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§1. Introduction

Let F be a field of characteristic not 2 and T be a multiplicative subgroup of
Ḟ = F \ {0} containing the squares. By the additive structure of T , we mean
a description of the T -cosets forming T + aT . The purpose of this article is to
relate the additive structure of such a group T , to some Galois pro-2-group H
associated with T . In the case when T is a usual ordering, the group H is a
group of order 2. In the general case, H is a pro-2-group of nilpotency class at
most 2, and of exponent at most 4. Therefore the structure of H is relatively
simple, and this is one of the attractive features of this investigation.
One of our main motivations is to extend Artin-Schreier theory to this general
situation. In classical Artin-Schreier theory as modified by Becker, one studies
euclidean closures and their relationship with Galois theory [ArSc1, ArSc2, Be].
Recall that such a closure is a maximal 2-extension of an ordered field to which
the given ordering extends. (See [Be].)
It came as a surprise to us that for a good number of isomorphism types of
groups H as above, we could provide a complete algebraic characterization of
the multiplicative subgroups of Ḟ /Ḟ 2 associated with H, entirely analogous
to the classical algebraic description of orderings of fields. We thus obtain a
fascinating direct link between Galois theory and additive properties of multi-
plicative subgroups of fields.
We obtain in particular a Galois-theoretic characterization of rigidity conditions
(Proposition 3.4 and Proposition 3.5) using “small” Galois groups, and a full
classification of rigid groups T (§7). We also know how to make closures (as
defined below) with respect to these rigid “orderings” (§8).
In §9 we refine the notion of H-orderings of fields. We show that under natural
conditions, we can control the behaviour of the additive structure of these
orderings under quadratic extensions. It is worthwhile to point out that each
finite Galois 2-extension can be obtained by successive quadratic extensions.
Therefore, it is sufficient to investigate quadratic extensions.
We have in §2 a nice illustration of what a W -group can or cannot be. Since
the W -group of the field F , together with its level, determines the Witt ring
W (F ), it is clear that every result about the W -group of F and its subgroups
will provide information on W (F ).
This fits together with one of the main ideas behind this work (see §10): ob-
taining new Local-Global Principles for quadratic forms, with respect to these
new “orderings.” This will be the subject of a subsequent article.

We now enter into more detail, fix some notation, and present a more technical
outline of the structure of the paper.

Notation 1.1. All fields in this paper are assumed to be of characteristic
not 2, with any exceptions clearly pointed out. Occasionally we denote a field
extension K/F as F −→ K. The compositum of two fields K and L contained
in a larger field is denoted as KL. Recall that the level of a field F is the
smallest natural number n > 0 such that −1 is a sum of n squares in F or
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∞ if no such n exists. Given a field F , we denote by F (
√

Ḟ ) the compositum
of all quadratic extensions of F , and by F (3) the compositum of all quadratic

extensions of F (
√

Ḟ ) which are Galois over F . (The field F (
√

Ḟ ) was denoted
by F (2) in previous papers (e.g. [MiSm2]), and this explains the notation F (3).)
The W-group of the field F is then defined as GF = Gal(F (3)/F ). This W-
group is the Galois-theoretic analogue of the Witt ring, in that if two fields have
isomorphic Witt rings, then their W-groups are also isomorphic. Conversely, if
two fields have isomorphic W-groups, then their Witt rings are also isomorphic,
provided that the fields have the same level when the quadratic form 〈1, 1〉 is
universal over one of the fields. (See [MiSp2, Theorem 3.8].)
We denote by Φ(GF ) the Frattini subgroup of GF . The Frattini subgroup is by
definition the intersection of the maximal proper subgroups H of GF . (This
means that H is a maximal subgroup of GF among the family of all closed
subgroups of GF not equal to GF . It is a basic fact in the theory of pro-2-groups
that each such subgroup of GF is a closed subgroup of GF of index two.) Notice

that Gal(F (3)/F (
√

Ḟ )) = Φ(GF ). In the case of a pro-2-group G, the Frattini
subgroup is exactly the closure of the group generated by squares. Observe that
for each closed subgroup H of GF we have Φ(H) ⊆ Φ(GF ) ∩ H. We say that a
closed subgroup H ⊆ GF satisfying Φ(H) = H∩Φ(GF ) is an essential subgroup
of GF . Two essential subgroups H1,H2 are equivalent if H1Φ(GF ) = H2Φ(GF ).
In general, for a closed subgroup H of GF , we have H = E × ∏

i(Z/2Z)i

where E is essential: Φ(H) = Φ(E) and Φ(GF ) ∩ H ∼= Φ(E) × ∏

i(Z/2Z)i.
The equivalence class of E is that of H, and equivalent essential subgroups are
always isomorphic. (See [CrSm, Theorem 2.1]. The proof is carried out in the
case when H is finite, and the routine technical details necessary for extending
the proof for an infinite H have been omitted.)

We recall that a subset S = {σi, i ∈ I} of a pro-p-group G is called a set
of generators of G if G is the smallest closed subgroup containing S, and for
each open subgroup U of G, all but finitely many elements of S are in U . It
is well-known that each pro-p-group G contains a set of generators. A set of
generators S of G is called minimal if no proper subset of S generates S. (See
[Koc, 4.1].)
We now give the field-theoretic interpretation of the notion of an essential
subgroup of GF . Let H be any closed subgroup of GF and let L be the fixed
field of H. Let N and M be the fixed fields of Φ(H) and Φ(GF )∩H respectively.
Because Φ(H) ⊆ Φ(GF ) ∩ H, we see that M ⊆ N and equality holds for
one of the inclusions if it holds for the other. Finally observe that M is the

compositum of F (
√

Ḟ ) and L, and that N is the compositum of all quadratic
extensions of L contained in F (3). Summarizing the discussion above we obtain:

Proposition 1.2. Let H be a closed subgroup of GF and L be the fixed field
of H. Then H is an essential subgroup of GF if and only if the maximal
multiquadratic extension of L contained in F (3) is equal to the compositum of

L and F (
√

Ḟ ).
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Kummer theory and Burnside’s Basis Theorem allow us to prove the following:

Proposition 1.3. For H a closed subgroup of GF , the assignment

H 7→ u(H) = PH := {a ∈ Ḟ | (
√

a)σ =
√

a, ∀σ ∈ H}

induces a 1−1 correspondence between equivalence classes of essential subgroups
of GF and multiplicative subgroups of Ḟ /Ḟ 2.

Proof. Recall from Kummer theory that Gal(F (
√

Ḟ )/F ) is the Pontrjagin

dual of the discrete group Ḟ /Ḟ 2 under the pairing (g, [f ]) = g(
√

f)/
√

f of

Gal(F (
√

Ḟ )/F ) with Ḟ /Ḟ 2, with values in Z/2Z ∼= {±1}. (See [ArTa, Chap-
ter 6].)
Assume that H1 and H2 are two essential subgroups of GF such that PH1

=

PH2
=: P . This means H1Φ(GF )

Φ(GF ) = H2Φ(GF )
Φ(GF ) because they are both the an-

nihilator of P under the pairing above. (See [Mo, Chapter 5].) Therefore
H1Φ(GF ) = H2Φ(GF ). Hence u is injective on equivalent classes of essential
subgroups.
In order to prove that u is surjective, consider any subgroup P of Ḟ containing
Ḟ 2. Let {[ai], i ∈ I} ⊂ Ḟ /P be an F2-basis of Ḟ /P and {σ̄i, i ∈ I} be elements
of GF /Φ(GF ) such that σ̄i(

√
ai)/

√
ai = −1, σ̄i(

√
aj) =

√
aj for j 6= i and

σ̄i(
√

p) =
√

p for all p ∈ P .
From [Koc, 4.4] we see that there exists a subset S = {σi|i ∈ I} of GF such that
the image of each σi in GF /Φ(GF ) is σ̄i and for each open subgroup U of GF

all but finitely many elements of S are in U . Set H to be the smallest closed
subgroup of GF containing S. Because H/Φ(H) = 〈σ̄i|i ∈ I〉 := the smallest
closed subgroup of GF /Φ(GF ) generated by {σ̄i|i ∈ I}, and P = PH we see
that H is an essential subgroup of GF such that u(H) = P . ¤

The motivation for this study of essential subgroups grew out of the observation
in [MiSp1] that for H ∼= Z/2Z, if PH 6= Ḟ /Ḟ 2 (i.e. if H ∩ Φ(GF ) = {1}), then
PH is in fact the positive cone of some ordering on F . The reader is referred to
[L2] for further details on orderings and connections to quadratic forms. Some
convenient references for basic facts on quadratic forms are [L1] and [Sc].
Since the presence or absence of Z/2Z as an essential subgroup of GF determines
the orderings or lack thereof on F , one wonders whether other subgroups of GF

also yield interesting information about F . We make the following definition.

Definition 1.4.
(1) Let C denote the category of pro-2-groups of exponent at most 4, for which
squares and commutators are central. (Observe that since each commutator
is a product of (three) squares, it is sufficient to assume that all squares are
central.) All W-groups are in category C. In particular Φ(GF ) is in the center
of GF , for any GF . See [MiSm2] for further details. Note that C is a full
subcategory of the category of pro-2-groups. This allows us to freely use all of
the properties of pro-2-groups.
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(2) Let H be a pro-2-group. An embedding ϕ:H −→ GF is an essential em-
bedding if ϕ(H) is an essential subgroup of GF . Note that if H embeds in GF ,
then H has to be in category C.

(3) An H-ordering on F is a set Pϕ(H) where ϕ is an essential embedding of H
in GF .

(4) Let (F, T ) be a field with an H-ordering T . We say that (L, S) extends
(F, T ) if L is an extension field of F in the maximal Galois 2-extension F (2) of

F , S is a subgroup of L̇ containing L̇2, T = S ∩ Ḟ , and the induced injection
Ḟ /T −→ L̇/S is an isomorphism. We also say (L, S) is a T -extension of F . (We
will see in Propositions 4.1 and 4.2 that maximal T -extensions always exist,
and that a maximal such extension (L, S) in F (2) has S = L̇2.) An extension
(L, S) of (F, T ) is said to be an H-extension if S is an H-ordering of L.

(5) An extension (L, S) of (F, T ) is called an H-closure if it is a maximal T -

extension which is also an H-extension. Note this implies S = L̇2 and GL
∼= H.

Observe that maximal H-extensions (K,S) need not satisfy S = K̇2.

We set the following notation: Cn denotes the cyclic group of order n, D
denotes the dihedral group of order 8, Q denotes the quaternion group of order
8.

If G1 and G2 are in C, we denote by G1∗G2 the free product (i.e. the coproduct)
of the two groups in category C. Then G1 and G2 are canonically embedded in
G1∗G2 and the latter can be thought of as (G1×[G1, G2])⋊G2 with the obvious
action of G2 on the inner factor. (See [MiSm2].) For example, D ∼= C2 ∗ C2.

Let a ∈ Ḟ\Ḟ 2. By a Ca
4 -extension of a field F , we mean a cyclic Galois

extension K of F of degree 4, with F (
√

a) as its unique quadratic interme-

diate extension. Let a, b ∈ Ḟ be linearly independent modulo Ḟ 2. By a
Da,b-extension of F we mean a dihedral Galois extension L of F of degree
8, containing F (

√
a,
√

b), for which Gal(L/F (
√

ab)) ∼= C4. Observe that any
C4-extension is a Ca

4 -extension for an a ∈ F , and that any D-extension is a

Da,b-extension for a suitable a, b ∈ Ḟ .

The following result is not hard to prove, and is a special case of more general
results in [Fr]. (See also [L1, Exercise VII.8].)

Proposition 1.5. There exists a Ca
4 -extension of F if and only if a ∈ Ḟ \ F 2

and the quaternion algebra
(

a,a
F

)

is split. There exists a Da,b-extension of F if

and only if a, b ∈ Ḟ are independent modulo squares and the quaternion algebra
(

a,b
F

)

is split.

This proposition is one of the main tools we use to link the Galois-theoretic
properties of an essential subgroup H of GF to the algebraic properties of an
H-ordering. Since we will need to refer to such extensions often in the sequel,
we sketch the subfield lattice of a Da,b-extension L/F .
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The paper is organized as follows.

In §2, we determine centralizers of involutions in W-groups. These results
imply in particular that the only abelian groups which can appear as essential
nontrivial subgroups of a W-group are C2 and (C4)

I where I is some nonempty
set. We also determine the possible nonabelian subgroups generated by two
elements. In Theorem 2.7 we provide a strong restriction on possible finite
subgroups of a W -group. Some of these results are important in determining
the cohomology rings of W -groups.

In §3 we show how properties of an H-ordering T , such as stability under
addition or rigidity, may be described in a Galois-theoretic way. The definition
and first properties of extensions and closures are given in §4. We illustrate
with Proposition 4.4 that even in a very geometric situation, we cannot expect
that every H-ordering T admits a closure. In Proposition 4.5, that is a corollary
of [Cr2, Theorem 5.5], we also point out that this leads to a negative answer
to a strong version of the question asked in [Ma]: there are fields F having
no field extension F −→ K with Wred(K) ∼= W (K), such that the induced
map Wred(F ) −→ Wred(K) is an isomorphism. Later in §8 we are able to

provide a similar example of a field F with a subgroup T of Ḟ such that the
associated Witt ring WT (F ) is isomorphic to W (Qp), p ≡ 1(4) but again there
is no field extension F −→ K inducing the isomorphism WT (K) ∼= W (K). This

example is interesting because | Ḟ /T | is finite. (For details see Example 8.14,
Proposition 8.15, and Remark 8.16.)

In §5 and §6 we study the case of essential subgroups H generated by 1 or 2
elements, and show that they admit closures.

In §7 we give a complete Galois-theoretic, as well as an algebraic classification
of rigid orderings, and in §8 we show that they admit closures, provided that
in the case of C(I), the associated valuation is not dyadic. (See Theorem 8.15
and Example 8.14.) In Example 6.4 we see that the link between the additive
structure of an H-ordering and the Galois-theoretic properties of H is not as
tight as we might have expected. This leads us to investigate this question
more thoroughly in §9. Actually, with a few natural extra requirements on the
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Galois groups we are considering, this can be fixed. We are then able to obtain
a perfect identification between the two aspects.
As we have already said, application of this theory to local-global principles for
quadratic forms will constitute the core of a subsequent paper. In the conclusion
we illustrate by an easy example, what we intend to do in this direction.
The authors would like to acknowledge Professors A. Adem, J.-L. Colliot-
Thélène, T. Craven, B. Jacob, D. Karagueuzian, J. Koenigsmann, T.-Y. Lam,
D. Leep and H. W. Lenstra, Jr. for valuable discussions concerning the results
in this paper; and also the hospitality of the Mathematical Sciences Research
Institute at Berkeley, the Department of Mathematics at the University of Cali-
fornia at Berkeley, and the Mathematisches Forschungsinstitut at Oberwolfach,
which the authors were privileged to visit during the preparation of this paper.
We also wish to thank the anonymous referee for valuable comments and also
for suggestions for polishing the exposition.

§2. Groups not appearing as subgroups of W -groups

In this section we show that no essential subgroup of GF can have C2 as a direct
factor (except in the trivial case where the subgroup is C2), nor can Q appear
as a subgroup of GF . These two facts will then be used to show that the four
nonabelian groups C2 ∗ C2 = D,C2 ∗ C4, C4 ⋊ C4 and C4 ∗ C4, together with
the abelian group C4 ×C4, comprise all of the possible two-generator essential
subgroups of W-groups. Thus we have a good picture of the minimal realizable
and unrealizable subgroups. We further show that every finite subgroup of a
W-group is in fact an “S-group” as defined in [Jo]. (We shall call such groups
“split groups” here.) The fact that Q is not a subgroup of GF is actually a
consequence of this last result.
Since we are working in category C in the presentations of groups by generators
and relations, we write only those relations which do not follow from the fact
that our groups are in C.

Lemma 2.1. [Mi], [CrSm] The groups C2 ×C2 and C4 ×C2 cannot be realized
as essential subgroups of GF for any field F .

Proof. Assume H = 〈σ, τ | σ2 = τ2 = [σ, τ ] = 1〉 ⊆ GF or H = 〈σ, τ | σ2 =
[σ, τ ] = 1〉, and assume σ, τ, στ /∈ Φ(GF ). Then from [MiSp1] we know that
P〈σ〉 is a C2-ordering which is a usual ordering. In particular −1 /∈ P〈σ〉 and

σ(
√
−1) = −

√
−1.

Now choose an element b ∈ Ḟ\Ḟ 2 for which
√

b
σ

=
√

b and
√

b
τ

= −
√

b. Such
an element b exists since σ, τ, στ /∈ Φ(GF ). Consider the image 〈σ̄, τ̄〉 of H inside
the Galois group G of a Db,−b-extension K of F . (Because (

√
−1)σ = −

√
−1

we see that −b is not a square in F , and we can conclude that the elements
b and −b are linearly independent when they are considered as elements in
Ḟ /Ḟ 2.) The fixed field Kσ of σ̄ cannot contain

√
−b, so it must be one of the

two subfields of index 2 in K not containing
√
−b. On the other hand, the fixed

field Kτ of τ cannot contain
√

b, so considering the subfield lattice, we see that
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Kσ ∩ Kτ = F . Then the image of H in G generates G, which means σ and
τ cannot commute. This is a contradiction, so H cannot exist as an essential
subgroup of GF . ¤

From the lemma above we immediately obtain the following result, which is
used in [AKMi] to investigate those fields F for which the cohomology ring
H∗(GF ) is Cohen-Macaulay.

Corollary 2.2. Let σ be any involution in GF \Φ(GF ) and set Eσ = Φ(GF )×
〈σ〉. Then the centralizer Z(Eσ) of Eσ in GF is Eσ itself.

Proof. If τ ∈ Z(Eσ)\Eσ then [τ, σ] = 1 and 〈τ, σ〉 = C2×C2 or C4×C2, where
〈τ, σ〉 is an essential subgroup of GF . From Lemma 2.1, this is a contradiction,
and we see τ ∈ Eσ as desired. ¤

Corollary 2.3. No essential subgroup of GF can have C2 as a direct factor
(except in the trivial case where the subgroup is C2).

Proof. Since Φ(H×C2) = Φ(H), if H×C2 is a subgroup of GF with Φ(H×C2) =
(H ×C2)∩Φ(GF ), then the C2-factor is not in Φ(GF ). Take any single element
σ ∈ H\Φ(H). Then 〈σ〉 × C2

∼= C2 × C2 or C4 × C2, which cannot be an
essential subgroup. Therefore neither can H × C2. ¤

Proposition 2.4. The quaternion group Q cannot appear as a subgroup of
GF .

Proof. Suppose Q = 〈σ, τ |σ2 = τ2 = [σ, τ ]〉 ⊆ GF . If −1 ∈ F 2, then F =
F 2 + F 2 and since GF is not trivial, we have F 6= F 2. Therefore there exists
an element a ∈ Ḟ \ F 2 and for any such a we have a Ca

4 -extension L/F . Since
Q does not admit C4 as a quotient, the images σ̄, τ̄ of σ, τ in Gal(L/F ) have
order ≤ 2 and they fix the only subfield F (

√
a) of codimension 2 in L. Then

σ, τ act as the identity on the compositum F (
√

Ḟ ) of these fields and hence
are in Φ(F ). Since they do not commute, this is impossible and we must have
−1 6∈ F 2.
Now suppose −1 ∈ P〈σ〉. Since σ 6∈ Φ(F ), there exists a ∈ Ḟ such that a 6∈ P〈σ〉
and hence −a 6∈ Pσ. Then a and −a are linearly independent modulo Ḟ 2

and there exists a Da,−a-extension L/F . Again, since Q has no C4 quotient,
the image σ̄ of σ in Gal(L/F ) has order ≤ 2 and must fix a codimension 2
subfield of L. Therefore σ̄ must fix

√
a or

√−a, and this is a contradiction
with a,−a 6∈ P〈σ〉. Hence we see that −1 6∈ P〈σ〉.
Because σ and τ are linearly independent modulo Φ(GF ), there exists an ele-

ment b ∈ Ḟ \ Ḟ 2 such that
√

b
σ

=
√

b and
√

b
τ

= −
√

b. Then b and −b are

linearly independent modulo Ḟ 2, and there exists a Db,−b-extension K/F . Be-
cause D is not a homomorphic image of Q, the image of Q is a proper subgroup
of Gal(K/F ). On the other hand, because both σ and τ act nontrivially and in

a different way on F (
√

b,
√
−b)/F we see that their images σ̄ and τ̄ in Gal(K/F )

generate the entire Galois group Gal(K/F ), which is a contradiction! ¤
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Theorem 2.5. The only groups generated by two elements which can arise as
essential subgroups of GF are the five groups C2 ∗C2, C2 ∗C4, C4 ∗C4, C4×C4,
and C4 ⋊ C4.

