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Abstract. Let H(Ω0) = −∆ + V be a Schrödinger operator on a
bounded domain Ω0 ⊂ R

d (d ≥ 2) with Dirichlet boundary condition.
Suppose that Ωℓ (ℓ ∈ {1, . . . , k}) are some pairwise disjoint subsets
of Ω0 and that H(Ωℓ) are the corresponding Schrödinger operators
again with Dirichlet boundary condition. We investigate the relations
between the spectrum of H(Ω0) and the spectra of the H(Ωℓ). In par-
ticular, we derive some inequalities for the associated spectral count-
ing functions which can be interpreted as generalizations of Courant’s
nodal theorem. For the case where equality is achieved we prove con-
verse results. In particular, we use potential theoretic methods to
relate the Ωℓ to the nodal domains of some eigenfunction of H(Ω0).

2000 Mathematics Subject Classification: 35B05

1 Introduction

Consider a Schrödinger operator

H = −∆ + V (1.1)

on a bounded domain Ω0 ⊂ R
d with Dirichlet boundary condition. Further we

assume that V is real valued and satisfies V ∈ L∞(Ω0). (We could relax this
condition and extend our results to the case V ∈ Lβ(Ω0) for some β > d/2
using [11].)
The operator H is selfadjoint if viewed as the Friedrichs extension of the
quadratic form of H with form domain W 1,2

0 (Ω0) and form core C∞
0 (Ω0) and
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we denote it by H(Ω0). Further H(Ω0) has compact resolvent. So the spectrum
of H(Ω0), σ

(

H(Ω0)
)

, can be described by an increasing sequence of eigenvalues

λ1 < λ2 ≤ λ3 ≤ · · · ≤ λj ≤ λj+1 ≤ . . . (1.2)

tending to +∞, such that the associated eigenfunctions uj form an orthonormal
basis of L2(Ω0). We can assume that these eigenfunctions uj are real valued
and by elliptic regularity, [9] (Corollary 8.36), uj belongs to C1,α(Ω0) for every
α < 1. Moreover λ1 is simple and the corresponding eigenfunction u1 can be
chosen to satisfy, see e.g. [17],

u1(x) > 0 , for all x ∈ Ω0 . (1.3)

For a bounded domain D we let H(D) be the corresponding selfadjoint oper-
ator, with Dirichlet boundary condition on ∂D. Its lowest eigenvalue will be
denoted by λ(D).
We denote the zero set of an eigenfunction u by

N(u) = {x ∈ Ω0 | u(x) = 0}. (1.4)

The nodal domains of u, which are by definition the connected components
of Ω0 \ N(u), will be denoted by Dj , j = 1, . . . , µ(u), where µ(u) denotes the
number of nodal domains of u.
Suppose that Ωℓ (ℓ = 1, 2, . . . , k) are k open pairwise disjoint subsets of Ω0. In
this paper we shall investigate relations between the spectrum of H(Ω0) and the
spectra of the H(Ωℓ). Roughly speaking, we shall derive an inequality between
the counting function of H(Ω0) and those of the H(Ωℓ). This inequality can
be interpreted as a generalization of Courant’s classical nodal domain theorem.
For the case where equality is achieved this will lead to a partial characterization
of the Ωℓ which will turn out to be related to the nodal domains of one of the
eigenfunctions of H(Ω0).
These results will be given in sections 2 and 3. From these results some nat-
ural questions of potential theoretic nature arise which will be analyzed and
answered in section 7.
The proofs of the results stated in sections 2 and 3 are given in sections 4 and
5. In section 6 some illustrative explicit examples are given.

2 Main results

We start with a result which will turn out to be a generalization of Courant’s
nodal theorem. We consider again (1.1) on a bounded domain Ω0 and the
corresponding eigenfunctions and eigenvalues. We first introduce

n(λ,Ω0) = #{j | λj(Ω0) ≤ λ}, (2.1)

where λj(Ω0) is the j-th eigenvalue of H(Ω0).
We also define

n(λ,Ω0) = #{j | λj(Ω0) < λ}, (2.2)
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and

n(λ,Ω0) =

{

n(λ,Ω0) if λ 6∈ σ
(

H(Ω0)
)

n(λ,Ω0) + 1 if λ ∈ σ
(

H(Ω0)
)

.
(2.3)

