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Abstract. It is well-known that any bounded orbit of semilinear
parabolic equations of the form

ut = uxx + f(u, ux), x ∈ S1 = R/Z, t > 0,

converges to steady states or rotating waves (non-constant solutions
of the form U(x − ct)) under suitable conditions on f . Let S be the
set of steady states and rotating waves (up to shift). Introducing
new concepts — the clusters and the structure of S —, we clarify,
to a large extent, the heteroclinic connections within S; that is, we
study which u ∈ S and v ∈ S are connected heteroclinically and
which are not, under various conditions. We also show that ]S ≥
N +

∑N

j=1[[
√

(fu(rj , 0))+/(2π)]] where {rj}
N
j=1 is the set of the roots

of f( · , 0) and [[y]] denotes the largest integer that is strictly smaller
than y. In paticular, if the above equality holds or if f depends
only on u, the structure of S completely determines the heteroclinic
connections.
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1. Introduction

We will investigate the global dynamics of semilinear parabolic partial dif-
ferential equations on S1 = R/Z in X = C1(S1)

(1.1)

{

ut = uxx + f(u, ux), x ∈ S1,

u(x, 0) = u0(x), x ∈ S1.

The above problem is equivalent to a problem on the interval [0, 1] under the
periodic boundary conditions u(0, t) = u(1, t), ux(0, t) = ux(1, t) for t > 0.
Under suitable conditions on f , the solutions of (1.1) exist globally in t > 0.
Thus (1.1) defines a global semiflow Φt on X. We will call each solution of
(1.1) an orbit.

Angenent and Fiedler [AF88] and Matano [Ma88] have shown independently
that any solution of (1.1) approaches as t → ∞ to a solution (or a family of
solutions) of the form U(x− ct), where c is some real constant. Since U(x− ct)
is a solution to (1.1), the function U(ζ) should satisfy the following equation:

(1.2)
d2U

dζ2
+ c

dU

dζ
+ f

(

U,
dU

dζ

)

= 0, ζ ∈ S1,

where ζ = x−ct. Note that U(ζ+θ) is a solution to (1.2) for all θ ∈ S1 provided
that U(ζ) is a solution. If c 6= 0 and if U(ζ) is not a constant function, then
U(x − ct) is a time periodic solution called a rotating wave with speed c. If
c = 0 and if U(ζ) is not a constant function, then U(x) is called a standing

wave. Thus steady states consist of both standing waves and constant steady
states. By using these terms, the above assertion can be restated that any
solution of (1.1) approaches either rotating waves or steady states.

Under suitable conditions on f that will be specified later, (1.1) has the set
A ⊂ X called the global attractor. This set A is characterized as the maximal
compact invariant set and it attracts all the orbits of (1.1).

Matano and Nakamura [MN97] have shown that the global attractor A of
(1.1) consists of rotating waves, standing waves and connecting orbits that con-
nect these waves. Therefore, in order to understand the dynamical structure
of A it is important to know which pairs of waves are connected heteroclini-
cally and which pairs are not. The paper [AF88] proves the existence of some
connecting orbits for the problem (1.1) by using a topological method. We
are interested in finding out a sharper criterion for the existence of connecting
orbits.

In this paper we will give a precise lower bound for the number of mutually
distinct rotating waves and steady states (Corollary B). If the Morse index of
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every wave is odd or zero, then certain order relations among waves defined
below and the Morse index of all the waves determine which pairs of waves are
connected heteroclinically and which pairs are not (Theorem A). In particular,
if the actual number of the waves coincides with the lower bound given in
Corollary B, then the hypothesis of Theorem A is automatically fulfilled, hence
the heteroclinic connections are completely determined (Theorem C). In the
special case where f depends only on u, we can completely determine which
pairs of waves are connected heteroclinically and which are not (Theorems A
and A’), and we will present rather simple and explicit sufficient conditions on
f for the hypotheses of Theorem C to be satisfied (Proposition D).

Theorems A and C and Proposition D are proved by using the concepts of
clusters and the structure which we introduce in Section 2. Let S be the set
of all the waves. Roughly speaking, a cluster is a subset of S consisting of
waves sharing certain common features, and S is expressed as a disjoint union
of clusters. One can show that each cluster is a totally ordered set with respect
to the following order relation

u B v
def
⇐⇒ R(u) ⊃ R(v),

where R(u) denotes the range of u (see Definition 2.5 and Remark 2.6). We
then define the structure of S by associating each cluster with the sequence of
(modified) Morse indices of its elements. Lemmas E, F and F’ give fundamental
properties of this sequence of modified Morse indices.

Now, many authors study the global attractor of (1.1) for the case where
the boundary conditions in (1.1) is replaced by the Dirichlet or the Neumann
boundary conditions. We can see [BF89] for the Dirichlet boundary conditions,
[FR96] and [Wo02] for the Neumann boundary conditions and [MN97] for pe-
riodic boundary conditions. Here we recall the results of [FR96]. In the case of
the Neumann boundary conditions on [0, 1], the global attractor consists of the
steady states and the connecting orbits between these steady states, if all the
steady states are hyperbolic. Let {Uj(x)}n

j=1 (U1(0) < U2(0) < · · · < Un(0))
be the set of all the steady states. Roughly speaking, the permutation that re-
arranges the sequence (U1(1), U2(1), . . . , Un(1)) in increasing order determines
the Morse indices of all the steady states and the zero number of functions
Uj(x) − Uk(x) (1 ≤ j < k ≤ n) (In brief, the zero number of a function, which
is defined in Section 2, is the number of the roots of the function). Once these
Morse indices and the zero number of the difference of all the pairs among the
waves are obtained, then this information tells which steady states are con-
nected and which are not. Wolfrum [Wo02] has simplified the conditions of
whether steady states are connected heteroclinically or not using the concept
of k-adjacent. The concept of k-adjacent also uses the zero number of functions
Uj(x) − Uk(x) and the value of one of end points Uj(0) (or Uj(1)). In the
case of the periodic boundary conditions, we cannot use the method of [FR96]
because the end points do not exist on S1, therefore the Morse indices and the
zero number of the difference of the pairs cannot be characterized in terms of
permutation. Instead the maximum value, the minimum value and the mode of
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the waves play an important role in determining the Morse index of the waves
and the zero number of the difference of the pairs, thereby giving the global
picture of their heteroclinic connection.

This paper is organized as follows: In Section 2 we introduce some notation
and definitions and state our main results (Theorems A A’ and C, Corollary
B, Proposition D and Lemmas E, F and F’). Roughly speaking, Corollary B
gives a lower bound for the number of the waves in terms of the derivatives of
f , and Lemma F is concerned with the modified Morse indices of waves and
the structure of clusters. Theorems A, A’ and C and Proposition D determine
the heteroclinic connections among waves under various conditions. In Section
3 we will prove Lemma 3.1 which is the key lemma of this paper. In Section
4 we will show that each cluster is a totally ordered set in our order relation.
We state the main results of [AF88]. We will prove Theorem C by using the
results. In Section 5 we will investigate a sequence of modified Morse indices of
waves in each cluster and prove Lemmas E and F and Corollary B. In Section
6 we will prove Theorem A, using Lemma F and main results of [AF88]. In
Section 7 we consider the case where f depends only on u. We will prove
Theorem A’ and Lemma F’. In Section 8 we prove Proposition D, which is
a special case of Theorems A and A’. We will give rather simple and explicit
sufficient conditions on f under which all the clusters are monotone and simple,
the meaning of which will be defined in Section 2. The monotonicity and
simplicity of clusters automatically determine the Morse index of all the waves
and the zero number of the difference of the pairs among the waves, hence their
heteroclinic connections.

Acknowledgment. The author would like to thank Professor H.Matano for
his valuable comments and many fruitful discussions, and thank the referee
for his/her useful suggestions. He would also like to express his gratitude to
Professor B. Fiedler, whose early work has given the author much inspiration.

2. Notation and Main Theorems

In this paper the nonlinear term f satisfies the following assumptions:

(A1) f: R × R → R is a C3-function.
(A2) There exists a constant L1 > 0 such that u ·f(u, 0) < 0 for |u| > L1,

and the function f( · , 0) has finitely many real roots.
(A3) ( i ) For any solution u(x, t) to (1.1),

||u( · , t)||C1(S1) := ||u( · , t)||C0(S1) + ||ux( · , t)||C0(S1) remains
bounded as t → ∞.

(ii) There exists a constant L2 > 0 such that

||U(ζ)||C1(R) := ||U(ζ)||C0(R) + ||Uζ(ζ)||C0(R) < L2
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for any periodic solution or constant solution U(ζ) to the following
equation:

(2.1)
d2U

dζ2
+ c

dU

dζ
+ f

(

U,
dU

dζ

)

= 0, ζ ∈ R,

where c is an arbitrary real number.

The assumption (A3) (ii) will be needed in Section 3, where we study the bifu-
cation structure of rotating waves and constant steady states. The assumption
(A3) is satisfied if the following condition (A3)′ holds:

(A3)′ For any constant M1 > 0, there exists a constant L3 > 0 such that
fu(u, p) ≤ 0 for |u| < M1 and |p| > L3.

From (A1), (A2) and (A3) it follows that (1.1) defines a global semiflow Φt

on X that is dissipative. Here a semiflow Φt on X is called dissipative if there
exists a ball B ⊂ X which satisfies the following: For any u0 ∈ X, there exists
t0 > 0 such that Φt(u0) ∈ B for all t ≥ t0 (see [Ma76]).

Hereafter, we assume (A1)+(A2)+(A3)′ throughout the present paper.
By the standard parabolic estimates, the mapping Φt is a compact mapping

for every t > 0. This, together with the dissipativity of Φt, implies that there
is the (nonempty) maximal compact invariant set A ⊂ X. It is well-known
from the general theory of dissipative dynamical systems that A is connected
and attracts all the orbits of (1.1). This set A is called the global attractor.
The Hausdorff dimension of A of (1.1) is 2 [M/2] + 1 where M is the maximal
generalized Morse index of the steady states or the rotating waves (see [MN97]).

