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ABSTRACT. For a central simple algebra with an orthogonal involu-
tion (A4, o) over a field k of characteristic different from 2, we relate the
multipliers of similitudes of (A, o) with the Clifford algebra C'(A4, o).
We also give a complete description of the group of multipliers of simil-
itudes when deg A < 6 or when the virtual cohomological dimension
of k is at most 2.
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INTRODUCTION

A. Weil has shown in [@] how to obtain all the simple linear algebraic groups
of adjoint type D, over an arbitrary field k of characteristic different from 2:
every such group is the connected component of the identity in the group
of automorphisms of a pair (A,0) where A is a central simple k-algebra of
degree 2n and o: A — A is an involution of orthogonal type, i.e., a linear map
which over a splitting field of A is the adjoint involution of a symmetric bilinear
form. (See [f for background material on involutions on central simple algebras
and classical groups.) Every automorphism of (A, ) is inner, and induced by
an element g € A* which satisfies 0(g)g € k*. The group of similitudes of
(A, ) is defined by that condition,

GO(A,0) ={ge A" | o(g)g € k™ }.
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184 R. PrREETI AND J.-P. TiGNOL

The map which carries g € GO(A4, o) to o(g)g € k™ is a homomorphism
u: GO(A,0) — K~

called the multiplier map. Taking the reduced norm of each side of the equation
a(g)g = 1(g), we obtain
Nrda(g)® = pu(g)™",

hence Nrd4(g) = +u(g)™. The similitude g is called proper if Nrd 4(g) = pu(g9)",
and improper if Nrda(g) = —u(g)™. The proper similitudes form a subgroup
GO4(A,0) C GO(A,0). (As an algebraic group, GO, (A, o) is the connected
component of the identity in GO(4,0).)

Our purpose in this work is to study the multipliers of similitudes of a cen-
tral simple k-algebra with orthogonal involution (A, o). We denote by G(A4, o)
(resp. G4+ (A4, 0), resp. G_(A, o)) the group of multipliers of similitudes of (4, o)
(resp. the group of multipliers of proper similitudes, resp. the coset of multi-
pliers of improper similitudes),

G(A,0) ={u(g) | g € GO(A,0)},

(
G4(A.0) = {ulg) | g € GO (A,0)},
G_(4,0) = {n(g) | g € GO(4,0)\ GO, (4,0)}.

When A is split (A = Endy, V for some k-vector space V'), hyperplane reflections
are improper similitudes with multiplier 1, hence

G(A,0) =G4 (A, 0)=G_(A,0).

When A is not split however, we may have G(A, o) # G, (4, 0).

Multipliers of similitudes were investigated in relation with the discriminant
disc o by Merkurjev—Tignol [@] Our goal is to obtain similar results relating
multipliers of similitudes to the next invariant of o, which is the Clifford algebra
C(A,0) (see [ﬂ, §8]). As an application, we obtain a complete description of
G(A,o0) when deg A < 6 or when the virtual cohomological dimension of k is
at most 2.

To give a more precise description of our results, we introduce some more
notation. Throughout the paper, k& denotes a field of characteristic different
from 2. For any integers n, d > 1, let pg» be the group of 2"-th roots of unity in

a separable closure of k and let H(k, u;@,fd’”) be the d-th cohomology group

of the absolute Galois group with coefficients in ug@n(d_l) (=2Z/2"Z if d =1).
Denote simply
. ®@(d—1
H% = lim H(k, u5 V),
so H'k and H?k may be identified with the 2-primary part of the character
group of the absolute Galois group and with the 2-primary part of the Brauer
group of k, respectively,

H'k = Xy(k),  H?k = Bry(k).
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MULTIPLIERS OF IMPROPER SIMILITUDES 185

In particular, the isomorphism k* /k*2 ~ H'(k,Z/2Z) derived from the Kum-
mer sequence (see for instance [, (30.1)]) yields a canonical embedding

KX /<% < H'k. (1)

The Brauer class (or the corresponding element in H?k) of a central simple
k-algebra E of 2-primary exponent is denoted by [E].

If K/k is a finite separable field extension, we denote by Ny, : HYK — HY
the norm (or corestriction) map. We extend the notation above to the case
where K ~ k x k by letting H%(k x k) = H%k x H% and

Niexryn(€,&) =& + & for (&,8) € H(k x k).

Our results use the product
kB x H'% — H'% ford=1or2

induced as follows by the cup-product: for x € kX and & € HY%, choose
n such that £ € Hd(k,u§(d71)) and consider the cohomology class (), €
H(k, pgn) corresponding to the 2"-th power class of z under the isomorphism
H'(k, pign) = k* /E*?" induced by the Kummer sequence; let then

z-&=(2)o UE € HM (K, p5!) € H™ k.

In particular, if d = 1 and £ is the square class of y € k* under the embed-
ding (), then z - ¢ is the Brauer class of the quaternion algebra (z,y)x.
Throughout the paper, we denote by A a central simple k-algebra of even
degree 2n, and by ¢ an orthogonal involution of A. Recall from [ﬂ, (7.2)] that
disco € k*/k*? C H'k is the square class of (—1)" Nrd4(a) where a € A*
is an arbitrary skew-symmetric element. Let Z be the center of the Clifford
algebra C(A,0); thus, Z is a quadratic étale k-algebra, Z = k[vdisc o], see
[, (8.10)]. The following relation between similitudes and the discriminant is
proved in [[[4, Theorem A] (see also [, (13.38)]):

THEOREM 1. Let (A, o) be a central simple k-algebra with orthogonal involution
of even degree. For A € G(A, o),

A-disco = {O Z:f)\EG+(A’U)’
[4] if e G_(4,0).

For d = 2 (resp. 3), let (H%k)/A be the factor group of H% by the subgroup
{0,[A]} (resp. by the subgroup k* - [A]). Theorem [] thus shows that for A €
G(A, o)

A-disco =0 in (H?k)/A.