Proof. Let H be generated by x, y. We have an exact sequence

1 → Φ(H) → H → C2 × C2 → 1,

where Φ(H) ∼= (C2)
k is generated by x2, y2, [x, y], so k ≤ 3. Then |H| = 2k+2,

so |H| ≤ 32, and |H| = 32 if and only if |Φ(H)| = 8, if and only if H ∼= C4 ∗C4.
Otherwise |H| = 8 or 16, and there are only a few groups to consider. If
|H| = 8, necessarily H ∼= C2 ∗ C2, as all other groups of order 8 and exponent
at most 4 either have C2 as a direct factor or are isomorphic to Q.
There are fourteen groups of order 16; among these, five are abelian, and by
Lemma 2.1 only C4 × C4 among these can be an essential subgroup of GF .
Among the nine nonabelian groups, two have C2 as a direct factor, and four
more have exponent 8. The remaining three are the groups C2 ∗ C4, C4 ⋊ C4,
and DC, the central product of D and C4 amalgamating the unique central
subgroup of order 2 in each group. This group, however, has Q as a subgroup
(see [LaSm]), so cannot be an essential subgroup of GF . ¤

That the group Q cannot appear as a subgroup of any W-group is a special
case of a more general description of the kinds of groups which can appear as
essential subgroups of W-groups. All finite subgroups must in fact be “split
groups”, which we define next. These are the same as “S-groups” as defined in
[Jo]. The quaternion group Q is not such a group.

Definition 2.6. Let G be a nontrivial finite group and X = {x1, x2, . . . , xn}
be an ordered minimal set of generators for G. We say that G satisfies the split
condition with respect to X if 〈x1〉 ∩ [G,G]〈x2, . . . , xn〉 = {1}. The group G is
called a split group if it has a minimal generating set with respect to which it
satisfies the split condition. We also take the trivial group to be a split group.

We refer to G above as split because if G satisfies the split condition with respect
to X then G can be written as a semidirect product G = ([G,G]〈x2, . . . , xn〉)⋊
〈x1〉.
Theorem 2.7. Let GF be a W-group, and let G be any finite subgroup of GF .
Then G is a split group.

Proof. Each finite subgroup H of GF can be written as H = G × ∏m
1 C2 for

some m ∈ N ∪ {0}, where G is an essential subgroup of GF [CrSm]. Thus it is
enough to prove the theorem for G a finite essential subgroup of GF .
Then let G be such a group and let PG be the associated G-ordering. Let
Ḟ /PG = 〈a1PG, . . . , anPG〉 so that the cosets aiPG give a minimal generating

set for Ḟ /PG. Further set {σ1, . . . , σn} to be a minimal generating set for G
such that σi(

√
aj) = (−1)δij

√
aj where δij is the Kronecker delta. (This is

possible because G is an essential subgroup of GF , so that a minimal set of
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generators for G can be extended to a minimal (topological) generating set of
GF .)
Assume first that we can choose the representatives ai in such a way that
a1t1 + a1t2 = f2 ∈ Ḟ 2 for some t1, t2 ∈ PG. (Note that this is equivalent to
saying that a1 ∈ PG + PG.) In this instance, there are two cases to consider.

First, suppose that t1, t2 are congruent mod Ḟ 2. Then there exists g ∈ Ḟ
such that a1t1 + a1t1g

2 = f2, and so a1t1f
2 = (a1t1)

2 + (a1t1g)2, and a1t1
is a sum of two squares in F which is not itself a square. Thus we have a
Ca1t1

4 -extension L of F . We claim that G satisfies the split condition with
respect to {σ1, . . . , σn}. Checking this condition is equivalent to showing
σ2

1 /∈ [G,G]〈σ2, . . . , σn〉. Suppose it is not true. Then we have an identity

σ2
1

∏

1≤i<j≤n[σi, σj ]
ǫij

∏n
k=2 σ2ǫk

k = 1 in G, where ǫij , ǫk ∈ {0, 1}. Restricting

to L we see that σ2
1 |L = 1. This cannot be the case as σ1 does not fix

√
a1t1.

Thus in this case G is a split group.
Next suppose that t1Ḟ

2 6= t2Ḟ
2. In this case we can find a Da1t1,a1t2 -extension

L/F . Assuming again that G does not satisfy the split condition with respect

to {σ1, . . . , σn}, we again have an identity σ2
1

∏

1≤i<j≤n[σi, σj ]
ǫij

∏n
k=2 σ2ǫk

k = 1

in G, where ǫij , ǫk ∈ {0, 1}. Since each of the σi, i = 2, . . . , n acts trivially on
F (

√
a1t1,

√
a1t2), we see that each σi, i > 1 is central when restricted to L.

Thus again σ2
1 |L = 1. But σ1|L generates Gal(L/F (

√
a1t1 · √a1t2)) ∼= C4.

Hence G is a split group.
Finally, assume that we cannot choose a1 ∈ PG + PG. Then necessarily PG +
PG ⊆ PG ∪ {0}. If −1 ∈ PG, then PG = Ḟ and G = {1} which is a split group.
Otherwise PG is a preordering in F , and we may write PG = ∩n

i=1Pi where each

Pi is an ordering, and each Pi = { f ∈ Ḟ | √f
σi =

√
f }. Then {σ1, . . . , σn}

is a minimal generating set for G. Furthermore, each σ2
i = 1. (See [MiSp1]

for details. The definition of a preordering in a field F can be found in [L2,
Chapter 1], together with the basic properties of preordered rings.) Thus again
we see that G is a split group. ¤

Corollary 2.8. Each nontrivial finite subgroup G of a W-group GF can be
obtained inductively from copies of C2 and C4 by taking semidirect products
at each step. Thus we have G = Gn ⊇ Gn−1 ⊇ · · · ⊇ G1 ⊇ G0 where G0 ∈
{C2, C4}, and Gi = Gi−1 ⋊ C2 or Gi = Gi−1 ⋊ C4 for each i = 1, . . . , n.

Proof. We proceed by induction on the number of generators of G. The state-
ment clearly holds for any group G generated by a single element. Let G
be any (nontrivial) finite subgroup of the W-group GF . Then we can write
G = H × ∏m

1 C2 where H is essential, and G, if not equal to H, is clearly
built up as described from H, where the action in the semidirect product is
trivial. We can choose a minimal set of generators {σ1, . . . , σn} for H such
that H satisfies the split condition with respect to these generators. Clearly
N := [H,H]〈σ2, . . . , σn〉 is a normal subgroup of H, and H ∼= N ⋊ 〈σ1〉, where

〈σ1〉 ∼= C2 or C4. Since N ∼= 〈σ2, . . . σn〉 ×
∏k

1 C2 (for some positive integer k),
we finish by induction. ¤

Documenta Mathematica 9 (2004) 301–355



Additive Structure of Multiplicative Subgroups . . . 311

Example 2.9. Consider the W-group G2 of the 2-adic numbers Q2. It has the
presentation 〈σ, τ, ρ | σ2[τ, ρ]〉 in the category C of groups of exponent at most
four with squares and commutators central. (See [MiSp2, Example 4.4].) A

basis for Q̇2/Q̇2
2 is given by {[−1], [2], [5]}, and σ may be chosen to fix

√
2 and√

5 but not
√
−1, τ to fix

√
−1 and

√
5 but not

√
2, and ρ to fix

√
−1 and

√
2

but not
√

5. Then G2 can be constructed inductively from copies of C4 and C2

using semidirect products as follows:

G0 = 〈ρ〉 ∼= C4

G1 = G0 × 〈[σ, ρ]〉 ∼= G0 × C2

G2 = G1 ⋊ 〈σ〉 ∼= G1 ⋊ C4

G3 = G2 × 〈[σ, τ ]〉 ∼= G0 × C2

G2 = G3 ⋊ 〈τ〉 ∼= G3 ⋊ C4

Thus G2
∼= {[(C4 × C2) ⋊ C4] × C2} ⋊ C4.

Corollary 2.8 is an interesting generalization of the known structure of W-
groups associated with Witt rings of finite elementary type. (See [Ma: pages
122 and 123].) In fact, all W-groups associated with Witt rings of finite ele-
mentary type can easily be seen to be built up from cyclic groups of order 2
or 4, using only semidirect products. First one checks that the groups associ-
ated with basic indecomposable groups are such groups. Then the group ring
construction for Witt rings corresponds directly to taking a semidirect prod-
uct with a cyclic group of order 4, while the direct product construction for
Witt rings corresponds to taking a free product of W-groups in the appropri-
ate category. But this in turn just involves taking a direct product with an
appropriate number of copies of C2 (representing the necessary commutators)
and then taking a semidirect product with the generators of one of the initial
W-groups. See [MiSm2] for details.
Corollary 2.8 is quite useful for the investigation of cohomology rings of W-
groups. This is important in light of the recent proof of the Milnor Conjecture
by Voevodsky [Vo]. In particular, Voevodsky’s result shows that the cohomol-
ogy rings of absolute Galois groups with F2-coefficients carry no more informa-
tion about the base field than Milnor’s K-theory mod 2. On the other hand,
the cohomology rings of W-groups carry substantial additional information.
(See [AKMi].)
Using [Jo: Cor, p. 370] and Theorem 2.7 above, we immediately obtain the
following.

Corollary 2.10. Let G be any nontrivial finite subgroup of a W-group GF .
Then the cohomology ring H∗(G, F2) contains nonnilpotent elements of degree
2, and hence of every even degree.

§3. Galois groups and additive structures (1)

In this section we give a simple Galois-theoretic characterization of two impor-
tant additive properties of H-orderings: stability under addition and rigidity.
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This generalizes the results on rigidity and on the realizability of certain Galois
groups obtained in [MiSm1].
For the rest of this paper, unless otherwise mentioned, or if clearly some non-
essential subgroups are also considered, subgroups of GF will always be essen-
tial. Nevertheless for the sake of the convenience of the reader we occasionally
recall that the considered subgroups are essential. Throughout this paper we
write T + aT = {t1 + at2 | t1, t2 ∈ T ∪ {0}, t1 + at2 6= 0}, so T and aT are

always subsets of T + aT , and T + aT ⊇ Ḟ 2. (Here T is any subgroup of Ḟ

containing all squares in Ḟ .)

Proposition 3.1. Let H be an essential subgroup of GF , and T its associated
H-ordering. Then H has C4 as a quotient if and only if T + T 6= T .

Proof. First assume there exists a ∈ T +T which is not in T . Let K be the fixed
field of H in F (3). We construct a Ca

4 -extension F1 of F0 = F (
√

T ) = K ∩F (2)

inside F (3). Then L = KF1 is a Ca
4 -extension of K in F (3), showing H has C4 as

a quotient. We may write a = t1 + t2, so a2 − at1 = at2. Let y = a−√
a
√

t1 ∈
F0(

√
a), so NF0(

√
a)/F0

(y) = [a] ∈ Ḟ0/Ḟ 2
0 . Then F1 = F0(

√
a,
√

y) is a Ca
4 -

extension of F0. Since yyσ = y2 or at2 ∈ (Ḟ0(
√

a))2 for all σ ∈ Gal(F0(
√

a)/F ),
we see F1 is Galois over F , and hence is contained in F (3).
Conversely, assume T + T = T . If −1 ∈ T , then T = Ḟ and H = {1}. If
−1 /∈ T , then T is a preordering, so T is an intersection of orderings, and
there is an essential subgroup H1 of GF isomorphic with H and K ⊂ Φ(GF )
such that H1 × K is generated by involutions. This follows from the fact
that each preordering is an intersection of C2-orderings ([L2, Theorem 1.6]), a
characterization of C2-orderings in [MiSp1] and Proposition 1.3. Thus H1 and
consequently H as well, cannot have C4 as a quotient. ¤

Remark. If H has a C4-quotient, then there exists a Ca
4 -extension of F0 where

we may take a to be in F . However, it is not necessarily the case that a ∈ T +T .

That is, the quaternion algebra
(

a,a

F (
√

T )

)

is split, so a can be represented as the

sum of two squares in F (
√

T ), but not necessarily as the sum of two elements
in T . This can be seen in Example 6.4.
The following definition generalizes the notion of the rigidity of a field, and
introduces the notion of the level of T . (See [Wa, page 1349].)

Definition 3.2. Let T be a subgroup of Ḟ /Ḟ 2. We say that T has level s if
−1 is a sum of s elements of T , and not a sum of s − 1 elements of T . We
say that this level is infinite if −1 is not such a sum for any natural number s.
We say that the field F is T-rigid, or equivalently that T is rigid, if for every
a /∈ T ∪ −T , we have T + aT ⊆ T ∪ aT .

We have the following easy-to-prove but important property of rigid H-
orderings:

Proposition 3.3. Let T be a rigid H-ordering on F . Then
(1) The level of T is 1, 2 or infinite.
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(2) If the level of T is 2, then T + T = T ∪ −T .

Proof. Let T be an H-ordering of finite level s > 1 and let us write −1 = a+as

with a = a1 + . . . + as−1 and ai ∈ T for i = 1, . . . , s. If a ∈ T ∪−T then since
a /∈ −T we see a ∈ T and s must be 2. Thus we may assume a /∈ T ∪−T . If T
is rigid, then −1 = a + as ∈ T + aT = T ∪ aT . This is a contradiction, proving
(1).
Assume the level of T is 2. Then −1 ∈ T + T and T ∪ −T ⊆ T + T . Suppose
there is a ∈ (T + T ) \ (T ∪ −T ) and let us write a = s + t, s, t ∈ T . Then of
course −a /∈ T ∪ −T and we have −t = s − a ∈ T + (−a)T = T ∪ −aT by
rigidity. But −t /∈ T because the level is 2, and −t /∈ −aT because a /∈ T . This
is again a contradiction, proving (2). ¤

Proposition 3.4. Let H be an essential subgroup of GF , and let T be an
H-ordering. Assume −1 ∈ T . The following are equivalent.

(1) F is T -rigid.
(2) D is not a quotient of H.
(3) H is abelian.

Proof. We will show (2) =⇒ (1) =⇒ (3) =⇒ (2). For the first implication,
we show the contrapositive. Thus assume that F is not T -rigid. Let K be

the fixed field of H, and let F0 = K ∩ F (
√

Ḟ ) = F ({
√

t : t ∈ T}). We will
construct a D-extension F1 of F0 inside F (3), and linearly disjoint with K.
Then L = KF1 will be a D-extension of K in F (3), showing that H has D as a
quotient. Since F is not T -rigid and −1 ∈ T , there exist a, b ∈ Ḟ\T such that
b = t1 − at2, where t1, t2 ∈ T but b /∈ T ∪ aT . Let y =

√
t1 +

√
a
√

t2 ∈ F0(
√

a),

and let F1 = F0(
√

a,
√

b,
√

y). Notice that yyσ ∈ {±y2,±b} ⊆ F0(
√

a,
√

b)2

for all σ ∈ Gal(F0(
√

a,
√

b)/F ), so F1/F is Galois, and F1 ⊆ F (3). Then the
usual argument (see [Sp] or [Ki, Theorem 5]) shows Gal(F1/F0) ∼= D. Also F1

is linearly disjoint with K, as no proper quadratic extension of F0 is in K.
Now assume F is T -rigid. To see that H is abelian, it is sufficient to show that
for all σ, τ ∈ H, the restrictions of σ, τ to any D-extension L of F commute.
(This is because F (3) is the compositum of all quadratic, C4- and D-extensions
of F . (See [MiSp2, Corollary 2.18].) Thus if σ, τ commute on all D-extensions,
they commute in GF .) Let Da,b be some dihedral quotient of GF , and let L
be the corresponding extension of F . Denote as σ̄, τ̄ the images of σ and τ in
Da,b and suppose [σ̄, τ̄ ] 6= 1. Then σ, τ must each move at least one of

√
a,
√

b,
and they cannot both act in the same way on these square roots. That implies
a, b, ab /∈ T . But (a,b

F ) splits, so b ∈ F 2 − aF 2 ⊆ T − aT = T + aT = T ∪ aT
by (1). Since b /∈ T , we have b ∈ aT , which contradicts the fact that ab /∈ T .
Thus [σ, τ ] = 1.
The final implication is trivial. ¤

It is worth observing that if 4 ≤ |Ḟ /T | and if H is abelian then −1 ∈ T .

Indeed if 4 ≤ |Ḟ /T | and −1 /∈ T , there exists [a] ∈ Ḟ /T such that [a], [−a] are

linearly independent in Ḟ /T . Then there exist elements σ, τ ∈ H such that
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their restrictions to F (
√

a,
√−a) generate Gal(F (

√
a,
√−a))/F . Subsequently

images of σ, τ generate Gal(L/F ) for any Da,−a extension L/F . Thus H is not
abelian. In the next proposition we freely use the fact that if H1 is an essential
part of the subgroup H0 of GF , then H1 admits a quotient D if and only if H0

admits a quotient D.

Proposition 3.5. Let H be an essential subgroup of GF , and let T be an H-
ordering. Assume −1 /∈ T . Let K be the fixed field of H, and let H0 be the
subgroup of H which is the Galois group of F (3)/K(

√
−1). The following are

equivalent.

(1) F is (T ∪ −T )-rigid.
(2) D is not a quotient of H0.
(3) H0 is abelian.
(4) Every D-extension of K in F (3) contains K(

√
−1).

Proof. Let S = T ∪ −T and let H1 be an essential part of H0. Then S is
an H1-ordering, and the equivalence of the first three statements follows from
the preceding proposition. If there exists a D-extension L of K not containing
K(

√
−1), then L(

√
−1) will be a D-extension of K(

√
−1), and H0 will have D

as a quotient. This shows (2) =⇒ (4). In order to show that (4) =⇒ (3),
assume there exist σ, τ ∈ H0 which do not commute. Then there exists some
Da,b-extension M of F such that Gal(M/F ) = 〈σ̄, τ̄〉, where we denote by σ̄
and τ̄ the images of σ and τ in Gal(M/F ). Then σ and τ each move at least

one of
√

a,
√

b and cannot act in the same way on each. Thus a, b, ab /∈ S. This
gives a D-extension MK of K, which does not contain

√
−1. ¤

§4. Maximal extensions, closures and examples

Given any C2-ordering P on a field F , one can find a real closure L of F with
respect to that ordering, inside a fixed algebraic closure F̄ . This means L is real
closed and P = L̇2∩F , and then Gal(F̄ /L) ∼= C2. Notice that for our purposes
nothing is lost by considering a real closure of F inside a euclidean closure F (2)
rather than inside the algebraic closure F̄ . (See [Be].) We then obtain a C2-

closure (L, L̇2) of (F, P ), and this observation actually motivated the definition
of H-closure given in Definition 1.4. The following two propositions show that
for any subgroup T of Ḟ , containing Ḟ 2, maximal T -extensions always exist
and have a nice property.

Proposition 4.1. Let T be a subgroup of Ḟ /Ḟ 2. Then (F, T ) possesses a
maximal T -extension.

Proof. Let S be the set of T -extensions (L, S) of (F, T ) inside F (2), and let
us order S by (L1, S1) ≤ (L2, S2) if L1 ⊂ L2 and S2 ∩ L1 = S1. Then S is
nonempty, since (F, T ) ∈ S. Now consider a totally ordered family (Fj , Tj) in
S. Let K = ∪Fj , S = ∪Tj . Then (K,S) is an upper bound for the family
(Fj , Tj) in S. Then by Zorn’s Lemma S contains a maximal element, which is
a maximal T -extension of (F, T ). ¤

Documenta Mathematica 9 (2004) 301–355



Additive Structure of Multiplicative Subgroups . . . 315

Proposition 4.2. Let (K,S) be a maximal T -extension of (F, T ). Then S =

K̇2.

Proof. Assume S 6= K̇2 and choose c ∈ S \ K̇2. Let L = K(
√

c). Then

K̇/S ∼= K̇L̇2/SL̇2 is an F2-vector subspace and hence a summand of L̇/SL̇2.

Pick any projection ϕ of L̇/SL̇2 onto K̇L̇2/SL̇2. Set S′ as the inverse image

of kerϕ in L̇. Then the natural inclusions Ḟ −→ K̇ and K̇ −→ L̇ induce the
isomorphisms Ḟ /T ∼= K̇/S ∼= L̇/S′, contradicting the maximality of (K,S).

Thus we conclude that S = K̇2. ¤

Corollary 4.3. An H-ordered field (F, T ) is an H-closure if and only if

T = Ḟ 2.

Proof. If (F, T ) is an H-closure, then it is also a maximal T -extension, and

T = Ḟ 2 by the preceding proposition. Conversely, suppose T = Ḟ 2. Let L ⊃ F
be any proper extension of F in F (2). Then L contains a quadratic extension

of F , so L̇2∩F ) Ḟ 2 and L cannot extend (F, T ). This shows that (F, T ) is its
own maximal T -extension, and as it is an H-ordering, it is an H-closure. ¤

Thus, if we want to show the existence of an H-closure for an H-ordered field
(F, T ), we have to show that there exists a maximal T -extension (K, K̇2) for
an H-ordered field, which is itself H-ordered, i.e. for which GK

∼= H.
The following proposition indicates that even very simple preorderings may
have a surprising behaviour in the context of a T - or H-extension. The proof
of this proposition is no less interesting than the proposition itself, as it relies
upon visual geometrical arguments involving topology of the plane.

Proposition 4.4. Let F = R(X,Y ) and let T be the set of nonzero sums of
squares in F . If H is an essential subgroup of GF such that T = PH , then the
H-ordered field (F, T ) does not admit an H-closure.

Proof. Suppose that we are in the situation described in our proposition. Then
H 6= {1} and by Proposition 3.1 the group H does not admit a C4 quotient.

