1 ≤ j, k ≤ d, f, g ∈ C〈z1, . . . , zd〉}.

One sees this in more concrete terms after one identifies H2 ⊆ F 2 with the
completion of the symmetric tensor algebra in the norm inherited from F 2.
In that realization one has H2 = K⊥, and A can be taken as the projection
with range K⊥ = H2. The situation is similar for graded free modules having
multiplicity; indeed, for any graded coefficient space C the map

A ⊗ 1C : F 2 ⊗ C → H2 ⊗ C

defines a graded cover of the commutative free Hilbert module H2 ⊗ C.
The most general graded Hilbert module over the commutative polynomial

algebra C[z1, . . . , zd] is a graded Hilbert module over C〈z1, . . . , zd〉 whose un-
derlying row contraction (T1, . . . , Td) satisfies TjTk = TkTj for all j, k. Any
vector ζ in such a module H has a unique decomposition into a Fourier series
relative to the spectral subspaces of the gauge group,

ζ =

∞
∑

n=−∞

ζn,

where Γ(λ)ζn = λnζn, n ∈ Z, λ ∈ T. ζ is said to have finite Γ-spectrum if all
but a finite number of the terms ζn of this series are zero. Finally, a graded
contractive module H is said to be finitely generated if there is a finite set of
vectors ζ1, . . . , ζs ∈ H, each of which has finite Γ-spectrum, such that sums of
the form

f1 · ζ1 + · · · + fs · ζs, f1, . . . , fs ∈ C〈z1, . . . , zd〉

are dense in H.
Our main result is the following counterpart of Hilbert’s syzygy theorem.

Theorem 2.6. For every finitely generated graded contractive Hilbert module
H over the commutative polynomial algebra C[z1, . . . , zd] there is a weakly exact
finite sequence of graded Hilbert modules

(2.4) 0 −→ Fn −→ · · · −→ F2 −→ F1 −→ H −→ 0

in which each Fk = H2 ⊗ Ck is a free graded commutative Hilbert module of
finite defect. The sequence (2.4) is unique up to a unitary isomorphism of
diagrams and it terminates after at most n = d steps.

Definition 2.7. The sequence (2.4) is called the free resolution of H.
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Remark 2.8 (Betti numbers, Euler characteristic). The sequence (2.4) gives
rise to a sequence of d numerical invariants of H

βk(H) =

{

defect(Fk), 1 ≤ k ≤ n,

0, n < k ≤ d.

and their alternating sum

χ(H) =

d
∑

k=1

(−1)k+1βk(H)

is called the Euler characteristic of H. Notice that this definition makes
sense for any finitely generated (graded contractive) Hilbert module over
C[z1, . . . , zd], and generalizes the Euler characteristic of [Arv00] that was re-
stricted to Hilbert modules of finite rank as in Remark 2.5.

Remark 2.9 (Curvature and Index). The curvature invariant of [Arv00] is de-
fined only in the context of finite rank contractive Hilbert modules, hence the
index formula of [Arv02] that relates the curvature invariant to the index of a
Dirac operator is not meaningful in the broader context of Theorem 2.6. On
the other hand, the proof of that formula included an argument showing that
the Euler characteristic can be calculated in terms of the Koszul complex asso-
ciated with the Dirac operator, and that part of the proof is easily adapted to
this context to yield the following more general variation of the index theorem.
For any finitely generated graded Hilbert module H with Dirac operator D, both
ker D+ and ker D∗

+ are finite-dimensional, and

(−1)dχ(H) = dim kerD+ − dim ker D∗
+.

Remark 2.10 (Relation to Localized Dilation-Theoretic Resolutions). We have
pointed out in Remark 2.5 that for pure d-contractions (T1, . . . , Td) acting on
a Hilbert space, dilation-theoretic techniques give rise to an exact sequence of
contractive Hilbert modules and partially isometric maps

· · · −→ H2 ⊗ C2 −→ H2 ⊗ C1 −→ H −→ 0,

in which the coefficient spaces Ck of the free Hilbert modules are typically
infinite-dimensional, and which apparently fails to terminate in a finite num-
ber of steps. However, in a recent paper [Gre03], Greene studied “localiza-
tions” of the above exact sequence at various points of the unit ball, and he
has shown that when one localizes at the origin of C

d, the homology of his
localized complex agrees with the homology of Taylor’s Koszul complex (see
[Tay70a],[Tay70b]) of the underlying operator d-tuple (T1, . . . , Td) in all cases.
Interesting as these local results are, they appear unrelated to the global meth-
ods and results of this paper.

Remark 2.11 (Resolutions of modules over function algebras). We also point
out that our use of the terms resolution and free resolution differs substantially
from usage of similar terms in work of Douglas, Misra and Varughese [DMV00],
[DMV01], [DM03a], [DM03b]. For example, in [DM03b], the authors consider
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Hilbert modules over certain algebras A(Ω) of analytic functions on bounded
domains Ω ⊆ C

d. They introduce a notion of quasi-free Hilbert module that
is related to localization, and is characterized as follows. Consider an inner
product on the algebraic tensor product A(Ω)⊗ `2 of vector spaces with three
properties: a) evaluations at points of Ω should be locally uniformly bounded,
b) module multiplication from A(Ω) × (A(Ω) ⊗ `2) to A(Ω) ⊗ `2 should be
continuous, and c) it satisfies a technical condition relating Hilbert norm con-
vergence to pointwise convergence throughout Ω. The completion of A(Ω)⊗ `2

in that inner product gives rise to a Hilbert module over A(Ω), and such Hilbert
modules are called quasi-free.

The main result of [DM03b] asserts that “weak” quasi-free resolutions

· · · −→ Q2 −→ Q1 −→ H −→ 0

exist for certain Hilbert modules H over A(Ω), namely those that are higher-
dimensional generalizations of the Hilbert modules studied by Cowen and Dou-
glas in [CD78] for domains Ω ⊆ C. The modules Qk are quasi-free in the sense
above, but their ranks may be infinite and such sequences may fail to terminate
in a finite number of steps.

3. Generators

Throughout this section we consider contractive Hilbert modules over the
noncommutative polynomial algebra C〈z1, . . . , zd〉, perhaps graded.

Definition 3.1. Let H be a Hilbert module over C〈z1, . . . , zd〉. By a generator
for H we mean a linear subspace G ⊆ H such that

H = span {f · ζ : f ∈ C〈z1, . . . , zd〉, ζ ∈ G}.

We also say that H is finitely generated if it has a finite-dimensional genera-
tor, and in the category of graded Hilbert modules the term means a bit more,
namely, that there is a finite-dimensional graded generator.

