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ABSTRACT. Let G be a (not necessarily Hausdorff) locally com-
pact groupoid. We introduce a notion of properness for G, which
is invariant under Morita-equivalence. We show that any general-
ized morphism between two locally compact groupoids which satisfies
some properness conditions induces a C*-correspondence from C}(G3)
to C*(G1), and thus two Morita equivalent groupoids have Morita-
equivalent C*-algebras.
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INTRODUCTION

Very often, groupoids that appear in geometry, such as holonomy groupoids of
foliations, groupoids of inverse semigroups [15, 6] and the indicial algebra of
a manifold with corners [10] are not Hausdorff. It is thus necessary to extend
various basic notions to this broader setting, such as proper action and Morita
equivalence. We also show that a generalized morphism from G2 to G satisfy-
ing certain properness conditions induces an element of KK (C}(G2),C;(G1)).

In Section 2, we introduce the notion of proper groupoids and show that it is
invariant under Morita-equivalence.

Section 3 is a technical part of the paper in which from every locally compact
topological space X is canonically constructed a locally compact Hausdorff
space HX in which X is (not continuously) embedded. When G is a groupoid
(locally compact, with Haar system, such that GO s Hausdorfl), the closure
X" of G in HG is endowed with a continuous action of G and plays an
important technical role.

In Section 4 we review basic properties of locally compact groupoids with Haar
system and technical tools that are used later.
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In Section 5 we construct, using tools of Section 3, a canonical C}(G)-Hilbert
module £(G) for every (locally compact...) proper groupoid G. If GV /G is
compact, then there exists a projection p € C¥(G) such that £(G) is isomorphic
to pC*(G). The projection p is given by p(g) = (c(s(g))c(r(g)))/?, where
c: GO — R, is a “cutoff” function (Section 6). Contrary to the Hausdorff
case, the function ¢ is not continuous, but it is the restriction to G of a
continuous map X’ — Ry (see above for the definition of X).

In Section 7, we examine the question of naturality G — C;(G). Recall that
if f: X — Y is a continuous map between two locally compact spaces, then f
induces a map from Cy(Y) to Cy(X) if and only if f is proper. When G; and
Go are groups, a morphism f: G; — Gy does not induce a map C}(G3) —
Cr(Gy1) (when G; C G5 is an inclusion of discrete groups there is a map in
the other direction). When f: G; — G5 is a groupoid morphism, we cannot
expect to get more than a C*-correspondence from Cj(G2) to C}(G1) when
f satisfies certain properness assumptions: this was done in the Hausdorff
situation by Macho-Stadler and O’Uchi ([11, Theorem 2.1], see also [7, 13, 17]),
but the formulation of their theorem is somewhat complicated. In this paper,
as a corollary of Theorem 7.8, we get that (in the Hausdorff situation), if the
restriction of f to (G1)¥ is proper for each compact set K C (G1)© then f
induces a correspondence &5 from C(G2) to C;(G1). In fact we construct a
C*-correspondence out of any groupoid generalized morphism ([5, 9]) which
satisfies some properness conditions. As a corollary, if G; and G5 are Morita
equivalent then C}(G;) and C}(G2) are Morita-equivalent C*-algebras.

Finally, let us add that our original motivation was to extend Baum, Connes
and Higson’s construction of the assembly map p to non-Hausdorff groupoids;
however, we couldn’t prove i to be an isomorphism in any non-trivial case.

1. PRELIMINARIES

1.1. GroupoOIDS. Throughout, we will assume that the reader is familiar with
basic definitions about groupoids (see [16, 15]). If G is a groupoid, we denote by
G its set of units and by 7: G — G and s: G — G© its range and source
maps respectively. We will use notations such as G, = s~!(z), GY = r~1(y),
GY = G, NGY. Recall that a topological groupoid is said to be étale if r (and
s) are local homeomorphisms.

For all sets X, Y, T and all maps f: X — T and g: Y — T, we denote by
X x¢4Y, or by X xpY if there is no ambiguity, the set {(z,y) € X xY| f(z) =
9(y)}.
Recall that a (right) action of G on a set Z is given by

(a) a (“momentum”) map p: Z — G(©);

(b) amap Z X,, G — Z, denoted by (z,g) — zg
with the following properties:

(i) p(zg) = s(g) for all (z,9) € Z X, G;
(ii) z(gh) = (zg)h whenever p(z) = r(g) and s(g) = r(h);
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(iii) zp(z) = z for all z € Z.
Then the crossed-product Z x G is the subgroupoid of (Z x Z) x G consisting
of elements (z, 2, g) such that 2/ = zg. Since the map Z x G — Z x G given
by (2,2, g) — (z,g) is injective, the groupoid Z x G can also be considered as
a subspace of Z x G, and this is what we will do most of the time.

1.2. LOCALLY COMPACT SPACES. A topological space X is said to be quasi-
compact if every open cover of X admits a finite sub-cover. A space is compact
if it is quasi-compact and Hausdorff. Let us recall a few basic facts about
locally compact spaces.

DEFINITION 1.1. A topological space X is said to be locally compact if every
point x € X has a compact neighborhood.

In particular, X is locally Hausdorff, thus every singleton subset of X is closed.
Moreover, the diagonal in X x X is locally closed.

PROPOSITION 1.2. Let X be a locally compact space. Then every locally closed
subspace of X s locally compact.

Recall that A C X is locally closed if for every a € A, there exists a neighbor-
hood V of @ in X such that V' N A is closed in V. Then A is locally closed if
and only if it is of the form U N F, with U open and F' closed.

PROPOSITION 1.3. Let X be a locally compact space. The following are equiv-
alent:
(i) there exists a sequence (K,) of compact subspaces such that X =
UnENKn;
(ii) there exists a sequence (K,) of quasi-compact subspaces such that X =
UnenKn;
(iii) there exists a sequence (K,) of quasi-compact subspaces such that X =
UnenKy, and K, C K41 for alln € N.

Such a space will be called o-compact.

Proof. (i) = (ii) is obvious. The implications (ii) = (iii) = (i) follow
easily from the fact that for every quasi-compact subspace K, there exists a
finite family (K;);er of compact sets such that K C U;er K. O

1.3. PROPER MAPS.

PROPOSITION 1.4. [2, Théoréme 1.10.2.1] Let X and Y be two topological
spaces, and f: X —Y a continuous map. The following are equivalent:

(i) For every topological space Z, f x1dz: X x Z —Y X Z is closed;

(ii) f is closed and for everyy €Y, f~(y) is quasi-compact.

A map which satisfies the equivalent properties of Proposition 1.4 is said to be
proper.
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PROPOSITION 1.5. [2, Proposition 1.10.2.6] Let X and Y be two topological
spaces and let f: X — Y be a proper map. Then for every quasi-compact
subspace K of Y, f~Y(K) is quasi-compact.

PROPOSITION 1.6. Let X and Y be two topological spaces and let f: X — Y
be a continuous map. Suppose Y is locally compact, then the following are
equivalent:

(i) f is proper;

(ii) for every quasi-compact subspace K of Y, f~1(K) is quasi-compact;

(iii) for every compact subspace K of Y, f~1(K) is quasi-compact;

(iv) for everyy €Y, there exists a compact neighborhood K, of y such that

I7HKy) is quasi-compact.

Proof. (i) = (ii) follows from Proposition 1.5. (ii) = (iii) = (iv) are
obvious. Let us show (iv) = (i).

Since f~1(y) is closed, it is clear that f~!(y) is quasi-compact for all y € Y.
It remains to prove that for every closed subspace F' C X, f(F') is closed. Let
y € f(F). Let A= f~'(K,). Then AN F is quasi-compact, so f(AN F) is
quasi-compact. As f(ANF) C K,, it is closed in K, i.e. K, N f(ANF) =
K,Nf(ANF). Wethus havey e K, N f(ANF)=K,Nf(ANF) C f(F). It
follows that f(F') is closed. O

2. PROPER GROUPOIDS AND PROPER ACTIONS
2.1. LOCALLY COMPACT GROUPOIDS.

DEFINITION 2.1. A topological groupoid G is said to be locally compact (resp.
o-compact) if it is locally compact (resp. o-compact) as a topological space.

REMARK 2.2. The definition of a locally compact groupoid in [15] corresponds
to our definition of a locally compact, o-compact groupoid with Haar system
whose unit space is Hausdorff, thanks to Propositions 2.5 and 2.8.

EXAMPLE 2.3. Let " be a discrete group, H a closed normal subgroup and let
G be the bundle of groups over [0,1] such that Go = T and Gy = T'/H for
all t > 0. We endow G with the quotient topology of ([0,1] x T') / ((0,1] x H).
Then G is a non-Hausdorff locally compact groupoid such that (t,7) converges
to (0,vh) ast — 0, for ally €T and h € H.

EXAMPLE 2.4. Let T be a discrete group acting on a locally compact Hausdorff
space X, and let G = (X xT')/ ~, where (x,7) and (x,7') are identified if their
germs are equal, i.e. there exists a neighborhood V' of x such that yy = y~' for
ally € V.. Then G is locally compact, since the open sets V., = {[(z,7)]| z € X}
are homeomorphic to X and cover G.

Suppose that X is a manifold, M is a manifold such that w1 (M) =T, M is the
universal cover of M and V = (X x M)/T, then V is foliated by {[x, ]| m €
M} and G is the restriction to a transversal of the holonomy groupoid of the
above foliation.
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PROPOSITION 2.5. If G is a locally compact groupoid, then G is locally closed
in G, hence locally compact. If furthermore G is o-compact, then G©) is o-
compact.

Proof. Let A be the diagonal in G x G. Since G is locally Hausdorff, A is
locally closed. Then G(® = (Id,r)~*(A) is locally closed in G.

Suppose that G = UpenK, with K, quasi-compact, then s(K,) is quasi-
compact and G(©) = Unens(Kp)- O

PROPOSITION 2.6. Let Z a locally compact space and G be a locally compact
groupoid acting on Z. Then the crossed-product Z x G 1is locally compact.

Proof. Let p: Z — G be the momentum map of the action of G. From
Proposition 2.5, the diagonal A ¢ G x G is locally closed in G(© x G(©),
hence Z x G = (p,r)"1(A) is locally closed in Z x G. O

Let T be a space. Recall that there is a groupoid T x T with unit space T', and
product (z,y)(y,z) = (z,2).
Let G be a groupoid and T be a space. Let f: T — G and let G[T] =

{(t',t,9) € (TxT)xG|ge€ G;E;;)} Then G[T] is a subgroupoid of (T'xT) x G.

PROPOSITION 2.7. Let G be a topological groupoid with G locally Hausdorff,
T a topological space and f: T — G a continuous map. Then G[T] is a
locally closed subgroupoid of (T x T) x G. In particular, if T and G are locally
compact, then G[T] is locally compact.