Thus again by Proposition 3.1, if (K̇, K̇2) is an H-closure of (F, T ), then K̇2

is a preordering in K. Choose s ∈ T \ Ḟ 2, fix an embedding of L = F (
√

s) =

F [Z]/(Z2 − s) in K and set P = L ∩ K̇2. The intermediate extension (L,P )

between (F, T ) and (K, K̇2) is a T -extension of (F, T ) and P = L ∩ Ḟ 2 is a
preordering of L.
Call z the class of Z in L. For every element h ∈ L̇ there is a g ∈ Ḟ such
that gh ∈ P . In particular, there is f ∈ Ḟ such that zf ∈ P . Call P̂ the set
of orderings of L that contain P , and denote by N the norm of L down to
F . The embedding F −→ L induces a map π:X(L) −→ X(F ) between the
corresponding spaces of orderings, defined by α 7→ α ∩ F .

Let us show first that π induces an injection from P̂ to X(F ). Let α1, α2 be
two orderings of L containing P such that α = α1 ∩ F = α2 ∩ F . Then the
element f ∈ F introduced above has a given sign ǫ = ±1 at α, and thus has
this same sign at α1 and α2. Since zf ∈ P ⊂ α1 ∩α2, z also has the same sign
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at α1 and α2. But this cannot be, since the product of these signs is the sign
of N(z) = −s at α, which is negative.

Now, π also induces a surjection from P̂ onto X(F ), and this is a bit deeper.
Briefly, it goes as follows. Suppose α is an ordering of F such that none of the
extensions α1, α2 to L contain P . Then we can find u ∈ L such that u ∈ P
and −u ∈ α1 ∩ α2. Denote by DE(w1, . . . , wn) the set of orderings of a field
E containing the given elements w1, . . . , wn ∈ E. It is an open set for the
Harrison topology on X(E). Considering α1, α2 as points in X(L) and P̂ as a

subset of X(L), we may write α1, α2 ∈ DL(−u) and DL(−u)∩ P̂ = ∅. In other

words, DL(−u) separate {α1, α2} from P̂ . Now, one may check easily that
there exists an open nonempty set V in X(F ) such that π−1(V ) ⊂ DL(−u).
Due to the fact that F is the function field of an algebraic variety over a real
closed field, we know that every open set of X(F ), and in particular V contains

a nonempty set DF (v) for some v ∈ F . Since DL(v) ∩ P̂ = ∅, −v must be in
any ordering containing P , and thus must be in P . Hence −V ∈ T , and V , are
in any ordering of F . Since DF (v) 6= ∅, this is a contradiction which proves

the surjectivity of π on P̂ .

Since π is surjective on P̂ , we have π(DL(w)∩P̂ ) = DF (w) for w ∈ F , and since

zf ∈ P , π(DL(wz)∩ P̂ ) = DF (wf). Coming back to h = a+bz ∈ L with a, b ∈
F , it is known (and easy to see) that DL(h) = DL(N(h), a) ∪ DL(−N(h), bz).

Since π is injective on P̂ , it preserves intersection (and of course unions) and

thus π(DL(h) ∩ P̂ ) = DF (N(h), a) ∪ DF (−N(h), bf). On the other hand, for

g ∈ F such that gh ∈ P , we have π(DL(h) ∩ P̂ ) = DF (g). What we have
proved so far is that for any h = a + bz ∈ L, DF (N(h), a) ∪ DF (−N(h), bf) is
a “principal” set DF (g) in X(F ).

Let us show that this is impossible in general. Take s = 1 + X2 and h =
Y + c + bz ∈ L with c, b ∈ R, b > 0. Assume that the corresponding set
DF (N(h), Y +c)∪DF (−N(h), f) is the principal set DF (g) for a given square-
free polynomial g ∈ F . (This can always be achieved.) Note that N(h) = 0 is
the equation (Y +c)2 = b2(1+X2) of a hyperbola H in R2. Set A := {(X,Y ) ∈
R2 | N(h) > 0, Y + c > 0} (respectively B := {(X,Y ) ∈ R2 | N(h) >
0, Y + c < 0}) the open region of the plane above (respectively below) the

upper (respectively lower) branch of H. Denote by Ã, B̃ the subsets defined in
X(F ) by the same inequalities as for A,B. By assumption, we know that g > 0

on Ã∩X(F ) = DF (N(h), Y +c) and g < 0 on B̃∩X(F ) = DF (N(h),−(Y +c)).
This implies that g ≥ 0 on A and g ≤ 0 on B (see [BCR], §7.6) and that A
and B are separated by a branch (i.e. a 1-dimensional irreducible connected
component) of g = 0. Moreover, no branch of g = 0 can go inside A ∪ B, or
else g would change sign on A or B. (This is due to the fact that g is square
free, and thus every branch is a sign-changing branch.) Set C := R2 \ A ∪ B.

Then C̃ ∩ X(F ) = DF (−N(h)). Since DF (g,−N(h)) = DF (bf,−N(h)) =
DF (f,−N(h)), we know that f and g have the same sign on C, up to a 0-
dimensional set. Thus f = 0 must also have a sign-changing branch contained
in C, and since f may be chosen square free, any branch of f = 0 having a
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nonempty intersection with the interior of C must be contained in C.
Suppose this is true at the same time for h = h1 = Y +z and h = h2 = Y +4+2z.
Then

(1) no branch of f = 0 is allowed to cross a branch of the hyperbolas
Hi, i = 1, 2, and

(2) there is a branch of f = 0 splitting the plane into two connected com-
ponents, each of them containing one branch of Hi.

As the upper branch of H2 crosses the two branches of H1, this is impossible.
This provides a contradiction to the existence of an H-closure for T , finishing
the proof of Proposition 4.4. ¤

Associated to the group Ḟ /T of the preceding proposition is the “abstract Witt
ring” of T -forms (see [Ma]), which is actually the reduced Witt ring Wred(F ).
(See also [L2, Chapter 1] for the definition of Wred(F ).) From Proposition 4.4
we can show there is no extension F −→ K with Wred(K) ∼= W (K) such that
the induced homomorphism Wred(F ) −→ Wred(K) is an isomorphism. Note
that Wred(F ) might actually be isomorphic to W (K) for some field K not
related to F , as shown in Example 8.14. This is why we can view this result as
a weak version of the “unrealizability” of Wred(F ) as a “true” Witt ring. (See
[Ma], as well as [Cr2].)
Actually T. Craven kindly called our attention to [Cr2, Theorem 5.5], which
can be applied to obtain the following more general result.

Proposition 4.5 (Craven). Let F = L(X) where L is a formally real field,
which is not a pythagorean field. Then for each pythagorean field extension
K/F , the natural homomorphism Wred(F ) −→ Wred(K) = W (K) induced by
the inclusion map F −→ K is not an isomorphism.

Proof. Assume that K is a pythagorean field extension of F = L(X), where
L is a formally real field which is not pythagorean, and suppose that the field
extension F −→ K induces an isomorphism Wred(F ) −→ Wred(K).
Because L is not a pythagorean field, there exists an element l = l21+l22, l1, l2 ∈ L

such that l /∈ L̇2. Because K is a pythagorean field, there exists an element
k ∈ K̇ such that k2 = l. Hence the polynomial f(X) = X2 − l has a root in
K. Then from [Cr2, Theorem 5.5(b)], we see that f(X) has exactly one root
in every real closure of L. Of course this is not true, as each real closure of L
must contain both roots of f(X). Hence we have arrived at a contradiction,
completing the proof. ¤

Of course we may take L = R(Y ) and get the result for R(X,Y ).
In the other direction we present a case below, where (F, T ) admits a maximal

preordered T -extension (K̇, K̇2). We recall that a preordering T in F is SAP
(Strong Approximation Property) if and only if for each pair of elements a, b ∈
Ḟ there exists an element c ∈ Ḟ such that DF (a, b) ∩ T̂ = DF (c) ∩ T̂ . (Here

as above, T̂ is the set of all orderings α ∈ X(F ) such that T ⊂ α.) If T is
SAP and R is a preordering of F containing T , then R is SAP as well. (See
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[L2, Theorem 17.12 and Corollary 16.8].) Note that this definition implies that
every finite union of basic open sets in X(F ) is a “principal” set DF (c).

Proposition 4.6. Let F be a formally real field, and let T be a SAP pre-
ordering in F . Then (F, T ) admits a maximal preordered T -extension (K, K̇2),
which is again SAP.

Proof. Let F be a formally real field and let T be a SAP preordering in F . Using
Zorn’s lemma we see that there exists a T -extension (L, S) of (F, T ) which
is maximal among the preordered T -extensions. We claim that S is a SAP
preordering in L. In order to show this, pick any elements a, b ∈ L̇. Because
(L, S) is a T -extension of (F, T ) we see that there exist elements a′, b′ ∈ Ḟ

such that aa′, bb′ ∈ S. Because T is SAP there exists an element c ∈ Ḟ such
that DF (a′, b′) ∩ T̂ = DF (c) ∩ T̂ . Let α ∈ DL(c) ∩ Ŝ and β = α ∩ F , then

β ∈ T̂ and c ∈ β. Thus a′, b′ ∈ β ⊂ α and α ∈ DL(a′, b′) ∩ Ŝ. Conversely, if

α ∈ DL(a′, b′)∩Ŝ, then β ∈ DF (a′, b′)∩T̂ = DF (c)∩T̂ and α ∈ DL(c)∩Ŝ. Since

it is clear that DL(a, b)∩ Ŝ = DL(a′, b′)∩ Ŝ, we have shown that DL(a, b)∩ Ŝ =

DL(c) ∩ Ŝ and that S is SAP.

Now, we just have to prove that S = L̇2. Suppose it is not true. Then there
exists an element s ∈ S \ L̇2 and we can set E = L(

√
s) = L[Z]/(Z2 − s). Let

α be an ordering of L containing S. We know there are two orderings α1, α2

on E extending α and giving opposite signs to z. Denote by α1 the ordering
containing z.
Define P as

⋂

S⊆α α1, then P ∩ L =
⋂

S⊆α(α1 ∩ L) =
⋂

S⊆α(α) = S and

we have proved that L̇/S −→ Ė/P is one-to-one. Take h = a + bz ∈ E
with a, b ∈ L. Because S is SAP we know there exists g ∈ L such that
[DL(N(h), a) ∪ DL(−N(h), b)] ∩ Ŝ = DL(g) ∩ Ŝ.
Let us show gh ∈ P . Suppose S ⊂ α, then g ∈ α1 ⇐⇒ g ∈ α ⇐⇒ [N(f), a ∈
α] or [−N(f), b ∈ α] ⇐⇒ h ∈ α1. Thus gh ∈ ⋂

S⊆α α1 = P and L̇/S −→ Ė/P
is onto.
But then (E,P ) is a strict preordered T -extension of (L, S), contradicting the

maximality of (L, S). This proves S = L̇2 and finishes the proof of the propo-
sition. ¤

According to [ELP], we say that a field F satisfies the property H4 if each
totally indefinite quadratic form of dimension four represents zero in F . When
a formally real field F satisfies H4, the nonzero sums of squares in F form a
SAP preordering. By [ELP, Theorem F], every field F such that F (

√
−1) is

C1 (i. e. “quasi-algebraically closed”) satisfies H4.
Therefore the preceding proposition will apply in particular to any formally
real field of transcendence degree 1 over a real closed field. But in this case one
can even prove the following addition to Proposition 4.6.

Proposition 4.7. Let F be a formally real field which satisfies H4, and let T
be the set of nonzero sums of squares in F . Let T = PH for some essential
subgroup H of GF . Then (F, T ) admits an H-closure (L, L̇2).
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Because we shall not use this result in this paper, and because our proof is
quite long, we shall omit its details.

§5. Cyclic subgroups of W -groups

In this section we consider the subgroups H of GF which are the easiest to
understand in terms of their associated H-orderings, namely the two cyclic
groups C2 and C4. As mentioned earlier, C2 in many ways is the motivating
example for this entire theory, and we cite here the results previously given in
[MiSp1] for this group, as a means of illustrating the results we are attempting
to generalize in this paper. As any single element of GF necessarily generates
a cyclic subgroup of order 2 or 4, those which generate subgroups of order 4
are precisely those not associated with usual orderings on the field F . These
are the so-called half-orders of F , as investigated in [K1]; this concept was first
introduced by Sperner [S] in 1949, in a geometrical context.

Definition 5.1. A nonsimple involution of GF is an element σ ∈ GF such that
σ2 = 1 and σ /∈ Φ(GF ). In other words, a nonsimple involution is an element
of GF which generates an essential subgroup of order 2.

Theorem 5.2. [MiSp1] The field F is formally real if and only if GF contains
a nonsimple involution. There is a one-one correspondence between orderings
on F and nontrivial cosets of Φ(GF ) which have an involution as a coset rep-
resentative.

We have the well-known characterization of those subgroups of Ḟ that are
orderings, which we include here for the sake of completeness.

Proposition 5.3. A subgroup S of Ḟ containing Ḟ 2 is a C2-ordering of F if
and only if the following conditions hold.

(1) |Ḟ /S| = 2 and
(2) 1 + s ∈ S ∀s ∈ S.

We can now characterize those subgroups S of Ḟ which are C4-orderings. They
are precisely those subgroups of index 2 which fail to be orderings. We also see
that C4-ordered fields always admit a closure.

Proposition 5.4. A subgroup S of Ḟ containing Ḟ 2 is a C4-ordering of F if
and only if the following conditions hold.

(1) |Ḟ /S| = 2 and
(2) ∃s ∈ S such that 1 + s /∈ S.

Proof. We know S is a C4-ordering of F if and only if there exists σ ∈ GF such
that S = {a ∈ Ḟ |√a

σ
=

√
a} where σ2 6= 1. Now any subgroup of index 2 in Ḟ

is of the form {a ∈ Ḟ |√a
σ

=
√

a} for some σ ∈ GF , so we need only guarantee
that S is not an ordering, which condition (2) does. ¤
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Remark 5.5.

(1) Note that it is easy to see that condition (2) above can be replaced by

(2’) S+S = Ḟ . (Recall that here we use our definition of the sum S+S
as described in the beginning of §3. If instead we set the sum S ⊕ S as
{s1 +s2|s1, s2 ∈ S} then we can replace (2) by the condition Ḟ ⊂ S⊕S
provided that F contains more than five elements. (See [K1, Remark
after Def. 1.1].)

(2) There are actually two kinds of C4-orderings, distinguished by whether
or not they contain −1. If S is a C4-ordering such that −1 ∈ S, we say
that S has level 1. The prototype is given by Ḟ2

p when p ≡ 1 mod 4. If
−1 6∈ S, then necessarily −1 ∈ S+S, and we say that S has level 2. The
model is Ḟ2

p when p ≡ −1 mod 4. It is clear that every C4-extension
preserves the level.

Proposition 5.6. Let (K, K̇2) be a maximal T -extension of a C4-ordered field
(F, T ). Then

(1) K is characterized by the condition of being maximal in F (2) among

fields L ⊇ F such that
√

a /∈ L ∀a ∈ Ḟ\T .
(2) GK

∼= C4.
(3) Gal(K(2)/K) ∼= Z2, the group of 2-adic integers.

In particular, every maximal T -extension of a C4-ordered field (F, T ) is a C4-
closure, and thus C4-closures always exist.

Proof. Let (K, K̇2) be a maximal T -extension of the C4-ordered field (F, T ).

Since K̇2 ∩ F = T , we see that for any a ∈ Ḟ\T , we have
√

a /∈ K, while
for any a ∈ T , we have

√
a ∈ K. Now if L ) K in F (2), then L ⊇ K(

√
a)

for some a ∈ K̇\K̇2. Since the cosets of K̇2 in K̇ correspond naturally to the

cosets of T in Ḟ , we see that L contains
√

a′ for some a′ ∈ Ḟ \ T , and thus
K is maximal among such extensions of F in F (2). Conversely, suppose K is
maximal in F (2) among fields L ⊇ F such that

√
a /∈ L ∀a ∈ F\T . Then we

see that K̇2 ∩ F = T . We need to see that |K̇/K̇2| = 2. Suppose it is not

true. Fix a ∈ Ḟ\T , so that a /∈ K̇2, and suppose there exists some b ∈ K̇ such

that a, b are linearly independent in K̇/K̇2. Then certainly b /∈ aT , and setting

L = K(
√

b) contradicts the maximality of K. Thus we have that (K, K̇2) is a
maximal T -extension for (F, T ), and this proves (1).

Now observe that GK is generated by one generator, since |K̇/K̇2| = 2, so
GK

∼= C2 or C4. It cannot be C2, or else T would be an ordering on F . Thus
GK

∼= C4. Finally, Gal(K(2)/K) is cyclic and cannot be finite, since it is not
C2 (see [Be]). Thus Gal(K(2)/K) ∼= Z2. ¤

§6. Subgroups of W -groups generated by two elements

As we saw in Theorem 2.5, a group generated by two elements appearing as
a subgroup of GF may only be one in the list C2 ∗ C4, C4 ∗ C4, C2 ∗ C2, C4 ×
C4, C4 ⋊ C4. The last two are particular cases of the groups studied in § 7 and
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§ 8, and we will focus in this section on the first three. The third one is better
known as the dihedral group D.
We will give an algebraic characterization for the orderings associated with
these groups and show that it is always possible to make closures. Portions
of the proofs rely on the characterizations of C4 × C4- and C4 ⋊ C4-orderings
obtained in § 7; but since the results in § 7 do not rely on those in § 6, we freely
use these results where needed.

Lemma 6.1. Let T be a subgroup of Ḟ such that Ḟ 2 ⊆ T and |Ḟ /T | = 4. If
−1 /∈ T , then F is (T ∪ −T )-rigid.

Proof. Let Ḟ /T = {1,−1, a,−a}. Then (T ∪ −T ) + a(T ∪ −T ) ⊆ (T ∪ −T ) ∪
a(T ∪ −T ) = Ḟ . ¤

Proposition 6.2. A subgroup T of Ḟ is a C2 ∗ C4-ordering if and only if
Ḟ 2 ⊆ T , |Ḟ /T | = 4, and the following two conditions hold.

(1) T + T 6= T , and
(2) −1 6∈ ∑

T , where
∑

T denotes the set of all finite sums of elements of
T .

Proof. The conditions Ḟ 2 ⊆ T and |Ḟ /T | = 4 are necessary and sufficient
for T to be a G-ordering for some essential subgroup G ⊆ GF generated by
two elements σ, τ , independent mod Φ(GF ). We next show the necessity of
conditions (1) and (2). Let G ∼= C2∗C4 be a subgroup of GF , where T = PG. We
assume G is generated by two noncommuting (hence independent mod Φ(GF ))
elements σ, τ such that σ2 = 1, τ4 = 1. If T +T = T , then by Proposition 6.14,
T would be a D-ordering (this is independent of previous results). Since it is
not, we see that (1) holds. Also −T *

∑

T , since
∑

T ⊆ Pσ, which is an
ordering because σ is an involution. Thus Pσ cannot contain −T and condition
(2) holds.
We now show the sufficiency of the conditions. Since T is a G-ordering for
some essential subgroup with two generators, it must be isomorphic to one
of the five groups listed in Theorem 2.5. Since −1 /∈ T by (2), it cannot be
C4 × C4 by Proposition 7.2 in the next section. Also (1) shows that G cannot
be isomorphic to D ∼= C2∗C2 by Proposition 6.14, and (2) shows that G cannot
be isomorphic to C4 ⋊ C4 by Proposition 7.6. Finally, from (1) and (2) we can

see that
∑

T is an ordering on F , since it is clearly a proper subgroup of Ḟ ,

which properly contains T , so must be of index 2 in Ḟ ; it does not contain −1,
and it is closed under addition. Then

∑

T = T ∪ aT for some a /∈ T , and G
is generated by elements σ, τ where the intersection of the fixed field of σ with
F (2) is K(

√
a), and the intersection of the fixed field of τ with F (2) is K(

√
−1).

Then Pσ =
∑

T is an ordering, so σ is an involution. This shows G cannot be
isomorphic to C4 ∗C4. Thus the only remaining possibility is G ∼= C2 ∗C4. ¤

Proposition 6.3. A subgroup T of Ḟ is a C4 ∗ C4-ordering if and only if
Ḟ 2 ⊆ T , |Ḟ /T | = 4, and one of the following two conditions hold.

(1) −1 ∈ T and F is not T -rigid, or
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(2) −1 /∈ T , −1 ∈ ∑

T , but T + T 6= T ∪ −T .

Proof. If −1 ∈ T , the only possible subgroups H of GF with two generators
for which T can be an H-ordering are C4 × C4 and C4 ∗ C4. The other three
are eliminated by Propositions 6.14, 6.2, and 7.6. Also, if −1 ∈ T , then F is
T -rigid if and only if T is a C4 × C4-ordering by Proposition 7.2. This leaves
C4 ∗ C4 as the only possibility.
If −1 6∈ T , there are three possibilities to consider: −1 6∈ ∑

T , T +T = T ∪−T ,
or −1 ∈ ∑

T but T +T 6= T ∪−T . The first case occurs if and only if T is either
a D-ordering (by Proposition 6.14) or a C2 ∗C4-ordering (by Proposition 6.2).
The second case occurs if and only if T is a C4 ⋊ C4-ordering by Proposition
7.6 and Lemma 6.1. Thus, the third case must occur if and only if T is a
C4 ∗ C4-ordering as claimed. ¤

The following example constructs a C4 ∗ C4-ordering of Q2. It is illustrative,
in that it shows how even in a relatively “small” setting, the additive structure
of T can behave quite differently from the additive structure of Ḟ (

√
T )2. In

particular, it shows that 〈1, 1〉 may represent elements in F (
√

T ) which are not
in T + T . In this example, T + T is not multiplicatively closed, but of course
the form 〈1, 1〉, being a Pfister form, is multiplicative in F (

√
T ).

