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ABSTRACT. In this paper, we establish a sharp inequality for
some multilinear operators related to certain integral operators.
The operators include Calderén-Zygmund singular integral opera-
tor, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-
Riesz operator. As application, we obtain the weighted norm inequal-
ities and Llog L type estimate for the multilinear operators.
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1. INTRODUCTION

Let T be a singular integral operator. In[1][2][3], Cohen and Gosselin studied
the LP(p > 1) boundedness of the multilinear singular integral operator T
defined by
R e e

In[6], Hu and Yang obtain a variant sharp estimate for the multilinear singular
integral operators. The main purpose of this paper is to prove a sharp inequality
for some multilinear operators related to certain non-convolution type integral
operators. In fact, we shall establish the sharp inequality for the multilinear
operators only under certain conditions on the size of the integral operators.
The integral operators include Calderén-Zygmund singular integral operator,
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Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz opera-
tor. As applications, we obtain weighted norm inequalities and Llog L type
estimates for these multilinear operators.

2. NOTATIONS AND RESULTS

First, let us introduce some notations(see[6][12-14]). Throughout this paper,
@ will denote a cube of R™ with side parallel to the axes. For any locally
integrable function f, the sharp function of f is defined by

#(z d
7 ( :telg |Q/If — foldy,

where, and in what follows, fo = |Q|™! [, f o f(z)dz. It is well-known that(see[6])
f#(x) = sup inf — / fly) —c|dy.
( ) zeQ ceC ‘Ql ‘ |

We say that f belongs to BMO(R™) if f# belongs to L>(R") and ||f||zymo =
[|f#|| L. For 0 < r < oo, we denote f7# by

FE@) = [ # @)

Let M be the Hardy-Littlewood maximal operator defined by M(f)(x) =
SuP,eq Q17 [y 1f(y)ldy, we write M,(f) = (M(fP)!/? for 0 < p < oo; For
k € N, we denote by M* the operator M iterated k times, i.e., M(f)(z) =
M(f)(x) and M*(f)(x) = M(M*='(f))(z) for k > 2. Let B be a Young
function and B be the complementary associated to B, we denote that, for a

function f
1113, ¢ = mf{A>o |Q|/ <>d <1}

and the maximal function by

Mp(f)(z) = sup || f[|B, 3
TEQ

The main Young function to be using in this paper is B(t) = t(1 + log*t) and
its complementary B(t) = expt, the corresponding maximal denoted by Mpo41.
and Megpr. We have the generalized Hélder’s inequality(see[12])

IQI/ [ Wa@)ldy < I/, ellglls,

and the following inequality (in fact they are equivalent), for any « € R,
Mriogr(f)(z) < CM?(f)(x)
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and the following inequalities, for all cubes Q any b € BMO(R"),

6 = bgllexpz, @ < CllbllBMO, [bort1g — bag| < 2K[|b]|Brro-

We denote the Muckenhoupt weights by A, for 1 < p < oo(see[6]).
We are going to consider some integral operators as following.
Let m be a positive integer and A be a function on R™. We denote that

Rons1(A5,9) = Alw) = 37 DAl — p)"

la|<m

DEFINITION 1. Let S and S’ be Schwartz space and its dual and T: S — S’
be a linear operator. Suppose there exists a locally integrable function K (z,y)
on R™ x R™ such that

T(f)(x) = ; K(z,y)f(y)dy
for every bounded and compactly supported function f. The multilinear oper-
ator related to the integral operator 1" is defined by

(1)) - | Buerl 5 0:9) e ) £,

eyl

DEFINITION 2. Let F(z,y,t) defined on R™ x R™ x [0, +00). Set

for every bounded and compactly supported function f and

Rerl(A; Z, y)
re T —yl™

Let H be a Banach space of functions h : [0, +00) — R. For each fixed z € R",
we view Fy(f)(z) and FA(f)(z) as a mapping from [0, +00) to H. Then, the
multilinear operators related to F} is defined by

SAH ) = [IFA () @)I;

We also define that S(f)(z) = ||F:(f)(2)]|-

Note that when m = 0, T4 and S4 are just the commutators of T, S and A.
While when m > 0, it is non-trivial generalizations of the commutators. It is
well known that multilinear operators are of great interest in harmonic analysis
and have been widely studied by many authors (see [1-5][7]). The main purpose
of this paper is to prove a sharp inequality for the multilinear operators T4
and S4. We shall prove the following theorems in Section 3.