Proof. Let F C TxG© be the graph of f. Then F = (f xId)~*(A), where A is
the diagonal in G(®) x G(©), thus it is locally closed. Let p: (t',t,g) — (t',7(g))
and o: (t',t,g9) — (t,5(g)) be the range and source maps of (T' x T') x G, then
G[T) = (p,0) Y(F x F) is locally closed. O

PROPOSITION 2.8. Let G be a locally compact groupoid such that G0 is Haus-
dorff. Then for every z € G, G, is Hausdorff.

Proof. Let Z = {(g,h) € Gy x G| r(9) = r(h)}. Let ¢: Z — G defined by
©(g,h) = g~th. Since {z} is closed in G, ¢~ !(z) is closed in Z, and since
GO is Hausdorff, Z is closed in G, x G,. It follows that ¢~ (z), which is the
diagonal of G, X Gy, is closed in G, x G,. O

2.2. PROPER GROUPOIDS.

DEFINITION 2.9. A topological groupoid G is said to be proper if (r,s): G —
GO x GO s proper.
PROPOSITION 2.10. Let G be a topological groupoid such that G©) is locally
compact. Consider the following assertions:
(i) G is proper;
(ii) (r,s) is closed and for every x € GO, GZ is quasi-compact;
(iii) for all quasi-compact subspaces K and L of GO, Gf( 18 quasi-compact;
(iii)” for all compact subspaces K and L of G0, GL is quasi-compact;
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(iv) for every quasi-compact subspace K of GO, GE is quasi-compact;
(v) Va, y € GO, 3K,, Ly compact neighborhoods of x and y such that
Gii s quasi-compact.

Then (i) <= (ii) <= (iii) <= (iii)’ <= (v) = (). If G is Hausdorff,
then (i)—(v) are equivalent.

Proof. (i) <= (ii) follows from Proposition 1.4, and from the fact that GZ is
homeomorphic to GY if G¥ # 0. (i) = (iii) and (v) = (i) follow Proposi-
tion 1.6 and the formula G% = (r,s)"}(L x K). (iii) = (iii)’ = (v) and
(iii) = (iv) are obvious. If G©) is Hausdorff, then (iv) = (v) is obvious. [

Note that if G = G(©) is a non-HausdorfF topological space, then G is not proper
(since (r, s) is not closed), but satisfies property (iv).

PROPOSITION 2.11. Let G be a topological groupoid. If r: G — G©) is open
then the canonical mapping : G — G(O)/G s open.

Proof. Let V. C G© be an open subspace. If r is open, then r(s~*(V)) =
7Y (m(V)) is open. Therefore, (V) is open. O

PROPOSITION 2.12. Let G be a topological groupoid such that G© is locally
compact and 7: G — G©) is open. Suppose that (r,s)(G) is locally closed in
GO x GO then G /G is locally compact. Furthermore,
(a) if GO is g-compact, then G /G is o-compact;
(b) if (r,8)(G) is closed (for instance if G is proper), then G0 /G is Haus-
dorff.

Proof. Let R = (r,5)(G). Let 7: G — G /G be the canonical mapping. By
Proposition 2.11, 7 is open, therefore G(9) /G is locally quasi-compact. Let us
show that it is locally Hausdorff. Let V be an open subspace of G(?) such that
(V xV)NRisclosed in V x V. Let A be the diagonal in 7(V) x 7(V'). Then
(rxm)"H(A) = (VxV)NRisclosed in VxV. Since rxm: VxV — x(V)xn(V)
is continuous open surjective, it follows that A is closed in 7(V') x 7(V'), hence
7(V) is Hausdorff. This completes the proof that G(©) /G is locally compact
and of assertion (b).

Assertion (a) follows from the fact that for every z € G(©) and every compact
neighborhood K of z, w(K) is a quasi-compact neighborhood of = (z). a

2.3. PROPER ACTIONS.

DEFINITION 2.13. Let G be a topological groupoid. Let Z be a topological space
endowed with an action of G. Then the action is said to be proper if Z x G is
a proper groupoid. (We will also say that Z is a proper G-space.)

A subspace A of a topological space X is said to be relatively compact (resp.
relatively quasi-compact) if it is included in a compact (resp. quasi-compact)
subspace of X. This does not imply that A is compact (resp. quasi-compact).
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PRrROPOSITION 2.14. Let G be a topological groupoid. Let Z be a topological
space endowed with an action of G. Consider the following assertions:
(i) G acts properly on Z;
(i) (r,s): Zx G — Z x Z is closed and ¥z € Z, the stabilizer of z is
quasi-compact;
(iii) for all quasi-compact subspaces K and L of Z, {g € G| LgN K # 0} is
quasi-compact;
(iii)’ for all compact subspaces K and L of Z, {g € G| LgnN K # (0} is
quasi-compact;
(iv) for every quasi-compact subspace K of Z, {g € G| KgnN K # (} is
quasi-compact;
(v) there ezists a family (A;)icr of subspaces of Z such that Z = U A;
and {g € G| AignN A; # 0} is relatively quasi-compact for all i,j € I.
Then (i) < (i1) = (iii) = (i) and (11i) => (iv). If Z is locally compact,
then (iii))” = (v) and (iv) = (v). If G is Hausdor{f and Z is locally
compact Hausdorff, then (i)—(v) are equivalent.

Proof. (i) < (ii) follows from Proposition 2.10[(i) <= (ii)]. Implication
(i) = (iii) follows from the fact that if (Z x G)% is quasi-compact, then its
image by the second projection Z x G — G is quasi-compact. (iii) = (iii)’
and (iii) = (iv) are obvious.

Suppose that Z is locally compact. Take A; C Z compact such that Z =
Uiepzii. If (iii)’ is true, then {g € G| A;g N A; # 0} is quasi-compact, hence
(v). If (iv) is true, then {g € G| A;gNA; # 0} is a subset of the quasi-compact
set {g € G| KgN K # (0}, where K = A; U A;, hence (v).

Suppose that Z is locally compact Hausdorff and that G(©) is Hausdorff. Let us
show (v) = (ii). Let C;; be a quasi-compact set such that {g € G| A;gNA; #
@} C Cij-

Let z € Z. Choose i € I such that z € A;. Since Z and G(© are Hausdorff,
stab(z) is a closed subspace of Cy;, therefore it is quasi-compact.

It remains to prove that the map ®: Z xXg0) G — Z X Z given by
®(z,9) = (z,29) is closed. Let F' C Z Xgo G be a closed subspace, and
(2,2') € ®(F). Choose i and j such that z € A; and 2/ € AJ Then
(Z,Z/) S @(F) N (Az X Aj) C @(Fﬂ (Az X (0 Oij)) C @(Fﬂ (Z X () O”))
There exists a net (2x,gx) € F N (Z Xgo Cyj) such that (z,2') is a limit
point of (zx,2xgx). Since Cj; is quasi-compact, after passing to a universal
subnet we may assume that gy converges to an element g € Cj;. Since G©)
is Hausdorff, F N (Z x g Cjj) is closed in Z x Cyj, so (z,g) is an element of
F N (Z xgw Cij;). Using the fact that Z is Hausdorff and @ is continuous, we
obtain (z,2') = ®(z,9) € ®(F). O

REMARK 2.15. It is possible to define a notion of slice-proper action which
implies properness in the above sense. The two notions are equivalent in many
cases [1, 3].
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PROPOSITION 2.16. Let G be a locally compact groupoid. Then G acts properly
on itself if and only if G is Hausdorff. In particular, a locally compact space
is proper if and only if it is Hausdorff.

Proof. Tt is clear from Proposition 2.10(ii) that G acts properly on itself if and
only if the product ¢: G® — G x G is closed. Since ¢ factors through the
homeomorphism G — G x,.,. G, (g,h) — (g, gh), G acts properly on itself if
and only if G X, G is a closed subset of G x G.

If G is Hausdorff, then clearly G Xrr G is closed in G x G. Conversely, if
G is not Hausdorff, then there exists (z,y) € G© x G such that = # y
and (z,y) is in the closure of the diagonal of G(®) x G, Tt follows that (z,y)
is in the closure of G X,., G, but (z,y) ¢ G X, G, therefore G X, , G is not
closed. |

2.4. PERMANENCE PROPERTIES.

ProrosITION 2.17. If G1 and G4 are proper topological groupoids, then G1 X Gq
18 proper.

Proof. Follows from the fact that the product of two proper maps is proper |2,
Corollaire 1.10.2.3]. O

PROPOSITION 2.18. Let Gy and Gy be two topological groupoids such that Ggo)
is Hausdorff and G is proper. Suppose that f: Gy — G2 is a proper morphism.
Then G is proper.

Proof. Denote by r; and s; the range and source maps of G; (i = 1,2). Let f be
the map Ggo) ngo) — Géo) ngO) induced from f. Since fo(ry,s1) = (2, 82)0f
is proper and Ggo) is Hausdorff, it follows from [2, Proposition 1.10.1.5] that
(r1,s1) is proper. O

PROPOSITION 2.19. Let Gy and Gy be two topological groupoids such that G
is proper. Suppose that f: G1 — Go is a surjective morphism such that the
induced map f': Ggo) — Ggo) is proper. Then Go is proper.

Proof. Denote by r; and s; the range and source maps of G; (i = 1,2). Let Fy C
G be a closed subspace, and Fy = f~1(F,). Since G is proper, (rq,s1)(Fy)
is closed, and since f’ x f’ is proper, (f' x f') o (r1,s1)(F1) is closed. By
surjectivity of f, we have (rq, $2)(F2) = (f' x f) o (r1,81)(F1). This proves
that (72, s2) is closed. Since for every topological space T, the assumptions of
the proposition are also true for the morphism f x 1: G; x T' — G2 x T, the
above shows that (re, s2) X 17 is closed. Therefore, (r2, s2) is proper. O

PROPOSITION 2.20. Let G be a topological groupoid with G0 Hausdorff, acting
on two spaces Y and Z. Suppose that the action of G on Z is proper, and that
Y is Hausdorff. Then G acts properly on' Y X g Z.

Proof. The groupoid (Y X5 Z) x G is isomorphic to the subgroupoid I' =
{(y,v',2,9) € (Y XY) x (ZxG)| p(y) =r(g), ¥y = yg} of the proper groupoid
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(Y xY) x (Z % G). Since Y and G(©) are Hausdorff, T" is closed in (Y x V) x
(Z x G), hence by Proposition 2.10(ii), (Y xgw Z) X G is proper. O

COROLLARY 2.21. Let G be a proper topological groupoid with G©) Hausdorff.
Then any action of G on a Hausdorff space is proper.

Proof. Follows from Proposition 2.20 with Z = G(®). O

PROPOSITION 2.22. Let G be a topological groupoid and f: T — G© be a
continuous map.