According to Definition 2.1, a finitely generated Hilbert module H is properly
generated precisely when the defect subspace Hª(Z ·H) is a finite-dimensional
generator. In general, the defect subspace H ª (Z · H) of a finitely generated
Hilbert module is necessarily finite-dimensional, but it can fail to generate and
is sometimes {0} (for examples, see the proof of Proposition 3.4). In particular,
finitely generated Hilbert modules need not be properly generated. The purpose
of this section is to show that many important examples are properly generated,
and that many others are related to properly generated Hilbert modules in a
simple way.

The following result can be viewed as a noncommutative operator theoretic
counterpart of Nakayama’s Lemma ([Eis04], Lemma 1.4).

Proposition 3.2. Every finitely generated graded Hilbert module is properly
generated.
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Proof. The space G = H ª (Z · H) is obviously a graded subspace of H, and
it is finite-dimensional because dimG = dim(H/(Z · H)) is dominated by the
cardinality of any generating set. We have to show that G is a generator.

For that, we claim that the spectrum of the gauge group Γ is bounded below.
Indeed, the hypothesis implies that there is a finite set of elements ζ1, . . . , ζs of
H, each having finite Γ-spectrum, which generate H. By enlarging the set of
generators appropriately and adjusting notation, we can assume that each ζk

is an eigenvector of Γ,

Γ(λ)ζk = λnkζk, λ ∈ T, 1 ≤ k ≤ s.

Let n0 be the minimum of n1, n2, . . . , ns. For any monomial f of respective
degrees p1, . . . , pd in the noncommuting variables z1, . . . , zd and every k =
1, . . . , s, f · ζk is an eigenvector of Γ satisfying

Γ(λ)(f · ζk) = λNf · ζk

with N = p1 + · · ·+ pd + nk ≥ n0. Since elements of this form have H as their
closed linear span, the spectrum of Γ is bounded below by n0.

Setting Hn = {ξ ∈ H : Γ(λ)ξ = λnξ, λ ∈ T} for n ∈ Z, we conclude that

H = Hn0
⊕ Hn0+1 ⊕ · · · ,

and one has Z · Hn ⊆ Hn+1 for all n ≥ n0.
Since G = H ª (Z · H) is gauge-invariant it has a decomposition

G = Gn0
⊕ Gn0+1 ⊕ · · · ,

in which Gn0
= Hn0

, Gn = Hn ª (Z ·Hn−1) for n > n0, and where only a finite
number of Gk are nonzero. Thus, each eigenspace Hn decomposes into a direct
sum

Hn = Gn ⊕ (Z · Hn−1), n > n0.

Setting n = n0 + 1 we have Hn0+1 = span(Gn0+1 + Z · Gn0
) and, continuing

inductively, we find that for all n > n0,

Hn = span(Gn + Z · Gn−1 + Z⊗2 · Gn−2 + · · · + Z⊗(n−n0) · Gn0
),

where Z⊗r denotes the space of homogeneous polynomials of total degree r.
Since H is spanned by the subspaces Hn, it follows that G is a generator. ¤

One obtains the most general examples of graded Hilbert submodules of
the rank-one free commutative Hilbert module H2 in explicit terms by choos-
ing a (finite or infinite) sequence of homogeneous polynomials φ1, φ2, . . . and
considering the closure in H2 of the set of all finite linear combinations
f1 ·φ1+ · · ·+fs ·φs, where f1, . . . , fs are arbitrary polynomials and s = 1, 2, . . . .
In Remark 2.5 above, we alluded to the fact that in all nontrivial cases, graded
submodules of H2 are Hilbert modules of infinite rank. However, Proposition
5.3 below implies that these examples are properly finitely generated, so they
have free covers of finite defect by Theorem 2.4.
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Remark 3.3 (Examples of Higher Degree). We now describe a class of infinite
rank ungraded examples with substantially different properties. Perhaps we
should point out that there is a more general notion of grading with respect
to which the ambient operators T1, . . . , Td in these examples are graded with
various degrees larger than one. For brevity, we retain the simpler definition
of grading (2.2) by viewing these examples as ungraded. Fix a d-tuple of
positive integers N1, . . . , Nd and consider the following d-contraction acting on
the Hilbert space H = H2(Cd)

(T1, . . . , Td) = (SN1

1 , . . . , SNd

d ),

where (S1, . . . , Sd) is the d-shift. The defect space of this Hilbert module

G = H ª (T1H + · · · + TdH)−

coincides with the intersection of the kernels ker T ∗
1 ∩ · · · ∩ ker T ∗

d ; and in this
case one can compute these kernels explicitly, with the result

G = span{zn1

1 · · · znd

d : 0 ≤ nk < Nk, 1 ≤ k ≤ d}.

Moreover, for every set of nonnegative integers `1, . . . , `d, the set of vectors
T `1

1 · · ·T `d

d G contains all monomials of the form

z`1N1+n1

1 · · · z`dNd+nd

d , 0 ≤ nk < Nk, 1 ≤ k ≤ d.

It follows from these observations that G is a proper generator for H, and
Theorem 2.4 provides a free cover of the form A : H2 ⊗ G → H.

Another straightforward computation with coefficients shows that the defect
operator of this Hilbert module is of infinite rank whenever at least one of
the integers N1, . . . , Nd is larger than 1. In more detail, each monomial zn =
zn1

1 · · · znd

d , n1, . . . , nd ≥ 0, is an eigenvector of the defect operator ∆ = (1 −

T1T
∗
1 −· · ·−TdT

∗
d )1/2; and when nk ≥ Nk for all k, a straightforward application

of the formulas on pp. 178–179 of [Arv98] shows that

∆ zn1

1 · · · znd

d = c(n)zn1

1 · · · znd

d

where the eigenvalues c(n) = c(n1, . . . , nd) satisfy 0 < c(n) < 1. Hence the
defect operator has infinite rank. We conclude that, while dilation theory
provides a coisometry B : H2 ⊗ C → H from another free Hilbert module to
H, it is necessary that C be an infinite dimensional Hilbert space. Needless to
say, such a B cannot define a free cover.

The preceding examples are all of infinite rank, and it is natural to ask
about finite rank d-contractions – which were the focus of [Arv98], [Arv00],
[Arv02]. Significantly, while the Hilbert module associated with a finite rank
d-contraction is frequently not properly generated, it can always be extended
to a properly generated one by way of a finite-dimensional perturbation.

Proposition 3.4. Every pure Hilbert module H of finite rank can be extended
trivially to a properly generated one in the sense that there is an exact sequence
of Hilbert modules

0 −→ K −→ H̃ −→
A

H −→ 0
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in which H̃ is is a properly generated pure Hilbert module of the same rank, K
is a finite-dimensional Hilbert submodule of H̃, and A is a coisometry.