So we always have :

n(λ,Ω0) ≤ n(λ,Ω0) ≤ n(λ,Ω0), (2.4)

with equality when λ is not an eigenvalue. Note that n(λ,Ω0)−n(λ,Ω0) is the
multiplicity of λ when λ is an eigenvalue of H(Ω0), i.e. the dimension of the
eigenspace associated to λ. We shall consider a family of k open sets Ωℓ (ℓ =
1, . . . , k) contained in Ω0 and the corresponding Dirichlet realizations H(Ωℓ).
For each H(Ωℓ) the corresponding eigenvalues counted with multiplicity are
denoted by (λℓ

j)j∈N\{0} (with λℓ
j ≤ λℓ

j+1). When counting the eigenvalues less
than some given λ , we shall for simplicity write

nℓ = nℓ(λ) = n(λ,Ωℓ), (2.5)

and analogously for the quantities with over-, respectively, underbars.

Theorem 2.1
Suppose Ω0 ⊂ R

d is a bounded domain and that λ ∈ σ
(

H(Ω0)
)

. Suppose that
the sets Ωℓ (ℓ = 1, . . . , k) are pairwise disjoint open subsets of Ω0. Then

k
∑

ℓ=1

nℓ ≤ n0 + min
ℓ≥0

(

nℓ − nℓ

)

. (2.6)

A direct weaker consequence of (2.6) is the more standard

Corollary 2.2
Under the assumptions of Theorem 2.1, we have

k
∑

ℓ=1

nℓ ≤ n0 . (2.7)

This corollary is actually present in the proofs of the asymptotics of the count-
ing function (see for example the Dirichlet-Neumann bracketing in Lieb-Simon
[14]).

Remark 2.3
Inequality (2.6) is also true if λ 6∈ σ

(

H(Ω0)
)

. The statement becomes

k
∑

ℓ=1

nℓ ≤ n0 ,

and is proved essentially in the same way.
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Remark 2.4
The assumption that Ω0 is connected is necessary. Indeed, suppose Ω1

and Ω2 are connected and assume that Ω0 = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅
and that λ = λ1(Ω1) = λ1(Ω2). Then λ1(Ω0) = λ2(Ω0) and we deduce
n(λ,Ω0) = 1. If we no longer assume the connectedness of Ω0, we in gen-
eral just have Corollary 2.2.

Finally we show that Courant’s nodal theorem is an easy corollary of
Theorem 2.1.

Corollary 2.5 : Courant’s nodal theorem
If Ω0 is connected and if u is an eigenfunction of H(Ω0) associated to some
eigenvalue λ, then

µ(u) ≤ n(λ,Ω0) .

Proof.
We now simply apply Theorem 2.1 by taking Ω1, . . . ,Ωµ(u) as the nodal domains
associated to u. We just have to use (1.3) for each Ωℓ, ℓ = 1, . . . , µ(u), which
gives nℓ = nℓ = 1. 2

Remark 2.6
Courant’s nodal theorem is one of the basic results in spectral theory of
Schrödinger-type operators. It is the natural generalization of Sturm’s oscilla-
tion theorem for second order ODE’s. For recent investigations see for instance
[1] and [4].

3 Converse results.

In this section we consider some results that are converse to Theorem 2.1.

Theorem 3.1
Suppose that the Ωℓ, 1 ≤ ℓ ≤ k, are pairwise disjoint open subsets of Ω0. If
λ ∈ σ

(

H(Ω0)
)

and
k

∑

ℓ=1

nℓ ≥ n0 , (3.1)

then λ ∈ σ(H(Ωℓ)) for each Ωℓ. If Uℓ(λ) denotes the eigenspace of H(Ωℓ)
associated to the eigenvalue λ, then there is an eigenfunction u of H(Ω0) with
eigenvalue λ such that

u =

k
∑

ℓ=1

ϕℓ in W 1,2
0 (Ω0) , (3.2)

where each ϕℓ belongs to Uℓ(λ) \ {0} and is identified with its extension by 0
outside Ωℓ.
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Remark 3.2
One can naturally think that formula (3.2) has immediate consequences on the
family Ωℓ, which should for example have some covering property. The question
is a bit more subtle because we do not a priori want to assume strong regularity
properties for the boundaries of the Ωℓ. We shall discuss this point in detail in
the last section.

Another consequence of equalities in Theorems 2.1 or 3.1 is given by the fol-
lowing result.