Example 6.4. In F = Q2 consider the subgroup T = Ḟ 2 ∪ 5Ḟ 2 of Ḟ . Using
the notation for G2 as in Example 2.9, we see that the corresponding subgroup
of G2 is H = 〈σ, τ〉 ∼= C4 ∗ C4. This is a W-group associated with the Witt
ring Z/4Z×M Z/4Z, where the product “×M” is taken in the category of Witt

rings (see [Ma] and [MiSm2]). The fixed field of H is K = Q2(
√

5). The form
〈1, 1〉 represents −1 over K, and this can be shown as follows. It is well known
and easy to show that for any quadratic field extension F −→ K = F (

√
a),

one has (K2 +K2)∩ Ḟ = (F 2 +F 2)(F 2 + aF 2). If F = Q2 and a = 5, we have
30 = 5 × 6 ∈ (K2 + aK2) and 2 ∈ (K2 + K2). Then 15 ∈ K2 + K2, and since
15 is congruent to −1 mod 16: it is a negative square in Q2. This shows that
−1 ∈ K2 + K2.
However, when one considers which elements of Ḟ /Ḟ 2 are in T + T , one finds
only the six classes represented by 1, 2, 5, 10,−2,−10. In particular, −1 /∈ T+T ,
and T + T is not multiplicatively closed (so forms mod T -equivalence do not
behave as quadratic forms over a field behave). Nonetheless, it is easy to see
that −1 ∈ T + T + T , so that T + T 6= T ∪−T , but −1 ∈ ∑

T , consistent with
the proposition above.

In §9 we introduce natural conditions for a subgroup H of GF in order to keep
track of the additive properties of Ḟ /T under 2-extensions. We shall see in §9
that the group H ⊂ GF above does not possess one of the key properties we
require.

Theorem 6.5. A (C2 ∗ C4)-ordered field (F, T ) admits a closure.

Proof. Let S be the set of extensions (L, S) of (F, T ) inside F (2) satisfying the
additional condition that −1 /∈ ∑

S. As in the proof of Proposition 4.1, we
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see that S has a maximal element (K,T0) with K̇/T0
∼= Ḟ /T, T = T0 ∩ F , and

−1 /∈ ∑

T0. Then (K,T0) is a (C2 ∗C4)-ordered field. To see this we need only
show that conditions (1) and (2) of Proposition 6.2 hold, and condition (2) is
given by construction of (K,T0). Condition (1) holds since if T0 + T0 = T0,
then T + T ⊆ (T0 + T0) ∩ F = T0 ∩ F = T , contradicting the fact that T is a
C2 ∗ C4-ordering on F .

To conclude, we must show T0 = K̇2. Notice
∑

T0 is an ordering on K, so

K is formally real. We may write K̇/T0 = {±T0,±aT0}, where a ∈ T + T .

If T0 6= K̇2, we can choose c ∈ T − K̇2, and consider L = K(
√

c). Since

−c /∈ ∑

T0,
∑

T0 extends to an ordering S0 on L. Then S0 ∪ −S0 = L̇ and
a ∈ S0. Let S be a subgroup of S0 containing T0 and maximal with respect to
excluding a. Then L̇/S = {±S,±aS} ∼= K̇/T0

∼= Ḟ /T . Also S ∩ K ⊇ T0 by
construction, and if there exists b ∈ S ∩K, b /∈ T0, then b ∈ aT0 ∪−T0 ∪−aT0,
which implies either a ∈ S or −1 ∈ S, which leads to a contradiction in either
case. Thus S∩K = T0, and (L, S) is an extension contradicting the maximality

of (K,T0). We conclude T0 = K̇2. ¤

Theorem 6.6. A (C4 ∗ C4)-ordered field (F, T ) admits a (C4 ∗ C4)-closure

(K, K̇2).

Proof. Let (K, K̇2) be a maximal T -extension for (F, T ). First assume −1 ∈ T .
We must show K is not a rigid field. Let {1, a, b, ab} be a set of representatives

for Ḟ /T that lifts to a set of representatives for K̇/K̇2. Since F is not T -rigid,

we may, without loss of generality, assume b ∈ T+aT . Then T+aT ⊆ K̇2+aK̇2,
but b /∈ K̇2 ∪ aK̇2, so K is not rigid, and K̇2 is a (C4 ∗ C4)-ordering on K.

Now assume −1 6∈ T = F ∩ K̇2. Then −1 6∈ K̇2, and −1 ∈ ∑

T ⊆ ∑

K̇2.

Letting {1,−1, a,−a} be a set of representatives for Ḟ /T , this again lifts to

a set of representatives for K̇/K̇2. Since T + T 6= T ∪ −T , but clearly also

T + T 6= T , we may assume a ∈ T + T , so a ∈ K̇2 + K̇2 as well. This shows
K̇2 is a (C4 ∗ C4)-ordering on K. ¤

Remark 6.7. We have defined in Definition 3.2 the level of an H-ordering. It
is then easy to see that the level of a (C4 ∗ C4)-ordering T is at most 4. The
level of the closure K (which is the “usual” level) is less than or equal to the
level of T . The level of a (C4 ∗C4)-closure is either 1 or 2, as any field of finite
level with at most four square classes has level at most 2. The level of T is 1
if and only if the level of K is 1, but in the other cases the level may actually
decrease: Example 6.4 shows that T has level 3 and that its closure has level
2.

Now we turn our attention to D-orderings. We showed in § 2 that C2 × C2

cannot be an essential subgroup of GF , so if H is an essential subgroup of GF

generated by two elements of order 2, necessarily H ∼= D. Recall that according
to [Br], a 2-element fan in F is a set of two distinct orderings P1, P2 on F , and
it can be identified with the preordering T = P1 ∩ P2.
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Lemma 6.8. The dihedral group D is a subgroup of GF if and only if there is
a 2-element fan in F . In this case, T ⊆ Ḟ is a D-ordering if and only if T is
a 2-element fan in F .

Proof. Let H = 〈σ, τ |σ2 = τ2 = [σ, τ ]2 = 1〉 ∼= D be a subgroup of GF . Then
Pσ and Pτ are positive cones of two distinct orderings on F , and PH = Pσ∩Pτ .
Conversely, if P1, P2 are positive cones corresponding to distinct orderings on
F , then there exist nontrivial involutions σ, τ ∈ GF , in distinct cosets of Φ(GF ),
such that P1 = Pσ and P2 = Pτ . Then H = 〈σ, τ〉 is an essential subgroup of
GF , and H ∼= D. ¤

In [BEK], a field F with two orderings P1, P2 is defined to be maximal with
respect to P1, P2 if for any algebraic extension K of F , at least one of the two
orderings cannot be extended to K. Since we prefer to work inside F (2), we
modify this as follows.

Definition 6.9. A field F with two orderings P1, P2 is maximal with respect
to P1, P2 if for any 2-extension K of F , at least one of the orderings does not
extend to K.

Proposition 6.10. (F, P1, P2) is maximal if and only if (F, TF ) is a D-ordered
field, where TF = P1 ∩P2, and there exists no proper D-ordered extension field
(L, TL) ⊆ F (2) with TL ∩ F = TF .

Proof. Suppose that the field (F, P1, P2) is maximal. Let σ1, σ2 be involutions

in GF such that Pi = {a ∈ Ḟ |√a
σi =

√
a}, i = 1, 2. Then the subgroup

〈σ1, σ2〉 ⊆ GF is isomorphic to D, as we have seen, and (F, TF ) is a D-ordered
field as claimed.
Now suppose that L is a D-ordered field containing F inside F (2), such that
TL ∩ F = TF . Then GL contains a subgroup isomorphic to D, which we
can take to be generated by two involutions τ1, τ2 such that TL = Q1 ∩ Q2,
where Qi = {a ∈ L̇|√a

τi =
√

a}, i = 1, 2 are distinct orderings of L. Now
Qi∩F ⊇ TL∩F = TF , so Qi∩F is an ordering of F which contains TF , i = 1, 2.
Thus {Q1 ∩ F,Q2 ∩ F} = {P1, P2}. Then by maximality of (F, P1, P2), we see
L = F .
Conversely, suppose that F is a D-ordered field contained in no proper D-
ordered extension field as described. Then F has at least two distinct orderings
P1 and P2 corresponding to the two involutions generating the subgroup D of
GF , and since there is no proper D-ordered extension field, we see that it is not
possible for both orderings to extend to any extension of F . Thus (F, P1, P2)
is maximal, as claimed. ¤

By Zorn’s Lemma we immediately see the following.

Proposition 6.11. [BEK, Prop.3] Given a field F with two orderings P1, P2,

there always exists an algebraic extension F̃ of F which is maximal with respect
to P̃1, P̃2, where P̃1, P̃2 are extensions of P1, P2 to F̃ .
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Theorem 6.12. A field (F, P1, P2) is maximal if and only if

(1) there exist exactly two orderings on F and
(2) F is pythagorean, i.e. any sum of squares is a square in F .

Proof. [BEK] Suppose three different orderings P1, P2, P3 are possible in F .

Let x ∈ Ḟ be such that x is positive with respect to the first two orderings,
and negative with respect to P3. Then

√
x /∈ F , so F (

√
x) is a proper algebraic

extension of F , and since x is positive with respect to P1 and P2, they extend
to F (

√
x), and (F, P1, P2) cannot be maximal. Similarly, if α, β are elements

of F such that
√

α2 + β2 /∈ F , then P1, P2 can be extended to the proper

extension F (
√

α2 + β2) of F , again contradicting maximality. Thus conditions
(1) and (2) are necessary.
Conversely, one can show that any field F satisfying conditions (1) and (2) has

Ḟ /Ḟ 2 = {1,−1, a,−a} for some a ∈ Ḟ . Now let F be such a field and let P1, P2

be the two unique orderings in F , so that a is positive with respect to P1 and
negative with respect to P2. Suppose (F, P1, P2) were not maximal, and let

K = F (
√

b) be a proper quadratic extension of F such that both P1 and P2

extend to K. Since K is an ordered proper extension of F , b 6= 1,−1 ∈ Ḟ /Ḟ 2,
so b = a or −a. Then either

√
a ∈ K or

√−a ∈ K, so that not both P1 and P2

extend to K. This is a contradiction. ¤

Corollary 6.13. The D-ordered field (F, T ) is a maximal D-ordered field if
and only if GF

∼= D. Thus any D-ordered field admits a D-closure.

Proof. By the preceding theorem, if F is maximal, it has exactly two orderings,
so GF has exactly two involutions which are independent mod Φ(GF ). Also F
is pythagorean, so by [MiSp1] GF is generated by involutions. Thus GF is
generated by two elements of order 2, and since GF is necessarily an essential
subgroup of itself, we see that GF

∼= D.
Conversely, if GF

∼= D, then F is a D-ordered field, and since orderings on F
correspond to independent involutions in GF , we see that F has precisely two
distinct orderings. Also, since GF is generated by these involutions, we see that
F is pythagorean. Thus, by the preceding theorem, F is a maximal D-ordered
field. Then we see that for any D-ordered field (L,PH), a maximal D-ordered

extension (F, Ḟ 2) containing (L,PH) will be a closure for (L,PH). ¤

Proposition 6.14. A subgroup S of Ḟ containing Ḟ 2 is a D-ordering of F if
and only if |Ḟ /S| = 4 and 1 + s ∈ S whenever s ∈ S.

Proof. All that is necessary for S to be a D-ordering of F is that it be a 2-
element fan in F . In other words, S must be a preordering of index 4 in F .
A subgroup S of Ḟ is such a preordering if and only if the conditions in the
statement of the proposition are met. ¤

§7. Classification of rigid orderings

This section will provide a full Galois-theoretic and algebraic characterization
of all possible rigid orderings. We start with the following definition.
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Definition 7.1. Let I be a possibly empty index set. We call G a C(I)-
group if G is isomorphic to (C4)

I × C4, an S(I)-group if G is isomorphic to
(C4)

I ⋊ C4, and a D(I)-group if G is isomorphic to (C4)
I ⋊ C2, the semidirect

product being defined with the nontrivial action of C4 or C2 on each inner factor
in the last two cases, when I is nonempty. A G-ordering on F is called a C(I)-
(respectively S(I)-, D(I)-) ordering if G is a C(I)- (respectively S(I)-, D(I)-)
group. When I = ∅ the C(I)- and S(I)-orderings are the C4-orderings, and the
D(I)-orderings are the C2-orderings, that is the usual orderings. Observe that
C(∅)- and S(∅)-orderings both correspond to the same group C4. The difference
between them is that a C(∅)-ordering has level 1, while an S(∅)-ordering has
level 2. (See Remark 5.5 for comparison.) When |I| = 1, we obtain the groups
generated by two elements which are respectively (C4)×C4, (C4) ⋊ C4 and D.

In this section we will characterize C(I)-orderings, S(I)-orderings and D(I)-

orderings in terms of their algebraic properties as subgroups of Ḟ . We will see
in particular that they are all rigid, and that they constitute the whole class
of rigid orderings. The group

∐

i∈I Gi will denote the direct sum of the groups
Gi, i ∈ I and in I ∪ {x} the letter x is added to denote the new index.

Proposition 7.2. A subgroup T of Ḟ containing Ḟ 2 is a C(I)-ordering if and
only if the following three conditions hold.

(1) −1 ∈ T ,
(2) F is T -rigid, and

(3) Ḟ /T ∼=
∐

i∈I∪{x}(C2)i.

In other words, the C(I)-orderings are exactly the rigid orderings of level 1.

Proof. If I = ∅, the result follows from Proposition 5.4 and Remark 5.5, so
we shall assume I 6= ∅. We begin by showing that the three conditions above
are necessary. Let G ∼= C(I) and let T be a G-ordering. Suppose −1 /∈ T .

Let {σi, i ∈ I;σx} generate G. Then T = ∩i∈I∪{x}Pσi
and |Ḟ /T | ≥ 4. Thus

there are at least four classes mod T , which we can represent as 1,−1, a,−a
for some a ∈ Ḟ , and there exists a Da,−a-extension L of F . Hence there exist
elements σ, τ ∈ G such that a ∈ Pσ\Pτ and −a ∈ Pτ\Pσ. It then follows that
the restriction of στ to L has order 4, so that σ|L, τ |L generate Gal(L/F ) ∼= D,
and hence cannot commute. Yet σ, τ ∈ G, which is an abelian group. This is
a contradiction, so −1 ∈ T , and (1) holds.
Since −1 ∈ T , we have T ∪ −T = T . Suppose we have a nonrigid element
c ∈ Ḟ\T , so that we have t1, t2 ∈ T with t1 + ct2 /∈ T ∪ cT . Then b =

1+ct2/t1 /∈ T ∪cT . Let a = −ct2/t1 /∈ T . Then a+b = 1, so (a,b
F ) splits. Since

b /∈ T ∪ cT = T ∪aT , a and b are independent mod T and thus mod Ḟ 2. Hence
we have a Da,b-extension L of F , and by the same argument as above, we find
σ, τ ∈ G which do not commute, leading to a contradiction. Thus F is T -rigid
and (2) holds. Finally, by Kummer theory we know that Ḟ /T is isomorphic to
the dual (G/Φ(G))∗ ∼=

∐

i∈I∪{x}(C2)i, giving (3).

We now show that the three conditions are sufficient for T to be a C(I)-
ordering. By (3) we see that T = ∩i∈I∪{x}Pi where Pi is the kernel of the
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projection Ḟ → Ḟ /T ∼=
∐

i∈I∪{x}(C2)i → (C2)i. Further, for each Pi we have

a σi ∈ GF such that Pi = Pσi
. Let G be the closed subgroup of GF generated

by {σi|i ∈ I ∪ {x}}. Then G ⊆ {σ|Pσ ⊇ T} because every element of G must
fix every

√
a left fixed by the σi. So we also have T = ∩σ∈GPσ, and T is a

G-ordering. It remains to show that G is a C(I)-group.
Since −1 ∈ T ⊆ Pσi

, none of the Pσi
can be usual orderings on F , so each

σi must have exponent 4 in G. Since −1 ∈ T and F is T -rigid, we see by
Proposition 3.4 that G is abelian. Then G is a compact abelian group of
exponent 4, and (G/Φ(G))∗ ∼=

∐

i∈I∪{x}(C2)i is a discrete group of exponent

2. Then ((G/Φ(G))∗)∗ ∼= G/Φ(G) ∼=
∏

i∈I∪{x}(C2)i, and G ∼=
∏

i∈I∪{x}(C4)i,

so G is a C(I)-group as claimed. ¤

In order to characterize the subgroups of Ḟ which are S(I)-orderings, we will
first prove three lemmas. Let G be an S(I)-group. It will be helpful to fix the
following notation: write G = G1 ⋊ G2 where G1

∼=
∏

i∈I(C4)i and G2
∼= C4.

Let τ be a generator of G2 and Pτ = {a ∈ Ḟ |√a
τ

=
√

a}.
Lemma 7.3. Let T be a G-ordering. Then T has index 2 in PG1

.

Proof. If PG1
⊆ Pτ , we would have T = PG1

∩ Pτ = PG1
= PG. But by

Kummer theory and the Burnside Basis Theorem, that would imply G = G1.
Thus PG1

* Pτ , T ( PG1
, and |PG1

/T | ≥ 2. On the other hand, since
T = PG1

∩ Pτ , we have |PG1
/T | ≤ 2, and so |PG1

/T | = 2. ¤

Lemma 7.4. For any group homomorphism θ : G → C4 = 〈σ〉, we have
θ(G1) ⊆ 〈σ2〉.
Proof. If a ∈ G1, writing multiplicatively, we have

θ(a−1) = θ(τaτ−1) = θ(τ)θ(a)θ(τ)−1 = θ(a),

so θ(a)2 = 1. ¤

Lemma 7.5. We have T + T ⊆ PG1
.

Proof. Let a ∈ T + T, a /∈ T , and consider the following three cases.
Case 1: a = x2 + y2. Then there exists a Ca

4 -extension L of F , and we have a
map θ : G → Gal(L/F ) ∼= C4, and by Lemma 7.4 θ(G1) has order at most 2.
Thus θ(G1) fixes

√
a and a ∈ PG1

.

Case 2: a = x2 +t, t ∈ T\Ḟ 2. We have a2 = ax2 +at, and a, at are independent

modulo Ḟ 2. Thus there exists a Da,at-extension L of F , and Gal(L/F (
√

t)) ∼=
C4. Since t ∈ T , we have

√
t
σ

=
√

t for σ ∈ G, which means we have a
homomorphism θ : G → Gal(L/F (

√
t)) ∼= C4. Again applying Lemma 7.4,

θ(G1) has order at most 2, so G1 must fix
√

a and a ∈ PG1
.

Case 3: a = s + t, s, t ∈ T\Ḟ 2. We can write as−1 = 1 + ts−1, and then we
are in one of the previous two cases. Hence as−1 ∈ PG1

, and it follows that
a ∈ PG1

. ¤
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Proposition 7.6. A subgroup T of Ḟ containing Ḟ 2 is an S(I)-ordering if
and only if the following four conditions hold.

(1) −1 /∈ T ,
(2) F is (T ∪ −T )-rigid,
(3) T + T = T ∪ −T , and

(4) Ḟ /T ∼=
∐

i∈I∪{x}(C2)i.

Proof. When I = ∅ the result follows from Proposition 5.4 and Remark 5.5.
Thus we may assume that I 6= ∅. We begin by showing the conditions above are
necessary. Condition (4) follows from Kummer theory. Condition (1) follows

from Lemma 7.5 above, for if −1 ∈ T , we would have Ḟ ⊆ Ḟ 2 − Ḟ 2 ⊆ T − T =
T + T ⊆ PG1

, but as |I| ≥ 1, we cannot have PG1
being all of Ḟ .

To show the necessity of condition (3), first observe that −1 ∈ PG1
, −1 /∈ T ,

and |PG1
/T | = 2, so PG1

= T ∪ −T , and thus T + T ⊆ T ∪ −T . To show
equality, we need to show that some element of −T is in T + T . In this case,
that amounts to showing that T is not additively closed. Suppose that T
were additively closed. Then T would be a preordering, so contained in some
ordering Pσ for some σ ∈ GF . Further, σ is an involution not contained in
Φ(GF ), and σ ∈ G = G1 ⋊G2. In particular, σ is not a square in G, and σ 6= τ .
Thus σ = σ1τ for some σ1 ∈ G1 and

σ2 = σ1τσ1τ = σ1τσ1τ
−1τ2 = σ1σ

−1
1 τ2 = τ2 6= 1.

Thus σ is not an involution, which is a contradiction, and so −1 ∈ T + T .
Finally, since F is PG1

-rigid and T ∪ −T = PG1
, we see that (2) holds.