Proof. A standard dilation-theoretic technique (see [Arv98] for the commuta-
tive case, the proof of which works as well in general) shows that a pure Hilbert
module of rank r is unitarily equivalent to a quotient of the form

H ∼= (F 2 ⊗ C)/M

where F 2 is the noncommutative free module of rank 1, C is an r-dimensional
coefficient space, and M is a closed submodule of F 2 ⊗C. We identify H with
the orthocomplement M⊥ of M in F 2 ⊗C, with operators T1, . . . , Td obtained
by compressing to M⊥ the natural operators U1 ⊗ 1C , . . . , Ud ⊗ 1C of F 2 ⊗C.

Consider H̃ = M⊥ + 1 ⊗ C. This is a finite-dimensional extension of M⊥

that is also invariant under U∗
k ⊗ 1C , hence it defines a pure Hilbert module

of rank r by compressing the natural operators in the same way to obtain
T̃1, . . . , T̃d ∈ B(H̃). Since H̃ contains H, the projection PM⊥ restricts to a

homomorphism of Hilbert modules A : H̃ → H. A is a coisometry, and the
kernel of A is finite-dimensional because dim(H̃/H) < ∞.

To see that H̃ is properly generated, one computes the defect operator ∆ of
H̃. Indeed, ∆ = (1H̃ − T̃1T̃

∗
1 − · · · − T̃dT̃

∗
d )1/2 is seen to be the compression of

the defect operator of U1⊗1C , . . . , Ud⊗1C to H̃, and the latter defect operator
is the projection onto 1⊗C. Since H̃ contains 1⊗C, the defect operator of H̃
is the projection on 1 ⊗ C.

Finally, we make use of the observation that a pure finite rank d-tuple is
properly generated whenever its defect operator is a projection. Indeed, the
range of the defect operator ∆ is always a generator, and when ∆ is a projection
its range coincides with ker T̃ ∗

1 ∩ · · · ∩ k̃erT ∗
d . ¤

4. Existence of Free Covers

We now establish the existence and uniqueness of free covers for properly
generated Hilbert modules over C〈z1, . . . , zd〉. A cover A : F → H induces a
unitary map of defect spaces; the following result implies that this isometry of
quotients lifts to an isometry of the corresponding subspaces.

Lemma 4.1. Let H be a Hilbert module and let A : F → H be a cover. Then
A restricts to a unitary operator from F ª (Z · F ) to H ª (Z · H).

Proof. Let Q ∈ B(H) be the projection onto H ª (Z · H). The natural map
of H onto the quotient Hilbert space H/(Z · H) is a partial isometry whose
adjoint is the isometry

η + Z · H ∈ H/(Z · H) 7→ Qη ∈ H ª (Z · H), η ∈ H.
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Thus we can define a unitary map Ã from F ª (Z · F ) onto H ª (Z · H) by
composing the three unitary operators

ζ ∈ F ª (Z · F ) 7→ ζ + Z · F ∈ F/(Z · F ),

Ȧ : F/(Z · F ) → H/(Z · H),

η + Z · H ∈ H/(Z · H) 7→ Qη ∈ H ª (Z · H), η ∈ H,

to obtain Ãζ = QAζ, ζ ∈ F ª (Z · F ). We claim now that QAζ = Aζ for all
ζ ∈ F ª (Z ·F ). To see that, note that Q⊥ is the projection onto Z ·H, so that
for all ζ ∈ F ª (Z · F ) one has

‖QAζ‖ = ‖Aζ − Q⊥Aζ‖ = inf
η∈Z·H

‖Aζ − η‖

= ‖Ȧ(ζ + Z · F )‖H/(Z·H) = ‖ζ + Z · F‖F/(Z·F ) = ‖ζ‖.

Hence, ‖Aζ − QAζ‖2 = ‖Aζ‖2 − ‖QAζ‖2 = ‖Aζ‖2 − ‖ζ‖2 ≤ 0, and the claim
follows. We conclude that the restriction of A to F ª (Z · F ) is an isometry
with range H ª (Z · H). ¤

Proof of Theorem 2.4. Let H be a properly generated Hilbert module over
C〈z1, . . . , zd〉 and set C = H ª (Z · H). The hypothesis asserts that C is
a generator. We will show that there is a (necessarily unique) contraction
A : F 2 ⊗ C → H satisfying

(4.1) A(f ⊗ ζ) = f · ζ, f ∈ C〈z1, . . . , zd〉, ζ ∈ C,

and that such an operator A defines a free cover. For that, consider the com-
pletely positive map defined on B(H) by φ(X) = T1XT ∗

1 + · · · + TdXT ∗
d , and

let ∆ = (1− φ(1))1/2 be the defect operator of (2.1). Since H ª (Z ·H) is the
intersection of kernels ker T ∗

1 ∩ · · · ∩ ker T ∗
d = kerφ(1), it follows that

C = H ª (Z · H) = {ζ ∈ H : ∆ζ = ζ}.

Thus, C is a subspace of the range of ∆ on which ∆ restricts to the identity
operator, and which generates H. We now use the “dilation telescope” to show
that there is a unique contraction L : F 2 ⊗ ∆H → H such that

(4.2) L(f ⊗ ζ) = f · ∆ζ, f ∈ C〈z1, . . . , zd〉, ζ ∈ ∆H.

Indeed, since the monomials {zi1 ⊗ · · · ⊗ zin
: i1, . . . , in ∈ {1, . . . , d}}, n =

1, 2, . . . , together with the constant polynomial 1, form an orthonormal basis
for F 2, the formal adjoint of L is easily computed and found to be

L∗ξ = 1 ⊗ ∆ξ +
∞
∑

n=1

d
∑

i1,...,in=1

zi1 ⊗ · · · ⊗ zin
⊗ ∆T ∗

in
· · ·T ∗

i1ξ, ξ ∈ H.
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One calculates norms in the obvious way to obtain

‖L∗ξ‖2 = ‖∆ξ‖2 +

∞
∑

n=1

d
∑

i1,...,in=1

‖∆T ∗
in
· · ·T ∗

i1ξ‖
2

= 〈(1 − φ(1))ξ, ξ〉 +

∞
∑

n=1

〈(φn(1 − φ(1))ξ, ξ〉

= 〈(1 − φ(1))ξ, ξ〉 +
∞
∑

n=1

〈(φn(1) − φn+1(1))ξ, ξ〉

= ‖ξ‖2 − lim
n→∞

〈φn(1)ξ, ξ〉 ≤ ‖ξ‖2.

Hence ‖L‖ = ‖L∗‖ ≤ 1. Finally, let A be the restriction of L to the submodule
F 2 ⊗ C ⊆ F 2 ⊗ ∆H, where we now consider F 2 ⊗ C as a free Hilbert module
of possibly smaller defect. Since ∆ restricts to the identity on C, (4.1) follows
from (4.2).