Theorem 3.3
Suppose that, for some bounded domain Ω0 in R

d, some λ ∈ σ(H(Ω0)) and
some family of pairwise disjoint open sets Ωℓ ⊂ Ω0, 0 < ℓ ≤ k, we have

k
∑

ℓ=1

nℓ = n0 + min
ℓ≥0

(

nℓ − nℓ

)

. (3.3)

Then, for any subset L ⊂ {1, 2, . . . , k} such that Ω∗
L = Int

(

∪ℓ∈L Ωℓ

)

\ ∂Ω0 is
connected, we have

∑

ℓ∈L

nℓ = n(λ,Ω∗
L) + min

(

min
ℓ∈L

(

nℓ − nℓ

)

, n(λ,Ω∗
L) − n(λ,Ω∗

L)

)

. (3.4)

A simpler variant is the following :

Theorem 3.4
Suppose (3.1) holds and that Ω∗

L is defined as above. Then we have the inequal-
ity :

∑

ℓ∈L

nℓ ≥ n(λ,Ω∗
L) . (3.5)

On the sharpness of Courant’s nodal theorem
It is well known that Courant’s nodal theorem is sharp only for finitely many
k’s [15].
Let Ω0 be connected. We will say that an eigenfunction u associated to an
eigenvalue λ of H(Ω0) is Courant-sharp if µ(u) = n(λ,Ω0). Theorem 3.3
now implies :

Corollary 3.5
i) Let u be a Courant-sharp eigenfunction of H(Ω0) with µ(u) = k. Let
{Di}i=1,...,k be the family of the nodal domains associated to u, let L be a
subset of {1, . . . , k} with #L = ℓ and let Ω∗

L = Int (∪i∈LDi) \ ∂Ω0. Then

λℓ(Ω
∗
L) = λk , (3.6)

where λj(Ω
∗
L) are the eigenvalues of H(Ω∗

L).
ii) Moreover, if Ω∗

L is connected, and if ℓ < k, then u
∣

∣

Ω∗
L

is Courant-sharp

and λℓ(Ω
∗
L) is simple.
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4 Basic tools

Let us first recall some basic tools (see e.g. [17]) which were already vital for
the proof of Courant’s classical result.

4.1 Variational characterization

Let us first recall the variational characterization of eigenvalues.

Proposition 4.1
Let Ω be a bounded open set in R

d and let V ∈ L∞(Ω) be real-valued. Suppose
λ ∈ σ

(

H(Ω)
)

and let U± = span 〈u1, . . . , uk±〉 where

k− = n(λ,Ω) , k+ = n(λ,Ω) , (4.1)

and (uj)j≥1 is as before an orthonormal basis of eigenfunctions of H(Ω) asso-
ciated to (λj)j≥1. Then

λ = inf
ϕ⊥U−, ϕ∈W 1,2

0
(Ω)

〈ϕ, H(Ω)ϕ〉
‖ϕ‖2

(4.2)

and

λ < λn(λ, Ω)+1 = inf
ϕ⊥U+, ϕ ∈W 1,2

0
(Ω)

〈ϕ, H(Ω)ϕ〉
‖ϕ‖2

. (4.3)

If equality is achieved in (4.2) for some ϕ 6≡ 0, then ϕ is an eigenfunction in
the eigenspace of λ.

Note that (4.2) and (4.3) are actually the same statement. We just stated
them separately for later reference. Note that we have not assumed that Ω is
connected.

4.2 Unique continuation

Next we restate a weak form of the unique continuation property:

Theorem 4.2
Let Ω be an open set in R

d and let V ∈ L∞
loc(Ω) be real-valued. Then any

distributional solution in Ω to (−∆ + V )u = λu which vanishes on an open
subset ω of Ω is identically zero in the connected component of Ω containing ω.

There are stronger results of this type under weaker assumptions on the po-
tential, see [11].
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4.3 A consequence of Harnack’s inequality

The standard Harnack’s inequality (see e.g. Theorem 8.20 in [9]), together with
the unique continuation theorem leads to the following theorem :

Theorem 4.3
If Ω is a bounded domain in R

d and u is an eigenfunction of H(Ω), then for
any x in N(u) ∩ Ω and any ball B(x, r) (r > 0), there exist y± ∈ B(x, r) ∩ Ω
such that ±u(y±) > 0.