(a) If G is proper, then G[T] is proper.

(ii) If G|T) is proper and f is open surjective, then G is proper.

Proof. Let us prove (a). Suppose first that 7' is a subspace of G(?) and that
f is the inclusion. Then G[T] = GL. Since (rr,sz) is the restriction to
(r,s)"X(T x T) of (r,s), and (r, s) is proper, it follows that (rr, s7) is proper.
In the general case, let ' = (T'x T) x G and let T’ C T x G(®) be the graph of f.
Then T is a proper groupoid (since it is the product of two proper groupoids),
and G[T] =T[T"].

Let us prove (b). The only difficulty is to show that (r, s) is closed. Let F C G

be a closed subspace and (y,z) € (r,s)(F). Let F = GIT| N (T x T) x F.
Choose (t',t) € T x T such that f(¢') = y and f(t) = . Denote by 7 and § the

range and source maps of G[T]. Then (¢,t) € (7,5)(F). Indeed, let Q > (¥',1)
be an open set, and Q" = (f x f)(22). Then Q' is an open neighborhood of
(y,x), so ' N (r,s)(F) # 0. It follows that QN (7, 5)(F) # 0.

We have proved that (') € (7,3)(F) = (7,5)(F), so (y,z) € (r,s)(F). O
COROLLARY 2.23. Let G be a groupoid acting properly on a topological space
Z, and let Z1 be a saturated subspace. Then G acts properly on Z;.

Proof. Use the fact that Z; x G = (Z x G)[Z4]. O

2.5. INVARIANCE BY MORITA-EQUIVALENCE. In this section, we will only con-
sider groupoids whose range maps are open. We thus need a stability lemma:

LEMMA 2.24. Let G be a topological groupoid whose range map is open. Let
Z be a G space and f: T — G be a continuous open map. Then the range
maps for Z x G and G[T] are open.

To prove Lemma 2.24 we need a preliminary result:

LEMMA 2.25. Let X, Y, T be topological spaces, g: Y — T an open map
and f: X — T continuous. Let Z = X xp Y. Then the first projection
pri: X XY — X is open.

Proof. Let Q C Z open. There exists an open subspace Q' of X x Y such
that Q@ = Q' N Z. Let A be the diagonal in X x X. One easily checks that
(pry,pry)(Q) = (1 x £)~1(1 x g)(¥) N A, therefore (pry, pr;)(£2) is open in A.
This implies that pr;(£2) is open in X. O
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Proof of Lemma 2.24. This is clear for Z x G = Z X s G using Lemma 2.25.
For G[T, first use Lemma 2.25 to prove that T X G P2, G is open. Since
the range map is open by assumption, the composition T'x ¢ ; G 72,65 GcO0
is open. Using again Lemma 2.25, G[T] ~ T X ropr, (T X5.5 G) 2T s
open. |

In order to define the notion of Morita-equivalence for topological groupoids,
we introduce some terminology:

DEFINITION 2.26. Let G be a topological groupoid. Let T be a topological space
and p: GO — T be a G-invariant map. Then G is said to be p-proper if the
map (r,8): G — GO x1 GO is proper. If G acts on a space Z and p: Z — T
is G-invariant, then the action is said to be p-proper if Z x G is p-proper.

It is clear that properness implies p-properness. There is a partial converse:

PROPOSITION 2.27. Let G be a topological groupoid, T a topological space,
p: GO — T o G-invariant map. If G is p-proper and T is Hausdorff, then G
18 proper.

Proof. Since T is Hausdorff, G x; G is a closed subspace of G0 x G(©),
therefore (r,s), being the composition of the two proper maps G — G©) xp
GO — GO x GO is proper. |

REMARK 2.28. When T is locally Hausdorff, one easily shows that G is p-proper
iff for every Hausdorff open subspace V of T, Gﬁ,lggg 18 proper.

PROPOSITION 2.29. [14] Let G1 and Gy be two topological (resp. locally com-
pact) groupoids. Let r;, s; (i = 1,2) be the range and source maps of G;, and
suppose that r; are open. The following are equivalent:
(i) there exist a topological (resp. locally compact) space T and f;: T —
GEO) open surjective such that G1[T] and G2[T] are isomorphic;

(ii) there exists a topological (resp. locally compact) space Z, two continu-
ous maps p: Z — Ggo) ando: Z — G(QO), a left action of G1 on Z with
momentum map p and a Tight action of Go on Z with momentum map
o such that

(a) the actions commute and are free, the action of Gy is p-proper and
the action of Gy is o-proper;

(b) the natural maps Z/Gq — Ggo) and GH1\Z — Ggo) induced from p
and o are homeomorphisms.

Moreover, one may replace (b) by

(b)’ p and o are open and induce bijections Z/Ga — Ggo) and G1\Z —
.
In (i), if T is locally compact then it may be assumed Hausdorff.
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If G; and G4 satisfy the equivalent conditions in Proposition 2.29, then they
are said to be Morita-equivalent. Note that if Ggo) are Hausdorff, then by
Proposition 2.27, one may replace “p-proper” and “o-proper” by “proper”.
To prove Proposition 2.29, we need preliminary lemmas:

LEMMA 2.30. Let G be a topological groupoid. The following are equivalent:
(i) r: G — G is open;
(ii) for every G-space Z, the canonical mapping w: Z — Z/G is open.

Proof. To show (ii) = (i), take Z = G: the canonical mapping 7: G — G/G
is open. Therefore, for every open subspace U of G, r(U) = GO nx=(x(U))
is open.

Let us show (i) = (ii). By Lemma 2.24, the range map r: Z x G — Z is open.
The conclusion follows from Proposition 2.11. O

LEMMA 2.31. Let G be a topological groupoid such that the range map r: G —
G s open. Let X be a topological space endowed with an action of G and T
a topological space. Then the canonical map

(X xT))G— (X/G)xT
s an isomorphism.

Proof. Let m: X — X/G and 7': X x T — (X x T)/G be the canonical
mappings. Since 7 is open (Lemma 2.30), f o7’ = 7 x 1 is open. Since 7’ is
continuous surjective, it follows that f is open. O

LEMMA 2.32. Let G be a topological groupoid whose range map is open and
[:Y — Z a proper, G-equivariant map between two G-spaces. Then the in-
duced map f:Y/G — Z/G is proper.

Proof. We first show that f is closed. Let 7: Y — Y/G and 7': Z — Z/G be
the canonical mappings. Let A C Y/G be a closed subspace. Since f is closed
and 7 is continuous, (7')"(f(A)) = f(m~1(A)) is closed. Therefore, f(A) is
closed.

Applying this to f x 1, we see that for every topological space T, (Y xT)/G —
(Z x T)/G is closed. By Lemma 2.31, f x 17 is closed. O

LEMMA 2.33. Let Gy and Gs be topological groupoids whose range maps are
open. Let Zy,Zy and X be topological spaces. Suppose there are maps

X &z o0 e g, 22 gl

a right action of Go on Z1 with momentum map o1, such that p1 is Go-invariant
and the action of Go is p1-proper, a left action of Ga on Zs with momentum
map pe and a right ps-proper action of Gs on Zs with momentum map oo which
commutes with the Ga-action.

Then the action of Gs on Z = Z1 Xq, Za is p1-proper.
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Proof. Let ¢: Zy x Gz — Zz X 0 Z2 be the map (22,7) +— (22,227). By
assumption, ¢ is proper, therefor62 1z, X ¢ is proper. Let F' = {(21, 22,24) €
Zy X Zy X Zs| 01(21) = pa(22) = p2(25)}. Then 1z, x p: (1 x @) YF) — F
is proper, i.e. 7 X G (Zy x G3) = 74 X GO (Zy X G Z5) is proper. By
Lemma 2.32, taking the quotient by G, we get that the map

a: Z A Gg — Z1 X Go (Z2 XG(O) ZQ)
2
defined by (z1, 22,7) — (21, 22, 227y) is proper.

By assumption, the map Z; x Go — Z; xx Z; given by (z1,9) — (21,219) is
proper. Endow Z; x G5 with the following right action of Go x Ga: (21, ¢) -

(¢',9") = (219, (¢")"tgg"). Using again Lemma 2.32, the map
B: Z1 X, (Z9 X G Zs) = (Z1 X G2) Xgyxa, (Z2 X Zs)
— (Z1 Xx Z1) XGoxGy (Lo X Zo) = Z Xx Z
is proper. By composition, fo«a: Z x G3 — Z X x Z is proper. O

Proof of Proposition 2.29. Let us treat the case of topological groupoids. As-
sertion (b’) follows from the fact that the canonical mappings Z — Z/G2 and
Z — G1\Z are open (Lemma 2.30).

Let us first show that (ii) is an equivalence relation. Reflexivity is clear (taking
Z =G, p=r,0=s), and symmetry is obvious. Suppose that (71, p1,02) and
(Za, p2,09) are equivalences between G; and Go, and G5 and G3 respectively.
Let Z = Zy X, Z2 be the quotient of Z; X G Zy by the action (z1,23) -y =

(17,7 122) of G3. Denote by p: Z — G(lo) ando: Z — Ggo) the maps induced
from p; X1 and 1 x 02. By Lemma 2.25, the first projection pry: Z; XG;U) Ly —
Z is open, therefore p = p; o pry is open. Similarly, o is open. It remains to
show that the actions of G5 and Gy are p-proper and o-proper respectively.
For (3, this follows from Lemma 2.33 and the proof for G is similar.

This proves that (ii) is an equivalence relation. Now, let us prove that (i) and
(ii) are equivalent.

Suppose (ii). Let ' = Gy x Z x Gy and T = Z. The maps p: T — G(lo) and
o: T — G(QO) are open surjective by assumption. Since G1 X Z ~ Z X GO Z and
Z'X G2 ~ 7 XGgo) Z, we have GQ[T] = (T X T) XGgo)xGéo) G2 ~ (Z X Gz) X sopra,o
7 ~ (Z XG(lo) Z) Xoopra,o Z =7 XG(IO) (Z XGS)) Z) ~ 7 XG(lo) (Gl X Z) ~
G % (Z X 7Z) ~ Gy X (Z x G3) =T. Similarly, I" ~ G1[T7], hence (i).

Conversely, to prove (i) == (i) it suffices to show that if f: T — G is
open surjective, then G and G[T] are equivalent in the sense (ii), since we know
that (ii) is an equivalence relation. Let Z =T x, r G.

Let us check that the action of G is pri-proper. Write Z x G = {(t,g,h) €
T x G x G| f(t) = r(g) and s(g) = r(h)}. One needs to check that the map
ZxG — (T x¢,@G)?* defined by (t,g,h) — (t,g,t,h) is a homeomorphism onto
its image. This follows easily from the facts that the diagonal map T'— T x T
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and the map G® — G x G, (g,h) — (g, gh) are homeomorphisms onto their
images.