Our main results are Theorems E, E, E, andﬁ below.
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THEOREM 2. Suppose A is split by Z. There exists an element (o) € H?k
such that y(o)z = [C(A,0)] in H2Z. For A € G(A,0),

A-y(o) =0 in (H*k)/A.

Remark 1. In the conditions of the theorem, the element (o) € H2k is not
uniquely determined if Z % k x k. Nevertheless, if X - disco = 0 in (H%k)/A,
then X - (o) € (H®k)/A is uniquely determined. Indeed, if v, v/ € H%k are
such that vz = 7%, then there exists v € k* such that v = v +wu-disc o, hence

Ay =X-y+A-u-disco.

The last term vanishes in (H3k)/A since X - disco = 0 in (H?%k)/A.

The proof of Theorem E is given in Section . It shows that in the split case,
where A = Endy V' and o is adjoint to some quadratic form ¢ on V', we may
take for y(o) the Brauer class of the full Clifford algebra C(V, ¢). Note that the
statement of Theorem E does not discriminate between multipliers of proper
and improper similitudes, but Theorem m may be used to distinguish between
them. Slight variations of the arguments in the proof of Theorem E also yield
the following result on multipliers of proper similitudes:

THEOREM 3. Suppose the Schur index of A is at most 4. If A\ € G4 (A, o), then
there exists z € Z* such that X = Nz, (2) and

Nzi(z-[C(A,0)]) =0 in (Hk)/A.

The proof is given in Section m Note however that the theorem holds without
the hypothesis that ind A < 4, as follows from Corollaries 1.20 and 1.21 in [@]
Using the Rost invariant of Spin groups, these corollaries actually yield an
explicit element z as in Theorem Pl from any proper similitude with multiplier

A

Remark 2. The element Ny (z - [C(A,0)]) € (Hk)/A depends only on
Nz (2) and not on the specific choice of z € Z. Indeed, if 2z, 2’ € Z* are
such that Nz (2) = Nz (2'), then Hilbert’s Theorem 90 yields an element
u € Z* such that, denoting by ¢ the nontrivial automorphism of Z/k,

2 = zue(u)~t,
hence
Nyi(2 - [C(A,0)]) =
Nz (2 [C(A,0)]) + Nzgi(u - [C(A,0)]) = Nzgi(u(u) - [C(A,0)]).

Since Nz/i, 0t = Nz, and since the properties of the Clifford algebra (see [ﬂ,
(9.12)]) yield
[C(A7 U)] - L[C(A7 J)] = [A]Z7
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MULTIPLIERS OF IMPROPER SIMILITUDES 187

it follows that

Nzsie(u-[C(A,0)]) = Ngk(v(u) - [C(A,0)]) = Nzyi(u-[Alz).

By the projection formula, the right side is equal to Nz, (u) - [A]. The claim
follows.

Remark 3. Theorems E and E coincide when they both apply, i.e., if A is split
by Z (hence ind A = 1 or 2), and A € G4 (A,0). Indeed, if A = Nz/,(2) and
~v(0)z = [C(A, 0)] then the projection formula yields

Nzi(z-[C(A,0)]) = X-7(0).

Remarkably, the conditions in Theorems [If and E turn out to be sufficient for
A to be the multiplier of a similitude when deg A < 6 or when the virtual
cohomological 2—dimensionﬁ of k is at most 2.

THEOREM 4. Suppose n < 3, i.e., deg A < 6.
o If A is not split by Z , then every similitude is proper,
G(A,0) =G4 (A,0), G_(A,0)=2.

Moreover, for A € k*, we have A € G(A, o) if and only if there exists
z € Z* such that X = Nz(2) and

Nzi(z-[C(A,0)]) =0 in (Hk)/A.
o If A is split by Z, let v(o) € H?k be as in Theorem [}. For X € k*, we
have A € G(A, o) if and only if

A-disco =0 in (H?k)/A and A-v(o) =0 in (H3k)/A.

The proof is given in Section E

Note that if deg A = 2, then A is necessarily split by Z and we may choose
v(o) = 0, hence Theorem [] simplifies to

A€ G(A,0) ifand only if \-disco =0 in (H?k)/A,

a statement which is easily proved directly. (See [[4, p. 15] or [, (12.25)].)

If deg A = 4, multipliers of similitudes can also be described up to squares as
reduced norms from a central simple algebra E of degree 4 such that [E] = v(0)
if A is split by Z (see Corollary @ or as norms of reduced norms of C'(4, o)
if A is not split by Z (see Corollary @)

3The authors are grateful to Parimala for her suggestion to investigate the case of low
cohomological dimension.
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For the next statement, recall that the virtual cohomological 2-dimension of
k (denoted vcdg k) is the cohomological 2-dimension of k(v/—1). If v is an
ordering of k, we let k, be a real closure of k for v and denote simply by
(A, o), the algebra with involution (4 ® ky, o ® Idg, ).

THEOREM 5. Suppose veda k < 2, and A is split by Z. For A € k*, we have
A€ G(A, o) if and only if

A >0 at every ordering v of k such that (A, o), is not hyperbolic,
M-disco =0 in (H?k)/A and A-v(0) =0 in (H3Ek)/A.

The proof is given in Section E

1 PROOFS OF THEOREMS ] AND

Theorems E and E are proved by reduction to the split case, which we consider
first. We thus assume A = Endy V for some k-vector space V' of dimension 2n,
and o is adjoint to a quadratic form ¢ on V. Then disco = disc ¢ and C(A4, o)
is the even Clifford algebra C(A, o) = Cy(V, q). We denote by C(V, q) the full
Clifford algebra of g, which is a central simple k-algebra, and by Ik the m-th
power of the fundamental ideal Ik of the Witt ring Wk.

LEMMA 1.1. For X € k*, the following conditions are equivalent:
(a) \-discq =0 in H?k and X - [C(V,q)] =0 in H3k;
(b) (\)-q = qmod I*k.
Proof. For ay, ..., a., € k™, let
(a1, . yam) = {1, —a1) @ - @ (1, —ayn).