THEOREM 1. Let D*A € BMO(R") for all a with |a] = m. Suppose that T
is the same as in Definition 1 such that T is bounded on LP(w) for all w € A,
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with 1 < p < oo and weak bounded of (L'(w), L'(w)) for all w € A;. If T4
satisfies the following size condition:

T4(f) (@) = T4(f) (o)l < C Y IID*Allparo M (f)(x)

la|=m

for any cube Q = Q(xg,d) with suppf C (2Q)¢, z € Q = Q(x9,d). Then for
any 0 < r < 1, there exists a constant C' > 0 such that for any f € C§°(R")
and any = € R",

(TA()E (@) < C Y [ID*Allpao M (f)(x).

lo|=m

THEOREM 2. Let D*A € BMO(R") for all o with |&| = m. Suppose that S
is the same as in Definition 2 such that S is bounded on LP(w) for all w € A,
1 < p < 0o and weak bounded of (L*(w), L' (w)) for all w € A;. If S satisfies
the following size condition:

IFA () (@) = FAH o)l < C Y 11D AllaoM?(f)(x)

|a|=m

for any cube Q = Q(xo,d) with suppf C (2Q)¢, z € Q = Q(x9,d). Then for
any 0 < r < 1, there exists a constant C' > 0 such that for any f € C§°(R")
and any = € R",

(SUMNE@) <O Y |ID*AllsaroM?(f)(@).

|a]=m

From the theorems, we get the following

COROLLARY. Let D*A € BMO(R™) for all a with |a] = m. Suppose that
T4, T and S#, S satisfy the conditions of Theorem 1 and Theorem 2.

(A). Ifwe Ay, for 1 <p<oo. Then T4 and S# are all bounded on LP(w),
that is

ITA(H)lrw) < C > [IDAllsarollfl]Lr(w)

|a]=m

and

USA(F)|lzrw) < C Z [[D*Al|Barol| fIlLr (w)-

|a]=m

(B). If we Ay. Then there exists a constant C' > 0 such that for each A > 0,
w({z € R": |[T4(f)(2)| > A})
|f ()] + (/)]
< DA 1+1 e
<C > [ID*Allsmo /R" X + log X w(z)dx

|a]=m
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and

w({z € R": |SA(f)(x)] > A})
<C Z [|D*AllBpmo /Rn |f(;)| (1-i—10gJr (@)) w(z)dx.

la|=m

3. PROOF OF THEOREM

To prove the theorems, we need the following lemmas.
LEMMA 1 (Kolmogorov, [6, p.485]). Let 0 < p < ¢ < oo and for any function
f > 0. We define that, for 1/r=1/p—1/q

A llwra = iupo)\l{l’ € R": f(z) > MV, Nyy(f) = sup I xelle/lIxel
>

L7,

where the sup is taken for all measurable sets E with 0 < |E| < co. Then

1/ llwze < Npo(F) < (a/ (@ =) PIlfllwrs.

LEMMA 2([12, p.165]) Let w € Ay. Then there exists a constant C' > 0 such
that for any function f and for all A > 0,

w(fy € R 021 > ) < O [ 1£0)I(1+ 1o O£ ) ww)dy.
LEMMA 3.([3, p.448]) Let A be a function on R" and D*A € LI(R™) for all
« with |a] =m and some ¢ > n. Then

1/q
m 1 «
| R (A;2,9)| < Clz —y[™ ) (m o )|D A(Z)qd«z> ;
) x,y

la]=m

where Q is the cube centered at z and having side length 5/n|z — y|.
PrROOF OF THEOREM 1. It suffices to prove for f € C§°(R") and some
constant Cp, the following inequality holds:

<¢12| /Q T4(f) () — Co|de>1/r < CM?(f).

Fix a cube @ = Q(z9,d) and & € Q. Let Q = 5ynQ and A(z) =
A(z) — > %(DO‘A)QIQ, then R,,(4;z,y) = Rn(A;z,y) and D*A =

loo|=m

D*A — (D*A)s for |a| = m. We write, for f1 = fxs and fo = fXpn 5,
Q Q R™\Q

/ Rerl(A;xvy)
no |z —yl™
Ryi1(As2,y)

- T am d
R™ |5L’ — y|m K(x’ y)-fQ(y) Y

T4(f)(x)