Let us check that the action of G[T] is sopro-proper. One easily checks that the
groupoid G’ = G[T| x (T x ¢, G) is isomorphic to a subgroupoid of the trivial
groupoid (T x T') x (G x G). It follows that if v’ and s’ denote the range and
source maps of G’, the map (r’,s’) is a homeomorphism of G’ onto its image.

Let us now treat the case of locally compact groupoids. In the proof that (ii)
is a transitive relation, it just remains to show that Z is locally compact.

Let Us be a Hausdorff open subspace of Géo). We show that =1 (Us) is locally
compact. Replacing G3 by (Gg)gz7 we may assume that Gy acts freely and
properly on Z5. Let T be the groupoid (Z; X GO Z3) X Ga,and R = (r,s)(T") C
(Z1 Xag’) Z3)%. Since the action of G5 on Z, is free and proper, there exists

a continuous map : Zy X o) Za — Go such that zo = ¢(29,25)25. Then

ay
R = {(21,22,21,2%) € (Z; X;ém Z3)%; 21 = z1p(29,25)} is locally closed. By
Proposition 2.12, Z = (Z; X G Z5)/@ is locally compact.

Finally, if (i) holds with T' = U,;V; with V; open Hausdorff, let 7" = I1V;. Tt is
clear that G1[T'] ~ G2[T"]. O

Let us examine standard examples of Morita-equivalences:

EXAMPLE 2.34. Let G be a topological groupoid whose range map is open. Let
(Uy)ier be an open cover of G and U = ;e U;. Then GU] is Morita-
equivalent to G.

EXAMPLE 2.35. Let G be a topological groupoid, and let Hy, Ho be subgroupoids

such that the range maps r;: H; — Hi(o) are open. Then (Hl\ngglg) x Hy and

H; x (GS(HI)/HQ) are Morita-equivalent.

S(HQ)
Proof. Take Z = nggg and let p: Z — Z/Hy and o: H1\Z be the canonical
mappings. The fact that these maps are open follows from Lemma 2.30. |

The following proposition is an immediate consequence of Proposition 2.22.

PROPOSITION 2.36. Let G and G’ be two topological groupoids such that the
range maps of G and G' are open. Suppose that G and G’ are Morita-equivalent.
Then G is proper if and only if G' is proper.

COROLLARY 2.37. With the notations of Example 2.34, G is proper if and only
if GIU] is proper.
3. A TOPOLOGICAL CONSTRUCTION

Let X be a locally compact space. Since X is not necessarily Hausdorff, a
filter! 7 on X may have more than one limit. Let S be the set of limits of a
convergent filter F. The goal of this section is to construct a Hausdorff space

lora net; we will use indifferently the two equivalent approaches
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HX in which X is (not continuously) embedded, and such that F converges to
Sin HX.

3.1. THE SPACE HX.

LEMMA 3.1. Let X be a topological space, and S C X. The following are
equivalent:
(i) for every family (Vs)ses of open sets such that s € Vi, and Vo = X
except perhaps for finitely many s’s, one has NyesVs # 0;
(i) for every finite family (V;)ier of open sets such that SNV; # 0 for all
i, one has NijerV; # 0.
Proof. (i) = (ii): let (V;)ier as in (ii). For all ¢, choose s(i) € SNV;. Put
Wy = Ns—s(s) Vi, with the convention that an empty intersection is X. Then by
(i), 0 # NsesWs = Nicr Vi
(i) = (i): let (Vis)ses as in (i), and let I = {s € S| Vs # X}. Then
NsesVe = NierVi # 0. U

We shall denote by HX the set of non-empty subspaces S of X which satisfy
the equivalent conditions of Lemma 3.1, and HX = HX U {0}.

LEMMA 3.2. Let X be a locally Hausdorff space. Then every S € HX is locally
finite. More precisely, if V is a Hausdorff open subspace of X, then VNS has
at most one element.

Proof. Suppose a # b and {a,b} C VNS. Then there exist V,, V} open disjoint
neighborhoods of a and b respectively; this contradicts Lemma 3.1(ii). ]

Suppose that X is locally compact. We endow HX with a topology. Let
us introduce the notations Qy = {S € HX| VNS # 0} and Q9 = {S €

HX| QNS =0} The topology on HX is generated by the Qs and Q%@’s (V
open and ) quasi-compact). More explicitly, a set is open if and only if it is
a union of sets of the form Q?Vi)ia = Q9N (Nie1Qy;) where (Vi)er is a finite
family of open Hausdorff sets and @ is quasi-compact.

PRrROPOSITION 3.3. For every locally compact space X, the space HX is Haus-

dorff.
Proof. Suppose S ¢ S' and S, S’ € HX. Let s € S — S’. Since S’ is locally

finite and since every singleton subspace of X is closed, there exist V' open and
K compact such that s € V ¢ K and K NS" = (. Then Qy and QX are
disjoint neighborhoods of S and S’ respectively. O
For every filter F on HX, let
(1) L(F)={a e X|VV > a open, Qy € F}.
LEMMA 3.4. Let X bAe a locally compact space. Let F be a filter on HX. Then
F converges to S € HX if and only if properties (a) and (b) below hold:

(a) VV open, VNS #0 = Qv € F;
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(b) YQ quasi-compact, QNS =0 = Q9 ¢ F.
If F is convergent, then L(F) is its limit.

Proof. The first statement is obvious, since every open set in HX is a union of
finite intersections of Qy’s and Q¥’s.

Let us prove the second statement. It is clear from (a) that S C L(F). Con-
versely, suppose there exists a € L(F) — S. Since S is locally finite and every
singleton subspace of X is closed, there exists a compact neighborhood K of
a such that KNS = (. Then a € L(F) implies Qx € F, and condition (b)
implies QF € F, thus ) = QX N Qg € F, which is impossible: we have proved
the reverse inclusion L(F) C S. O

REMARK 3.5. This means that if Sy — S, then a € S if and only if VA there
exists sy € Sy such that sy — a.

EXAMPLE 3.6. Consider Example 2.8 with T' = Zo and H = {0}. Then HG =
G U {S} where S = {(0,0),(0,1)}. The sequence (1/n,0) € G converges to S
in HG, and (0,0) and (0,1) are two isolated points in HG.

PRrROPOSITION 3.7. Let X be a locally compact space and K C X quasi-compact.
Then L ={S € HX| SNK # 0} is compact. The space HX is locally compact,
and it is o-compact if X is o-compact.

Proof. We show that L is compact, and the two remaining assertions follow
easily. Let F be a ultrafilter on L. Let Sy = L(F). Let us show that SoNK # {:
for every S € L, choose a point ¢(S) € K NS. By quasi-compactness, ¢(F)
converges to a point a € K, and it is not hard to see that a € Sy.
Let us show Sy € HX: let (V5) (s € Sy) be a family of open subspaces of X
such that s € V; for all s € Sy, and Vi = X for every s ¢ S1 (51 C Sp finite).
By definition of So, Q(v,),.5, = Nses, {lv, belongs to F, hence it is non-empty.
Choose S € Qv,),cs,, then SNV, # 0 for all s € S;. By Lemma 3.1(ii),
Nses, Vs # 0. This shows that Sy € HX.
Now, let us show that F converges to Sg.
e If V is open Hausdorff such that Sy € Qy, then by definition Qy € F.
e If Q is quasi-compact and Sy € QF, then Q9 € F, otherwise one would
have {S € HX| SNQ # 0} € F, which would imply as above that
SoNQ # 0, a contradiction.

From Lemma 3.4, F converges to Sy. ]

PROPOSITION 3.8. Let X be a locally compact space. Then HX is the one-point
compactification of HX.

Proof. Tt suffices to prove that HX is compact. The proof is almost the same
as in Proposition 3.7. (|

REMARK 3.9. If f: X — Y 4s a continuous map from a locally compact space
X to any Hausdorff space Y, then f induces a continuous map Hf: HX — Y.
Indeed, for every open subspace V of Y, (Hf)"H(V) = Qp-1(v) is open.
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PROPOSITION 3.10. Let G be a topological groupoid such that G0 is Hausdorff,
and r: G — GO s open. Let Z be a locally compact space endowed with a
continuous action of G. Then HZ is endowed with a continuous action of G
which extends the one on Z.

Proof. Let p: Z — G© such that G acts on Z with momentum map p. Since
p has a continuous extension Hp: HZ — G, for all S € HZ, there exists
z € G such that S C p~!(x). For all g € G®, write Sg = {sg| s € S}.
Let us show that Sg € HZ. Let V, (s € S) be open sets such that sg € V;.
By continuity, there exist open sets Wy > s and W, > g such that for all
(z,h) € Wy xgoy Wy, zh € Vs. Let V! = Wy Np~t(r(W,)). Then V/ is an
open neighborhood of s, so there exists z € NyegV,. Since p(z) € r(W,), there
exists h € Wy such that p(z) = r(h). It follows that zh € NsesV;s. This shows
that Sg € HZ.
Let us show that the action defined above is continuous. Let ®: HZ X
G — HZ be the action of G on HZ. Suppose that (Sx,gx) — (S,9) and let
S" = L((Sx,9x)). Then for all a € S there exists sy € Sy such that sy — a.
This implies sygx — ag, thus ag € S’. The converse may be proved in a similar
fashion, hence Sg = 5.
Applying this to any universal net (S, gx) converging to (S, g) and knowing
from Proposition 3.8 that ®(Sy, gx) is convergent in HZ, we find that ®(Sy, g»)
converges to ®(5, g). This shows that ® is continuous in (S, g).

O

3.2. THE sPACE H'X. Let X be a locally compact space. Let Qf, = {S €
HX|S C V}. Let H'X be HX as a set, with the coarsest topology such that
the identity map H'X — HX is continuous, and Q}, is open for every relatively
quasi-compact open set V. The space H’'X is Hausdorff since HX is Hausdorff,
but it is usually not locally compact.

LEMMA 3.11. Let X be a locally compact space. Then the map
H'X — N U{oo}, S+ #S
18 upper semi-continuous.

Proof. Let S € H'X such that #S5 < co. Let Vs (s € S) be open relatively
compact Hausdorff sets such that s € V, and let W = U,esV;. Then S' € H'X
implies #(S' NV;) < 1, therefore S’ € O, implies #S5" < #5S. |

PROPOSITION 3.12. Let X be a locally compact space such that the closure of
every quasi-compact subspace is quasi-compact. Then

(a) the natural map H'X — HX is a homeomorphism,
(b) for every compact subspace K C X, there exists Cx > 0 such that

VSeHX, SNK #0 = #S <Ck,

(¢) If G is a locally compact proper groupoid with G°) Hausdorff then G
satisfies the above properties.
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Proof. To prove (b), let K; be a quasi-compact neighborhood of K and let
K' =K. Let a € KNS and suppose there exists b € S — K’. Then K; and
X — K’ are disjoint neighborhoods of a and b respectively, which is impossible.
We deduce that S C K’.