Let es: I?k — H?E be the Witt invariant and es: I3k — H3k be the Arason
invariant. By a theorem of Merkurjev [[] (resp. of Merkurjev-Suslin [IJ] and
Rost ]), we have ker es = I3k and ker e3 = I*k. Therefore, the lemma follows
if we prove

A-discg =0 ifand only if (\)-q € Ik, (2)

and that, assuming that condition holds,
es((A) - a) = A+ [C(V,q)]. (3)
Let § € k* be such that discq = (§); € H'(k,Z/2Z) C H'k. Then
q = (6)) mod Ik, (4)

hence
ea({(A) - @) = e2({(A,6))) = A - discg,
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proving (f). Now, assuming X - discq = 0, we have (), d)) = 0 in Wk, hence

(A =g = () - (g L (D).
By ([), we have ¢ L (§)) € Ik, hence

es((A) - q) = A-ealq L (). (5)

The computation of Witt invariants in [E, Chapter 5] yields
ea(q L ((0) = [C(V,q)] + (=1) - discq. (6)
Since A - disc ¢ = 0 by hypothesis, () follows from () and (§). O

Proof of Theorem E If A is split, then using the same notation as in Lemma [L. ]
we may take v(0) = [C(V, q)], and Theorem [ readily follows from Lemma [L.1]
For the rest of the proof, we may thus assume A is not split, hence disco # 0
since Z is assumed to split A. Let G = {Id, ¢} be the Galois group of Z/k. The
properties of the Clifford algebra (see for instance [, (9.12)]) yield

[C(A,0)] —|C(A,0)] =[A]lz =0.

Therefore, [C(A, o)] lies in the subgroup (Br Z)¢ of Br Z fixed under the action
of G. The “Teichmiiller cocycle” theory [ﬂ] (or the spectral sequence of group
extensions, see [@, Remarque, p. 126]) yields an exact sequence

Brk — (Br2)¢ — H*(G, Z*).

Since G is cyclic, H*(G,Z*) = H'Y(G,Z*). By Hilbert’s Theorem 90,
HYG,Z*) = 1, hence (BrZ)¢ is the image of the scalar extension map
Brk — Br Z, and there exists (o) € Brk such that y(o)z = [C(A4,0)]. Then,

by [, (9.12)],

0 if n is odd,

[A] if n is even,

2y(0) = Ny ([C(A,0)]) = { (7)
hence 47(c) = 0. Therefore, (o) € Bra(k) = H>k.
Note that ind A = 2, since A is split by the quadratic extension Z/k, hence A
is Brauer-equivalent to a quaternion algebra @. Let X be the conic associated
with @; the function field k(X) splits A. Since Theorem E holds in the split
case, we have

A-v(o) € ker(H*k — H?k(X)).
By a theorem of (Arason—) Peyre [@, Proposition 4.4], the kernel on the right
side is the subgroup k> - [A] C H3k, hence

A-v(0) =0 in (Hk)/A.
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Proof of Theorem E Suppose first A is split, and use the same notation as in
Lemma [.1. If A € G(A, o), then (\) - ¢ =~ ¢ and Lemma [L.1] yields

A-discg=0in H*k and  \-[C(V,q)] =0 in H?k.
The first equation implies that A = N/, (2) for some z € Z*. Since
[C(A,0)] = [Co(V, )] = [C(V,q)]z,
the projection formula yields
Nz/i(z- [C(A,0)]) = Nzj(2) - [C(V.9)] = X+ [C(V,q)] =0,

proving the theorem if A is split.

If A is not split, we extend scalars to the function field k(X) of the Severi-
Brauer variety of A. For A € G4 (A4,0), there still exists z € Z* such that
A= Nz/i(2), by Theorem El Since Theorem E holds in the split case, we have

Nzi(z-[C(A,0)]) € ker(H*k — H?k(X)),

and Peyre’s theorem concludes the proof. (Note that applying Peyre’s theorem
requires the hypothesis that ind A < 4.) O

2 ALGEBRAS OF LOW DEGREE

We prove Theorem E by considering separately the cases ind A =1, 2, and 4.

2.1 CASE 1: A 1S SPLIT

Let A =FEnd; V, dimV <6, and let o be adjoint to a quadratic form ¢ on V.
Since C(A4,0) = Cy(V, q), we may choose v(c) = [C(V, q)]. The equations

A-disco =0in (H?k)/A  and  X-v(0) =0in (H?k)/A
are then equivalent to
A-discg=0in H*k  and A [C(V,q)] =0 in Hk,

hence, by Lemma E, to (\) - ¢ € I'*k. Since dimq = 6, the Arason—Pfister
Hauptsatz [E, Chapter 10, Theorem 3.1] shows that this relation holds if and
only if (A))-¢=0,ie, A€ G(V,q) = G(A,0), and the proof is complete.

2.2 CASE 2: indA =2

Let @ be a quaternion (division) algebra Brauer-equivalent to A. We repre-
sent A as A = Endg U for some 3-dimensional (right) Q-vector space. The
involution o is then adjoint to a skew-hermitian form h on U (with respect to
the conjugation involution on @), which defines an element in the Witt group
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W=HQ). Let X be the conic associated with Q. The function field k(X) splits
@, hence Morita equivalence yields an isomorphism

WHQ ® k(X)) ~ Wk(X).