5 Proof of the main theorems

5.1 Proof of Theorem 2.1

Assume first for contradiction that

∑

ℓ≥1

nℓ > n0 + min
ℓ≥0

(

nℓ − nℓ

)

, (5.1)

and recall that we assume that λ ∈ σ
(

H(Ω0)
)

. Pick some ℓ0 such that

nℓ0 − nℓ0 = min
ℓ≥0

(

nℓ − nℓ

)

.

Suppose first that ℓ0 ≥ 1.
We can rewrite (5.1) to obtain

∑

ℓ 6=ℓ0, ℓ≥1

nℓ + nℓ0 > n0 . (5.2)

Let ϕℓ0
i , i = 1, . . . , n(λ,Ωℓ0), denote the first nℓ0

eigenfunctions of H(Ωℓ0).

The corresponding eigenvalues are strictly smaller than λ. The functions ϕℓ0
i

and the remaining
∑

ℓ 6=ℓ0
nℓ eigenfunctions associated to the other H(Ωℓ) span

a space of dimension at least n0. We can pick a linear combination Φ 6≡ 0
of these functions which is orthogonal to the n0 eigenfunctions of H(Ω0). By
assumption

〈Φ,H(Ω0)Φ〉
‖Φ‖2

≤ λ, (5.3)

hence Φ must by the variational principle be an eigenfunction and there must
be equality in (5.3).
There are two possibilities: either some ϕℓ0

i , i < nℓ0 contributes to the linear
combination which makes up Φ or not. In the first case this means that the
left hand side of (5.3) is strictly smaller than λ, contradicting the variational
characterization of λ. In the other case we obtain a contradiction to unique
continuation, since then Φ ≡ 0 in Ωℓ0 and hence Φ vanishes identically in all
of Ω0.
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Consider now the case when ℓ0 = 0.
We have to show that the assumption

∑

ℓ≥1

nℓ > n0 , (5.4)

leads to a contradiction. To this end it suffices to apply (4.3). Indeed, we can
find a linear combination Φ of the eigenfunctions ϕℓ

j , j ≤ nℓ, corresponding to
the different H(Ωℓ) such that Φ⊥U+, Φ 6≡ 0, but Φ satisfies

〈Φ, H(Ω0) Φ〉
‖Φ‖2

≤ λ = λn0
,

and this contradicts (4.3). This proves (2.6).

5.2 Proof of Theorem 3.1

The inequality (3.1) implies that we can find a non zero u⊥U− in the span of the
eigenfunctions ϕℓ

j , j = 1, . . . nℓ, of the different H(Ωℓ). Again by the variational
characterization, (4.2) and (5.3) hold and hence u must be an eigenfunction.
2

5.3 Proof of Theorem 3.3

We assume (3.3). Without loss we might assume that we have labeled the Ωℓ

such that L = {1, . . . ,K}, with K ≤ k. Let n∗ = n(λ,Ω∗
L). We apply Theorem

2.1 to the family Ωℓ (ℓ ∈ L) and replace Ω0 by Ω∗
L and obtain :

∑

1≤ℓ≤K

nℓ ≤ n∗ + min
(

n∗ − n∗, min
1≤ℓ≤K

(nℓ − nℓ)
)

. (5.5)

We assume for contradiction that

∑

1≤ℓ≤K

nℓ < n∗ + min
(

n∗ − n∗, min
1≤ℓ≤K

(nℓ − nℓ)
)

. (5.6)

This implies
∑

1≤ℓ≤K

nℓ < n∗ , (5.7)

and
∑

1≤ℓ≤K

nℓ < n∗ + min
1≤ℓ≤K

(nℓ − nℓ) . (5.8)

Theorem 2.1, applied to the family Ω∗
L,Ωℓ (ℓ > K), implies that

n∗ +
∑

K<ℓ≤k

nℓ ≤ n0 + min
(

n0 − n0, min
K<ℓ≤k

(nℓ − nℓ)
)

, (5.9)
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and
n∗ +

∑

K<ℓ≤k

nℓ ≤ n0 . (5.10)

By adding (5.7) and (5.9), we get :

∑

1≤ℓ≤k

nℓ < n0 + min
(

n0 − n0, min
K<ℓ≤k

(nℓ − nℓ)
)

. (5.11)

By adding (5.8) and (5.10), we obtain

∑

1≤ℓ≤k

nℓ < n0 + min
1≤ℓ≤K

(nℓ − nℓ) . (5.12)

The combination of (5.11) and (5.12) is in contradiction with (3.3).