Let us introduce some definitions and notation. In this paper we denote by
S the set of steady states and rotating waves of (1.1). Note that if U(x− ct) is
a rotating wave (or a steady state in the case where c = 0), then U(x− ct + θ)
is also a rotating wave (or a steady state) for any θ ∈ S1. Hereafter we identify
U( · ) and U( · + θ). In other words, we will understand S to be the set of
equivalence classes, each of which is expressed in the form

Γ(U) := {U(x − ct + θ)| θ ∈ S1},

where U(ζ) is a solution of (1.2). However in order to simplify notation, we
write U(x − ct) ∈ S to mean [U(x − ct)] ∈ S, where [U(x − ct)] denotes the
equivalence class to which U(x− ct) belongs. Therefore u(x, t) ∈ S shall mean
that u(x, t) = U(x − ct + θ) for some θ ∈ S1 where U(ζ) is a solution to (1.2).
Furthermore, by a heteroclinic connection from u(x, t)(:= U(x − ct)) ∈ S to
v(x, t)(:= V (x − c̃t)) ∈ S we mean that there is an orbit w(x, t) of (1.1) such
that

inf
θ1∈S1

‖w(x, t) − U(x − ct + θ1)‖L∞(S1) → 0 (t → −∞),

inf
θ2∈S1

‖w(x, t) − V (x − c̃t + θ2)‖L∞(S1) → 0 (t → +∞).
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In particular, if U and V are ‘hyperbolic’ (whose meaning is defined below in
this section), then a heteroclinic connection from u to v automatically implies
the following stronger convergence:

‖w(x, t) − U(x − ct + θ1)‖L∞(S1) → 0 (t → −∞) for some θ1 ∈ S1,

‖w(x, t) − V (x − c̃t + θ2)‖L∞(S1) → 0 (t → +∞) for some θ2 ∈ S1.

The number of the roots of f( · , 0) is finite owing to (A2). Let {rj}
N
j=1

(r1 < r2 < · · · < rN ) be the roots of f( · , 0) throughout the present paper. All
the constant steady states are u(x, t) = rj (j ∈ {1, 2, . . . , N}).

Remark 2.1. If fu(rj , 0) 6= 0 for all j ∈ {1, 2, . . . , N}, then N is odd because of
(A2). Moreover u(x, t) = rj (j ∈ {1, 3, 5, . . . , N}) is a stable constant steady
state, while u(x, t) = rj (j ∈ {2, 4, 6, . . . , N−1}) is an unstable constant steady
state (see Remark 2.8 below).

The zero number is a powerful tool to analyze nonlinear single reaction-
diffusion equations in one space dimension:

z(w) := ]
{

x| w(x) = 0, x ∈ S1
}

for w ∈ X,

where ]Y denotes the number of elements of the set Y . It is well-known that
z(w( · , t)) is a non-increasing function of t if w is a solution of a one-dimensional
linear parabolic equation (see [Ma82], [Ni62] and [St36]). Furthermore, the
following proposition holds:

Proposition 2.2 (Angenent and Fiedler [AF88] and Angenent [An88]). Let

a(x, t) and b(x, t) be C2-functions in (x, t) ∈ S1×(0, τ) (τ > 0). Let w(x, t) ∈ X
be a solution to the following equations:

wt = wxx + a(x, t)wx + b(x, t)w, (x, t) ∈ S1×(0, τ).

Then z(w( · , t)) is finite for every t ∈ (0, τ) and is non-increasing in t. More-

over z(w( · , t)) drops at each t = t0 when the function x 7−→ w(x, t0) has a

multiple zero.

Remark 2.3. Angenent and Fiedler [AF88] have proved Proposition 2.2 in the
case where a(x, t) and b(x, t) are real analytic functions. Angenent [An88] has
relaxed this analyticity assumption.

Using the moving frame with speed c, we can rewrite (1.1) as follows:

(2.2) ut = uζζ + cuζ + f(u, uζ),

where ζ = x − ct. Let U(x − ct) ∈ S. The wave U(ζ)(= U(x − ct)) is a steady
state of (2.2). In order to analyze the stability of U(ζ), we define the linearized
operator of (2.2) at U(ζ) by

L
U
w = wζζ + cwζ + fu(U,Uζ)w + fp(U,Uζ)wζ , ζ ∈ S1,

provided that U is a non-constant steady state of (2.2). Here fp denotes the
derivative of f with respect to the second variable. If U is a constant steady
state of (2.2), then we define the linearized operator by

L
U
w = wζζ + fu(U, 0)w + fp(U, 0)wζ , ζ ∈ S1.
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By the standard spectral theory for ordinary differential operators of the second
order, the spectrum of L

U
consists of eigenvalues of finite multiplicity and has

no accumulation point except ∞. Let {λn}
∞
n=0 be the eigenvalues of L

U
that

are repeated according to their algebraic multiplicity. We define the Morse
index of U ∈ S by i(U) := ]{λn| Re(λn) > 0}. By a Sturm-Liouville type
theorem (see [AF88] and [MN97]), we have

Re(λ0) > Re(λ1) ≥ Re(λ2) > Re(λ3) ≥ · · · ≥ Re(λ2j) > Re(λ2j+1) ≥ · · · .

Moreover if U is a non-constant steady state, we can see

(2.3) i(U) ∈ {z(Uζ), z(Uζ) − 1}

(see [AF88] and [MN97]). Note that z(Uζ) is even and z(Uζ)−1 is odd since Uζ

is a periodic function of ζ. We can see the Morse index of the constant steady
states by easy calculations (see Remark 2.8 below).

Next we define the hyperbolicity of U ∈ S. Because of translation equivari-
ance of the equation (1.1), each rotating wave and each non-constant steady
state form a one-dimensional manifold that is homeomorphic to S1. This equiv-
ariance has to be taken into account when we define the hyperbolicity of those
solutions.

Definition 2.4.

( i ) Let u be a (non-constant) rotating wave (c 6= 0) or a non-constant

steady state (c = 0). We say u is hyperbolic if 0 is the only eigenvalue

of Lu on the imaginary axis and if 0 is a simple eigenvalue.

(ii) Let u be a constant steady state (i.e. u(x, t) = rj). We say u is hyper-

bolic if there is no eigenvalue of Lu on the imaginary axis.

Definition 2.5. Let u(x, t) be a solution of (1.1). We define

R(u( · , t)) :=

{

y ∈ R

∣

∣

∣

∣

min
x∈S1

u(x, t) ≤ y ≤ max
x∈S1

u(x, t)

}

.

Remark 2.6. If u ∈ S, then R(u( · , t)) is independent of t. Hereafter we simply
write R(u) if u ∈ S.

Definition 2.7. For u ∈ S, we define its “modified Morse index” by

I(u) :=











z(ux) if u is not a constant steady state;

i(u) + 1 if u is an unstable constant steady state;

0 if u is a stable constant steady state.

Remark 2.8. One can calculate the Morse index of the constant steady states.
Let u be a constant steady state (i.e. u(x) = rj). Then

i(u) =











2

[

√

fu(rj , 0)

2π

]

+ 1 if fu(rj , 0) > 0;

0 if fu(rj , 0) ≤ 0,
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where [y] denotes the largest integer not exceeding y. If all the constant steady

states are hyperbolic, then i(u) = 2[
√

fu(rj , 0)/(2π)]+1 for j ∈ {2, 4, 6, . . . , N−
1} and i(u) = 0 for j ∈ {1, 3, 5, . . . , N}. Thus rj (j ∈ {1, 3, 5, . . . , N}) is stable
and rj (j ∈ {2, 4, 6, . . . , N − 1}) is unstable.

Note that I(u) is always a non-negative even integer. From (2.3) it follows
that

i(u) ≤ I(u) ≤ i(u) + 1.

Therefore I(u) is a good approximation of the real Morse index i(u). Clearly,
I(u) = i(u) if and only if i(u) is even.

While the modified Morse index I(u) is easily computable from Definition 2.7
and Remark 2.8, the real Morse index i(u) is not always easily to determine.
This is the reason why we introduce the notion modified Morse index.

Now we can define the cluster.

Definition 2.9. Let 1 ≤ k ≤ l ≤ N . We define the clusters by

Ckl := {u ∈ S| Skl ⊂ R(u), ({r1, r2, . . . , rN}\Skl) ∩ R(u) = ∅} ,

where Skl := {rk, rk+1, . . . , rl}.

It is not difficult to see that

Ckl ∩ Ck′l′ = ∅ if (k, l) 6= (k′, l′),

S =
⋃

1≤k≤l≤N

Ckl.

Furthermore one can see that, if k or l is odd, then

Ckk = {rk} and Ckl = ∅ (k 6= l).

The concept of clusters will be useful in the phase plane analysis as we will see
in Section 6.

Definition 2.10. Let Ckl be a cluster. We define

R(Ckl) :=
⋃

u∈Ckl

R(u).

Definition 2.11. Let u, v ∈ S. We define the order relation of S as follows:

u B v
def
⇐⇒ R(u) ⊃ R(v).

Let u, v, w ∈ S. If u B v, then we say v is smaller than u in the order B, and
u is bigger than v in the order B. If there is no w such that u B w B v, then
we say that u is the smallest wave in the order B that satisfies u B v.