K(z,y)f(y)dy

DOCUMENTA MATHEMATICA 9 (2004) 607-622



612 Liu LANZHE

o[ WK(%y)fl(y)dy

- Z %Daﬁ(y)fl(y)dy
lal=
then
I T4() (@) = T4(f2)(wo)]
r(Bldn) ol 5 3l (e an) o
|a]=m
+|T4(fo) (@) = TA(f2) (o)
= I(x)+II(z)+ III(x),
thus,

(|22/Q‘TA(f)(x)_TA(fz)($O)|Td$)l/r
< (%/Qf(x)rdl“)l/i <|g|/11( )dx )UT <|g|/IH( . dz>1/r

= I+ 114111

Now, let us estimate I, II and I11I, respectively. First, for x € @ and y € Q7
using Lemma 3, we get

Ro(A;2,y) < Clz —y[™ Y [ID*Allzaro,

|a]=m

thus, by Lemma 1 and the weak type (1,1) of T, we get

T "
I < ¢ Y Dol swolq ITUXGllE
lee|=m lIxellLra-n

< O (1D Allsaol@ T s
|a|=m
< Y 1D Allsaol@l” / @y <C 3 1D AllpaoM(f)(@):
|a|=m la|=m
For I1, similar to the proof of I, we get
nos oY far B Afxeller ¢ S Q@ A e
o= XQ||Lr/<1 ) P
<cXer / DA |fw)ldy < C S 1D Al
la|= la|=m
<

c Z ID Al BroMLiog £ () (&) < C Y [|DAll a0 M?(f)(#);

la|=m la|=m
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WEIGHTED ESTIMATES FOR MULTILINEAR OPERATORS 613

For I11, using Holder’ inequality and the size condition of T, we have

1 <C Y |[IDYAllsyuoM?(f)().

lee|=m

This completes the proof of Theorem 1.
PROOF OF THEOREM 2. It is only to prove for f € C§°(R") and some
constant Cy, the following inequality holds:

1/r
A T 2
<|Q|/ 1S4(f) () — Co d:c) < CM(f).

Fix a cube Q = Q(zo,d) and Z € Q. Let Q and A(z) be the same as the proof
of Theorem 1. We write, for f; = fXQ and fy = fXR"\Q7

AR = [ EATY e g )y

rr T —y™m

-2 a'/n S oo

|z —yl"’
laf=

Rm Az,
Jr/ 11 xy)

(fﬂ Y, )fZ( )dy7

|z —y|™
then
1SA(f) (@) = SA(f2) (o)l = || (F)(@)]] = [1FL (f2) (o)
< IFAH) (@) = FA(f2) (o)
m(A;x,) )Y e
< Ft(m—-m ) *Z | (G=meran) o
HIFA (f2) (@) — FtA(fz)(xo)ll
= J(x)+ JJ(z) + JJJ(2),
thus,

(ﬁ/leMf)(x) _SA(f2>(l‘o)|de>l/T
< (%/QJ(x)rdx)l/:_ (|g| / T (@) dx)l/_T,_ (|Q / e d:C)l/T

= J+JJ+JJJ

Now, similar to the proof of Theorem 1, we have

s20 3 Ao /\f i <€ 32 1D Allawo (1)

lee|= lee|=
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and
JJ < C —1||S(DaAf1)XQ||LT <C —1 SDaA .
B h;_m'@' [ rer——— MZ_mQ' 19D Af )l
<Y o /@ID“A(y)IIf(y)IdySC S 11D Allsao M2(f)(@);
lal=m la|=m

For JJJ, using the size condition of S, we have

JJJ<C Y ||D*AllpuoM?(f)(&).

la]=m

This completes the proof of Theorem 2.

From Theorem 1, 2 and the weighted boundedness of T and S, we may obtain
the conclusion of Corollary(a).

From Theorem 1, 2 and Lemma 2, we may obtain the conclusion of Corollary(b).

4. APPLICATIONS

In this section we shall apply the Theorem 1, 2 and Corollary of the paper to
some particular operators such as the Calderén-Zygmund singular integral op-
erator, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz
operator.

APPLICATION 1. Calderén-Zygmund singular integral operator.

Let T be the Calderén-Zygmund operator(see[6][14][15]), the multilinear oper-
ator related to T is defined by

/Rm+1Axy

o — g K(z,y)f(y)dy.

Then it is easily to see that T satisfies the conditions in Theorem 1 and Corol-
lary. In fact, it is only to verify that T4 satisfies the size condition in Theorem
1, which has done in [6](see also [12][13]). Thus the conclusions of Theorem 1
and Corollary hold for T4.