Moreover, Dejaiffe ] and Parimala—Sridharan—Suresh [[J] have shown that
the scalar extension map

WHQ) —» WHQ® k(X)) = Wk(X) (8)

is injective. Let (V,q) be a quadratic space over k(X ) representing the image
of (U, h) under (é) We may assume dimV = deg A < 6 and o is adjoint to ¢
after scalar extension to k(X). An element A € k* lies in G(V, q) if and only
if (A))-q = 0; by the injectivity of (E), this condition is also equivalent to
{A) -h=01in W=1(Q), i.e., to X € G(A, ). Therefore,

G(V.q) Nk = G(A,0). (9)

Suppose first A is not split by Z. Theoremljl then shows that every similitude
of (A, o) is proper, and it only remains to show that if X = N/, (2) for some
z € Z* such that

Nzi(z-[C(A,0)]) =0 in (H’k)/A,

then A € G(A, o). Extending scalars to k(X), we derive from the last equation
by the projection formula

Nzxyme)(2) - [C(V,9)] =0 in H*k(X).
Therefore, by Lemma , (\) - q = gmod I'k(X), i.e.,
(M) - g € T'k(X).

Since dimg < 6, the Arason—Pfister Hauptsatz implies {(A)) - ¢ = 0, hence
A € G(V,q) and therefore A € G(A, o) by (f). Theorem ] is thus proved when
ind A = 2 and A is not split by Z.

Suppose next A is split by Z. In view of Theorems ﬂ and E, it suffices to show
that if A € k* satisfies

A-disco =0in (H?*k)/A  and  A-v(o) =0in (Hk)/A,
then A € G(A4,0). Again, extending scalars to k(X), the conditions become
A-discg=0in H*k(X) and  \-[C(V,q)] =0 in H3k(X).
By Lemma [[1], these equations imply (\) - ¢ € I*k(X), hence (\) - g = 0

by the Arason—Pfister Hauptsatz since dim ¢ < 6. It follows that A € G(V,q),
hence A € G(A,0) by ([]).
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2.3 CASE 3: indA =14

Since deg A < 6, this case arises only if deg A = 4, i.e., A is a division algebra.
This division algebra cannot be split by the quadratic k-algebra Z, hence all the
similitudes are proper, by Theorem [|. Theorem [ shows that if A € G(A4,0),
then there exists z € Z* such that A = Nz/,(2) and Ny (z - [C(A,0)]) =0
in (H3k)/A, and it only remains to prove the converse.

Let z € Z* be such that Nz (2 - [C(A,0)]) = u - [A] for some u € k*. Since
by [, (9-12)], Nz ([C(A, 0)]) = [A], it follows that

Nz (u 'z [C(A,0)]) =0 in H’k. (10)

Since deg A = 4, the Clifford algebra C(A, o) is a quaternion algebra over Z.
Let
C(A,U) = (2’1722)2.

Suppose first disco # 0, i.e., Z is a field. Let s: Z — k be a k-linear map
such that s(1) = 0, and let s,.: WZ — Wk be the corresponding (Scharlau)
transfer map. By @, Satz 3.3, Satz 4.18], Equation (E) yields

s ((u'z,21,22) € I'k.

However, the form s, ({(u™'z,21,22))) is isotropic since (u™'z,z1,22)) repre-
sents 1 and s(1) = 0. Moreover, its dimension is 2%, hence the Arason—Pfister
Hauptsatz implies

se((u™'z,21,22) =0 in Wk.
It follows that

se((u™'2) - (21, 22))) = 5. ({21, 22))),

hence the form on the left side is isotropic. Therefore, the form (u=1z)-{(z1, 22))

represents an element v € k*. Then v~'u~!z is represented by ({21, 22)), which

is the reduced norm form of C(A, o), hence z € k* Nrd(C(A, o)), and
Nzi(2) € k2N, (Nrd(C(4, 0)%)).

By [[], (15.11)], the group on the right is Gy (A,0). We have thus proved
Nz/i(2) € G(A,0), and the proof is complete when Z is a field.

Suppose finally disco = 0, i.e., Z ~ k x k. Then C(A,0) ~ C’' x C” for some
quaternion k-algebras C' = (2, 25)x and C” = (2, 2 )i, and [i}, (15.13)] shows

G(A,0) = Nrd(C')Nrd(C"™).
We also have z = (2/, ") for some 2/, 2 € k*, and ([Ld) becomes
u Y [C+u - [C7) =0 in H3k.

It follows that
(w2, 20, 29 = (w2, 2, 2.
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By [E, Lemma 1.7], there exists v € k™ such that

(a2, 2,28 = (o, 24, 24 = o, 2, 20 = ", 21 28,

hence v~ tu~12" € Nrd(C’) and v~ *u~12"” € Nrd(C”). Therefore,
Ny i(z) = 2'2" € Nrd(C'™) Nrd(C"™),

and the proof of Theorem E is complete.
To finish this section, we compare the descriptions of G4 (A, o) for deg A =4
or 6 in [ff] with those which follow from Theorem [ (and Remark fJ).

COROLLARY 2.1. Suppose deg A = 4. If disco # 0, then

G1(A,0) =k**Ny;, (Nrd(C(4,0)7))
= {Nz/k(2) | Nzs(z - [C(A,0)]) = 0 in (H’k)/A}.

If disco = 0, then C(A,0) =~ C' x C" for some quaternion k-algebras C', C",
and

G4 (A, 0) = Nrd(C'*) Nrd(C"™)
= {2 |2 [C'+2"-[C") =0 in (Hk)/A}.

Proof. See [fl, (15.11)] for the case disco # 0 and [ff, (15.13)] for the case
disco = 0. |

COROLLARY 2.2. Suppose deg A = 6. If disco # 0, let v be the nontrivial
automorphism of the field extension Z/k and let g be the canonical (unitary)
involution of C(A, o). Let also

GU(C(A,0),0) ={g€ C(A,0) | alg)g € k™ }.
Then
Gi(A,0) =

{Nzp(2) | 21(2)™" = (ag)g) > Nrd(g) for some g € GU(C(4,0).0))
= {(Nz(2) | Nzgi (= [C(A,0))) = 0 im (HOE)/A}.