Now we must show that conditions (1) - (4) are sufficient for T to be an S(I)-
ordering. Letting S = T ∪ −T , we see that S satisfies the condition for being
a G1-ordering, with G1

∼=
∏

i∈I(C4)i, as given in Proposition 7.2. Let Q be

a subgroup of index 2 in Ḟ such that T = S ∩ Q, and let τ ∈ GF such that
Q = Pτ . Let G be the subgroup of GF generated by G1 and τ . We need to see
that G = G1 ⋊G2 where G2 is the subgroup of GF generated by τ . Specifically,
we need to show that G1 ∩ G2 = {1} and that [σ, τ ]σ2 = 1 ∀σ ∈ G1.
Since G1 fixes

√
−1 and τ does not, we cannot have τ or τ−1 in G1. Suppose

τ2 ∈ G1. Then it has order 2 in G1 and hence must be a square. Let σ ∈ G1

such that σ2 = τ2. Since Pσ 6= Pτ , there exists a ∈ Pτ\Pσ, and neither a nor

−a can be a square, since neither is in Pσ. Since also −1 /∈ Ḟ 2, we have a
Da,−a-extension L of F , and σ|L has order 4 in Gal(L/F ). However, since τ
fixes

√
a, τ |L ∈ Gal(L/F (

√
a)) ∼= C2 × C2, and so σ2 6= τ2, contradicting the

assumption. Thus G1 ∩ G2 = {1}.
To prove [σ, τ ]σ2 = 1 ∀σ ∈ G1, it is sufficient to show that this condition holds
for the restriction of σ, τ to each C4- and D-extension of F . Suppose L is a Ca

4 -
extension of F . Then a is a sum of two squares, so a ∈ T +T = T ∪−T = PG1

and [σ, τ ]σ2|L = σ2|L. Since σ ∈ G1, σ ∈ Gal(L/F (
√

a)) and σ2|L = 1.
Now suppose L is a Da,b-extension of F . We may assume σ /∈ Z(Gal(L/F )) (the
centralizer), since otherwise clearly [σ, τ ]σ2|L = 1. Without loss of generality,
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we may assume
√

a
σ

= −√
a. Then a /∈ T ∪ −T , and since 1 = ax2 + by2, we

have b ∈ T −aT , and by rigidity, b ∈ T ∪−aT ∪−T ∪aT . However, if b were in
−T or aT , then we would obtain a ∈ T + T = T ∪ −T , a contradiction. Thus
b ∈ T ∪ −aT .
If b ∈ T , then σ and τ both fix

√
b and both have order 2. If τ does not fix√

a, then σ, τ act the same on
√

a and
√

b and hence commute. If τ fixes
√

a
then τ ∈ Z(Gal(L/F )) so in either case [σ, τ ]σ2 = σ2 = 1.
If b ∈ −aT , then σ fixes neither

√
a nor

√−a, so has order 4. Since τ acts

differently on
√

a and
√

b, it must fix one of them and be of order 2, and the
same holds for στ . Then [σ, τ ]σ2 = στσ−1τ−1σ2 = τ−1σ−2τ−1σ2 = 1 since
σ2 ∈ Z(Gal(L/F )). ¤

We have another convenient formulation of Proposition 7.6 as follows:

Corollary 7.7. A subgroup T of Ḟ containing Ḟ 2 is an S(I)-ordering if and
only if the following three conditions hold.
(a) T has level 2,
(b) F is T -rigid, and

(c) Ḟ /T ∼=
∐

i∈I∪{x}(C2)i.

In other words the S(I)-orderings are exactly the rigid orderings of level 2.

Proof. If I = ∅, the result follows from Definition 7.1, so we shall assume that
I 6= ∅. Assume that T satisfies (1), (2) and (3) of Proposition 7.6. We show

it is rigid. Let a ∈ Ḟ \ (T ∪ −T ). Then T + aT ⊂ (T ∪ −T ) + a(T ∪ −T ) =
T ∪−T ∪aT ∪−aT . Take s+at ∈ T +aT and suppose it is not in T ∪aT . Then
it is in −T ∪−aT . If s+at = −u ∈ −T then −a = t(u+ s) ∈ T +T = T ∪−T ,
a contradiction. If s+at = −au ∈ −aT then −a = s/(u+t) ∈ T +T = T ∪−T ,
a contradiction. Thus T is rigid.
By Proposition 3.3, a rigid ordering of finite level greater than 1 is exactly a
rigid ordering of level 2. This proves (a) and (b).
Conversely, if T satisfies (a) and (b), then it satisfies (1) and (3) by Proposi-

tion 3.3. Let us show we also have (2). Let a ∈ Ḟ \±(T ∪−T ) = T ∪−T . Then
(T ∪−T )+a(T ∪−T ) = ±(T +aT )∪±(T −aT ) ⊆ ±(T ∪aT )∪±(T ∪−aT ) =
(T ∪−T )∪a(T ∪−T ). Since we always have S∪aS ⊆ S +aS for any subgroup
S, we see that F is T ∪ −T -rigid. ¤

Example 7.8. It is well-known that if K −→ L is a field extension and if
T is a usual ordering of L, then S = K ∩ T is a usual ordering of K. This
need not hold for C(∅)-orderings nor for S(∅)-orderings. Consider for example

L = K(
√

K̇) and assume that L is equipped with some C∅-ordering T . Since

L̇2∩K = K̇ and L̇2 ⊆ T , we also have T∩K = K̇: the C∅-ordering T “vanishes”
under the restriction. This happens in particular if K is the finite field Fq with

an odd number q of elements. With L = Fq2 , L̇2 is a C∅-ordering. Observe
that this cannot happen when T is an S(∅)-ordering in an extension L of K:
since −1 is not in T , it cannot be in S = T ∩ K, and S cannot be the trivial
index 1 subgroup. But S(∅)-orderings are subject to another pathology of their
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own: it may happen that the restriction of an S(∅)-ordering is a C2-ordering.
(Observe that this cannot happen with C(∅)-orderings.) Take for example

K = Q, L = K(
√

10), and denote by N the norm map from L down to K. Let

α be the ordering of L containing
√

10. Let v be the discrete rank 1 valuation
on Q associated to the prime 3. Define T := {h ∈ L̇ | (−1)v(N(h))h ∈ α}. Then

−1 6∈ T and T is a subgroup containing K̇2, of index 2 in K̇ (if x 6∈ T,−x ∈ T ).

It is not a usual ordering, since −4 −
√

10 is negative at the two orderings of
L but belongs to T , as its norm 6 has an odd 3-valuation. Thus it must be an
S(∅)-ordering. Since N(f) = f2 has an even valuation when f ∈ K, we see
that S := T ∩ K is the usual ordering of Q.

The proof of the next proposition is nearly identical with the proof of Propo-
sition 7.6. Therefore in the proof below, we merely indicate the key points of
the proof. For the definition of a fan preordering, see [L2, Section 5].

Proposition 7.9. A subgroup T of Ḟ containing Ḟ 2 is a D(I)-ordering if and
only if the following three conditions hold.

(1) −1 6∈ T ,
(2) T + T = T ,
(3) F is T -rigid, and

(4) Ḟ /T ∼=
∐

i∈I∪{x}(C2)i.

In particular a subgroup T is a D(I)-ordering for some index set I, if and only
if it is a fan, and this happens if and only if T is a rigid ordering of infinite
level.

Proof. Assume that T is a PD(I)-ordering. Then D(I) = G1 ⋊ C2 where G1 =
∏

i(C4)i and C2 = 〈τ〉. Further, all elements in τG1 are involutions not in
Φ(D(I)). Therefore we see that T is the intersection of the orderings P〈γ〉, γ ∈
τG1. Hence T is a preordering and conditions (1) and (2) follow. Condition
(4) follows from Kummer theory. By Proposition 7.2, −1 ∈ PG1

, hence PG1
=

T ∪−T and F is PG1
-rigid. Since T is a preordering, this implies condition (3).

Conversely, if H is an essential subgroup of GF such that T = PH and T
satisfies conditions (1), (2), (3), and (4), one can write H as a topological
group generated by G1 and τ where PG1

= T ∪−T and P〈τ〉 is a C2-ordering of
F . Using Proposition 7.2 we see that G1 =

∏

i(C4)i and using the restrictions
of the elements σ2[σ, τ ], σ ∈ G1, on Ca

4 and Da,b extensions, we check that
σ2[σ, τ ] = 1 for all σ ∈ G1. This forces H ∼= G1 ⋊ 〈τ〉 with action τ−1στ = σ−1

for each σ ∈ G1. Hence H ∼= D(I) as required.
It is known that conditions (1), (2), and (3) characterize fans [L2, Theorem 5.5],
and by Proposition 3.3 we see that they are rigid orderings of infinite level. ¤

To conclude the section we may summarize the results with the following

Theorem 7.10. Rigid orderings are exactly C(I)−, S(I)− or D(I)-orderings
for some (possibly empty) index set I.

Proof. This is a straightforward application of Proposition 3.3, Proposition 7.2,
Corollary 7.7 and Proposition 7.9. ¤
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§8. Construction of closures for rigid orderings

In this section we employ valuation-theoretic techniques to construct closures
for
C(I)-, S(I)- and D(I)-orderings. From the preceding section, we know
that both C(I)- and S(I)-orderings are T -rigid. Then for such an ordering
we will be able to use results of Arason, Elman, Jacob [AEJ], Efrat [Ef] and
Ware [Wa] to associate a valuation to T . For D(I)-orderings, it is the “Fan
Trivialization Theorem” of Bröcker [Br, Theorem 2.7] that will be used. Since
it is well known (see [Ri]) that for each algebraic extension K/F we can
extend any valuation v on F to a valuation w on K, we can then use this to
extend S(I)- or D(I)-orderings, and in most cases also C(I)-orderings, from
F to F (

√
t), t ∈ T . This will allow us to prove the existence of S(I)- and

D(I)-closures, and in most cases also C(I)-closures.

For the reader’s convenience we define here some of the valuation-theoretic
notation we will be using below. For more detailed information, we refer the
reader to [End] and [Ri] as well as [AEJ], [Wa] and [Br].

Let v : F → Γ ∪ {∞} be a valuation on the field F , where Γ is some linearly
ordered abelian group. Then we set Av to be the valuation subring of F , Mv

to be the unique maximal ideal of Av (consisting of those elements f ∈ F such
that v(f) > 0), and Uv to be the group of invertible elements of Av. We say T
is compatible with v (or Av) if 1+Mv ⊆ T . We denote the residue field Av/Mv

by Fv, and we set πv : Av → Fv to denote the canonical epimorphism from Av

onto Fv.

The strategy of the proof is as follows: It is easy to reduce the problem of
constructing H-closures to the problem of extending a given H-ordering T of a
field F to an H-ordering T ′ of any quadratic extension L = F (

√
t), t ∈ T , such

that T ′ ∩ F = T . (Here H ∼= C(I), S(I), or D(I).) In order to extend T in
this manner, we first find a suitable T -compatible valuation v on F and then
extend v to a valuation w on L. We then extend the induced ordering T̄ of the
residue field Fv to T̂ on the residue field Lw of L with respect to the valuation
w. Finally we lift the ordering T̂ from the residue field Lw to an ordering T̃ on
L, and then show that T̃ is the desired extension of T from F to L.

Suppose first that we are given some S(I)-ordering T of F . In this case, T is
“not exceptional” in the sense of [AEJ, Definition 2.15]. Thus we can apply
[AEJ, Theorem 2.16] to obtain the following.

Proposition 8.1. Let T be any S(I)-ordering of F . Then there exists a T -
compatible nondyadic valuation v of F such that UvT = T ∪ −T . The set
T̄ := πv(T ∩ Uv) is an S(∅)-ordering of Fv.

Proof. By [AEJ, Theorem 2.16], we have a T -compatible valuation v such that
UvT = T ∪−T . The last statement of the proposition follows from this. Indeed
we have

Uv

Uv ∩ T
∼= UvT

T
∼= T ∪ −T

T
.
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Since −1 /∈ T we see that Fv = T̄ ∪ −T̄ and −1 /∈ T̄ . Therefore T̄ has index 2
in Ḟv.
Since T is an S(I)-ordering on F , we see that there exist elements t1, t2, t3 ∈ T
such that t1 + t2 + t3 = 0. Dividing through by that element ti whose value
v(ti) is minimal among the three elements considered (say t1), we may assume
we have

−1 = t2 + t3, v(t2), v(t3) ≥ 0

Passing to the residue field we obtain t̄1 + t̄2 = −1̄ in Fv. Since −1 /∈ T̄ we see
that t̄i 6= 0, i = 2, 3. Thus −1 ∈ T̄ + T̄ \ T̄ , and T̄ is a S(∅)-ordering of Fv, as
claimed.
Observe also that −1 /∈ T̄ implies −1 6= 1 and charFv 6= 2. Thus v is
nondyadic. ¤

Next suppose we have a C(I)-ordering T of F . Then we may apply [Ef, Propo-
sitions 2.1 and 2.3 and Theorem 4.1], to yield the following result.

Proposition 8.2. Let T be any C(I)-ordering of F . Then there exists a T -
compatible valuation ring Av of F such that [UvT : T ] ≤ 2 and dimF2

Γ/2Γ ≥
|I|, where Γ is the associated value group. The set T̄ := πv(T ∩ Uv) is either

Ḟv itself or a C(∅)-ordering of Fv.

Proof. Observe again that the last statement claiming that T̄ := πv(T ∩Uv) is

either Ḟv itself or a C(∅)-ordering, and also the statement dimF2
Γ/2Γ ≥ |I|,

are consequences of the first part of the proposition. We have UvT
T

∼= Uv

Uv∩T , so

[Uv : Uv ∩ T ] ≤ 2; hence Uv = UvT or [Uv : Uv ∩ T ] = 2. In the latter case,
we see that T̄ = πv(T ∩ Uv) is a C(∅)-ordering as −1̄ ∈ T̄ . Also observe that

we have |I| + 1 = dimF2

Ḟ
T = dimF2

Ḟ
UvT + dimF2

UvT
T . From the hypothesis

[UvT : T ] ≤ 2 we see that dimF2

UvT
T ≤ 1. Hence dimF2

Ḟ
UvT ≥ |I|. Therefore

dimF2
Γv ≥ dimF2

Ḟ
UvT ≥ |I| as claimed. ¤

Proposition 8.3. (Fan Trivialization Theorem [Br, Theorem 2.7]) Let T be
any D(I)-ordering of F . Then there exists a T -compatible valuation ring Av of
F such that the set T̄ := πv(T ∩Uv) is either an ordering of Fv or a D-ordering
of Fv. (When T̄ is an ordering, T is called a valuation fan.) Moreover, the
valuation v may be chosen such that v(T ) contains no convex subgroups of v(F ).

Now suppose that we have an S(I)-ordering (respectively C(I)-, D(I)-ordering)
T together with a T -compatible valuation v on F . Assume t ∈ T , and let
K = F (

√
t). Our goal is to find an S(I)-ordering (respectively C(I)-, D(I)-

ordering) T ′ of K such that T ′∩F = T and Ḟ /T ∼= K̇/T ′ is the isomorphism of
multiplicative groups induced by the inclusion F →֒ K. Note that if T ′ ∩ F =
T , then the map Ḟ /T → K̇/T ′ is injective, so we need only worry about
surjectivity. Then recall the well-known Krull’s Theorem ([Ri, Theorem 5]):

Theorem 8.4. (Krull) Let F be a field and F̃ any overfield of F . Any valua-

tion v in F can be extended to a valuation ṽ in F̃ .
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Thus there exists a valuation w on K which extends v. We now make the
following convenient reduction.

Lemma 8.5. Assume that T1 ⊆ T2 are respectively S(I1)- and S(I2)-orderings

of F , and let t ∈ T1 \ Ḟ 2. Let K = F (
√

t). Suppose T ′
1 is an extension of T1 to

an S(I1)-ordering of K. Then T ′
2 := T ′

1T2 is an S(I2)-ordering of K extending
T2.

Proof. We first show that T ′
2 ∩ F = T2. By definition, T2 ⊆ T ′

2 ∩ F , and if
f ∈ T ′

2 ∩ F then there exists t′1 ∈ T ′
1, t2 ∈ T2 such that f = t′1t2. This implies

t′1 ∈ F ∩ T ′
1 = T1 ⊆ T2, and f ∈ T2. Thus T ′

2 ∩ F = T2.

Let ϕ2 : Ḟ /T2 → K̇/T ′
2 denote the natural homomorphism induced by the

inclusion map F →֒ K. Because T ′
2 ∩ F = T2 we see that ϕ2 is injective.

Consider the following diagram:

Ḟ /T1
ϕ1−−−−→ K̇/T ′

1




y





y

Ḟ /T2
ϕ2−−−−→ K̇/T ′

2

Since ϕ1 : Ḟ /T1 → K̇/T ′
1 is bijective and T ′

1 ⊆ T ′
2, we see that ϕ2 is also

surjective.
Finally we shall show that T ′

2 is an S(I2)-ordering by checking that conditions
(a),(b),(c) of Corollary 7.7 hold. Since T ′

2 ∩ F = T2, we see that −1 /∈ T ′
2. As

−1 ∈ T ′
1 + T ′

1 ⊆ T ′
2 + T ′

2, we see that T ′
2 satisfies condition (a).

Suppose s = u+av ∈ K with u, v ∈ T ′
2 and a 6∈ (T ′

2∪−T ′
2). By definition of T ′

2,
u, v can be written u = u′

1u2, v = v′
1v2 with u′

1, v
′
1 ∈ (T ′

1 ∪ −T ′
1), u2, v2 ∈ T2.

Then su−1
2 = u′

1 + (av2u
−1
2 )v′

1. Because av2u
−1
2 6∈ (T ′

1 ∪ −T ′
1), the T ′

1-rigidity
of K implies su−1

2 ∈ T ′
1 ∪ (av2u

−1
2 )T ′

1, and thus s ∈ T ′
2 ∪ aT ′

2, giving condition
(b).

Finally, to check condition (c), observe that K̇/T ′
2
∼= Ḟ /T2

∼=
∐

i∈I2∪{x}(C2)i.

Thus T ′
2 is an S(I2)-ordering which extends T2. ¤

Lemma 8.6. Assume that T1 ⊆ T2 are respectively C(I1)- and C(I2)-orderings

of F , and let t ∈ T1 \ Ḟ 2. Let K = F (
√

t). Suppose T ′
1 is an extension of T1 to

a C(I1)-ordering of K. Then T ′
2 := T ′

1T2 is a C(I2)-ordering of K extending
T2.

Proof. The proof is identical to that of Lemma 8.5, except that one must now
check that −1 ∈ T ′

2. Since T ′
2 ∩ F = T2, we see −1 ∈ T ′

2. ¤

Lemma 8.7. Assume that T1 ⊆ T2 are respectively D(I1)- and D(I2)-orderings

of F , and let t ∈ T1 \ Ḟ 2. Let K = F (
√

t). Suppose T ′
1 is an extension of T1 to

a D(I1)-ordering of K. Then T ′
2 := T ′

1T2 is a D(I2)-ordering of K extending
T2.

Proof. Again the proof takes the same arguments as in the proof of Lemma 8.5
to show that T ′

2 extends T2, that −1 6∈ T ′
2 and that K is T ′

2-rigid. Let us prove
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T ′
2 +T ′

2 = T ′
2. Consider u, v ∈ T ′

2 and write them as above, u = u′
1u2, v = v′

1v2,
with u′

1, v
′
1 ∈ T ′

1 and u2, v2 ∈ T2. Then u + v = u2(u
′
1 + (v2u

−1
2 )v′

1). We
know that −1 6∈ T ′

2, and this implies that v2u
−1
2 6∈ −T ′

1. If v2u
−1
2 ∈ T ′

1,
then (u + v)u−1

2 ∈ T ′
1 + T ′

1 = T ′
1 and u + v ∈ T ′

2. The remaining possibility is
v2u

−1
2 6∈ T ′

1∪−T ′
1, and by T ′

1-rigidity of K, we have (u+v)u−1
2 ∈ T ′

1∪(v2u
−1
2 )T ′

1

and u + v ∈ T ′
2. Hence condition (2) holds. ¤

We consider the following situation. Assume that v : F → Γv ∪ {∞} is a
valuation on the field F , with valuation ring Av and maximal ideal Mv. Let
Fv = Av/Mv be the residue field, and denote by πv the canonical homomor-
phism of Av onto its quotient ring Fv.

Lemma 8.8. Assume that v is a valuation on the field F and that T0 is an
S(I0)-ordering of Ḟv for some (possibly empty) set I0. Set T1 = π−1

v (T0).

Then the group T = T1Ḟ
2 is an S(I)-ordering of F with |I| = dimF2

( Ḟ
T∪−T ).

Proof. We need to check that the conditions in Corollary 7.7 hold for T . First,
suppose that −1 ∈ T . Then −1 = t0f

2 for some t0 ∈ T1, f ∈ Ḟ . Hence
f2 = (−t0)

−1 ∈ −T1 ⊆ Uv, and so f ∈ Uv as well. Passing to the residue field

Fv and knowing Ḟv
2 ⊆ T0 we see −1 = t̄0f̄

2 ∈ T0, which is a contradiction.
Thus we must have −1 /∈ T . Since −1 ∈ T0 +T0, we have −1+m ∈ T1 +T1 for
some m in the maximal ideal of the valuation, and −1 + m ∈ −T1 ⊂ T . This
shows that the level of T is 2.
To see that F is T -rigid, let a ∈ Ḟ \ (T ∪ −T ), t1, t2 ∈ T , and consider b :=
t1 + t2a. We consider various possibilities for v(t1) relative to v(t2a). First
suppose that v(t1) = v(t2a). Then b = t1(1 + t−1

1 t2a), with u := t−1
1 t2a ∈ Uv.

Since a /∈ T ∪−T , we see that πv(u) = ū /∈ T0∪−T0. (Otherwise u ∈ π−1
v (T0) =

T1 ⊆ T or u ∈ −π−1
v (T0) = −T1 ⊆ −T and hence a ∈ T ∪−T , a contradiction.)