Now, let (V;);cr be a finite cover of K’ by open Hausdorff sets. For all b € S,
let I, = {i € I| b € V;}. By Lemma 3.2, the I;’s (b € S) are disjoint, whence
one may take Cx = #I.

To prove (a), denote by A C X x X the diagonal. Let us first show that
pri: A — X x X is proper.

Let K C X compact. Let L C X quasi-compact such that K C L. If (a,b) €
AN (K x X), then b € L: otherwise, L x L¢ would be a neighborhood of (a, b)
whose intersection with A is empty. Therefore, pri'(K) = AN (K x L) is
quasi-compact, which shows that pry is proper.

It remains to prove that €, is open in HX for every relatively quasi-compact
openset V.C X. Let S € Qf,, a € S and K a compact neighborhood of a. Let
L =pry(AN(K x X)). Then Q = L —V is quasi-compact, and S € Q?{ C Q,
therefore 2, is a neighborhood of each of its points.

To prove (c), let K C G be a quasi-compact subspace. Then L = r(K) U s(K)
is quasi-compact, thus G¥ is also quasi-compact. But K is closed and K C G¥,
therefore K is quasi-compact. O

4. HAAR SYSTEMS

4.1. THE SPACE C,.(X). For every locally compact space X, C.(X)q will denote
the set of functions f € C.(V) (V open Hausdorff), extended by 0 outside V.
Let C.(X) be the linear span of C¢(X)g. Note that functions in C.(X) are not
necessarily continuous.

PROPOSITION 4.1. Let X be a locally compact space, and let f: X — C. The
following are equivalent:

(i) f € Ce(X);

(i) f=1(C*) is relatively quasi-compact, and for every filter F on X, let

F =i(F), where i: X — HX is the canonical inclusion; if F converges
to S € HX, thenlimz f = g f(s).

Proof. Let us show (i) = (ii). By linearity, it is enough to consider the case
f € C.(V), where V C X is open Hausdorfl. Let K be the compact set
f~H(C*)NV. Then f~1(C*) C K. Let F and S as in (ii). If SNV = 0, then
S € O hence QF € F,ie. X — K € F. Therefore, limg f =0 = Y oses f(5).
If SNV = {a}, then a is a limit point of F, therefore limz f = f(a) =
S es £9)

Let us show (ii) = (i) by induction on n € N* such that there exist V1,...V,,
open Hausdorff and K quasi-compact satisfying f~1(C*) c K Cc V; U---UV,,.

DOCUMENTA MATHEMATICA 9 (2004) 565-597



582 JEAN-Louis Tu

For n = 1, for every x € Vi, let F be a ultrafilter convergent to z. By
Proposition 3.8, F is convergent; let S be its limit, then limr f = Yoecs f(s8) =
f(z), thus fy, is continuous.

Now assume the implication is true for n — 1 (n > 2) and let us prove it for n.
Since K is quasi-compact, there exist V{, ...,V open sets, K; ..., K, compact
such that K C V/U---UV  and V/ C K; CV;. Let F = (V/U---UV}) —
(V{u---UV,_;). Then F is closed in V;; and f|p is continuous. Moreover,
fip = 0 outside K’ = K — (V{U---UV,_,) which is closed in K, hence quasi-
compact, and Hausdorff, since K" C V;. Therefore, fijp € C.(F). It follows
that there exists an extension h € C.(V,)) of fip. By considering f — h, we
may assume that f = 0 on F, so f = 0 outside K’ = K; U---UK,,_;. But
K' CcViU---UV,_q, hence by induction hypothesis, f € C.(X). O

COROLLARY 4.2. Let X be a locally compact space, f: X — C, f, € C.(X).
Suppose that there exists fized quasi-compact set Q C X such that f,1(C*) C Q
for all n, and f, converges uniformly to f. Then f € C.(X).

LEMMA 4.3. Let X be a locally compact space. Let (U;)icr be an open cover of
X by Hausdorff subspaces. Then every f € C.(X) is a finite sum f = >_ fi,
where f; € C.(U;).

Proof. See [6, Lemma 1.3]. O

LEMMA 4.4. Let X and Y be locally compact spaces. Let f € C.(X xY). Let
V and W be open subspaces of X and Y such that f~1(C*) CcQ CV x W for
some quasi-compact set Q. Then there exists a sequence f, € Co(V) @ C.(W)
such that limy, o || f — falleoc = 0.

Proof. We may assume that X =V and Y = W. Let (U;) (resp. (V;)) be
an open cover of X (resp. Y) by Hausdorff subspaces. Then every element of
C.(X xY) is a linear combination of elements of C.(U; x V;) (Lemma 4.3). The
conclusion follows from the fact that the image of C..(U;)®C.(V;) — C.(U; x V)
is dense. ]

LEMMA 4.5. Let X be a locally compact space and Y C X a closed subspace.
Then the restriction map C.(X) — C.(Y) is well-defined and surjective.

Proof. Let (U;);er be a cover of X by Hausdorff open subspaces. The map
C.(U;) = C.(U;NY) is surjective (since Y is closed), and @;c;C.(U; NY) —
C.(Y) is surjective (Lemma 4.3). Therefore, the map @®;c;C.(U;) — C.(Y) is
surjective. Since it is also the composition of the surjective map ®;c;C.(U;) —
C.(X) and of the restriction map C.(X) — C.(Y), the conclusion follows. O

4.2. HAAR SYSTEMS. Let G be a locally compact proper groupoid with Haar
system (see definition below) such that G(©) is Hausdorff. If G' is Hausdorff,
then C.(G(®) is endowed with the C*(G)-valued scalar product (¢,7)(g) =
&(r(g))n(s(g)). Tts completion is a C(G)-Hilbert module. However, if G is

not Hausdorff, the function g — £(r(g))n(s(g)) does not necessarily belong to
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C.(G), therefore we need a different construction in order to obtain a C(G)-
module.

DEFINITION 4.6. [16, pp. 16-17] Let G be a locally compact groupoid such that
G® is Hausdorff for every x € G, A Haar system is a family of positive

measures A = {\*| x € GO} such that Vx,y € GO, Yy € C.(G),
(i) supp(\*) = G*;
(i) M)z [ e p(9) X (dg) € Ce(GO);

Note that G* is automatically Hausdorff if G(©) is Hausdorff (Prop. 2.8). Recall
also [15, p. 36] that the range map for G is open.

LEMMA 4.7. Let G be a locally compact groupoid with Haar system. Then for
every quasi-compact subspace K of G, sup,cqo A*(K NG*) < cc.

Proof. Tt is easy to show that there exists f € C.(G) such that 1x < f. Since
SUpP,eqo A(f)(z) < oo, the conclusion follows. O

LEMMA 4.8. Let G be a locally compact groupoid with Haar system such
that G is Hausdorff. Suppose that Z is a locally compact space and that
p: Z — GO is continuous. Then for every f € Co(Z xp,r G), M(f): 2 =

fger(z> f(z,9) N (dg) belongs to C.(Z).

Proof. By Lemma 4.5, f is the restriction of an element of C.(Z x G).

If f(z,9) = fi(2)fa(g), then ¥(x) = [ g f2(9) A"(dg) belongs to Ce(G),
therefore 1 o p € Cy(Z). It follows that A(f) = f1(v o p) belongs to C.(Z).
By linearity, if f € C.(Z) @ C.(G), then A(f) € C.(2).

Now, for every f € C.(Z x G), there exist relatively quasi-compact open sub-
spaces V and W of Z and G and a sequence f, € C.(V) ® C.(W) such that
fn converges uniformly to f. From Lemma 4.7, A\(f,) converges uniformly to
A(f), and A(fy) € Cc(Z). From Corollary 4.2, A(f) € C.(Z). O

PROPOSITION 4.9. Let G be a locally compact groupoid with Haar system such
that G is Hausdorff. If G acts on a locally compact space Z with momentum
map p: Z — GO then (\**)),c is a Haar system on Z x G.

Proof. Results immediately from Lemma 4.8. ]

5. THE HILBERT MODULE OF A PROPER GROUPOID

5.1. THE SPACE X’. Before we construct a Hilbert module associated to a
proper groupoid, we need some preliminaries. Let G be a locally compact
groupoid such that G(©) is Hausdorff. Denote by X’ the closure of G(9) in HG.

LEMMA 5.1. Let G be a locally compact groupoid such that G is Hausdorff.
Then for all S € X', S is a subgroup of G.

DOCUMENTA MATHEMATICA 9 (2004) 565-597



584 JEAN-Louis Tu

Proof. Since r and s: G — G extend continuously to maps HG — G(©), and
since r = s on G, one has Hr = Hs on X', ie. 3zg € GO, S C G3o.

Let F be a filter on G(© whose limit is S. Then a € S if and only if a is a
limit point of F. Since for every z € G(© we have 2~ 'z = x, it follows that
for every a, b € S one has a='b € S, whence S is a subgroup of G3o. ]

Denote by ¢: X’ — G©) the map such that S C GZEE;. The map ¢ is continuous
since it is the restriction to X’ of Hr.

LEMMA 5.2. Let G be a locally compact proper groupoid such that G©) is
Hausdorff. Let F be a filter on X', convergent to S. Suppose that q(F)
converges to So € X'. Then Sy is a normal subgroup of S, and there ex-
ists Q € F such that VS" € Q, S’ is group-isomorphic to S/Sy. In particular,
{8 € X'| #S5 = #So#S5'} € F.

Proof. Using Proposition 3.12, we see that .S is finite.

We shall use the notation Qv,y,., = Qv N,y Let Vi C Vs (s € 5)
be Hausdorff, open neighborhoods of s, chosen small enough so that for some
Qe F,

( ) Q - Q(V,)SES7
( V5/1V5/2 - ‘/Sléza vsl) Sg € S.

)
(c) Vs € S =8, VS € Q, q(5) ¢ V.
(d) a() € Qviy.es,

Let §" € Q. Let ¢: S — S’ such that {p(s)} = 5"’ NV,. Then ¢ is well-defined
since S’ NV! # 0 (see (a)) and V is HausdorfT.

If 51, 55 € S then ¢(s;) € S'NV].. By (b), p(s1)p(s2) € S'NVy,s,. Since Vi,
is Hausdorff and also contains ¢(s1s2) € S’, we have ¢(s182) = ¢(s1)p(s2).
This shows that ¢ is a group morphism.

The map ¢ is surjective, since S” C UsesVy (see (a)).

By (c), ker(p) C Sp and by (d), Sp C ker(y). O

Suppose now that the range map r: G — G© is open. Then X’ is endowed
with an action of G (Prop. 3.10) defined by S - g = g~ 1Sg = {g 'sg| s € S}.