By its definition, the restriction of A to 1 ⊗ C is an isometry with range
C = H ª (Z · H), hence A induces a unitary operator of defect spaces

Ȧ : (F 2 ⊗ C)/(Z · (F 2 ⊗ C)) ∼= 1 ⊗ C → C = H ª (Z · H) ∼= H/(Z · H).

The range of A is dense, since it contains

{f · ζ : f ∈ C〈z1, . . . , zd〉, ζ ∈ H ª (Z · H)}

and H is properly generated. It follows that A : F 2 ⊗ C → H is a free cover.
For uniqueness, let B : F̃ = F 2 ⊗ C̃ → H be another free cover of H. We

exhibit a unitary isomorphism of Hilbert modules V ∈ B(F 2 ⊗ C̃, F 2 ⊗C) such
that BV = A as follows. We have already pointed out that the defect space
of F̃ = F 2 ⊗ C̃ (resp. F = F 2 ⊗ C)) is identified with 1 ⊗ C̃ (resp. 1 ⊗ C).
Similarly, the defect space of H is identified with Hª(Z ·H). Since both A and
B are covers of H, Lemma 4.1 implies that they restrict to unitary operators,
from the respective spaces 1⊗C and 1⊗C̃, onto the same subspace Hª(Z ·H)

of H. Thus there is a unique unitary operator V0 : C → C̃ that satisfies

A(1 ⊗ ζ) = B(1 ⊗ V0ζ), ζ ∈ C.

Let V = 1F 2 ⊗ V0 ∈ B(F 2 ⊗ C̃, F 2 ⊗ C). Obviously V is a unitary operator,
and it satisfies BV = A since for every polynomial f ∈ C〈z1, . . . , zd〉

BV (f ⊗ ζ) = B(f · (1 ⊗ V0ζ)) = f · B(1 ⊗ V0ζ) = f · A(1 ⊗ ζ) = A(f ⊗ ζ),

and one can take the closed linear span on both sides. V must implement
an isomorphism of modules since for any polynomials f, g ∈ C〈z1, . . . , zd〉 and

every ζ ∈ C̃ we have

V (f · (g ⊗ ζ)) = (1 ⊗ V0)(f · g ⊗ ζ) = f · (g ⊗ V0ζ) = f · V (g ⊗ ζ).

Conversely, if a Hilbert module H has a free cover A : F 2 ⊗ C → H, then
since 1 ⊗ C is the orthocomplement of Z · (F 2 ⊗ C), Lemma 4.1 implies that
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A(1 ⊗ C) = H ª (Z · H)). Since A is a module homomorphism, we see that

A(span{f ⊗ ζ : f ∈ C, ζ ∈ C}) = span{f · ζ : f ∈ C, ζ ∈ H ª (Z · H)}.

The closure of the left side is H because A has dense range, and we conclude
that H ª (Z · H) is a generator of H. ¤

We require the following consequence of Theorem 2.4 for finitely generated
graded Hilbert modules.

Theorem 4.2. Every finitely generated graded Hilbert module H over the non-
commutative polynomial algebra has a graded free cover A : F 2 ⊗ C → H, and
any two graded graded free covers are equivalent.

If the underlying operators of H commute, then this free cover descends nat-
urally to a commutative graded free cover B : H2 ⊗ C → H.

Proof. Proposition 3.2 implies that the space C = H ª (Z · H) is a finite-
dimensional generator. Moreover, since Z · H is invariant under the gauge
group, so is C, and the restriction of the gauge group to C gives rise to a
unitary representation W : T → B(C) of the circle group on C.

If we make the free Hilbert module F 2 ⊗C into a graded one by introducing
the gauge group

Γ(λ) = Γ0(λ) ⊗ W (λ), λ ∈ T,

then we claim that the map A : F 2 ⊗ C → H defined in the proof of Theorem
2.4 must intertwine Γ and ΓH . Indeed, this follows from the fact that for every
polynomial f ∈ C〈z1, . . . , zd〉, every ζ ∈ C, and every λ ∈ T, one has

ΓH(λ)A(f ⊗ ζ) = ΓH(λ)(f · ζ) = f(λz1, . . . , λzd) · ΓH(λ)ζ

= A(Γ0(λ)f ⊗ W (λ)ζ) = AΓ(λ)(f ⊗ ζ).

The proof of uniqueness in the graded context is now a straightforward vari-
ation of the uniqueness proof of Theorem 2.4. Finally, since H2 is naturally
identified with the quotient F 2/K where K is the closure of the commutator
ideal in C〈z1, . . . , zd〉, it follows that when the underlying operators commute,
the cover A : F 2⊗C → H factors naturally through (F 2/K)⊗C ∼ H2⊗C and
one can promote A to a graded commutative free cover B : H2 ⊗ C → H. ¤

5. Existence of Free Resolutions

We turn now to the proof of existence of finite resolutions for graded Hilbert
modules over the commutative polynomial algebra C[z1, . . . , zd]. We require
some algebraic results obtained by Hilbert at the end of the century before last
[Hil90], [Hil93]. While Hilbert’s theorems have been extensively generalized,
what we require are the most concrete versions of a) the basis theorem and b)
the syzygy theorem. We now describe these classical results in a formulation
that is convenient for our purposes, referring the reader to [Nor76], [Eis94] and
[Ser00] for more detail on the underlying linear algebra.

Let T1, . . . , Td be a set of commuting linear operators acting on a complex
vector space M . We view M as a module over C[z1, . . . , zd] in the usual way,
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with f · ξ = f(T1, . . . , Td)ξ, f ∈ C[z1, . . . , zd], ξ ∈ M . Such a module is said
to be graded if there is a specified sequence Mn, n ∈ Z, of subspaces that gives
rise to an algebraic direct sum decomposition

M =
∞
∑

n=−∞

Mn

with the property TkMn ⊆ Mn+1, for all k = 1, . . . , d, n ∈ Z. Thus, every
element ξ of M admits a unique decomposition ξ =

∑

n ξn, where ξn belongs
to Mn and ξn = 0 for all but a finite number of n. We confine ourselves to
the standard grading on C[z1, . . . , zd] in which the generators z1, . . . , zd are all
of degree 1. Finally, M is said to be finitely generated if there is a finite set
ζ1, . . . , ζs ∈ M such that

M = {f1 · ζ1 + · · · + fs · ζs : f1, . . . , fd ∈ C[z1, . . . , zd]}.