Since we are assuming Fv is T0-rigid, we see that 1 + ū ∈ T0 ∪ ūT0. Hence
1 + u ∈ π−1

v (T0 ∪ ūT0) = T1 ∪uT1. Thus, rewriting u = t−1
1 t2a and multiplying

through by t1, we see

b = t1 + t2a ∈ T1 ∪ aT1 ⊆ T ∪ aT

as required. Now assume that v(t1) 6= v(t2a). If v(t1) < v(t2a), then again let
b = t1(1 + u), where u = t−1

1 t2a. Now, however, v(u) > 0, so 1 + u ∈ 1 + Mv ⊆
T1 = π−1

v (T0), and thus b ∈ T . If v(t1) > v(t2a), set b = at2(1+ t1t
−1
2 a−1). We

see v(t1t
−1
2 a−1) > 0, and therefore b ∈ aT . In each case b = t1 + at2 ∈ T ∪ aT

as desired.
It remains to see that Ḟ /T ∼=

∐

i∈I∪{x}(C2)i. This condition follows from the

fact that Ḟ /T is an F2-vector space and that dimF2
Ḟ /T is 1 + |I|. ¤

We have the analogue to Lemma 8.8 for the case of C(I)-orderings.

Lemma 8.9. Assume that v is a valuation on the field F such that [Γv : 2Γv] ≥
2. Let T0 be Ḟv or a C(I0)-ordering of Fv for some (possibly empty) set I0.
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Set T1 = π−1
v (T0). Then the group T = T1Ḟ

2 is a C(I)-ordering of F with

|I| = dimF2
( Ḟ

T ) − 1.

Proof. We must check that the conditions of Proposition 7.2 hold for T . Clearly
if −1 ∈ T0, then −1 ∈ T1 ⊆ T . To see that F is T -rigid, one applies the same
argument as in Lemma 8.8. As in the case for S(I)-orderings, Ḟ /T is clearly
an F2-vector space. Since [Γv: 2Γv] ≥ 2, its dimension is strictly positive and

thus may be written dimF2
(Ḟ /T ) = 1 + |I|. ¤

Again, we also have the analogue to Lemma 8.8 for the case of D(I)-orderings.

Lemma 8.10. ([Br]) Assume that v is a valuation on the field F . Let T0 be

a fan of Ḟv. Set T1 = π−1
v (T0). Then the group T = T1Ḟ

2 is a fan (i.e. a
D(I)-ordering) of F .

We now formulate the key results in this section.

Theorem 8.11. Let T be any S(I)-ordering of F and let L = F (
√

t), t ∈
T . Then there exists an S(I)-ordering T ′ on L such that (L, T ′) is an S(I)-
extension of (F, T ).

Proof. From Proposition 8.1, we see that there exists a nondyadic T -compatible
valuation ring Av in F such that UvT = T ∪−T and that T̄ := πv(Uv ∩T ) is an
S(∅)-ordering of Fv. As π−1

v (T̄ ) = (Uv ∩T )(1+Mv) and because (1+Mv) ⊆ T ,

one has T1 := π−1
v (T̄ )Ḟ 2 ⊆ T . By Lemma 8.8, we see that T1 is an S(J)-

ordering in F for a suitable set J .
Let w be any valuation of L which extends v. Let Lw denote its residue field,
and Γv,Γw denote the valuation groups of v and w. We may assume Γv ⊆ Γw,
and we set e = [Γw : Γv], the ramification degree of w with respect to v, and
f = [Lw : Fv], the residue class degree of w with respect to v. It is well known
that ef ≤ [L : F ] = 2 and in particular we have f = [Lw : Fv] ≤ 2. More

precisely, one has Lw = Fv(
√

πv(u0)) with u0 = 1 if f = 1, and u0/t ∈ Ḟ 2 if
f = 2. By Proposition 5.6 and Remark 5.5, C4-orderings are known to admit
C4-closures of the same level, and as πv(u0) ∈ T̄ , the S(∅)-ordering T̄ admits an

S(∅)-extension T̃ to Fv(
√

πv(u0)) = Lw. Calling T2 = π−1
w (T̃ )L2, Lemma 8.8

implies that T2 is an S(K)-ordering of L for a suitable set K.
Let us first show that T1 = T2 ∩ F . By definition of T1, an element s ∈ T1 has
the same square class as an element u ∈ Uv such that πv(u) ∈ T̄ ⊆ T̃ . This

implies that πw(u) ∈ T̃ , and thus u and s are in T2. This shows T1 ⊆ T2 ∩ F .
For the reverse inclusion, we state the following claim:

Claim. With notation as above, one has L̇ = UwḞ ∪
√

tUwḞ .

Proof. We know that e ≤ 2. If e = 1, then L̇ = ḞUw and we are done. If e = 2,
then f = 1 and we may show that w(

√
t) 6∈ Γv. Otherwise

√
t = xu with x ∈ F

and u ∈ Uw, and denoting by σ the nontrivial element of the Galois group

Gal(L/F ), we know that σ(
√

t)√
t

= −1 and thus πw(σ(
√

t)√
t

) = πw(σ(u)
u ) = −1.

Since f = 1, Lw = Fv, and so πw(σ(u)
u ) must also be 1. Since the valuation
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v is not dyadic, this would be a contradiction. Thus we see that since Γw
∼=

L̇/Uw,Γv
∼= Ḟ /Uv, and [Γw : Γv] = 2, the factor group L̇/UwḞ is {1,

√
t}, and

we can write L̇ = UwḞ ∪
√

tUwḞ . ¤

We now finish the proof of the theorem. If α ∈ T2 ∩ F , we may write α = uλ2

with u ∈ π−1
w (T̃ ), λ ∈ L̇, and writing λ =

√
t
η
u1g with u1 ∈ Uw, g ∈ Ḟ , η = 0

or 1, this yields α = uu2
1t

ηg2. Since tηg2 ∈ T1, we may assume α = uu2
1. Then

πv(α) = πw(α) ∈ T̃ ∩ Fv = T̄ and α ∈ T1. This proves T1 = T2 ∩ F .

We define a new subgroup T ′
2 of L̇ as follows.

(1) If
√

t ∈ (T2 ∪ −T2), set T ′
2 = T2.

(2) If
√

t 6∈ (T2 ∪ −T2) and [Γw : Γv] = 1, again set T ′
2 = T2.

(3) If
√

t 6∈ (T2 ∪ −T2) and [Γw : Γv] = 2, set T ′
2 = T2 ∪

√
tT2.

Then again T1 = T ′
2 ∩ F , the only thing to prove being that in the third case,√

tT2 ∩ F ⊆ T1. But if α ∈
√

tT2 ∩ F we have α =
√

tug2 with u ∈ Uw, g ∈ Ḟ
and this implies w(

√
t) ∈ Γv, contradicting [Γw : Γv] = 2. This shows that√

tT2 ∩ F = ∅ in the third case.
Since T2 is an S(K)-ordering, it is easy to check that conditions (1)-(3) of
Proposition 7.6 hold for T ′

2 and to see that T ′
2 is also an S(K ′)-ordering for a

suitable set K ′.
We want to show that the injection Ḟ /T1 −→ L̇/T ′

2 is also surjective, which

reduces to showing that L̇ = T ′
2Ḟ . We already know L̇ = UwḞ ∪

√
tUwḞ , and

by Lemma 8.1, Uw ⊆ T2 ∪ −T2. This gives us UwḞ ⊆ T2Ḟ ⊆ T ′
2Ḟ . In cases

(1) and (3), one has
√

t ∈ T ′
2 ∪ −T ′

2, and so L̇ ⊆ T ′
2Ḟ . In case (2), there exists

x0 ∈ Ḟ such that
√

tx0 ∈ Uw ⊆ T2Ḟ . So
√

t ∈ T2Ḟ , finishing the proof that
Ḟ /T1 −→ L̇/T ′

2 is an isomorphism.
We have proved so far that (L, T ′

2) is an S(J)-extension of (F, T1), and that T1

is contained in the S(I)-ordering T . We may then apply Lemma 8.5 to show
that (L, T1T

′
2) is an S(I)-extension of (F, T ), and the theorem is proved. ¤

Corollary 8.12. An S(I)-ordered field (F, T ) admits an S(I)-closure.

Proof. Let S be the set of extensions (L, S) of (F, T ) inside F (2) such that S
is an S(I)-ordering on L. Then by a Zorn’s Lemma argument S has a maximal

element (K,T0) with K̇/T0
∼= Ḟ /T, T = T0 ∩ F , and T0 is an S(I)-ordering

on K. We are done by Corollary 4.3 if we can show T0 = K̇2. If not, choose
t ∈ T0\K̇2. Then by Theorem 8.11 we can extend T0 to an S(I)-ordering on
K(

√
t), contradicting the maximality of (K,T0). ¤

Corollary 8.12 can be reformulated in the language of Galois theory as in
the following corollary, which tells us that a certain family of subgroups of
GF := Gal(F (2)/F ) occurs whenever GF contains certain subquotients of GF .
Observe that in Corollary 8.13 we do not specify the action of the outer factor
Z2 on the normal subgroup (Z2)

I as this action depends upon a subtler analysis
of the roots of unity belonging to the fields under consideration.

Corollary 8.13. Let F be a field of characteristic 6= 2. Suppose that we

have a tower of field extensions F ⊂ N1 ⊂ N2 ⊂ N
(3)
1 ⊂ F (2), such that

Documenta Mathematica 9 (2004) 301–355



Additive Structure of Multiplicative Subgroups . . . 337

Gal(N
(3)
1 /N2) ∼= (C4)

I⋊C4 for I some nonempty set. Then GF = Gal(F (2)/F )
contains the closed subgroup (Z2)

I ⋊ Z2.

Proof. Let F ⊂ N1 ⊂ N2 ⊂ N
(3)
1 ⊂ F (2) be a tower of field extensions, where

N
(3)
1 /N2 is a Galois extension and Gal(

N
(3)
1

N2
) ∼= (C4)

I ⋊C4 for I some nonempty

set. Set T = {t ∈ Ṅ1 | (
√

t)σ =
√

t for each σ ∈ Gal(N
(3)
1 /N2)}. From

Definition 7.1 we see that T is an S(I)-ordering of N1. From Corollary 8.12

it follows that there exists a field extension N of N1 such that Ṅ2 is an S(I)-

ordering of N and Ṅ2 ∩N1 = T . Then Proposition 8.1 implies the existence of
an Ṅ2-compatible valuation ring Av of N such that UvṄ2 = Ṅ2 ∪ −Ṅ2.
It is well known that an Ṅ2-compatible valuation v on N is 2-henselian. More-
over N is a rigid field (and is S(I)-closed). In Proposition 8.1 we observed that
v is a nondyadic valuation (i.e., char Fv 6= 2) and in this case it follows from
basic valuation theory (see e.g. [End, §20]) that we have a split short exact
sequence

1 −→ Iv −→ GN (2) −→ GNv
(2) −→ 1,

where Iv is the inertia subgroup of GN (2) := Gal(N(2)/N) = Gal(F (2)/N)
and Nv is the residue field of v. Moreover it is well known that Iv is an abelian
group. (See e.g. [EnKo].)

Because Ṅ2 is an S(I)-ordering of N we see that s(N) = 2. In particular N
is not a formally real field, and so GN (2) is a torsion-free group. (See [Be].)
Therefore using Pontrjagin’s duality and the well-known structure of abelian
divisible groups, we see that Iv

∼= (Z2)
J for some set J . (See e.g. [RZ, §4.3,

Theorem 4.3.3].)

Because Ṅ2 is compatible with v and

Uv

Uv ∩ Ṅ2
∼= Ṅ2 ∪ −Ṅ2

Ṅ2
,

we see that | Ṅv/Ṅ2
v |= 2. Hence GNv

(2) ∼= Z2. Since Ṅ2 is an S(I)-ordering
of N , it follows that the cardinality of I is the same as the cardinality of J .
Hence Iv

∼= (Z2)
I . Since the Galois group GN (2) = Iv ⋊Z2 is a closed subgroup

of GF , the proof is completed. ¤

In the case of C(I)-orderings, we cannot always find a closure. The problem
arises from the fact that the valuation whose existence is guaranteed by Propo-
sition 8.2 may be dyadic, and thus the appropriate modification of Theorem
8.11 will not go through. For S(I)- and D(I)-orderings we do not have this
problem, as the valuation in question will be nondyadic. Example 8.14 below
constructs a C(1)-ordered field which we show in Proposition 8.15 does not
admit a C(1)-closure.

Example 8.14. Recall that a field K of characteristic 2 is called perfect if
K2 = K. S. MacLane has shown that for any field K of characteristic 2, there
exists a field F of characteristic 0 with a valuation v : F → Z∪ {∞} such that
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Fv
∼= K ([Mac, Theorem 2]. For some more general theorems on valued fields

with prescribed residue fields, see [Ri, Chapter I]). Then let F be such a field
where Fv = K is a field of characteristic 2 which is not perfect. Let T0 be a
multiplicative subgroup of K̇ of index 2 in K̇ such that K̇2 ( T0 ( K̇. Let
T = Ḟ 2π−1

v (T0), a subgroup of Ḟ . Here πv is the residue map Uv −→ K̇. Then

| Ḟ /T |= 4, and one can choose as representatives of the factor group Ḟ /T the
elements 1, u, ρ, ρu where v(ρ) = 1, u ∈ Uv, and πv(u) /∈ T0.
We claim that F is T -rigid. Since any element in ρT or in ρuT lies outside
of UvT , we see that all elements of ρT ∪ ρuT are T -rigid. (See [AEJ, Propo-

sition 1.5.]) Consider an element α = t1 + t2u ∈ T + uT , with t1, t2 ∈ Ḟ .
Then α = t2(t1t

−1
2 + u), so it is enough to show t1t

−1
2 + u ∈ T ∪ uT . Thus

we may restrict our attention to elements which can be written as tf2 + u,
where t ∈ π−1

v (T0), f ∈ Ḟ . If v(f) = 0, then tf2 + u ∈ Uv ⊆ T ∪ uT . If
v(f) > 0, then tf2 + u = u(1 + tf2u−1) ∈ uT . Finally, if v(f) < 0, then
tf2 + u = tf2(1 + uf−2t−1) ∈ T . Thus F is T -rigid.
Since −1 ∈ T0, we have −1 ∈ T , and T is a C(1)-ordering of F . Observe that

T 6= Ḟ 2 and (F, T ) is not C(1)-closed.

Proposition 8.15. The C(1)-ordered field (F, T ) does not admit a C(1)-
closure.

Proof. Recall that a valuation ν on a field L is said to be T -coarse if ν(T ) con-
tains no nontrivial convex subgroups of the valuation group Γν of ν. Suppose
that F ( N ( F (2), Ṅ2 ∩ F = T , and Ṅ2 is a C(1)-ordering of N . Then
applying [AEJ, Corollary 2.1.7] or [Wa, Theorem 2.16], we see that there exists

a Ṅ2-compatible valuation w on N such that [UwṄ2 : Ṅ2] ≤ 2. This means

that | Uw/Uw ∩ Ṅ2 |≤ 2. We may further choose w to be the unique finest N2-
coarse N2-compatible valuation on N (see [AEJ, Theorem 3.8]). Consider z :=
the restriction of the valuation w to F . First observe that z is a T -compatible
valuation on F . Indeed, from Mw ∩ F = Mz we get (1 + Mw) ∩ F = 1 + Mz.
Thus we have

1 + Mz = (1 + Mw) ∩ F ⊆ Ṅ2 ∩ F = T.

Let ∆ be the maximal convex subgroup of Γz contained in z(T ). Then set y
to be the composite valuation

y : Ḟ
z−→ Γz

ρ−→ Γz/∆,

where the last map ρ : Γz → Γz/∆ is the natural projection. Then, following
the notation of [AEJ, Definition 2.2], the valuation ring Ay = OF (UzT, T ), and
y(T ) contains no nontrivial convex subgroups of the value group Γy = Γz/∆
([AEJ, Lemma 3.1 and Proposition 3.2]), so y is T -coarse. Observe that y is also
T -compatible. However, since Γv = Z and v(T ) = 2Z 6= Z, the valuation v is
also T -coarse. Hence, by [AEJ, Corollary 3.7], we see that the valuations v and
y are comparable. Since Av is a maximal proper subring of F (because Γv = Z),
we see that Av ⊇ Ay ⊇ Az. However, since Mz ⊇ My ⊇ Mv and 2 ∈ Mv, we
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see that both valuations y and z are dyadic. Since Fz ⊆ Fw, it follows that w
is also dyadic. But from [AEJ, Theorem 3.8 and Lemma 4.4], it follows that

w cannot be a dyadic valuation. Indeed, [DN 〈1,−n2〉Ṅ2 : Ṅ2] = 4 > 2 for

all n ∈ Ṅ . Thus we have a contradiction, and there can be no C(1)-closure of
(F, T ). ¤

Remark 8.16. Example 8.14 is analogous to Proposition 4.5. What makes
this example striking when compared to Proposition 4.5 is that here we have
| Ḟ /T |= 4 < ∞, but in Proposition 4.5 | Ḟ /T |= ∞. Although this example
is a relatively simple consequence of the work in [AEJ], it seems to be the first
example where the Witt ring of a field with finitely many square classes is
realizable as a “Witt ring of T -forms over some field F”, but it is not realizable
as an actual Witt ring of any field extension K of F . We make this last comment
more precise.
First observe that, analogous to the definition of reduced Witt rings of fields,
one may define WT (F ) for any subgroup T of Ḟ which contains all nonzero
squares in F . One possible definition is as follows: (See also [La2, Corol-
lary 1.27] and [Sc, Chapter 2, § 9].)

Let Z[Ḟ /T ] be the group ring of Ḟ /T with coefficients in Z. Let J be the ideal

of Z[Ḟ /T ] generated by

(1) [T ] + [−T ],

(2) [aT ] + [bT ] − [(a + b)T ] − [ab(a + b)T ], (a, b, a + b ∈ Ḟ ),

(3) [aT ][bT ] − [abT ], (a, b ∈ Ḟ ).

Then we set WT (F ) = Z[Ḟ /T ]ÁJ .
A systematic study of WT (F ) for H-orderings T of F is very desirable, but
it is not pursued in this particular paper. Here we just point out that if T is
any C(1)-ordering of F then WT (F ) ∼= W (Qp), where p is any prime such that
p ≡ 1 (mod 4), and Qp is the field of p-adic numbers.

Since T is a C(1)-ordering in Ḟ and Q̇2
p is a C(1)-ordering in Qp (see Propo-

sition 7.2 and [L1, Chapter 6]), we see that there exists a group homomor-

phism ϕ: Ḟ /T −→ Q̇p/Q̇2
p such that ϕ takes any relation in the form (1),

(2) or (3) above again to a relation of the same type. Using the same argu-
ment for ϕ−1 rather than ϕ, we see that ϕ indeed induces an isomorphism
ϕ̃:WT (F ) ∼= W (Qp).

Similar to Proposition 4.12, we have the following proposition.

Proposition 8.17. Let (F, T ) be the field F with C(1)-ordering T constructed
in Example 8.14 above. Then there is no field extension K/F with C(1)-

ordering K̇2 which is a T -extension of (F, T ). (Equivalently, WT (F ) cannot be
realized as W (K) for any field extension K of F .)

Proof. Suppose to the contrary that there exists a field extension K/F such

that K̇2 is a C(1)-ordering of K and (K̇, K̇2) is a T -extension of (F, T ). As-
sume that both K and a quadratic closure F (2) of F are contained in some
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common overfield so that we can consider the field L = K ∩F (2). The natural

isomorphism ψ: Ḟ /T −→ K̇/K̇2 factors through θ: Ḟ /T −→ L̇/(K̇2 ∩ L). Be-
cause ψ is injective, so is θ. Observe that θ is also surjective. Indeed since ψ is
surjective, we see that for each l ∈ L̇ there exists an element f ∈ Ḟ such that
lf−1 ∈ K̇2 ∩ L. Thus we see that (L, K̇2 ∩ L) is a T -extension of (F, T ).

We claim that (L̇, K̇2∩L) is a C(1)-closure of (F, Ṫ ). Observe that K̇2∩L = L̇2.

Indeed if k2 ∈ L, k ∈ K̇ then k ∈ K̇ ∩F (2) = L̇. Since L̇2 ⊂ K̇2 ∩L is obvious,

we see that K̇2 ∩ L = L̇2. In order to conclude the proof, it is enough to show
that L̇2 is a C(1)-ordering in L̇. Because

√
−1 ∈ K̇ we see that

√
−1 ∈ L̇

as well, and −1 ∈ L̇2. From the isomorphism θ: Ḟ /T −→ L̇/L̇2 we see that

L̇/L̇2 = C2⊕C2. By Proposition 7.2 it remains only to show that L is L̇2-rigid.

Consider an element a ∈ L̇ÂL̇2. For any l ∈ L̇ we have l2 + a ∈ K̇2 ∪ aK̇2

because K̇ is K̇2-rigid and L̇2 = K̇2 ∩L. Hence l2 + a ∈ (K̇2 ∩L)∪ (aK̇2 ∩L).

Finally since K̇2 ∩ L = L̇2 and aK̇2 ∩ L = aL̇2 we see that L̇ is L̇2-rigid. ¤

Theorem 8.18. A C(I)-ordered field (F, T ) possessing a nondyadic T -
compatible valuation ring Av as in Proposition 8.2 admits a C(I)-closure.