If disco = 0, then C(A,0) ~ C x C°P for some central simple k-algebra C of
degree 4, and

G (A, 0) = k**Nrd(C*)
={z€k*|2-[0] =0 in (Hk)/A}.
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Proof. See [fl, (15.31)] for the case disco # 0 and [{], (15.34)] for the case
disco = 0. In the latter case, Theorem [} shows that G (A,0o) consists of
products 2’z where 2/, 2" € k* are such that

2 [C) 42" [CPl =0 in (H%k)/A.
However, [C°P] = —[C], and 2[C] = [A] by [[d, (9.15)], hence
2 [C) 42" [CP) = 22" - [C] in (H3k)/A.
Note that the equation
E2Nrd(C*) ={z € k* | z-[C] = 0in (H?k)/A}
can also be proved directly by a theorem of Merkurjev [@, Proposition 1.15].

O

3 FIELDS OF LOW VIRTUAL COHOMOLOGICAL DIMENSION

Our goal in this section is to prove Theorem E Together with Theorem E, the
following lemma completes the proof of the “only if” part:

LEMMA 3.1. If A € G(A,0), then A\ > 0 at every ordering v such that (A, o),
is not hyperbolic.

Proof. 1f (A, o), is not hyperbolic, then A, is split, by [B, Chapter 10, The-
orem 3.7). We may thus represent 4, = Endy, V for some k,-vector space V,
and o ® Idy, is adjoint to a non-hyperbolic quadratic form ¢. If A € G(A4, o),
then A € G(V, ¢), hence

(A -a~q.
Comparing the signatures of each side, we obtain A > 0. O
For the “if” part, we use the following lemma:

LEMMA 3.2. Let F' be an arbitrary field of characteristic different from 2. If
vede F' < 3, then the torsion part of the 4-th power of IF is trivial,

I'F =0.

Proof. Our proof uses the existence of the cohomological invariants e,,: I"F —
H"(F, u2), and the fact that kere, = I""'F, proved for fields of virtual coho-
mological 2-dimension at most 3 by Arason-Elman-Jacob [H]

Suppose first —1 ¢ F*2. From vedy F' < 3, it follows that H"(F(y/—1), u2) =0
for n > 4, hence the Arason exact sequence

(—=1)1U

H™(F(V=1), p2) = H"(F, pig) ~—== H™\(F, 1) — H™ ' (F(V=1), 1)
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(see [, Corollar 4.6] or [fd, (30.12)]) shows that the cup-product with (—1); is

an isomorphism H"(F, po) ~ H" Y (F, uo) for n > 4. 1If ¢ € I}F, there is an

integer ¢ such that 2q = 0, hence the 4-th invariant e4(q) € H*(F, uy) satisfies
(=1)1U---U(=1)1 Ues(q) =0 in H(F, pp).

14

Since (—1);U is an isomorphism, it follows that es(q) = 0, hence ¢ € I} F.
Repeating the argument with es, e, ..., we obtain ¢ € (), I"F', hence ¢ = 0
by the Arason—Pfister Hauptsatz [E, p. 290].

If —1 € F*2, then the hypothesis implies that H"(F, us) = 0 for n > 4, hence
for ¢ € I*F we get successively e4(q) = 0, e5(¢q) = 0, etc., and we conclude as
before. O

Proof of Theorem %As observed above, the “only if” part follows from Theo-
rem E and Lemma B.]|. The proof of the “if” part uses the same arguments as
the proof of Theorem E in the case where ind A = 2.

We first consider the split case. If A = Endy V' and o is adjoint to a quadratic
form ¢ on V, then we may choose (o) = C(V, q), and the conditions

A-disco =0in (H’k)/A  and  X-v(0) =0in (Hk)/A

imply, by Lemma [L.1], that (\)) - ¢ € I*k. Moreover, for every ordering v on k,
the signature sgn,, ({(A)) - ¢) vanishes, since A > 0 at every v such that sgn, (q) #
0. Therefore, by Pfister’s local-global principle [E, Chapter 8, Theorem 4.1],
{(\) - q is torsion. Since the hypothesis on k implies, by Lemma B.J, that
I}k = 0, we have ((\)) - ¢ = 0, hence A € G(V,q) = G(A,0). Note that
Lemma @ yields Itk = 0 under the weaker hypothesis veds k < 3. Therefore,
the split case of Theorem E holds when veds £k < 3.

Now, suppose A is not split. Since A is split by Z, it is Brauer-equivalent to a
quaternion algebra Q). Let k(X) be the function field of the conic X associated
with @. This field splits A, hence there is a quadratic space (V,q) over k(X)
such that A® k(X) may be identified with Endyx)V and o @ Idy(x) with the
adjoint involution with respect to g. As in Section [| (see Equation (), we
have

G(V,q) Nk* = G(A,0).

Therefore, it suffices to show that the conditions on A imply A € G(V, q).

If v is an ordering of k such that (A, o), is hyperbolic, then g, is hyperbolic
for any ordering w of k(X) extending v, since hyperbolic involutions remain
hyperbolic over scalar extensions. Therefore, A > 0 at every ordering w of k(X)
such that q,, is not hyperbolic. Moreover, the conditions

A-disco =0in (H’k)/A  and  X-v(0) =0in (Hk)/A
imply

A-discg =0in H*k(X) and  X\-[C(V,q)] =0 in H?k(X).
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Since X is a conic, Proposition 11, p. 93 of [R(] implies
VCd2 k'(X) =1+ VCd2 k S 3.

As Theorem [ holds in the split case over fields of virtual cohomological 2-
dimension at most 3, it follows that A € G(V, q). O

Remark. The same arguments show that if veds k& < 2 and ind A = 2, then
G 1 (A, 0) consists of the elements N/ (z) where z € Z* is such that

Nz(z-[C(A,0)]) =0 in (H’k)/A.

4 EXAMPLES

In this section, we give an explicit description of the element (o) of TheoremE
in some special cases. Throughout this section, we assume the algebra A is not
split, and is split by Z (hence Z is a field and disco # 0). Our first result is
easy:

PROPOSITION 4.1. If A is split by Z and o becomes hyperbolic after scalar
extension to Z, then we may choose (o) = 0.