A free module is a module of the form F = C[z1, . . . , zd] ⊗ C where C is a
complex vector space, the module action being defined in the usual way by
f · (g ⊗ ζ) = (f · g) ⊗ ζ. The rank of F is the dimension of C. A free module
can be graded in many ways, and for our purposes the most general grading
on F = C[z1, . . . , zd] ⊗ C is defined as follows. Given an arbitrary grading on
the “coefficient” vector space C

C =

∞
∑

n=−∞

Cn,

there is a corresponding grading of the tensor product F =
∑

n Fn in which

Fn =

∞
∑

k=0

Zk ⊗ Cn−k,

where Zk denotes the space of all homogeneous polynomials of degree k in
C[z1, . . . , zd], and where the sum on the right denotes the linear subspace of F
spanned by ∪{Zk ⊗ Cn−k : k ∈ Z}. If C is finite-dimensional, then there are
integers n1 ≤ n2 such that

C = Cn1
+ Cn1+1 + · · · + Cn2

,

so that

(5.1) Fn =

∞
∑

k=0

Zk ⊗ Cn−k =

max(n−n1,0)
∑

k=max(n−n2,0)

Zk ⊗ Cn−k

is finite-dimensional for each n ∈ Z, Fn = {0} for n < n1, and Fn is spanned
by Zn−n2 · Fn2

for n ≥ n2.
Homomorphisms of graded modules u : M → N are required to be of degree

zero

u(Mn) ⊆ Nn, n ∈ Z.

It will also be convenient to adapt Serre’s definition of minimality for homo-
morphisms of modules over local rings (page 84 of [Ser00]) to homomorphisms
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of graded modules over C[z1, . . . , zd], as follows. A homomorphism u : M → N
of modules is said to be minimal if it induces an isomorphism of vector spaces

u̇ : M/(z1 · M + · · · + zd · M) → u(M)/u(z1 · M + · · · + zd · M).

Equivalently, u is minimal iff ker u ⊆ z1 · M + · · · + zd · M .
A free resolution of an algebraic graded module M is a (perhaps infinite)

exact sequence of graded modules

· · · −→ Fn −→ · · · −→ F2 −→ F1 −→ M −→ 0,

where each Fr is free or 0. Such a resolution is said to be finite if each Fr

is of finite rank and Fr = 0 for sufficiently large r, and minimal if for every
r = 1, 2, . . . , the arrow emanating from Fr denotes a minimal homomorphism.

Theorem 5.1 (Basis Theorem). Every submodule of a finitely generated module
over C[z1, . . . , zd] is finitely generated.

Theorem 5.2 (Syzygy Theorem). Every finitely generated graded module M
over C[z1, . . . , zd] has a finite free resolution

0 −→ Fn −→ · · · −→ F2 −→ F1 −→ M −→ 0

that is minimal with length n at most d, and any two minimal resolutions are
isomorphic.

While we have stated the ungraded version of the basis theorem, all we re-
quire is the special case for graded modules. We base the proof of Theorem 2.6
on two operator-theoretic results, the first of which is a Hilbert space counter-
part of the basis theorem for graded modules.

Proposition 5.3. Let H be a finitely generated graded Hilbert module over
C[z1, . . . , zd] and let K ⊆ H be a closed gauge-invariant submodule. Then K
is a properly generated graded Hilbert module of finite defect.

Proof. We first collect some structural information about H itself. Let Γ be
the gauge group of H and consider the spectral subspaces of Γ

Hn = {ξ ∈ H : Γ(λ)ξ = λnξ}, n ∈ Z.

The finite-dimensional subspace G = H ª (Z ·H) is invariant under the action
of Γ, and Proposition 3.2 implies that G is a generator. Writing Gn = G∩Hn,
n ∈ Z, it follows that G decomposes into a finite sum of mutually orthogonal
subspaces

G = Gn1
+ Gn1+1 + · · · + Gn2

,

where n1 ≤ n2 are fixed integers. A computation similar to that of (5.1) shows
that Hn = {0} for n < n1, and for n ≥ n1, Hn can be expressed in terms of
the Gk by way of

(5.2) Hn =

max(n−n1,0)
∑

k=max(n−n2,0)

Zk · Gn−k. n ∈ Z;

in particular, each Hn is finite-dimensional.
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Consider the algebraic module

H0 = span{f · ζ : f ∈ C[z1, . . . , zd], ζ ∈ G}

generated by G. Formula (5.2) shows that H0 is linearly spanned by the spec-
tral subspaces of H,

(5.3) H0 = Hn1
+ Hn1+1 + · · · .

Now let K ⊆ H be a closed invariant subspace that is also invariant under the
action of Γ. Letting Kn = Hn∩K be the corresponding spectral subspace of K,
then we have a decomposition of K into mutually orthogonal finite-dimensional
subspaces

K = Kn1
⊕ Kn1+1 ⊕ · · · ,

such that zkKn ⊆ Kn+1, for 1 ≤ k ≤ d, n ≥ n1. Let K0 be the (nonclosed)
linear span

K0 = Kn1
+ Kn1+1 + · · · .

Obviously, K0 is dense in K and it is a submodule of the finitely generated
algebraic module H0. Theorem 5.1 implies that there is a finite set of vectors
ζ1, . . . , ζs ∈ K0 such that

K0 = {f1 · ζ1 + · · · + fs · ζs : f1, . . . , fs ∈ C[z1, . . . , zd]}.

Choosing p large enough that ζ1, . . . , ζs ∈ Kn1
+ · · · + Kp, we find that Kn1

+
· · · + Kp is a graded finite-dimensional generator for K. An application of
Proposition 3.2 now completes the proof. ¤

5.1. From Hilbert Modules to Algebraic Modules. A finitely gener-
ated graded Hilbert module H over C[z1, . . . , zd] has many finite-dimensional
graded generators G; if one fixes such a G then there is an associated algebraic
graded module M(H,G) over C[z1, . . . , zd], namely

M(H,G) = span{f · ζ : f ∈ C[z1, . . . , zd], ζ ∈ G}.

The second result that we require is that it is possible to make appropriate
choices of G so as to obtain a functor from Hilbert modules to algebraic mod-
ules. We now define this functor and collect its basic properties.

Consider the category Hd whose objects are graded finitely generated Hilbert
modules over C[z1, . . . , zd], with covers as maps. Thus, hom(H,K) consists of
graded homomorphisms A : H → K satisfying ‖A‖ ≤ 1, such that AH is dense
in K, and which induce unitary operators of defect spaces

Ȧ : H/(Z · H) → K/(Z · K).

Since we are requiring maps in hom(H,K) to have dense range, a straightfor-
ward argument (that we omit) shows that hom(·, ·) is closed under composition.

The corresponding algebraic category Ad has objects consisting of graded
finitely generated modules over C[z1, . . . , zd], in which u ∈ hom(M,N) means
that u is a minimal graded homomorphism satisfying u(M) = N .
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Proposition 5.4. For every Hilbert module H in Hd let H0 be the algebraic
module over C[z1, . . . , zd] defined by

H0 = span{f · ζ : f ∈ C[z1, . . . , zd], ζ ∈ H ª (Z · H)}.