We have either R(u) ⊃ R(v) or R(v) ⊃ R(u) provided that R(u)∩R(v) 6= ∅.
This will be shown in Corollary 4.2 in Section 4. Consequently we have either
u B v or v B u if u, v ∈ Ckl. Thus Ckl is a totally ordered set. Hereafter, we
number the elements of each Ckl =

{

ukl
1 , ukl

2 , . . . , ukl
mkl

}

(with mkl := ]Ckl) in
such a way that

ukl
1 C ukl

2 C · · · C ukl
mkl

.
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k
l

2

3

321

0

-1

u

x
1

1

(0)

(0)

(8,6,4,2)

O O

O

1

Figure 1. Wave profiles (left) and the structure of S (right)
for equation (2.4). The three horizontal lines indicate constant
steady states.

We call Ckl a monotone cluster if I(ukl
1 ) > I(ukl

2 ) > · · · > I(ukl
mkl

). The cluster

Ckk is called a simple cluster. We call Ckk a trivial cluster provided that
]Ckk = 1. Note that Ckk always contains the constant steady state rk, but it
may contain other elements under certain circumstances.

Next we define an order relation among clusters in S.

Definition 2.12. Let Ck1l1 , Ck2l2 be clusters. We define the order relation B

as follows:

Ck1l1 B Ck2l2

def
⇐⇒ k1 ≤ k2 and l1 ≥ l2.

Let Ck1l1 , Ck2l2 be clusters. If Ck1l1 B Ck2l2 , then we say Ck2l2 is smaller
than Ck1l1 in the order B.

We define the structure of S.

Definition 2.13. Let Ckl :=
{

ukl
1 , ukl

2 , . . . , ukl
mkl

}

(with mkl := ]Ckl) be a

cluster. We call

Jkl := (I(ukl
1 ), I(ukl

2 ), . . . , I(ukl
mkl

))

the sequence of modified Morse indices. We call

(Jkl)1≤k≤l≤N

the structure of S.
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Example 2.14. Let us investigate the structure of the waves of the following
equation:

(2.4) ut = uxx + 500(u − u3), x ∈ S1.

Clearly, there are three constant steady states. Let r1 = 1, r2 = 0 and r3 = −1.
The nonlinear term depends only on u. Thus all the waves are standing waves
(see Remark 2.18). A simple calculation reveals that the nonlinear term satisfies
the hypothesis of Proposition D below. Thus we can see that all the clusters are
simple and monotone, using Proposition D. Since all the clusters are simple,
there are precisely three clusters: C11, C22 and C33 (where r1 ∈ C11, r2 ∈ C22

and r3 ∈ C33). We can see that C11 and C33 are trivial clusters, using (i) of
Lemma F. Furthermore r1 and r3 are stable (see Remark 2.1) and I(r1) =
I(r3) = 0 (see Definition 2.7 and Remark 2.8). The cluster C22 is monotone.
Thus Theorem C below tells us that the derivative of the nonlinear term at
u = r2 gives ]C22 = 4, because

3 <

√

d
du

{500(u − u3)}
∣

∣

u=r2

2π
< 4.

Therefore C22 has three non-constant standing waves and one constant steady
state. The profile of the waves are as shown in Figure 1. We denote by u22

1 the
constant steady state in C22 and by u22

2 , u22
3 and u22

4 the non-constant standing
waves. We can assume that u22

1 C u22
2 C u22

3 C u22
4 , because all the clusters

are totally ordered sets. Since C22 is monotone, we can see by (ii) and (v) of
Lemma F that I(u22

1 ) = 8, I(u22
2 ) = 6, I(u22

3 ) = 4 and I(u22
4 ) = 2. Therefore

the structure of S is as shown in the table in Figure 1.

We introduce some more notation to state main theorems. Let u ∈ S and let
C(u) be the cluster containing u. Define

u+ := inf{w| w > u, w is a constant steady state},

u− := sup{w| w < u, w is a constant steady state},

and for each integer n ≥ 0, define un to be the smallest wave in the order B

that satisfies the following: I(un) = 2n, un B u, and un ∈ C(u). That is,

un = minB{v ∈ C(u)| v B u, I(v) = 2n}.

Lemma F below tells us that such un exists for n ∈ {1, 2, . . . , [i(u)/2]}.
Roughly speaking u+ is the constant steady state that is just above u in the

usual order, and u− is the constant steady state that is just below u in the
usual order.

Theorem A. Suppose that all the elements of S are hyperbolic. Then

( i ) If the wave u is not a stable constant steady state, then u connects to

u+, u− and un for all n ∈ {1, 2, . . . , I(u)/2 − 1}.
(ii) Furthermore if i(u) is odd, then u does not connect to any other waves.

Therefore the structure of S determines completely which u ∈ S and

v ∈ S are connected and which are not, if the Morse index of every

wave is odd or zero.
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Remark 2.15. The statement (i) of Theorem A is obtained by Angenent-Fiedler
[AF88] (see Proposition 6.3 of the present paper).

Theorem A’. Suppose that f is dependent only on u, say f = g(u), and that

all the waves are hyperbolic. Let u be a wave whose Morse index i(u) is even.

Then u connects only to u+, u−, un (n ∈ {1, 2, · · · , I(u)/2}), and every v ∈ S
that satisfies the following: v C u, I(v) ≤ I(u), and there is no wave w such

that u B w B v, I(u) = I(w), and u 6= w 6= v.

Remark 2.16. The structure of S tells us the modified Morse index of every
wave. In the case where f depends only on u, we can know the (real) Morse
index of every wave by using Lemmas F and F’ stated below. Thus we see by
Theorems A and A’ that the heteroclinic connections are determined by the
structure of S provided that f depends only on u.

Corollary B.

]S ≥ N +

N
∑

j=1









√

(fu(rj , 0))+

2π







 ,

where [[y]] denotes the largest integer that is strictly smaller than y (i.e. [[y]] =
−[−y] − 1) and (y)+ := max{y, 0}.

Remark 2.17. The hyperbolicity of the solutions is not assumed in Corollary
B.

Theorem C. Suppose that all u ∈ S are hyperbolic. Then the following two

conditions are equivalent:

(a)

(2.5) ]S = N +
N

∑

j=1









√

(fu(rj , 0))+

2π







 ,

where (y)+ := max{y, 0}.
(b) all the clusters are simple and monotone.

Moreover, under these conditions, i(u) = I(u) − 1 = (z(ux) − 1) is odd for

any non-constant u ∈ S. Thus the hypotheses of Theorem A are satisfied.

The conclusions of Theorem A hold. Specifically the structure of S is uniquely

determined by the sequence [[
√

(fu(rj , 0))+/(2π)]] (j = 1, 2, . . . , N). The global

picture of heteroclinic connections in S is also uniquely determined as shown

in Figure 9.

In the case where f is dependent only on u, say f = g(u), we introduce other
two assumptions (A4) and (A5)j below. Let

(2.6) G(u) =

∫ u

0

g(r)dr.
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(A4) There exists an odd constant k such that G(r1) ≤ G(r3) ≤ · · · ≤
G(rk) ≥ G(rk+2) ≥ · · · ≥ G(rN ), G(r2) ≤ G(r4) ≤ · · · ≤ G(rk−1) and
G(rk+1) ≥ G(rk+3) ≥ · · · ≥ G(rN−1).

If k = 1 or k = n, then the second or the third inequalities in (A4) are not
assumed respectively. We will see in Section 8 that Ckl (k 6= l) is empty
provided that (A4) holds. Thus every cluster is simple (see Figures 11 and 12).
We impose the other assumption: For j ∈ {2, 4, 6, . . . , N − 1},

(A5)j g(u)/|u| is decreasing for u ∈ (rj−1, rj) ∪ (rj , rj+1).

The condition (A5)j guarantees that Cjj is monotone (Lemma 8.1). Hence we
obtain the following:

Proposition D. Suppose that f is dependent only on u, say f = g(u), and

that all the waves are hyperbolic. If (A4) holds and if (A5)j holds for all even

j ∈ {2, 4, 6, . . . , N − 1}, then the hypotheses of Theorem C are satisfied. Thus

the conclusions of Theorems A, A’ and C hold.

Remark 2.18. The equation (1.1) does not have rotating waves in the case where
the nonlinear term f depends only on u. For the details, see the beginning of
Section 7.

The next lemma is concerned with the structure of each cluster.

Lemma E (Cluster lemma 1). Suppose that all u ∈ S are hyperbolic. Let

1 ≤ k ≤ l ≤ N . Let Ckl = {ukl
1 , ukl

2 , . . . , ukl
mkl

} (mkl = ]Ckl) be a cluster and

let Jkl = (I(ukl
1 ), I(ukl

2 ), . . . , I(ukl
mkl

)) be the corresponding sequence of modified

Morse indices. Then the following hold:

( i ) If k or l is odd and if k 6= l, then Ckl = ∅.
( ii ) If k is odd, then ]Jkk = 1. Thus Ckk is a trivial cluster. Moreover

I(ukk
1 ) = 0.

Lemma F (Cluster lemma 2). Under the same hypotheses of Lemma E, the

following hold:

( i ) Every I(u) is an even integer, and I(ukl
n ) − I(ukl

n+1) is equal to −2, 0
or 2 for all n ∈ {1, 2, . . . ,mkl − 1}.

( ii ) If I(ukl
n1−1) < I(ukl

n1
) = · · · = I(ukl

n2
) < I(ukl

n2+1) (2 ≤ n1 ≤ n2 ≤

mkl − 1) or if I(ukl
n1−1) > I(ukl

n1
) = · · · = I(ukl

n2
) > I(ukl

n2+1) (2 ≤ n1 ≤
n2 ≤ mkl − 1), then n2 − n1 is even.

( iii ) If I(ukl
n1−1) < I(ukl

n1
) = · · · = I(ukl

n2
) > I(ukl

n2+1) (2 ≤ n1 ≤ n2 ≤

mkl − 1) or if I(ukl
n1−1) > I(ukl

n1
) = · · · = I(ukl

n2
) < I(ukl

n2+1) (2 ≤ n1 ≤
n2 ≤ mkl − 1), then n2 − n1 is odd.