Proof. Let ¢ be the nontrivial automorphism of Z/k. Since Z is the center of
C(A, o),
C(Ao)®r Z~C(A,0) x"'C(A,0). (11)

On the other hand, C(A,0) ®; Z ~ C(A Ry Z,0 ® Idz), and since o becomes
hyperbolic over Z, one of the components of C(A®y Z,0 ® Idy) is split, by [ﬂ,
(8.31)]. Therefore,

[C(A,0)] =[C(A4,0)]=0 in BrZ.
O

COROLLARY 4.2. In the conditions of Proposition @, ifdeg A < 6 orveds k <
2, then

Gi(A,o)={\€k* |\ -disco =0 in H?k}
and
G_(A,0) ={\€k* | X-disco = [A] in H?k}.
Proof. This readily follows from Proposition @ and TheoremE or E O

To give further examples where (o) can be computed, we fix a particular
representation of A as follows. Since A is assumed to be split by Z, it is
Brauer-equivalent to a quaternion k-algebra ) containing Z. We choose a
quaternion basis 1, 4, 7, ij of @ such that Z = k(7). Let A = Endg U for some
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right Q-vector space U, and let o be the adjoint involution of a skew-hermitian
form h on U with respect to the conjugation involution on Q. For z, y € U,
we decompose

h(z,y) = f(z,y) +jg(x,y)  with f(z,y), g(z,y) € Z.

It is easily verified that f (resp. g) is a skew-hermitian (resp. symmetric bilinear)
form on U viewed as a Z-vector space. (See [, Chapter 10, Lemma 3.1].) We
have

ARy Z = (EndQU) ®k Z = Endz U.

Moreover, for z, y € U and ¢ € Endg U, the equation
h(z, ¢(y)) = h(o(e)(2),y)
implies
9(z. 0(y)) = g9(o(9)(2),y),
hence o ®;, Idz is adjoint to g.

PROPOSITION 4.3. With the notation above,
[C(A,0)] =[C(U,g) in BrZ.
Proof. Since o ® Idy is the adjoint involution of g,
CA®y Z,0 ®1dz) ~ Co(U, g). (12)

Now, disc o is a square in Z, hence Cy(U, g) decomposes into a direct product

Co(U,g) =~C" x C" (13)
where C’, C" are central simple Z-algebras Brauer-equivalent to C'(U, g). The
proposition follows from ([L1)), (1), and ([L3). O
To give an explicit description of g, consider an h-orthogonal basis (e1,...,e,)

of U. In the corresponding diagonalization of h,
h~(uy,...,up),

each uy € Q is a pure quaternion, since h is skew-hermitian. Let u% =ay € k*
for{ =1, ..., n. Then

disco = (—=1)" Nrd(uq) ... Nrd(u,) = ay ... an,
SO We may assume i =ay...a,. Write
Ug = gt + jvp where py € k and vy € Z. (14)

Each eyQ) is a 2-dimensional Z-vector space, and we have a g-orthogonal de-
composition
U=eQ& - de,Q.

DOCUMENTA MATHEMATICA 9 (2004) 183-204



198 R. PrREETI AND J.-P. TiGNOL

If v, = 0, then g(eg, e¢) = 0, hence e,Q is hyperbolic. If v, # 0, then (es, epuy)
is a g-orthogonal basis of e,Q, which yields the following diagonalization of the
restriction of g:

(ve, —apvy).
Therefore,
g=g1+ -+ 9n (15)
where
0 if vy = 0,
ge = ) (16)
{(w)(l,—a@ if Ve 75 0.

‘We now consider in more detail the cases n = 2 and n = 3.

4.1 ALGEBRAS OF DEGREE 4

Suppose deg A = 4, i.e., n = 2, and use the same notation as above. If
vy = 0, then squaring each side of (@) yields a1 = p2ajas, hence ay € k*2,
a contradiction since @) is assumed to be a division algebra. The case vo = 0
leads to the same contradiction. Therefore, we necessarily have v; # 0 and

V2 7é 0. By (@ and (E)7
g = (v1)(1, —a1) + (v2)(1, —az),
hence by E, p. 121],
[C(A,0)] = (a1,v1)z + (a2,v2)z + (a1,a2)z
= (a1, —v1v2)z. (17)

Since the division algebra ) contains the pure quaternions ui, us and ¢ with
u% = aq, u% = ay and i = ajas, we have a;i, a2, a1a2 ¢ kX2 and we may
consider the field extension

L = k(v/ar, v/a2).

We identify Z with a subfield of L by choosing in L a square root of ajas, and
denote by p1, p2 the automorphisms of L/k defined by

pL(Var) = —var, pa(Var) = Var,
p1(Vaz) = Va, po(/@3) = —\/.

Thus, Z C L is the subfield of p; o po-invariant elements. Let j2 = b. Then

([4) yields
a1 = piaras + bNyp(v1), as = piaias + bNyz . (v2),
hence Ny, (—v1v2) = a1a2b™*(1 — pfaz)(1 — p3ar) and

—V1V2 —U10V2 a10a2 2 2
p1(7'01U2) 02(*111112) b2P1(*U1’02)2( :u’la2)( :u’2a1)
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Since L = Z( /a1) = Z( /az), it follows that 1 — u?as and 1 — p3a; are norms
from L/Z. Therefore, the preceding equation yields
—U102 —U102

= =N /! for some ¢ € L*.
p1(—viva)  pa(—viva) 1/z()

Since Ny (—vivap1(—viv2) ') = 1, we have Ny, (¢) = 1. By Hilbert’s Theo-
rem 90, there exists b; € L* such that

p1(b1) =by and bipa(by) ™t = Lpy(0). (18)
Set by = —v1v9p01 (E)bl_l. Computation yields
pa(bs) =ba  and  pi(ba)by " = Lpa(0). (19)
Define an algebra E over k by
E=L®Lri® Lry® Lriry
where the multiplication is defined by

rx = p1(x)ry, rox = po(T)ro forx € L,

r% = by, rg = by, and rire = frory.