Then H0 belongs to Ad. Moreover, for every A ∈ hom(H,K) one has AH0 =
K0, and the restriction A0 of A to H0 defines an element of hom(H0,K0).
The association H → H0, A → A0 is a functor satisfying:

(i) For every H ∈ Hd, H0 = {0} =⇒ H = {0}.
(ii) For every A ∈ hom(H,K), A0 = 0 =⇒ A = 0.
(iii) For every free graded Hilbert module F of defect r, F 0 is a free algebraic

graded module of rank r.

Proof. Since the defect subspace Hª(Z ·H) is finite-dimensional and invariant
under the action of the gauge group Γ, H0 is a finitely generated module over
the polynomial algebra that is invariant under the action of the gauge group.
Thus it acquires an algebraic grading H0 =

∑

n H0
n by setting

H0
n = H0 ∩ Hn = {ξ ∈ H0 : Γ(λ)ξ = λnξ, λ ∈ T}, n ∈ Z.

Let H,K ∈ Hd and let A ∈ hom(H,K). Lemma 4.1 implies that

A(H ª (Z · H)) = K ª (Z · K),

so that A restricts to a surjective graded homomorphism of modules A0 : H0 →
K0. We claim that A0 is minimal, i.e., kerA0 ⊆ z1 ·H

0 + · · ·+ zd ·H
0. To see

that, choose ξ ∈ H0 such that Aξ = 0. Since H0 decomposes into a sum

H0 = H ª (Z · H) + z1 · H
0 + · · · + zd · H0,

we can decompose ξ correspondingly

ξ = ζ + z1 · η1 + · · · + zd · ηd,

where ζ ∈ H ª (Z · H) and ηj ∈ H0. Since Ȧ is an injective operator defined
on H/(Z ·H), ker A must be contained in Z ·H. It follows that ξ ∈ Z ·H, and
therefore ζ = ξ − z1 · η1 − · · · − zd · ηd ∈ Z · H = (H ª (Z · H))⊥ is orthogonal
to itself. Hence ζ = 0, and we have the desired conclusion

ξ = z1 · η1 + · · · + zd · ηk ∈ z1 · H
0 + · · · + zd · H0.

The restriction A0 of A to H0 is therefore a minimal homomorphism, whence
A0 ∈ hom(H0,K0).

The composition rule (AB)0 = A0B0 follows immediately, so that we have
defined a functor. Finally, both properties (i) and (ii) are consequences of the
fact that, by Proposition 3.2, H0 is dense in H, while (iii) is obvious. ¤

Proof of Theorem 2.6. Given a graded finitely generated Hilbert module H, we
claim that there is a weakly exact sequence

(5.4) · · · −→ Fn −→ · · · −→ F2 −→ F1 −→ H −→ 0,

in which each Fr is a free graded Hilbert module of finite defect. Indeed,
Proposition 5.3 implies that H is properly generated, and by Theorem 2.6, it
has a graded free cover A : F1 → H in which F1 = H2 ⊗ C1 is a graded free
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Hilbert module with dimC1 = defect(F1) = defect(H) < ∞. This gives a
sequence of graded Hilbert modules

(5.5) F1 −→
A

H −→ 0

that is weakly exact at H. Proposition 5.3 implies that kerA is a properly
generated graded Hilbert module of finite defect, so that another application
of Theorem 2.6 produces a graded free cover B : F2 → ker A in which F2 is
a graded free Hilbert module of finite defect. Thus we can extend (5.5) to a
longer sequence

F2 −→ F1 −→ H −→ 0

that is weakly exact at F1 and H. Continuing inductively, we obtain (5.4).
Another application of Theorem 2.6 implies that the sequence (5.4) is

uniquely determined by H up to a unitary isomorphism of diagrams. The
only issue remaining is whether its length is finite. To see that (5.4) must ter-
minate, consider the associated sequence of graded algebraic modules provided
by Proposition 5.4

· · · −→ F 0
n −→ · · · −→ F 0

2 −→ F 0
1 −→ H0 −→ 0.

Proposition 5.4 implies that this is a minimal free resolution of H0 into graded
free modules F 0

r of finite rank. The uniqueness assertion of Theorem 5.2 implies
that there is an integer n ≤ d such that F 0

r = 0 for all r > n. By Proposition
5.4 (i), we have Fr = 0 for r > n. ¤

Remark 5.5 (Noncommutative Generalizations). Perhaps it is worth pointing
out that there is no possibility of generalizing Theorem 2.6 to the noncom-
mutative setting, the root cause being that Hilbert’s basis theorem fails for
modules over the noncommutative algebra C〈z1, . . . , zd〉. More precisely, there
are finitely generated graded Hilbert modules H over C〈z1, . . . , zd〉 that do not
have finite free resolutions. Indeed, while Theorem 2.4 implies that for any
such Hilbert module H there is a graded free Hilbert module F1 = F 2⊗C with
dimC < ∞ and a weakly exact sequence of graded Hilbert modules

F1 −→
A

H −→ 0,

and while the kernel of A is a certainly a graded submodule of F 2 ⊗ C, the
kernel of A need not be finitely generated. For such a Hilbert module H,
this sequence cannot be continued beyond F1 within the category of Hilbert
modules of finite defect.

As a concrete example of this phenomenon, let N ≥ 2 be an integer, let
Z = C

d for some d ≥ 2, and consider the free graded noncommutative Hilbert
module

F 2 = C ⊕ Z ⊕ Z⊗2 ⊕ Z⊗3 ⊕ · · · .

We claim that there is an infinite sequence of unit vectors ζN , ζN+1, · · · ∈ F 2

such that ζn ∈ Z⊗n and, for all n ≥ N ,

ζn+1 ⊥ Mn = {fN ·ζN +fN+1 ·ζN+1 + · · ·+fn ·ζn : fN , . . . , fn ∈ C〈z1, . . . , zd〉}.
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Indeed, choose a unit vector ζN arbitrarily in Z⊗N and, assuming that
ζN , . . . , ζn have been defined with the stated properties, note that Mn is a
graded submodule of F 2 such that

Mn ∩ Z⊗(n+1) = Z⊗(n+1−N) · ζN + Z⊗(n−N) · ζN+1 + · · · + Z · ζn.

Recalling that dim Zk = dk, an obvious dimension estimate implies that

dim(Mn ∩ Z⊗(n+1)) ≤ dn+1−N + · · · + d = d
dn−N+1 − 1

d − 1

<
dn−N+2

d − 1
≤ dn−N+2 < dn+1 = dim(Z⊗(n+1)).