Proof. The proof is essentially the same as the proof of Theorem 8.11 and
Corollary 8.12, and we will follow the same plan and the same notation. Ap-
plying Proposition 8.2, we find a valuation v on F such that T̄ := πv(Uv ∩T ) is

either Ḟv or a C-ordering. By assumption here this valuation is nondyadic. By
Lemma 8.9, T1 is a C(J)-ordering contained in T . Taking any valuation w on

L = F (
√

t) extending v, we extend T̄ to T̃ in Lw. We obtain, by Lemma 8.9,
a C(K)-ordering T2 in L. We enlarge it to a C(K ′)-ordering T ′

2, according to
the three cases (1), (2), (3), replacing T2 ∪−T2 by T2. The only serious change

is in proving that L̇ = T ′
2Ḟ . For this it is enough to show that Uw ⊆ T2Ḟ ,

which can be done as follows. If the index [UvT : T ] = [Ḟv : T̄ ] is 1, then

[L̇w : T̃ ] = [UwT2 : T2] = 1 and Uw ⊆ T2. If this index is 2, there exists a ∈ Uv

such that Uw ⊆ T2 ∪ aT2 ⊆ T2Ḟ . This shows that (L, T ′
2) is a C(J)-extension

of (F, T1), and we apply Lemma 8.5 to show that (L, T1T
′
2) is a C(I)-extension

of (F, T ). We finish by applying the same argument as in Corollary 8.12. ¤

The following observation about valuations when F contains a real-closed field
was pointed out to us by J.-L. Colliot-Thélène. It contains a convenient condi-
tion for a valuation v to be nondyadic, and thus it is related to Theorem 8.18.

Example 8.19. Let v be a valuation with value group Γ, and denote by Uv the
units of the valuation ring. Suppose there exists an integer n > 1 such that any
n-divisible subgroup of Γ is trivial. Assume that F contains a real-closed field
R. Then R is contained in Uv, and in particular the valuation is nondyadic.

Proof. Assume F contains a real-closed field R. If a ∈ R is positive, for the
given integer n there exists b ∈ R such that a = bn, and thus v(a) = nv(b).
Thus v(a), being divisible by any power of n, must be 0, and the nonzero
elements of R must be units. This implies that the residue field Fv contains an
isomorphic copy of R, and the valuation v cannot be dyadic. ¤
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Theorem 8.20. A D(I)-ordered field (F, T ) admits a D(I)-closure.

Proof. We have already proved that D-orderings admit closures, and thus we
may assume that |I| > 1. It has also already been shown in [Sch] that val-
uation fans admit closures. Here is a more general situation and a different
proof, that consists again in transpositions of the proofs of Theorem 8.11 and
Corollary 8.12. As in Theorem 8.11, if t ∈ T and L = F (

√
t), applying Propo-

sition 8.3, we find a valuation v on F such that T̄ := πv(Uv ∩ T ) is either an
ordering or a D-ordering. By Lemma 8.10, T1 is a D(J)-ordering contained

in T . Taking any valuation w on L = F (
√

t) extending v, we extend T̄ to T̃
in Lw. By Lemma 8.10 we obtain a D(K)-ordering T2 in L. We enlarge it
to a D(K ′)-ordering T ′

2, according to the three cases (1), (2), (3), replacing
T2 ∪−T2 by T2. As in the case for C(I)-ordered fields, the only serious change

is in proving that L̇ = T ′
2Ḟ , and the proof is identical to that for C(I)-ordered

fields. ¤

§9. Galois groups and additive structures (2)

Throughout this paper, we have considered a number of subgroups H of GF

which behave pretty well, in that we have a certain control over the additive
structure of the associated orderings, and we are able to make closures. Ac-
tually some of these groups H have an additional property which helped us
in a subtle but important way. Let us introduce the following definition and
notation.

Definition and Notation 9.1.
(1) We say that an essential subgroup H of GF is lifted if we can write GF =
G ⋊ H for some normal subgroup G of GF . This means that H is not only a
subgroup of GF , but also a quotient GF −→ H such that H −→ GF −→ H is
the identity map. The H-ordering PH is called a lifted ordering. (The name
lifted was chosen because such an H corresponds, as a quotient of GF , to a
Galois extension of F inside F (3), of group H, which can be lifted as a Galois
subextension of F (3) of same group H.)
(2) If we want to realize some subgroup H of GF as a GK for some field K, we
certainly need to use an H which satisfies known properties of W -groups. In
particular, if H 6= {1}, C2, then by Corollary 2.18 of [MiSp2], we see that H
can be embedded in a suitable product

∏

I D × ∏

J C4, where each factor is a
quotient of H. According to the use in universal algebra, see e.g. [Gr, p. 123],
we refer to H as the subdirect product of

∏

I D × ∏

J C4. (Also we say that H
as above satisfies the subdirect product condition.)
(3) We say that an essential subgroup H of GF is a fair subgroup if it is lifted
and if it is either {1} or C2 or a subdirect product of some

∏

I D×∏

J C4. The
H-ordering PH will be called a fair ordering if H is a fair subgroup of GF .

Remark 9.2. We observed in Example 6.4 that the subgroup H = 〈σ, τ〉 ∼=
C4 ∗ C4 in GQ2

has associated H-ordering T = Ḟ 2 ∪ 5Ḟ 2, F = Q2, such that
T + T is not multiplicatively closed. We now use the description of GF = G2
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as in Example 2.9, to show that H is not a lifted subgroup of GF . Suppose
instead that H is a lifted subgroup of GF . Then there exists a subgroup G
of GF such that GF = G ⋊ H. Then G must contain some element of the
form α = ρhφ where ρ is an element of GF such that ρ, σ, τ generate GF and
σ2[ρ, τ ] = 1, h ∈ H and φ is some element in Φ(GF ). Because G is a normal
subgroup of GF we see that α ∈ G implies α−1(τ−1ατ) = [α, τ ] ∈ G as well.
Hence [α, τ ] = [ρhφ, τ ] = [ρ, τ ][h, τ ] ∈ G. On the other hand [ρ, τ ][h, τ ] =
σ2[h, τ ] ∈ H. Because GF = G ⋊ H we see G ∩ H = {1} and thus σ2[h, τ ] = 1.
This equality is impossible as H is a free group in category C. Therefore H is
not lifted.

Observe that it is sometimes fairly easy to establish the “fairness” of a given
subgroup. For example if H = 〈σ〉 is an essential subgroup of GF of order 2,
then for f /∈ PH the restriction H −→ Gal(F (

√
f)/F ) induces an isomorphism.

Since the subdirect product condition is empty, H is fair. We can also readily
check the following:

Proposition 9.3. Let ϕ:D(I) −→ GF be an essential embedding. Then
ϕ(D(I)) is a lifted subgroup of GF . As the subdirect product condition is also
trivially satisfied, it is a fair subgroup of GF .

Proof. Consider a D(I)-ordering T of F for some | I |≥ 1. Pick a basis for Ḟ /T
of the form {[−1]}∪{[ai], i ∈ I}. (As usual [f ] means the class represented by f

in the factor group Ḟ /T .) Set K/F = F (
√
−1, 4

√
ai: i ∈ I). Then Gal(K/F ) ∼=

(
∏

I C4) ⋊ C2, where we can choose generators τ̄i, i ∈ I for factors in the inner

product and σ̄ for the outer factor such that σ̄(
√
−1) = −

√
−1, σ̄ ( 4

√
ai) =

4
√

ai, τ̄i (
√
−1) =

√
−1 and τ̄i ( 4

√
ai) =

√
−1 4

√
ai, τ̄i ( 4

√
aj) = 4

√
aj for j 6= i.

Moreover the action of σ̄ on
∏

I C4 is described as σ̄−1 τ̄i σ̄ = τ̄3
i for each

i ∈ I. (Or equivalently σ̄−1 τ̄ σ̄ = τ̄−1 for each τ̄ ∈ ∏

I C4.)
Pick any elements σ, τi, i ∈ I ∈ H: = ϕ(D(I)) such that their homomorphic
image from H to Gal(K/F ) are elements σ̄, τ̄i, i ∈ I. This is possible as H
surjects on Gal(K/F ). Then the essential subgroup H of GF is generated by
the minimal set of generators {σ, τi, i ∈ I}. Moreover the natural restriction
map r:H −→ Gal(K/F ) is an isomorphism, as r takes the generators of H
to the generators of Gal(K/F ) and both sets of generators satisfy the same
relations. ¤

Now we consider C4-orderings and determine when they are fair orderings.
Observe that a C4-ordering is automatically fair provided it is lifted, so it is
enough to decide when a C4-ordering T is lifted.

Proposition 9.4. Let T be a C4-ordering of F . Then T is lifted if and only
if there exists an element f ∈ (F 2 + F 2) \ (T ∪ {0}).
Proof. Suppose that T is a C4-ordering of F, T = PH for H ∼= C4, and H is
essentially embedded in GF . Suppose also that f ∈ (F 2 +F 2)\ (T ∪{0}). Then

since f /∈ T and T ⊃ Ḟ 2, we see that f /∈ F 2 and a Cf
4 -extension K of F

exists. Because f ∈ Ḟ \ T , an element h ∈ H exists such that h(
√

f) = −√
f .
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Then the image of h in Gal(K/F ) under the natural homomorphism H −→
Gal(K/F ) is a generator of Gal(K/F ). Therefore the homomorphism is in fact
an isomorphism, and H is lifted as asserted. Assume now that H ∼= C4 is a
lifted subgroup of GF . Then a surjective homomorphism ϕ:GF −→ C4 exists,
which induces an isomorphism ψ:H −→ C4. Let K be the fixed field of the
kernel of ϕ. Then K/F is a Galois extension on Gal(K/F ) ∼= C4. Let F (

√
f) be

a unique quadratic extension of F contained in K. Also let T = PH . Then H
acts nontrivially on

√
f and f ∈ (F 2+F 2)\{0}. Hence f ∈ (F 2+F 2)\(T ∪{0})

as claimed. ¤

Example 9.5. The following simple example shows that we cannot drop the
condition ∃ f ∈ (F 2 + F 2) \ (T ∪ {0}) from the proposition above, and that
unfair C4-orderings exist in nature. Consider again F = Q2 and set T =
(F 2 + F 2) \ {0}. Then T is a subgroup of Ḟ of index 2. Because Q2 is not
a formally real field, Q2 does not admit any usual ordering, and T is a C4-
ordering of F . However T contains all sums of two squares, and therefore T is
not lifted.

On the bright side, we wish to point out that for each C4-ordering there exists
a quadratic extension of the base field, and an extension of the original C4-
ordering on this quadratic extension where this extended ordering become a fair
ordering. In other words an unfair ordering may become fair in some algebraic
extension. More precisely we have the following proposition, in which we use
Definition 1.4(4) of an H-extension

Proposition 9.6. Let T be a C4-ordering in F . If T is not fair, there exists
t ∈ T and a C4-extension (F (

√
t), V ) of (F, T ) such that V is a fair ordering

in F (
√

t).

Proof. Suppose that T is a C4-ordering in F . Then by Proposition 5.4 there
must exist an element t ∈ T such that 1 + t /∈ T . If T is not a fair ordering, we
know from the characterization of fair orderings in Proposition 9.4 that t /∈ Ḟ 2.
Hence K = F (

√
t) is a quadratic extension of F and [K:F ] = 2. From the

proof of Proposition 4.2, we know that there exists some subgroup V in K such
that | K̇/V |= 2 and V ∩ Ḟ = T . Then V is a C4-ordering of K, and V is fair
as 1 + (

√
t)2 /∈ V . ¤

In this section we merely give a few examples of fair orderings and are not
pursuing a systematic check of which orderings considered in this paper are
fair and which will become fair after extension to a suitable 2-extension of the
base field. The development of a theory of fair orderings of fields is planned
for a subsequent paper.

We complete our family of examples of orderings by considering H = F(I),
where I is some nonempty index set and F(I) is the free pro-2-group in the
category C, on a minimal set {σi | i ∈ I} of generators I. (We assume as usual
that each open subgroup V of F(I) contains all but finitely many σi, i ∈ I. See
[Koc, Chapter 4].)
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Proposition 9.7. Let K/F be a Galois extension such that Gal(K/F ) ∼=
F(I)=〈σi|i ∈ I〉 where {σi, i ∈ I} is a family of minimal generators of the free
pro-2-group F(I) in our category C. Then there exists a fair F(I)-ordering in
F .

Proof. We first embed the group F(I) essentially in GF . Since F (3) is
the maximal Galois subextension of a quadratic closure Fq of F such that

Gal(F (3)/F ) belongs to the category C, and since F(I) also belongs to C, we
see that K ⊂ F (3). Therefore there exists a surjective natural homomorphism
π:GF −→ Gal(K/F ).

It is well known that there exists a continuous map s: Gal(K/F ) −→ GF such
that π ◦ s is the identity map on Gal(K/F ) (See [Koc, 1.3]). (Here we use
only the fact that both groups Gal(K/F ) and GF are profinite groups.) Set
s(σi) = ωi for each i ∈ I. Then for each open subgroup V of GF the set s−1(V )
is an open subset of Gal(K/F ), and because open subgroups of Gal(K/F ) form
a basis for the topology of Gal(K/F ) we see that all but finitely many σi, i ∈ I,
are in σ−1(V ). Hence all but finitely many ωi are in V .

Because F(I) is a free object of C on the set of generators (σi), i ∈ I we see
that there exists a continuous homomorphism p: Gal(K/F ) −→ GF such that
p(σi) = ωi for each i ∈ I. Set H = p(Gal(K/F )). Then we have π ◦ p = 1
and GF

∼= ker π ⋊ H. Moreover, π restricted to H induces an isomorphism
ϕ:H −→ Gal(K/F ). Observe that ϕ(ωi) = σi for each i ∈ I. Because σi

mod φ(Gal(K/F )) are topologically independent, we see that ωi must be topo-
logically independent mod φ(GF ). This means that {ωi, i ∈ I} generates the
essential subgroup H of GF .

One can check that F(I) is a subdirect product of its dihedral and C4 quotients
directly from the structure of F(I), but it is also possible simply to observe
that F(I) is the W -group of a suitable field A and all W -groups have this
property. That each F(I) is the W -group of a suitable field A follows from the
fact that for each index set I 6= φ we can find a field A such that the Galois
group of its quadratic closure is a free pro-2-group (see e.g., [GM, page 98]),
and therefore its W -group is F(I). ¤

The following corollary applies, for example, in the case of F = Qp(t).

Corollary 9.8. Let F be the quotient field of a complete local integral domain
properly contained in F . Let F(I) be any free object of category C on generators
I, where I is a nonempty finite set. Then F admits a fair F(I)-ordering.

Proof. From Proposition 9.7 we see that it is sufficient to show that each group
F(I), I finite and nonempty, occurs as a Galois group over F . Harbater’s well-
known result [Har, p. 186] says that each finite group is realizable over F . (For
a very nice and rather elementary proof of this result see [HaVöl, Theorem
4.4].) ¤

Let us fix the following notation.
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Notation 9.9. Let i:F1 −→ F2 be a quadratic extension and let i⋆:GF2
−→

GF1
be the associated restriction map. (See e.g. [MiSm3] for the existence of

this map.) Let H2 be a subgroup of GF2
and let H1 = i⋆(H2). Assume H1

is essential in GF1
. Observe that this property is not automatically satisfied

since the image of an essential group under the restriction map i⋆ need not be
essential. (See Remark 7.8 for an example exhibiting such a case.) When this
is the case, we say that the extension (F1,H1) −→ (F2,H2) is essential. Put
T1 = PH1

, T2 = PH2
. Then it follows that T1 = T2 ∩ F1.

If we are working with fair groups H as above, then we can show that for an
essential quadratic extension (F1,H1) −→ (F2,H2), the additive structure of
the associated orderings is preserved if and only if i⋆ induces an isomorphism
between H2 and H1.

Theorem 9.10. Assume the hypotheses in Notation 9.9 hold and that H1,H2

are fair subgroups of GF1
,GF2

respectively. Then the restriction i⋆ induces an

isomorphism between H2 and H1 if and only if Ḟ1/T1
∼= Ḟ2/T2 and for each

a ∈ F1, T1 + aT1 = (T2 + aT2) ∩ F1.

Since the proof is a bit long and since the two directions are not using the same
assumptions on H1,H2, we split the theorem in two parts, Proposition 9.11 and
Proposition 9.12

Proposition 9.11. Assume that H1 is lifted. Following Notation 9.9, if the
restriction i⋆ induces an isomorphism between H2 and H1, then Ḟ1/T1

∼= Ḟ2/T2

and for each a ∈ F1, T1 + aT1 = (T2 + aT2) ∩ F1.

Proof. We know that Ḟi/Ti is the Pontrjagin dual of Hi/Φ(Hi) for i = 1, 2.

Thus the natural isomorphism H2 −→ H1 yields an isomorphism Ḟ1/T1
∼=

Ḟ2/T2. In order to show that for each a ∈ F1 we have T1+aT1 = (T2+aT2)∩F1,

it is enough to show that for every b, c ∈ Ḟ1 \T1, if there exists s2, t2 ∈ T2 such
that bs2 + ct2 = 1, then there exists s1, t1 ∈ T1 such that bs1 + ct1 = 1. Indeed,
assume that the latter condition involving b, c ∈ Ḟ1 \ T1 is valid. Consider

any a ∈ Ḟ1 and any relation u2 + av2 = d, where u2, v2 ∈ T2 ∪ {0} and

d ∈ Ḟ1. We want to show that there exist elements u1, v1 ∈ T1 ∪ {0} such that

u1 + av1 = d. If u2 = 0 then v2 ∈ Ḟ1 ∩ T2 = T1, and we are done. If v2 = 0
then u2 = d ∈ Ḟ1 ∩ T2 = T1, and again we are done. Then assume u2, v2 ∈ T2.
If −a ∈ T1, let us write d = s2 − t2 for some elements s, t ∈ Ḟ1. We then
have d = s2 + a(−at2/a2) ∈ T1 + aT1. Hence we may assume that −a /∈ T1.
Finally we also assume that d /∈ T1. From the equation u2 + av2 = d we obtain
u2 = d−av2, and since u2, v2 ∈ T2 we can rewrite this equation as 1 = ds2−at2
where d,−a ∈ Ḟ1 \ T1. Using our hypothesis we see that there exist elements
s1, t1 ∈ T1 such that 1 = ds1 − at1. Hence d ∈ T1 + aT1 as required.
Now take b, c ∈ Ḟ1 \ T1 and assume that bs2 + ct2 = 1 for some s2, t2 ∈ T2.

Then the quaternion algebra
(

bs2,ct2
F2

)

splits. We consider the following cases.

(1) Suppose bs2, ct2 are linearly independent in Ḟ2/T2. Then they are also

independent modulo Ḟ 2
2 , and by Proposition 1.5 we have a dihedral extension
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L2/F2 such that F2(
√

bs2,
√

ct2) ⊂ L2 and Gal(L2/F2(
√

bcs2t2)) ∼= C4. In
particular we have an exact sequence

1 −→ C2 −→ Gal(L2/F2) ∼= D −→ Gal(F2(
√

bs2,
√

ct2)/F2) ∼= C2 × C2 −→ 1.