( iv ) If Ckl is not trivial, that is, if ]Jkl ≥ 2, then I(ukl
mkl

) = 2.

( v ) If k 6= l, and if Ckl 6= ∅, then I(ukl
1 ) = 2.
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2

4

6

8

h(ξ)

η

Amplitude

large0

Figure 2. An example of h(ξ) mentioned in Remark 2.19.
In this case, the sequence of modified Morse indices is
(6, 4, 4, 6, 8, 8, 6, 4, 2, 2, 4, 4, 2).

Remark 2.19. In view of Lemma F, the sequence of modified Morse indices
Jkk =

(

I(ukk
j )

)mkk

j=1
may better be illustrated as the intersection points between

the graph of a function η = h(ξ) where 1/h(ξ) is the time-map and the hori-
zontal lines η = 2, 4, 6, 8, · · · (see Figure 2). The time-map is used in Section
3 (see the definition of T (a) in the statement of Lemma 3.1). This function h
satisfies that h′(ξ) 6= 0 whenever h(ξ) is an even integer, and that h(ξ) = 0 if
ξ is large.

Lemma F’ Suppose that f is dependent only on u, say f = g(u), and that

all the waves are hyperbolic. Let {ukl
b1

, ukl
b2

, . . . , ukl
bn
} (b1 < b2 < · · · < bn)

be the non-constant waves in a cluster Ckl whose modified Morse indices are

the same number (i.e. I(ukl
b1

) = I(ukl
b2

) = · · · = I(ukl
bn

)). Then i(ukl
bn−2j

) =

I(ukl
bn−2j

) − 1 (j ∈ {0, 1, . . . , [(n − 1)/2]}) and i(ukl
bn−2j−1

) = I(ukl
bn−2j−1

) (j ∈

{0, 1, . . . , [(n − 2)/2]}).

3. Proof of the Key Lemma

We will also prove three lemmas which are used in the proof of main theorems.
One of these lemmas (Lemma 3.1) is the key to the present paper.

In this section we assume that all the waves are hyperbolic in order to simplify
notation. The number of all the constant steady states N is odd owing to the
hyperbolicity and (A2) (see Remark 2.1). Using (A2), we can see that the
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r r r2k-1 2k 2k+1a

U(τ(a,c),a,c)

U

V

Figure 3. The picture denotes the arc that starts from the
point (a, 0) at the time 0 and arrives at a point (b, 0) (r2k−1 <
b < r2k) at a certain positive time. The U -coordinate of the
arrival point is denoted by U(τ(a, c), a, c) whose meaning is
specified below. The arc deforms with respect to a and c. If
we select suitable a and c, then the arrival point coincides with
the starting point (i.e. U(τ(a, c), a, c) = a), which means the
arc is a closed orbit.

following hold:

fu(r2k, 0) < 0 if k ∈ {1, 2, . . . , [N/2]};

fu(r2k−1, 0) > 0 if k ∈ {1, 2, . . . , [N/2] + 1}.

Let us introduce some notation. Let u(x, t) = U(ζ) ∈ S. The wave U(ζ)
should satisfy the following equation and periodic boundary conditions:

(3.1)

{

Uζζ + cUζ + f (U,Uζ) = 0, ζ ∈ (0, 1),

U(0) = U(1), Uζ(0) = Uζ(1).

We transform the equation of (3.1) into the normal form:

(3.2)















dU

dζ
= V

dV

dζ
= −cV − f(U, V ).

Let U -axis and V -axis be the horizontal and vertical axes of the phase plane
respectively. First, we note that no closed orbit appears near the points
(r2k−1, 0) (k ∈ {1, 2, . . . , [N/2] + 1}), since there points are saddle points. In
what follows we will construct closed orbits in a neighborhood of the points
(r2k, 0) (k ∈ {1, 2, . . . , [N/2]}) on the phase plane.

In order to explain our idea suppose that there is an orbit as shown in Figure
3. This orbit starts from the point (a, 0), passes the segment (r2k, r2k+1)×{0},
and arrives at a point on the segement (r2k−1, r2k) × {0}.

Let (b, 0) be the arrival point. As we will see in the proof of Lemma 3.1, the
value of b depends continuously on a and c as far as the orbit remains within the
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band domain r2k−1 < U < r2k+1. Hereafter by the arc corresponding to (a, c)
we shall mean the portion of the orbit of (3.2) starting at (a, 0) and ending at
a point on the segment (r2k−1, r2k) × {0} as shown in Figure 3.

Let τ(a, c) be the arrival time of this arc; that is τ(a, c) is the smallest positive
time τ such that U(τ(a, c), a, c) ∈ (r2k−1, r2k) and Uζ(τ(a, c), a, c) = 0 where
U(ζ, a, c) denotes the solution of (3.2) with initial data U(0) = a, V (0) = 0,
and Uζ denotes the derivative of U with respect to the first variable. Clearly
the arc forms a closed orbit of (3.2) if and only if

(3.3) a = U(τ(a, c), a, c).

Furthermore this closed orbit represents a solution of (3.1) if and only if

τ(a, c) =
1

n

for some n ∈ {1, 2, . . .}.
The following lemma shows that there is a continuous family of closed orbits

corresponding to varying choice of a and c.

Lemma 3.1. For each r2k (k = 1, 2, . . . , [N/2]), there exists a constant a with

r2k−1 ≤ a < r2k and a function c = c(a) ∈ C1((a, r2k)) such that the following

hold.

( i ) For each a ∈ (a, r2k), the relation (3.3) holds if and only if c = c(a).
(ii) Let T (a) be the period of the closed orbit obtained in ( i ), that is, T (a) =

τ(a, c(a)). Then

lim
a→a

T (a) = ∞, lim
a→r2k

T (a) =
2π

√

fu(r2k, 0)
.

Proof. We begin with the outline of the proof. The proof consists of three steps.
In Step 1 we will show by using the bifurcation theory that there exists a family
of closed orbits of (3.2) near the point (r2k, 0). Thus c(a) can be defined near
a = r2k. In Step 2 we will show that whenever (a0, c0) satisfies (3.3), a C1-
function c(a) can be defined in a neighborhood of a0 such that c(a0) = c0. We
will use the implicit function theorem to show that. In Step 3 we will expand the
domain of the function c(a). We will define the infimum a such that c(a) can be

defined on the interval (a, r2k). We will prove lima→r2k
T (a) = 2π/

√

fu(r2k, 0)
where T (a) is the period of the closed orbit corresponding to (a, c(a)). We will
also prove lima→a T (a) = ∞.

Step 1 : We linearize (3.2) at the point (r2k, 0):

(3.4)
d

dζ

(

U
V

)

=

(

0 1
−fu(r2k, 0) −c − fp(r2k, 0)

)(

U
V

)

,

where fu and fp indicate derivatives of f with respect to the first and the
second variable respectively. Let ν± be the eigenvalues of the above matrix.
Then we have

Re(ν±) = −
c + fp(r2k, 0)

2
, Im(ν±) = ±

√

−fu(r2k, 0) +

(

c + fp(r2k, 0)

2

)2

.
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We regard c as a parameter. If c = −fp(r2k, 0), then the matrix is non-singular,
has the pair of simple pure imaginary eigenvalues ±iµ (µ > 0), and has no
eigenvalue of the form ±ikµ (k ∈ N, k 6= 1). Moreover we can easily see that

dRe(ν±)

dc

∣

∣

∣

∣

c=−fp(r2k,0)

= −
1

2
< 0.

Therefore, (see for example Theorem 2.6 of [AP93] (Section 7, page 144)) a Hopf
bifurcation occurs at c = −fp(r2k, 0). Thus there are closed orbits encircling
the point (r2k, 0) on the phase plane that have any small amplitude.

Step 2 : From Step 1, we assume that there is a closed orbit corresponding
to (a0, c0) on the phase plane. The continuity of the arc with respect to a and
c guarantees that there is a constant ε > 0 such that the arc corresponding to
(a, c) exists as shown in Figure 3 provided that |a − a0| < ε and |c − c0| < ε.
Since the solution U(ζ) to (3.2) with initial data U(0) = a, Uζ(0) = 0 depends
on a and c continuously, we write U = U(ζ, a, c). Let F ( · , · ) be a function as
follows:

(3.5) F (a, c) := U(τ(a, c), a, c) − a,

where τ(a, c) which is defined in the first part of Section 3 is the arrival time
of the arc corresponding to (a, c). From (3.3), the arc corresponding to (a, c)
is a closed orbit if and only if F (a, c) = 0. We will prove that there exists a
C1-function c(a) in a neighborhood of a0 that satisfies F (a, c(a)) = 0. First
we see by the assumption that F (a0, c0) = 0. Second we see that U(ζ, a, c)
is a C2-function of ζ, a and c by the general theory of ordinary differential
equations. Using the equation

Uζ(τ(a + ∆a, c), a + ∆a, c) − Uζ(τ(a, c), a, c) = 0,

where ∆a is a small number and the definition of the derivative, we can show
that τ(a, c) is of class C1. Thus F (a, c) is of class C1. Third we will show that
Fc(a0, c0) 6= 0 where

Fc(a, c) = Uζ(τ(a, c), a, c)τc(a, c) + Uc(τ(a, c), a, c).

Since Uζ(τ(a0, c0), a0, c0) = 0, we obtain

Fc(a0, c0) = Uc(τ(a0, c0), a0, c0).

We will prove in Lemma 3.2 below that

(3.6) Uc(τ(a0, c0), a0, c0) 6= 0.

