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extensions and convexity with respect to various preorderings on a
given commutative ring. We study all this first in preordered rings
in general, then in f -rings. Most often Prüfer extensions and real
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2 Manfred Knebusch and Digen Zhang

Introduction

The present paper is based on the book “Manis valuations and Prüfer exten-
sions I” [KZ1] by the same authors. The book provides details about all terms
used here without explanation. But let us emphasize that a “ring” always
means a commutative ring with 1, and a ring extension A ⊂ R consists of a
ring R and a subring A of R, where, of course, we always demand that the unit
element of R coincides with the unit element of A.

The strength and versality of the concept of a Prüfer extension seems to depend
a great deal on the many different ways we may look at these ring extensions
and handle them. So we can say that a ring extension A ⊂ R is Prüfer iff for
every overring B of A in R, i.e. subring B of R containing A, the inclusion
map A →֒ B is an epimorphism in the category of rings, and then it follows
that B is flat over A, cf. [KZ1, Th.I.5.2, conditions (11) and (2)]. We can also
say that A ⊂ R is Prüfer iff every overring B of A in R is integrally closed in
R [loc.cit., condition (4)].

On the other hand a Prüfer extension A ⊂ R is determined by the family
S(R/A) of equivalence classes of all non trivial Manis valuations v:R → Γ∪∞
on R (cf. [KZ1, I §1]), such that v(x) ≥ 0 for every x ∈ A, namely A is the
intersection of the rings Av: = {x ∈ R | v(x) ≥ 0} with v running through
S(R/A). Further we can associate to each v ∈ S(R/A) a prime ideal p: = {x ∈
A | v(x) > 0} of A , and then have

Av = A[p]: = AR
[p]: = {x ∈ R | ∃s ∈ A \ p with sx ∈ A}.

v is – up to equivalence – uniquely determined by p. We have a bijection
v ↔ p of S(R/A) with the set Y (R/A) of all R-regular prime ideals p of A,
i.e. prime ideals p of A with pR = R. {Usually we do not distinguish between
equivalent valuations. So we talk abusively of S(R/A) as the set of non trivial
Manis valuations of R over A.} Actually the v ∈ S(R/A) are not just Manis
valuations but PM (= “Prüfer-Manis”) valuations. These have significantly
better properties than Manis valuations in general, cf. [KZ1, Chap.III].

We call S(R/A) the restricted PM-spectrum of the Prüfer extension A ⊂ R
(cf.§1 below). We regard the restricted PM-spectra of Prüfer extensions as
the good “complete” families of PM-valuations. In essence they are the same
objects as Prüfer extensions.

The word “real algebra” in the title of the present paper is meant in a broad
sense. It refers to a part of commutative algebra which is especially relevant
for real algebraic geometry, real analytic geometry, and recent expansions of
these topics, in particular for semialgebraic and subanalytic geometry and the
now emerging o-minimal geometry (cf. e.g. [vd D], [vd D1]).

Real algebra often is of non noetherian nature, but in compensation to this
valuations abound. Usually these valuations are real, i.e. have a formally real
residue class field (cf.§2 below).
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Prüfer Extensions in Real Algebra 3

A ring R has real valuations whenever R is semireal, i.e. −1 is not a sum of
squares in R (cf.§2). We then define the real holomorphy ring Hol(R) of R as
the intersection of the subrings Av with v running through all real valuations
on R. If R is a field, formally real, this is the customary definition of real holo-
morphy rings (e.g. [B,p.21]). In the ring case real holomorphy rings have been
introduced in another way by M. Marshall, V. Powers and E. Becker ([Mar],
[P], [BP]). But we will see in §3 (Cor.3.5) that their definition is equivalent to
ours.

Now it can be proved under mild conditions on R, e.g. if 1 + x2 is a unit in R
for every x ∈ R, that Hol(R) is Prüfer in R, i.e. the extension Hol(R) ⊂ R is
Prüfer (cf.§2 below). It follows that the restricted PM-spectrum S(R/Hol(R))
is the set of all non trivial special (cf.[KZ1, p.11]) real valuations on R. {Notice
that every valuation v on R can be specialized to a special valuation without
changing the ring Av (loc.cit.). A Manis valuation is always special.}
Thus, under mild conditions on R, the non trivial special real valuations on R
comprise one good complete family of PM-valuations on R. This fact already
indicates that Prüfer extensions are bound to play a major role in real algebra.

An important albeit often difficult task in Prüfer theory is to get a hold on the
complete subfamilies of S(R/A) for a given Prüfer extension A ⊂ R. These are
the restricted PM-spectra S(R/B) with B running through the overrings of A
in R. Thus there is much interest in describing and classifying these overrings
of A in various ways.

Some work in this direction has been done in [KZ1, Chapter II] by use of multi-
plicative ideal theory, but real algebra provides us with means which go beyond
this general theory. In real algebra one very often deals with a preordering T
(cf.§5 below) on a given ring R. {A case in point is that R comes as a ring
of R-valued functions on some set X, and T is the set of f ∈ R with f ≥ 0
everywhere on X. Here T is even a partial ordering of R, T ∩ (−T ) = {0}.}
Then it is natural to look for T -convex subrings of R, (i.e. subrings which are
convex with respect to T ) and to study the T -convex hull convT (Λ) of a given
subring Λ of R. The interplay between real valuations, Prüfer extensions and
convexity for varying preorderings on R is the main theme of the present paper.

The smallest preordering in a given semireal ring R is the set T0 = ΣR2 of sums
of squares in R. It turns out that Hol(R) is the smallest T̂0-convex subring
convT̂0

(Z) of R with respect to the saturation T̂0 (cf.§5, Def.2) of T0 {This
is essentially the definition of Hol(R) by Marshall et al. mentioned above.}
Moreover, if every element of 1+T0 is a unit in R – an often made assumption
in real algebra – then Hol(R) is Prüfer in R, as stated above, and every overring
of Hol(R) in R is T̂0-convex in R (cf.Th.7.2 below).

Similar results can be obtained for other preorderings instead of T0. Let (R, T )
be any preordered ring. We equip every subring A of R with the preordering
T ∩ A. Convexity in A is always meant with respect to T ∩ A. We say that A
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has bounded inversion, if every element of 1 + (T ∩ A) is a unit in A. If R has
bounded inversion, it turns out that a subring A of R is convex in R iff A itself
has bounded inversion and A is Prüfer in R (cf.Th.7.2 below). Further in this
case every overring on A in R again has bounded inversion and is convex in R.

Thus the relations between convexity and the Prüfer property are excellent in
the presence of bounded inversion. If bounded inversion does not hold, they
are still friendly, as long as Hol(R) is Prüfer in R. This is testified by many
results in the paper.

Given a preordered ring (R, T ) and a subring A of R, it is also natural to look
for overrings B of A in R such that A is convex and Prüfer in B. Here we
quote the following two theorems, contained in our results in §7.

Theorem 0.1 (cf.Cor.7.7 below). Assume that A has bounded inversion.
There exists a unique maximal overring D of A in R such that A is convex
in D and D has bounded inversion. The other overrings B of A in R with this
property are just all overrings of A in D.

Notice that Prüfer extensions are not mentioned in this theorem. But in fact
D is the Prüfer hull (cf.[KZ1, I §5]) P (A,R) of A in R. It seems to be hard to
prove the theorem without employing Prüfer theory and valuations at last. We
also do not know whether an analogue of the theorem holds if we omit bounded
inversion.

Theorem 0.2 (cf.Cor.7.10 below). There exists a unique maximal overring E
of A in R such that A is Prüfer and convex in E. The other overrings of A in
R with this property are just all overrings of A in E.

Notice that here no bounded inversion is needed. We call E the Prüfer convexity

cover of A in the preordered ring R = (R, T ) and denote it by Pc(A,R).

If we start with a preordered ring A = (A,U) we may ask whether for every
Prüfer extension A ⊂ R there exists a unique preordering T of R with T ∩A =
U . In this case, taking for R the (absolute) Prüfer hull P (A) (cf.[KZ1, I §5]), we
have an absolute Prüfer convexity cover Pc(A):= Pc(A,P (A)) at our disposal.
This happens, as we will explicate in §10, if A is an f-ring, i.e. a lattice ordered
ring which is an ℓ-subring (= subring and sublattice) of a direct product of
totally ordered rings.

Another natural idea is to classify Prüfer subrings of a given preordering R =
(R, T ) by the amount of convexity in R they admit. Assume that A is already
a convex Prüfer subring of R. Does there exist a unique maximal preordering
U ⊃ T on R such that A is U -convex in R? {Without the Prüfer assumption
on A this question still makes sense but seems to be very hard.}
We will see in §13 that this question has a positive answer if R is an f -ring. Let
us denote this maximal preordering U ⊃ T by TA. Also the following holds,
provided Hol(R) is Prüfer in R. Every overring B of A in R is convex in R
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(cf.Th.9.10), and TB ⊃ TA. There exists a unique smallest subring H of A such
that H is Prüfer and convex in A (hence in R), and TH = TA. A subring B
of R is TA-convex in R iff B ⊃ H. No bounded inversion condition is needed
here.

On the contents of the paper. In §1 we develop the notion of PM-spectrum
pm(R/A) and restricted PM-spectrum S(R/A) for any ring extension A ⊂ R.
The full PM-spectrum pm(R/A) is needed for functorial reasons, but nearly
everything of interest happens in the subset S(R/A). Actually pm(R/A) carries
a natural topology (not Hausdorff), but for the purposes in this paper it suffices
to handle pm(R/A) as a poset (= partially ordered set) under the specialization
relation Ã of that topology. For non trivial PM-valuations v and w the relation
v Ã w just means that v is a coarsening of w. {We do not discuss the topology
of pm(R/A).} In §1 real algebra does not play any role.

In §2 – §8 we study convexity in a preordered ring R = (R, T ) and its relations
to real valuations, real spectra, and Prüfer extensions. We start in §2 with
the smallest preordering T0 = ΣR2 (using the convexity concept explicitly only
later), then considered prime cones in §3 and advance to arbitrary preorderings
in §4.

The prime cones of R are the points of the real spectrum SperR. We are eager
not to assume too much knowledge about real spectra and related real algebra
on the reader’s side. We quote results from that area often in a detailed way
but, mostly, without proofs.

We study convexity not only for subrings of R but also for ideals of a given
subring A of R and more generally for A-submodules of R. Generalizing the
concept of a real valuation we also study T -convex valuations on R (cf.§5). The
real valuations are just the T0-convex valuations. {Of course, these concepts
exist in real algebra for long, sometimes under other names.} All this seems to
be necessary to understand convex Prüfer extensions.

In the last sections, §9 – §13, we turn from preordered rings in general to f -
rings. As common for f -rings (cf. e.g.[BKW]), we exploit the interplay between
the lattice structure and the ring structure of an f -ring. In particular we here
most often meet absolute convexity (cf.§9,Def.1) instead of just convexity. So
we obtain stronger results than in the general theory, some of them described
above.

Prominent examples of f -rings are the ring C(X) of continuous R-valued func-
tions on a topological space X and the ring CS(M,k) of k-valued continuous
semialgebraic functions on a semialgebraic subset M of kn (n ∈ N) for k a real
closed field.

These rings are fertile ground for examples illustrating our results. They are
real closed (in the sense of N. Schwartz, cf.[Sch1]). As Schwartz has amply
demonstrated [Sch3], the category of real closed rings, much smaller than the
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6 Manfred Knebusch and Digen Zhang

category of f -rings, is flexible enough to be a good environment for studying
C(X), and for studying CS(M,k) anyway. Thus a logical next step beyond
the study in the present paper will be to focus on real closed rings. For lack of
space and time we have to leave this to another occasion.

We also give only few examples involving C(X) and none involving CS(M,k).
It would be well possible to be more prolific here. But especially the literature
on the rings C(X) is so vast, that it is difficult to do justice to them without
writing a much longer paper. We will be content to describe the real holomor-
phy ring of C(X) (4.13), the minimal elements of the restricted PM-spectrum
of C(X) over this ring (1.3, 2.1, 4.13), and the Prüfer hull of C(X) (§11) in
general.

Other rings well amenable to our methods are the rings of real Cr-functions on
Cr-manifolds, r ∈ N ∪ {∞}, although they are not f -rings.

References. The present paper is an immediate continuation of the book [KZ1],
which is constantly refered to. In these references we omit the label [KZ1].
Thus, for example, “in Chapter II” means “in [KZ1, Chapter II]”, and “by
Theorem I.5.2” means “by Theorem 5.2 in [KZ1, Chapter I §5]”. All other
references, which occur also in [KZ1], are cited here by the same labels as
there.

Acknowledgement. We gratefully acknowledge support by the European
RTNetwork RAAG. At various workshops and meetings in this network we
could discuss and clarify ideas pertinent to the present paper.
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Prüfer Extensions in Real Algebra 7

§1 The PM-spectrum of a ring as a partially ordered set

Let R be any ring (as always, commutative with 1).

Definition 1. The PM-spectrum of R is the set of equivalence classes of PM-
valuations on R. We denote this set by pm(R), and we denote the subset of
equivalence classes of non-trivial PM-valuations on R by S(R). We call S(R)
the restricted PM-spectrum of the ring A.

Usually we are sloppy and think of the elements of pm(R) as valuations instead
of classes of valuations, replacing an equivalence class by one of its members.
We introduce on pm(R) a partial ordering relation “Ã” as follows.

Definition 2. Let v and w be PM-valuations of R. We decree that v Ã w
if either both v and w are nontrivial and Aw ⊂ Av, which means that v is a
coarsening of w (cf. I §1, Def. 9), or v is trivial and supp v ⊂ suppw.

Remarks 1.1. a) We have a map supp : pm(R) → SpecR from pm(R) to the
Zariski spectrum SpecR, sending a PM-valuation on R to its support. This
map is compatible with the partial orderings on pm(R) and SpecR : If v Ã w
then supp v ⊂ suppw.

b) The restriction of the support map supp : pm(R) → SpecR to the subset
pm(R) \ S(R) of trivial valuations on R is an isomorphism of this poset with
SpecR. {“poset” is an abbreviation of “partially ordered set.”}
c) Notice that S(R) is something like a “forest”. For every v ∈ S(R) the
set of all w ∈ S(R) with w Ã v is a chain (i.e. totally ordered). Indeed,
these valuations w correspond uniquely with the R-overrings B of Av such that
B 6= R. Perhaps this chain does not have a minimal element. We should add
on the bottom of the chain the trivial valuation v∗ on R with supp v∗ = supp v.
The valuations v∗ should be regarded as the roots of the trees of our forest.

This last remark indicates that it is not completely silly to include the tri-
vial valuations in the PM-spectrum, although we are interested in nontrivial
valuations. Other reasons will be indicated later.

Usually we will not use the full PM-spectrum pm(R) but only the part consist-
ing of those valuations v ∈ pm(R) such that Av ⊃ A for a given subring A.

Definition 3. Let A ⊂ R be a ring extension.

a) A valuation on R over A is a valuation v on R with Av ⊃ A. In this case
the center of v on A is the prime ideal pv ∩ A. We denote it by centA(v).

b) The PM-spectrum of R over A (or: of the extension A ⊂ R) is the partially
orderd subset consisting of the PM-valuations v on R over A. We denote this
poset by pm(R/A). The restricted PM-spectrum of R over A is the subposet
S(R) ∩ pm(R/A) of pm(R/A). We denote it by S(R/A).
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8 Manfred Knebusch and Digen Zhang

c) The maximal restricted PM-spectrum of R over A is the set of maximal
elements in the poset S(R/A). We denote it by ω(R/A). It consists of all non-
trivial PM-valuations of R over A which are not proper coarsenings of other
such valuations.

Remark 1.2. Notice that, if v and w are elements of pm(R/A) and v Ã w,
then centA(v) ⊂ centA(w). Also, if v ∈ pm(R/A) and p: = centA(v), then
A[p] ⊂ Av and pv ∩ A[p] = p[p]. In the special case that A ⊂ R is Prüfer
the pair (A[p], p[p]) is Manis in R. Since this pair is dominated by (Av, pv) we
have (A[p], p[p]) = (Av, pv) (cf. Th.I.2.4). It follows that, for A ⊂ R Prüfer,
the center map centA: pm(R/A) → SpecA is an isomorphism from the poset
pm(R/A) to the poset SpecA. {Of course, we know this for long.} It maps
S(R/A) onto the set Y (R/A) of R-regular prime ideals of A, and ω(R/A) onto
the set Ω(R/A) of maximal R-regular prime ideals of A.

Definition 4. If A ⊂ R is Prüfer and p ∈ SpecA, we denote the PM-valuation
v of R over A with centA(v) = p by vp. If necessary, we more precisely write
vR

p instead of vp.

For a Prüfer extension A ⊂ R the posets pm(R/A) and S(R/A) are nothing
new for us. Here it is only a question of taste and comfort, whether we use
the posets Spec (A) and Y (R/A) or work directly with pm(R/A) and S(R/A).
Recall that, if A is Prüfer in R, we have

A =
⋂

p∈Y (R/A)

A[p] =
⋂

p∈Ω(R/A)

Ap,

hence
A =

⋂

v∈S(R/A)

Av =
⋂

v∈ω(R/A)

Av.

In the same way any R-overring B of A is determined by the sets of valuations
S(R/B) and ω(R/B).

Example 1.3. Let X be a completely regular Hausdorff space (cf. [GJ, 3.2]).
Let R: = C(X), the ring of continuous R-valued functions on X, and A: =
Cb(X), the subring of bounded functions in R.∗) As proved in the book [KZ1],
and before in [G2], the extension A ⊂ R is Prüfer (even Bezout, cf.II.10.8). In
the following we describe the set Ω(R/A) of R-regular maximal ideals of A.

Every function f ∈ A extends uniquely to a continuous function fβ on the
Stone-Čech compactification βX of X (e.g. [GJ, §6]). Thus we may identify

∗) In most of the literature on C(X) this ring is denoted by C∗(X). We have to refrain from

this notation since, for any ring R, we denote – as in [KZ1] – the group of units of R by

R∗.
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A = C(βX). As is very well known, the points p ∈ βX correspond uniquely
with the maximal ideals p of A via

p = mp: = {f ∈ A | fβ(p) = 0},

cf. [GJ, 7.2]. In particular, A/p = R for every p ∈ MaxA. The maximal ideals
of P of R also correspond uniquely with the points p of βX in the following
way [GJ, 7.3]: For any f ∈ R let Z(f) denote the zero set {x ∈ X | f(x) = 0}.
Then the maximal ideal P of R corresponding with p ∈ βX is

P = Mp: = {f ∈ R | p ∈ clβX(Z(f))},

where clβX(Z(f)) denotes the topological closure of Z(f) in βX. It follows
that Mp ∩ A ⊂ mp.

By definition Ω(R/A) is the set of all ideals mp with mpR = R. If mpR = R

then even mp ∩R∗ 6= ∅. Indeed, we have an equation 1 =
r
∑

i=1

figi with fi ∈ mp,

gi ∈ R. Then h: = 1 +
r
∑

i−1

g2
i is a unit in R and the functions gi

h are elements

of A. Thus 1
h =

r
∑

i=1

fi
gi

h ∈ mp. It is known that mp ∩ R∗ = ∅ iff R/Mp = R

[GJ, 7.9.(b)]. Further the set of points p ∈ βX with R/Mp = R is known as
the real compactification υX of X [GJ, 8.4]. Thus we have

Ω(R/A) = {mp | p ∈ βX \ υX}.

By the way, every f ∈ C(X) extends uniquely to a continuous function on υX
(loc.cit.). Thus we may replace X by υX without loss of generality, i.e. assume
that X is realcompact. Then

Ω(R/A) = {mp | p ∈ βX \ X}.

In Example 2.1 below we will give a description (from scratch) of the Manis
pair (A[p], p[p]) associated with p = mp for any p ∈ βX.

We return to an arbitrary ring extension A ⊂ R.

Theorem 1.4. Let A ⊂ R be a Prüfer extension and B an R-overring.

i) For every PM-valuation w of R over A the special restriction w|B of w to B
is a PM-valuation of B over A.

ii) The map w 7→ w|B from pm(R/A) to pm(B/A) is an isomorphism of posets.

Proof. a) Let w be a PM-valuation on R over A. Then v: = w|B is a special
valuation on B with Av = Aw ∩ B and pv = pw ∩ B. In particular, v is a
valuation over A. The set B \ Av is closed under multiplication. Thus Av is
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PM in B (cf. Prop. I.5.1.iii). Proposition III.6.6 tells us that v is Manis, hence
PM. We have centA(w) = centA(v).
b) Since the center maps from pm(R/A) to SpecA and pm(B/A) to SpecA
both are isomorphisms of posets, we have a unique isomorphism of posets
α: pm(R/A)

∼−→ pm(B/A) such that centA(w) = centA(α(w)) for every w ∈
pm(R/A). From centA(w) = centA(w|B) we conclude that α(w) = w|B .

The theorem shows well that we sometimes should work with the full PM-
spectrum pm(R/A) instead of S(R/A): In the situation of the proposition,
whenever R 6= B, there exist nontrivial PM-valuations w on R over A such
that w|B is trivial. (All PM-valuations w of R over B have this property.)
Thus we do not have a decent map from S(R/A) to S(B/A).

Proposition 1.5.a. Let B ⊂ R be a Prüfer extension. For every PM-valuation
v on B there exists (up to equivalence) a unique PM-valuation w on R with
w|B = v.

Proof. The claim follows by applying Theorem 4 ∗) to the Prüfer extensions
Av ⊂ B ⊂ R.

Definition 5. In the situation of Proposition 5.a we denote the PM-valuation
w on R with w|B = v by vR, and we call vR the valuation induced by v on R.

Proposition 1.5.b. If v1 is a second PM-valuation on B and v Ã v1 then
vR

Ã vR
1 . Thus, if A is any subring of B, the map v 7→ vR is an isomorphism

from pm(B/A) onto a sub-poset of pm(R/A). It consists of all w ∈ pm(R/A)
such that Aw ∩ B is PM in B.

Proof. We obtain the first claim by applying again Theorem 4 to the exten-
sions Av1

⊂ B ⊂ R. The second claim is obvious.

If M is a subset of pm(B/A) we denote the set {vR | v ∈ M} by MR.

Theorem 1.6. Assume that A ⊂ B is a convenient extension (cf. I §6, Def.2)
and B ⊂ R a Prüfer extension. Then the map S(B/A) → S(B/A)R, v 7→ vR,
is an isomorphism of posets, the inverse map being w 7→ w|B . The set S(R/A)
is the disjoint union of S(B/A)R and S(R/B). The extension A ⊂ R is again
convenient.

Proof. a) Let w ∈ S(R/A) be given. If Aw ⊃ B, then w ∈ S(R/B) and
w|B is trivial. Otherwise Aw ∩ B 6= B, and the extension Aw ∩ B ⊂ B is PM,
since A ⊂ B is convenient. Now Proposition 5.b tells us that w = vR for some

∗) Reference to Theorem 1.4 in this section. In later sections we will refer to this theorem

as “Theorem 1.4.” instead of “Theorem 4”.
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v ∈ S(B/A). Of course, v = w|B . The isomorphism pm(R/A)
∼−→ pm(B/A),

w 7→ w|B , stated in Theorem 4, maps S(R/A) \ S(R/B) onto S(B/A).

b) It remains to prove that R is convenient over A. Let C be an R-overring of
A such that R \ C is closed under multiplication. We have to verify that C is
PM in R.

The set B \ (C ∩B) is closed under multiplication. Thus C ∩B is PM in B. It
follows that C∩B is Prüfer in R, hence convenient in R. Since C∩B ⊂ C ⊂ R,
and R \ C is closed under multiplication, we conclude that C is PM in R.

Various examples of convenient extensions have been given in I, §6. In the case
that A ⊂ B is Prüfer, Theorem 6 boils down to Theorem 4.

We write down a consequence of Theorem 6 for maximal restricted PM-spectra.

Corollary 1.7. Let A ⊂ B be a convenient extension and B ⊂ R a Prüfer
extension. Then

ω(B/A)R ⊂ ω(R/A) ⊂ ω(B/A)R ∪ ω(R/B).

Proof. a) Let v ∈ ω(B/A)R be given. If w ∈ S(R/A) and vR
Ã w then

B ∩ Aw ⊂ B ∩ AvR = Av
⊂
= B.

We conclude, say by Theorem 6, that w = uR for some u ∈ S(B/A). Then
v = vR|B Ã w|B = u. Since v is maximal, we have u = v, and w = vR. Thus
vR is maximal in S(R/A).

b) Let w ∈ ω(R/A) be given. Then either w ∈ S(R/B) or w = vR for some
v ∈ S(B/A). In the first case certainly w ∈ ω(R/B) and in the second case
v ∈ ω(B/A). {N.B. It may well happen that a given w ∈ ω(R/B) is not
maximal in S(R/A).}
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§2 Real valuations and real holomorphy rings

If R is a ring and m a natural number we denote the set of sums of m-th powers
xm

1 + · · · + xm
r in R (r ∈ N, all xi ∈ R) by ΣRm. Notice that 1 + ΣRm is a

multiplicative subset of R. If m is odd, this set contains 0, hence is of no use.
But for m even the set 1 + ΣRm will deserve interest.

Let now K be a field. Recall that K is called formally real if −1 6∈ ΣK2. As is
very well known ([AS]) this holds iff there exists a total ordering on K, by which
we always mean a total ordering compatible with addition and multiplication.

We will also use the less known fact, first proved by Joly, that, given a natural
number d, the field K is formally real iff −1 6∈ ΣK2d ([J, (6.16)], cf. also [B4]).

In the following R is any ring (commutative, with 1, as always).

Definition 1. A prime ideal p of R is called real if the residue class field
k(p) = Quot(R/p) is formally real.

Remark. Clearly this is equivalent to the following condition: If a1, . . . , an are

elements of R with
n
∑

i=1

a2
i ∈ p then ai ∈ p for each i ∈ {1, . . . , n}.

Definition 2. A valuation v on R is called real if the residue class field κ(v)
(cf. I, §1) is formally real.

Remark. If v is a trivial valuation on R, then clearly v is real iff the prime ideal
supp v is real. The notion of a real valuation may be viewed as refinement of
the notion of real prime ideal.

Example 2.1 (cf. [G2, Examples 1A and 1B]). Let R := C(X) be the ring
of all real-valued continuous functions on a completely regular Hausdorff space
X. Let further α be an ultrafilter on the lattice Z(X) of zero sets Z(f) = {x ∈
X | f(x) = 0} of all f ∈ R. Given f, g ∈ C(X) we say that f ≤ g at α if
there exists S ∈ α such that f(x) ≤ g(x) for every x ∈ S, i.e. {x ∈ X | f(x) ≤
g(x)} ∈ α. Since α is an ultrafilter we have f ≤ g on α or g ≤ f on α or both.
We introduce the following subsets of R.

Aα: = {f ∈ R | ∃n ∈ N with |f | ≤ n at α}.

Iα: = {f ∈ R | ∀n ∈ N: |f | ≤ 1

n
at α}.

qα: = {f ∈ R | ∃S ∈ α with f |S = 0}.

We speak of the f ∈ Aα as the functions bounded at α, of the f ∈ Iα as the
functions infinitesimal at α, and of the f ∈ qα as the functions vanishing at α.
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It is immediate that Aα is a subring of R and qα is a maximal ideal of R
(cf.[GJ, 2.5]). It is also clear that Iα is an ideal of Aα. We claim that this ideal
is maximal.

In order to prove this, let f ∈ R \ Aα be given. There exists some n ∈ N such
that

Z1: = {x ∈ X | 1

n
≤ |f(x)| ≤ n} ∈ α.

Let V : = {x ∈ X | 1
n+1 < |f(x)| < n + 1}. Then Z0: = X \ V ∈ Z(X) and

Z0 ∩ Z1 = ∅. Thus there exists some h ∈ R with h|Z0 = 0 and h|Z1 = 1 {We
do not need that X is completely regular for this, cf.[GJ, 1.15].} The function
g:X → R with g = h

f on V and g = 0 on Z0 is continuous, since the function 1
f

on V is bounded and continuous. Thus g ∈ R. Since fg | Z1 = 1 we conclude
that 1 − fg ∈ qα ⊂ Iα.

Thus Iα is indeed a maximal ideal on R. Our binary relation “≤ at α” induces a
total ordering on the field Aα/Iα which clearly is archimedian. Thus Aα/Iα =
R.

Moreover, (Aα, Iα) is a Manis pair in R. For, if f ∈ R \ Aα, we have Yn: =
{x ∈ X | |f(x)| ≥ n} ∈ α for every n ∈ N. This implies that 1

1+f2 ≤ 1
n ,

f
1+f2 ≤ 1

n on Yn, hence 1
1+f2 ∈ Iα and f

1+f2 ∈ Iα. We conclude that

f · f

1 + f2
= 1 − 1

1 + f2
∈ Aα \ Iα.

Let vα:R ։ Γα ∪ ∞ denote the associated Manis valuation on R. Then
supp vα = qα, Avα

= Aα, pvα
= Iα, and vα has the residue class field

Aα/Iα = R (cf. Prop.I.1.6 and Lemma 2.10 below), hence is real. vα is trivial
iff qα = Iα iff R/qα = R.

The ultrafilters α on Z(X) can be identified with the points p of βX, cf. [GJ,
6.5]. Clearly Iα ∩ A is the maximal ideal mp of A corresponding to the point
p = α (cf.1.4 above). Since A: = Cb(X) is Prüfer in R, we conclude that
(Aα, Iα) is the Manis pair (A[p], p[p]) with p = mp in the notation of 1.4. The
pair is trivial, i.e. Aα = R, iff p ∈ υX.

We look for a characterization of a valuation to be real in other terms. As
before, R is any ring.