5.4 Proof of Theorem 3.4

For the case that (3.1) holds, (3.5) can be shown similarly. (3.1) reads

∑

1≤ℓ≤k

nℓ ≥ n0 .

We assume for contradiction that

∑

1≤ℓ≤K

nℓ < n∗ , (5.13)

where n∗ is defined as above. The addition of (5.10) and (5.13) leads to a
contradiction. 2

6 Illustrative examples

6.1 Examples for a rectangle

We illustrate Theorem 2.1 by the analysis of various examples in rectangles.
Pick a rectangle Ω0 = (0, 2π) × (0, π) and take Ω1 = (0, π) × (0, π) and con-
sequently Ω2 = (π, 2π) × (0, π). The eigenvalues corresponding to Ω0 for −∆
with Dirichlet boundary condition are given by

σ
(

H(Ω0)
)

=

{

λ ∈ R

∣

∣

∣

∣

λ = m2/4 + n2, (m,n) ∈ Z
2, m, n > 0

}

, (6.1)

while those for Ω1, and hence for Ω2 which can be obtained by a translation of
Ω1, are given by

σ
(

H(Ω1)
)

= σ
(

H(Ω2)
)

=

{

λ ∈ R

∣

∣

∣

∣

λ = m2+n2, (m,n) ∈ Z
2, m, n > 0

}

. (6.2)
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Denote the eigenvalues associated to Ω0 by {λi} and those to Ω1 by {νi}. We
easily check that λ5 = λ6 = ν2 = ν3 = 5, λ11 = λ12 = ν5 = ν6 = 10 so that
Theorem 2.1 is sharp for these cases.
One could ask whether there are arbitrarily high eigenvalues cases for which we
have equality in (2.6). This is not the case, as can be seen from the following
standard number theoretical considerations. We have (see [18] and for more
recent contributions [16] and [2]) the following asymptotic estimate for the
number of lattice points in an ellipse. Let a, b > 0, then

A(λ) := #

{

(m,n) ∈ Z
2

∣

∣

∣

∣

am2 + bn2 ≤ λ

}

(6.3)

has the following asymptotics as λ tends to infinity:

A(λ) =
π√
ab

λ + O(λ1/3). (6.4)

We have not to consider A(λ) but rather

A+ = #

{

(m,n) ∈ Z
2,m, n > 0

∣

∣

∣

∣

am2 + bn2 ≤ λ

}

. (6.5)

Hence we get

A(λ) = 4A+(λ) + 2#

{

m ∈ N, m > 0

∣

∣

∣

∣

m ≤
[

(λ/a)1/2
]

}

+2#

{

n ∈ N, n > 0

∣

∣

∣

∣

n ≤
[

(λ/b)1/2
]

}

+ 1 .

(6.6)

If we apply this to A+ with a = 1/4, b = 1 (in this case denoted by A+
0 ) and

to A+ with a = 1, b = 1 (in this case denoted by A+
1 ), we get asymptotically

A+
0 (λ) − 2A+

1 (λ) =
1

2

√
λ + o (

√
λ) . (6.7)

Note that
ni(λ) = A+

i (λ), i = 0, 1 .

In order to control ni(λ), we observe that, for any ǫ > 0 :

ni(λ − ǫ) ≤ ni(λ) ≤ ni(λ) .

This implies
ni(λ) − ni(λ) = O(λ

1
3 ) . (6.8)

The asymptotic formula (6.4) implies

ni(λ) − ni(λ) = o(
√

λ) , (6.9)

and this shows that (2.6) is never sharp for large λ.
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6.2 About Corollary 3.5

One can ask whether there is a converse to Corollary 3.5 in the following sense.
Suppose we have an eigenfunction u with k nodal domains and eigenvalue
λ. For each pair of neighboring nodal domains of u, say, Di and Dj , let
Ωi,j = Int (Di ∪ Dj) and suppose that λ = λ2(Ωi,j). Does this imply that
λ = λk? The answer to the question is negative, as the following easy example
shows :
Consider the rectangle Q = (0, a) × (0, 1) ⊂ R

2 and consider H0(Q). We can
work out the eigenvalues explicitly as

{π2(
m2

a2
+ n2)}, for m,n ∈ N \ 0, (6.10)

with corresponding eigenfunctions (x, y) 7→ sin(πmx
a )(sin πny). If

a2 ∈
(9

4
,

8

3

)

, (6.11)

then

λ3(Q) = π2(
1

a2
+ 4) < λ4(Q) = π2(

9

a2
+ 1) ,

and the zeroset of u4 is given by {(x, y) ∈ Q | x = a/3, x = 2a/3}. For u4

we have Ω1,2 = Q ∩ {0 < x < 2a/3}. If 2a/3 > 1 (which is the case under
assumption (6.11)), then λ2(Ω1,2) = λ4(Q). We have consequently an example
with k = 3.