Now we assume that Lemma 3.2 holds. Then the implicit function theorem
says that there is a C1-function c(a) that satisfies F (a, c(a)) = 0 for a ∈
(a0 − ε̃, a0 + ε̃) where ε̃ (> 0) is so small that |c0 − c(a)| < ε and |a0 − a| < ε
for a ∈ (a0 − ε̃, a0 + ε̃).

We will see in Lemma 3.2 that U(τ(a, c), a, c) is non-decreasing in c and
(3.6) holds. Thus U(τ(a, c), a, c) is increasing in c. For each fixed a, if there
exists c satisfying (3.3), then c is uniquely determined. The function c(a) is
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2k-1
2k

2k+1
V=

V=

−δ

δ

c>0: large -c>0: large

Figure 4. The phase planes of (3.2) for two extreme cases.
Circles in each picture are the closed orbit corresponding to
(a0, c0). If c is large, then the arc corresponding to (a, c) (a <
a0) cannot pass the segment (r2k−1, r2k+1)×{−δ} and the ar-
rival point is in the inside of the closed orbit (the left picture).
If −c is large, then the arc corresponding to (a, c) does not
pass the segment (r2k, r2k+1) × {0} (the right picture).

uniquely determined. This means that there is no closed orbit corresponding
to (a0, c1) (c1 6= c0) when there is a closed orbit corresponding to (a0, c0).

Step 3 : Hereafter we suppose that there exists the closed orbit corresponding
to (a0, c0). We define a as follows:

a := inf{a ∈ R| c = c(ξ) can be defined for all ξ ∈ (a, a0)}.

Note that there is a closed orbit corresponding to (a, c(a)) for all a ∈ (a, a0).
We will show by contradiction that the family of closed orbit corresponding
to (a, c(a)) (a ∈ (a, a0)) is not uniformly away from two points (r2k−1, 0) and
(r2k+1, 0). We assume that the family is uniformly away from two points.

We will show that there exists a constant c∗ > 0 such that the following
holds: if |c| > c∗, then a closed orbit starting from the point (a, 0) (a < a0)
does not exists.

For any δ > 0, there is a constant c (> 0) such that −cV − f(U, V ) > 0 on
the segment (r2k−1, r2k+1) × {−δ}. The segment should intersect the closed
orbit corresponding to (a0, c0) provided that δ is small. If there is a closed
orbit corresponding to (a, c) (a < a0), then it should intersect the other closed
orbit and this contradicts to Lemma 4.1. Similarly, if −c (> 0) is large, then
there should not exist closed orbits corresponding to (a, c) (a < a0).

If the closed orbit corresponding to (a, c) (a < a0) exists, then c = c(a) is
bounded.

Let {am}∞m=1 be a sequence that satisfies the following:

am > a, am → a as m → ∞.

Documenta Mathematica 9 (2004) 435–469



452 Yasuhito Miyamoto

Since c(a) is bounded, then there exists a constant c∗ such that the following
holds:

c(am) → c∗ as m → ∞.

We consider the arc corresponding to (a, c∗). Let (U(ζ), Uζ(ζ)) be a closed
orbit with period T1. Then U(ζ) satisfies (2.1). From Lemma 3.3 below, there
is a constant M > 0 such that ||Uζ(ζ)|| ≤ M . Thus any closed orbit is bounded
on the phase plane.

Because of the continuity of arcs with respect to a and c, the boundedness
of arcs, and the assumption that the family of closed orbit is uniformly away
from the two points, the arrival point of the arc corresponding to (a, c∗) exists.
Thus U(τ(a, c∗), a, c∗) can be defined. Using the continuity of U(τ(a, c), a, c)
with respect to a and c, we can obtain a contradiction if we assume that
U(τ(a, c∗), a, c∗) 6= a. Thus we see that

U(τ(a, c∗), a, c∗) = a.

This implies that there exists a closed orbit that contains (a, 0) on the phase
plane. This is a contradiction because of the definition of a and Step 2. Thus the
family is not uniformly away from the two points (r2k−1, 0) and (r2k+1, 0). This
means that a = r2k−1 or the shortest distance of the closed orbit corresponding
to (a, c(a)) and the point (r2k+1, 0) goes to zero as a → a.

We will show that c(a) can be defined in (a, r2k). We define ā as follows:

ā := sup{a ∈ R| c = c(ξ) can be defined for all ξ ∈ (a, ā)}.

Suppose ā < r2k. From Step 1 we can find ã with ā < ã < r2k so that there
is a closed orbit that contains (ã, 0) on the phase plane. Since there are closed
orbits with any small amplitude encircling the point (r2k, 0). The function c(a)
can be defined at some ã for ã ∈ (ā, r2k). Using Step 2, we can expand the
domain of c(a) to the left. Since c(a) is unique, this contradicts to the definition
of ā. Thus ā = r2k.

Since c(a) is unique and continuous, there is precisely one closed orbit that
contains the point (a, 0). Thus the limit lima→r2k

T (a) should coincide with
the limit in the statements of Theorem 2.6 in Section 7 of [AP93]. We have

lim
a→r2k

T (a) =
2π

√

fu(r2k, 0)
.

Hereafter we will show that lima→a T (a) = ∞ in the case where the short-
est distance of the family of periodic orbits and the point (r2k+1, 0) goes to
zero. First, we consider the linearized eigenvalue problem of (3.2) at the point
(r2k+1, 0). Let λ1, λ2 be the eigenvalues. Then we have

λ1 =
1

2

{

−(c + fp(r2k+1, 0)) −

√

(c + fp(r2k+1, 0))
2 − 4fu(r2k+1, 0)

}

,

λ2 =
1

2

{

−(c + fp(r2k+1, 0)) +

√

(c + fp(r2k+1, 0))
2 − 4fu(r2k+1, 0)

}

.
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0aa
2 1 U

V

Figure 5. This picture indicates the phase plane displayed in
the new coordinate. The thick curved arrow (Ũ , Ṽ ) is the arc
that we observe. Two dashed lines are directions of the two
eigenvectors of the matrix. The time required for traveling
through the thick part of the arc diverges as a1 → 0.

Because fu(r2k+1, 0) < 0, we have λ1 < 0 < λ2. Thus the equilibrium point
(r2k+1, 0) on the phase plane is hyperbolic. Then the Grobman-Hartman the-

orem says that there is a local homeomorphism Ψ such that φt ◦ Ψ = Ψ ◦ φ̃t

and Ψ(0, 0) = (r2k+1, 0) where φt, φ̃t are the semiflows on R
2 formed by (3.2)

and (3.4) respectively.
We can see that the time required for traveling through a neighborhood of

the origin diverges as the shortest distance of the arc and the origin tends to
zero. We omit the details of the proof of this fact.

We consider arcs of (3.2) in a neighborhood (r2k+1, 0). For each arc cor-
responding to (a, c), there is an orbit of (3.4) that is mapped to the arc by
Ψ. Since c(a) is bounded, the time which needs the orbit of (3.4) to pass a
neighborhood of the origin uniformly diverges. Thus the time which needs the
arc corresponding to (a, c(a)) to pass a neighborhood of the origin diverges as
a → a. This means

(3.7) lim
a→a

T (a) = ∞.

We can prove (3.7) similarly in the case where a = r2k−1. The proof is
completed. ¤

Lemma 3.2. Let F (a, c) be the function defined by (3.5). If there is a closed

orbit corresponding to (a0, c0) on the phase plane, then Fc(a0, c0) 6= 0.

Proof. We use the notation used in the proof of Lemma 3.1. We assume
that a closed orbit corresponding to (a0, c0) exists. Differentiating F (a, c) =
U(τ(a, c), a, c) − a with respect to c yields

Fc(a, c) = Uζ(τ(a, c), a, c)τc(a, c) + Uc(τ(a, c), a, c).
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Figure 6. The thick closed curve represents the closed orbit
corresponding to (a0, c0) whose starting and arrival points are
(a0, 0). The dashed curve represents the arc corresponding to
(a0, ĉ) (ĉ > c0) whose starting point is also (a0, 0). The short
arrow represents the vector (ξ, η). This picture indicates that
the vector (ξ, η) points toward the interior of the closed orbit.

We have

Fc(a0, c0) = Uc(τ(a0, c0), a0, c0),

because Uζ(τ(a0, c0), a0, c0) = 0. We have to show that Uc(τ(a0, c0), a0, c0) 6= 0.
Let ĉ (> c0) be a real number that is close to c0. Using the vector
(

V
−c0V − f(U, V )

)

, we can see by [Du53] that the arc corresponding to (a0, c0)

does not intersect with the arc corresponding to (a0, ĉ) in spite that all as-
sumptions of [Du53] are not satisfied on {V = 0}. The continuity of the arc
corresponding to (a, c) with respect to c, togather with the above fact, tells us
that the point (U(ζ, a0, ĉ), V (ζ, a0, ĉ)) (ζ > 0) is in the domain surrounded by
the closed orbit corresponding to (a0, c0). This means that U(τ(a, c), a, c) is
non-decreasing in c. We define ξ and η as follows:

ξ(ζ) := Uc(ζ, a0, c0), η(ζ) := Vc(ζ, a0, c0),

where Uc is a derivative of U with respect to the third variable. Let G(ζ) be the

inner product of

(

Vζ

−Uζ

)

and

(

ξ
η

)

. Namely G(ζ) = ξ(ζ)Vζ(ζ)−η(ζ)Uζ(ζ).

Then we have G(ζ) ≥ 0, because the vector

(

ξ
η

)

points toward the interior

of the closed orbit (see Figure 6).
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Differentiating (3.2) with respect to c yields

(3.8)











dξ

dζ
= η

dη

dζ
= −v − cη − fu(U(ζ), V (ζ))ξ − fp(U(ζ), V (ζ))η.