Proposition 2.2. Let v be a valuation on R. The following are equivalent
(1) v is real
(2) If x1, . . . , xn are finitely many elements of R then

v

(

n
∑

i=1

x2
i

)

= min
1≤i≤n

v(x2
i ).
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14 Manfred Knebusch and Digen Zhang

(3) There exists a natural number d such that for any finite sequence x1, . . . , xn

in R

v

(

n
∑

i=1

x2d
i

)

= min
1≤i≤n

v(x2d
i ).

{N.B. v(x2d
i ) = 2d v(xi), of course.}

Proof. (1) ⇒ (2): We first study the case that R is a field. Let x1, . . . , xn ∈ R
be given. We assume without loss of generality that v(x1) ≤ · · · ≤ v(xn) and
x1 6= 0. We have xi = aix1 with ai ∈ Av, a1 = 1. Since Av/pv is a formally
real field,

1 + a2
1 + · · · + a2

n 6∈ pv.

Thus v(1 + a2
1 + · · · + a2

n) = 0. This implies

v

(

n
∑

i=1

x2
i

)

= v(x2
1) = min

1≤i≤n
v(x2

i ).

Let now R be a ring and again x1, . . . , xn a finite sequence in R. Let q: = supp v,
and – as always – let v̂ denote the valuation induced by v on k(q). Then with
xi: = xi + q ∈ k(q) we have

v

(

n
∑

1

x2
i

)

= v̂

(

n
∑

1

x2
i

)

= min
1≤i≤n

v̂(x2
i ) = min

1≤i≤n
v(x2

i ).

(2) ⇒ (3): trivial.
(3) ⇒ (1): Let A: = Av, p: = pv, q: = supp v. Property (3) for the valuation
v:R → Γ ∪ ∞ implies the same property for v:R/q → Γ ∪ ∞. Thus we may
assume in advance that q = 0, hence R is an integral domain.

Let K: = QuotR. The valuation v extends to a valuation v̂:K → Γ ∪∞. We
have κ(v) = κ(v̂) = Av̂/pv̂. Exploiting property (3) for x1, . . . , xn ∈ Av̂ we
obtain

−1 6∈ Σ κ(v̂)2d.

Thus κ(v) = κ(v̂) is formally real.

Corollary 2.3. Let v:R → Γ ∪ ∞ be a real valuation on R and H a con-
vex subgroup of R. Then v/H is again a real valuation. If H contains the
characteristic subgroup cv(Γ) (cf. I, §1, Def 3), then also v|H is real.

Proof. It is immediate that property (2) in Proposition 1 is inherited by v/H
and v|H from v.

Corollary 2.4. If v is a real valuation on R and B is a subring of R, then
the valuations v|B and v|B are again real.
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Proof. v|B inherits property (2) from v, hence is real. It follows by Corollary 3
that also v|B is real.

Corollary 2.5. If v is a real valuation on R, then supp v is a real prime ideal
on R.

Proof. This follows immediately from condition (2) in Proposition 2.

We now start out to prove the remarkable fact that – under a mild condition
on R – the set of all non trivial special real valuations on R coincides with the
restricted PM-spectrum S(R/A) over a suitable subring A of R which is Prüfer
in R.

Definition 3. Let R be any ring. The real holomorphy ring Hol(R) of R is
the intersection

⋂

v
Av with v running through all real valuations on R. {If R

has no real valuations, we read Hol(R) = R.}
In this definition there is a lot of redundance. Hol(R) is already the intersection
of the rings Av with v running through all non trivial special real valuations
on R.

We need a handy criterion for R which guarantees in sufficient generality that
Hol(R) is Prüfer in R.

Definition 4. We say that R has positive definite inversion, if Q ⊂ R and if
for every x ∈ R there exists a non constant polynomial F (t) in one variable t
over Q (depending on x) which is positive definite on R0

∗) , hence on R), such
that F (x) is a unit of R. {N.B. In this situation the highest coefficient of F is
necessarily positive. Thus we may assume in addition that F (t) is monic.}
Notice that, if R has positive definite inversion, then R is convenient over Q
(cf. Scholium I.6.8).

Example. Assume that Q ⊂ R and for every x ∈ R there exists some d ∈ N
such that 1 + x2d ∈ R∗. Then R has positive definite inversion.

Theorem 2.6. If R has positive definite inversion then also Hol(R) has this
property and Hol(R) is Prüfer in R.

Proof. Let A: = Hol(R). Clearly Q ⊂ A. If v is any real valuation then also
Q ⊂ κ(v). Moreover, if F (t) ∈ Q[t] is a positive definite monic polynomial,
then F (t) has no zero in κ(v), since κ(v) can be embedded into a real closed
field which then contains R0. Thus every real valuation v is an F -valuation as

∗)
R0 denotes the real closure of Q, i.e. the field of real algebraic numbers.
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16 Manfred Knebusch and Digen Zhang

defined in I, § 6 (cf. Def.5 there), and we know by Theorem I.6.13 that A is
Prüfer in R.

If x ∈ A, and if F (t) ∈ Q[t] is positive definite and F (x) ∈ R∗, then A ⊂ Av and
clearly v(F (x)) = 0 for every real valuation v. Thus 1

F (x) ∈ A and F (x) ∈ A∗.

In Definition 4 we demanded that Q ⊂ R. This condition, of course, is not
an absolute necessity in order to guarantee that Hol(R) is Prüfer in R. For
example, one can prove the following variant of Theorem 2.6 by the same
arguments as above.

Theorem 2.6′. Assume that for every x ∈ R there exists some d ∈ N with
1 + x2d ∈ R∗. Then also Hol(R) has this property, and Hol(R) is Prüfer in R.

Corollary 2.7. Under the hypothesis in Theorem 6 or 6′ every special real
valuation on R is PM. Moreover, if X is any set of real valuations on R, the
ring

⋂

v∈X

Av is Prüfer in R.

Positive definite inversion holds for many rings coming up in real algebra,
namely the “strictly semireal rings”, to be defined now.

Definition 5. We call a ring R strictly semireal, if for every maximal ideal m

of R the field R/m is formally real.∗)

Here are other characterizations of strictly semireal rings in the style of Propo-
sition 2 above.

Proposition 2.8. For any ring R the following are equivalent.
(1) R is strictly semireal.
(2) 1 + ΣR2 ⊂ R∗.
(3) There exists a natural number d such that 1 + ΣR2d ⊂ R∗.

Proof. 1 + ΣR2 ⊂ R∗ means that (1 + ΣR2)∩m = ∅ for every maximal ideal
m of R, and this means that −1 is not a sum of squares in any of the fields
R/m. In the same way we see that 1+ΣR2d ⊂ R∗ means that −1 is not a sum
of 2d-th powers in each of these fields.

Comment. Our term “strictly semireal” alludes to property (2) in Proposi-
tion 8. Commonly a ring R is called semireal if −1 6∈ ΣR2 and called real if
a2
1+· · ·+a2

r 6= 0 for any nonzero elements a1, . . . , ar of R [La1, §2], [KS Chap III,

∗) In I §6, Def.6 we coined the term “totally real” for this property. We now think it is

better to reserve the label “totally real” for a ring R where the residue class fields k(p) of

all prime ideals p of R are formally real.
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§2]. It may be tempting to call a ring R just “totally real” if R/m is formally
real for every m ∈ MaxR, but notice that such a ring is not necessarily real in
the established terminology. Schwartz and Madden call our strictly semireal
rings “rings having the weak bounded inversion property” [SchM, p.40]. This
is a very suitable but lenghty term.

Corollary 2.9. If R is any ring and d ∈ N, then the localisation S−1
d R with

respect to Sd: = 1 + ΣR2d is strictly semireal, and S−1
d R = S−1

1 R.

In the following we need a lemma which could well have been proved in III, §1.

Lemma 2.10. If v is a PM-valuation on R then κ(v) = Av/pv.

Proof. We know by III, §1 that pv is a maximal ideal of Av, hence pv: =
pv/supp v is a maximal ideal of Av: = Av/supp v. Proposition I.1.6 tells us
that ov = (Av)pv

. (This holds for any Manis valuation v.) Thus κ(v) =
ov/mv = Av/pv in our case.

Theorem 2.11. Assume that R is strictly semireal. Let d ∈ N be fixed and
T : = ΣR2d. Then

Hol(R) =
∑

t∈T

Z
1

1 + t
.

(Recall that 1 + T ⊂ R∗.) Hol(R) is again strictly semireal.

Proof. Let A: =
∑

t∈T

Z 1
1+t . This is a subring of A since for t1, t2 ∈ T

1

1 + t1
· 1

1 + t2
=

1

1 + u

with u: = t1 + t2 + t1t2 ∈ T . As in the proof of Proposition 2, (1) ⇒ (2), we

see that v
(

1
1+t

)

≥ 0 for every t ∈ T and every real valuation v on R. Thus

A ⊂ Hol(R).

From I, §6 we infer that A is Prüfer in R (I §6, Example 13). Let v be a
PM-valuation on R with Av ⊃ A. If a1, . . . , an are elements of A then t: =
a2d
1 + · · · + a2d

n ∈ Av and 1
1+t ∈ A ⊂ Av, hence 1 + t ∈ A∗

v. Thus Av is
strictly semireal. Since pv is a maximal ideal of Av, we conclude by Lemma 10
above that the field κ(v) is formally real, i.e. v is a real valuation. It follows
that Av ⊃ Hol(R). Since A is the intersection of the rings Av with v running
through S(R/A), we infer that A ⊃ Hol(R), and then that A = Hol(R).

If t: = a2d
1 + · · ·+ a2d

r with elements ai of A then 1 + t ∈ A and 1
1+t ∈ A, hence

1 + t ∈ A∗. Thus A is strictly semireal.

Proposition 2.12. Assume that A ⊂ R is a Prüfer extension and A is strictly
semireal. Then every non trivial PM-valuation on R over A is real.
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Proof. Let m be an R-regular maximal ideal of A, and let v denote the
associated PM-valuation on R with Av = A[m], pv = p[m]. The natural map
A/m → A[m]/p[m] is an isomorphism, since A/m is already a field. It follows by
Lemma 10 that κ(v) = A/m. By assumption this field is formally real. Thus v
is real.

We now have proved that every v ∈ ω(R/A) is real. The other non trivial PM-
valuations on R over A are coarsenings of these valuations, hence are again
real, as observed in Corollary 3 above.

We now state the first main result of this section.

Theorem 2.13. Let R be a strictly semireal ring, and let A: = Hol(R).
i) A is Prüfer in R and S(R/A) is the set of all non trivial special real valuations
on R.
ii) A is strictly semireal and Hol(A) = A.
iii) The overrings of A in R are precisely all subrings of R which are strictly
semireal and Prüfer in R.
iv) If B is an overring of A in R then Hol(B) = A.

Proof. i): We know by Theorem 6 that A is Prüfer in R and by Theorem 11
that A is strictly semireal, finally by Proposition 12 that every v ∈ S(R/A) is
real. Conversely, if v is any real valuation on R, then Av ⊃ A by definition of
A = Hol(R). If in addition v is special, then v is PM since A is Prüfer in R.
Thus, if v is non trivial, v ∈ S(R/A).
ii): We said already that A is strictly semireal, and now know, again by The-
orems 6 and 11 (or by i)), that Hol(A) is strictly semireal and Prüfer in A.
Since A is Prüfer in R we conclude that Hol(A) is Prüfer in R (cf. Th.I.5.6).
Now Proposition 12 tells us that every v ∈ S(R/Hol(A)) is real, hence Av con-
tains A = Hol(R). Since Hol(A) is the intersection of these rings Av, we have
A ⊂ Hol(A), i.e. A = Hol(A).
iii): Assume that B is a strictly semireal subring of R which is Prüfer in R. We
see by the same arguments as in the proof of part i) that every v ∈ S(R/B)
is real. B is the intersection of the rings Av of these valuations v. Thus
A: = Hol(R) ⊂ B.

Conversely, if B is an overring of A in R, we have 1 + t ∈ B and 1
1+t ∈ A ⊂ B

for every t ∈ ΣB2. Thus 1+ΣB2 ⊂ B∗, and we conclude by Proposition 2 that
B is strictly semireal. Of course, B is also Prüfer in R, since A is Prüfer in R.
iv): Assume that A ⊂ B ⊂ R. Then both A and B are strictly semireal.
Applying claim iii) to the Prüfer extension A ⊂ B we learn that Hol(B) ⊂
A, and then, that Hol(B) is Prüfer in A. Applying the same argument to
the Prüfer extension Hol(B) ⊂ A we obtain that Hol(A) ⊂ Hol(B). Since
Hol(A) = A we conclude that Hol(B) = A.

Scholium 2.14. Let R be a strictly semireal ring and B a subring of R which
is Prüfer in R. The following are equivalent:
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(1) B is strictly semireal.
(2) S(R/B) consists of real valuations.
(2′) ω(R/B) consists of real valuations.
(3) Hol(R) ⊂ B.

Proof. The equivalence (1) ⇔ (3) has been stated in Theorem 13.iii, and the
implication (3) ⇒ (2) is clear by Theorem 13.i. (2) ⇒ (2′) is trivial, and (2′)
⇒ (3) is clear by definition of Hol(R).

Theorem 2.15. Assume that A ⊂ R is a Prüfer extension and A is strictly
semireal. Then the ring R is strictly semireal.

Proof. Let Q be a maximal ideal of R. We want to verify that the field R/Q

is formally real. We have Q = qR with q: = Q ∩ A (cf. Prop.I.4.6); and q is
a prime ideal of A. We choose a maximal ideal m of A containing q. Then
mR ⊃ Q.

1.Case: mR 6= R. This forces mR = Q, since Q is maximal. Intersecting with
A we obtain m = q. Since A ⊂ R is ws we have Am = RQ (I, §3 Def.1). This
gives us R/Q = A/m, and A/m is formally real.

2.Case: mR = R. Now there is a PM-valuation v on R with Av = A[m],
pv = m[m]. Proposition 12 tells us that v is real. v induces a valuation ṽ on Rm

with Aṽ = Am, pṽ = mAm, and ṽ is again PM (and real, since κ(ṽ) = κ(v)).
Now we invoke Proposition I.1.3, which tells us that Rm is a local ring with
maximal ideal supp ṽ = (supp v)m. This implies that Qm ⊂ (supp v)m. Taking
preimages of these ideals under the localisation map R → Rm we obtain Q ⊂
supp v, hence Q = supp v, since Q is maximal. We conclude by Corollary 5
that Q is real, i.e. R/Q is formally real.

Comment. Theorems 13 and 15 together tell us that for a given strictly semireal
ring R we have a smallest strictly semireal subring A of R such that A is Prüfer
in R, namely A = Hol(R), and a biggest strictly semireal ring U ⊃ R such that
R is Prüfer in U , namely U = P (R), the Prüfer hull of R. Every ring B
between Hol(R) and P (R) is again strictly semireal, and Hol(B) = Hol(R),
P (B) = P (R).

The following theorem may be regarded as the second main result of this sec-
tion.

Theorem 2.16. Let B ⊂ R be any Prüfer extension and let v be a real PM-
valuation on B. Then the induced PM-valuation vR on R (cf. §1, Def.5) is
again real.

Proof. a) We first prove this in the special case that B is strictly semireal.
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Let v be a real PM-valuation on B. Then Av ⊂ B is a Prüfer extension with
ω(R/Av) = {v}. Since v is real we learn by Scholium 14 that Av is a strictly
semireal ring. The extension Av ⊂ R is again Prüfer and vR is a PM-valuation
on R over Av. Proposition 12 tells us that vR is real, provided this valuation
is non trivial.

There remains the case that vR is trivial. Then also v is trivial. The prime
ideal q: = supp v = pv of B is real, and Q: = supp (vR) is a prime ideal of R
with Q ∩ B = q, hence Q = Rq. Since B ⊂ R is ws, we have Bq = RQ. This
implies k(Q) = k(q), which is a formally real field. Thus Q is real, which means
that the trivial valuation vR is real.

b) We now prove the theorem in general. Let again v be a real valuation on B
and A: = Av. Let S: = 1 + ΣA2. The extension S−1A ⊂ S−1B is Prüfer and
S−1A is strictly semireal. By Theorem 15 also S−1B is semireal (and S−1R
as well). We have v(s) = 0 for every s ∈ S. Thus v extends uniquely to a
valuation v′ on S−1B, and v′ is PM and real, the latter since κ(v′) = κ(v). As
proved in step a) the PM-valuation w′: = (v′)R on S−1R is again real. We have
w′(s) = 0 for every s ∈ S, of course. Let jB :B → S−1B and jR:R → S−1R
denote the localisation maps of B and R with respect to S, and let w: = w′◦jR.
This is a Manis valuation on R since w(s) = w′( s

1 ) = 0 for every s ∈ S. We

have j−1
R (Aw′) = Aw, j−1

B (Av′) = Av, and Aw′ ∩ S−1B = Av′ . It follows that
Aw ∩ B = Av. In particular Aw ⊃ Av and thus Aw ⊂ R is Prüfer, hence w is
PM. It is now clear that w|B = v, which means that w = vR (cf. §1, Def.5).
We have κ(w) = κ(w′), and we conclude that w is real, since w′ is real.

Corollary 2.17. Let B ⊂ R be a Prüfer extension. Assume also that Hol(B)
is Prüfer in B (e.g. B has positive definite inversion, cf. Theorem 6). Then
B ∩ Hol(R) = Hol(B).

Proof. If w is a real valuation on R then the restriction u: = w|B is a real
valuation on B and Au = B∩Aw. Thus Hol(B) ⊂ B∩Aw. Taking intersections
we conclude that Hol(B) ⊂ B ∩ Hol(R).

On the other hand, if v is a special valuation on B we have Hol(B) ⊂ Av ⊂ B,
and we conclude that v is PM, since Hol(B) is assumed to be Prüfer in B.
Now Theorem 16 tells us that the valuation w: = vR is again real. We have
w|B = v, hence Av = B ∩ Aw ⊃ B ∩ Hol(R). Taking intersections we obtain
Hol(B) ⊃ B ∩ Hol(R).

Remark 2.18. If R is any ring and B is a subring of R then Hol(B) ⊂
B ∩ Hol(R). This is clear by the argument at the beginning of the proof of
Corollary 17.

By use of Theorem 16 we can expand a part of Theorem 13 to more general
rings.
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Theorem 2.19. Let R be a ring with positive definite inversion. Assume that
B is an overring of Hol(R) in R. Then B has positive definite inversion and
Hol(B) = Hol(R).

Proof. a) Let A: = Hol(R). We have Q ⊂ A ⊂ B. If x ∈ B and F (t) ∈ Q[t]
then F (x) ∈ B. If in addition F (t) is positive definite and F (x) ∈ R∗ then

1
F (x) ∈ A, as has been verified in the proof of Theorem 6. Thus 1

F (x) ∈ B and

F (x) ∈ B∗. This proves that B has positive definite inversion.
b) As observed above (Remark 18), we have Hol(B) ⊂ Hol(R) ∩ B = A. Since
A is a subring of B, we also have Hol(A) ⊂ Hol(B) ∩ A = Hol(B). Thus
Hol(A) ⊂ Hol(B) ⊂ A.
c) We finally prove that Hol(A) = A, and then will be done. Given a real
valuation v on A we have to verify that Av = A. Now u: = v|A is again real
and Av = Au. Thus we may replace v by u and assume henceforth that v is
special.

The ring A has positive definite inversion by Theorem 6 or step a) above. Thus
A is convenient, hence v is PM. By Theorem 16 the induced valuation w: = vR

is real. This implies Aw ⊃ Hol(R) = A. On the other hand w|A = v by
definition of w. This implies Av = Aw ∩ A. It follows that Av = A.

As in Theorem 6 we can replace here positive definite inverison by a slightly
different condition and prove by the same arguments

Theorem 2.19′. Let R be a ring and B an overring of Hol(R) in R. Assume
that for every x ∈ R there exists some d ∈ N with 1 + x2d ∈ R∗. Then this
holds for B too, and Hol(B) = Hol(R).

We now introduce “relative” real holomorphy rings. In real algebra some of
these are often more relevant objects than the “absolute” holomorphy rings
Hol(R).

Definition 6. Let R be a ring and Λ a subring of R. The real holomorphy

ring of R over Λ is the intersection of the rings Av with v running through
all real valuations on R over Λ (i.e. with Av ⊃ Λ). We denote this ring by
Hol(R/Λ).

In this terminology we have Hol(R/Z) = Hol(R) provided Z ⊂ R. {If n ·1R = 0
for some n ∈ N we have Hol(R) = R, since there do not exist real valuations
on R.} It is also clear that Λ · Hol(R) ⊂ Hol(R/Λ) for any subring Λ of R.

Proposition 2.20. Assume that Hol(R) is Prüfer in R. {This holds for
example if R has positive definite inversion, cf. Theorem 6.} Then for any
subring Λ of R we have

Hol(R/Λ) = Λ · Hol(R).
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Proof. Hol(R) is Prüfer in R by Theorem 6 (or Theorem 6′), hence Hol(R) ·Λ
is Prüfer in R. It follows that Hol(R) ·Λ is the intersection of the rings Av with
v running through all non trivial PM-valuations on R with Hol(R) · Λ ⊂ Av,
i.e. with Λ ⊂ Av and Hol(R) ⊂ Av. These valuations are known to be real
(cf. Theorem 13.i). We conclude that Hol(R)Λ ⊃ Hol(R/Λ). We also have
Hol(R)Λ ⊂ Hol(R/Λ) as stated above. Thus both rings are equal.

Corollary 2.21. Assume that B ⊂ R is a Prüfer extension and B is strictly
semireal. Then we have a factorisation (cf.II §7, Def.3)

Hol(R/B) = Hol(R) ×Hol(B) B.

Proof. Theorem 15 tells us that R is strictly real. Then Proposition 20 says
that Hol(R/B) = Hol(R) ·B. Finally Hol(R)∩B = Hol(B) by Corollary 17.
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§3 Real valuations and prime cones

As before let R be any ring (commutative, with 1, as always).

Definition 1 ([BCR, 7.1], [KS, III, §3], [La1, §4]). A prime cone (= “Ordnung”
in German) of R is a subset P of R with the following properties: P + P ⊂ P ,
P · P ⊂ P , P ∪ (−P ) = A, q: = P ∩ (−P ) is a prime ideal of A. We call q the
support of P and write q = supp v.

If R is a field and P a prime cone of R we have P ∩ (−P ) = {0}. Thus P is
just the set of nonnegative elements of a total ordering of the field R, by which
we always mean a total ordering compatible with addition and multiplication.
We then call P itself an ordering of R.

In general, a prime cone P on R induces a total ordering P on the ring R: = R/q,
q = supp v, and then an ordering on Quot(R) = k(q) in the obvious way
(loc.cit.). We denote this ordering of k(q) by P̂ .

Notice that P can be recovered from the pair (q, P̂ ), since P is just the preimage
of P̂ under the natural homomorphism R → k(q). Thus a prime cone P on the
ring R is essentially the same object as pair (q, Q) consisting of a prime ideal
q of R and an ordering Q of k(q).

Definition 2. The real spectrum of R is the set of all prime cones of R. We
denote it by SperR.

We have a natural map

supp : SperR −→ SpecR

which sends a prime cone P on R to its support. The image of this map is the
set (Spec R)re of real prime ideals of R. Indeed, if q ∈ Spec R, then k(q) carries
at least one ordering iff k(q) is formally real. For any q ∈ (Spec R)re the fibre
supp−1(q) can be identified with Sper k(q).

There lives a very useful topology on SperR, under which the support map
becomes continuous. We will need this only later, cf. §4 below.

Prime cones give birth to real valuations, as we are going to explain now. We
first consider the case that R is a field.

We recall some facts about convexity in an ordered field K = (K,P ), (cf. [La1],
[KS, Chap II], [BCR, 10.1]). We keep the ordering P fixed and stick to the
usual notations involving the signs <,≤. Thus P = {x ∈ K | x ≥ 0}. Also
|x|: = x if x ≥ 0 and |x|: = −x if x ≤ 0. A subset M of K is called convex

with respect to P or P -convex, if for a, b ∈ M with a < b the whole interval
[a, b]: = {x ∈ K | a ≤ x ≤ b} is contained in M .

Notice that an abelian subgroup M of (K,+) is P -convex iff for x ∈ M ∩ P
and y, z ∈ P with x = y + z we have y ∈ M and z ∈ M .
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If N is a second P -convex subgroup of (K,+) then M ⊂ N or N ⊂ M . Also
K contains a smallest convex additive subgroup, which we denote by AP . We
have

AP = {x ∈ K | ∃n ∈ N with |x| ≤ n}
= {x ∈ K | ∃n ∈ N with n ± x ∈ P}.

Clearly AP is a subring of K. If x is an element of K \ AP , then |x| > n for
every n ∈ N, hence |x−1| < 1

n for every n ∈ N, and a fortiori x−1 ∈ AP . This
proves that AP is a valuation domain of K (i.e. with Quot(AP ) = K), and
that

IP : = {x ∈ K | ∀n ∈ N: |x| <
1

n
} = {x ∈ K | ∀n ∈ N: 1 ± nx ∈ P}

is the maximal ideal of AP .

If B is any P -convex subring of K then B is an overring of AP in K and thus
again a valuation domain of K. Moreover,

{0} ⊂ mB ⊂ IP ⊂ AP ⊂ B ⊂ K,

and mB is a prime ideal of AP .

Conversely we conclude easily from the fact [0, 1] ⊂ AP that every AP -
submodule of K is P -convex in K. In particular, every overring B of AP

and every prime ideal of AP is P -convex in K. The overrings B of AP in

K are precisely all P -convex subrings of K. Their maximal ideals mB are the
prime ideals of AP , and they are P -convex in AP and in K.

More notations. Given a valuation ring B of K, let mB denote the maximal
ideal of B. Let κ(B) denote the residue class field B/mB of B and πB:B ։

κ(B) denote the natural map from B to κ(B). Further let vB denote the
canonical valuation associated to B with value group R∗/B∗. {In notations of
I, §1 we have κ(vB) = κ(B).} For B = AP we briefly write κ(P ) instead of
κ(AP ). Thus κ(P ) = AP /IP . In the same vein we write πP and vP instead of
πAP

and vAP
.

The following facts are easily verified.

Lemma 3.1. Let B be a P -convex subring of K.
i) Q: = πB(P ∩ B) is an ordering of κ(B). In particular κ(B) is formally real.
ii) The P -convex subrings C of K with C ⊂ B correspond uniquely with the
Q-convex subrings D of κ(B) via πB(C) = D and π−1

B (D) = C. We have
πB(mC) = mD and π−1

B (mD) = mC .
iii) In particular πB(AP ) = AQ, πB(IP ) = IQ, π−1

B (AQ) = AP , π−1
B (IQ) = IP .
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We state a consequence of a famous theorem by Baer and Krull (cf. [La1,
Cor.3.11], [KS, II §7], [BCR, Th.10.1.10]).

Lemma 3.2. Let B be a valuation ring of K and let Q be an ordering (= prime
cone) of κ(B). Then there exists at least one ordering P of K such that B is
P -convex and πB(B ∩ P ) = Q.

The theorem of Baer-Krull (loc.cit.) gives moreover a precise description of all
orderings P on K with this property. We do not need this now. We refer to
the literature for a proof of Lemma 2.

We return to an arbitrary ring R and a prime cone P of R. Let q: = suppP .

Definition 3. As above, P̂ denotes the ordering on k(q) = Quot(R/q). Let
jq:R → k(q) denote the natural homomorphisms from R to k(q). We introduce
the valuation

vP : = vP̂ ◦ jq

on R, the ring AP : = j−1
q (AP̂ ), and the prime ideal IP : = j−1

q (IP̂ ) of AP .

For v: = vP we have κ(v) = κ(P̂ ), Av = AP , pv = IP , and supp v = q = suppP .

From the description of AP and IP above in the field case, i.e. of AP̂ and IP̂ ,
we deduce immediately

Lemma 3.3.
AP = {x ∈ R | ∃n ∈ N:n ± x ∈ P},
IP = {x ∈ R | ∀n ∈ N: 1 ± nx ∈ P}.

Theorem 3.4. a) The real valuations on R are, up to equivalence, the coars-
enings of the valuations vP with P running through SperR.
b) Given a prime cone P of R, the coarsenings w of vP correspond one-to-one
with the P̂ -convex subrings B of k(q), q: = suppP , via w = vB ◦ jq.

Proof. If P is a prime cone of R then we know by Lemma 1.i that vP̂ is real,
and conclude that vP is real. Thus every coarsening of vP is real (cf. Cor.2.3.).

Conversely, given a real valuation w on R we have a real valuation ŵ on k(q),
q: = suppw, with w = ŵ ◦ jq. Applying Lemma 2 to an ordering Q on κ(ŵ) =
κ(w) we learn that there exists an ordering P ′ on k(q) such that Aŵ = ow is
P ′-convex in k(q). This implies that ŵ is a coarsening of vP ′ .

Let P : = j−1
q (P ′). This is a prime cone on R with suppP = q, P̂ = P ′. It

follows that vP = vP ′ ◦jq, and we conclude that w = ŵ◦jq is a coarsening of vP .
Moreover the coarsenings w of vP correspond uniquely with the coarsenings u
of vP̂ via u = ŵ, w = u ◦ jq, hence with the overrings of oP = AP̂ in k(q).

These are the P̂ -convex subrings of k(q).
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Corollary 3.5. The real holomorphy ring Hol(R) of R is the intersection of
the rings AP with P running through SperR. Thus Hol(R) is the set of all
x ∈ R, such that for every P ∈ SperR there exists some n ∈ N with n± x ∈ P .

Proof. This follows from the definition of Hol(R) in §2 by taking into account
Lemma 3 and Theorem 4.a.

We continue to work with a single prime cone P on R, and we stick to the
notations from above. In particular, q: = suppP .

We introduce a binary relation ≤
P

on R by defining x ≤
P

y iff y − x ∈ P .