APPLICATION 2. Littlewood-Paley operator.

Let e >0 and 1) be a fixed function which satisfies the following properties:
(1) [pa o(x)dz =0,

(2) [o(x )I < C(1+ Jaf)~ (D)

(3) [z +y) — (@) < Clyl*(L+ [o])~1+2) when 2ly| < [al;

The multilinear Littlewood-Paley operator is defined by(see[8])

s = ([iEnert) "

Ryi1(As2,y)
rr T —y|™

where

FAf)(x) = Pe(z —y) f(y)dy
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and Yy (x) =t (x/t) for t > 0. We write F;(f) = ¢ * f. We also define that

wine = ([ mpeEt) ",

which is the Littlewood-Paley operator(see [15]);
Let H be a space of functions h : [0,+00) — R, normed by [|h|| =

(f |h(t)|2dt/t)l/2 < oo. Then, for each fixed z € R", FA(f)(x) may be
viewed as a mapping from [0, +00) to H, and it is clear that

gu(N(@) = IE(f) (@)l and gy (f)(2) = [|F(f) (@)]].

It is known that gy, is bounded on LP(w) for all w € A4,, 1 < p < oo and
weak (L'(w),L'(w)) bounded for all w € A;. Thus it is only to verify that
gfb‘ satisfies the size condition in Theorem 2. In fact, we write, for a cube

Q = Q(xo,d) with suppf C (Q)°, x € Q = Q(z0,d),

FtA(f)(l’) - FtA(f)(xo)
Yue(z —y) (@0 —y) i
/n ( |z — y|™ lzo — y|™ > R (A;2,y) f(y)dy
Yi(zo — y)

i - W(Rm(A;x,y) — Rin(A;20,9)) f(y)dy

Sy [ (e ) e

|z —y|™ lzo — y|™

|aj=m

= L+ 1L+ 15
By Lemma 3 and the following inequality(see[14])
ba, = bq,| < Clog(|Qal /@1l Bro, for@r C Qs
we know that, for € Q and y € 2¥+1Q \ 2*Q with k > 1,

|Ru(Asz,y)| < Cle—y|™ Y (ID*Allpmo + [(D*A) g,y — (DT A)g))
la]=m
< Cklz—y[™ Y |ID*Allsuo-

lal=m

Note that |z — y| ~ |zg — y| for x € @ and y € R™ \ Q). By the condition on %
and Minkowski’ inequality , we obtain

WLl < c/ |Ru(A; 2, 9)||f (1)]
Rn

|zo — y|™
- 5 1/2
tlz — xo| n tlz — xol® dt d
o \mo —yl(t+ [0 — g™+ (t+ oo —y)miive ) 4 Y
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‘IL’—:Z‘0| ‘IIJ—:L’()F ) ~
= ¢ * R (A;2,9)|| £ (y)|dy
/(2Q)c <|170 —y|mtntl gy — y|minte | Bm ( M)l
< €Y |ID*Allsao
|a|=m
N |:C_5EO| |1‘—;L‘0|5 >
k + f(y)ldy
; Lk+1Q\2kQ (mo — y‘n+1 |:E0 _ y|n+g ‘ ( )|
= C Z [[D* Allsmo Zkz 2_k + 2_Ek)|2k+1Q|_1/ £ (y)|dy

k+1
lal= 2E+iQ

< C Z [[D* Al|prmo M (f)(x);

|a|=m
For I, by the formula (see [3]):
m(A;2,y) — Rin(A; 20,y Z 5, _181(DP A; 3, 20) (z — y)”

[Bl<m
and Lemma 3, we have
|Rin(A;2,y) = Ron(A0,9) < C D > |z —ao|™ e —y|?||D* Al paso,
[Bl<m |a|=m
similar to the estimates of I;, we get

Il < © 3 ot A||BMOZ/ f,fllmy)uy

k+1\ 2k |a)‘0 —
loe|= \2+Q

IN

C||DQA||BMOZsz’“\z’““er/ Q\f(y)ldy

b1 2k+1

< C|ID*Al|lpmoM(f)(z);