Since by, by and ¢ satisfy () and @), the algebra FE is a crossed product, see
M. Tt is thus a central simple k-algebra of degree 4.

PROPOSITION 4.4. With the notation above, we may choose (o) = [E] € Brk.
Proof. The centralizer CgZ of Z in E is L & Lrir,. Computation shows that
(r17m2)? = —vyvo.

Since conjugation by 7172 maps /a1 € L to its opposite, it follows that
CrZ = (a1, —v1v2) 7.
Since [CpZ] = |E]z, the proposition follows from ([L7]). O
COROLLARY 4.5. Let
E,=CgZ={x€E* |zz=zx foralzeZ}

and

E_={zx e E* |zz=pi(z)z forall z € Z}.
Then

G (A o) =k**Nrdg(E,) and  G_(A,0) = k**Nrdg(E_).
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Proof. As observed in the proof of Proposition Q, CgZ ~ C(A, o). Since, by
[, Corollary 5, p. 150],

NrdE(z) = NZ/k(NrdCEZ LZJ) for x € CgZ,

the description of G (A4,) above follows from [fl, (15.11)] (see also Corol-

lary R.1).

To prove k*? Nrdg(E_) C G_(A, o), it obviously suffices to prove Nrdg(E_) C
G_(A, ). From the definition of E, it follows that r; € E_. By [[L0], p. 80],

Nrdg(ry) - [E] =0  in H%. (20)
Let Ly C L be the subfield fixed under p;. We have Tf = by € Ly, hence
Nrdg(r1) = Nr, /x(b1).
On the other hand, the centralizer of L, is
CplLi=L® Lry = (a1a2,b1)r,,
hence
[Np,/i(CeL1)] = (araz, Ny, /k(b1)), = Nrdp(r) - disco in H?k. (21)

Since [CgLi1] = [Er,], we have [Ny, ;x(CrL1)] = 2[E]. But 2[E] = 2y(0) = [4]
by (fl), hence (1) yields

Nrdg(ri) -disco = [A]  in H?k. (22)

From (R0), (B3) and Theorems fl], Bl it follows that Nrdg(r1) € G_(A, o).
Now, suppose x € E_. Then rz € E, hence Nrdg(riz) € G.(A, o) by the
first part of the corollary. Since

G+ (Aa U)G— (A7 U) = G—(A7 U)
it follows that
Nrdg(z) € Nrdg(r1)G+(A,0) = G_(A, 0).

We have thus proved kX2 Nrdg(E_) C G_(4A,0).
To prove the reverse inclusion, consider A € G_(A4,0). Since

G_(A,0)G_(A,0)=G1(A,0),
we have ANrdg(r1) € G4 (A, 0), hence by the first part of the corollary,
ANrdg(ry) € k*? Nrdg(E4).

It follows that
A€k Nrdg(rEy) = k*? Nrdg(E_).
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4.2 ALGEBRAS OF DEGREE 6

Suppose deg A = 6, i.e., n = 3, and use the same notation as in the beginning
of this section. If o (i.e., h) is isotropic, then h is Witt-equivalent to a rank 1
skew-hermitian form, say (u). Hence i? = disco = u? € kX. Hence we may
assume that h is Witt-equivalent to the rank 1 skew-hermitian form (ui) for
some p € k*. This implies that the form g is hyperbolic and C(U, g) is split.
Hence we may choose v(¢) = 0. By Theorem [, we then have A € G(4,0) if
and only if \.disco = 0 in (H?k)/A. If o becomes isotropic over Z, the form
g is isotropic, hence we may choose a diagonalization of h

h >~ (uy,us, us)

such that g(us,uz) = 0, i.e., in the notation of ([14), uz = psi. Raising each
side to the square, we obtain

2
a3 = [3a1a203,

hence a; = as mod k*2. It follows that us is conjugate to a scalar multiple of
U1, i.e., there exists x € Q* and 6 € k* such that

us = Ozugz ! = 9NrdQ(a:)_1xulf.
Since (u1) ~ (zu;T), we may let v = —0 Nrd(z) ! € k* to obtain
h >~ {uy, —vuy, psi).

If v; = 0, then g is hyperbolic, hence we may choose (o) = 0 by Proposi-
tion [L.1. If vy # 0, then ([[F) and ([Id) yield

g = (v1)(1, —ar) + {(=vv)(1, —a1) = (v1){(ar,v)).

The Clifford algebra of g is the quaternion algebra (aj,v)z, hence we may
choose

(o) = (a1, V)

Suppose finally that ¢ does not become isotropic over Z, hence vy, va, vz # 0.
Then

g = (v1)(1, —a1) + (v2)(1, —az) + (v3)(1, —as)
and, by Proposition E,

[C(A,0)] = (a1,v1)z + (a2, v2) z + (a3,v3) z + (a1, a2) z + (a1,a3) z + (a2, a3) z.
Since Z = k( /ai1azas), the right side simplifies to

[C(A,0)] = (a1,v1v3) 7z + (a2,v2v3) z + (a1,a2)z + (a1a2,—1) . (23)
By [, (9.16)], Nz/,C(A, o) is split, hence

(ahNZ/k('UlUB))k = (ag,Nz/k(Ug’Ug))k in Brk.
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By the “common slot lemma” (see for instance [J, Lemma 1.7]), there exists
o € k* such that

(a1, Nzse(v1v3)), = (o, Nzjp(v1vs)), =
(aaNZ/k('UQ'Ufi))k = (a27NZ/k(U2'U3))ko

Then

(aa1, Nzyi(v1v3)), = (@az, Nzyi(v2v3)), = (a, Nz/i(v102)), = 0.