Using (3.2) and (3.8), we can express G(ζ), Gζ(ζ), Gζζ(ζ) and Gζζζ(ζ) with ξ,
η, c, V and derivatives of f as follows:

G(ζ) = − (cξV + ξf + ηV ),

Gζ(ζ) =(cξV + ξf + ηV )(c + fp) + V 2,

Gζζ(ζ) =(cξV + ξf + ηV )
{

fupV − (cV + f)fpp − (c + fp)
2
}

− 3cV 2 − V 2fp − 2V f,

Gζζζ(ζ) =(cξV + ξf + ηV )
[

(cV + f)2fppp + {4(c + fp)(cV + f) − V fu} fpp

− (4cV + 3V fp + fp)fup − V (3cV + 1)fupp

+V 2fuup − V 2 + (c + fp)
3
]

− V 2(V fup − cV fppffpp) − 2V (V fu − cV fp − ffp)

+ 2(cV + f)(3cV + ffpV + f).

We suppose that Uc(τ(a0, c0), a0, c0) = ξ(τ(a0, c0)) = 0. Since
V (τ(a0, c0), a0, c0) = 0, we obtain G(τ) = Gζ(τ) = Gζζ(τ) = 0 and
Gζζζ(τ) = 2f2 > 0 where τ = τ(a0, c0). Therefore, there is a small con-
stant δ > 0 such that G(P − δ) < 0. This is a contradiction, because
G(ζ) ≥ 0. ¤

Lemma 3.3. There is a constant M > 0 such that supζ∈R
|Uζ(ζ)| ≤ M for any

closed orbit (U(ζ), Uζ(ζ)) of (3.2) .

Proof. Let (U(ζ), Uζ(ζ)) be a closed orbit of (3.2) with some c. Then U(ζ)
satisfies (2.1). Thus from (A3) there is a constant L2 > 0 such that
||U(ζ)||C1(S1) < L2 for any periodic solution or constant solution. The lemma
is proved. ¤

Lemma 3.2 completes the proof of Lemma 3.1.

4. Preparation for the Proof of Theorem A

In this section we will show that every cluster is a totally ordered set in the
order B (Corollary 4.2). We will show that z(u − v) = z(vx) provided that
u, v ∈ S and v B u (Lemma 4.4). The two lemmas are used to prove Theorem
A.

The following Lemma 4.1 is a generalized version of Corollary 4.2 below.

Lemma 4.1. Let (u(x), ux(x)), (v(x), vx(x)) be closed orbits on the phase plane.

Then the two closed orbits does not intersect.
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We can prove Lemma 4.1 by contradiction. We omit the proof.
Using a phase plane analysis and Lemma 4.1, we immediately obtain the

following corollary.

Corollary 4.2 (Matano and Nakamura [MN97]). Let u, v ∈ S. If R(u) ∩
R(v) 6= ∅, then Int(R(v)) ⊃ R(u) or Int(R(u)) ⊃ R(v) where Int(R(u)) indi-

cates the set consists of the interior points of R(u).

Remark 4.3. Let u, v ∈ S (u 6= v). By Corollary 4.2, we can see that u B v
means that Int(R(u)) ⊃ R(v).

Let u, v ∈ S. By using Corollary 4.2, we have either u B v or v B u provided
that R(u) ∩ R(v) 6= ∅.

Corollary 4.2 and the definition of the clusters show that every cluster

is a totally ordered set. Thus we can number the elements of each cluster
{

ukl
1 , ukl

2 , . . . , ukl
mkl

}

in such a way that

ukl
1 C ukl

2 C · · · C ukl
mkl

.

Lemma 4.4 (Matano and Nakamura [MN97]). Let u, v ∈ S. If v B u, then

z(u − v) = z(vx).

5. Proof of Corollary B and Lemmas E and F

In this section we will prove Corollary B and Lemmas E and F by using
Lemma 5.1 and the results in Sections 3 and 4.

Let c = c(a) be the function defined in the statement of Lemma 3.1, and let
T = T (a) be the period of the closed orbit corresponding to (a, c(a)) defined
in the statement of Lemma 3.1.

Lemma 5.1. Let u ∈ S be the closed orbit corresponding to (a0, c(a0)) in Section

3. If u is hyperbolic, then ∂aT (a)|a=a0
6= 0.

Proof. We will prove the lemma by contradiction. We assume that
∂aT (a)|a=a0

= 0. Let u(x, t) = U(ζ) (ζ = x − ct) be a rotating wave or a
steady state. We can suppose that U(0) = a and Uζ(0) = 0 without loss
of generality. The function U = U(ζ, a, c(a)) defined in Section 3 satisfies
Uζζ + c(a)Uζ + f(U,Uζ) = 0. Differentiating the equation with respect to a
gives

∂ζζ(Ua + caUc) + c∂ζ(Ua + caUc) + fu·(Ua + caUc) + fp∂ζ(Ua + caUc) = −caUζ .

Let ϕ(ζ) = Ua(ζ)+caUc(ζ). The function ϕ(ζ) satisfies the following equation:

(5.1) ϕζζ + cϕζ + fuϕ + fpϕζ = −caUζ , ζ ∈ S1.

If ca(a0) = 0, then α · Uζ(ζ) (α ∈ R) are the solutions to (5.1) because of the
hyperbolicity of U(ζ). If ca(a0) 6= 0, then (5.1) has no solution. Because 0 is a
simple eigenvalue of the following problem:

ϕζζ + cϕζ + fuϕ + fpϕζ = λϕ, ζ ∈ S1.
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Case 1 : ca(a0) = 0
Differentiating U(0, a, c(a)) = U(T (a), a, c(a)) with respect to a gives

(5.2) Ua(0, a, c(a)) + ca(a)Uc(0, a, c(a))

= ∂aT (a)Uζ(T (a), a, c(a)) + Ua(T (a), a, c(a)) + ca(a)Uc(T (a), a, c(a)).

Substituting ∂aT (a)|a=a0
= 0 and ca(a0) = 0 for (5.2) gives Ua(0, a0, c(a0)) =

Ua(T (a0), a0, c(a0)). Since Ua( · , a0, c(a0)) is a periodic function and the period
T (a0) is equal to 1/n for some n ∈ {1, 2, · · · }, we have Ua(0, a0, c(a0)) =
Ua(1, a0, c(a0)). Since ϕ(ζ) = Ua(ζ), we have

(5.3) ϕ(0) = ϕ(1).

We differentiate Uζ(0, a, c(a)) = Uζ(T (a), a, c(a)) with respect to a, and
substitute a0 for it. Then we obtain

Uζa(0, a0, c(a0)) = Uζa(T (a0), a0, c(a0)) + ∂aT (a)|a=a0
Uζζ(T (a0), a0, c(a0)).

Since ϕζ(ζ) = Uζa(ζ, a0, c(a0)), we have

ϕζ(0) = ϕζ(T (a0)) + ∂aT (a)|a=a0
Uζζ(T (a0), a0, c(a0)).

Since ∂aT (a)|a=a0
= 0 and ϕζ(T (a0)) = ϕζ(1), we have

(5.4) ϕζ(0) = ϕζ(1).

Using (5.3) and (5.4), we can see that ϕ(ζ)(= Ua(ζ)) satisfies (5.1) and periodic
boundary conditions. By the hyperbolicity of u(x, t)(= U(ζ)), we see that
ϕ(ζ) = α · Uζ(ζ) (α ∈ R) are the solutions to (5.1). On the other hand ϕ(0) =
Ua(0) = 1. It contradicts that Uζ(0) = 0. We can see that ∂aT (a)|a=a0

6= 0.
Case 2 : ca(a0) 6= 0

Using the assumption of contradiction ∂aT (a)|a=a0
= 0, we can obtain the

following two equalities in a similar way of Case 1:

(5.5) ϕ(0) = ϕ(1), ϕζ(0) = ϕζ(1).

Using (5.5), we can see that ϕ(ζ) satisfies (5.1) and periodic boundary condi-
tions. The function ϕ(ζ) is a non-trivial solution to (5.1). This is a contradic-
tion. Therefore, we obtain ∂aT (a)|a=a0

6= 0. ¤

Hereafter, we consider the structure of each cluster. We divide the clusters

in two types. One is a type of clusters that contain a constant steady state,
and the other is a type of clusters that do not have a constant steady state.

First, we consider the type of clusters that have a constant steady state.
Since the cluster Ckl has a constant steady state, we can see that k = l by
using a phase plane analysis. If k is odd, then ]Ckk = 1 and the element of
Ckk is a stable constant steady state. If k is even, then ]Ckk ≥ 1 and Ckk has
precisely one unstable constant steady state.

Second, we consider the type of clusters Ckl that do not have a constant steady
state. By observing the phase plane, we see that l ≥ k+2, and k and l are even.
If u(x, t) = U(x − ct) is an element of Ckl that satisfies (U(0), Uζ(0)) = (a, 0)
and U(ζ) ≤ a, then we can deform the closed orbit (U(ζ), Uζ(ζ)) on the phase
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1

1/2
1/3
1/4
1/5

T(a)

a

a a

Figure 7. The picture shows the graph of T (a) in the case
of Ckl (k 6= l). Each of the intersections of the curve and the
lines corresponds to a rotating wave. In this case, the sequence
of modified Morse indices is (2, 2, 2, 4, 6, 8, 8, 6, 4, 2).

plane by using a similar way of Step 2 and Step 3 in the proof of Lemma
3.1, and enlarge the domain of c = c(a). Let (a, ā) be the maximal connected
domain of the function c = c(a). The closed orbit that corresponds to (a, c(a))
approaches (r2k−1, 0) or (r2l+1, 0) as a → a. Since c(a) is bounded, the function
T (a) diverges to +∞ as a → a. The function T (a) diverges to +∞ as a → ā,
because the closed orbit approaches (r2k, 0), . . . , (r2l−1, 0) or (r2l, 0), and c(a)
is bounded. Hence the graph of T (a) is as shown in Figure 7.