Hence there is a unit vector ζn+1 ∈ Z⊗(n+1) that is orthogonal to Mn. Now let
M be the closure of MN ∪MN+1∪· · · . M is a graded invariant subspace of F 2

with the property that M ª(Z ·M) contains the orthonormal set ζN , ζN+1, . . . ,
so that M cannot be finitely generated.

Finally, if we take H to be the Hilbert space quotient F 2/M , then H is a
graded Hilbert module over C〈z1, . . . , zd〉 having a single gauge-invariant cyclic
vector 1 + M , such that the natural projection A : F 2 → H = F 2/M is a
graded free cover of H where ker A = M is not finitely generated.

Notice that the preceding construction used the fact that the dimensions of
the spaces Z⊗k of noncommutative homogeneous polynomials grow exponen-
tially in k. If one attempts to carry out this construction in the commutative
setting, in which F 2 is replaced by H2, one will find that the construction of the
sequence ζN , ζN+1, . . . fails at some point because the dimensions of the spaces
Zk of homogeneous polynomials grow too slowly. Indeed, as reformulated in
Proposition 5.3, Hilbert’s remarkable basis theorem implies that this construc-
tion must fail in the commutative setting, since every graded submodule of H2

is finitely generated.

6. Examples of Free Resolutions

In this section we discuss some examples of free resolutions and their associ-
ated Betti numbers. There are two simple - and closely related - procedures for
converting a free Hilbert module into one that is no longer free, by changing
its ambient operators as follows.

(1) Append a number r of zero operators to the d-shift (S1, . . . , Sd) to
obtain a (d + r)-contraction acting on H2[z1, . . . , zd] that is not the
(d + r)-shift.

(2) Pass from H2[z1, . . . , zd] to a quotient H2[z1, . . . , zd]/K where K is the
closed submodule generated by some of the coordinates z1, . . . , zd.

We begin by pointing out that one can understand either of these examples
(1) or (2) by analyzing the other. We then calculate the Betti numbers of the
Hilbert modules of (1) in the case where one appends three zero operators to
the d-shift. In order to calculate the Betti numbers of a graded Hilbert module
one has to calculate its free resolution, and that is the route we follow.
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To see that (1) and (2) are equivalent constructions, consider the operator
(d + r)-tuple T̄ = (S1, . . . , Sd, 0, . . . , 0) obtained from the d-shift (S1, . . . , Sd)
acting on H2[z1, . . . , zd] by adjoining r zero operators. Let K be the closed
invariant subspace of H2[z1, . . . , zd+r] generated by zd+1, zd+2, . . . , zd+r. Re-
calling that H2[z1, . . . , zd] embeds isometrically in H2[z1, . . . , zd+r] with ortho-
complement K,

H2[z1, . . . , zd+r] = H2[z1, . . . , zd] ⊕ K,

one finds that the quotient Hilbert module H2[z1, . . . , zd+r]/K is identified with
H2[z1, . . . , zd] in such a way that the natural (d+r)-contraction defined by the
quotient is unitarily equivalent to T̄ .

Before turning to explicit computations we point out that, in order to calcu-
late free resolutions, one has to iteratively calculate free covers. The procedure
is summarized as follows.

Remark 6.1 (Free Covers and Free Resolutions). Let H be a finitely gener-
ated graded Hilbert module over C[z1, . . . , zd]. In order to calculate the free
resolution of H one has to iterate the following procedure.

(1) One first calculates the free cover A1 : H2[z1, . . . , zd] ⊗ G1 → H of
H, following the proof of Theorem 2.4. To carry that out, one must
calculate the unique proper generator G1 ⊆ H

G1 = H ª (Z · H),

the connecting map A1 being the closure of the multiplication map

A(f ⊗ ζ) = f · ζ, f ∈ C[z1, . . . , zd], ζ ∈ G1,

where the free Hilbert module H2[z1, . . . , zd]⊗G1 is endowed with the
grading Γ0⊗W , W being the unitary representation of the circle group
on G defined by restricting the grading ΓH of H,

W (λ) = ΓH(λ) ¹G, λ ∈ T.

Notice that in order to carry out this step, one basically has to identify
Z · H and its orthocomplement in concrete terms.

(2) One then replaces H with the finitely generated graded Hilbert module
ker A1 ⊆ H2[z1, . . . , zd]⊗G1 and repeats the procedure. It is significant
that in order to continue, one must identify the kernel of A1 and its
proper generator G2 = kerA1 ª (Z · ker A1).

According to Theorems 2.4 and 2.6, this process will terminate in the zero
Hilbert module after at most d steps, and the resulting sequence

0 −→ H2[z1, . . . , zd] ⊗ Gn −→
An

· · · −→
A2

H2[z1, . . . , zd] ⊗ G1 −→
A1

H −→ 0

is the free resolution of H. Once one has the free resolution, one can read off
the Betti numbers of H as the multiplicities of the various free Hilbert modules
that have appeared in the sequence, in their order of appearance.

We now discuss the examples of (1) for the case r = 3 and arbitrary d.
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Proposition 6.2. The Hilbert module associated with the (d + 3)-contraction
(S1, . . . , Sd, 0, 0, 0) acting on H2[z1, . . . , zd] has Euler characteristic zero, and
its sequence of Betti numbers is

(β1, . . . , βd+3) = (1, 3, 3, 1, 0, . . . , 0).

Sketch of Proof. We show that the free resolution of H has the form

0 −→ F4 −→ F3 −→ F2 −→ F1 −→ H −→ 0

where Fk = H2[z1, . . . , zd+3] ⊗ Gk, G1, G2, G3, G4 being graded coefficient
spaces of respective dimensions 1, 3, 3, 1. We will exhibit the modules Fk and
the connecting maps explicitly, but we omit the details of computations with
polynomials.

We first compute the proper generator H ª (Z · H) of H. Writing

T1T
∗
1 + · · · + Td+3T

∗
d+3 = S1S

∗
1 + · · · + SdS

∗
d ,

one sees that the defect operator (1 −
∑

k TkT ∗
k )1/2 is the one-dimensional

projection [1] onto the constant polynomials. It follows that H has defect 1,
and its proper generator is the one-dimensional space C · 1.

Hence the first term in the free resolution of H is given by the free cover
A1 : H2[z1, . . . , zd+3] → H, where A1 is the closure of the map defined on
polynomials f ∈ C[z1, . . . , zd+3] by

A1f = f(S1, . . . , Sd, 0, 0, 0) · 1 = f(z1, . . . , zd, 0, 0, 0).