By [R1, (2.6)], there exist (31, 32, B3 € k* such that

(aar,v1v3)z = (aar, B1)z, (aag, v2v3) 7z = (aag, f2)z,

(o, v102) 7 = (v, B3) z-
Since
(a1,v103)z + (a2, v203) z = (aa1, vivs)z + (@az, v203) z + (@, v102) 2,
it follows from (23) that
[C(A,0)] = (aa1, 51)z + (aag, B2)z + (a, B3) z + (a1,a2)z + (a1az, —1)z.

We may thus take

v(o) = (a1, B1)k + (az, B2)k + (o, B1B233)k + (a1, a2)k + (a1a2, —1)k
= (a1, —a201)k + (a2, —F2)k + (o, £15203) k-

REFERENCES

[1] S. A. Amitsur and D. Saltman, Generic Abelian crossed products and
p-algebras, J. Algebra 51 (1978), no. 1, 76-87. MR0491789 (58 #10988)

[2] J. Kr. Arason, Cohomologische invarianten quadratischer Formen, J. Al-
gebra 36 (1975), no. 3, 448-491. MR0389761 (52 #10592)

[3] J. Kr. Arason, R. Elman and B. Jacob, Fields of cohomological 2-
dimension three, Math. Ann. 274 (1986), no. 4, 649-657. MR0848510
(87m:12006)

[4] 1. Dejaiffe, Formes antihermitiennes devenant hyperboliques sur un corps
de déploiement, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 2,
105-108. MR1813765 (2001m:11054)

[5] P. K. Draxl, Skew fields, Cambridge Univ. Press, Cambridge, 1983.
MR0696937 (85a:16022)

DOCUMENTA MATHEMATICA 9 (2004) 183-204



MULTIPLIERS OF IMPROPER SIMILITUDES 203

[6] S. Eilenberg and S. MacLane, Cohomology and Galois theory. I. Normality
of algebras and Teichmdiller’s cocycle, Trans. Amer. Math. Soc. 64 (1948),
1-20. MR0025443 (10,5¢)

[7] M.-A. Knus et al., The book of involutions, Amer. Math. Soc., Providence,
RI, 1998. MR1632779 (2000a:16031)

[8] T.Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Inc.,
Reading, Mass., 1973. MR0396410 (53 #277)

[9] A. S. Merkurjev, On the norm residue symbol of degree 2, Dokl. Akad.
Nauk SSSR 261 (1981), no. 3, 542-547. MR0638926 (83h:12015)

[10] A. S. Merkurjev, K-theory of simple algebras, in K-theory and algebraic
geometry: connections with quadratic forms and division algebras (Santa
Barbara, CA, 1992), 65-83, Proc. Sympos. Pure Math., Part 1, Amer.
Math. Soc., Providence, RI. MR1327281 (96£:19004)

[11] A. S. Merkurjev, Certain K-cohomology groups of Severi-Brauer varieties,
in K-theory and algebraic geometry: connections with quadratic forms and
division algebras (Santa Barbara, CA, 1992), 319-331, Proc. Sympos. Pure
Math., Part 2, Amer. Math. Soc., Providence, RI. MR1327307 (96g:19004)

[12] A. S. Merkurjev, R. Parimala and J.-P. Tignol, Invariants of quasi-trivial
tori and the Rost invariant, Algebra i Analiz 14 (2002) 110-151; St. Pe-
tersburg Math. J. 14 (2003) 791-821.

[13] A. S. Merkurjev and A. A. Suslin, Norm residue homomorphism of de-
gree three, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 2, 339-356;
translation in Math. USSR-Izv. 36 (1991), no. 2, 349-367. MR1062517
(91£:11083)

[14] A. S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and
the Brauer group of homogeneous varieties, J. Reine Angew. Math. 461
(1995), 13-47. MR1324207 (96¢:20083)

[15] R. Parimala, R. Sridharan and V. Suresh, Hermitian analogue of a the-
orem of Springer, J. Algebra 243 (2001), no. 2, 780-789. MR1850658
(2002¢:11043)

[16] E. Peyre, Products of Severi-Brauer varieties and Galois cohomology, in
K-theory and algebraic geometry: connections with quadratic forms and
division algebras (Santa Barbara, CA, 1992), 369-401, Proc. Sympos. Pure
Math., Part 2, Amer. Math. Soc., Providence, RI. MR1327310 (96d:19008)

[17] M. Rost, On Hilbert Satz 90 for K3 for degree-two extensions, preprint,
Regensburg 1986.
http://www.mathematik.uni-bielefeld.de/ " rost/K3-86.html

DOCUMENTA MATHEMATICA 9 (2004) 183-204



204 R. PrREETI AND J.-P. TiGNOL

[18] W. Scharlau, Quadratic and Hermitian forms, Springer, Berlin, 1985.
MRO770063 (86k:11022)

[19] J.-P. Serre, Corps locauz, Actualités Sci. Indust., No. 1296. Hermann,
Paris, 1962. MR0150130 (27 #133)

[20] J-P. Serre, Cohomologie galoisienne, Fifth edition, Springer, Berlin, 1994.
MR1324577 (96b:12010)

[21] J.-P. Tignol, Corps & involution neutralisés par une extension abélienne
élémentaire, in The Brauer group (Sem., Les Plans-sur-Bex, 1980), 1-34,
Lecture Notes in Math., 844, Springer, Berlin. MR0611863 (82h:16013)

[22] A. Weil, Algebras with involutions and the classical groups, J. Indian
Math. Soc. (N.S.) 24 (1960), 589-623 (1961). MRO0136682 (25 #147)

R. Preeti J.-P. Tignol
Université de Rennes 1 Université catholique de Louvain
F-35042 Rennes, France B-1348 Louvain-la-Neuve, Belgium

preeti.raman@math.univ-rennesl.fr  tignol@math.ucl.ac.be

DOCUMENTA MATHEMATICA 9 (2004) 183-204