5.2. CONSTRUCTION OF THE HILBERT MODULE. Now, let G be a locally com-
pact, proper groupoid. Assume that G is endowed with a Haar system, and

that G(© is Hausdorff. Let
EV={feC.(X") f(S) = V/#Sf(q(S)) VS € X'}.
S)teX')
C.

)
(q(S) € G is identified to {q(
Define, for all £, n € £° and f € C.(G): (£,1)(g) = £(r(9))n(s(g)) and
€S = [ o Softe )N ).
geGa(s)

PROPOSITION 5.3. With the above assumptions, the completion £(G) of £° with
respect to the norm ||€|| = |[(€, €)||V/? is a C*(G)-Hilbert module.
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We won'’t give the direct proof here since this is a particular case of Theorem 7.8
(see Example 7.7(c)).

6. CUTOFF FUNCTIONS

If G is a locally compact Hausdorff proper groupoid with Haar system. Assume
for simplicity that G(®) /G is compact. Then there exists a so-called “cutoff”
function ¢ € C.(G(®) such that for every 2 € G, fger c(s(g)) \*(dg) =1,

and the function g — +/c(r(g))c(s(g)) defines projection in C*(G). However,
if G is not Hausdorff, then the above function does not belong to C.(G) is

general, thus we need another definition of a cutoff function.
Let X4, = {S € X'| #5 > k}. By Lemma 3.11, X%, is closed.

LEMMA 6.1. Let G be a locally compact, proper groupoid with G®) Hausdorff.
Let X>i = q(XL,). Then Xy is closed in G%).

Proof. Tt suffices to show that for every compact subspace K of G0, X >eNK
is closed. Let K’ = GEK. Then K’ is quasi-compact, and from Proposition 3.7,
K" ={S € HG| SN K’ # 0} is compact. The set ¢~ (K) N X%, = K" N X,
is closed in K", hence compact; its image by ¢ is X>p N K. o

LEMMA 6.2. Let G be a locally compact, proper groupoid, with G©) Hausdorff.
Let a € R. For every compact set K C G, there exists f: X — Ry
continuous, where X} = ¢ *(K) C X', such that

VS € X, f(S) = f(a(9))(#9)".

Proof. Let K' = G¥. Tt is closed and quasi-compact. From Proposition 3.7,
X/ is quasi-compact. For every S € X}, we have S C K'. By Proposition 3.12,
there exists n € N* such that X%, N X} = 0. We can thus proceed by reverse
induction: suppose constructed fr1: X5Ng ' (X>p41) — R continuous such
that fi11(S) = fr41(q(S9))(#5)* for all § € X N g™ (X>p41)-

Since X} N g~ (X>k41) is closed in the compact set X} N g~ (X>), there
exists a continuous extension h: X Ng~1(X>k) — R of fri1. Replacing h(x)
by sup(h(z),inf fy41), we may assume that h(X} N g *(X>x)) C RY. Put
fx(S) = h(q(S))(#S5)“. Let us show that fi is continuous.

Let F be a ultrafilter on X} Ng~'(X>x), and let S be its limit. Since ¢(F) is
a ultrafilter on K, it has a limit Sy € XY.

For every Si € ¢~ 1(X>y), choose 1(S1) € X%, such that ¢(S1) = q(¥(Sh)).
Let S’ € X} N X, be the limit of Y(F).

From Lemma 5.2, Oy = {S1 € X}, Ng  (X>k)| #S = #S0#51} is an element
of F, and Qo = {5y € XL | #5' = #S0#52} is an element of (F).
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o If #5y > 1, then S" € X511, so S and Sy belong to ¢7 1 (X>p41)-
Therefore, fi(S1) = (#51)*h(q(S1)) converges with respect to F to

(#S)a _ (#S)a -
(#So)ah(so) = (#So)afk+1(50) = fir1(9)

= fr1(a(9)(#5)" = h(a(9))(#5)" = fi(S5).

o If Sy = {q(9)}, then fr(S1) = (#S51)*h(q(S1)) converges with respect
to F to (#5)*h(q(5)) = fx(S5).

Therefore, fi is a continuous extension of f 1. O

THEOREM 6.3. Let G be a locally compact, proper groupoid such that G is
Hausdorff and G /G is o-compact. Let 7: G — G©) /G be the canonical
mapping. Then there exists c: X' — Ry continuous such that

(a) ¢(S) =c(q(S)#S forall S € X';

(b) Va € GO/G, 3z € 7= (a), c(z) # 0;

(c) YK € GO compact, supp(c) N g~ (F) is compact, where F = s(G¥).

If moreover G admits a Haar system, then there exists c: X' — Ry continuous
satisfying (a), (b), (¢) and

(d) ¥z € GO, / . Clsla) X (dg) = 1.

Proof. There exists a locally finite cover (V;) of G(9) /G by relatively compact
open subspaces. Since 7 is open and G(?) is locally compact, there exists K; C
G compact such that (K;) D Vi. Let (¢;) be a partition of unity associated
to the cover (V;). For every i, from Lemma 6.2, there exists ¢;: Xj. — R
continuous such that ¢;(S) = ¢;(q(5))#S for all S € Xj. . Let

o(S) = Zci(s)%(W(Q(S)))-
It is clear that ¢ is continuous from X’ to Ry, and that ¢(S) = ¢(q(S))#S.
Let us prove (b): let zo € G(?). There exists i such that ¢;(7(xg)) # 0. Choose
x € K; such that w(z) = 7(xo), then c¢(z) > ¢;(x)p;(7(xg)) > 0.
Let us show (c). Note that F' = 7= 1(7m(K)) is closed, so ¢~ (F) is closed.
Let K; be a compact neighborhood of K and Fy = 7 !(n(K3)). Let J =
{il Vi nw(K1) # 0}. Then for all i ¢ J, c;(p; 0omoq) = 0 on ¢ (F),
therefore ¢ = 37, ; ¢j(¢; o ™o q) in a neighborhood of g 1(F). Since for all
i, supp(c;(p; o 7 o q)) is compact and since J is finite, supp(c) N ¢~ *(F) C
Uiessupp(c;i(p; o o q)) is compact.
Let us show the last assertion. Let ¢(g) = c(s(g)). Let F be a filter on G
convergent in HG to A C G. Choose a € A and let S = a'A. Then s(F)
converges to S in HG, hence

lim o = #Se(s(a) = 3 e(s(9)) = D olg):

geSs geSs
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For every compact set K ¢ GO,

{9 € G| r(g) € K and ¢(g) # 0}
C {g€G|r(g) € K and s(g) € supp(c)}

K
C Gq(supp(C)ﬂq*I(F))’

so GE N {g € G| ¢(g) # 0} is included in a quasi-compact set. Therefore, for
every | € Co.(G©), g+ I(r(g))¢(g) belongs to C.(G). Tt follows that h(z) =
fqeGm ©(g) A*(dg) is a continuous function. Moreover, for every = € G() there
exists g € G® such that ¢(g) # 0, so h(z) > 0 Vo € G, Tt thus suffices to
replace ¢(x) by c(z)/h(x). O

EXAMPLE 6.4. In Ezample 2.3 with T' = Z,, and H = {0}, the cutoff function
is the unique continuous extension to X' of the function c¢(z) =1 for x € (0,1],
and ¢(0) = 1/n.

PROPOSITION 6.5. Let G be a locally compact, proper groupoid with Haar sys-
tem such that G is Hausdorff and G©) /G is compact. Let ¢ be a cutoff
function. Then the function p(g) = \/c(r(g))c(s(g)) defines a selfadjoint pro-
jection p € CX(G), and E(G) is isomorphic to pC’(G).

Proof. Let &(z) = /c(z). Then one easily checks that & € Y, (&,&) = p
and £p(&o, &0) = &0, therefore p is a selfadjoint projection in C}(G). The maps
E(G) — pCr (@), & (0,8 = p(6o: )

pCr(G) — E(@), a— &a = &opa

are inverses from each other. O

7. GENERALIZED MORPHISMS AND C*-ALGEBRA CORRESPONDENCES

UNTIL THE END OF THE PAPER, ALL GROUPOIDS ARE ASSUMED LOCALLY
COMPACT, WITH OPEN RANCE MAP. In this section, we introduce a notion of
generalized morphism for locally compact groupoids which are not necessarily
Hausdorff, and a notion of locally proper generalized morphism.

Then, we show that a locally proper generalized morphism from G; to Go which
satisfies an additional condition induces a C}(G1)-module £ and a *-morphism
Cr(G2) — K(E), hence an element of KK(C}(G2),C}(G1)).

7.1. GENERALIZED MORPHISMS.

DEFINITION 7.1. [4, 5, 8,9, 12, 14] Let Gy and G2 be two groupoids. A gener-
alized morphism from Gy to Gy is a triple (Z, p, o) where
"Lz a,
Z is endowed with a left action of G1 with momentum map p and a right action
of Go with momentum map o which commute, such that
(a) the action of G is free and p-proper,
(b) p induces a homeomorphism Z/Gy ~ Ggo).
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In Definition 7.1, one may replace (b) by (b)’ or (b)” below:
(b)” pis open and induces a bijection Z/Gs — Ggo).
(b)” the map Z x Gy — Z X GO Z defined by (z,7) — (z, z7y) is a homeo-
morphism.

EXAMPLE 7.2. Let Gy and G3 be two groupoids.If f: G1 — G35 is a groupoid
morphism, let Z = GEO) Xfr Ga, p(x,7) = x and o(x,v) = s(y). Define the

actions of G1 and G2 by g - (z,7) - 7" = (r(9), f(9)7Y'). Then (Z,p,0) is a
generalized morphism from Gy to Gs.

That p is open follows from the fact that the range map G2 — Géo) is open and
from Lemma 2.25. The other properties in Definition 7.1 are easy to check.

7.2. LOCALLY PROPER GENERALIZED MORPHISMS.

DEFINITION 7.3. Let G1 and G5 be two groupoidsA generalized morphism from
G1 to Go is said to be locally proper if the action of Gy on Z is o-proper.

Our terminology is justified by the following proposition:

PROPOSITION 7.4. Let Gy and Gy be two groupoids such that Géo) is Hausdorff.
Let f: Gy — G2 be a groupoid morphism. Then the associated generalized
groupoid morphism is locally proper if and only if the map (f,r,s): G1 —
Gy X Ggo) X Ggo) is proper.

Proof. Let ¢: Gy X josr Go — (G Xs.6 G2) Xpxrpx s (G x G defined by
o(g1,92) = (f(g91)92,92,7(91),8(g1)). By definition, the action of Gy on Z is
proper if and only if ¢ is a proper map. Consider 6: Gy X, s Go — Géz) given
by (7,7") = (v(v')71,7'). Let » = (§ x 1) o ¢. Since @ is a homeomorphism,
the action of G; on Z is proper if and only if 4 is proper.