This relation is reflexive and transitive, but not antisymmetric: If x ≤
P

y and

y ≤
P

x then x ≡ y mod q and vice versa. For any two elements x, y of R we

have x ≤
P

y or y ≤
P

x. We write x <
P

y if x ≤
P

y but not x ≡ y mod q.

Given elements a, b of R with a ≤
P

b we introduce the “intervals”

[a, b]
P
: = {x ∈ R | a ≤

P
x ≤

P
b} , ]a, b[

P
: = {x ∈ R | a <

P
x <

P
b}.

We say that a subset M of R is P -convex in R if for any two elements a, b ∈ R
with a ≤

P
b the interval [a, b]

P
is contained in R.

Notice that the prime cone P : = P/q: = {x + q | x ∈ P} on R/q defines a total
ordering ≤

P
on the ring R/q, compatible with addition and multiplication.

The P -convex subsets of R are the preimages of the P -convex subsets of R/q

under the natural map R ։ R/q. Thus the following is evident.

Remarks 3.6. i) Let M be a subgroup of (R,+). Then M is P -convex iff for
any two elements x, y of P with x+y ∈ M , we have x ∈ M and (hence) y ∈ M .
ii) The P -convex additive subgroups of R form a chain under the inclusion
relation.

Lemma 3.7.
i) suppP is the smallest P -convex additive subgroup of R.
ii) AP is the smallest P -convex additive subgroup M of R with 1 ∈ M .
iii) IP is the biggest P -convex additive subgroup M of R with 1 6∈ M .
iv) If M is any P -convex additive subgroup of R, the set {x ∈ R | xM ⊂ M}
is a P -convex subring of R.

Proof. i): Clear, since {0} is the smallest P -convex additive subgroup of R/q.
ii): An easy verification starting from the description of AP in Lemma 3.
iii): We know by Lemma 1 that IP is P -convex in R, and, of course, 1 6∈ IP .
Let M be any P -convex additive subgroup of R with 1 6∈ M . Suppose that
M 6⊂ IP . We pick some x ∈ M ∩ P with x 6∈ IP . We learn by Lemma 3
that there exists some n ∈ N with 1 − nx 6∈ P , hence nx − 1 = p ∈ P . This
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implies 1 + p = nx ∈ M . We conclude by the P -convexity of M that 1 ∈ M , a
contradiction. Thus M ⊂ IP .
iv): Again an easy verification.

As a consequence of this lemma we state

Proposition 3.8.
i) suppP is the smallest and IP is the biggest P -convex prime ideal of AP .
ii) AP is the smallest P -convex subring of R.
iii) Every P -convex additive subgroup of R is an AP -submodule of R.

Definition 4. Given an additive subgroup M of R we introduce the set

convP (M):=
⋃

z∈P∩M

[−z, z]
P
.

This is the smallest P -convex subset of R containing M . We call convP (M)
the P -convex hull of M (in R).

Lemma 3.9. convP (M) is again an additive subgroup of R, and

convP (M) = {x ∈ M | ∃ z ∈ P ∩ M with z ± x ∈ P}.

If M is a subring of R, then convP (M) is a subring of R.

Proof. All this is easily verified.

Theorem 3.10. a) If w is a coarsening (cf.I §1, Def.9) of the valuation vP on
R, then Aw is a P -convex subring of R.
b) For any subring Λ of R there exists a minimal coarsening w of vP with
Aw ⊃ Λ, and Aw = convP (Λ).

Proof. a): If w is a coarsening of vP then supp (w) = q. The induced
valuation ŵ on k(q) is a coarsening of v̂P = vP̂ , and w = ŵ ◦ jq. The ring Aŵ

is P̂ -convex in k(q). Thus Aw = j−1
q (Aŵ) is P -convex in R.

b): Let Λ:= jq(Λ) = Λ + q/q. This is a subring of R/q, hence of the field k(q).

We introduce the convex hulls B: = convP (Λ) and B̂: = convP̂ (Λ). Clearly B̂

is the smallest P̂ -convex subring C of k(q) with j−1
q (C) = B. There exists a

unique coarsening u of vP̂ with Au = B̂. Then w: = u ◦ jP is a coarsening of
vP with Aw = B, and this is the minimal coarsening of vP with valuation ring
B. Since for every coarsening w′ of vP the ring Aw′ is P -convex in R, it follows
that w is also the minimal coarsening of vP with Aw ⊃ Λ.

Definition 5. We call the valuation w described in Theorem 10.b the valuation

associated with P over Λ, and denote it by vP,Λ.
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Corollary 3.11. Let again Λ be a subring of R. The relative holomorphy
ring Hol(R/Λ) (cf.§2) is the intersection of the rings AvP,Λ

= convP (Λ) with
P running through SperR. It is also the set of all x ∈ R such that for every
P ∈ SperR there exists some λ ∈ P ∩ Λ with λ ± x ∈ P .

Proof. The first claim follows from Theorems 10 and 4. The second claim
then follows from the description of convP (Λ) in Lemma 9.

We now look for P -convex prime ideals of P -convex subrings of R.

Definition 5. For any subring Λ of R we define

IP (Λ):= {x ∈ R | 1+Λx ⊂ P} = {x ∈ R | 1±λx ∈ P for every λ ∈ Λ∩P}.

Theorem 3.12.
a) If w is a coarsening of the valuation vP on R, then pw is a P -convex∗) prime
ideal of Aw.
b) Let Λ be a subring of R and w: = vP,Λ. Then pw = IP (Λ). Moreover IP (Λ)
is the maximal P -convex proper ideal of Aw = convP (Λ).

Proof. a): pŵ is a P̂ -convex prime ideal of Aŵ. Taking preimages under jq

we see that the same holds for pw with respect to P and Aw.
b): Let B: = convP (Λ) and B̂: = convP̂ (Λ) with Λ:= jq(Λ). For any x ∈ R
we denote the image jq(x) by x. As observed in the proof of Theorem 10, we

have B = Aw and B̂ = Aŵ. From valuation theory over fields we know for
x ∈ (R \ q) ∩ P that x ∈ pŵ iff x−1 6∈ B̂. This means x−1 >

P̂
λ for every

λ ∈ P ∩ Λ, i.e. 1 − λx >
P̂

0. Since x >
P̂

0, this is equivalent to 1 − λx ∈ P̂ for

every λ ∈ P ∩ Λ, hence to 1 − λx ∈ P for every λ ∈ P ∩ Λ. It follows easily
that indeed

pw = j−1
q (p̂w) = IP (Λ).

In particular we now know that IP (Λ) is a P -convex proper ideal of B. If a is
any such ideal, then for every x ∈ a and b ∈ B we have bx ∈] − 1, 1[

P
, hence

1 ± bx ∈ P . In particular 1 ± λx ∈ P for every λ ∈ Λ. Thus x ∈ IP (Λ). This
proves that a ⊂ IP (Λ).

In the case Λ = R the theorem tells us the following.

Scholium 3.13. IP (R) is the maximal P -convex proper ideal of R. It is a
prime ideal of R. More precisely, IP (R) = pw for w the minimal coarsening of
vP with Aw = R, i.e. w = vP,R. Thus

IP (R) = {x ∈ R | Rx ⊂ IP }.

∗) Perhaps it would be more correct to call pw a (P∩Aw)-convex ideal of Aw. But this is not

really necessary, since Aw is P -convex in R.
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The latter fact is also obvious from the definition IP (R):=
{x ∈ R | 1 + Rx ⊂ P} and the description of IP in Lemma 3.

If Λ is a subring of R with B: = convP (Λ) 6= R the following lemma exhibits two
more P -convex ideals of B which both may be different from IP (Λ) = IP (B).

Lemma 3.14. Let B be a P -convex subring of R with B 6= R. Then R \ B is
closed under multiplication, and the prime ideals pB and qB (cf.I §2, Def.2) of
B are again P -convex.

Proof. a) We know by Theorem 10.b that B = Aw for some valuation w on
R. This implies that R \ B is closed under multiplication.
b) Let x ∈ R, z ∈ pB, and 0 ≤

P
x ≤

P
z. There exists some s ∈ R \ B with

sz ∈ B. Eventually replacing s by −s we may assume in addition that s ∈ P .
Now 0 ≤

P
sx ≤

P
sz. We conclude by the P -convexity of B that sx ∈ B, hence

x ∈ pB . This proves that pB is P -convex in R.
c) Let x ∈ R, z ∈ qB , and 0 ≤

P
x ≤

P
z. For any s ∈ P we have 0 ≤

P
sx ≤

P
sz

and sz ∈ B. This implies that sx ∈ B. It is now clear that Rx ⊂ B, hence
x ∈ qB .

We look for cases where every R-overring of AP is P -convex. We will verify
this if R is convenient over Hol(R). Notice that, according to §2, this happens
to be true if R has positive definite inversion, and also, if for every x ∈ R there
exists some d ∈ N with 1 + x2d ∈ R∗. Indeed, in these cases Hol(R) is even
Prüfer in R (cf. Theorems 2.6 and 2.6′).

We need one more lemma of general nature.

Lemma 3.15. Assume that B is a P -convex subring of R and S a multiplicative
subset of R. Then B[S] is again P -convex in R.

Proof. Let 0 ≤
P

x ≤
P

z and z ∈ B[S]. We choose some s ∈ S with sz ∈ B.

Then s2z ∈ B and 0 ≤
P

s2x ≤
P

s2z. Since B is P -convex in R this implies

that s2x ∈ B. Thus x ∈ B[S].

Theorem 3.16. Assume that R is convenient over Hol(R). Then every R-
overring B of AP is P -convex and PM in R, and pB = IP (B), provided B 6= R.

Proof. We may assume that B 6= R. Let A: = AP . The set R \ A is closed
under multiplication. A contains Hol(R), and R is convenient over Hol(R).
Thus A is PM in R, hence B is PM in R. Let P denote the unique R-regular
maximal ideal of B (cf. III, §1), and p: = P ∩ A. Then B = B[P] = A[p], since
A is ws in B. We conclude by Lemma 15 that B is P -convex in R.
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We now know by Lemma 14, that pB is P -convex in R, and then by Theorem 12,
that pB ⊂ IP (B). But pB is a maximal ideal of B, since B is PM in R (cf.
Cor.III.1.4). This forces pB = IP (B).

A remarkable fact here is that, given a subring B of R, there may exist various
prime cones P of R such that B is P -convex. But the prime ideals IP (B) are
all the same, at least if R is convenient over Hol(R).

Assuming again that R is convenient over Hol(R) we know that the special
restriction v∗

P : = vP |R of vP is a PM valuation. There remains the problem
to find criteria on P which guarantee that the valuation vP itself is PM. More
generally we may ask for any given ring R and prime cone P of R whether the
valuation vP is special. We defer these questions to the next section, §4.

Documenta Mathematica 10 (2005) 1–109
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§4 A brief look at real spectra

Let R be any ring (commutative with 1, as always). In §3 we defined the
real spectrum SperR as the set of prime cones of R. We now will introduce a
topology on SperR. For this we need some more notations in addition to the
ones established in §3.

The proofs of all facts on real spectra stated below can be found in most texts
on “abstract” semialgebraic geometry and related real algebra, in particular in
[BCR], [KS], [La1]. We will give some of these proofs for the convenience of
the reader.

Notations. Given a prime cone P on R let k(P ) denote a fixed real closure
of the residue class field k(q) of q: = suppP with respect to the ordering P̂
induced by P on k(q). Further let rP denote the natural homomorphism R →
R/q →֒ k(q) →֒ k(P ) from R to k(P ). Finally, for any f ∈ R, we define the
“value” f(P ) of f at P by f(P ):= rP (f). Thus f(P ) = f + q, regarded as an
element of k(P ).

Given f ∈ R and P ∈ SperR we either have f(P ) > 0 or f(P ) = 0 or f(P ) < 0.
Here we refer to the unique ordering of k(P ) (which we do not give a name).
Notice that f(P ) = 0 means f ∈ suppP , and that f(P ) ≥ 0 iff there is some
ξ ∈ k(P ) with f(P ) = ξ2.

Remark 4.1. In these notations we can rewrite the definition of convP (Λ) and
of IP (Λ) for any subring Λ of R (cf. §3) as follows.

convP (Λ) = {f ∈ R|∃λ ∈ Λ: |f(P )| ≤ |λ(P )|}
= {f ∈ R|∃µ ∈ Λ: |f(P )| < |µ(P )|},

IP (Λ) = {f ∈ R|∀λ ∈ Λ: |f(P )λ(P )| ≤ 1}
= {f ∈ R|∀µ ∈ Λ: |f(P )µ(P )| < 1}.

Here, of course, absolute values are meant with respect to the unique ordering
of k(P ).

If T is any subset of R, we define

◦
HR(T ):= {P ∈ SperR | f(P ) > 0 for every f ∈ T},
HR(T ):= {P ∈ SperR | f(P ) ≥ 0 for every f ∈ T}

= {P ∈ SperR | P ⊃ T},
ZR(T ):= {P ∈ SperR | f(P ) = 0 for every f ∈ T}.

If T = {f1, . . . , fr} is finite, we more briefly write
◦
HR(f1, . . . , fr) etc. instead

of
◦
HR({f1, . . . , fr}) etc. We usually suppress the subscript “R” if this does not
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lead to confusion. Notice that Z(f) = H(−f2) and Z(f1, . . . , fr) =
Z(f2

1 + · · · + f2
r ) = H(−f2

1 − · · · − f2
r ).

In fact we introduce two topologies on SperR.

Definition 1. a) The Harrison topology THar on SperR is the topology gen-

erated by HR: = {
◦
HR(f) | f ∈ R} as a subbasis of open sets.

b) A subset X of SperR is called constructible if X is a boolean combination

in SperR of finitely many sets
◦
HR(f), f ∈ R. We denote the set of all con-

structible subsets of SperR by KR. This is the boolean lattice of subsets of
SperR generated by HR.

c) The constructible topology Tcon on SperR is the topology generated by KR

as a basis of open sets. In this topology every X ∈ KR is clopen, i.e. closed
and open.

If nothing else is said we regard SperR as a topological space with respect to the
Harrison topology THar, while Tcon will play only an auxiliary role. Of course,
Tcon is a much finer topology than THar. We denote the topological space
(SperR, THar) simply by SperR and the space (SperR, Tcon) by (SperR)con.

(SperR)con turns out to be a compact Hausdorff space. Thus SperR itself is
quasicompact. Also, a constructible subset U of SperR is open iff U is the union

of finitely many sets
◦
H(f1, . . . , fr). We denote the family of open constructible

subsets of SperR by
◦
KR and the family of closed constructible subsets of SperR

by KR.

If R is a field then Tcon and THar coincide, hence SperR is compact (= quasi-
compact and Hausdorff) in this case, but for R a ring SperR most often is not
Hausdorff.

The support map supp : SperR → SpecR is easily seen to be continuous. In-
deed, given f ∈ R, the basic open set D(f):= {p ∈ SpecR | f 6∈ p} of SpecR

has the preimage {P ∈ SperR | f(P ) 6= 0} =
◦
H(f2) under this map.

Every ring homomorphism ϕ:R → R′ gives us a map

Sper(ϕ) = ϕ∗: SperR′ −→ SperR,

defined by ϕ∗(P ′) = ϕ−1(P ′) for P ′ a prime cone of R′. It is easily seen
(loc.cit.) that Sper(ϕ) is continuous with respect to the Harrison topology and
also with respect to the constructible topology on both sets. In other terms, if

X ∈ KR (resp.
◦
KR, resp. KR) then (ϕ∗)−1(X) ∈ KR′ (resp.

◦
KR′ , resp. KR′).

Notice also that supp (ϕ−1(P ′)) = ϕ−1(suppϕ). Thus we have a commutative
square of continuous maps
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SperR′ Sper(ϕ)−→ SperR

↓ supp ↓ supp

SpecR′ −→
Spec (ϕ)

SpecR.

Before continuing our discussion of properties of real spectra, we give an appli-
cation of the compactness of (SperR)con to the theory of relative real holomor-
phy rings, displayed in §2 and §3, by improving Corollary 3.11.

Theorem 4.2. Let Λ be any subring of the ring R. Given an element f of R,
the following are equivalent.
(i) f ∈ Hol(R/Λ).
(ii) There exists some λ ∈ Λ with |f(P )| ≤ |λ(P )| for every P ∈ SperR.
(iii) There exists some µ ∈ Λ with 1 + µ2 ± f ∈ P for every P ∈ SperR.

Proof. The implication (iii) ⇒ (ii) is trivial, and (ii) ⇒ (i) is obvious by
Corollary 3.11.
(i) ⇒ (iii): For every P ∈ SperR we choose an element λP ∈ P with λP ±f ∈ P .
This is possible by Corollary 3.11. Then also 1 + λ2

P ± f ∈ P . In other
terms, P ∈ H(1 + λ2

P + f, 1 + λ2
P − f). Thus SperR is covered by the sets

XP : = H(1 + λ2
P + f, 1 + λ2

P − f) with P running through SperR. Since
(SperR)con is compact, there exist finitely many points P1, . . . , Pr in SperR
such that

SperR = XP1
∪ · · · ∪ XPr

.

Let γ: = λ2
P1

+ · · ·+λ2
Pr

∈ Λ. Clearly 1+(1+γ)2±f ∈ P for every P ∈ SperR.

Applying the theorem to Λ = Z we obtain

Corollary 4.3. Hol(R) is the set of all f ∈ R such that there exists some
n ∈ N with n ± f ∈ P , i.e. |f(P )| ≤ n, for every P ∈ SperR.

We return to the study of the space SperR for R any ring. As in any topological
space we say that a point Q ∈ SperR is a specialization of a point P ∈ SperR
if Q lies in the closure {P} of the one-point set {P}.

Proposition 4.4. If P and Q are prime cones of R, then Q is a specialization
of P (in SperR) iff P ⊂ Q.

Proof. Q ∈ {P} iff for every open subset U of SperR with Q ∈ U also P ∈ U .
It suffices to know this for the U ∈ HR. Thus Q ∈ {P} iff for every f ∈ R with
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f(Q) > 0 also f(P ) > 0; in other terms, iff for every g ∈ R with g(P ) ≥ 0 we
have g(Q) ≥ 0. {Take g = −f .} This means that P ⊂ Q.

In the following P is a fixed prime cone of R. How do we obtain the prime
cones Q ⊃ P? As in §3, let q denote the support of P , q = P ∩ (−P ). Recall
from §3 that q is the smallest P -convex additive subgroup of R.

Lemma 4.5. Let a be a P -convex additive subgroup of R and T : = P + a.
Then T = P ∪ a and T ∩ (−T ) = a.

Proof. i) Let p ∈ P and a ∈ a. If p + a 6∈ P then −(p + a) ∈ P and
−a = p − (p + a) ∈ a. Since a is P -convex, it follows that −(p + a) ∈ a, hence
p + a ∈ a. This proves that T = P ∪ a.
ii) Of course, a ⊂ T ∩ (−T ). Let x ∈ T be given, and assume that x 6∈ a. Then,
as just proved, x ∈ P . But x 6∈ −P since P ∩ (−P ) ⊂ a. Thus x 6∈ −T . This
proves that T ∩ (−T ) = a.

Theorem 4.6. The prime cones Q ⊃ P correspond uniquely with the P -convex
prime ideals r of R via

Q = P + r = P ∪ r , r = suppQ.

Proof. a) If r is a P -convex prime ideal of R then Q: = P + r is closed under
addition and multiplication and Q ∪ (−Q) = R. By Lemma 5 we know that
Q ∩ (−Q) = r. Thus Q is a prime cone with support r. Also Q = P ∪ r by
Lemma 5.
b) Let Q be a prime cone of R containing P . Then r: = suppQ is a Q-convex
prime ideal of R. Since P ⊂ Q, it follows that r is P -convex. We have P+r ⊂ Q.
Let f ∈ Q be given, and assume that f 6∈ P . Then −f ∈ P ⊂ Q, hence f ∈ r.
We conclude that Q ⊂ P ∪ r. Thus Q = P + r = P ∪ r.

As observed in §3, the P -convex prime ideals of R form a chain under the
inclusion relation. We know by §3 that IP (R) is the maximal element of this
chain (cf. Scholium 3.13). Thus we infer from Proposition 4 and Theorem 6
the following

Corollary 4.7. The specialisations of P ∈ SperR form a chain under the
specialisation relation. In other terms, if Q1 and Q2 are prime cones with
P ⊂ Q1 and P ⊂ Q2, then Q1 ⊂ Q2 or Q2 ⊂ Q1. The maximal specialisation
of P is

P ∗: = P ∪ IP (R) = P + IP (R).

Thus P ∗ is the unique closed point of SperR in the set {P} of specialisations
of P . We now analyze the situation that P itself is a closed point of SperR.
This will give an answer to the question posed at the end of §3.
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Definition 2. a) Let Λ be a subring of R. We say that R is archimedian over

Λ with respect to P if convP (Λ) = R, i.e. for every f ∈ R there exists some
λ ∈ Λ with |f(P )| ≤ |λ(P )|.
b) If K is a real closed field and Λ a subring of K, we say that K is archimedian

over Λ if this holds with respect to the unique ordering of K.

Theorem 4.8. Let P be a prime cone of R, and q: = suppP . The following
are equivalent.
(i) P is a closed point of SperR.
(ii) q = IP (R).
(ii′) q is the only proper P -convex ideal of R.
(iii) The field k(q) is archimedian over R/q with respect to P̂ .
(iv) k(P ) is archimedian over R/q.
(v) The valuation vP is special.

Proof. The equivalence (i) ⇔ (ii) is evident from Corollary 7, and (ii) ⇔ (ii′)
follows from the general observation (cf. §3) that IP (R) is the biggest proper
P -convex ideal of R while q is the smallest one. The equivalence (iii) ⇔ (iv)
follows from the well known fact that k(P ) is archimedian over k(q) since k(P )
is algebraic over k(q).
(ii′) ⇔ (iii): Recall that for every f ∈ R the image of f + q of f in R: = R/q

has been denoted by f(P ). Recall also that the ordering P̂ induced by P on
k(q) is just the restriction of the unique ordering of k(P ) to k(q). A general

element of k(q) has the form f(P )
g(P ) with f, g ∈ R and g 6∈ q. The field k(q)

is archimedian over R with respect to P̂ iff for every such elements f, g there

exists some h ∈ R with
∣

∣

∣

f(P )
g(P )

∣

∣

∣
≤ |h(P )|. This property can also be stated as

follows: convP (gR) = R for every g ∈ R \ q where g: = g + q. Translating back
to R we see that (iii) means that convP (gR) = R for every g ∈ R \ q. Clearly
this holds iff q is the only proper P -convex ideal of R.
(ii) ⇔ (v): Let v: = vP and A: = AP = Av. We have pv = IP and supp v =
suppP = q. We first study the case that A = R. Now IP = IP (R), and v is
special iff v is trivial. This means that supp v = pv, i.e. q = IP (R) in our case.

From now on we may assume that A 6= R. By Scholium 3.13 we have

IP (R) = {x ∈ R | Rx ⊂ IP } = {x ∈ R | ∀ y ∈ R: v(xy) > 0}.

Since there exists some z ∈ R with v(z) < 0, it follows that

IP (R) = {x ∈ R | ∀ y ∈ R: v(xy) ≥ 0} = {x ∈ R | Rx ⊂ A}.

Thus IP (R) is the conductor qA of R in A. Proposition I.2.2 tells us that v is
special iff supp v = qA. This means q = IP (R) in our case.

Taking into account the study of real valuations in §3 we obtain
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Corollary 4.9. Assume that R is convenient over Hol(R). Then the non-
trivial real PM-valuations on R are precisely the coarsenings of the valuations
vP with P running through the closed points of SperR.

Lemma 4.10. Assume that P and Q are prime cones of R with P ⊂ Q.
a) For every subring Λ of R, we have convP (Λ) = convQ(Λ) and IP (Λ) = IQ(Λ).
In particular, choosing Λ = Z, we have AP = AQ and IP = IQ.
b) If M is any additive subgroup of R then convP (M) = convQ(M).

Proof. a): First notice that for any elements f ∈ R, g ∈ R we have |f(P )| <
|g(P )| iff (g2 − f2)(P ) > 0 and |f(P )| ≤ |g(P )| iff (g2 − f2)(P ) ≥ 0. Thus
|f(Q)| < |g(Q)| implies |f(P )| < |g(P )|, and |f(P )| ≤ |g(P )| implies |f(Q)| ≤
|g(Q)|. The assertions now follow from the various ways to characterize the
elements of convP (Λ), IP (Λ), . . . either by weak inequalities (≤) or by strong
inequalities (<), cf. Remark 4.1 above.
b): This can be proved in the same way.

Definition 3. a) If v:R → Γ ∪ ∞ is any valuation on R we denote the
valuation v|cv(Γ):R → cv(Γ) (cf. notations in I, §2) by v∗, and we call v∗ the
special valuation associated to v. {N.B. We have v∗ = v|

R
.}

b) If P is any prime cone on R we denote the maximal specialisation of P in
SperR (i.e. the unique closed point of {P}) by P ∗, as we did already above
(Corollary 7).

Proposition 4.11. Assume that R is convenient over Hol(R). Given a prime
cone P of R, the valuations (vP )∗ and vP∗ are equivalent.

Proof. Let v: = vP , u: = vP∗ . By Theorem 8 we know that u is special. By
Lemma 10.a we have

Av = AP = AP∗ = Au , pv = IP = IP∗ = pu.

Both u and v∗ are special valuations on R over Hol(R), hence are PM-
valuations. We have Av∗ = Av = Au, pv∗ = pv = pu. We conclude (by I,
§2) that u and v∗ are equivalent.

Open problem. Does (vP )∗ ∼ vP∗ hold for any ring R and prime cone P of R?

Example 4.12 (The real spectra of C(X) and Cb(X)). Let X be a completely
regular Hausdorff space. Then the ring R: = C(X) is real closed in the sense of
Schwartz (cf. [Sch], [Sch1]). This implies that the support map supp : SperR →
SpecR is a homeomorphism (loc.cit.). By restriction we obtain a bijection
from the set (SperR)max of closed points of SperR to the set of closed points
(SpecR)max = MaxR of SpecR. On the other hand we have a bijection βX

∼−→
MaxR, p 7→ Mp (cf.1.4 above).
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Let us regard βX as the set of ultrafilters α on the lattice Z(X). By what has
been said there corresponds to each ultrafilter α ∈ βX a unique prime cone Pα

of R with suppPα = Mα. We now describe this prime cone Pα. If f ∈ R is
given then both the sets {f ≥ 0}: = {x ∈ X | f(x) ≥ 0} and {−f ≥ 0} are
elements of Z(X), and their union is X. Thus at least one of these sets is an
element of α. Let

P : = {f ∈ R | {f ≥ 0} ∈ α}.

Then we know already that P ∪ (−P ) = R. Clearly P +P ⊂ P and P ·P ⊂ P .
Also

P ∩ (−P ) = {f ∈ R | Z(f) ∈ α} = Mα

(cf.[GJ,§6]). Thus P is a prime cone of R with support Mα. We conclude that
P = Pα.

If α is not an ultrafilter but just a prime filter on the lattice Z(X) then we still
see as above that

Pα: = {f ∈ R | {f ≥ 0} ∈ α}

is a prime cone on R. But not every prime cone of R is one of these Pα. The map
α 7→ Pα is a bijection from the set of prime filters on Z(X) to a proconstructible
subset of SperR, the so called real z-Spectrum z-SperR, cf.[Sch3]. Under the
support map we have a homeomorphism from z-SperR to the space z-Spec R
constisting of the z-prime ideals of R, which have already much been studied
in [GJ].

The ring A: = Cb(X) of bounded continuous real functions on X is again real
closed. But now the situation is simpler. We have a bijection βX

∼−→ MaxA,
α 7→ mα (cf.1.4) and a bijection (SperA)max ∼−→ MaxA by the support map.
Thus to every α ∈ βX there corresponds a unique prime cone P ′

α ∈ (SperA)max

with suppP ′
α = mα. We have

mα = {f ∈ A | fβ(α) = 0}

and guess easily that

P ′
α = {f ∈ A | fβ(α) ≥ 0}.

Also A/mα = R, hence k(Pα) = R. Clearly A ∩ Pα ⊂ P ′
α. Thus P ′

α is the
maximal specialization of A ∩ Pα in the real spectrum SperA, i.e.
P ′

α = (A ∩ Pα)∗.

Example 4.13 (The special real valuations and the real holomorphy ring of
C(X)). Let again X be a complete regular Hausdorff space, R: = C(X), A: =
Cb(X). We retain the notations from 4.12. For every α ∈ βX we denote
the valuation vPα

more briefly by vα. Since Pα is a closed point of SperR,
this valuation is special. Now 1 + R2 ⊂ R∗. Thus we know, say by §2, that
Hol(R) is Prüfer in R. This implies that every vα is a PM-valuation, hence
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vα ∈ pm(R/Hol(R)). Corollary 9 tells us that pm(R/Hol(R)) is the set of
coarsenings of the valuations vα with α running through βX.

Let Aα: = Avα
and Iα: = pvα

. We know by Lemma 3.3 that

Aα = {f ∈ R | ∃n ∈ N: n ± f ∈ Pα},

Iα = {f ∈ R | ∀n ∈ N:
1

n
± f ∈ Pα}.

For every f ∈ R and n ∈ N we introduce the set

Zn(f): = {x ∈ X | n + f(x) ≥ 0} ∩ {x ∈ X | n − f(x) ≥ 0}
= {x ∈ X | |f(x)| ≤ n}.

From the description of Pα above we read off that f ∈ Aα iff Zn(f) is an element
of the ultrafilter α for some n ∈ N. Thus Aα coincides with the subring Aα of R
as defined in 2.1. In the same way we see that Iα is the ideal of Aα considered
there and that supp (vα) is the ideal qα of R considered there.