Proof of Lemma E. The statements (i) and (ii) are easily understood by ob-
serving a phase plane. ¤

Proof of Lemma F. We can see that (i), (iv) and (v) follow from Figures 7 and
8. Lemma 3.1 implies (ii) and (iii). ¤

Proof of Corollary B. Since S =
⋃

1≤k≤l≤N Ckl, we obtain the following:

]S =
∑

1≤k≤l≤N

]Ckl

≥
N

∑

j=1

]Cjj

≥
by Figure 8

N +

N
∑

j=1









√

(fu(rj , 0))+

2π







 .

¤
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1

1/2

1/3
1/4
1/5

T(a)

a
a r2j

2

f(r ,0)u 2k

π

Figure 8. The picture indicates the graph of T (a) in (a, r2k).
Each of the intersections of the curve and the lines corresponds
to a rotating wave. The sequence of modified Morse indices is
easily computed from this picture. In this case, the sequence
of modified Morse indices is (4, 4, 6, 8, 8, 6, 4, 2, 2, 2).

Remark 5.2. If ]S attains the lower bound, then every cluster is simple and
monotone. If every cluster is simple, then the equality in the first inequality in
the proof of Corollary B holds. If every cluster is monotone, then the equality
in the second inequality in the proof of Corollary B holds. Therefore, ]S attains
the lower bound if and only if every cluster is simple and monotone.

6. Proof of Theorems A and C

In this section we will prove Theorems A and C by using Lemma 6.1, Lemma
F and the main results of [AF88]. A simple example is given at the end of this
section.

Lemma 6.1 (Blocking lemma). Let v, w ∈ S (w . v and I(w) < I(v)). If there

exists a wave v̄ ∈ S such that w B v̄ B v and I(v̄) = I(w), then v does not

connect to w.

The proof of Lemma 6.1 is essentially the same as the explanation after
Definition 1.6 of [FR96].

Remark 6.2. Lemma 6.1 is called the zero number blocking (see Definition 1.6
of [FR96]).

We will use the following proposition to prove Theorem A.

Proposition 6.3 (Angenent and Fiedler [AF88]). Let u ∈ S with i(u) > 0 be

hyperbolic. Then

( i ) The wave u connects to u+ and u−.
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(ii) For any n ∈ N, 0 < 2n ≤ i(u), there exists a wave u(n) ∈ S such that

u− < u(n) < u+, z(u(n) − u) = 2n, and u connects to u(n).

We are in a position to prove Theorem A.

Proof of Theorem A. Let v be a wave in Ckl (k ≤ l) and let w be a wave
in Cmn (m ≤ n). We prove whether v connects to w or not. When there
is a connecting orbit u = u(t) that connects v and w, we can suppose that
I(w) ≤ I(v), because i(w) + 1 ≤ z(u− v) ≤ i(v) (see Lemma 3.7 in [AF88]). If
I(v) = 0, then there is no connecting orbit starting from v. Thus we assume
that I(v) > 0. We can see that k and l are odd, using a phase plane analysis.

There are two cases in general terms. In one case, w belongs to the same
cluster as v (i.e. (m,n) = (k, l)). In the other case, w belongs to another cluster

which does not include v (i.e. (m,n) 6= (k, l)). First, we consider the case where
w ∈ Cmn ((m,n) 6= (k, l)).

Case 1 : (m,n) 6= (k, l)
We can divide the case into four more cases.

Case 1-1 : (m,n) ∈ {(k − 1, k − 1), (l + 1, l + 1)}
Since both k − 1 and l + 1 are even, the cluster Cmn has precisely one wave
(This wave is a stable constant steady state). We can see that v connects to w
by (i) of Theorem 6.3, because w = v+ or w = v−.

Case 1-2 : (m,n) 6∈ {(k − 1, k − 1), (l + 1, l + 1)} and R(Ckl) ∩ R(Cmn) = ∅
There is a wave w̄ ∈ S (I(w̄) = 0) between v and w in the usual order (i.e.
v(x) < w̄(x) < w(x) or w(x) < w̄(x) < v(x)). We assume that there is a
connecting orbit u(t) that connects v and w. The function z(u(t)− w̄(t)) is not
non-increasing in t. This is a contradiction. Therefore, the wave v does not
connect to any w ∈ Cmn. Namely the wave v does not connect to any wave
of the above clusters and below clusters in the usual order except for the two
clusters of Case 1-1.

Case 1-3 : Ckl B Cmn

We see that i(v) ∈ {I(v), I(v) − 1} generally. We have

i(v) = I(v) − 1,

in the case that i(v) is odd. We suppose that there is a connecting orbit u(t)
that connects v and w. Then

(6.1) z(u − v) ≤ i(v),

(see Lemma 3.7 in [AF88]). Lemma 4.4 tells us that (6.1) contradicts that
z(u(t) − v(t)) = I(v) for large t > 0. The wave v does not connect to any
w ∈ Cmn. Namely v does not connect to any wave of the clusters that is
smaller than Ckl in the order B.

Case 1-4 : Cmn B Ckl

There is a w̄ ∈ S (I(w̄) = 0) such that R(v) ∩ R(w̄) = ∅ and w B w̄. We
suppose that there is a connecting orbit u(t) which connects v and w. The
function z(u(t) − w̄(t)) is not non-increasing in t. This is a contradiction.
Therefore, v does not connect to any w ∈ Cmn.
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The Case 1 can be summarized as follows: If v connects to w in another
cluster, then w should be v+ or v−.

Case 2 : (m,n) = (k, l)
Let w be another wave of the same cluster Ckl. We divide this case in two more
cases.

Case 2-1 : v B w
We suppose that there is a connecting orbit u(t) that connects v and w. We
can see that

I(v) = z(u(t) − v(t)) ≤ i(v) for large t,

(see Lemma 3.7 in [AF88]), because v B w. Thus if i(v) is odd (i.e. i(v) =
I(v) − 1), then we obtain a contradiction. The wave u does not connect to w
provided that i(v) is odd.

Case 2-2 : w B v
Owing to Theorem 6.3, the wave v connects to w that attains the following
minimum for each d (d = 2, 4, 6, . . . , I(v) − 2):

min
I(w)=2d,wBv

|R(w)|,

where |R(u)| := maxx∈S1 u(x, t) − minx∈S1 u(x, t). Suppose i(v) is odd. The
wave v, however, does not connect to any other w, because Lemma F tells us
that there exists a wave w̄ such that w B w̄ B v and I(w) = I(w̄). Thus we
can see by Lemma 6.1 that the zero number blocking occurs.

The Case 2 can be summarized as follows. The wave v connects to I(v)/2−1
different waves that are bigger than v in the order B in the same cluster. The
wave does not connect to any other wave in the same cluster provided that i(v)
is odd.

The Case 1 and the Case 2 cover all the combinations of v and w. Thus the
proof is completed. ¤

Proof of Theorem C. We show that the hypotheses of Theorem C satisfy those
of Theorem A.

Every cluster is simple and monotone if and only if ]S attains the lower bound
(see Remark 5.2).

We will show that the Morse index of every wave is odd or zero. Suppose
that there is a wave u ∈ S whose Morse index is even and not zero. Using
Proposition 6.3, we can see that there exists a wave v ∈ S such that I(u) = I(v)
and u connects to v heteroclinically. However, u and v are not in the same
cluster, because the cluster is monotone. Thus v belongs to another cluster.
However, there is no heteroclinic connection, because every cluster is simple and
there should be a stable steady state between u and v in the usual order. This
is a contradiction. Therefore all the hypotheses of Theorem A are satisfied. ¤

Example 6.4. Figure 9 shows the profile of every u ∈ S and the diagram
that shows which u ∈ S and v ∈ S are connected heteroclinically and
which are not when {rj}

5
j=1 are the roots of f( · , 0), [[

√

fu(r2, 0)/(2π)]] = 2,

[[
√

fu(r4, 0)/(2π)]] = 3, ]S = 10, and all u ∈ S are hyperbolic.
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Figure 9. In the left figure, the thick curves and the lines
indicate the profile of all the waves that move to the right or the
left at each constant speed. In the right figure, the horizontal
axis indicates the modified Morse index and the vertical axis
indicates the suffix of Cjj . The points mean elements of S.
The thick curves and the lines represent the connecting orbits.
The lower figure shows closed orbits and equibrium points in
the uux-plane. Note that they do not necessarily correspond
to the same value of c.

Remark 6.5. If there is a wave v ∈ S such that i(v)(6= 0) is even, then we
cannot determine by the method used in the proof of Theorem A whether v
connects to waves that are smaller than v in the order B or not.

Remark 6.6. We have shown Theorem A by using the structure and the results
of [AF88]. This means that the results of [AF88] that looks a partial answer is
a complete answer in some sense when the Morse index of every wave is odd
or zero.
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7. Proof of Theorem A’ and Lemma F’

In this section we will study the case where the nonlinear term f depends only
on u, and establish a sufficient condition that guarantees that all the clusters

are simple and monotone.
We will use a character g to denote the nonlinear term (i.e. f(u, ux) = g(u)).

In this case (1.1) is written as follows:

(7.1)

{

ut = uxx + g(u), x ∈ S1,

u(x, 0) = u0(x), x ∈ S1.

Matano [Ma88] showed that (1.1) does not have rotating waves provided that
f(u, p) = f(u,−p). Since the nonlinear term g depends only on u and satisfies
this property, the equation (7.1) does not have rotating waves.

We consider the following Neumann problem:

(7.2)

{

ut = uxx + g(u), x ∈ (0, 1/2),

ux(0) = 0 = ux(1/2).