Suppose that (f,r,s) is proper. Let f/ = (f,r,s) X 1: G1 X Go — G3 x Ggo) X
GEO) x Gg. Then f’ is proper. Let F = {(y,z,2',7") € G2 X Ggo) X Ggo) X
Go| s(v) = r(+') = f(a'), r(y) = f(z)}. Then f": (f)~'(F) — F is proper,
i.e. v is proper.

Conversely, suppose that v is proper. Let F' = {(v,y,z,2') € Go x Géo) X
Ggo) X Ggo)| s(y) = y}. Then v: p~1(F') — F’ is proper, therefore (f,r,s) is
proper. ([l

Our objective is now to show the

PROPOSITION 7.5. Let G1, G2, Gs be groupoidsLet (Z1, p1,01) and (Za, p2,02)
be two generalized groupoid morphisms from G1 to Go and from Gy to Gs
respectively. Then (Z,p,0) = (Z1X g, Z2, p1 X1,1x03) is a generalized groupoid
morphism. If (Z1,p1,01) and (Za, pa,02) are locally proper, then (Z,p,o) is
locally proper.

Proposition 7.5 shows that groupoids form a category whose arrows are gen-
eralized morphisms, and that two groupoids are isomorphic in that category if
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and only if they are Morita-equivalent. Moreover, the same conclusions hold for
the category whose arrows are locally proper generalized morphisms. In par-
ticular, local properness of generalized morphisms is invariant under Morita-
equivalence.

All the assertions of Proposition 7.5 follow from Lemma 2.33.

7.3. PROPER GENERALIZED MORPHISMS.

DEFINITION 7.6. Let G and Gy be groupoids. A generalized morphism (Z, p, o)
from G1 to Go is said to be proper if it is locally proper, and if for every quasi-
compact subspace K of G(QO), oY K) is G1-compact.

EXAMPLES 7.7. (a) Let X andY be locally compact spaces and f: X —Y
a continuous map. Then the generalized morphism (X,1d, f) is proper
if and only if f is proper.

(b) Let f: Gy — G2 be a continuous morphism between two locally compact
groups. Let p: Go — {x}. Then (Ga,p,p) is proper if and only if f is
proper and f(G1) is co-compact in Gs.

(c) Let G be a locally compact proper groupoid with Haar system such that
G is Hausdorff, and let m: G0 — G©) /G be the canonical mapping.
Then (G ,1d, ) is a proper generalized morphism from G to G0 /G.

7.4. CONSTRUCTION OF A C*-CORRESPONDENCE. Until the end of the section,
our goal is to prove:

THEOREM 7.8. Let Gy and G2 be locally compact groupoids with Haar system
such that Ggo) and Géo) are Hausdorff, and (Z, p, o) a locally proper generalized
morphism from G1 to Ga. Then one can construct a C*(Gy)-Hilbert module
Ez and a map w: C*(G2) — L(Ez). Moreover, if (Z,p,o) is proper, then w
maps to K(Ez). Therefore, it gives an element of KK (C}(G2), Ck(Gr)).

COROLLARY 7.9. (see [14]) Let G1 and Gg be locally compact groupoids with

Haar system such that Ggo) and Ggo) are Hausdorff. If G1 and Gs are Morita-
equivalent, then C}(G1) and C*(G2) are Morita-equivalent.

COROLLARY 7.10. Let f: Gy — G2 be morphism between two locally compact
groupoids with Haar system such that Ggo) and Ggo) are Hausdorff. If the
restriction of f to (G1)% is proper for each compact set K C (G1)©) then f
induces a correspondence ¢ from C(G2) to Cr(G1). If in addition for every
compact set K C Ggo) the quotient of GEO) X r.r (G2)k by the diagonal action of
G1 is compact, then C}(Ga) maps to K(E¢) and thus f defines a KK -element
[f] € KK(C}(Ga), Cr(Gh)).

Proof. See Proposition 7.4 and Definition 7.6 applied to the generalized mor-
phism Z; = Ggo) X s Go as in Example 7.2 O

The rest of the section is devoted to proving Theorem 7.8.
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Let us first recall the construction of the correspondence when the groupoids
are Hausdorff [11]. It is the closure of C.(Z) with the C}(G1)-valued scalar
product

(2) &g = /E(G o E(zy)n(g™ 2y) A3 (dy),

where z is an arbitrary element of Z such that p(z) = r(g). The right C}(G;)-
module structure is defined V¢ € C.(Z), Va € C.(G;) by

®) e = [ e a0 )
and the left action of C*(G3) is
() 0@ = [ e 3y

for all b € C.(Ga).

We now come back to non-Hausdorff groupoids. For every open Hausdorff set
V C Z, denote by V"’ its closure in H((Gy x Z){,), where z € V is identified
to (p(2),2) € H((G1 x Z)V). Let &) be the set of ¢ € C.(V’) such that
§(S x {=})
€(z) = >——=——>forall S x {z} € V"
V#S

LEMMA 7.11. The space £ = Yier E& is independent of the choice of the
cover (V;) of Z by Hausdorff open subspaces.

Proof. 1t suffices to show that for every open Hausdorff subspace V of Z, one
has £ C Y ,c; &y, Let € € &) Denote by qy: V! — V the canonical map
defined by gy (S x {z}) = z. Let K C V compact such that supp(¢) C ¢, (K).
There exists J C I finite such that K C UjesVj. Let (¢;)jes be a partition
of unity associated to that cover, and &; = £.(p; o gv). One easily checks that
fjeé'?,j and thatfzzjejgj. a

We now define a C(G1)-valued scalar product on £2 by Eqn. (2) where z is
an arbitrary element of Z such that p(z) = r(g). Our definition is independent
of the choice of z, since if 2’ is another element, there exists v/ € G5 such that
2" = 27/, and the Haar system on G5 is left-invariant.

Moreover, the integral is convergent for all g € GG; because the action of G5 on
Z is proper.

Let us show that (£,n) € C.(Gy) for all £, n € £2. We need a preliminary
lemma:

LEMMA 7.12. Let X and Y be two topological spaces such that X is locally
compact and f: X — Y proper. Let F be a ultrafilter such that f converges to
y € Y with respect to F. Then there exists v € X such that f(z) =y and F
converges to x.
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Proof. Let Q = f~*(y). Since f is proper, Q is quasi-compact. Suppose that for
all x € QQ, F does not converge to . Then there exists an open neighborhood
Vz of © such that V. € F. Extracting a finite cover (V1,...,V,) of Q, there
exists an open neighborhood V' of @ such that V¢ € F. Since f is closed,
f(Ve)¢ is a neighborhood of y. By assumption, f(V°)¢ € f(F), i.e. A € F,
f(A) C f(Ve)e. This implies that A C V, therefore V' € F: this contradicts
VeeF.

Consequently, there exists x € @) such that F converges to x. ]

To show that (£,n) € C.(G1), we can suppose that ¢ € &) and n € &),
where U and V are open Hausdorff. Let F(g,2) = £(2)n(g~'2), defined on
I' = G1 %, Z. Since the action of G; on Z is proper, F' is quasi-compactly
supported. Let us show that F' € C.(T).

Let F be a ultrafilter on I', convergent in HI. Since G ) is Hausdorff, its limit
has the form S = S’gg x S where S’ C (G4 ) S" C p~(r(go)). Moreover,

r(g
(g
Suppose that there exist zg,z; € S” and g1 € S’gg such that zp € U and

gflzl € V. By Lemma 7.12 applied to the proper map G; X Z — Z x Z, there
exists sg € S’ such that zg = sgz;. We may assume that gy = spg;. Then
s F(3) = Sues EGoInlgy () 120)- I s’ ¢ stab(z0), then g5 *(s') 120 ¢
V since gy ' 20 and g5 ' (s') "'z are distinct limits of (g, 2) = g~z with respect
to F and V is Hausdorff. Therefore,

Y F(s) = #(stab(z0) N S")E(z0)n(g5 " 20)

seSs

90)’

S’ is a subgroup of (Gy) ; by the proof of Lemma 5.1.

= V/#(stab(zo) N S/)f(zo)\/#(stab(gglzo) N (99 "5"90))m(20)

= lim&(2)n(g™"2) = lim F(g, 2).

If for all zg, 21 € S” and all g1 € S'go, (20,97 '21) ¢ UxV, then }", s F(g,2) =
0 = limg F(g, 2).

By Proposition 4.1, F' € C.(T).

Since (€,1)(9) = [,c (o= F(9,27) A7) (d), to prove that (¢,1) € Ce(G1) it
suffices to show:

LEMMA 7.13. Let G1 and Go be two locally compact groupoids with Haar system

such that GEO) are Hausdorff. Let (Z,p,0) be a generalized morphism from G,
to Ga. LetT' = Gy X, Z. Then for every F € C.(I"), the function

g F(g,27) A3 (dv),
vE(G2)7(*)

where z € Z is an arbitrary element such that p(z) = r(g), belongs to C.(G1).

Proof. Suppose first that F'(g, ) f(g)h(2), where f € C.(G1) and h € C.(Z).
Let H(z f €(@a)o® h(zy) A?(*)(dv). By Lemma 7.14 below (applied to the
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groupoid Z x Gg), H is continuous. It is obviously Ge-invariant, therefore
H e C.(Z/Gy). Let H € CC(GEO)) ~ C.(Z/G3) correspond to H. The map

g F(g,27) X (dv) = f(9)H (s(9))
vE(G2)e(*)

thus belongs to C.(G1).

By linearity, the lemma is true for F' € C.(G1) ® C.(Z). By Lemma 4.4 and
Lemma 4.5, F' is the uniform limit of functions F,, € C.(G1) ® C.(Z) which
are supported in a fixed quasi-compact set Q = Q1 X Q2 C G1 X Z. Let
Q' C Z quasi-compact such that p(Q") D r(Q1). Since the action of G5 on Z
is proper, K = {y € Ga| Qv N Q2 # (I} is quasi-compact. Using the fact that
Ggo) ~ 7Z/Gs, it is easy to see that

sup / 1o(g, 27) A7) (dv) < sup / 10, (27)A7 ) (d)
vE(G2)7(*) vEG

(g,2)er z€Q’ g(z)

< sup / L (7)A*(dy) < o0
YEGE
by Lemma 4.7. Therefore,

lim sup =0.

[ Fam) = Falo o) X Oa)
vEGSY®

The conclusion follows from Corollary 4.2. ]
In the proof of Lemma 7.13 we used the

LEMMA 7.14. Let G be a locally compact, proper groupoid with Haar system,
such that G* is Hausdorff for allz € G, and G% = {x} for allz € GO, We
do not assume G°) to be Hausdorff. Then Vf € C.(G©),

0: GO —C, 2~ £(s(9)) A*(dg)
geG®

18 continuous.