Using 2.1 we conclude that vα is the PM-valuation of R over A corresponding
to the prime ideal mα of A. Thus pm(R/HolR) = pm(R/A). This forces
Hol(R) = A. Using also 1.4 we conclude that

ω(R/A) = {vα | α ∈ βX \ υX}.

The result Hol(R) = A can also be verified as follows, using less information
about the real valuations on R: We know by Corollary 3 above that a given
element f of R is in Hol(R) iff there exists some n ∈ N such that n ± f ∈ P
for every P ∈ SperR. Here we may replace SperR by (SperR)max. Thus we see
that f ∈ Hol(R) iff there exists some n ∈ N with Zn(f) ∈ α for every ultrafilter
α of the lattice Z(X). This means that Zn(f) = X for some n ∈ N, i.e. f is
bounded.
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§5 Convexity of subrings and of valuations

Let R be any ring. A subset T of R is called a preordering of R (or: a cone of
R [BCR, p.86]), if T is closed under addition and multiplication and contains
the set R2 = {x2 | x ∈ R}. We call a preordering T proper if −1 6∈ T .

We associate with a preordering T of R a binary relation ≤
T

on R, defined by

f ≤
T

g ⇐⇒ g − f ∈ T.

This relation is transitive and reflexive but in general not antisymmetric. We
define the support of T as the set

suppT = T ∩ (−T ).

This is an additive subgroup of R. Clearly f ≤
T

g and g ≤
T

f iff f−g ∈ suppT .

Of course, the prime cones P ∈ SperR are preorderings, but there are many
more. The intersection of any family of preorderings is again a preordering.
In particular R has a smallest preordering, which we denote by T0. Clearly
T0 = ΣR2.

In the following T is a fixed preordering of R.

Definition 1. a) A subset M of R is called T -convex (in R) if for any three
elements x, y, z of R with x ≤

T
y ≤

T
z and x ∈ M , z ∈ M , also y ∈ M .

b) If U is any subset of R there clearly exists a smallest T -convex subset M of R
containing U . We call M the T -convex hull of U , and we write M = convT (U).

Remark. An additive subgroup M of R is T -convex iff for all s ∈ T , t ∈ T with
s + t ∈ M we have s ∈ M and (hence) t ∈ M .

It is obvious that suppT = T∩(−T ) is the smallest T -convex additive subgroup
of R. Notice also that the set T − T , consisting of the differences t1 − t2 of
elements t1, t2 of T , is a T -convex subring of R, and that suppT is an ideal of
the ring T − T .

If 2 is a unit in R we have T − T = R, as follows from the identity

x = 2

[

(

1 + x

2

)2

−
(x

2

)2

−
(

1

2

)2
]

.

Later only rings with 2 a unit will really matter, but we can avoid this assump-
tion here by enlarging T slightly.
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Lemma 5.1. T ′: = {x ∈ R | ∃n ∈ N : 2nx ∈ T ′} is again a preordering of R. It
is proper iff T is proper.

We omit the easy proof. We call T ′ the 2-saturation of T , and we call T
2-saturated if T ′ = T .

If T is 2-saturated, then suppT is an ideal of R due to the identity

2xy = (1 + x)2y − x2y − y.

Of course, if 2 ∈ R∗, then every preordering of R is 2-saturated. Notice also
that every prime cone is a 2-saturated preordering.

Given a subring Λ and a preordering T of R we strive for an understanding
and a handy description of the convex hull convT (Λ) of Λ in R. We introduce
a new notation for this,

C(T,R/Λ): = convT (Λ),

which reflects that convT (Λ) also depends on the ambient ring R. It is easily
seen that C(T,R/Λ) is the set of all x ∈ R with λ1 ≤

T
x ≤

T
λ2 for some

elements λ1, λ2 of Λ. From this it is immediate that C(T,R/Λ) is an additive
subgroup of R. We also introduce the set

A(T,R/Λ): = {x ∈ R|∃λ ∈ T ∩ Λ:λ ± x ∈ T}
= {x ∈ R|∃λ ∈ T ∩ Λ:−λ ≤T x ≤T λ}.

We use the abbreviations C(T,R):= C(T,R/Z1R) and
A(T,R):= A(T,R/Z1R).

Given an additive subgroup M of R let M ′ denote the 2-saturation of M in
R, i.e. the additive group consisting of all x ∈ R such that 2nx ∈ M for some
n ∈ N0. If M is a subring of R then also M ′ is a subring of R.

Proposition 5.2. a) A(T,R/Λ) is a T -convex subring of R contained in
C(T,R/Λ).
b) C(T,R/Λ) = Λ + A(T,R/Λ).
c) C(T,R/Λ) = A(T,R/Λ) iff Λ is generated by Λ ∩ T as an additive group,
i.e., Λ = (Λ ∩ T ) − (Λ ∩ T ).
d) C(T,R) = A(T,R), and this is the smallest T -convex subring of R.
e) If T contains the 2-saturated hull T ′

0 of T0 = ΣR2 (e.g. T itself is 2-
saturated), then C(T,R/Λ) = A(T,R/Λ).
f) Without any extra assumption on T and Λ we have A(T,R/Λ)′ = C(T,R/Λ)′

= A(T ′, R/Λ) = C(T ′, R/Λ).
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Proof. a) We first prove that A(T,R/Λ) is a subring of R. Given elements x
and y of A(T,R/Λ) we choose elements λ and µ in Λ ∩ T such that λ ± x ∈ T
and µ ± y ∈ T . Then we have

(λ + µ) ± (x − y) ∈ T,

which proves that x − y ∈ A(T,R/Λ).

Moreover we have

(λ + x)(µ + y) = λµ + λy + µx + xy ∈ T

and
λ(µ − y) ∈ T , µ(λ − x) ∈ T.

By adding we obtain
3λµ + xy ∈ T.

Replacing x by −x we obtain 3λµ−xy ∈ T . This proves that xy ∈ A(T,R/Λ).

Thus A(T,R/Λ) is a subring of R. It is clear from the definition of A(T,R/Λ)
that this ring is contained in the T -convex hull C(T,R/Λ) of Λ in R. Given
elements x1, x2 of A(T,R/Λ) and y ∈ R with x1 ≤

T
y ≤

T
x2, we have elements

λ1, λ2 of Λ ∩ T such that −λ1 ≤
T

x1 ≤
T

λ1 and −λ2 ≤
T

x1 ≤
T

λ2. These

inequalities imply

−(λ1 + λ2) ≤
T

x1 ≤
T

y ≤
T

x2 ≤
T

(λ1 + λ2).

Thus y ∈ A(T,R/Λ). This proves that A(T,R/Λ) is T -convex in R.

b): It is evident that the additive group M : = Λ + A(T,R/Λ) is contained in
C(T,R/Λ). We are done if we verify that M is T -convex in R.

Let s, t ∈ T be given with s + t ∈ M , hence s + t = λ + x with λ ∈ Λ,
x ∈ A(T,R/Λ). We have 0 ≤

T
s ≤

T
λ + x. There exists some µ ∈ Λ with

x ≤
T

µ. Then 0 ≤
T

s ≤
T

λ + µ, and thus λ + µ ∈ Λ ∩ T . This proves that

s ∈ A(T,R/Λ) ⊂ M .

c): A(T,R/Λ) = C(T,R/Λ) means that Λ ⊂ A(T,R/Λ). This is certainly true
if Λ = (Λ∩ T )− (Λ∩ T ), since Λ∩ T ⊂ A(T,R/Λ) by definition of A(T,R/Λ).

It remains to verify that the inclusion Λ ⊂ A(T,R/Λ) implies Λ = (Λ ∩ T ) −
(Λ∩T ). Let λ ∈ Λ be given. There exists some µ ∈ Λ∩T such that µ±λ ∈ T .
Then λ = µ − (µ − λ), and both µ, µ − λ ∈ Λ ∩ T .

d): Applying c) to Λ = Z · 1R we see that C(T,R) = A(T,R). By definition
C(T,R) is the smallest T -convex additive subgroup of R containing 1R, hence
also the smallest T -convex subring of R.
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e): For every λ ∈ Λ we have

2(λ2 + 1 ± λ) = λ2 + 1 + (λ ± 1)2 ∈ T0,

hence λ2 + 1 ± λ ∈ T ′
0 ⊂ T . This implies Λ ⊂ A(T,R/Λ), hence C(T,R/Λ) =

A(T,R/Λ).

f): We first verify that A(T,R/Λ)′ = A(T ′, R/Λ). Given x ∈ A(T,R/Λ)′, we
have some n ∈ N with 2nx ∈ A(T,R/Λ), hence λ±2nx ∈ T for some λ ∈ T ∩Λ.
It follows that 2n(λ ± x) ∈ T , hence λ ± x ∈ T ′, hence x ∈ A(T ′, R/Λ).

Conversely, if x ∈ A(T ′, R/Λ) we have some λ ∈ T ′ ∩ Λ with λ ± x ∈ T ′ and
then some n ∈ N with 2nλ ∈ T ∩Λ and 2nλ±2nx ∈ T . Thus 2nx ∈ A(T,R/Λ),
and x ∈ A(T,R/Λ)′.

This completes the proof that A(T,R/Λ)′ = A(T ′, R/Λ). Now observe that
A(T,R/Λ) ⊂ C(T,R/Λ) ⊂ C(T ′, R/Λ). As proved above, C(T ′, R/Λ) =
A(T ′, R/Λ) = A(T,R/Λ)′. In particular we know that C(T ′, R/Λ) is 2-
saturated. It follows that

A(T,R/Λ)′ ⊂ C(T,R/Λ)′ ⊂ C(T ′, R/Λ) = A(T,R/Λ)′.

Thus the groups A(T,R/Λ)′, A(T ′, R/Λ), C(T,R/Λ)′, C(T ′, R/Λ) are all the
same.

We aim at a description of the rings between Hol(R) and R by T -convexity for
varying preorderings T in the case that Hol(R) is Prüfer in R. Here preorderings
will play a dominant role which are “saturated” in the sense of the following
definition.

Definition 2. The saturation T̂ of a preordering T of R is the intersection of
all prime cones P ⊃ T of R. In other terms,

T̂ = {f ∈ R | ∀P ∈ HR(T ): f(P ) ≥ 0}.

T is called saturated if T̂ = T .

Of course, T̂ is always 2-saturated. More generally T̂ is saturated with respect
to the multiplicative subset 1 + T of R, i.e. for any x ∈ R, t ∈ T :

(1 + t)x ∈ T̂ =⇒ x ∈ T̂ .

Notice that the saturation T̂0 of T0 = ΣR2 is the set of all f ∈ R which are
nonnegative on SperR. Thus, taking into account Proposition 2, the description
of Hol(R/Λ) in Theorem 4.2 can be read as follows.

Scholium 5.3. For any ring extension Λ ⊂ R

Hol(R/Λ) = A(T̂0, R/Λ) = C(T̂0, R/Λ).
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Every proper preordering of a field is saturated, as is very well known ([BCR,
p.9], [KS, p.2]). In the field case we have T ∩ (−T ) = {0}. Then a proper
preordering is a partial ordering of the field in the usual sense.

We recall without proof the famous abstract Positivstellensatz about an alge-
braic description of T̂ in terms of T for R an arbitrary ring.

Theorem 5.4. (cf.[BCR, p.92], [KS, p.143]). If T is any preordering of R and
a ∈ R, the following are equivalent.
(1) a ∈ T̂ .
(2) −a2n ∈ T − aT for some n ∈ N0.
(3) There exist t, t′ ∈ T and n ∈ N0 with a(a2n + t) = t′.

The theorem tells us in particular (take a = −1) that for T proper, i.e. −1 6∈ T ,
also T̂ is proper. It follows that for a proper preordering T there always exists
some prime cone P ⊃ T .

In order to get a somewhat “geometric” understanding of saturated preorder-
ings we introduce more terminology.

Definitions 3. a) Given any subset X of SperR, let P (X) denote the inter-
section of the prime cones P ∈ X. In other terms,

P (X): = {f ∈ R | ∀x ∈ X: f(x) ≥ 0}.

In particular, for every x ∈ X, P ({x}) is the point x itself, viewed as a prime
cone, P ({x}) = Px.
b) We call a subset X of SperR basic closed, if

X = HR(Φ) = {x ∈ SperR | f(x) ≥ 0 for every f ∈ Φ}

for some subset Φ of R, i.e. X is the intersection of a family of “principal
closed” sets HR(f) = {x ∈ SperR | f(x) ≥ 0}.
c) If X is any subset of SperR, let X̂ denote the smallest basic closed subset
of SperR containing X, i.e. the intersection of all principal closed sets HR(f)
containing X. We call X̂ the basic closed hull of X.
d) If Φ is any subset of R, there exists a smallest preordering T containing
Φ. This is the semiring generated by Φ ∪ R2 in R. We call T the preordering

generated by Φ, and write T = T (Φ).

Remarks 5.5. i) For every X ⊂ SperR the set P (X) is a saturated preordering
of R and HR(P (X)) = X̂. It follows that P (X̂) = P (X). Moreover X̂ is the
unique maximal subset Y of SperR with P (Y ) = P (X).

ii) If Φ is any subset of R then HR(T̂ (Φ)) = HR(Φ). Moreover T̂ (Φ) is the
unique maximal subset U of R with HR(U) = HR(Φ).
iii) The basic closed subsets Z of SperR correspond uniquely with the saturated
preorderings T of R via T = P (Z) and Z = HR(T ).
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All this can be verified easily in a straightforward way.

If X is any subset of SperR we call a P (X)-convex subset M of R also X-convex.
In the case that term X is a one-point set {x}, we use the term “x-convex”.
{Thus x-convexity is the same as P -convexity for P = x, regarded as prime
cone.}
Instead of A(P (X), R/Λ) we write AX(R/Λ). Thus

AX(R/Λ) = {f ∈ R | ∃λ ∈ Λ such that |f(x)| ≤ λ(x) for every x ∈ X}.

{Read AX(R/Λ) = R if X is empty.} By Proposition 2 we have
C(P (X), R/Λ) = AX(R/Λ).

Let again T be any preordering of a ring R. There exists a by now well known
and well developed theory of T -convex prime ideals of R which we will need
below (cf. [Br], [Br1], [KS, Chap.III, §10]). The main result can be subsumed
in the following theorem.

Theorem 5.6. a) Let T be a proper preordering of R and p a prime ideal of
R. Then p is T -convex iff p is T̂ -convex. In this case there exists a prime cone
P ⊃ T such that p is P -convex.
b) Let X be a closed subset of SperR. The X-convex prime ideals of R are
precisely the supports supp (P ) of the prime cones P ∈ X.

We do not give the proof here,∗) refering the reader to [KS, Chap.III, §10] for
this, but we state two key observations leading to the theorem.

Proposition 5.7 ([KS, p.148]). Let T be any preordering of R. The maximal
proper T -convex ideals of R are the ideals a of R which are maximal with the
property a ∩ (1 + T ) = ∅. They are prime.

{N.B. This holds also in the case that −1 ∈ T . Then R itself is the only
T -convex ideal of R.}

Proposition 5.8 (A. Klapper, cf. [Br, p.63], [KS, p.149]). Let T1 and T2 be
preorderings of R and p a prime ideal of R. Assume that p is (T1 ∩T2)-convex.
Then p is T1-convex or T2-convex.

For later use we also mention

Lemma 5.9. Let T be a proper preordering of R and a a T -convex proper ideal
of R. Then T1: = T + a is again a proper preordering of R and T1 ∩ (−T1) =
a. The image T = T1/a of T in R/a is a proper preordering of R/a, and
T ∩ (−T ) = {0}.

∗) In fact part a) will be proved below as a special case of Theorem 16.
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We leave the easy proof to the reader.

As before let T be a fixed preordering of R.

Definition 4. We say that a valuation v:R → Γ ∪ ∞ is T -convex if the
prime ideal supp v is T -convex in R and, for every γ ∈ Γ, the additive group
Iγ,v = {x ∈ R | v(x) ≥ γ} is T -convex in R. In other terms, v is T -convex iff
for any elements x, y of R with 0 ≤

T
y ≤

T
x we have v(y) ≥ v(x). If T = P (X)

for some set X ⊂ SperR, we also use the term “X-convex” instead of T -convex.

Comment. In the – not very extended – literature these valuations are usually
called “compatible with T”. The term “T -convex” looks more imaginative, in
particular if one follows the philosophy (as we do) that valuations are refine-
ments of prime ideals.

Several observations on real valuations stated in §2 extend readily to T -convex
valuations.

Remarks 5.10. Let v:R → Γ ∪∞ be a valuation.
i) The following are clearly equivalent.

(1) v is T -convex.
(2) If x ∈ T and y ∈ T then v(x) ≥ v(x + y).
(3) If x ∈ T and y ∈ T then v(x + y) = min(v(x), v(y)).

In particular, v is T0-convex iff v is real (cf. Prop.2.2.). Every T -convex
valuation is real.
ii) If T is improper, i.e. −1 ∈ T , there do not exist T -convex valuations.
iii) If v is trivial then v is T -convex iff supp v is T -convex in R. The T0-convex
prime ideals are just the real prime ideals.
iv) If v is T -convex, both Av and pv are T -convex in R.
v) Assume that v is T -convex. For every convex subgroup H of Γ the coarsening
v/H is again T -convex. If H contains the characteristic subgroups cv(Γ) then
also v|H is T -convex.
vi) If B is a subring of R and v is T -convex, then both the valuations v|B and
v|

B
are (T ∩ B)-convex.

In the case of Manis valuations we have very handy criteria for T -convexity.

Theorem 5.11. Let v be a Manis valuation on R.
i) The following are equivalent.

(1) v is T -convex.
(2) pv is T -convex in R.
(3) pv is (T ∩ Av)-convex in Av.

ii) If v is non trivial, then (1) – (3) are also equivalent to
(4) Av is T -convex in R.
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Proof. If v is trivial the equivalence of (1), (2), (3) is evident. Henceforth
we assume that v is not trivial. The implications (1) ⇒ (2) and (1) ⇒ (4) are
evident from the definition of T -convexity of valuations (cf. Def.4 above). The
implication (2) ⇒ (3) is trivial.

(4) ⇒ (1): Assume that Av is T -convex in R. Let x, y ∈ R be given with
0 ≤

T
y ≤

T
x and v(x) 6= ∞. We choose some z ∈ R with v(xz) = 0. This

is possible since v is Manis. We have 0 ≤
T

(yz)2 ≤
T

(xz)2. {Notice that

x2 − y2 = (x − y)(x + y) ∈ T .} Since (xz)2 ∈ Av and Av is T -convex, it
follows that (yz)2 ∈ Av, hence 2v(yz) ≥ 0, hence v(y) ≥ −v(z) = v(x). This
proves that Iv,γ is T -convex in R for every γ ∈ Γv. The support of v is the
intersection of all these Iv,γ , since v is not trivial. Thus supp v is T -convex in
R. This finishes the proof that v is T -convex.

(2) ⇒ (4): Assume that pv is T -convex in R. Since v is Manis we have Av =
{x ∈ R | xpv ⊂ pv}. Let 0 ≤

T
y ≤

T
x and x ∈ Av. For every z ∈ pv this

implies 0 ≤
T

(yz)2 ≤
T

(xz)2 ∈ pv. Since pv is T -convex in R, we conclude that

(yz)2 ∈ pv, and then that yz ∈ pv. This proves that ypv ⊂ pv, hence y ∈ Av.

(3) ⇒ (2): Assume that pv is (T ∩ Av)-convex in Av. We verify that pv is
T -convex in R. Let x ∈ pv and y ∈ R be given with 0 ≤

T
y ≤

T
x. Suppose

that y 6∈ pv, i.e. v(y) ≤ 0. We choose some z ∈ R with v(yz) = 0. Then
0 ≤

T
(yz)2 ≤

T
(xz)2. Now z ∈ Av, hence (xz)2 ∈ pv, and (yz)2 ∈ Av. It

follows that (yz)2 ∈ pv, hence yz ∈ pv. This contradicts v(yz) = 0. Thus pv is
indeed T -convex in R.

Another proof of Theorem 11 can be found in [Z1, §2].

Corollary 5.12. Let U be a preordering (= partial ordering) of a field K. A
valuation v on K is U -convex iff the valuation domain Av is U -convex in K.

Proof. v is Manis. If v is nontrivial the claim is covered by Theorem 11.ii. If
v is trivial, pv = supp v = {0}, which is U -convex. Now the claim is covered
by Theorem 11.i.

Corollary 5.13. Assume that T and U are preorderings on R and that v
is a Manis valuation on R which is (T ∩ U)-convex. Then v is T -convex or
U -convex.

Proof. We work with condition (3) in Theorem 11. We know that pv is
(T ∩ U ∩ Av)-convex in Av, and we conclude that pv is T ∩ Av-convex or
U ∩ Av-convex in Av by Proposition 8 above.

Returning to valuations which are not necessarily Manis we now prove a lemma
by which the study of T -convex valuations on R can be reduced to the study
of U -convex valuations for preorderings U on suitable residue class fields of R.
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Lemma 5.14. Let T be a proper preordering of R and v a valuation on R. We
assume that q: = supp v is T -convex.
i) T1: = T + q is a proper preordering of R and T1 ∩ (−T1) = q.
ii) Let T : = T1/q denote the image of T and of T1 in R: = R/q. Then the subset

U : =

{

x

s2

∣

∣ x ∈ T, s ∈ R \ q

}

of the field k(q) is a proper preordering (= partial ordering) of k(q), and T2: =
j−1
q (U) is a proper preordering of R. {Here, of course, x: = jq(x), s: = jq(s),

the images of x and s in k(q).} We have T ⊂ T1 ⊂ T2 and T2 ∩ (−T2) = q.
iii): T2 = {x ∈ R | ∃ s ∈ R \ q: s2x ∈ T1}.
iv) As always (cf.I, §1) we denote the valuations induced by v on R and k(q)
by v and v̂ respectively. The following are equivalent:
(1) v is T -convex.
(2) v is T -convex.
(3) v̂ is U -convex.
(4) v is T2-convex.
(5) v is T1-convex.

Proof. i): This is covered by Lemma 9 above.
ii): We know by Lemma 9 that T is a preordering of R with T ∩ (−T ) = {0}.
It then is a straightforward verification that U is a proper preordering of k(q).
We have T ⊂ U ∩ R, hence T1 = j−1

q (T ) ⊂ j−1
q (U) =:T2. Also T2 ∩ (−T2) =

j−1
q (U ∩ (−U)) = q.

iii): An easy verification.
iv): (1) ⇔ (2) is completely obvious by using, say, condition (3) in Remark 10.i
characterizing convexity of valuations. The implications (4) ⇒ (5) ⇒ (1) are
trivial since T ⊂ T1 ⊂ T2, and (3) ⇒ (4) is immediate, due to the fact that
v = v̂ ◦ jq and T2 = j−1

q (U).
(1) ⇒ (3): Let ξ1, ξ2 ∈ U be given. We verify condition (3) in Remark 10.i.
We write

ξ1 =
t1

s2 , ξ2 =
t2

s2

with t1, t2 ∈ T , s ∈ R \ q. Then

ξ1 + ξ2 =
t1 + t2

s2 ,

and v(s) 6= ∞, v̂(ξ1 + ξ2) = v(t1 + t2) − 2v(s) = min(v(t1), v(t2)) − 2v(s)
= min(v(t1) − 2v(s), v(t2) − 2v(s)) = min(v̂(ξ1), v̂(ξ2)).

As a modest first application of Lemma 14 we analyse T -convexity for valua-
tions in the case that T is a prime cone.
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Definition 5. Given valuations v and w on R, we write v ≤ w if w is a coarser
than v (cf.I §1, Def.9).

Notice that v ∼ w iff v ≤ w and w ≤ v.

Theorem 5.15. Let P be a prime cone of R and v a valuation on R.
i) v is P -convex and supp v = suppP iff vP ≤ v.
ii) v is P -convex iff there exists some prime cone P̃ ⊃ P such that vP̃ ≤ v.

Proof. i): Let q: = suppP . This is a P -convex prime ideal of R, in fact the
smallest one. If vP ≤ v then supp v = supp vP = q. Thus we may assume from
start that supp v = q. Lemma 14 tells us that v is P -convex iff the valuation
v̂ on k(q) is P̂ -convex. {Here P̂ denotes the ordering induced by P on k(q),
as has been decreed in §3.} By Corollary 12 v̂ is P̂ -convex iff the valuation
ring Av̂ = ov is P̂ -convex in k(q). This happens to be true iff vP̂ ≤ v̂. Since
vP̂ ◦ jq = vP and v̂ ◦ jq = v, we have vP̂ ≤ v̂ iff vP ≤ v.

ii): If there exists some prime cone P̃ ⊃ P with vP̃ ≤ v then v is P̃ -convex, as
we have proved, hence v is P -convex. Conversely, assume that v is P -convex.
Then p: = supp v is P -convex (hence q ⊂ p). P̃ : = P ∪ p = P + p is a prime
cone of R containing P , and supp P̃ = p = supp v (cf.Th.4.6). We claim that v
is P̃ -convex, and then will know by i) that vP̃ ≤ v.

This is pretty obvious. If x̃, ỹ ∈ P̃ , we have x̃ = x+a, ỹ = y+b with x, y ∈ P and
a, b ∈ p. Then v(x̃) = v(x), v(ỹ) = v(y), v(x̃+ỹ) = v(x+y), since also a+b ∈ p.
We conclude that v(x̃ + ỹ) = v(x + y) = min(v(x), v(y)) = min(v(x̃), v(ỹ)),
which proves that v is P̃ -convex.

As before, let T be a preordering of R.

Theorem 5.16. Assume that v is a T -convex valuation on R. Then there exists
a prime cone P ⊃ T of R such that v is P -convex and suppP = supp v {hence
vP ≤ v by Th.15}.

Proof. a) We first prove this in the case that R = K is a field. Let B: = Av,
m: = pv, and U : = T ∩ B. Then B is a T -convex Krull valuation ring of K
with maximal ideal m, and m is U -convex in B. By Lemma 9 we know that
U1: = U + m is a proper preordering of B and that its image U1/m = U in the
residue class field κ(B) = B/m is a proper preordering (= partial ordering)
of κ(B). We choose a prime cone (= total ordering) Q of κ(B) containing U .
{Usually this can be done in several ways.} Let π:B ։ κ(B) denote the residue
class homomorphism from B to κ(B). Q: = π−1(Q) is a prime cone of B with
T1 ⊂ Q, suppQ = m and U ⊂ Q.

We now invoke the Baer-Krull theorem connecting ordering of K and κ(B) in
full strength (cf. [La, Cor.3.11], [KS, II §7], [BCR, Th.10.1.10])∗). The theorem

∗) We stated a rough version of this theorem already above, cf. Lemma 3.2.
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can be quoted as follows. Given a group homomorphism χ:K∗ → {±1} with
χ(Q∩B∗) = {1} and χ(−1) = −1, there exists a unique prime cone (= ordering)
P of K such that B is P -convex and signP (a) = χ(a) for every a ∈ K∗.

We choose χ:K∗ → {±1} in such a way that also χ(T∩K∗) = 1. By elementary
character theory on the group K∗/K∗2 this is possible, since we have T ∩B∗ ⊂
Q∩B∗ and −1 6∈ (Q∩B∗) · (T ∩K∗). The resulting ordering (= prime cone) P
of K contains T , and B is P -convex in K, hence v is P -convex. This completes
the proof for R = K a field.

b) We prove the theorem in general. We are given a preordering T and a
T -convex valuation v on R. The prime ideal q: = supp v is T -convex. Thus
Lemma 14 applies. We have a proper preordering U on k(q) as described there
in part ii), and we know by part iii) of the lemma that the valuation v̂ on k(q)
is U -convex. As proved above in part a), there exists a prime cone (= ordering)
Q on k(q) containing U such that v̂ is Q-convex. It follows that P : = j−1

q (Q)
is a prime cone on R with P ⊃ T2: = j−1

q (U), and that v = v̂ ◦ jq is P -convex.
As stated in the lemma, T ⊂ T2, hence T ⊂ P .

Notice that for v a trivial valuation the theorem boils down to part a) of
Theorem 6.

Corollary 5.17. Every T -convex valuation v on R is T̂ -convex.

This follows immediately from Theorem 16. It may be of interest – or at
least amusing – to see a second proof of Corollary 17, which is based on the
Positivstellensatz Theorem 4.

Second proof of Corollary 5.17 (cf.[Z1, §2]). Suppose that v is T -convex
but not T̂ -convex. We have elements a, b in T̂ with

(1) v(a + b) > min(v(a), v(b)).

In particular v(a) 6= ∞, v(b) 6= ∞. By Theorem 4 we have natural numbers
m,n and elements u, u′, w,w′ in T such that

au = a2m + u′ , bw = b2n + w′.

Then au ∈ T , bw ∈ T and

v(au) = min(v(a2m), v(u′)) < ∞ , v(bw) = min(v(b2n), v(w′)) < ∞.

Let c: = a(aubw), d: = b(aubw). We have c ∈ T , d ∈ T and

(2) v(c + d) = min(v(c), v(d)) = min(v(a), v(b)) + v(aubw).

On the other hand, c + d = (a + b)aubw, hence

(3) v(c + d) = v(a + b) + v(aubw).

Since v(aubw) 6= ∞, we conclude from (2) and (3) that

(4) v(a + b) = min(v(a), v(b)),

in contradiction to (1). Thus v is T̂ -convex.
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§6 Convexity of overrings of real holomorphy rings

In this section Λ is a subring of a ring R and T a preordering of R. In §2 we
defined the real holomorphy ring Hol(R/Λ) of R over Λ (§2, Def.6). We now
generalise this definition.

Definition 1. a) The T -holomorphy ring HolT (R/Λ) of R over Λ is the
intersection of the rings Av with v running through all T -convex valuations of
R over Λ (i.e. with Λ ⊂ Av).
b) If T = P (X) for some set X ⊂ SperR we denote this ring also by HolX(R/Λ)
and call it the holomorphy ring of the extension Λ ⊂ R over X.
c) In the case Λ = Z1R we write HolT (R) and HolX(R) instead of HolT (R/Λ),
HolX(R/Λ). We call HolT (R) the T -holomorphy ring of R and HolX(R) the
X-holomorphy ring of R.