Let θ denote the restriction map from H2 to Gal(F2(
√

bs2,
√

ct2)/F2). We show
it is surjective. Denote by u1, u2 the two generators of Gal(F2(

√
bs2,

√
ct2)/F2)

defined by u1(
√

bs2)/
√

bs2 = −1, u1(
√

ct2)/
√

ct2 = 1, u2(
√

bs2)/
√

bs2 =
1, u2(

√
ct2)/

√
ct2 = −1. We may look at u1, u2 as linear functions on the

F2-vector subspace of Ḟ2/Ḟ 2
2 spanned by bs2, ct2, which are assumed to be in-

dependent, and since bT2 ∩ cT2 = ∅, we may extend them to linear functions
v1, v2 defined on the subspace generated by bT2, cT2, by putting vi(x) = ui(b)
if x ∈ bT2 and vi(x) = ui(c) if x ∈ cT2. Then vi may be viewed as a function

on the F2-vector subspace generated by the cosets bT2, cT2 in Ḟ2/T2. Again,
these functions vi’s may be extended to wi defined on the whole vector space
Ḟ2/T2. By duality, one has (Ḟ2/T2)

⋆ ∼= H2/Φ(H2), and the wi’s yield to el-
ements in H2/Φ(H2) which may be lifted as elements h1, h2 ∈ H2. Since

the duality is precisely given by the pairing H2/Φ(H2) × Ḟ2/T2 −→ {±1} de-
fined by (h, f) 7→ h(

√
f)/

√
f , it is immediate that hi goes to ui under the

restriction map θ:H2 −→ Gal(F2(
√

bs2,
√

ct2)/F2). This shows the surjectiv-
ity of θ. Since θ factors through ψ:H2 −→ Gal(L2/F2) ∼= D and since the
kernel of Gal(L2/F2) −→ Gal(F2(

√
bs2,

√
ct2)/F2) is the Frattini subgroup of

Gal(L2/F2), we see that ψ is also surjective. This means that D may be viewed

as a quotient of H2 and that we have inclusion maps F
(3)
2

H2 −→ L′
2 −→ F

(3)
2

such that Gal(L′
2/F

(3)
2

H2

) ∼= D. Since i⋆(H2) = H1, applying i⋆ to this diagram

gives us another diagram F
(3)
1

H1 −→ L′
1 −→ F

(3)
1 with Gal(L′

1/F
(3)
1

H1

) ∼= D.
Since H1 is lifted, we know that there exists an H1-extension K/F1 inside

F
(3)
1 containing a D-extension L1/F1. This extension is a Du,v-extension for

suitable u, v ∈ F1 by Proposition 1.5. We claim that we have u = bs1, v = ct1
for suitable s1, t1 ∈ T1. Consider the surjective homomorphism

θ:H2 −→ Gal(F2(
√

bs2,
√

ct2)/F2)

defined above. Then θ factors through the surjective homomorphism ψ:H2 −→
Gal(L2/F2) ∼= D. Using the isomorphism β:H2 −→ H1 induced by i⋆

and our construction of L1/F1, we see that the homomorphism ψ:H2 −→
Gal(L2/F2) is compatible, via identification of H2 with H1 using i⋆, with

the restriction homomorphism ψ̃:H1 −→ Gal(L1/F1). Passing to the
quotients Gal(F2(

√
bs2,

√
ct2)/F2) and Gal(F1(

√
u,

√
v)/F1) of Gal(L2/F2)

and Gal(L1/F1) respectively, we see that we can identify the homomor-
phism θ:H2 −→ Gal(F2(

√
bs2,

√
ct2)/F2) with the restriction homomorphism

θ̃:H1 −→ Gal(F1(
√

u,
√

v)/F1) via the isomorphism i⋆:H2 −→ H1. Finally

from the natural isomorphism Ḟ1/T1
∼= Ḟ2/T2 we may assume that u = bs1

and v = ct1 for suitable elements s1, t1 ∈ T1. By Proposition 1.5, this implies
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that the quaternion algebra
(

bs1,ct1
F1

)

splits, and that there exist s̃1, t̃1 ∈ T1

such that bs̃1 + ct̃1 = 1.
Suppose now that bs2, ct2 are linearly dependent in Ḟ2/T2. Then b and c are
equal modulo T2 and we may assume b = c. There are still two more cases to
consider.
(2) Suppose we have cs2 + ct2 = 1 with s2 = t2 mod Ḟ 2

2 . By Proposition 1.5,
there exists a Ccs2

4 -extension L2/F2 with F2(
√

cs2) ⊂ L2. Using arguments
similar to those in (1), we show that the restriction ψ:H2 −→ Gal(L2/F2) is

onto, and we find s1 ∈ T1 such that
(

cs1,cs1

F1

)

splits. This implies that there

exist s̃1, t̃1 ∈ T1 such that cs̃1 + ct̃1 = 1.

(3) Suppose we have cs2 + ct2 = 1 with s2 6= t2 mod Ḟ 2
2 . As in (1)

we find L2 with Gal(L2/F2) ∼= D and we have a tower of fields F2 −→
F2(

√
s2t2) −→ F2(

√
cs2,

√
ct2) −→ L2. Since H2 fixes F2(

√
s2t2), the re-

striction map ψ:H2 −→ Gal(L2/F2) induces a surjective homomorphism
ψ′:H2 −→ Gal(L2/F2(

√
s2t2)) ∼= C4. We finish with arguments as in (2)

and replacing F2 by F2(
√

s2t2), we find s̃1, t̃1 ∈ T1 such that cs̃1 + ct̃1 = 1. ¤

We now prove the result in the other direction.

Proposition 9.12. Let H1,H2 be as in Notation 9.9 and assume they are fair
subgroups. If the inclusion i:F1 −→ F2 induces an isomorphism Ḟ1/T1 −→
Ḟ2/T2 and if (T2 + aT2) ∩ Ḟ = T1 + aT1 for any a ∈ F1, then i⋆ induces an
isomorphism between H2 and H1.

Proof. If H2 = {1} then H1 = {1} as well. If H2 = C2 then i⋆(H2) 6= {1}
because T2 is a usual ordering in Ḟ2, and it cannot contain Ḟ1. However if H1

were {1} then T1 = Ḟ1. Therefore i⋆ induces an isomorphism between H2 and
H1.
For the rest of our proof we assume that H2 6= {1}, C2. Call β:H2 −→ H1 the
restriction of i⋆ to H2. Because i⋆ is a group homomorphism from GF2

into
GF1

, we have i⋆(Φ(GF2
)) ⊂ Φ(GF1

). Also we have β(Φ(H2)) ⊂ Φ(H1). Then the

map β induces β̂:H2/Φ(H2) −→ H1/Φ(H1), which is an isomorphism because

its dual map Ḟ1/T1 −→ Ḟ2/T2 is an isomorphism. By definition β is onto. We

want to show that β is injective. From the fact that β̂ is an isomorphism, we
see that ker β ⊆ Φ(H2). Take a fixed set of minimal (topological) generators
(σi)i∈I for H2. Then γ ∈ Φ(H2) has a unique description, up to a permutation,
as γ =

∏

i∈I σ2
i × ∏

(u,v)∈K [σu, σv] for some possibly infinite sets I,K.

To complete the proof we use the following lemma.

Lemma 9.13. Assume that H1,H2, T1, T2 are as in Proposition 9.12, and let
δ be σ2

i or [σu, σv]. Suppose that we have a surjective map ϕ:H2 −→ G where

G = D or C4. Then there exists a group G̃ which is again either D or C4

and a homomorphism ψ:H1 −→ G̃ such that ψ(β(δ)) 6= 1 ∈ G̃ if and only if

ϕ(δ) 6= 1 ∈ G. Moreover G̃ and the homomorphism ψ depend only on G and
on the fields F1 and F2, but not on δ.
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Proof. (1) Assume first that G = C4. Since H2 is lifted, there exist an H2-
extension K2/F2 and a Cu

4 -extension L2 of F2 with F2 −→ F2(
√

u) −→ L2 −→
K2. Since Ḟ1/T1

∼= Ḟ2/T2, there exist a ∈ Ḟ1, s2 ∈ T2 such that u = as2.
Let δ = σ2, which is the only case to be considered when G = C4. Then
ϕ(σ2) 6= 1 ∈ Gal(L2/F2) if and only if ϕ(σ) has order 4. Thus ϕ(σ2) 6= 1 if and
only if ϕ(σ) generates Gal(L2/F2). This happens precisely when ϕ(σ)(

√
as2) =

−√
as2. Since H2, and thus ϕ(σ), fixes

√
s2, this is equivalent to ϕ(σ)(

√
a) =

−√
a. On the other hand, we know by Proposition 1.5 that the quaternion

algebra
(

as2,as2

F2

)

splits, and this implies the existence of s′2, t
′
2 ∈ T2 such that

as′2 + at′2 = 1. From the assumption on the additive structure, this implies the
existence of s1, t1 ∈ T1 such that as1 +at1 = 1. Two cases are to be considered.

(1.1) If s1 = t1 mod Ḟ 2
1 , then there is a Cas1

4 -extension L1 of F1 with
F1 −→ F1(

√
as1) −→ L1. Denoting by ψ:H1 −→ Gal(L1/F1) the restriction,

because H1 fixes
√

T1 we have ψ(β(σ))(
√

as1)/
√

as1 = ψ(β(σ))(
√

a)/
√

a =

ϕ(σ)(
√

a)/
√

a = −1, showing ψ(β(δ)) 6= 1 ∈ C4 = G̃.

(1.2) If s1 6= t1 mod Ḟ 2
1 , there is a Das1,at1 -extension L1 of F1 with F1 −→

F1(
√

s1t1) −→ L1. Here L1/F1(
√

s1t1) is a C4-extension. Since β(σ) ∈ H1

fixes F1(
√

s1t1), ψ(β(σ)) is in the Galois group of the latter extension, which is
again a C4-extension. We then use the same argument as in (1.1) to conclude

that ψ(β(δ)) 6= 1 ∈ G̃ = C4.

(2) Assume G = D. Again there is an H2-extension K2 ofF2 and a Das2,bs2-
extension L2 of F2 with F2 −→ F2(

√
abs2t2) −→ L2 −→ K2. Since ϕ is

surjective, there is an element τ ∈ H2 such that τ(
√

abs2t2)/
√

abs2t2 = −1, or
else ϕ(H2) would fix F2(

√
abs2t2) and would be contained in a proper subgroup

of Gal(L2/F2) ∼= D. This implies ab /∈ T2. Since there exist s′2, t
′
2 ∈ T2

such that as′2 + bt′2 = 1, we also have, by the assumption on the additive
structures, as1 + bt1 = 1 for some s1, t1 ∈ T1. Since ab /∈ T1, we see that
as1, bt1 are independent modulo Ḟ 2

1 , and there is a Das1,bt1 -extension L1 of F1

with F1 −→ F1(
√

abs1t1) −→ L1. Denote by ψ:H1 −→ Gal(L1/F1) ∼= D the
restriction map.

(2.1) Suppose δ = σ2 and ϕ(δ) 6= 1. Then ϕ(σ) has order 4 and must fix the
quadratic extension F2(

√
abs2t2). Then it belongs to Gal(L2/F2(

√
abs2t2)) ∼=

C4. With the same arguments as in (1), we show that ψ(β(δ)) 6= 1.

(2.2) Suppose δ = [σu, σv] and ϕ(δ) 6= 1. Then none of ϕ(σu), ϕ(σv) is in Φ(D)
(i.e. they do not fix the biquadratic extension F2(

√
as2,

√
bt2)), and they act

differently on this biquadratic extension. Since ϕ(σu) (respectively ϕ(σv)) acts

the same way on elements in
√

Ḟ as ψ(β(σu)) (respectively ψ(β(σv)), we see
that ψ(β(δ)) 6= 1 ∈ G.

To conclude the proof, we point out that in all cases above, we first associated
G̃ with the given homomorphism ϕ:H2 −→ G and only then checked that
ϕ(δ) 6= 1 ∈ G is equivalent to ψ(β(δ)) 6= 1 ∈ G̃. ¤

We can now finish the proof of Proposition 9.12. Suppose γ 6= 1 ∈ Φ(H2).
Since H2 satisfies the subdirect product condition, there exists a surjective
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map ϕ:H2 −→ G with G ∼= D or C4 and with ϕ(γ) 6= 1 ∈ G. Recall that the
minimal set of generators (σi)i∈I may be chosen in such a way that for any open
set U of H2 there are at most finitely many σi’s outside U . (See for example
[Koc, Chapter 4].) Since kerϕ is open, we may thus assume, when working
with a given ϕ, that γ = γ0 × γ1, with γ0 =

∏

i∈I0
σ2

i × ∏

(u,v)∈K0
[σu, σv],

γ1 =
∏

i∈I1
σ2

i × ∏

(u,v)∈K1
[σu, σv], with the following properties. The sets

I0,K0 are finite. Any individual factor σ2
i , [σu, σv] of γ0 is not in kerϕ, while

any individual factor of γ1 is in kerϕ. We may assume that γ = γ0, and in
particular we have only a finite number n of terms δi’s with δi = σ2

i or [σu, σv].
The Frattini group Φ(G) ∼= C2 may be written {1, ǫ}, and each ϕ(δi) must
be ǫ, since it is not 1 by assumption. Since ϕ(γ) = ǫn 6= 1, n must be odd.

By Lemma 9.13, we know that there exists a group G̃ which is again D or
C4 and a homomorphism ψ:H1 −→ G̃, such that ϕ(δi) = ǫ 6= 1 is equivalent
to ψ(β(δi)) = ǫ 6= 1. Because n is odd, this shows that ψ(β(γ)) 6= 1, and
therefore β(γ) 6= 1. This shows the injectivity of β and finishes the proof of
Proposition 9.12. ¤

§10. Concluding Remarks

In this article we have considered all C(I)- and S(I)-orderings. These groups
correspond to W-groups for p-adic fields, for odd primes p. In particular, the
W-group Gp of Qp is C4 × C4 for p ≡ 1(4) and is C4 ⋊ C4 for p ≡ 3(4). It is
then natural to look for a characterization of G2-orderings, i.e. those orderings
corresponding to subgroups isomorphic to the W-group of Q2. This is currently
under investigation [MiSm4].
For the field Q, there is a unique C2-ordering, which is the unique ordering on
Q. In addition there is a one-to-one correspondence between C4×C4-orderings
on Q and primes p ≡ 1(4), and a one-to-one correspondence between C4 ⋊ C4-
orderings on Q and primes p ≡ 3(4). In each case the correspondence is given

by Tp = Q̇2
p ∩ Q. It is not hard to see that each such intersection gives rise to

an H-ordering of the appropriate type. To see that every such ordering may
be obtained in this way, one shows that each such ordering corresponds to a
certain valuation on Q, and the valuations on Q are well-known to be classified
by the primes. (See e.g. [End, Theorem 1.16].)
This observation then lends itself to an alternative perspective on the Hasse-
Minkowski Theorem, which states that a quadratic form defined over Q is
isotropic over Q if and only if it is isotropic over each Qp, including Q∞, the
real numbers. Using Hilbert’s reciprocity law, one can prove that a ternary
quadratic form is isotropic over Q if and only if it is isotropic over all but one
of these fields. Thus we see that a ternary quadratic form over Q is isotropic
if and only if it is isotropic with respect to all C2-, (C4 ×C4)-, and (C4 ⋊ C4)-
orderings on Q.
We point out that the case of a ternary quadratic form over Q, together with
the clever use of Dirichlet’s theorem on the existence of an infinite number
of primes in an arithmetic progression, where first term and increment are
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relatively prime, are the main ingredients of a proof of the full Hasse-Minkowski
theorem over Q. For a very nice exposition of the Hasse-Minkowski theorem
over Q, see [BS]. See also [L1, Chapter 6, Exercise 22].
It is easy however, to find a quaternary quadratic form ϕ over Q such that ϕ is
isotropic over all Qp, p is an odd prime, and Q∞ = R but ϕ is anisotropic over
Q2. For example ϕ = X2

1 + X2
2 − 7X2

3 − 31X2
4 and ψ = X2

1 + X2
2 + X2

3 − 7X2
4

are such forms.
In a subsequent paper we will present several applications of this theory to
different kinds of local-global principles for quadratic forms. In order to get a
sense of what can be done in this direction, we show below an example of a
simple situation in which our theory applies.
Consider a field F . Recall that a C(∅)-ordering T on F is an index 2 mul-

tiplicative subgroup of Ḟ /Ḟ 2 containing −1. Additively speaking, it is a hy-

perplane containing −1 in the F2-vector space Ḟ /Ḟ 2. If f ∈ Ḟ \ (Ḟ 2 ∪ −Ḟ 2)

and if V is any subspace of Ḟ /Ḟ 2 such that Ḟ /Ḟ 2 = Span{f,−1} ⊕ V , then
T := Span{−1}+V is a C(∅)-ordering not containing f . Then the next lemma
follows immediately.

Lemma 10.1. Let C0(F ) denote the set of C(∅)-orderings of F . Then C0(F ) =

∅ if and only if Ḟ = Ḟ 2 ∪ −Ḟ 2, and in general,

⋂

T∈C0(F )

T = Ḟ 2 ∪ −Ḟ 2.

To every C(∅)-ordering T we associate a fixed closure FT of F in the quadratic
closure of F . Denote by 〈〈a1, . . . , an〉〉 the Pfister form 〈1,−a1〉⊗. . .⊗〈1,−an〉.
(For the basic theory of Pfister forms see e.g. [L1, Chapter 10] or [Sc, Chapter
4]. Observe that both Lam and Scharlau denote by 〈〈a1, . . . , an〉〉 the Pfister
form 〈1, a1〉 ⊗ . . . ⊗ 〈1, an〉.) Then we have the following.

Proposition 10.2. Assume C0(F ) 6= ∅ and let ϕ : W (F ) −→
∏

T∈C0(F ) W (FT ) denote the map induced by the inclusions F −→ FT .

Then Ker ϕ = I2F +2W (F ) where IF denotes the fundamental ideal of W (F ).

Proof. For T ∈ C0(F ) we have Ḟ /T = {1̄, f̄} for a certain f ∈ Ḟ , and it is easy
to see that W (FT ) ∼= C2[ǫ]/ǫ2 and that the isomorphism, which we call π, is

defined by π(〈1̄〉) = 1, π(〈f̄〉) = 1 + ǫ. If a, b ∈ Ḟ then the possibilities for ā, b̄
are (1) ā = 1 or b̄ = 1, or (2) ā = b̄ = f̄ . In any case the image in W (FT ) of the
2-fold Pfister form 〈〈a, b〉〉 is in 2W (FT ) = 0, and we have shown the inclusion
I2F + 2W (F ) ⊆ Ker ϕ.
Take q ∈ Ker ϕ. Then q ∈ IF , because any odd-dimensional form is nonzero
in W (FT ). But it is known ([Pf, p. 122, Kor. to Satz 13]) that any element
q of IF may be written q = 〈〈u〉〉 + q1, with q1 ∈ I2F . Since q ∈ Ker ϕ, and
I2F ⊂ Ker ϕ, we deduce 〈〈u〉〉 ∈ Ker ϕ. The latter is equivalent to u ∈ T for

every T , meaning u ∈ Ḟ 2∪−Ḟ 2, or in other words 〈〈u〉〉 = 0 or 2 in W (F ). ¤
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Recall that a field F is said to have virtual cohomological dimension n, de-
noted vcd(F ) = n, if Hd(Gal(F (2))/F (

√
−1)), µ2) = 0 for d > n, and

Hn(Gal(F (2))/F (
√
−1)), µ2) 6= 0. (If we also considered the case of Fp, p an

odd prime, as coefficients of the cohomology groups of absolute Galois groups, it
would be more appropriate to say that F as above has a virtual 2-cohomological
dimension equal to n.) If vcd(F ) ≤ 1, then I2F is torsion-free. To see this, ob-
serve first that vcd(F ) ≤ 1 implies each binary quadratic form over F (

√
−1) is

universal. Then use [L1, Chapter 11, Theorem 1.8 and Exercise 20] to conclude
that I2F is torsion free. An example of a formally real field F with vcd(F ) = 1
is F = R(X). We have the following local-global principle:

Theorem 10.3. Let F be a field with vcd(F ) ≤ 1. Let D0(F ) (resp. C0(F ),
S0(F )) denote the set of usual orderings X(F ) (resp. C(∅)-orderings, S(∅)-
orderings) of F . Then

Λ:W (F ) −→
∏

T∈D0(F )∪C0(F )∪S0(F )

W (FT )

is injective. If F is formally real, we may drop S0(F ). (If not, we may drop
D0(F ).)

Proof. It is clear that a form q ∈ Ker Λ is in IF , and thus can be written
q = 〈〈a〉〉+ q2 with q2 ∈ I2F . By Pfister’s Local-Global Principle [L1, Chapter
8, §4], q is torsion and it is therefore the case for 〈〈a〉〉 and q2. (It is trivial
when D0(F ) = ∅, and if not, we use the fact that the signature q̂ of q is 0 and
that q̂2 ≡ 0(mod4).)
Since I2F is torsion-free, one has q2 = 0, and q = 〈〈a〉〉. Since q vanishes on

C0(F ), by Proposition 10.2 we have a ∈ Ḟ 2∪−Ḟ 2. (If C0(F ) = ∅, this condition
is trivially satisfied.) If the level s(F ) is 1, our proof is completed. Otherwise
D0(F ) ∪ S0(F ) 6= ∅, which shows that q 6= 〈〈−1〉〉. Thus q = 〈〈1〉〉 = 0. ¤

Remark 10.4. In this case we even have a strong Hasse principle, that is
a local-global principle for detecting whether a quadratic form is anisotropic
rather than just hyperbolic. Indeed, the fact that each ternary form over
F (

√
−1) is isotropic and [ELP, Theorem F] give us the strong Hasse principle

for forms of rank greater than or equal to 3. Then the use of C0(F ), S0(F ) and
D0(F ) provides the result for rank 2 forms.

Finally let us point out that our results are closely related to some ideas in
birational anabelian Grothendieck geometry. In particular there is a close
connection between ideas explored in this paper and the work of Bogomolov,
Tschinkel and Pop ([Bo], [BoT], [Po1], and [Po2]; see also Koenigsmann’s the-
sis [K1] and paper [K2]). Roughly speaking, they establish that for certain
fields K the isomorphy type of K, modulo purely inseparable extensions of K,
is functorially encoded in the maximal pro-p-quotient of the absolute Galois
group G̃ := Gal(K̄/K), char K 6= p. In fact Bogomolov in [Bo] and also Pop in
lectures at MSRI in the fall of 1999, considered smaller Galois groups than the
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Galois group defined above, namely the maximal pro-p-quotient of the group
G̃/[[G̃, G̃], G̃]. In this paper we consider p = 2, because of the connections
with quadratic forms. It is expected however that a substantial part of our
results can be extended to any prime p provided that the base field F contains
a primitive pth root of unity. We allow F to be any field with charF 6= 2,
and we are concerned with even smaller Galois groups than were considered by
Bogomolov and Pop. Of course in this more general setting we cannot obtain
as precise results as Bogomolov and Pop, but we do get some interesting infor-
mation about the additive properties of multiplicative subgroups of fields. It
would be very interesting to investigate further relationships between our work
and the quoted work of Bogomolov, Pop and Tschinkel.
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[Fr] A. Fröhlich, Orthogonal representations of Galois groups, Stiefel-
Whitney classes and Hasse-Witt invariants, J. Reine Angew. Math.
360 (1985), 84–123.
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