7 Converse theorems in the case of regular open sets

7.1 Preliminaries

As a consequence of Theorem 3.1 and using (1.3), we get that each nodal
domain Dkℓ of ϕℓ is included in a nodal domain Dj0 of u. Using a result of
Gesztesy and Zhao ([8], Theorem 1), this implies also that the capacity (see
next subsection) of Dj0 \ Dkℓ (hence the Lebesgue-measure) is 0.
We now would like to show that under some extra condition the nodal domains
of u are those of the ϕℓ. This is easy when it is assumed that the boundaries
of the Ωℓ are C1,α. However, this regularity assumption is rather strong. A
natural weaker regularity condition involving the notion of capacity will be
given in this section.

7.2 Capacity

There are various equivalent definitions of polar sets and capacity (see e.g.
[5], [7], [10], [13]). If U is a bounded open subset of R

d, we denote by ‖.‖W 1,2
0

(U)

the Hilbert norm on W 1,2
0 (U) :

‖u‖W 1,2
0

(U) := (

∫

U

|∇u|2 dx)
1
2 .
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The capacity in U of A ⊂ U is defined† as

CapU (A) := inf{‖s‖2
W 1,2

0
(U)

; s ∈ W 1,2
0 (U)

and s ≥ 1 a.e. in some neighborhood of A } .

It is easily checked that if K is compact and K ⊂ U ∩ V , where V is also
open and bounded in R

d, then there is a c = c(K,U, V ) such that CapU (A) ≤
c CapV (A) for A ⊂ K. So CapU (A) = 0 for some bounded open U ⊃ A
iff for each a ∈ A there exists an r > 0 and a bounded domain V such that
V ⊃ B(a, r) and CapV (B(a, r) ∩ A) = 0. In this case we may simply write
Cap(A) = 0 without referring to U .

7.3 Converse theorem

We are now able to formulate our definition of a regular point.

Definition 7.1
Let D be an open set in R

d. We shall say that a point x ∈ ∂D is (capacity)-
regular (for D) if, for any r > 0, the capacity of B(x, r)∩∁D is strictly positive.

Theorem 7.2
Under the assumptions of Theorem 3.1, any point x ∈ ∂Ωℓ ∩ Ω0 which is
(capacity)-regular with respect to Ωℓ (for some ℓ) is in the nodal set of u.

This theorem admits the following corollary :

Corollary 7.3
Under the assumptions of Theorem 3.1 and if, for all ℓ, every point in (∂Ωℓ)∩Ω0

is (capacity)-regular for Ωℓ, then the family of the nodal domains of u coincides
with the union over ℓ of the family of the nodal domains of the ϕℓ, where u and
ϕℓ are introduced in (3.2).

Proof of corollary
It is clear that any nodal domain of ϕℓ is contained in a unique nodal domain
of u.
Conversely, let D be a nodal domain of u and let ℓ ∈ {1, . . . , k}. Then, by
combining the assumption on ∂Ωℓ, Proposition 7.4 and (3.2), we obtain the
property :

∂Ωℓ ∩ D = ∅ .

Now, D being connected, either Ωℓ ∩ D = ∅ or D ⊂ Ωℓ. Moreover the second
case should occur for at least one ℓ, say ℓ = ℓ0. Coming back to the definition
of a nodal set and (3.2), we observe that D is necessarily contained in a nodal
domain Dℓ0

j of ϕℓ0 .
Combining the two parts of the proof gives that any nodal set of u is a nodal
set of ϕℓ and vice-versa.

†For d ≥ 3 the restriction that U is bounded can be removed and one may take U = R
d.
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7.4 Proof of Theorem 7.2

The proof is a consequence of (3.2) and of the following proposition :

Proposition 7.4
Let D,Ω ⊂ R

d be open sets such that D ⊂ Ω, and let x0 ∈ ∂D ∩ Ω. Assume
that, for some given r0 > 0 such that B(x0, r0) ⊂ Ω, there exists u ∈ W 1,2

0 (D)
and v ∈ C0(B(x0, r0)) such that :

u|D∩B(x0,r0) = v|D∩B(x0,r0) a.e. in D ∩ B(x0, r0) .