Remarks 6.1. i) We know by Corollary 5.17 that

HolT (R/Λ) = HolT̂ (R/Λ).

ii) For the smallest preordering T0 = ΣR2 we have HolT0
(R/Λ) = Hol(R/Λ) =

HolSperR(R/Λ).
iii) If HolT (R) is Prüfer in R then

HolT (R/Λ) = Λ · HolT (R).

This can be verified by a straightforward modification of the proof of Proposi-
tion 2.20 (which settles the case T = ΣR2).

Given a prime cone P of R we introduced in §3 (cf.Def.5 there) the P -convex
valuation vP,Λ. It has the valuation ring

AvP,Λ
= convP (Λ) = C(P,R/Λ)

and the center pvP,Λ
= IP (Λ). Using these valuations we now obtain a simple

description of HolP (R/Λ), starting from Theorem 5.15.

Theorem 6.2. Let P be any prime cone of R.
a) A valuation v of R is P -convex and Λ ⊂ Av iff there exists some prime cone
P̃ ⊃ P with vP̃ ,Λ ≤ v.
b) For every such valuation v we have Av ⊃ HolP (R/Λ), and

HolP (R/Λ) = C(P,R/Λ) = A(P,R/Λ).

Also HolQ(R/Λ) = HolP (R/Λ) for every prime cone Q ⊃ P .

Proof. Claim a) follows immediately Theorem 5.15 which settles the case
Λ = Z · 1R.
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b): If vQ,Λ ≤ v then Av ⊃ AvQ,Λ
= C(Q,R/Λ). As observed in §5, the Q-

convex hull C(Q,R/Λ) of Λ with respect to Q does not change if we replace Q
by P , and also coincides with the ring A(Q,R/Λ) = A(P,R/Λ).

Theorem 6.3. As before, let T be any preordering of R.
a) HolT (R/Λ) is the intersection of the rings HolP (R/Λ) with P running
through the set HR(T ) of prime cones P ⊃ T .
b) Given f ∈ R, the following are equivalent.
(1) f ∈ HolT (R/Λ).
(2) ∃λ ∈ Λ: |f(P )| ≤ |λ(P )| for every P ∈ HR(T ).
(3) ∃µ ∈ Λ: 1 + µ2 ± f ∈ T̂ .
c) HolT (R/Λ) = C(T̂ , R/Λ) = A(T̂ , R/Λ).

Proof. a): This follows from the fact that every T -convex valuation v on R
is P -convex for some prime cone P ⊃ T , cf. Theorem 5.16.
b): The proof runs in the same way as the proof of Theorem 4.2, which settled
the case T = T0.
c): We know by Proposition 5.2 that C(T̂ , R/Λ) = A(T̂ , R/Λ). If f ∈
HolT (R/Λ) then condition (3) in b) is fulfilled, hence f ∈ A(T̂ , R/Λ). Con-
versely, if f ∈ A(T̂ , R/Λ) we have −λ ≤

T̂
f ≤

T̂
λ for some λ ∈ Λ. This implies

condition (2) in b), hence f ∈ HolT (R/Λ).

Corollary 6.4. Every T̂ -convex subring B of R is integrally closed in R.

Proof. We know by Theorem 3 that B = HolT (R/B). Thus B is an intersec-
tion of rings Aw with w running through a set of valuations on R. Each Aw is
integrally closed in R (cf.Th.I.2.1). Thus B is integrally closed in R.

Remark. This corollary can be proved in a more direct way, cf.[KS, III §11,
Satz 1] or §8 below.

We now turn to a study of T -convexity for subrings of R which are Prüfer in
R. This will be a lot easier than studying T -convex subrings in general. We
start with a general lemma on localizations.

Lemma 6.5. Let A be a subring of R, M an additive subgroup of A, and S a
multiplicative subset of A with sM ⊂ M for every s ∈ S. We define

M[S]: = {x ∈ R | ∃ s ∈ S: sx ∈ M}

and, as always,
A[S]: = {x ∈ R | ∃ s ∈ S: sx ∈ A}.

i) M[S] is an additive subgroup of A[S]. If M is an ideal of A then M[S] is an
ideal of A[S].
ii) If M is (T ∩ A)-convex in A then M[S] is (T ∩ A[S])-convex in A[S].
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iii) If M[S] is (T ∩ A[S])-convex in A[S] and M[S] ∩ A = M then M is (T ∩ A)-
convex in A.

Proof. i): evident.
ii): Let x ∈ M[S] and y ∈ A[S] be given with 0 ≤

T
y ≤

T
x. We choose some

s ∈ S with sy ∈ A and sx ∈ M . Then 0 ≤
T

s2y ≤
T

s2x ∈ M and s2y ∈ A.

Since M is assumed to be (T ∩ A)-convex in A, we conclude that s2y ∈ M ,
hence y ∈ M[S]. Thus M[S] is (T ∩ A[S])-convex in A[S].
iii): Let x ∈ M , y ∈ A and 0 ≤

T
y ≤

T
x. Since M[S] is assumed to be

(T ∩ A[S])-convex in A[S], we conclude that y ∈ M[S] ∩ A = M . Thus M is
(T ∩ A)-convex in A.

We will use two special cases of this lemma, stated as follows.

Lemma 6.6. Let A be a subring of R and p a prime ideal of A.
i) If A is T -convex in R then A[p] is T -convex in R.
ii) p[p] is (T ∩ A[p])-convex in A[p] iff p is (T ∩ A)-convex in A.

Proof. i): Apply Lemma 5 choosing A,R,A \ p for M,A, S.
ii): Apply the lemma choosing p, A,A \ p for M,A, S.

Theorem 6.7. Assume that A is a Prüfer subring of R. The following are
equivalent.
(1) A is T -convex in R.
(2) For every R-regular maximal (or: prime) ideal p of A the ring A[p] is T -
convex in R.
(3) For every R-regular maximal (or: prime) ideal p of A the ideal p[p] of A[p]

is (T ∩ A[p])-convex in A[p].
(4) Every non trivial PM-valuation v of R over A is T -convex.
(5) Each R-regular maximal (or: prime) ideal of A is (T ∩ A)-convex in A.
(6) Each R-regular maximal (or: prime) ideal of A is T -convex in R.
(7) A is T̂ -convex in R.

Proof. We may assume that A 6= R.
(1) ⇒ (2): Evident by Lemma 6.6.i.
(2) ⇒ (1): Clear, since A is the intersection of the rings A[p] with p running
through Ω(R/A).
(2) ⇔ (3) ⇔ (4): This holds by Theorem 5.11.
(3) ⇔ (5): Evident by Lemma 6.6.ii.
We now have verified the equivalence of (1), (2), (3), (4), (5).
(1) ⇒ (6): If p is an R-regular prime ideal of A then p is (T ∩ A)-convex in A
by (5) and A is T -convex in R. Thus p is T -convex in R.
(6) ⇒ (5): trivial.
(7) ⇒ (1): trivial.
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(4) ⇒ (7): We know by Corollary 5.17 that vp is T̂ -convex for every p ∈ Ω(R/A).

Using the implication (4) ⇒ (1) for T̂ instead of T we see that A is T̂ -convex
in R.

Corollary 6.8. Let A be a Prüfer subring of R, and let C denote the T -
convex hull of A in R, C = C(T,R/Λ). Assume that C is a subring of R.
{N.B. This is known to be true under very mild additional assumptions, cf.
Prop.5.2.}
a) Then S(R/C) ∗) is the set of all T -convex valuations v ∈ S(R/A).
b) C = HolT (R/A), and C =

⋂

p

AR
[p] with p running through the set of R-regular

prime ideals p of A which are T -convex (i.e. (T ∩ A)-convex)) in A.

Proof. Claim a) follows immediately from the equivalence (1) ⇔ (4) in Theo-
rem 7. We then have C = HolT (R/A) by the very definition of the relative real
holomorphy ring HolT (R/A). The last statement in the corollary is evident due
to the 1-1-correspondence of PM-valuations v of R over A with the R-regular
prime ideals p of A.

We arrive at a theorem which demonstrates well the friendly relation between
T -convexity and the Prüfer condition.

Theorem 6.9. Let A be a T -convex subring of R. Then A is Prüfer in R iff
every R-overring of A is T̂ -convex in R.

Proof. a) Assume that A is Prüfer in R. Let B be an R-overring of R. The
ring B inherits property (4) in Theorem 7 from A, hence is T̂ -convex in R by
that theorem.
b) If every R-overring of A is T̂ -convex in R then each such ring is integrally
closed in R, as stated above (Corollary 4). Thus A is Prüfer in R (cf. Theo-
rem I.5.2).

Corollary 6.10. Let Λ be a subring of R. Assume that HolT (R/Λ) is Prüfer
in R. Then the T̂ -convex subrings of R containing Λ are precisely the overrings
of HolT (R/Λ) in R.

Proof. We know by Theorem 3 that HolT (R/Λ) is the T̂ -convex hull
C(T̂ , R/Λ) of Λ in R. Now apply Theorem 9.

Remark. If R has positive definite inversion, or, if for every x ∈ R there exists
some d ∈ N with 1 + x2d ∈ R∗, we know by §2 that Hol(R) is Prüfer in R,
hence HolT (R) is Prüfer in R, and Corollary 10 applies. Thus we have a good

∗) Recall that S(R/C) denotes the restricted PM-spectrum of R over C (§1).
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hold on T̂ -convexity under conditions which, regarded from the view-point of
real algebra, are mild.

Our proof of Theorem 7 (and hence Theorem 9) is based a great deal on
Lemma 6 above. The lemma also leads us to a supplement to the theory
of convex valuations developed in §5.

Proposition 6.11. Let B be a Prüfer subring of R which is T -convex in R,
and let v be a (T ∩B)-convex PM-valuation on B. Then the induced valuation
vR on R (cf. §1, Def.5) is T -convex.

Proof: Let A: = Av, p: = pv, w: = vR. Since v is the special restriction w|B
of w to B, we have Aw ∩ B = A, pw ∩ B = p. Now A is Prüfer in R, and
A ⊂ Aw ⊂ R. Thus Aw = AR

[p], pw = pR
[p]. The ring A is T -convex in B, hence

in R. Further p is T -convex in A, hence in R. By Lemma 6 it follows that Aw

is T -convex in R and pw is T -convex in Aw. We conclude by Theorem 5.11
that the Manis valuation w is T -convex.
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§7 The case of bounded inversion; convexity covers

Definition 1. Let (R, T ) be a preordered ring, i.e. a ring R equipped with a
preordering T . We say that (R, T ) has bounded inversion, if 1 + t is a unit of
R for every t ∈ T , in short, 1 + T ⊂ R∗. If A is a subring of R, we say that A
has bounded inversion with respect to T , if (A, T ∩ A) has bounded inversion,
i.e. 1 + (T ∩ A) ⊂ A∗.

The theory of T -convex Prüfer subrings of R turns out to be particularly nice
and good natured if (R, T ) has bounded inversion, as we will explicate now.

We first observe that (R, T ) has bounded inversion iff (R, T̂ ) has bounded
inversion, due to the following proposition.

Proposition 7.1. Given a preordering T on a ring R, the following are equiv-
alent.
(1) 1 + T ⊂ R∗

(2) Every maximal ideal m of R is T -convex in R.
(3) 1 + T̂ ⊂ R∗.

Proof. (1) ⇒ (2): This follows from Proposition 5.7.∗)

(2) ⇒ (3): If m is a maximal ideal of R then m is T -convex in R, hence T̂ -
convex in R (cf.Th.5.6). It follows that m ∩ (1 + T̂ ) = ∅. Since this holds for
every maximal ideal of m, the set 1 + T̂ consists of units of R.
(3) ⇒ (1): trivial.

Thus, in the bounded inversion situation, we most often can switch from T to
T̂ and back.

Theorem 7.2. Let A be a subring of R.
i) The following are equivalent.
(1) A is Prüfer in R and 1 + (T ∩ A) ⊂ A∗.
(2) A is Prüfer in R and 1 + (T̂ ∩ A) ⊂ A∗.
(3) A is T -convex in R and 1 + T ⊂ R∗.
(4) A is T̂ -convex in R and 1 + T̂ ⊂ R∗.
ii) If (1) – (4) hold, every R-overring B of A is T̂ -convex in R and B = S−1A
with S: = T ∩ A ∩ B∗.

Proof. a) We assume (1), i.e. A ⊂ R is Prüfer and 1 + (T ∩ A) ⊂ A∗.
By Proposition 1 every maximal ideal m of A is (T ∩ A)-convex in A. Thus
condition (5) in Theorem 6.7 holds and A is T̂ -convex and (hence) T -convex in
R by that theorem. Applying Theorem 6.7 to T̂ instead of T we learn that (2)
holds. Since the implication (2) ⇒ (1) is trivial we now know that (1) ⇔ (2).

∗) A direct proof can be found in [Z1, p.5804 f].
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b) Assuming (1) we prove that 1+T ⊂ R∗. To this end let Q be a maximal ideal
of R. We verify that Q is T -convex in R and then will be done by Proposition 1.

Let q: = Q∩A. Since A is ws in R, we have A[q] = R and q[q] = Q (cf.Th.I.4.8).
By Lemma 6.6 it suffices to verify that q is (T ∩ A)-convex in A. We choose a
maximal ideal m of A containing q.

Case 1. mR 6= R. We have Q = Rq ⊂ Rm (cf.Th.I.4.8). Since Q is a maximal
ideal of R it follows that Rq = Rm and then, again by Th.I.4.8., that q = m.
The ideal m is (T ∩ A)-convex in A, due to (1) and Lemma 6.6.

Case 2. mR = R. We have a Manis valuation v on R with Av = A[m] and
pv = p[m]. It follows by Proposition I.1.3 that (supp v)m is a maximal ideal
of Rm. Now Qm is an ideal of Rm contained in the center pm of the Manis
valuation ṽ induced by v on Rm. Thus Qm ⊂ supp (ṽ) = (supp v)m. This
implies Q ⊂ R ∩ (supp v)m = supp v, and then Q = supp v, since Q is a
maximal ideal of R. Thus supp v = q[q].

Since 1+(T ∩A) ⊂ A∗, the ideal m is (T ∩A)-convex in A, due to Proposition 1.
Now Lemma 6.6 tells us that m[m] = pv is (T ∩A[m])-convex in A[m] = Av. We
conclude by Theorem 5.11 that the valuation v is T -convex. It follows that
supp v = Q[q] is T -convex in R.
We have proved the implication (1) ⇒ (3) in part i) of the theorem. Changing
from T to T̂ we also know that (2) ⇒ (4). The implication (4) ⇒ (3) is trivial.
Altogether we have proved the implications (1) ⇔ (2) ⇒ (4) ⇒ (3).

c) We finally prove that condition (3) implies (1) and all the assertions listed
in part ii) of the theorem, and then will be done. Thus assume that that A is
T -convex in R and 1 + T ⊂ R∗. For every t ∈ T we have 0 ≤

T

1
1+t ≤

T
1. It

follows that 1
1+t ∈ A. In particular 1 + x2 ∈ R∗ and 1

1+x2 ∈ A for every x ∈ R.
Thus A is Prüfer in R, as is clear already by I §6, Example 13. (Take d = 2
there.) For t ∈ A ∩ T we have 1 + t ∈ A and (1 + t)−1 ∈ A, hence 1 + t ∈ A∗.

Let B be an R-overring of A. If t ∈ T ∩B then 1
1+t ∈ A ⊂ B, hence 1+ t ∈ B∗.

By the proved implication (1) ⇒ (3) from above it follows that B is T -convex
in R.

Let b ∈ B be given. Then s: = 1
1+b2 ∈ A. Also 0 ≤

T

2b
1+b2 ≤

T
1, hence

a: = 2bs ∈ A. We have s ∈ S: = T ∩ A ∩ B∗ and, of course, 2 ∈ S. Thus
b = a

2s ∈ S−1A. We have proved all claims of the theorem.

Corollary 7.3. Let A be a Prüfer subring of R and B an overring of A in
R. Then the T -convex hull C(T,R/B) coincides with the saturation

B[S]: = {x ∈ R | ∃ s ∈ S: sx ∈ B},

where S: = 1 + (T ∩ B).
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Prüfer Extensions in Real Algebra 57

Proof. a) We equip the localisation S−1R with the preordering S−1T = { t
s

∣

∣

t ∈ T, s ∈ S}. One easily checks that (S−1T )∩(S−1A) = S−1(T∩A). Applying
Theorem 2 to the Prüfer extension S−1A ⊂ S−1R we learn that S−1B is S−1T -
convex in S−1R. Taking preimages in R we see that B[S] is T[S]-convex in R,
where T[S] denotes the preimage of S−1T in R. Now T ⊂ T[S]. Thus B[S] is
T -convex in R. This proves that C(T,R/B) ⊂ B[S].
b) Let x ∈ B[S] be given. There exists some s ∈ S with sx ∈ B, s = 1 + t with
t ∈ T ∩A. We conclude from 0 ≤

T
x2 ≤

T
s2x2 ∈ B that x2 ∈ C(T,R/B). Now

B is integrally closed in R, since A is Prüfer in R. Thus x ∈ C(T,R/B). This
proves that B[S] ⊂ C(T,R/B).

In the following we fix a preordered ring (R, T ). As common in the case of
ordered structures we suppress the ordering in the notation (since it is fixed),
simply writing R for the pair (R, T ). The subset T of R will usually be denoted
by R+. Any subring B of R is again regarded as a preordered ring, with
B+ = T ∩ B. If we say that B has bounded inversion, we of course mean
bounded inversion with respect to B+.

Definition 2. For any subring B of R let CB denote the smallest subring
of B which is convex (= T -convex) in B. Thus, in former notation, CB =
C(T ∩ B,B) = C(T ∩ B,B/Z). {Recall Prop.5.2.d.}

Proposition 7.4. Let B be a subring of R.
i) CB = {x ∈ B | ∃n ∈ N:−n ≤

T
x ≤

T
n}.

ii) CB is contained in the real holomorphy ring HolB+(B).
iii) If CB is Prüfer in B, then CB = HolB+(B).
iv) If B has bounded inversion, then CB is Prüfer in B and CB =

∑

t∈B+

Z 1
1+t .

Proof. i): Clear by Proposition 5.2.d.
ii): HolB+(B) is a subring of B which is (B+)∧-convex in B (cf.Th.6.3.c), hence
B+-convex in B. This forces CB ⊂ HolB+(B).
iii): CB is the intersection of the rings Av with v running through the non-
trivial PM-valuations of B over CB . These are B+-convex (cf.Th.6.7). Thus
HolB+(B) ⊂ CB . Since the reverse inclusion holds anyway, as just proved,
HolB+(B) = CB .
iv): The proof of Theorem 2.11 extends readily to the present situation. It
gives us HolB+(B) =

∑

t∈B+

Z 1
1+t , verifying in between that the right hand side

is a Prüfer subring of B. We have 0 ≤
T

1
1+t ≤

T
1 for every t ∈ B+. Thus

HolB+(B) ⊂ CB . Since CB ⊂ HolB+(B) anyway, both rings coincide.

Up to now we have been rather pedantic using the term “B+-convex” instead
of just “convex”. The reason was that also the saturated preordering (B+)∧

came into play. In the following the term “convex” will always refer to the
given preordering T = R+ of R.
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Remark 7.5. If A and B are subrings of R with A ⊂ B, then CA ⊂ CB .
Indeed, A ∩ CB is convex in A, hence CA ⊂ A ∩ CB .

Theorem 7.6. Let A and B be subrings of R with A ⊂ B. The following are
equivalent.
(1) A has bounded inversion, and A is Prüfer in B.
(2) B has bounded inversion, and A is convex in B.
(3) Both A and B have bounded inversion, and CA = CB .

Proof. The equivalence (1) ⇐⇒ (2) is a restatement of (1) ⇐⇒ (3) in Theo-
rem 2.
(1) ∧ (2) ⇒ (3): By assumption (1) and (2) both A and B have bounded
inversion, and A is convex in B. Since CA is convex in A we conclude that CA

is convex in B, and then, that CB ⊂ CA. Thus CA = CB .
(3) ⇒ (1): Applying the implication (2) ⇒ (1) to CB and B, we see that
CA = CB is Prüfer in B. {This had already been stated in Prop.4.} Since
CA ⊂ A ⊂ B, it follows that A is Prüfer in B.

Corollary 7.7. Let A be a subring of R, and let D denote the Prüfer hull of
A in R, D = P (A,R) (cf.I, §5, Def.2). Assume that A has bounded inversion.
a) Every overring B of A in D has bounded inversion and is convex in D, and
CB = CA.
b) D is the unique maximal overring B of A in R such that B has bounded
inversion and CB = CA.
c) D is the unique maximal overring B of A such that A is convex in B and B
has bounded inversion.
d) CA has bounded inversion, and D is the Prüfer hull of CA in R. The
overrings of CA in D are precisely all subrings B of R such that CB = CA and
B has bounded inversion.

Proof. a): If B is an overring of A in D, then A is Prüfer in B. Thus, by
Theorem 6, B has bounded inversion and CA = CB . In particular, D has
bounded inversion and CA = CD. Applying Theorem 6 to B and D we see
that B is convex in D.
b): If B is an overring of A in R with bounded inversion and CA = CB , then
A is Prüfer in B by Theorem 6, hence B ⊂ D.
c): If B is an overring of A in R with bounded inversion such that A is convex
in B, then again A is Prüfer in B by Theorem 6, hence B ⊂ D.
d): CA is convex in A, hence is Prüfer in A (cf.Th.6 or Prop.4). Thus D is
also the Prüfer hull of CA in R. Now apply what has been proved about the
extension A ⊂ R to the extension CA ⊂ R, taking into account the trivial fact
that CA = CB implies CA ⊂ B.

The corollary tells us in particular (part c) that A has a unique maximal
overring D such that A is convex in D and D has bounded inversion. Does
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there hold something similar without the inverse boundedness condition? The
answer is “Yes” provided A is Prüfer in R, as we are going to explain. We now
denote the basic subring of R to start with Λ instead of A, since the letter A
will turn up with another meaning.

Let Λ be a subring of R. We denote the subring A(R+, R/Λ) and the additive
subgroup C(R+, R/Λ) (cf.§5) briefly by A(R/Λ) and C(R/Λ) respectively. Re-
call from Proposition 5.2 that C(R/Λ) = Λ + A(R/Λ). We need the following
easy

Lemma 7.8. Let B be an overring of Λ in R. Then A(B/Λ) = B ∩ A(R/Λ)
and C(B/Λ) = B ∩ C(R/Λ).

Proof. The first equality is evident from the definition of A(B/Λ) and A(R/Λ)
in §5. The second one now follows since B ∩ [Λ + A(R/Λ] = Λ + [B ∩A(R/Λ)].

Definition 3. Assume that Λ is Prüfer in R. The convexity cover of Λ in R is
the polar C(R/Λ)◦ of C(R/Λ) over Λ in R, i.e. the unique maximal R-overring
E of Λ with C(R/Λ) ∩ E = Λ (cf.II, §7). We denote the convexity cover by
CC(R/Λ).∗)

Recall that the polar I◦ is defined for any Λ-overmodule I of Λ in R. Thus we
do not need to assume here that C(R/Λ) itself is a subring of R.

The name “convexity cover” is justified by the following theorem.

Theorem 7.9. Assume that Λ is Prüfer in R. Let B be any R-overring of
Λ. Then Λ is convex in B iff B ⊂ CC(R/Λ). Thus CC(R/Λ) is the unique
maximal overring E of Λ in R such that Λ is convex in E.

Proof. Let B be any R-overring of Λ. By the lemma we have C(B/Λ) =
B ∩ C(R/Λ). Thus Λ is convex in B iff B ∩ C(R/Λ) = Λ. This means that
B ⊂ C(R/Λ)◦.

If Λ is any subring of R then Theorem 9 still gives us the following.

Corollary 7.10. There exists a unique maximal R-overring E of Λ such that
Λ is Prüfer and convex in E, namely E = CC(P (Λ, R)/Λ).

Definition 4. We call this R-overring E of Λ the Prüfer convexity cover of Λ
in R, and denote it by Pc(Λ, R).

Scholium 7.11. If B1 and B2 are overrings of Λ in R such that Λ is Prüfer
and convex in B1 and in B2 then Λ is also Prüfer and convex in B1B2. Indeed,
B1 and B2 are both subrings of Pc(A,R). Thus B1B2 ⊂ Pc(A,R).

∗) More precisely we write CC(T,R/Λ), with T=R+, if necessary.
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We do not have such a result for “convex” alone, omitting the Prüfer condition.

In §10 we will meet a situation where a preordered (in fact partially ordered)
ring A is given, such that the preordering extends to the Prüfer hull P (A)
in a natural way. Then we will have an “absolute” Prüfer convexity cover

Pc(A):= Pc(A,P (A)) at our disposal, which is the unique maximal Prüfer
extension E of A such that A is convex in E.
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§8 Convexity of submodules

As before (R, T ) is a preordered ring. But now we fix a subring A of R and
study T -convexity for A-submodules of R instead of subrings. We will use this
to develop more criteria that A is Prüfer and T -convex in R, and to find more
properties of such extensions A ⊂ R. Large parts of this section may be read
as a supplement to our multiplicative ideal theory in Chapter II in the presence
of a preordering.

As we already did in part of the preceding section we usually simplify notation
by saying “convex” instead of “T -convex”, and writing C(R/A) instead of
C(T,R/A) etc. This will cause no harm as long as we keep the preordering T
fixed.

We start with an important observation by Brumfiel in his book [Br]. Brumfiel
there only considers the case that T is a partial ordering of R, i.e. T ∩ (−T ) =
{0}, but his arguments go through more generally for a preordering T .

Proposition 8.1. Let u1, . . . , u2n, t be indeterminates over Q, u: =
(u1, . . . , u2n), and f(t):= t2n + u1t

2n−1 + · · · + un. Then there exists some
k ∈ N, polynomials b+(u), b−(u) ∈ Q[u], and polynomials h+

i (u, t), h−
i (u, t) ∈

Q[u, t], 1 ≤ i ≤ k, such that

t − b+(u) +

k
∑

i=1

h+
i (u, t)2 = f(t),

b−(u) − t +

k
∑

i=1

h−
i (u, t)2 = f(t).

The proof runs by induction on n, cf. [Br, p.123 ff].

Inserting for the ui elements ai of our subring A of R we obtain the following
corollary.

Corollary 8.2. Assume that Q ⊂ R. If α ∈ R and f(t) = t2n + a1t
2n−1 +

· · · + a2n is a monic polynomial of even degree over A with f(α) ≤
T

0, then

b−(a1, . . . , a2n) ≤
T

α ≤
T

b+(a1, . . . , a2n).

Thus α is an element of the convex closure C(R/A) of A in R.∗)

In particular we have

Corollary 8.3. If Q ⊂ R, and A is convex in R, then A is integrally closed
in R.

∗) Notice that Q⊂C(R/A).
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It is possible to weaken the condition Q ⊂ R in Corollary 3 considerably.

Proposition 8.4. Assume that A is convex in R and 2-saturated in R (i.e.,
for every x ∈ R, 2x ∈ A ⇒ x ∈ A). Then A is integrally closed in R.

Proof Let R̃: = Q⊗Z R and Ã: = Q⊗Z A. As usual, we regard R as a subring
of R̃. Then A ⊂ Ã. The preordering T extends to a preordering T̃ of R̃, and
Ã is T̃ -convex in R̃, as is easily seen, since A is assumed to be T -convex in R.

Let x ∈ R be integral over A. Then x is integral over Ã, and we know by
Corollary 3 that x ∈ Ã. Thus nx ∈ A for some n ∈ N. We have
0 ≤

T
x2 ≤

T
n2x2 ∈ A. Since A is T -convex in R, it follows that

x2 ∈ A. Also 1+x is integral over A, and thus (1+x)2 ∈ A. We conclude that
2x = (1 + x)2 − x2 ∈ A, and then, that x ∈ A, since A is 2-saturated in R.

Here is another observation about convexity in R. If M is any subset of R, we
define

[A:M ]: = [A:R M ]: = {y ∈ R | yx ∈ A for every x ∈ M}

(thus [A:M ] = [A:AM ]).

Proposition 8.5. Assume again that A is convex and 2-saturated in R.

a) For every subset M of R the A-module [A:M ] is convex and 2-saturated in
R.
b) Every R-invertible A-submodule of R is convex and 2-saturated in R.

Proof. a): Since [A:M ] is the intersection of the A-modules [A:x] with x
running through M , it suffices to prove the claim for M = {x} with x a given
element of R.

If y ∈ R and 2y ∈ [A:x], then 2xy ∈ A, hence xy ∈ A, i.e. y ∈ [A:x]. Thus
[A:x] is 2-saturated in R.

Let s, t ∈ T be given with s + t ∈ [A:x]. Then 0 ≤
T

s2x2 ≤
T

(s + t)2x2 ∈ A.

Thus (sx)2 ∈ A. By Proposition 4 we infer that sx ∈ A, i.e. s ∈ [A:x]. This
proves that [A:x] is convex in R.
b): If I is an R-invertible A-submodule of R then I = [A: I−1], and part a)
applies.

Remark 8.6. Assume that A is convex in R and 2 ∈ R∗. Then 2 ∈ A∗, hence
A is 2-saturated in R.

Proof. 0 ≤
T

1
2 ≤

T
1 ∈ A, hence 1

2 ∈ A.

Thus the assumption in Propositions 4 and 5, that A is 2-saturated in R, is a
very mild one.