For I3, similar to the proof of I;, we obtain

|ZE7£L'0| |l’*$0|5 > o4
Ll < + D F(y)ldy
il < 0303 1/2“1\2%('%““ e [
< - 7ak 04
< 0¥ Yret gty | i awiswia
|a|=m k=1 Q
<y Zk(2’k+2’sk)
|a|=m k=1
(HD(XAHexpL,2k+1Q||f||LlogL,2k+1Q + HDaAHBMoM(f)(CC))
< €Y ID*Allsro(Mriog 1 (f)(@) + M(f)(x))
|a|=m
< €Y D% Allsrno M (f)(x).
|a|=m
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From the above estimates, we know that Theorem 2 and Corollary hold for gi}.
APPLICATION 3. Marcinkiewicz operator.
Let Q be homogeneous of degree zero on R™ and [,_, Q(z')do(z') = 0. As-
sume that Q € Lip,(S™~!) for 0 < v < 1, that is there exists a constant M > 0
such that for any z,y € S"71, |Q(z) — Q(y)| < M|z — y|?. The multilinear
Marcinkiewicz operator is defined by(see[9])

e = ([Tirowes) "

0

where

RO = [ s,

z—y|<t |Z‘ - y|n—1 |$ - y|m

we write that

(D@ = [ A=Y p)ay.

z—y|<t |I - y|n71

We also define that

(e = ([T IRwes) "

which is the Marcinkiewicz operator(see [16]);
Let H be a space of functions h : [0,+00) — R, normed by [|h]] =

> |h(t)|?dt /3 1/2 < o0. Then, it is clear that
0

pa(f)(@) = I (f)(@)]] and g (F)(x) = [|F/(£)(@)]]-

Now, we will verify that ug satisfies the size condition in Theorem 2. In fact,
for a cube Q = Q(xo, d) with suppf C (2Q)¢, x € Q = Q(xo,d), we have

1F () () = F{ () (o)

< </0°° /|zy|<t Q(xx_y)ﬁﬂff’y)f(y)dy
_ 1/2
_/zqu Q(xTxO g)jzﬁ;jo,y)f(y)d %
X (I (e
1/2
- / Q(?O__yjﬁii_f’)a) D*A(y)f(y)dy 2 2
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~ 2
o 0 lz—y|<t, |zo—y|>t |JI - y|m+n71 t3

~ 2
> 12(z0 — y)[|Rim (A; 20, )| dt
+ d
</O [/|$—y|>t7 |zo—y|<t |wo — y[m Tt ey t?

1/2

1/2

(/| :
0 l lz—y|<t,|zo—yl<t |z —y|mant
. 5 1/2
Qo — y)Rm (A; 0, y) dt
- dy| =
D rwlay|
> Qz —y)(z—y)°*
S ([T —
alz_m ( 0 |lz—y|<t |.’IJ - y|’m+n !
9 1/2
Qzo — y) (w0 — y)* 5 dt
- D*A(y) f(y)dy| —
/:voy<t ‘xo—y|m+n71 ( ) ( ) t3
= Ji+Jo+J3+Jdy
and
R (A ar\
n ‘SL’ - y| |z—y|<t<|zo—Yy| t
~ 1/2
Lf ()| R (A; 2, y)| 1 1
< C 1 2 2 dy
oo lT—y[mtne lz—yl*  |zo—yl
A _ |1/2
coof VOIRE 0o
gy |z —y[mtn |z — y[3/
< 0 D Allmwo 3 k2 Q[ sy
|aj=m k=1 2¢HQ
< C Z [|D*A||ppoM(f) (),

lae|=m

similarly, we have Jo < C' ), [DAl|paro M (f)(2);
For J3, by the following inequality (see [16]):

Qz —y) Qzo — y) C |z — 20 + |z — 20]”
- lzo —y|™ w0 —ylm )

|z —y["=t fxo — gyt

we gain
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—_ _ Y
Js < C DA / ('x zol , o= >
3 OéIZ_mH ||BMO (20)° |$07y‘n |x07y|n71+7
1/2
dt
—- d
</Iroy<t7|ryl<t t3> 7wl
< C Y IDAllpmo Y k(27F + 277" M(f)(x)
lal=m k=1
< C ) ID*AllsawoM(f)(x);
lal=m

For Jy, similar to the proof of Ji, J; and J3, we obtain

x — x|
Ll < © /
D 0 o A =

|a|=m k=1

|l’—x0‘1/2 |l’-$0"y o
jL|5C — y|nt1/2 + |ac0— |nty |D*Ay)||f (y)|dy

< oY Zk 27k 2R oy 2k+1Q| /ID“A ) (w)ldy
|a|=m k=1 2k+1Q

< C Z ID“A||prroM?(f)(z).
la]=m

Thus, Theorem 2 and Corollary hold for ug.
APPLICATION 4. Bochner-Riesz operator.