Then if v(x0) 6= 0, there exists a ball B(x0, r1) (r1 > 0), such that B(x0, r1)\D
is polar, that is, of capacity 0.

Remark 7.5
Using some standard potential theoretic arguments, Proposition 7.4 can be
deduced from Théorème 5.1 in [6] which characterizes, in the case where d ≥ 3,
those u ∈ W 1,2(Ω) that belong to W 1,2

0 (Ω). The proof below should be more
elementary in character.

Remark 7.6
Given an open subset D ⊂ R

d and a ball B = B(x, r), x ∈ ∂D, the difference
set B \ D is polar if and only if B ∩ ∂D is polar. This follows from the fact
that a polar subset of B does not disconnect B [3].

Remark 7.7
If D is a nodal domain of an eigenfunction u of H(Ω), then any point of ∂D∩Ω
is capacity-regular for D. This is an immediate consequence of Theorem 4.3
(it also follows from the preceding remark). Indeed, if x is in ∂D ∩Ω, then for
any r > 0, one can find a ball B(y, r′) in ∁D ∩ B(x, r).

To prove Proposition 7.4 we require some well-known facts stated in the next
three lemmas.

Lemma 7.8
Let U be a bounded convex domain in R

d and let B(a, ρ), ρ > 0 be a ball such
that B(a, ρ) ⊂ U . There exists a positive constant c = c(a, ρ, U) such that, for
every f ∈ W 1,2(U) vanishing a.e. in B(a, ρ),

‖f‖W 1,2(U) ≤ c ‖∇f‖L2(U) .
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Proof of Lemma 7.8
We can assume without loss of generality that a = 0 and let U ′ = U \ B(0, ρ).
Fix R so large that U ⊂ B(0, R). By approximating f by smooth functions (e.g.
regularize the function x 7→ f((1−δ)x) for δ > 0 and small to get f1 ∈ C∞(U)),
we may restrict to functions f ∈ C∞(U) vanishing in B(0, ρ). Then, since

|f(x)|2 = |
∫ 1

0

x · ∇f(sx) ds|2 ≤ R2

∫ 1

ρ

|x|

|∇f(sx)|2 ds for x ∈ U ′ ,

we have
∫

U ′

|f(x)|2 dx ≤ R2

∫∫

x∈U ′, ρ

|x|≤s≤1

|∇f(sx)|2 dx ds

≤ R2

∫∫

z∈sU ′, ρ≤|z|, s≤1

|∇f(z)|2 dz
ds

s

≤ R3

ρ

∫

U ′

|∇f(x)|2 dx,

(7.1)

and the lemma follows.

Lemma 7.9
Let U be a domain in R

d. For every real-valued f ∈ W 1,2(U) the function
g = f+ is also in W 1,2(U), with ‖g‖W 1,2(U) ≤ ‖f‖W 1,2(U). Moreover the map
f 7→ g from W 1,2(U) into itself is continuous (in the norm topology).

Remark 7.10
Since inf{fn, 1} = 1 − (1 − fn)+, it follows from the lemma that inf{fn, 1} →
inf{f, 1} in W 1,2(U) whenever fn → f in W 1,2(U).

Proof of Lemma 7.9
For the first two facts we refer to [12] or [13], where it is moreover shown that
the weak partial derivatives ∂jf+ and ∂jf satisfy

∂jf+ = 1{f>0} ∂jf = 1{f≥0} ∂jf a.e. in U.

Therefore, for any δ > 0, we have :

‖∇[fn]+ −∇f+‖L2

= ‖1{fn>0}∇fn − 1{f>0}∇f‖L2

≤ ‖1{fn>0}(∇fn −∇f)‖L2 + ‖(1{f>0} − 1{fn>0})∇f‖L2

≤ ‖∇fn −∇f‖L2 + ‖(1{f>0;fn≤0} + 1{f≤0;fn>0})∇f‖L2

≤ ‖∇fn −∇f‖L2 + ‖1{0≤|f |≤δ}∇f‖L2 + 2‖1{|fn−f |≥δ}∇f‖L2 .