Documenta Mathematica 10 (2005) 1–109
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Theorem 8.7. The following are equivalent.
(i) A is Prüfer, convex and 2-saturated in R.
(ii) Every R-regular A-submodule of R is convex and 2-saturated in R.
(iii) For every x ∈ R the A-module A + Ax2 is convex and 2-saturated in R.
(iv) Every R-overring of A is convex and 2-saturated in R.

Proof. (i) ⇒ (ii): It suffices to study finitely generated R-regular A-modules.
These are invertible in R, hence, according to Proposition 5, are convex and
2-saturated in R.
(ii) ⇒ (iii) and (ii) ⇒ (iv): trivial.
(iii) ⇒ (i): By assumption A = A + 0 · A is convex and 2-saturated in R, and
A is integrally closed in R due to Proposition 4. Let x ∈ R be given. We have
−1 − x2 ≤

T
2x ≤

T
1 + x2 and conclude by (iii) that 2x ∈ A + Ax2, then, that

x ∈ A + Ax2. Now Theorem I.5.2 tells us that A is Prüfer in R.
(iv) ⇒ (i): Let B be an overring of A in R. By assumption B is convex and
2-saturated in R. Thus, by Proposition 4, B is integrally closed in R. We
conclude by Theorem I.5.2 that A is Prüfer in R.

Remarks 8.8. i) If 2 ∈ R∗ we may drop the 2-saturation assumption in all
conditions (i) – (iv), since now convexity of A implies 2 ∈ A∗ (cf. Remark 8.6
above). Then every A-submodule of R is 2-saturated.
ii) If 2 ∈ R∗ and A is convex in R, the theorem tells us in particular that A is
Prüfer in R iff every R-overring of A is convex in R. This improves Theorem 6.9
in the case 2 ∈ R∗.

We now strive for criteria which start with a mild general assumption on T and
the extension A ⊂ R, and then decide whether A is T -convex and Prüfer in R
by looking for (T ∩ A)-convexity in A of suitable R-regular ideals of A. One
such criterion had already been given within Theorem 6.7, cf. there (1) ⇔ (5).

Theorem 8.9. Assume that S is a multiplicative subset of A. Assume further
that 2 ∈ S, and every element of S is a nonzero divisor in A. Let R: = S−1A.
The following are equivalent.
(i) A is Prüfer and convex in R.
(ii) For every a ∈ A and s ∈ S the ideal As2 +Aa2 is convex (i.e. A∩T -convex)
in A.

Proof. (i) ⇒ (ii): Let a ∈ A and s ∈ S be given. Take x: = a
s2 . The

module A + Ax2 is convex in R by Theorem 7. The map z 7→ s2z from R
to R is an automorphism of the preordered abelian group (R,+, T ). Thus
As2 + Aa2 = s2(A + Ax2) is convex in R, hence in A.
(ii) ⇒ (i): a) We first verify that 2 is a unit in A. Let x := 1

2 . Then x ∈ R =
S−1A and a := 4x ∈ A. We have 0 ≤ a ≤ 4, and A · 4 = A · 22 + A · 0 is convex
in A. Thus a ∈ 4A, hence x ∈ A.
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b) We start out to prove that A is convex in R. {This is the main task!} Let
x ∈ R and b ∈ A be given with 0 ≤

T
x ≤

T
b. Write x = a

s with a ∈ A, s ∈ S.

We have
0 ≤

T
a2 ≤

T
b2s2 ≤

T
s4 + b2s2.

Since As4 + Ab2s2 is convex in A, this implies a2 ∈ As4 + Ab2s2, hence
x2 ∈ As2 + Ab2 ⊂ A.
Since 0 ≤

T
x+1 ≤

T
b+1 ∈ A, also (1+x)2 ∈ A, and thus x = 1

2 [(1+x)2−x2] ∈
A. A is convex in R.

c) We finally prove for any x ∈ R that A + Ax2 is convex in R. Then we will
know by Theorem 7 and Remark 8.i that A is Prüfer in R, and will be done.

Write x = a
s with a ∈ A, s ∈ S. By assumption the A-module Aa2 + As2

is convex in A, hence convex in R. Thus also A + Ax2 = s−2(Aa2 + As2) is
convex in R.

Lemma 8.10. Let I, J,K be A-submodules of R with I ⊂ J .
a) If I is 2-saturated in J , then [I:K] is 2-saturated in [J :K].
b) If the A-module K is generated by K ∩ T and I is convex in J , then [I:K]
is convex in [J :K].

Proof. a): Let x ∈ [J :K] and 2x ∈ [I:K]. For any s ∈ K we have 2sx ∈ I,
sx ∈ J , hence sx ∈ I. Thus x ∈ [I:K].
b): Let M : = K ∩ T . Let x ∈ [J :K] and y ∈ [I:K] be given with 0 ≤

T
x ≤

T
y.

For any s ∈ M we have 0 ≤
T

sx ≤
T

sy and sx ∈ J , sy ∈ I. It follows that

sx ∈ I. Since the A-module K is generated by M , we conclude that x ∈ [I:K].

Definition 1. We say that an A-submodule I of R is T -invertible in R, or
(R, T )-invertible, if I is R-invertible and both I and I−1 are generated by I∩T
and I−1 ∩ T respectively.

Notice that the product IJ of any two (R, T )-invertible A-submodules I, J of
R is again (R, T )-invertible.

Examples 8.11. i) Assume that A is Prüfer in R. Then, for every R-invertible
A-module I, the module I2 is T -invertible in R. Indeed, write I = Aa1 + · · ·+
Aan. Then I2 = Aa2

1 + · · · + Aa2
n (cf. Prop.II.1.8), and a2

1, . . . , a
2
n ∈ T . Also

I−2 is generated by T ∩ I−2.
ii) If A ⊂ R is any ring extension and P is a prime cone of R then clearly every
R-invertible A-submodule of R is P -invertible in R.

Lemma 8.12. Let I, J,K be A-submodules of R with I ⊂ J . Assume that K
is T -invertible in R. Then I is convex in J iff IK is convex in JK, and I is
2-saturated in J iff IK is 2-saturated in JK.
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Proof. This follows from Lemma 10, since, for any A-module a in R, we have
aK = [a:K−1] and aK−1 = [a:K].

Lemma 8.13. Let I be an A-submodule of R which is T -invertible in R. Then I
is convex in A iff A is convex in R, and I is 2-saturated in A iff A is 2-saturated
in R.

Proof. Apply Lemma 12 to the A-modules A,R, I.

Definition 2. We call the ring extension A ⊂ R T -tight, or say that A is
T -tight in R, if for every x ∈ R there exists some (R, T )-invertible ideal I of A
with Ix ⊂ A.

Examples 8.14. i) If A ⊂ R is a ring extension and R = S−1A with S =
A ∩ R∗, the ring A is T -tight in R for any preordering T of R. Indeed, if
x = a

s ∈ R is given (a ∈ A, s ∈ S), then (As2)x ⊂ A, and As2 is T -invertible
in R.
ii) If A is Prüfer in R then, for every preordering T of R, A is T -tight in R.
Indeed, let x ∈ R be given. Choose an R-invertible ideal I of A with Ix ⊂ A.
Then, as observed above (Example 12.ii), I2 is T -invertible in R and I2x ⊂ A.

Lemma 8.15. If for any x ∈ R there exists an (R, T )-invertible convex ideal I
of A with Ix ⊂ A, then A is convex in R.

Proof. Let x ∈ R, a ∈ A be given with 0 ≤T x ≤T a. By the assumption, there
exists an (R, T )-invertible convex ideal I of A such that Ix ∈ A, i.e. x ∈ I−1.
By Lemma 12, we see that I is convex in A iff A is convex in I−1. Hence x ∈ A.
Therefore, A is convex in R.

Theorem 8.16. Assume that A is T -tight in R. The following are equivalent.
(i) A is Prüfer and 2-saturated in R.
(ii) Every R-regular ideal of A is 2-saturated and convex in A.
(iii) If a ∈ A and I is an (R, T )-invertible ideal of A, then the ideal I + Aa is
2-saturated and convex in A.
(iii′) Every (R, T )-invertible ideal K of A contains an (R, T )-invertible ideal I
of A such that for every a ∈ A the ideal I +aA is 2-saturated and convex in A.
(iv) If I and J are finitely generated ideals of A and I2 is (R, T )-invertible,
then I2 + J2 is 2-saturated and convex in A.

Proof. (i) ⇒ (ii): Clear by Theorem 7.
(ii) ⇒ (iii) ⇒ (iii′) and (ii) ⇒ (iv): trivial.
(iii′) ⇒ (iii): We prove that any ideal J of A containing an (R, T )-invertible
ideal I of A with the property listed in (iii′) is 2-saturated and convex in A.

Let x ∈ A be given with 2x = a ∈ J . Since I + Aa is 2-saturated in A, we
conclude that x ∈ I + Aa ⊂ J . Thus J is 2-saturated in A.
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Let x ∈ A, a ∈ J be given with 0 ≤
T

x ≤
T

a. Again, since I + Aa is convex in

A, we conclude that x ∈ I + Aa ⊂ J . Thus J is convex in A.

(iii) ⇒ (i): (a) Since by assumption every (R, T )-invertible ideal of A is convex
in A, we know by Lemma 15 that A is convex in R.

(b) Let x ∈ R be given. Since A is T -tight in R there exists some (R, T )-
invertible ideal I of A having the property listed in (iii) with Ix ⊂ A. Then
I ⊂ I(A+Ax) ⊂ A. As just proved, I(A+Ax) is 2-saturated and convex in A,
hence in R by (a). We conclude by Lemma 13 that A + Ax is 2-saturated and
convex in R. It follows by Theorem 7 (cf. there (iii) ⇒ (ii)), that A is Prüfer
in R.
(iv) ⇒ (i): (a) We prove first that A is convex in R. Let x ∈ R be given. We
choose an (R, T )-invertible ideal I of A with J : = Ix ⊂ A. By assumption,
I2 = I2 + A · 02 is 2-saturated and convex in A, and I2x ⊂ A. Hence A is
convex in R by Lemma 15.

(b) We show that A is Prüfer in R. Let x ∈ R be given. We again choose an
(R, T )-invertible ideal I of A with J : = Ix ⊂ A. By assumption, I2 + J2 =
I2(A + Ax2) is 2-saturated and convex in A, hence in R. Taking again into
account that I2 is (R, T )-invertible, we conclude by Lemma 13 that A+Ax2 is
2-saturated and convex in R. Now Theorem 7 tells us that A is Prüfer in R.

It is the somewhat artificial looking condition (iii′) in this theorem which will
turn out to be useful later (cf.Th.9.12 and Th.9.13), more than the less com-
plicated condition (iii).
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§9 Prüfer subrings and absolute convexity in f-rings

In f-rings, to be defined and discussed below, the theory of Prüfer subrings
seems to be particularly well amenable to our methods. It is traditional to
study f-rings within the category of lattice ordered rings. This category is
slightly outside the framework we have used in §5 – §8. Thus some words
of explanation are in order. Our main reference for lattice ordered rings and
groups, and in particular for f-rings, is the book [BKW] by Bigard, Keimel and
Wolfenstein.

We start with an abelian group G, using the additive notation. Assume that
G is (partially) ordered in the usual sense, the ordering being compatible with
addition. Thus x ≤ y implies x + z ≤ y + z and −y ≤ −x. We write G+: =
{x ∈ G | x ≥ 0}, and we have G+ + G+ ⊂ G+, G+ ∩ (−G+) = {0}.
G is called lattice-ordered if G is a lattice with respect to its ordering. This
means that the infimum and supremum

x ∧ y: = inf(x, y) , x ∨ y: = sup(x, y)

exist for any two elements x, y of G. As is well known, the lattice G is then au-
tomatically distributive [BKW, 1.2.14], and the group G has no torsion [BKW,
1.2.13].

We assume henceforth that G is a lattice ordered group. Clearly, for any
x, y, z ∈ G we have

(x + z) ∧ (y + z) = (x ∧ y) + z, (x + z) ∨ (y + z) = (x ∨ y) + z,

and (−x) ∧ (−y) = −(x ∨ y).

For any x ∈ G we define x+: = x ∨ 0, x−: = (−x) ∨ 0. We have x = x+ − x−.
Moreover, if x = y − z with y, z ∈ G, then y = x+, z = x− iff y ∧ z = 0,
cf.[BKW, 1.3.4].

The absolute value |x| of x ∈ G is defined by |x|: = x∨ (−x). One proves easily
that |x| = x+ + x− [BKW, 1.3.10], more generally [BKW, 1.3.12],

|x − y| = (x ∨ y) − (x ∧ y).

Of course, |x| = 0 iff x = 0, and |x| = x iff x ≥ 0.

We explicitly mention the following three facts about absolute values. Here
x, y are any elements of G, and n ∈ N (The label “LO” alludes to “lattice
ordered”).

(LO1) |x| ≤ |y| ⇐⇒ −y ≤ x ≤ y.
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Indeed, x ∨ (−x) ≤ y means that x ≤ y and −x ≤ y, hence x ≤ y and −y ≤ x.

(LO2) −|x| − |y| ≤ x ∧ y ≤ x ∨ y ≤ |x| + |y|

This follows from the trivial estimates −|x|−|y| ≤ x ≤ |x|+ |y| and −|x|−|y| ≤
y ≤ |x| + |y|.

(LO3) (nx)+ = nx+ , (nx)− = nx−, hence |nx| = n|x|.

cf. [BKW, 1.3.7].

We now introduce a key notion for everything to follow.

Definition 1. We call a subgroup M of G absolutely convex in G, if |x| ≤ |a|
implies x ∈ M for any two elements x of G and a of M . (In [BKW] the term
“solid” is used for our “absolute convex”.)

On the other hand, convexity in G is defined as in §5, Definition 1. Of course,
absolute convexity is a stronger property than convexity.

We will need three lemmas about absolutely convex subgroups, the first and
the second being very easy.

Lemma 9.1. Every absolutely convex subgroup M of G is 2-saturated in G.

Proof. Let x ∈ G be given with 2x ∈ M . Then 2|x| = |2x| (cf. LO3 above),
and 0 ≤ |x| ≤ 2|x|. It follows that x ∈ M .

Lemma 9.2. Assume that M is a convex subgroup of the lattice ordered abelian
group G. The following are equivalent.
(i) M is a sublattice of G (i.e. x ∧ y ∈ M and x ∨ y ∈ M for any two elements
x, y of M).
(ii) M is absolutely convex in G.
(iii) If x ∈ M then |x| ∈ M .

Proof. (i) ⇒ (ii): Let a ∈ M and x ∈ G be given with |x| ≤ |a|. Then
|a| = a ∨ (−a) ∈ M , and we conclude from 0 ≤ |x| ≤ |a| and the convexity of
M that |x| ∈ M , then from −|x| ≤ x ≤ |x| (cf. LO1) that x ∈ M .
(ii) ⇒ (iii): trivial.
(iii) ⇒ (i): Let a, b ∈ M be given. By assumption then |a| ∈ M , |b| ∈ M . As
stated above (LO2), −|a| − |b| ≤ a ∧ b ≤ a ∨ b ≤ |a| + |b|. Since M is
convex in G, this implies a ∧ b ∈ M , a ∨ b ∈ M .

Lemma 9.3. Let I, J,K be absolutely convex subgroups of G. Then the
subgroup J + K is again absolutely convex and

I ∩ (J + K) = (I ∩ J) + (I ∩ K).
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This can be extracted from [BKW, Chap.2]. We give a direct proof of the
theorem for the convenience of the reader, following arguments in [Ban, p.130 f].

Proof. i) We first verify the following: Let a ∈ J+, b ∈ K+, y ∈ I+ and
y ≤ a + b. Then y ∈ (I+ ∩ J+) + (I+ ∩ K+).

Starting with the triviality y = a ∧ y + (y − a ∧ y), we obtain y = a ∧ y + y +
(−a) ∨ (−y) and then

(∗) y = a ∧ y + (y − a) ∨ 0.

Now 0 ≤ a∧ y ≤ y and 0 ≤ a∧ y ≤ a. Thus a∧ y ∈ I+ ∩ J+. We read off from
(∗) that (y−a)∨0 ∈ I+. Further y−a ≤ b, hence 0 ≤ (y−a)∨0 ≤ b∨0 ∈ K+,
hence (y − a) ∨ 0 ∈ K+, and we conclude that (y − a) ∨ 0 ∈ I+ ∩ K+.
ii) We use part i) with I = G to verify that J + K is absolutely convex in G.
Let x ∈ G, a ∈ J , b ∈ K be given with |x| ≤ |a + b|. Then 0 ≤ x+ ≤ |x| ≤
|a + b| ≤ |a| + |b|. This implies, as proved, that x+ ∈ J + K and |x| ∈ J + K.
Thus x = 2x+ − |x| ∈ J + K.
c) Let now a ∈ I∩(J +K) be given. We have a = b+c with b ∈ J , c ∈ K. Then
we conclude from |a| ≤ |b|+ |c| by (i) that |a| ∈ (I ∩ J) + (I ∩K). The groups
I ∩J and I ∩K are absolutely convex in G. Thus, as proved, (I ∩J)+ (I ∩K)
is absolutely convex in G. It follows that a ∈ (I ∩ J) + (I ∩ K). This proves
I ∩ (J + K) = (I ∩ J) + (I ∩ K).

We now switch to lattice ordered rings. A ring R (here always commutative,
with 1) is called lattice ordered, if the set R is equipped with a partial ordering,
which makes (R,+) a lattice ordered abelian group, and such that xy ≥ 0
for any two elements x ≥ 0, y ≥ 0 of R. Thus for T : = R+ the properties
T +T ⊂ T , T ·T ⊂ T , T ∩(−T ) = {0} hold, but we do not demand that x2 ∈ T
for x ∈ R.

We call T an ordering of R and sometimes speak of “the lattice ordered ring
(R, T )”.

A subring A of R is called an ℓ-subring, if A is a subring and a sublattice of R.
We know by Lemma 2 that the absolutely convex subrings of R coincide with
the convex ℓ-subrings of R.

A subset a of R is called an ℓ-ideal, if a is a convex ideal of R and a sublattice

of R,∗) equivalently (Lemma 2), if a is an absolutely convex ideal of R.

Proposition 9.4. Let A ⊂ R be a weakly surjective ring extension. Assume
that A is lattice ordered and every R-regular ideal of A is absolutely convex in
A (i.e. an ℓ-ideal). Then A is Prüfer in R.

∗) The unitiated reader may object to this terminology, insisting that “ℓ” should just mean

“sublattice”. But observe that the ℓ-ideals, as defined here, are the kernels of the homo-

morphisms between lattice-ordered rings, cf.[BKW, §8.3].
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Proof. It follows from Lemma 3, applied to the lattice-ordered group (A,+),
that the lattice of R-regular ideals of A is distributive. Theorem II.2.8 tells us
that A is Prüfer in R.

This proposition should be regarded as a preliminary result, already indicating
that there are friendly relations between absolute convexity and the Prüfer
property. The assumption that A is lattice ordered seems to be too weak to
allow a good theory of Prüfer extensions beyond our results in Chapters I and
II. But if A is an f-ring, to be defined in a minute, we will see later that the
situation described in Proposition 4 is met rather often, for example for every

Prüfer extension A ⊂ R in case A has bounded inversion (cf.Theorems 9.15
and 10.12).

If (Cα | α ∈ X) is a family of lattice ordered rings, the direct product
∏

α∈X

Cα is

again a lattice ordered ring in the obvious way: We equip the ring C: =
∏

α∈X

Cα

with the ordering f ≤ g ⇐⇒ f(α) ≤ g(α) for every α ∈ X, and we have, for
f, g ∈ C, α ∈ X,

(f ∧ g)(α) = f(α) ∧ g(α) , (f ∨ g)(α) = f(α) ∨ g(α).

{Explanation: If h ∈ C, we denote the component of h at the index α by
h(α). Thus h is the family (h(α) | α ∈ X).} Notice also that f+(α) = f(α)+,
f−(α) = f(α)−, and |f |(α) = |f(α)|.

Definition 2 [BKW, 9.11]. A lattice ordered ring R is called an f-ring if
there exists a family (Cα | α ∈ X) of totally ordered rings Cα, such that R is
isomorphic (as an ordered ring) to an ℓ-subring of

∏

α∈X

Cα.

The following rules clearly hold in a totally ordered ring, hence in any f-ring
R.
(F1) If x ≥ 0 then x(a ∧ b) = (xa) ∧ (xb).
(F2) If x ≥ 0 then x(a ∨ b) = (xa) ∨ (xb).
(F3) |ab| = |a| |b|.
(F4) a2 = |a|2.
(F5) If a ≥ 0, b ≥ 0, x ≥ 0, a ∧ b = 0, then a ∧ bx = 0.
(F6) If a ∧ b = 0 then ab = 0.
(F7) a + b = (a ∧ b) + (a ∨ b).
(F8) ab = (a ∧ b)(a ∨ b).

Remarks. i) In any lattice ordered ring R the following weaker rules hold
[BKW, 8.1.4]:
1) If x ≥ 0 then x(a ∧ b) ≤ xa ∧ xb, x(a ∨ b) ≥ xa ∨ xb.
2) |ab| ≤ |a| |b|
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ii) It is known that each of the rules (F1), (F2), (F3), (F5) characterizes f-rings
within the category of lattice ordered rings, thus allowing a more intrinsic
definition of f-rings than Definition 2 above. {[BKW, p.173, 175 f]. Notice
that, contrary to [BKW], our rings are always assumed to have a unit element.
Thus [BKW, 9.1.14] applies.}

In an f-ring R we have x2 ≥ 0 for every x ∈ R (cf. F4). Thus
R+ = {x ∈ R | x ≥ 0} is a partial ordering of R in the sense of §5, i.e. T = R+

is a preordering of R with T ∩ (−T ) = {0}.
In the following we assume that R is an f-ring and A is a subring of
R, if nothing else is said.

Proposition 9.5. The following are equivalent.
(i) A is absolutely convex in R.
(ii) A is a convex ℓ-subring of R.
(iii) A is 2-saturated and convex in R.
(iv) A is convex and integrally closed in R.
(v) A is convex in R. If x ∈ R and x2 ∈ A then x ∈ A.

Proof. The implications (i) ⇒ (iii) and (i) ⇔ (ii) are covered by Lemmas 1
and 2, and (iii) ⇒ (iv) is covered by Proposition 8.4. (iv) ⇒ (v) is trivial.
(v) ⇒ (i): If x ∈ A then |x|2 = x2 ∈ A by F4, hence |x| ∈ A. Lemma 2 tells us
that A is absolutely convex in R.

Corollary 9.6. If A is Prüfer and convex in R then A is absolutely convex
in R.

If M and I are subsets of R let [I:M ] or, if necessary, more precisely [I:R M ]
denote the set of all x ∈ R with xM ⊂ I. Notice that, if I is an additive
subgroup of R or an A-submodule of R, then also [I:M ] is an additive subgroup
resp. an A-submodule of R.

Definition 2. Let I, J be additive subgroups of R with I ⊂ J . We say that
I is absolutely convex in J , if

x ∈ J, a ∈ I, |x| ≤ |a| =⇒ x ∈ I.

{The point here is that J is not assumed to be a sublattice of R. Thus the
definition goes beyond Definition 1.}

Lemma 9.7. Let I and J be additive subgroups of R with I ⊂ J . Assume that
I is absolutely convex in J .
a) If M is any subset of R+ then [I:M ] is absolutely convex in [J :M ].
b) If K is an additive subgroup and a sublattice of R, then [I:K] is absolutely
convex in [J :K].
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Proof. a): Let x ∈ [I:M ] and y ∈ [J :M ] be given with 0 ≤ |y| ≤ |x|. For
every s ∈ M we have (using F3)

0 ≤ s|y| = |sy| ≤ s|x| = |sx|,

and sx ∈ I, sy ∈ J . Since I is absolutely convex in J , this implies sy ∈ I.
Thus y ∈ [I:M ].
b): If x ∈ K, then x = x+ − x− and x+ ∈ K, x− ∈ K. Thus [I:K] = [I:K+]
and [J :K] = [J :K+]. The claim now follows from a).

Lemma 9.8. Assume that I is an absolutely convex additive subgroup of R.
a) [I:x] = [I: |x|] for every x ∈ R.
b) For any subset K of R the additive group [I:K] is absolutely convex in R.

Proof. a): Let y ∈ [I:x] be given. We have xy ∈ I, hence (using F3)

|x|y+ + |x|y− = |x| |y| = |xy| ∈ I.

It follows that |x|y+ and |x|y− both are elements of I. We conclude that
y = y+ − y− ∈ [I: |x|]. This proves that [I:x] ⊂ [I: |x|].
Let now z ∈ [I: |x|] be given. Then |zx| = |z · |x| | ∈ I, hence zx ∈ I, i.e.
z ∈ [I:x]. This proves that [I: |x|] ⊂ [I:x].
b): Let M : = {|x|:x ∈ K}. Using a) we obtain

[I:K] =
⋂

x∈K

[I:x] =
⋂

x∈K

[I: |x|] = [I:M ].

Now apply Lemma 7.a with J = R.

Lemma 9.9. Assume that A is absolutely convex in R. Then every R-invertible
A-submodule of R is absolutely convex in R.

Proof. Let K be such an A-submodule. Then K = [A:K−1], and Lemma 8
applies.

Theorem 9.10. The following are equivalent.
(1) A is Prüfer and convex in R.
(2) Every R-regular A-submodule of R is absolutely convex in R.
(3) For every x ∈ R the A-module A + Ax2 is absolutely convex in R.
(4) Every overring of A in R is absolutely convex in R.

Proof. (1) ⇒ (2): It suffices to prove that a given finitely generated R-regular
A-submodule I is absolutely convex in R. Since A is Prüfer in R the A-module
I is R-invertible. We know by Corollary 6 that A is absolutely convex in R.
Now Lemma 9 tells us that I is absolutely convex in R.
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(2) ⇒ (3) and (2) ⇒ (4): trivial.
(3) ⇒ (1): It suffices to prove that A is Prüfer in R. By assumption A = A+A·0
is absolutely convex in R. We conlcude by Proposition 5 that A is integrally
closed in R. Let x ∈ R be given. We have −1 − x2 ≤ 2|x| ≤ 1 + x2. By (3) it
follows that 2|x| ∈ A+Ax2, then that |x| ∈ A+Ax2, finally that x ∈ A+Ax2.
Now Theorem I.5.2 tells us that A is Prüfer in R.
(4) ⇒ (1): Let B be an R-overring of A. By assumption B is absolutely convex
in R. It follows by Proposition 5 that B is integrally closed in R, then by
Theorem I.5.2 that A is Prüfer in R.

Lemma 9.11. Assume that A is absolutely convex in R.
a) Every R-invertible A-submodule I of R is R+-invertible (cf. §8, Def.1) in R.
b) If A is tight in R, then A is R+-tight in R (cf. §8, Def.2).

Proof. a): We know by Lemma 9 that I is absolutely convex in R. The
same holds for I−1. Since both I and I−1 are sublattices of R, they certainly
are generated (as A-modules) by I+ and (I−1)+ respectively. Thus I is R+-
invertible in R.
b): Now obvious.

Theorem 9.12. Assuming that A is an ℓ-subring of R, the following are
equivalent.
(1) A is Prüfer and convex in R {hence absolutely convex in R by Lemma 2 or
Cor.6}.
(2) A is tight in R, and every R-regular ideal of A is an ℓ-ideal of A.
(3) A is tight in R. For every R-invertible ideal I of A and every a ∈ A the set
I + Aa is an ℓ-ideal of A.
(3′) A is tight in R. Every R-invertible ideal K of A contains an R-invertible
ideal I of A such that I + Aa is an ℓ-ideal of A for every a ∈ A.
(4) A is tight in R. For any two finitely generated ideals I, J of A with I
invertible in R the set I2 + J2 is an ℓ-ideal of A.

Proof. (1) ⇒ (2): The extension A ⊂ R is tight since it is Prüfer. It follows
by Theorem 10 that every R-regular ideal of A is absolutely convex in R, hence
is absolutely convex in A.
(2) ⇒ (3) ⇒ (3′): trivial.
(3′) ⇒ (1): We first prove that A is absolutely convex in R. Let x ∈ R and
a ∈ A be given with 0 ≤ |x| ≤ |a|. Since A is tight in R there exists an R-
invertible ideal K of A such that Kx ⊂ A. By (3′) K contains an R-invertible
ideal I of R having the property listed in (3′), i.e. I + aA is an l-ideal of A
for every a ∈ A. In particular I is absolutely convex in A, hence a sublattice
of A, hence a sublattice of R. By Lemma 7.b we conclude that A = [I: I]
is absolutely convex in I−1 = [A: I]. We now infer from 0 ≤ |x| ≤ |a| and
x ∈ K−1 ⊂ I−1 that x ∈ A. Thus A is absolutely convex in R.
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Lemma 11 tells us that A is T -tight in R, with T = R+, and moreover, that all
R-invertible ideals of A are (R, T )-invertible. We conclude by Theorem 8.16,
using there the implication (iii′) ⇒ (i), that A is Prüfer in R.

(4) ⇒ (1): The proof runs the same way as for the implication (3′) ⇒ (1). We
now work with I2 instead of I for I an R-invertible ideal such that Ix ⊂ A,
and we use the implication (iv) ⇒ (i) in Theorem 8.16.

We also ask for criteria, in the vein of the preceding theorems 10 and 12, that
A is Bezout and convex in R.