Let u(x) be a wave of (7.1). Then there exists θ(∈ S1) such that ux(θ) = 0
and u(x) ≤ u(θ) for all x ∈ S1. We can see by a phase plane analysis that
ux(θ + 1/2) = 0. Therefore u(x + θ) (0 < x < 1/2) is a steady state of (7.2).
Let ũ(x) denotes u(x + θ). Thus ũ(x) is a steady state of (7.2).

Next, let v(x) be a non-constant steady state of (7.2) that satisfies v(x) ≤
v(0). Then u(x) is a standing wave of (7.1) where

u(x) =

{

v(x), 0 ≤ x ≤ 1/2;

v(1 − x), 1/2 ≤ x ≤ 1.

We can identify any wave u of (7.1) with a steady state ũ of (7.2), and by the

steady state associated with u of (7.2) we shall mean ũ. In short ũ = v.
Let v, w be steady states of (7.1) and let ṽ, w̃ be steady states associated

with v, w respectively. Suppose that a heteroclinic orbit ũ(x, t) of (7.2) that
connects ṽ and w̃ exists. Then u(x, t) is a solution of (7.1) where

u(x, t) =

{

ũ(x, t), 0 ≤ x ≤ 1/2;

ũ(1 − x, t), 1/2 ≤ x ≤ 1.

Moreover u( · , t) → v(x) (t → −∞) and u( · , t) → w(x) (t → ∞). Thus u(x, t)
is a connecting orbit of (7.1) that connects v and w. In short, v connects to w
if ṽ connects to w̃. We will use this fact to prove the existence of connecting
orbits in the proof of Theorem A’.

We give two lemmas about (7.2) without proofs.

Lemma 7.1. Let {ukl
1 , ukl

2 , . . . , ukl
mkl

} be a cluster and let {ũkl
1 , ũkl

2 , . . . , ũkl
mkl

} be

the set of steady states of (7.2) associated with the waves of the cluster. Let

{ukl
b1

, ukl
b2

, . . . , ukl
bn
} (b1 < b2 < · · · < bn) be the waves whose Morse indices are

the same number (i.e. I(ukl
b1

) = I(ukl
b2

) = · · · = I(ukl
bn

)). Then i(ũkl
bn−2j

) =
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I(ukl
bn−2j

)/2 for j ∈ {0, 1, . . . , [(n − 1)/2]}, and i(ũkl
bn−2j−1

) = I(ukl
bn−2j−1

)/2 + 1

for j ∈ {0, 1, . . . , [(n − 2)/2]}.

Proof. In the case of the Dirichlet problem, we can find the proof in Lemma
2.1 of [BF89]. We can prove the lemma in a similar way. ¤

Lemma 7.2. Let u, v, w be waves and let ũ, ṽ be the steady states associated

with u, v. If i(u) is even, then the steady state ũ connects to every ṽ that

satisfies the following: u B v, and there is no wave w such that u B w B v and

I(u) = I(w).

Proof. In the case of the Neumann problem, the problem of the heteroclinic
connections are completely determined by [FR96]. We can prove the lemma by
using Lemma 7.1, Definition 1.6 of [FR96] and Lemma 1.7 of [FR96]. ¤

Proof of Lemma F’. If bn−2j > 1, then there exists v (C ukl
bn−2j

) such that v

blocks the connections from ukl
bn−2j

to all the wave that are smaller than ukl
bn−2j

in the order B. This means that i(ukl
bn−2j

) = I(ukl
bn−2j

) − 1. If bn−2j = 1, then

k = l. There also exists a wave v that satisfies the above conditions (the wave
v may be a constant steady state). Thus i(ukl

bn−2j
) = I(ukl

bn−2j
) − 1. In short

i(ukl
bn−2j

) = I(ukl
bn−2j

) − 1 for j ∈ {0, 1, . . . , [(n − 1)/2]}.

We consider whether i(ukl
bn−2j−1

) = I(ukl
bn−2j−1

) − 1 or i(ukl
bn−2j−1

) =

I(ukl
bn−2j−1

). If n − 2j − 1 > 1, then ũkl
bn−2j−1

connects to ũkl
bn−2j−2

. Thus

ukl
bn−2j−1

connects to ukl
bn−2j−2

. This means that i(ukl
bn−2j−2

) = I(ukl
bn−2j−1

). If

n−2j−1 = 1, then there exists a wave ṽ such that the following hold: v C ukl
b1

and ũkl
b1

connects to ṽ. Thus ukl
b1

connects to v. Hence i(ukl
b1

) = I(ukl
b1

). In short

i(ukl
bn−2j−1

) = I(ukl
bn−2j−1

) for j ∈ {0, 1, . . . , [(n − 2)/2]}.
¤

Proof of Theorem A’. Let u be a non-constant wave whose Morse index is even.
In Theorem A we have identified waves that are connected by u and that satisfy
z(u− v) ≤ I(u)− 2. Thus we have to check whether u connects to v or not, in
the case where z(u − v) = I(u).

Case 1 : v B u
Let w be a wave that satisfies the following: w is the smallest wave in the order
B that satisfies w B u and I(u) = I(w). Because of Lemma F’, w exists in the
cluster to which u belongs, and i(w) = I(w)− 1. Let ũ and w̃ be steady states
of (7.2) associated with u and w respectively. We can see that ũ connects to
w̃ (see Case 2-1 in the proof of Lemma F’). Thus u connects to w. There is
no other wave that is connected by u, because w blocks other connections (see
Lemma 6.1).

Case 2 : v C u
Since v C u, it is automatically satisfied that z(u − v) = I(u). If there is a
wave w such that u B w B v and I(u) = I(w), then u does not connect to v
because w blocks the connection (see Lemma 6.1). On the other hand, if there
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Amplitude

large0

B

A

C

D

Modifed Morse index

Figure 10. Each black point indicates a wave whose Morse
index is even (i.e. i(ukl

j ) = I(ukl
j )) and each white point indi-

cates a wave whose Morse index is odd (i.e. i(ukl
j ) = I(ukl

j )−1).
The point A connects only to B, C, D and two constant steady
states.

is no such wave, then u connects to v because ũ connects to ṽ (see Lemma 7.2).
Therefore the theorem is proved. ¤

Example 7.3. Let Jkl =
(

I(ukl
j )

)mkl

j=1
(k 6= l) be a sequence of modified Morse

indices. Figure 10 represents the sequence of modified Morse indices Jkl (see
Remark 2.19). Since k 6= l, we see by (v) of Lemma F that I(ukl

mkl
) = 2. If

i(u) is odd, all connections toward a smaller wave in the order B (i.e. toward
the left in Figure 10) are blocked. If i(u) is even, the connections to a smaller
wave in the order B are not necessarily blocked.

8. Proof of Proposition D

In this section we consider the case where the nonlinear term does not depend
on ux (see (7.1)). We will use the notation used in Section 7.

We will show a sufficient condition that guarantees clusters to be monotone.
The following lemma is well-known:

Lemma 8.1. Suppose g( · ) has exactly three roots {ri}
3
i=1 and r1 < r2 = 0 < r3.

If g(u)/|u| is decreasing for u ∈ (r1, 0) ∪ (0, r3), then there are only three

monotone clusters.

The proof of Lemma 8.1 is essentially the same as that of Theorem 5.2 of
[CI74]. We omit the proof.
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k=1 k=n1<k<n

Figure 11. The graph of G(r); k = 1 (left), 1 < k < n
(center) and k = n (right).

We will prove Proposition D after we state some definitions and notation.
Hereafter, we assume that every wave of S is hyperbolic. Hence g′(rj) 6= 0 for
all j ∈ {1, 2, . . . , N}. The point G(rj) (j ∈ {1, 3, 5, . . . , N}) is a local maximum
point and G(rj) (j ∈ {2, 4, 6, . . . , N − 1}) is a local minimum point where G(r)
is defined by (2.6).

First, we define a set of intervals

W (r) := {ρ | G(ρ) < r}.

We impose the following condition of the function G:

(A6) Let I be a bounded connected component of W (r) for r ∈ R. Let
J = {rk, rk+1, . . . , rl−1, rl} (1 ≤ k ≤ l ≤ N). If I ⊃ J , then ]J = 1.

The closed curves described as {(u, v)| v2 + 2G(u) = constant} on the phase
plane are candidates of steady state solutions of (7.1). If (A6) holds, then
Ckl (k 6= l) is empty. Therefore, when (A6) holds, there is only one possibility
which is the condition (A4) in Section 2. When (A4) is satisfied, the graph of
G(r) looks like one of Figure 11.

Example 8.2. If the graph of G(r) is as shown in the center of Figure 11, the
corresponding phase portrait is as shown in Figure 12.

If (A4) holds, then every cluster is simple. If (A5)j holds, then Cjj is mono-

tone. Now we can prove Proposition D.

Proof of Proposition D. If (A4) holds, then (A6) holds. Thus every Ckl (k 6= l)

is empty. Namely all the clusters are simple. After all S =
⋃N

j=1 Cjj . Since

every wave is hyperbolic, the cluster Cjj (j ∈ {1, 3, 5, . . . , N}) has precisely one
wave which is the stable constant steady state (see Remark 2.1). The condition
(A5)j tells us that the cluster Cjj (j ∈ {2, 4, 6, . . . , N − 1}) is monotone. Thus
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Figure 12. The picture indicates the phase portrait when
G(p) is as shown in the center of Figure 11. The thick closed
curves indicate the closed orbits which correspond to stand-
ing waves, and the points indicate equilibrium points which
correspond to constant steady states.

every cluster is monotone. Therefore, all the hypotheses of Theorem C are
satisfied. The proof is completed. ¤

After completing this work, the author has been informed about the pa-
per [FRW04] written by Fiedler, Rocha and Wolfrum. They have given the
necessary and sufficient conditions whether any pair of waves is connected het-
eroclinically or not, and the method to calculate the Morse index of waves (i.e.
the method to decide whether i(u) = I(u) or i(u) = I(u) − 1).
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