Proof. Let V be an open, Hausdorff subspace of G(9). Let h € C.(V). Since
(r,5): G — GO x G is a homeomorphism from G onto a closed subspace
of GO x GO and (z,y) — h(x)f(y) belongs to C.(G® x G©), the map
g — h(r(g))f(s(g)) belongs to C.(G), therefore by definition of a Haar system,
2= [oeqe Mr(9)f(s(9) A" (dg) = h(z)p(x) belongs to Co(G?).

Since h € C.(V) is arbitrary, this shows that @|v is continuous, hence ¢ is
continuous on G(©). a

Now, let us show the positivity of the scalar product. Recall that for all z €
G§°) there is a representation mg, ,: C*(G1) — L(L*(GY)) such that for all
a € C.(Gh) and all n € C.(GY),

(w6, o (@)n)(g) = / a(h)(gh) 9 (dh).

heG; @
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By definition, ||al

£:(60) = D, 0 [ o (@)

(sl = [ gan(eh) A (@) dy

-/ n(g)alg ™ hyn(h) A*(dg) X" (dh).
geG?, heGs(9)
Fix z € Z such that p(z) = z. Replacing a(g~*h) by
€O 0= [ TG ) O ),
YEG,

we get
2

(5) (e (€, E)) = / X (dy)

’YGGg(z)

/ n(9)€(g~ " 27) A*(dg)
geG™

It follows that mq, o((€,€)) > 0 for all 2 € G1”, so (€,€) > 0 in C*(Gy).

Now, let us define a C}*(G1)-module structure on €% by Eqn.(3) for all £ € &)
and a € C.(Gy).
Let us show that £a € £%. We need a preliminary lemma:

LEMMA 7.15. Let X and Y be quasi-compact spaces, () an open cover of
X xY. Then there exist finite open covers (X;) and (Y;) of X andY such that
Vi, j 3k, X; x Y; C Q.

Proof. For all (z,y) € X xY choose open neighborhoods Uy, and V; ,, of x and
y such that U, , x V,,, C € for some k. For y fixed, there exist x1, ..., x, such
that (Uy, y)1<i<n covers X. Let V,, = N?_, U, ,. Then for all (z,y) € X xY,
there exists an open neighborhood U:fc,y of x and k such that U;w x Vy C Q.
Let (Vi,...,Vin) = (Vi ..., Vy,,) such that Ui<;<,,V; =Y. For all z € X, let

Uy, =Nt Uy, Let (U,...,Up) be a finite sub-cover of (U;)zex. Then for
all ¢ and for all j, there exists k such that U; x V; C Q. OJ

Let @1 and @5 be quasi-compact subspaces of G; of Z respectively such that
a~H(C*) C Qp and £71(C*) C Q2. Let Q be a quasi-compact subspace of Z
such that Vg € Q1, Vz € Qa, g7z € Q. Let (Uy) be a finite cover of Q by
Hausdorff open subspaces of Z. Let Q' = Q1 X, , Q2. Then @’ is a closed
subspace of Q1 x Q2. Let Q) = {(g,2) € Q'| g7'2 € Ux}. Then (Q}) is a
finite open cover of @’. Let £, be an open subspace of @1 X @2 such that
Q. =Q,NQ". Then {Q1 x Q2 — Q' }U{Q} is an open cover of Q1 x Q2. Using
Lemma 7.15, there exist finite families of Hausdorff open sets (W;) and (V})
which cover 1 and Qa, such that for all 4, j and for all (g,z) € W; X Vi,

there exists k such that g~ 'z € Uy,.
Thus, we can assume by linearity and by Lemmas 4.3 and 7.11 that & € 5‘0,7
a€C. (W), U=W1V, and U, V and W are open and Hausdorff.

0
al®

DOCUMENTA MATHEMATICA 9 (2004) 565-597



594 JEAN-Louis Tu

Let Q = {(9,9) € W=t xU'| g7'qu(S) € V}. Then the map (g,5)
(971, ¢71S) is a homeomorphism from 2 onto W x . poq,, V'. Therefore, the map
(9,2) — &(g72)a(g™") belongs to Ce(2) C Co(G1 Xy pogy U'). By Lemma 4.8,

~(E®) = [ e el v )

belongs to C.(U’). It is immediate that (£a)(S) = Vv#S(&a)(q(S)) for all
S € U’, therefore £a € E. This completes the proof that {a € Y.

Finally, it is not hard to check that (¢, na) = (£, n)*a. Therefore, the completion
£z of Y with respect to the norm ||£]| = ||(€, €)||'/? is a C;* (G )-Hilbert module.

Let us now construct a morphism 7: C}(Ga) — L(Ez). For every £ € £ and

every b € C.(G2), define b¢ by Eqn.(4). Let us check that b € £%. As above,

by linearity we may assume that £ € £J, b € C.(W) and VW~ C U, where

VcZ,UcCZand W C G; are open and Hausdorff.

Let ®(S,v) = (Sv,7). Then ® is a homeomorphism from Q = {(5,v) €

U' Xgoqu.r W1 qu(S)y € V}onto V! Xyoqy s W. Let F(z,v) = b(y)E(z). Since
= (£®Db)o®, F is an element of C.(Q) C Co(U’ Xpoqy,» W). By Lemma 4.8,

b¢ € C.(U").

It is immediate that (b€)(S) = V#S(b€)(q(S)). Therefore, b¢ € & C £Y.

Let us prove that ||b&|| < ||b]] ||€]|- Let

C(y) = /EGJ n(9)€(g~"2v) A" (dg),

where z € Z such that p(z) = r(g) is arbitrary. From (5),
(n, 7612 (6 D) = IICI72 oo

A similar calculation shows that
2

(1, 7 (DE,BE) ) = / ) (dy)

eqz®

/ 1(9)€(g~ 27 )b(v) AP (d)
geage

= (b¢,b¢) < [IBIlIC]*.
By density of Cc(G%) in L*(G3), |[76.,2((0€,6E))|| < [bl* 76, 2 (€. ). Tak-
ing the supremum over x € G§0)7 we get ||bE]| < ||b]||€]]. It follows that
b — (& — bE) extends to a x-morphism 7: C*(G3) — L(Ez).
Finally, suppose now that (Z, p, o) is proper, and let us show that C*(G2) maps
to K(gz)
For every 0, ¢ € £, denote by T, ¢ the operator T), (&) = n(¢,£). Compact
operators are elements of the closed linear span of T; ’s. Let us write an
explicit formula for T;, ¢

L@@ = [ a9 O @)

/Gp(z)n(g_lz)/ G”(:)Wg(zw/\H(Z)(dV))\p(z)(dg)-
9€Gy odS]
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Let b € C.(G2), let us show that 7(b) € K(€z). Let K be a quasi-compact
subspace of G such that b=—1(C*) C K. Since (Z, p, o) is a proper generalized
morphism, there exists a quasi-compact subspace @ of Z such that o~ (r(K)) C
G1CDQ. Before we proceed, we need a lemma:

LEMMA 7.16. Let G2 be a locally compact groupoid acting freely and properly
on a locally compact space Z with momentum map o: Z — G20 . Then for
every (z0,7) € Z x Ga, there exists a Hausdorff open neighborhood ., -, of
(z0,70) such that

o U={zim1] (z1,7) € Qzp7o } s Hausdorff;
o there exists a Hausdorff open neighborhood W of g such that Vv € Ga,
Vz € pri(Qup o )s V&' €U, 2/ =29y = yeW.

Proof. Let R = {(2,72') € Z x Z| Iy € Ga, 2/ = zv}. Since the Gao-action
is free and proper, there exists a continuous function ¢: R — G5 such that
#(z,277) = . Let W be an open Hausdorff neighborhood of ~y. By continuity
of ¢, there exist open Hausdorff neighborhoods V' and Uy of zy and zp7yy such
that for all (z,2') € RN (V x Up), ¢(z,z") € W. By continuity of the action,
there exists an open neighborhood ., -, of (29, 70) such that ¥(z1,71) € Q. ~0»
z171 € Up and 23 € V. O

By Lemma 7.15, there exist finite covers (V;) of @ and (W;) of K such that for
every i, j, (Z X 5o G2) N (Vi x W;) C Qy , for some (z0,70)-
2

By Lemma 6.2 applied to the groupoid (G; x Z)“g, for all ¢ there exists ¢} €
Ce(VY)4+ such that ¢ (S) = (#S5)c;(qv,(S)) for all S € V/, and such that ), ¢} >
1on Q. Let

fz(Z) = /egp(z) C;(gilz) )\P(Z) (dg)
ASST

and let f =), fi. As in the proof of Theorem 6.3, one can show that for every
Hausdorff open subspace V of Z and every h € C.(V), (g,2) — h(z)c.(g7'2) be-
longs to C.(G x Z), therefore hf; is continuous on V. Since h is arbitrary, it fol-
lows that f; is continuous, thus f is continuous. Moreover, f is Gi-equivariant,
nonnegative, and infg f > 0. Therefore, there exists f1 € C.(G1\Z) such that
fi(z) =1/f(z) for all z € Q. Let ¢;(2) = f1(2)ci(z). Let

T©OE = [ [ el e O agr ),

Then 7(b) = >, Tj, therefore it suffices to show that T; is a compact operator
for all i.

By linearity and by Lemma 4.3, one may assume that b € C.(W;) for some j.
Then, by construction of V; (see Lemma 7.16), there exist open Hausdorff sets
U C Z and W C Gy such that {y € Go| 3(2,7') € V; x U, 2/ = 2y} C W, and
{=v]| (z,7) € Vi x4, W} CU.

The map (z, z7y) +— c(2)b(y) defines an element of C.(V/ x U). Let Ly x Ly C
V; x U compact such that (z,z7y) — ¢(2)b(y) is supported on q‘z_l (L1) x Lo.
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By Lemma 6.2 applied to the groupoids (G x Z)gj and (G1 x 2)Y, there exist
dy € Co(V/)4 and d2 € C.(U')+ such that d; > 0 on Ly and da > 0 on Lo,
d1(S) = V#Sdi(qv,(S)) for all S € V/, and da(S) = VF#Sda(qu(S)) for all

S eU'. Let
c(2)b(7)
2,27) = — L,
T2 = F o)
Then f € Co(Vi X4 U). Therefore, f is the uniform limit of a sequence
1

fa =2 0n1k @ Oni in Ce(V;) ® Co(U) such that all the f,, are supported in a
fixed compact set. Then T; is the norm-limit of ), Ty, o, ,.dug, ., therefore it
is compact.

REMARK 7.17. The construction in Theorem 7.8 is functorial with respect to
the composition of generalized morphisms and of correspondences. We don’t
include a proof of this fact, as it is tedious but elementary. It is an easy
exercise when Gy and Gs are Hausdorff.
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