Theorem 9.13. a) The following are equivalent.
(1) A is Bezout and convex in R.
(2) For every x ∈ R the A-module A + Ax is principal and absolutely convex
in R.
(3) A is an ℓ-subring of R, and R = S−1A with S: = A ∩ R∗. For every a ∈ A
and s ∈ S the ideal As + Aa of A is principal. For every s ∈ S the ideal As is
absolutely convex in A (i.e. an ℓ-ideal of A).
(3′) A is an ℓ-subring of R. There exists a multiplicative subset S of A with
the following properties: R = S−1A. For every s ∈ S and a ∈ A there exists
some t ∈ S such that As+Aa = At. For every s ∈ A the ideal As is absolutely
convex in A.

b) If 2 ∈ R∗ then (1) – (3) are also equivalent to each of the following two
conditions.
(4) R = S−1A with S: = A∩R∗. For every s ∈ S and a ∈ A the ideal As2 +Aa
of A is principal and absolutely convex in A.
(4′) There exists a multiplicative subset S of A with 2 ∈ S and R = S−1A,
and such that, for every a ∈ A and s ∈ S, the ideal As2 + Aa is principal and
absolutely convex in A.

Comment. Given an f -ring A the somewhat artificial looking conditions (3′)
and (4′) are useful for finding – theoretically – all Prüfer (hence Bezout) exten-
sions A ⊂ R such that R is an f -ring with R+ ∩ A = A+ and A an ℓ-subring
of R. Indeed, we will see in §10 (in a more general context) that, given a
multiplicative subset S of A consisting of non-zero divisors of A, there exists
a unique partial ordering on R: = S−1A such that R is an f -ring, A is an ℓ-
subring of R, and R+ ∩ A = A+. (Actually it is not difficult, just an exercise,
to give a direct proof of this fact.)

Proof of Theorem 9.13. (1) ⇒ (2): Let x ∈ R be given. Then A + Ax is
principal, since A is Bezout in R (cf.Th.II.10.2). It follows from Theorem 10
(cf. there (1) ⇒ (2)) that A + Ax is absolutely convex in R.
(2) ⇒ (1): trivial.
(1) ⇒ (3): Let S: = A ∩ R∗. Theorem II.10.16 tells us that R = S−1A. We
further know by Theorem 10 above (cf. there (1) ⇒ (2)) that, for every s ∈ S
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Prüfer Extensions in Real Algebra 75

and a ∈ A, the ideal As + Aa is absolutely convex in R, hence in A. Since A
is Bezout in R, this ideal is also principal (cf. Th.II.10.2).
(3) ⇒ (3′): The set S: = A ∩ R∗ has all the properties listed in (3′). This
needs a verification only for the second one. Let s ∈ S and a ∈ A be given.
By assumption (3), As + Aa = At for some t ∈ A. We have s = bt with some
b ∈ A, and we conclude that t ∈ A ∩ R∗ = S.
(3′) ⇒ (1): Let a1, . . . , ar ∈ A and s ∈ S be given. Then there exists some t ∈ S
such that As+Aa1+· · ·+Aar = At. Indeed, this holds for r = 1 by assumption
(3′) and then follows for all r by an easy induction. Now Theorem 12 tells us
(implication (3′) ⇒ (1) there) that A is (Prüfer and) convex in R.
Let x ∈ R be given. Write x = a

s with a ∈ A, s ∈ S. Then A + Ax =
S−1(As + Aa) and As + Aa = At with t ∈ S. Thus the A-module A + Ax is
principal, and we conclude that A is Bezout in R (cf.Th.II.10.2).
(3) ⇒ (4) ⇒ (4′): trivial.
(4′) ⇒ (1): We learn from Theorem 8.9 that A is convex in R. Let x ∈ R be
given. Write x = a

s2 with a ∈ A, s ∈ S. The ideal As2 + Aa is principal by
assumption (4′). Thus the module A + Ax = s−2(Aa + As2) is principal. This
proves that A is Bezout in R.

Open Question. If A is a convex (hence absolutely convex) Prüfer subring of
R, does it follow that A is Bezout in R?

We will now see that the answer is “Yes” if R or (equivalently) A has bounded
inversion. Related to this, we will find more criteria, that A is Bezout in R, and
results about such extensions more precise than those stated in Theorem 13.

We store our results in the following lengthy theorem 15. Here the dashed
conditions (2′), (3′), (4′), (6′) are included in order to make the proof more
transparent, while the undashed conditions (1) – (8) are the more interesting
ones. For the proof we will need (a special case of) the following easy lemma.

Lemma 9.14. Let I be a 2-saturated additive subgroup of R. Assume that
every x ∈ R with x2 ∈ I is an element of I. Then I is a sublattice of R.

Proof. If x ∈ I then |x|2 = x2 ∈ I, hence |x| ∈ I. It follows that 2x+ =
x + |x| ∈ I and then that x+ ∈ I. Given elements x, y ∈ I we conclude that

x ∨ y = y + [(x − y) ∨ 0] = y + (x − y)+ ∈ I.

Theorem 9.15. The following are equivalent.
(1) A has bounded inversion and is Prüfer in R.
(2) R has bounded inversion. A is convex in R.
(2′) R has bounded inversion. A is absolutely convex in R.
(3) A is convex in R. For every x ∈ R, A + Ax = A(1 + |x|).
(3′) A is absolutely convex in R. For every x ∈ R, A + Ax = A(1 + |x|).
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(4) For every x ∈ R, A + Ax = A(1 + |x|), and this module is convex in R.
(4′) For every x ∈ R, A+Ax = A(1+ |x|), and this module is absolutely convex
in R.
(5) R has bounded inversion. A is Bezout and convex in R.
(6) A is convex in R. For every x ∈ R, A + Ax = A(1 ∨ |x|).
(6′) For every x ∈ R the module A+Ax is absolutely convex in R, and A+Ax =
A(1 ∨ |x|).
(7) 2 ∈ R∗, and R = S−1A with S: = A∩R∗. For every a ∈ A, s ∈ A, the ideal
As2 + Aa is an ℓ-ideal of A, and As2 + Aa = A(s2 + |a|).
(8) There exists a multiplicative subset S of A such that 2 ∈ S, R = S−1A,
and As2 + Aa is an ℓ-ideal of A for every a ∈ A and s ∈ S.

Comment. Given an f -ring A, this time with bounded inversion, condition
(8) is useful for finding – theoretically – all Prüfer (hence Bezout) extensions
A ⊂ R such that R is an f -ring with R+ ∩A = A+ and A is an ℓ-subring of R,
cf. the comment following Theorem 13.

Proof of Theorem 9.15.
(1) ⇔ (2): This is covered by Theorem 7.2.
(2) ⇒ (2′): 2 ∈ R∗, since R has bounded inversion. 1

2 ∈ A, since A is convex in
R. Thus A is 2-saturated in R. The ring A is also convex in R. By Proposition 5
we conclude that A is absolutely convex in R.
(2′) ⇒ (2): trivial.

We now know that conditions (1), (2), (2′) are equivalent.

(1) ∧ (2) ⇒ (3′): A is Prüfer and convex in R. Let x ∈ R be given. Theorem 10
tells us that the module A + Ax is absolutely convex in R, since this module
is R-regular. In particular, |x| ∈ A + Ax, hence 1 + |x| ∈ A + Ax. This proves
that A(1 + |x|) ⊂ A + Ax. On the other hand, 1 + |x| ∈ R∗ by (2), and
(1+ |x|)−1 ≤ 1, hence (1+ |x|)−1 ∈ A. We also have |x · (1+ |x|)−1| ≤ 1, hence
x(1 + |x|)−1 ∈ A. It follows that 1 ∈ A(1 + |x|) and x ∈ A(1 + |x|), hence
A + Ax ⊂ A(1 + |x|). Thus A + Ax = A(1 + |x|).
(3′) ⇒ (3): trivial.
(3) ⇒ (2): If x ∈ R and x ≥ 1 then, by (3),

A + Ax = A + A(x − 1) = A(1 + x − 1) = Ax.

Thus 1 ∈ Ax, which implies x ∈ R∗. This proves that R has bounded inversion.

We now know that all conditions (1) – (3′) are equivalent.

(1) ∧ (3′) ⇒ (4′): A is Prüfer in R by (1) and absolutely convex in R by
(3′). Theorem 10 tells us again that, for every x ∈ R, the module A + Ax is
absolutely convex in R. Also A + Ax = A(1 + |x|) by (3′).
(4′) ⇒ (4) ⇒ (3): trivial.

We have proved the equivalence of all conditions (1) – (4′).
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(2) ∧ (4) ⇒ (5): R has bounded inversion by (2). For every x ∈ R the A-
module A + Ax is principal by (4). Thus A is Bezout in R (cf.Th.II.10.2).
A + Ax is also convex in R by (4). In particular (x = 0), A is convex in R.
(5) ⇒ (2): trivial.
(4′) ⇒ (6′): Let x ∈ R be given. The module A+Ax is absolutely convex in R,
and A+Ax = A(1+ |x|). We have 1∨|x| ≤ 1+ |x| Thus A(1+ |x|) ⊃ A(1∨|x|).
Now 1 ∨ |x| = 1 + y with y ∈ R+. Thus A(1 ∨ |x|) = A + Ay, and this
module is again absolutely convex in R. Since 1 + |x| ≤ 2(1∨ |x|) we infer that
A(1 + |x|) ⊂ A(1 ∨ |x|), and conclude that A(1 + |x|) = A(1 ∨ |x|).
(6′) ⇒ (6): trivial.
(6) ⇒ (2): For every x ∈ R with x ≥ 1 we have A+Ax = Ax, since 1∨|x| = x.
It follows that 1 ∈ Ax, hence x ∈ R∗. Thus R has bounded inversion.

We have proved the equivalence of all conditions (1) – (6′).

(1) – (6′) ⇒ (7): R has bounded inversion, hence 2 ∈ R∗. Since A is Bezout in
R, we have R = S−1A with S: = R∗ ∩A (cf.Prop.II.10.16 or Th.13). Let s ∈ S
and a ∈ A be given. By (3),

As2 + Aa = s2
(

A +
a

s2

)

= s2A

(

A +
|a|
s2

)

= A(s2 + |a|).

By (4) the module A
(

1 + |a|
s2

)

is absolutely convex in R. It follows that

A(s2 + |a|) is absolutely convex in R, hence in A, i.e. A(s2 + |a|) is an ℓ-ideal
of A.
(7) ⇒ (8): trivial.
(8) ⇒ (3): Theorem 8.9 tells us that A is Prüfer and convex in R. Let x ∈ R
be given. Write x = a

s2 with a ∈ A, s ∈ S. Then

A + Ax = s−2(As2 + Aa) = s−2A(s2 + |a|) = A(1 + |x|).

Documenta Mathematica 10 (2005) 1–109



78 Manfred Knebusch and Digen Zhang

§10 Rings of quotients of an f-ring

In the following A is an f -ring. We will study overrings of A in the complete
ring of quotients Q(A). For the general theory of Q(A) we refer to Lambek’s
book [Lb]. (Some facts had been recapitulated in I §3.)

Recall that every element of Q(A) can be represented by an A-module homo-
morphism f : I → A with I a dense ideal of A. More precisely

Q(A) = lim−→
I∈D(A)

HomA(I,A)

with D(A) denoting the direct system of dense ideals of A, the ordering being
given by reversed inclusion, I ≤ J iff I ⊃ J . Most often we will not distinguish
between such a homomorphism f : I → A and the corresponding element [f ] of
Q(A).

Our first goal in the present section is to prove that there exists a unique

partial ordering U on Q(A) which makes Q(A) an f-ring in such a way that

U ∩A = A+ and A is an ℓ-subring of Q(A). This is an important result due to
F.W. Anderson [And]. Anderson’s paper is difficult to read since he establishes
such a result also for certain non commutative f -rings. For the convenience of
the reader we will write down a full proof in the much easier commutative case.
We then will prove the same for suitable overrings R of A in Q(A) instead of
Q(A) itself. Among these overrings will be all Prüfer extensions of A.

Whenever it seems appropriate we will work in an arbitrary overring R of A
in Q(A) instead of Q(A) itself. Recall that, up to isomorphism over A, these
rings are all the rings of quotients of A.

Lemma 10.1. Let a ∈ A+, b ∈ A. Then (ab)+ = ab+ and (ab)− = ab−.

Proof. ab = ab+ − ab−. Applying the property (F1) from §9 we obtain
(ab+) ∧ (ab−) = a(b+ ∧ b−) = 0. This proves the claim.

Corollary 10.2. If a, b, s are elements of A with a ≥ 0, b ≥ 0, a = bs, then
a = bs+, 0 = bs−.

Proof. By the lemma we have bs+ = (bs)+ = a, bs− = (bs)− = 0.

Definitions 1 a) We call a subset M of A dense in A, if the ideal AM generated
by M is dense in A. This means that for every x ∈ A with x 6= 0 there exists
some m ∈ M with xm 6= 0.
b) If I is any ideal of A let I(2) denote the set {a2 | a ∈ I}.

Lemma 10.3. If I is a dense ideal of A the set I(2) is also dense in A.
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Proof. Let x ∈ A be given with xI(2) = 0. For any two elements a, b of I we
have xa2 = 0, xb2 = 0, x(a + b)2 = 0. It follows that 2xab = 0, and then that
xab = 0, since the additive group of A has no torsion. Thus xI2 = 0. Since I
is dense in A we conclude that xI = 0 and then that x = 0.

Corollary 10.4. If I is dense ideal of A then I+ is dense in A.

Lemma 10.5. Let M be a subset of A+ which is dense in A. Assume that x is
an element of Q(A) with xM ⊂ A+. Then x · (A:x)+ ⊂ A+.

Proof. Let a ∈ (A:x)+ be given. If d ∈ M , then (ax)d = (xd)a ∈ A+ and
ax ∈ A. It follows that (ax)−d = 0 by Corollary 2 above. Since M is dense in
A we conclude that (ax)− = 0, hence ax ∈ A+.

In the following R is an overring of A in Q(A). We introduce the set

U : = {x ∈ R | x · (A:x)+ ⊂ A+}.

Due to Corollary 4 and Lemma 5 we can say, that U is the set of elements
x of R such that there exists some dense subset M of A with M ⊂ A+ and
Mx ⊂ A+.

Proposition 10.6.
i) U is a partial orderring of R with x2 ∈ U for every x ∈ R, and U ∩A = A+.
ii) If T is any preordering of R with T ∩ A ⊂ A+ then T ⊂ U .

Proof. i): If x ∈ U ∩ (−U) then x(A:x)+ is contained in A+ ∩ (−A+) =
{0}. Since (A:x)+ is dense in A (cf.Cor.4), we conclude that x = 0. Thus
U ∩ (−U) = {0}.
Let x, y ∈ U be given. We choose dense subsets M,N of A with M ⊂ A+,
N ⊂ A+, Mx ⊂ A+, Ny ⊂ A+. The set MN = {uv | u ∈ M,v ∈ N} is again
dense in A and contained in A+, and MN(x + y) ⊂ A+, MN(x · y) ⊂ A+.
Thus U + U ⊂ U and U · U ⊂ U .

Finally let x ∈ U and I: = (A:x). We know by Lemma 3 that the subset I(2)

of A+ is dense in A. Since x2I(2) ⊂ A+, we conclude that x2 ∈ U .

If x ∈ A then (A:x) = A. The condition A+x ⊂ A+ means that x ∈ A+. Thus
U ∩ A = A+.

ii): Let T be a preordering of R with T ∩ A ⊂ A+. For any x ∈ T we have
(A:x)+ · x ⊂ T ∩ A ⊂ A+, hence x ∈ U . Thus T ⊂ U .

Remark. In part ii) of the theorem we do not fully need the assumption that T
is a preordering of R. It suffices to know that T is a subset of R with T ·T ⊂ T
and T ∩ A ⊂ A+.
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Definition 2. We call U the canonical ordering on R induced by the ordering
A+ of A. If necessary, we write UR instead of U . Notice that UR = R∩UQ(A).

Lemma 10.7. Let M be a subset of A which is dense in A. Then M is dense
in Q(A).

Proof. Let x ∈ Q(A) be given with Mx = 0. Then M · (A:x)x = 0. This
implies (A:x)x = 0 and then x = 0, since (A:x) is dense in Q(A).

Proposition 10.8. Assume that T is a partial ordering of R with T ∩A = A+.
Assume further that (R, T ) is an f -ring. Then T = UR.

Proof. We write U : = UR. We know by Proposition 6 that T ⊂ U . We now
prove that also U ⊂ T .

In the f -ring (R, T ) we use standard notation from previous sections: T = R+,
x ≤ y iff y − x ∈ T , etc. Let x ∈ U be given. We have to verify that x ≥ 0,
i.e. x− = 0. Suppose that x− 6= 0. The set M : = (A:x)+ is dense in A by
Corollary 4, hence dense in R by Lemma 7. Thus there exists some s ∈ M with
sx− 6= 0. Since R is an f -ring and s ∈ A+ ⊂ R+, we conclude by Lemma 1
that (sx)− = sx− 6= 0. But sx ∈ U ∩ A = A+ ⊂ R+. This is a contradiction.
Thus x− = 0.

Definition 3. An f-extension of the f -ring A is an f -ring R which contains
A as an ℓ-subring such that R+ ∩ A = A+.

Theorem 10.9 (F.W. Anderson [And]). There exists a unique partial ordering
T on Q(A) such that (Q(A), T ) is an f -extension of A. This ordering T is the
canonical ordering U = UQ(A) induced by A+ on Q(A).

Proof. We know by Proposition 8 that U is the only candidate for a partial
ordering T on Q(A) with these properties. We endow Q(A) with the ordering
U and write U = Q(A)+.

Step 1. We first prove that Q(A) is lattice ordered. Given x ∈ Q(A) it suffices
to verify that x∨0 = sup(x, 0) exists in Q(A). We give an explicit construction
of x ∨ 0.

Claim. Let a1, . . . , an ∈ (A:x)+ and b1, . . . , bn ∈ A be given with
n
∑

i=1

aibi = 0.

Then
n
∑

i=1

(aix)+bi = 0.

Proof of the claim. Let c ∈ (A:x)+. It follows by Lemma 1 from (cx)ai = c(aix)
that (cx)+ai = (cxai)

+ = c(aix)+. Thus

c
n

∑

i=1

(aix)+bi = (cx)+
n

∑

i=1

aibi = 0.
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Since (A:x)+ is dense in A we obtain
n
∑

i=1

(aix)+bi = 0, as desired.

Thus there exists a well defined homomorphism h: (A:x)+A → A of A-modules
with

h

(

n
∑

i=1

aibi

)

: =

n
∑

i=1

(aix)+bi

for all n ∈ N, ai ∈ (A:x)+, bi ∈ A. The map h may be viewed as an element of
Q(A). Notice that for every a ∈ (A:x)+ we have ah = ha = (ax)+.

We want to prove that h = x∨0. From (A:x)+h ⊂ A+ we conclude that h ≥ 0.
For any a ∈ (A:x)+ we have (h−x)a = h(a)−xa = (xa)+−xa = (xa)− ∈ A+.
Thus h ≥ x.

Let y ∈ Q(A) be given with y ≥ 0 and y ≥ x. For any a ∈ (A:x)+ ∩ (A: y)+

the products ax, ay are in A and ay ≥ 0, ay ≥ ax, hence ay ≥ (ax)+, where,
of course, (ax)+ means supA(ax, 0). It follows that a(y−h) ≥ (ax)+ − ah = 0.
Since (A:x)+ ∩ (A: y)+ is dense in A we conclude that y − h ≥ 0, i.e. y ≥ h.
This finishes the proof that h = x ∨ 0.

Step 2. We prove that A is a sublattice of Q(A). It suffices to verify for a given
x ∈ A that the element h constructed in Step 1 coincides with supA(x, 0) = x+.
We have (A:x)+ = A+, hence by Step 1, for any a ∈ A+, ah = (ax)+ = ax+

(cf.Lemma 1). Since A+ is dense in Q(A) it follows that indeed h = x+.

Step 3. We now may use the notation x+, x− for any x ∈ A unambiguously,
since x+, x− means the same by regarding x as an element of the lattice A
or of the lattice Q(A). Our proof in Step 1 tells us that, for any x ∈ Q(A),
a ∈ (A:x)+ we have

(∗) (ax)+ = ax+.

Indeed, this is just the statement that h(a) = (ax)+ from Step 1. We now can
prove that Q(A) is an f -ring by verifying

(∗∗) s(x ∨ y) = (sx) ∨ (sy)

for given elements x, y ∈ Q(A) and s ∈ Q(A)+. ([BKW, 9.1.10]; we mentioned
this criterion for a lattice ordered ring to be an f -ring in §9.) Subtracting sy
on both sides we see that it suffices to prove (∗∗) in the case y = 0, i.e.

(∗ ∗ ∗) sx+ = (sx)+.

In order to verify this identity for given x ∈ Q(A), s ∈ Q(A)+ we introduce
the ideal I: = ((A:x): s) ∩ (A: sx), which is dense in A. {Observe that (A:x) ·
(A: s) ⊂ ((A:x): s).} For a ∈ I+ we have, by use of (∗), a(sx)+ = (asx)+ since
a ∈ (A: sx)+, and asx+ = (asx)+ since as ∈ (A:x)+. Thus a[sx+ − (sx)+] = 0
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for every a ∈ I+. Since I+ is dense in Q(A), we conclude that sx+ = (sx)+,
as desired. This finishes the proof that Q(A) is an f -ring.

We want to extend Theorem 9 to suitable subrings of Q(A) containing A. These
are the rings of type A[F ] occuring already in Theorem II.3.5 (with R = Q(A)
there), but now we use a more professional terminology.

Definition 4. Let A be any ring (commutative, with 1, as always). As
previously let J(A) denote the set of all ideals of A. We call a subset F of
J(A) a filter on A, if the following holds:
(1) I ∈ F , J ∈ J(A), I ⊂ J ⇒ J ∈ F .
(2) I ∈ F , J ∈ F ⇒ I ∩ J ∈ F .
(3) A ∈ F .
We call a filter F multiplicative if instead of (2) the following stronger property
holds:
(4) I ∈ F , J ∈ F ⇒ IJ ∈ F .

We say that F is of finite type if the following holds.
(5) If I ∈ F there exists a finitely generated ideal I0 of A with I0 ∈ F and
I0 ⊂ I.

Notice that the subsets F of J(A) considered in II, §3 with the properties R0-
R2 (resp. R0-R3) there are just the multiplicative filters (resp. mutliplicative
filters of finite type) on A.

Examples. 1) The set D(A) consisting of all dense ideals of A is a multiplicative
filter on A.
2) If A ⊂ R is any ring extension then the set F(R/A) of R-regular ideals of A
is a multiplicative filter of finite type on A.

By definition we have

Q(A) = lim−→
I∈D(A)

HomA(I,A).

If F is any filter on A contained in D(A) then we can form the ring

AF : = lim−→
I∈F

HomA(I,A).

in an analogous way. Since for any I ∈ F the natural map HomA(I,A) → Q(A)
is injective, we may – and will – regard AF as a subring of Q(A). For the
smallest filter {A} we obtain A{A} = A. Thus A ⊂ AF ⊂ Q(A). We have

AF = {x ∈ Q(A) | (A:x) ∈ F} = {x ∈ Q(A) | ∃ I ∈ F with Ix ⊂ A}.
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Thus AF is the ring A[F ] in the terminology of II, §3 (cf. Theorem II.3.5), with
R = Q(A) there.

Definition 4. We call a filter F on A positively generated if for any I ∈ F
also I+A ∈ F .

Remark. If F is any filter on A then a base B of F is a subset B of F such
that for every I ∈ F there exists some K ∈ B with K ⊂ I. Of course, if F has
a base B such that K+A ∈ F for every K ∈ B, then F is positively generated.

Examples 10.10. i) D(A) is positively generated. This is the content of
Corollary 4 above.
ii) If F is a multiplicative filter of finite type then F is positively generated.
Indeed, let B be the set of finitely generated ideals I ∈ F . It is a base of F . If
I = Aa1 + · · ·+Aan ∈ F , then In+1 ⊂ Aa2

1 + · · ·+Aa2
n ⊂ I+A. Thus I+A ∈ F .

iii) Assume that F has a base B consisting of ideals I which are sublattices
of A. Then F is positively generated. Indeed, if I ∈ B and x ∈ I, then
x = x+ − x− and x+, x− ∈ I+. Thus I = I+A.

Proposition 10.11. Assume that F is a positively generated multiplicative
filter consisting of dense ideals.
i) AF is an ℓ-subring of Q(A). Thus, with the ordering A+

F : = A : f ∩Q(A) on
AF , both A ⊂ AF and AF ⊂ Q(A) are f -extensions.
ii) Let x ∈ Q(A). Then x ∈ A+

F iff there exists some I ∈ F with I+x ⊂ A+.

Proof. i): We verify for a given x ∈ AF that x+ = x ∨ 0 ∈ AF . We choose
some I ∈ F with Ix ⊂ A. For a ∈ I+ we have ax+ = (ax)+ ∈ A+. Thus
(I+A)x+ ⊂ A. Since I+A ∈ F we conclude that x+ ∈ AF .
ii): Let R: = AF . If x ∈ Q(A) and I+x ⊂ A+ for some I ∈ F then x ∈ Q(A)+

by definition of the ordering of Q(A), since I ∈ D(A). Also x ∈ AF = R, since
I+A ∈ F and (I+A)x ⊂ A. Thus x ∈ R∩Q(A)+ = R+. Conversely, if x ∈ R+,
we choose some I ∈ F with Ix ∈ A. Then I+x ⊂ R+ ∩ A = A+.

We arrive at our main result in this section. It generalizes Theorem 9 to ws
extensions of A.∗) We write it down in an explicit way avoiding the technical
notion of canonical ordering.

Theorem 10.12. Let A be an f -ring and A ⊂ R a ws extension of A.

i) There exists a unique partial ordering R+ on R such that R, equipped with
this ordering, is an f -extension of A. Moreover Q(A) is an f -extension of R.
ii) R+ is the set of all x ∈ R such that (A:x)+ · x ⊂ A+.
iii) R+ is the set of all x ∈ R such that there exists some dense subset M of A
with M ⊂ A+ and Mx ⊂ A+.

∗) Recall that “ws” abbreviates “weakly surjective” (I, §3).
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iv) Every overring of A in R, which is ws over A, is an ℓ-subring of R.

Proof. Defining R+ by R+: = UR = {x ∈ R | (A:x)+x ⊂ A+} we know from
above (Propositions 6 and 8), that R+ is a partial ordering of R, and that this
is the only candidate such that (R,R+) is an f -ring and R+ ∩ A = A+. We
further know from above (Lemma 5) that, given a dense subset M of A with
M ⊂ A+, any x ∈ R with Mx ⊂ A+ is an element of R+.

Let F denote the filter on A consisting of the R-regular ideals of A, F : =
F(R/A). As observed above (Example 10.iii), F is positively generated. It
follows by Propositions 11 and 8 that AF , equipped with the canonical ordering
induced by A+, is an f -ring, and both A ⊂ AF and AF ⊂ R are f -extensions.

Clearly R ⊂ AF , since (A:x) ∈ F for every x ∈ R (Recall Th.I.3.13.) Con-
versely, if x ∈ AF ⊂ Q(A), there exists some I ∈ F with Ix ∈ A. Multiplying
by R we obtain Rx = RIx ⊂ R, i.e. x ∈ R. Thus R = AF . Now claims i) –
iii) are evident.

Finally, if B is an overring of A in R which is ws over A, then applying what
we have proved to A ⊂ B instead of A ⊂ R, we see that B is an ℓ-subring of
Q(A), hence an ℓ-subring of R.

We continue to assume that A is an f -ring. We write down two corollaries of
Theorem 12. Nothing new is needed to prove them.

Corollary 10.13. Let S be a multiplicative subset of A consisting of non-
zero divisors. There is a unique partial ordering (S−1A)+ on S−1A such that
S−1A becomes an f -extension of A. We have

(S−1A)+ =
{ a

s2
| a ∈ A+, s ∈ S

}

=
{a

s
| a ∈ A+, s ∈ S+

}

.

With this ordering S−1A is an ℓ-subring of Q(A).

Corollary 10.14. Let A ⊂ R be a Prüfer extension. There is a unique partial
ordering R+ on R such that R becomes an f -extension of A. An element x of
R lies in R+ iff there exists an invertible (or: R-invertible) ideal I of A with
I+x ⊂ A+, or alternatively, with I(2)x ⊂ A+. With this ordering S−1A is an
ℓ-subring of Q(A).

Henceforth we equip every overring R of A in Q(A) with the canonical ordering
R+ induced by A+. If A ⊂ R is Prüfer, or more generally ws, R is an f -ring
and both A ⊂ R and R ⊂ Q(A) are f -extensions.

It now makes sense to define an “absolute” Prüfer convexity cover of A, as
announced at the end of §7.
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Definition 5. Let Pc(A) denote the polar C(P (A)/A)◦ of the convex hull
C(P (A)/A) of A in the f -ring P (A) (over A, in P (A)). We call Pc(A) the
Prüfer convexity cover of A.

From Theorem 7.9 we read off the following fact.

Theorem 10.15. Pc(A) is the unique maximal overring E of A in Q(A) (thus,
up to isomorphy over A, the unique maximal ring of quotients of A), such that
A is Prüfer and convex in E.

Remarks 10.16. i) It follows, say, from Theorem 9.10, that every A-submodule
I of Pc(A), which is Pc(A)-regular, is absolutely convex in Pc(A). In particular
this holds for every overring of A in Pc(A). Thus we may replace the word
“convex” in Theorem 15 by “absolutely convex”.

ii) If A has bounded inversion, it follows from Theorem 7.2 that Pc(A) = P (A).
Also now every overring of A in P (A) has again bounded inversion (cf.Th.9.15).

iii) For R any overring of A in Q(A) we obtain the Prüfer convexity cover
Pc(A,R) of A in R, as defined in §7, by intersecting Pc(A) with R, Pc(A,R) =
R ∩ Pc(A). Indeed, A is Prüfer and convex in R ∩ Pc(A), hence R ∩ Pc(A) ⊂
Pc(A,R), and A is also Prüfer and convex in Pc(A,R), hence Pc(A,R) ⊂
R ∩ Pc(A).

Notice that Pc(A,R) is an ℓ-subring of Q(A), even if R is not.