A1 is a coisometry, and further computation with polynomials shows that its
kernel is the closure K1 = (zd+1, zd+2, zd+3) of the ideal in C[z1, . . . , zd+3] gen-
erated by zd+1, zd+2, zd+3. This gives a sequence of contractive homomorphisms
of degree zero

0 −→ K1 −→ H2[z1, . . . , zd+3] −→ H −→ 0

that is exact at H2[z1, . . . , zd+3].
The kernel K1 is a graded submodule of H2[z1, . . . , zd+3], but the rank of

its defect operator is typically infinite. However, by Proposition 5.3, it has a
unique finite-dimensional proper generator G, given by

G = K1 ª (Z · K1) = K1 ª (z1 · K1 + · · · + zd+3 · K1).

To compute G, note that each of the elements zd+1, zd+2, zd+3 is of degree
one, while any homogeneous polynomial of Z · K1 is of degree at least two. It
follows that K1 = span{zd+1, zd+2, zd+3} ⊕ (Z · K1), and this identifies G as
the 3-dimensional Hilbert space

G = span{zd+1, zd+2, zd+3}.

The multiplication map A2 : F ⊗ G → F

A2(f ⊗ ζ) = f · ζ, f ∈ C[z1, . . . , zd+3], ζ ∈ G

is a contractive morphism that defines a free cover of K1; and A2 becomes a
degree zero map with respect to the gauge group Γ on H2[z1, . . . , zd+3] ⊗ G
defined by Γ = Γ0 ⊗ W where W is the restriction of the gauge group of
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H2[z1, . . . , zd+3] to its subspace G, namely W (λ) = λ1G, λ ∈ T. It follows that
the sequence

H2[z1, . . . , zd+3] ⊗ G −→
A2

H2[z1, . . . , zd+3] −→
A1

H −→ 0

is weakly exact at H2[z1, . . . , zd+3] and H.
Now consider K2 = ker A2 ⊆ H2[z1, . . . , zd+3] ⊗ G. Since every element of

H2[z1, . . . , zd+3] ⊗ G can be written uniquely in the form

ξ1 ⊗ zd+1 + ξ2 ⊗ zd+2 + ξ3 ⊗ zd+3, ξk ∈ H2[z1, . . . , zd+3]

we have

K2 = {ξ1 ⊗ zd+1 + ξ2 ⊗ zd+2 + ξ3 ⊗ zd+3 : zd+1 · ξ1 + zd+2 · ξ2 + zd+3 · ξ3 = 0}.

A nontrivial calculation with polynomials now shows that K2 is the closed
submodule of of H2 ⊗ G generated by the three “commutators” ζ1, ζ2, ζ3

ζ1 = zd+2 ⊗ zd+3 − zd+3 ⊗ zd+2 = zd+2 ∧ zd+3,

ζ2 = zd+1 ⊗ zd+3 − zd+3 ⊗ zd+1 = zd+1 ∧ zd+3

ζ3 = zd+1 ⊗ zd+2 − zd+2 ⊗ zd+1 = zd+1 ∧ zd+2.

Note, for example, that

f · ζ1 + g · ζ2 = −gzd+3 ⊗ zd+1 − fzd+3 ⊗ zd+2 + (gzd+1 + fzd+2) ⊗ zd+3.

These elements ζk are all homogeneous of degree two. Since any homogeneous
element of Z · K2 has degree at most three, it must be orthogonal to ζ1, ζ2, ζ3.
It follows that

K2 ª (Z · K2) = span{ζ2, ζ2, ζ3}

is 3-dimensional, having 2−1/2ζ1, 2
−1/2ζ2, 2

−1/2ζ3 as an orthonormal basis.
Set G̃ = span{ζ2, ζ2, ζ3}, with its grading (in this case homogeneous of degree

2) as inherited from the grading of H2[z1, . . . , zd+3] ⊗ G. The corresponding

free cover A3 : H2[z1, . . . , zd+3] ⊗ G̃ → K2 is given by

A3(f1 ⊗ ζ1 + f2 ⊗ ζ2 + f3 ⊗ ζ3) = f1 · ζ1 + f2 · ζ2 + f2 · ζ3,

for polynomials f1, f2, f3, and the grading of H2[z1, . . . , zd+3] ⊗ G̃ is given by
Γ(λ)(f ⊗ ζ) = λ2(Γ0(λ)f ⊗ ζ), λ ∈ T.

Finally, consider the submodule K3 = kerA3 ⊆ H2[z1, . . . , zd+3] ⊗ G̃. An-
other computation with polynomials shows that K3 has a single generator

η = zd+1 ⊗ ζ1 − zd+2 ⊗ ζ2 + zd+3 ⊗ ζ3

= zd+1 ⊗ (zd+2 ∧ zd+3) − zd+2 ⊗ (zd+1 ∧ zd+3) + zd+3 ⊗ (zd+1 ∧ zd+2),

where as above, zj ∧ zk denotes zj ⊗ zk − zk ⊗ zj . The homogeneous element η
has degree 3, so that after appropriate renormalization it becomes a unit vector
spanning K3ª(Z ·K3). Thus, we obtain a free cover A4 : H2[z1, . . . , zd+3] → K3

by closing the map of polynomials

A4(f) = f · η, f ∈ C[z1, . . . , zd+3].
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Notice that the grading that H2[z1, . . . , zd+3] acquires by this construction is
not the standard grading Γ0, but rather Γ(λ) = λ3Γ0(λ), λ ∈ T.

Since the kernel of A4 is obviously {0}, we have obtained a free resolution

0 −→ F
A4−−→ F ⊗ G̃

A3−−→ F ⊗ G
A2−−→ F

A1−−→ H −→ 0

in which F = H2[z1, . . . , zd+3].
This shows that H is a Hilbert module over C[z1, . . . , zd+3] whose Betti

numbers (β1, · · · , βd+3) are given by a nontrivial sequence (1, 3, 3, 1, 0, . . . , 0)
with alternating sum zero. ¤
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[Hil93] D. Hilbert. Über die vollen Invariantensysteme. Math. Ann., 42:313–
373, 1893.

[Nor76] D. G. Northcott. Finite Free Resolutions, volume 71 of Cam-
bridge Tracts in Mathematics. Cambridge, Cambridge-New York-
Melbourne, 1976.

[Ser00] J.-P. Serre. Local Algebra. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, 2000.

[Tay70a] J. L. Taylor. The analytic functional calculus for several commuting
operators. Acta Math, 125:1–38, 1970. MR 42 6622.

[Tay70b] J. L. Taylor. A joint spectrum for several commuting operators. J.
Funct. Anal., 6:172–191, 1970. MR 42 3603.

William Arveson
Department of Mathematics
University of California
Berkeley, CA 94720
arveson@math.berkeley.edu

Documenta Mathematica 9 (2004) 137–161



162

Documenta Mathematica 9 (2004)