Let BY(£)(§) = (1 —12|¢[2)%. f(€). Denote

BE (faw) = [ Bt AW ey,

m T —yl™

where B! (2) =t "B°(z/t) for t > 0. The maximal multilinear Bochner-Riesz
operator is defined by(see[9])

B (f)(x) = sup 1B L (f)()].

We also define
BI(f)(x) = sup | B (f)(x)],

t>0

which is the maximal Bochner-Riesz operator (see [10][11]).
Let H be the space of functions h(t) such that ||h|| = sup |h(¢)] < oo, where
>0

h(t) maps [0,400) to H. Then it is clear that
BY(f)(@) = 1B} (f)(@)|| and B.(f)(x) = ||B3} () (2)]]-
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Now, we will verify that Bz‘f* satisfies the size condition in Theorem 2. In fact,
for a cube Q = Q(zo, d) with suppf C (2Q)¢, x € Q = Q(xo,d), we have

~ S (o 8 (o — ~
Bis(f)() = Bfs(f)(w0) = [ | Frt) = Fileo )| R (s, ) fy)dy
+ [ W[Rm(!x; 2,y) = Rin(A; 20, )] f (y)dy
Bl@—y)@-y)" _ Bleo-)@o-v)"\ paj
— Pt & o (BHER0T  Bilaemi)easv)® ) pe f(y) f(y)dy
=L+ Ly + Ls.

Consider the following two cases:
CasE 1. 0 < t < d. In this case, notice that (see [11])

|B2(2)] < e(1+ [2) =D/,

we obtain
|L1| < Ot ™ |f(y)||Rm(A,I,y)| (1 + ‘J} _ y|/t)—(6+(n+1)/2)dy
|zo — y|™
n\Q
< C Z D" Allsaot ™ Sk / @I+ [ — gl CH /2 gy
|a|=m k=0 HLG\2KD
< C Y D% Allsao(t/d)’ TN gD A () (a)
la|=m k=1
< C Y D*AlluoM(f) (=),
|e|=m
Ly < Ct™" / |f(y)||Rm(A‘;x’y)_‘Rm(A;movy”(lJr|x7y‘/t)*(6+(n+l)/2)dy
To — Y™
R™M\Q
< C Z [|ID“AllBmot™™
|a|=m
Z / |ZC TmeH.};T'y)‘ (1 + |£C’ _ yl/t)—(5+(n+1)/2)dy
e —al
FO0r410\20 ¢
< C ) ID*AllsuoM(f)(=),
|a|=m
Ls| < © ) ") / F@ID AW + o — yl/e)~CH+HI/2 gy
|a|=m 16:02}€+1Q\2}CQ~
Yot k(2gt-s_ L S A() — (DA ~
< €3 22 g [IND" A~ 0"l
o= g
< C ) IDYAllpro M (f)(x).

|e|=m
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CASE 2. t > d. In this case, we choose dy such that (n — 1)/2 < §y <
min(d, (n 4+ 1)/2), notice that (see [11])

|BY(x —y) — B (z0 — y)| < Clz — xo|(1 + |z — y|)~OF+D/2),
similar to the proof of Case 1, we obtain

L] < o / POIBAA Y| 114 g — gl )~ Gt 0r2) gy

|x07y|m+l
R™\Q
+Ct—n—1 / ‘f(y)|iRm(;T;nx7y)| |CL’0 _ :r\(l + |$0 _ y|/t)*(60+(n+l)/2)dy
-
R™M\Q
< C ) D™ Allsaro(d/t) V00N " ok D200 p (£ ()
[oe]=m k=1
< C Y ID"AllBuoM(f) (=),
|L2‘ < t—n/ ‘f(y)HRm(A[;’y)yImRm(AKCanH(1 + l-TO —y\/t)_(50+("+1)/2)dy
-
R™M\Q
< C ) DM Allsao(d/t) Y20y gk DR v () ()
la|=m k=1
< C Y ID*AlluoM(f)(@),
|a|=m
n n— 1 a
ILs] < C Z (d/t)" /2= 5022k(( 1/2=60) 1 g / |f ()| D> A(y)|dy
la|=m 2k+10
n— 1 « «
< ¢ Z S koD L i [ 11wl aw) - 0" ayglay
=m k=1 2’“+1Q
< C Y |ID*AllBao M (f)(x).
|a|l=m

Thus, Theorem 2 and Corollary hold for Bz Bk
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