(7.2)

Given ε > 0, fix δ > 0 so that ‖1{0≤|f |≤δ}∇f‖L2 ≤ ε (recall that ∇f = 0 a.e.

in {f = 0}). Since ∇f ∈ L2(U) and ‖1{|f−fn|≥δ}‖L1 ≤ ‖fn−f‖2

L2

δ2 , it follows
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that lim
n→∞

‖(1{|f−fn|≥δ})∇f‖L2 = 0. Therefore lim sup
n→∞

‖∇[fn]+ −∇f+‖L2 ≤ ε,

which proves that [fn]+ → f+ in W 1,2(U), if fn → f in W 1,2(U).

Lemma 7.11
Let ω be open in R

d and let {fn} be a sequence of functions continuous in ω
such that fn ∈ W 1,2(ω) for each n ≥ 1 and lim

n→∞
‖fn‖W 1,2(ω) = 0.

Then the set F = {x ∈ ω ; lim inf
n→∞

|fn(x)| > 0 } is polar.

Proof of Lemma 7.11
It suffices to show that capω(F ∩ K) = 0 for any compact subset K of ω. Let
ϕ ∈ C∞

0 (Rd) be such that 0 ≤ ϕ ≤ 1 in R
d, ϕ = 1 in K and supp(ϕ) ⊂ ω.

Then gn = fnϕ → 0 in W 1,2
0 (ω) and gn = fn in K.

Set Fν = {x ∈ ω ; |gn(x)| ≥ 2−ν for all n ≥ ν}. By the definition of the
capacity, we have Capω(Fν) ≤ 22ν‖∇gn‖2

L2 for all n ≥ ν and cap(Fν) = 0.
Therefore capω(

⋃

ν≥1 Fν) = 0 and capω(F
⋂

K) = 0, since F
⋂

K ⊂ ⋃

ν≥1 Fν .

Proposition 7.12
Let U be a non-empty open subset of the ball B = B(a, r) in R

d. Suppose there
exist a function f continuous in U and a sequence {fn} of functions continuous
in B such that
(i) f ≥ 1 in U and f ∈ W 1,2(U),
(ii) fn = 0 in a neighborhood of B \ U and fn ∈ W 1,2(U) for each n ≥ 1,
(iii) lim

n→∞
‖f − fn‖W 1,2(U) = 0.

Then the set F := B \ U is polar.

Proof of Proposition 7.12
Replacing f by inf{f, 1} and fn by inf{fn, 1}, we see‡ from Lemma 7.9 that
we may assume that f = 1 in U . So

lim
n→∞

‖∇fn‖L2(U) = 0 and lim
n→∞

‖1 − fn‖L2(U) = 0 .

Fix a ball B(z0, 2ρ) ⊂ U , ρ > 0, and a cut-off function α ∈ C∞(Rd) such that
α = 1 in B(z0, ρ), α = 0 in R

d \ B(z0, 2ρ). Set g = 1 − α, gn = (1 − α)fn.
Then g, gn belong to W 1,2(B), ∇g = ∇gn = 0 a.e. in F and

lim
n→∞

‖∇(g − gn)‖L2(B) = lim
n→∞

‖∇(g − gn)‖L2(U) = 0.

So, by Lemma 7.8, lim
n→∞

‖g−gn‖W 1,2(B) = 0. But g−gn ≥ 1 in F and it follows

from Lemma 7.11 that F is polar.

‡The weak convergence inf{fn, 1}
w
→ inf{f, 1} suffices here. It allows the approximation of

1 = inf{f, 1} in the norm topology in W 1,2(U) by finite convex combination of the inf{fn, 1}.
So we are again left with the case when f = 1 in U .

Documenta Mathematica 9 (2004) 283–299



298 A. Ancona, B. Helffer, T. Hoffmann-Ostenhof

Proof of Proposition 7.4
Without loss of generality, we can assume that v(x0) > 0. Choose r1 > 0
so small that v ≥ c0 := 1

2v(x0) in B(x0, r1). Since u ∈ W 1,2
0 (D), there

is a sequence {un} in C∞
0 (Rd) such that supp(un) ⊂ D and un → u in

W 1,2(Rd). Applying Proposition 7.12 to the ball B(x0, r1) and the functions
f = c−1

0 u|B(x0,r1), fn = c−1
0 un|B(x0,r1), we see that B(x0, r1) \ D is polar.
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