We want to find out which ℓ-subrings of Q(A) have the same Prüfer convexity
cover as A.

Definition 6. The convex holomorphy ring of the f -ring A is the holomorphy
ring HolA+(A) of A with respect to its ordering A+ (cf.§6, Def.1). We denote
this subring of A more briefly by Holc(A).

We know by Theorem 6.3 that Holc(A) is the smallest subring of A which is
convex in A with respect to the saturation (A+)∧ (cf.§5, Def.2), i.e.

Holc(A) = {f ∈ A | ∃n ∈ N: n ± f ∈ (A+)∧}.

Holc(A) is an absolutely convex subring of A, in particular an ℓ-subring of A,
and thus an f -ring.

Theorem 10.17. Assume that Hol(A) is Prüfer in A. {N.B. This is a mild
condition, cf. Theorems 2.6, 2.6′.} Let B be a subring of Q(A). The following
are equivalent.
(1) B is an ℓ-subring of Q(A) and Pc(B) = Pc(A).
(2) Holc(A) ⊂ B ⊂ Pc(A).
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Proof. a) Let R: = Pc(A) and H: = Holc(A). Since Hol(A) ⊂ H ⊂ A and
Hol(A) is assumed to be Prüfer in A, the ring H is Prüfer in A. It is also
convex in A. We conclude that H is Prüfer and convex in R.
b) It follows by Theorem 6.7 that H is (R+)∧-convex in R. Thus Holc(R) ⊂ H,
and we have inclusions Holc(R) ⊂ H ⊂ A ⊂ R. It follows that Holc(R) is Prüfer
and convex in A, hence is (A+)∧-convex in A. This implies that H ⊂ Holc(R),
and we conclude that Holc(R) = H.
c) Since H is Prüfer and convex in R, we have R ⊂ Pc(H), hence the inclusions
H ⊂ A ⊂ R ⊂ Pc(H). It follows by Remark 16.i that A is convex in Pc(H).
The ring A is also Prüfer in Pc(H). This implies Pc(H) ⊂ R, and we conclude
that Pc(H) = R.
d) If now B is any overring of H in R then we learn by Remark 16.i that B
is absolutely convex in R. Thus B is an ℓ-subring of R, hence an ℓ-subring of
Q(A). Further we conclude from H = Holc(R) and R = Pc(H) by arguments
as in b) and c) that Holc(B) = H and Pc(B) = R.
e) Finally, if B is an ℓ-subring of Q(A) with Pc(B) = R, then B is a subring
of R which is Prüfer and convex in R, hence is (R+)∧-convex in R. It follows
that H ⊂ B ⊂ R.
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§11 The Prüfer hull of C(X)

Let X be any topological space, Hausdorff or not, and let R: = C(X), the ring
of R-valued continuous functions on X. We equip R with the partial ordering
R+: = {f ∈ R | f(x) ≥ 0 for every x ∈ X}. Obviously this makes R an f -ring.
We are interested in finding the Prüfer subrings of R and the overrings of R in
the complete ring of quotients Q(R), in which R is Prüfer.

In this business we may assume without loss of generality that X is a Tychonov

space, i.e. a completely regular Hausdorff space, since there exists a natural
identifying continuous map X ։ X ′ onto such a space X ′, inducing an isomor-
phism of f -rings C(X ′)

∼−→ C(X), cf. [GJ, §3]. But now we still refrain from
the assumption that X is Tychonov. This property will become important only
later in the section.

Observe that R+ = {f2 | f ∈ R}. Thus R+ coincides with the smallest
preordering T0 on R. Clearly R+ is also saturated, R+ = (R+)∧. Finally
1 + R+ ⊂ R∗, i.e. R has bounded inversion. These three facts make life easier
than for f -rings in general.

Since R+ = T0 = T̂0, we infer from the definitions that Hol(R) = Holc(R), fur-
ther from Theorem 6.3.c that Hol(R) coincides with the ring Cb(X) of bounded
continuous functions on X,

Hol(R) = Cb(X):= {f ∈ R | ∃n ∈ N: |f | ≤ n}.

We had proved this by other means before (Ex.4.13).

It is clear already from Theorem 2.6 (or 2.6′) that Hol(R) is Prüfer in R, and
it is plain that Hol(R) has bounded inversion.

Let ϕ:S → X be a continuous map from some topological space S to X.
It induces a ring homomorphism ρ: = C(ϕ) from C(X) to C(S), mapping a
function f ∈ C(X) to f ◦ ϕ. We denote the subring ρ(C(X)) of C(S) by
C(X)|ϕ and the subring ρ(Cb(X)) of Cb(S) by Cb(X)|ϕ. Since for f, g ∈ C(X)
we have ρ(f ∨ g) = ρ(f) ∨ ρ(g) and ρ(f ∧ g) = ρ(f) ∧ ρ(g), both C(X)|ϕ and
Cb(X)|ϕ are ℓ-subrings of the f -ring C(S).

The f -ring A: = C(X)|ϕ inherits many good properties from R = C(X). If
h ∈ A+, we conclude from h = ρ(f) with f ∈ R, that h = ρ(|f |) = ρ(|f |1/2)2.
Thus A+ consists of the squares of elements of A. We conclude, as above for
R, that

Hol(A) = Holc(A) = {h ∈ A | ∃n ∈ N: |h| ≤ n}.
It follows that Hol(A) = Cb(X)|ϕ. Indeed, if h = ρ(f) and |h| ≤ n (in A), then
h = ρ((f ∧ n) ∨ (−n)).

Since Cb(X) is Prüfer in C(X) and ρ maps R = C(X) onto A = C(X)|ϕ and
Cb(X) onto Cb(X)|ϕ, it follows by general principles (Prop.I.5.7) that Cb(X)|ϕ
is Prüfer in C(X)|ϕ = A.
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Notice also that for f ∈ R the element 1+ρ(f)2 = ρ(1+f2) is a unit of A, since
1+f2 is a unit of R. Thus A has bounded inversion. Theorem 2.6 (or 2.6′) tells
us that Hol(A) is Prüfer in A. Clearly Hol(A) has bounded inversion. In short,
A shares all the agreeable properties of R, stated above, although perhaps A
is not isomorphic to a ring of continuous functions C(Y ).

Theorem 11.1. Let ϕ:S → X be a continuous map. The following are
equivalent.
(1) C(X)|ϕ is Prüfer in C(S).
(2) C(X)|ϕ is convex in C(S).
(3) Cb(X)|ϕ = Cb(S).

Proof. This is a special case of Theorem 7.6, since both A: = C(X)|ϕ and
B: = C(S) have bounded inversion and CA = Cb(X)|ϕ, CB = Cb(S) in the
notation used there.

Assume now that S is a subspace of the topological space X and ϕ is the
inclusion map S →֒ X. Then we write C(X)|S and Cb(X)|S for C(X)|ϕ and
Cb(X)|ϕ respectively.

Definition 1 [GJ].∗) S is called Cb-embedded (resp. C-embedded) in X if for
every h ∈ Cb(S) (resp. h ∈ C(S)) there exists some f ∈ C(X) with f |S = h.

Notice that, if h is a bounded continuous function on S which can be extended
to a continuous function on X, then h can be extended to a bounded continuous
function on X, (as has been already observed above). Thus S is Cb-embedded
in X iff Cb(X)|S = Cb(S), and, of course, S is C-embedded in X iff C(X)|S =
C(S).

In this terminology Theorem 1 says the following for a subspace S of X:

Corollary 11.2. C(X)|S is Prüfer in C(S) iff C(X)|S is convex in C(S) iff
S is Cb-embedded in X.

We now fix an element f of C(X). Associated to f we have the zero set
Z(f):= {x ∈ X | f(x) = 0} and the cozero set coz(f):= {x ∈ X | f(x) 6= 0}.
We are looking for relations between the ring C(cozf) and the localisation
C(X)f = f−∞C(X) of C(X) with respect to f .

The restriction homomorphism ρ:C(X) → C(cozf) maps f to a unit of
C(cozf), hence induces a ring homomorphism

ρf : C(X)f −→ C(cozf).

∗) Gillman and Jerison write C∗ instead of Cb, as is done in most of the literature on C(X).

Our deviation from this labelling has been motivated in 1.3.
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We claim that ρf is injective. Indeed, let an element g
fn ∈ C(X)f be given

(g ∈ C(X), n ∈ N0), and assume that ρf

(

g
fn

)

= 0. Then ρf

(

g
1

)

= ρ(g) =

g|cozf = 0. This implies gf = 0 and then g
fn = gf

fn+1 = 0. Henceforth we

regard C(X)f as a subring of C(cozf) via ρf .

Lemma 11.3. C(X)f contains the subring Cb(cozf) of C(cozf).

Proof. Let g ∈ Cb(cozf) be given. The function h:X → R defined by
h(x):= f(x)g(x) for x ∈ cozf , h(x) = 0 for x ∈ Z(f), is continuous, since g is

bounded. We have g = ρf

(

h
f

)

.

Theorem 11.4. For any f ∈ C(X) the ring C(X)f is Bezout and absolutely
convex in C(cozf), and C(X)f has bounded inversion.

Proof. By Lemma 3 we have the inclusions Cb(cozf) ⊂ C(X)f ⊂ C(cozf).
We know that Cb(cozf) is Prüfer and convex in C(cozf). Also both rings have
bounded inversion. It follows that the extension Cb(X) ⊂ C(X)f is Prüfer,
then by Theorem 9.15, that C(X)f has bounded inversion. Also the extension
C(X)f ⊂ C(X) is Prüfer. We conclude by Theorem 9.15, that C(X)f is Bezout
and absolutely convex in C(X).

We recall some facts about Bezout extensions from II, §10.

Definition 2 (cf.II §10, Def.6). If A is any ring, an element f of A is called a
Bezout element of A if f is a non-zero-divisor of A and the extension A ⊂ Af

is Bezout. The set of all Bezout elements of A is denoted by β(A).

As has been observed in II §10, β(A) is a saturated multiplicative subset of A.
It is also clear from II §10, that for any multiplicative subset S of β(A) the
extension A ⊂ S−1A is Bezout (cf.Prop.II.10.13).Conversely any Bezout exten-
sion R of A has the shape R = S−1A with S = A ∩ R∗ (cf.Prop.II.10.16).∗)

Thus the Bezout extensions of A in Q(A) correspond uniquely with the sat-
urated multiplicative subsets of β(A). In particular, β(A) itself gives us the
Bezout hull Bez(A) = β(A)−1A of A.

Theorem 11.5. i) Every Prüfer extension of C(X) is Bezout.
ii) The Bezout elements of C(X) are the non-zero-divisors f of C(X) with the
property that coz(f) is Cb-embedded in X.

Proof. i): We know by Theorem 10.12 that every Prüfer extension C(X) ⊂ R
is an f -extension in a natural way. Since C(X) has bounded inversion we read
off from Theorem 9.15 that R is Bezout over C(X).

∗) Prop.II.10.16 contains a typographical error. Read “If A⊂R is a Bezout extension” instead

of “If A is a Bezout extension”.
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ii): Let f be a non-zero-divisor of C(X). Then C(X) embeds into C(X)f . Thus
we have ring extensions C(X) ⊂ C(X)f ⊂ C(cozf). We know by Theorem 4
that C(X)f is Bezout in C(cozf). Thus C(X) is Bezout in C(X)f , i.e. f is a
Bezout element, iff C(X) is Bezout in C(cozf) (Recall II.10.15.iii). Corollary 2
above tells us that this happens iff coz(f) is Cb-embedded in X.

Notations. We denote the set of Bezout elements β(C(X)) more briefly by
b(X). We further denote the set of all open subsets coz(f) of X with f running
through b(X) by B(X).

Notice that B(X) is closed under finite intersections, since coz(f1)∩ coz(f2) =
coz(f1f2). We have a direct system of ring extensions (C(U) | U ∈ B(X)) of
C(X). Here the index set B(X) is ordered by reverse inclusion (U ≤ V iff V ⊂
U), and the transition maps C(U) → C(V ) are the restriction homomorphisms
f 7→ f |V (U ⊃ V ). B(X) has a first element U = X = coz(1).

Theorems 4 and 5 lead to the following description of the Prüfer hull of C(X).

Corollary 11.6. All transition maps in the system (C(U) |U ∈ B) are
injective, and

P (C(X)) = lim−→
U∈B(X)

C(U).

Proof. Each ring C(U) with U ∈ B(X) is Prüfer over C(X), hence em-
beds into the Prüfer hull P (C(X)) of C(X) in a unique way, which (hence) is
compatible with the transition maps. It follows that all transition maps are
injective. Identifying the rings C(U) with their images in P (C(X)) we may
now write

(1) lim−→
U∈B(X)

C(U) =
⋃

U∈B(X)

C(U) =
⋃

f∈b(X)

C(cozf).

Denoting this ring by D we have C(X) ⊂ D ⊂ P (C(X)). It follows that D is
Prüfer over C(X). {We could also have invoked I.5.14.} On the other hand,
every localization C(X)f , with f running through b(X), can be embedded in
P (C(X)) in a unique way over C(X). Since P (C(X)) coincides with the Bezout
hull of C(X), we have

(2)
⋃

f∈b(X)

C(X)f = P (C(X)).

We infer from (1), (2) and C(X)f ⊂ C(cozf) ⊂ D for every f ∈ b(X), that
D = P (C(X)).

Starting from now we assume that X is a Tychonov space. Now a function
f ∈ C(X) is a non-zero-divisor in C(X) iff coz(f) is dense in X. {Just observe
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that, if a point p ∈ X \ coz(f) is given, there exists a function g ∈ C(X) with
g|coz(f) = 0 and g(p) 6= 0. Then fg = 0.} Thus B(X) is the set of all cozero
sets U in X which are dense and Cb-embedded in X.

Let D(X) denote the set of all dense open subsets of X, and let D0(X) denote
the set of all dense cozero subsets of X. Then

B(X) ⊂ D0(X) ⊂ D(X),

and these three families are all closed under finite intersections. As above we
have direct systems of f -rings {C(U) | U ∈ D(X)} and {C(U) | U ∈ D0(X)}
with injective transition maps.

We introduce the ring
Q(X): = lim−→

U∈D(X)

C(U),

which again is an f -ring in the obvious way. Every C(U), U ∈ D(X) injects into
Q(X) and will be regarded as a subring of Q(X). We have C(X) ⊂ C(U) ⊂
Q(X) for every U ∈ D(X) and

Q(X) =
⋃

U∈D(X)

C(U).

The following has been proved by Fine, Gillman and Lambek a long time ago.

Theorem 11.7 [FGL]. C(X) has the complete ring of quotients Q(X) and the
total ring of quotients

Quot(C(X)) = lim−→
U∈D0(X)

C(U) =
⋃

U∈D0(X)

C(U).

Henceforth we work in the overring Q(C(X)) = Q(X) of C(X). We think of
the elements of Q(X) as continuous functions defined on dense open subsets
of X. Two such functions g1:U1 → R, g2:U2 → R are identified if there exists
a dense open set V ⊂ U1 ∩ U2 with g1|V = g2|V . Of course, then g1 and g2

coincide on U1 ∩ U2. Corollary 6 now reads as follows.

Scholium 11.8. A continuous function g:U → R with U open and dense in X
is an element of the Prüfer hull P (C(X)) iff there exists some f ∈ C(X) such
that coz(f) ⊂ U and coz(f) is dense and Cb-embedded in X.

Remark 11.9. Along the way we have proved that, if U1, U2 are dense cozero
sets in C(X), which both are Cb-embedded in X, then U1 ∩ U2 is again Cb-
embedded in X. In fact more generally the following holds: If U is an open
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subset of X, which is Cb-embedded in X, and T is a subspace of X, such that
U ∩ T is dense in T , then U ∩ T is Cb-embedded in T , cf.[GJ, 9N].

Already from the coincidence P (C(X)) = BezC(X) (Theorem 5), we know
that P (C(X)) is contained in QuotC(X). Thus we have inclusions

C(X) ⊂ P (C(X)) ⊂ QuotC(X) ⊂ Q(X) = Q(C(X)).

We now ask for cases where P (C(X)) is equal to one of the other three rings.
Part a) of the following theorem is due to Martinez [Mart], while Part b) is due
to Dashiell, Hager and Henriksen [DHH], cf. the comments below.

Theorem 11.10. i) C(X) is Prüfer in its complete ring of quotients Q(X) iff
every dense open subset of X is Cb-embedded in X.
ii) C(X) is Prüfer in QuotC(X) iff every dense cozero subset of X is Cb-
embedded in X.

Proof. a) If B(X) = D(X), resp. B(X) = D0(X), we know by Corollary 6
and Theorem 7 that P (C(X)) = Q(X), resp. P (C(X)) ⊃ QuotC(X).
b) Assume that C(X) is Prüfer in Q(X). Let U be a dense open subset of X.
Since C(X) ⊂ C(U) ⊂ Q(X), we conclude that C(X) is Prüfer in C(U). Now
Theorem 1, more precisely Corollary 2, tells us that U is Cb-embedded in X.
c) Assume that C(X) is Prüfer in QuotC(X). Let f be a non-zero-divisor of
C(X). Since C(X) ⊂ C(X)f ⊂ QuotC(X), we conclude that C(X) is Prüfer,
hence Bezout in C(X)f , i.e. f is a Bezout element of C(X). Theorem 5 tells
us that coz(f) is Cb-embedded in C(X).

Comments 11.11.
a) X is called extremally disconnected [GJ, 1H] if every open subset of X has
an open closure. It is well known that this is equivalent to the property that
every open subset of X is Cb-embedded in X ([GJ, 1H.6], [PW, 6.2]). Now, if
all dense open subsets of X are Cb-embedded in X, then this is true for all open
subsets of X. Indeed, if U is open in X and f ∈ Cb(U), then f can be extended
by zero to a bounded continuous function on the dense open set U ∪ (X \ U)
of X, and this function extends to a bounded continuous function on X. Thus
Theorem 11.10.a can be coined as follows: C(X) is Prüfer in Q(C(X)) iff X is

extremally disconnected. {[Mart, Th.2.7]; Martinez there calls a ring A which
is Prüfer in Q(A),∗) an “I-ring” following the terminology of Eggert [Eg]}.
Extremally disconnected spaces are rare but not out of the world. For example,
the Stone-Čech compactification βD of any discrete space D is extremally dis-
connected [PW, 6.2]. There also exist extremally disconnected spaces without
isolated points, cf. [PW, 6.3].

∗) more precisely, a ring A such that every overring in Q(A) is integrally closed in Q(A), but

this means the same (Th.I.5.2).
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b) A Tychonov space X is an F -space, if every cozero-set of X is Cb-embedded
in X ([GJ, 14.25]), while X is called a quasi-F -space, if every dense cozero-set
of X is Cb-embedded in X [DHH], which is a truly weaker condition. Thus
Theorem 10.b can be coined as follows: C(X) is Prüfer in Quot C(X) iff X
is a quasi-F -space {[DHH; A ring A which is Prüfer in QuotA is traditionally
called a “Prüfer ring with zero divisors” [Huc]}.
Using Theorem 9.15 we may rephrase this result as follows: C(X) is convex

in Quot C(X) iff X is a quasi-F -space. In this way Theorem 10.b has been
stated and proved by Schwartz [Sch3, Th.6.2].

F -spaces, hence quasi-F -spaces, are not so rare. Prominent examples are the
spaces βY \ Y with Y locally compact and σ-compact [GJ, 14.27].

Concerning the case C(X) = P (C(X)), i.e. Prüfer closedness of C(X), we have
only a partial result.

Theorem 11.12. If X is a metric space then C(X) is Prüfer closed.

Proof. Suppose C(X) is not Prüfer closed. Then C(X) has a Bezout element
f which is not a unit (cf.Theorem 5.a), and this means that the set U : = cozf
is Cb-embedded and dense in X, but U 6= X (cf.Theorem 5.b). We choose
a point p ∈ X \ U and then a sequence {xn | n ∈ N} in U , consisting of
pairwise different points and converging to p. The sets Z0: = {x2n | n ∈ N}
and Z1: = {x2n−1 | n ∈ N} are closed in U and disjoint. Let f0 and f1 denote
the distance functions dist(−, Z0) and dist(−, Z1) on the metric space U . The
function

g: =
|f0|

|f0| + |f1|
on U is well defined, bounded and continuous. We have g|Z0

= 0 and g|Z1
= 1.

Thus g cannot be extended continuously to U ∪ {p}. This is a contradiction
and proves that C(X) = P (C(X)).

We mention that Schwartz has developed general criteria for C(X) to be Prüfer
closed, cf.[Sch3, Th.5.3]. He also gave a description of the Prüfer hull P (C(X))
in general, different from our Theorem 5, by use of the real spectrum of C(X),
cf.[Sch3, Th.5.5].
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§12 Valuations on f-rings

It is somewhat remarkable that in §9 and §10 we nowhere used valuations
(explicitly) for gaining results about Prüfer subrings or Prüfer extensions of a
given f -ring R. But, of course, in order to complete the picture, a thorough
study of valuations on R is appropriate. We will experience a relation between
the convex valuations on R and the prime cones P ⊃ R+ even closer than in
the general theory in §3 and §5.

In the following R is an f-ring and v:R → Γ∪∞ is a valuation on R. For any
γ ∈ Γ ∪∞ we introduce the Av-module

Iγ,v: = {x ∈ R | v(x) ≥ γ}. ∗)

Proposition 12.1.
a) For every x ∈ R

v(x) = v(|x|) = min(v(x+), v(x−)) ,

and either v(x+) = ∞ or v(x−) = ∞.
b) For every γ ∈ Γ ∪∞ the set Iγ,v is a sublattice of R.

Proof. a): It follows from x+x− = 0 that either v(x+) = ∞ or v(x−) = ∞,
and then from x = x+ − x−, |x| = x+ + x−, that v(x) = v(|x|) =
min(v(x+), v(x−)).
b) It is now clear that, for every x ∈ Iγ,v, also x+ ∈ Iγ,v (and x− ∈ Iγ,v). If
x, y ∈ Iγ,v are given, we conclude that

x ∨ y = y + [(x − y) ∨ 0] = y + (x − y)+ ∈ Iγ,v.

Also x ∧ y = −[(−x) ∨ (−y)] ∈ Iγ,v. Thus Iγ,v is a sublattice of R.

In the special case that v is trivial Proposition 1 reads as follows.

Corollary 12.2. Every prime ideal of R is a sublattice of R.

Here is another consequence of Proposition 1.

Corollary 12.3. If A is a Prüfer subring of R, every R-regular A-submodule
of R is a sublattice of R.

Proof. Let I be such a submodule of R. We may assume that I is finitely
generated. I is the intersection of the R-regular A[p]-submodules I[p] of R
with p running through the set Ω(R/A) of maximal R-regular ideals p of A

∗) as in Chapter III, but now allowing γ 6∈v(R) and γ=∞. Of course, I∞,v=supp v.
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(Prop.III.1.10). To each p there corresponds a non-trivial PM-valuation vp

of R over A with Avp
= A[p], and I[p] is a vp-convex Avp

-submodule of R
(cf.Th.III.2.2). It follows from Proposition 1 that I[p] is a sublattice of R.
Thus I is a sublattice of R.

We return to our fixed valuation v:R → Γ ∪∞ on R.

Proposition 12.4. For any x, y ∈ R the set of values {v(x ∨ y), v(x ∧ y)}
coincides with {v(x), v(y)}.

Proof. Let x, y ∈ R be fixed. Without loss of generality we assume that
γ: = v(x) ≤ v(y). Since Iγ,v is a sublattice of R, we have γ ≤ v(x ∨ y) and
γ ≤ v(x ∧ y).

If γ = ∞ we have v(y) = v(x ∨ y) = v(x ∧ y) = ∞, and we are done. We now
assume that γ ∈ Γ. We use the identities, stated in §9,
(F7) x + y = (x ∨ y) + (x ∧ y),
(F8) xy = (x ∨ y)(x ∧ y).
By F8 we have

(∗) γ + v(y) = v(x ∨ y) + v(x ∧ y).

Also, as said above, v(x ∨ y) ≥ γ, v(x ∧ y) ≥ γ. If v(y) = γ this forces
v(x ∧ y) = v(x ∨ y) = γ, and we are done in this case.

There remains the case that v(y) > γ. Now v(x + y) = γ. By (F7) we have
γ ≥ min(v(x ∨ y), v(x ∧ y)). Since v(x ∨ y) ≥ γ and v(x ∧ y) ≥ γ, this forces
γ = min(v(x∨ y), v(x∧ y)). Now (∗) tells us – also in the case v(y) = ∞ – that
v(y) = max(v(x ∨ y), v(x ∧ y)).

As a consequence of the proposition we have

Corollary 12.5. For any subset M of Γ the set {x ∈ R | v(x) ∈ M} is either
empty or a sublattice of R. In particular, Av is an ℓ-subring of R, hence an
f -ring, and both pv and Av \ pv are sublattices of Av.

Proposition 12.6. The following are equivalent.
(1) v is convex.
(2) v(x ∨ y) = min(v(x), v(y)) for all x, y ∈ R+.
(3) v(x ∧ y) = max(v(x), v(y)) for all x, y ∈ R+.

Proof. The equivalence (2) ⇔ (3) is clear from Proposition 4.
(1) ⇒ (2): Since v is convex it follows from 0 ≤ x ≤ x ∨ y and 0 ≤ y ≤ x ∨ y
that v(x) ≥ v(x ∨ y), v(y) ≥ v(x ∨ y), hence min(v(x), v(y)) ≥ v(x ∨ y). Again
invoking Proposition 4 we obtain equality here.
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(2) ⇒ (1): If x, y ∈ R and 0 ≤ y ≤ x we have x = x ∨ y, hence v(x) =
min(v(x), v(y)) by (2), i.e. v(x) ≤ v(y). Thus v is convex.

Remark. In the vein of Corollary 2 we obtain from Proposition 6 that, for A
a convex Prüfer subring of R, every R-regular A-submodule of R is absolutely
convex in R. But this we already proved in §9 in another way, cf.Theorem 9.10.

Theorem 12.7. Let q be a convex prime ideal of R.
a) Then P : = R+ + q is a prime cone of R, and P = {x ∈ R | x− ∈ q}.
b) P is the unique prime cone of R containing R+ and with support q.

Proof. 1) We know by Lemma 5.9 that P : = R+ + q is a preordering of R
and P ∩ (−P ) = q.
2) We verify that P = {x∈R | x− ∈ q}. Let x ∈ R be given. If x− ∈ q, then
x = x+ − x− ∈ R+ + q = P . Assume now that x ∈ P . Write x = y + z with
y ≥ 0 and z ∈ q. By Corollary 2 above we know that q is a sublattice of R.
Thus z− ∈ q. It follows from x = (y + z+) − z− that 0 ≤ x− ≤ z−. Since q is
convex we conclude that x− ∈ q.
3) Let x ∈ R be given with x 6∈ P . Then x− 6∈ q. But x = x+x− = 0 ∈ q.
Thus (−x)− = x+ ∈ q, hence −x ∈ P . This proves that P ∪ (−P ) = R. We
now know that P is a prime cone of R with support q.
4) If P ′ is any prime cone of R with P ′ ⊃ R+ and suppP ′ = q, then P ′ ⊃
R+ + q = P . Since P ′ and P have the same support, it follows that P ′ = P
(cf.Th.4.6).

Comment. We know for long that, if T is a proper preordering of any ring R and
q a T -convex prime ideal of R, there exists a prime cone P ⊃ T with support q

(cf.Th.5.6 and Th.4.6). Theorem 7 states the remarkable fact that P is unique

in the present case, where R is an f -ring and T = R+. This means that we have
a bijection q 7→ T +q from the set Spec T (R) of all T -convex prime ideals to the
set SperT (R) of prime cones P ⊃ T of R, the inverse map being the restriction
SperT (R) → Spec T (R) of the support map supp : Sper(R) → Spec (R).

One should view SperT (R) and Spec T (R) as the real spectrum and the Zariski
spectrum of the ordered ring (R, T ). In the case that R is an f -ring and T = R+

we leave it to the reader to verify, that our bijection SperT (R) → Spec T (R)
is a homeomorphism with respect to the subspace topologies in Sper(R) and
Spec (R).

Theorem 12.8. Let U be a preordering of R containing R+ and v a U -convex
valuation on R. Then there exists a unique prime cone P on R such that U ⊂ P ,
v is P -convex, suppP = supp v. We have P = R+ + supp v = U + supp v =
{x ∈ R | v(x−) = ∞}.

Proof. 1) Let q: = supp v. This prime ideal is U -convex, hence R+-convex.
We define P : = R+ + q. We know by Theorem 7 that P is a prime cone of R
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with support q, and that P is the only candidate for a prime cone with the
properties listed in Theorem 8.
2) We prove that v is P -convex. Given x, y ∈ P it suffices to verify that
v(x + y) = min(v(x), v(y)), (cf. Remark 5.10.i). We have x ≡ x+ mod q,
y ≡ y+ mod q, x + y ≡ x+ + y+ mod q, hence v(x) = v(x+), v(y) = v(y+),
v(x + y) = v(x+ + y+). Since v is R+-convex, we have v(x+ + y+) =
min(v(x+), v(y+)), and we conclude that indeed v(x + y) = min(v(x), v(y)).
3) By Theorem 5.16 there exists a prime cone P ′ ⊃ U such that v is P ′-convex
and suppP ′ = q. The ideal q then is P ′-convex. By Theorem 7 this forces
P ′ = R+ + q = P . Since R+ ⊂ U ⊂ P ′, it follows that P = U + q. Since
P = R+ + q, we know by Theorem 7 that P = {x ∈ R | x− ∈ q}.

Definition 1. If v is a convex (i.e. R+-convex) valuation on R, we denote
the unique prime cone P ⊃ R+ such that v is P -convex and supp v = suppP
by Pv, and we call Pv the convexity prime cone of v.

Theorem 8 tells us that Pv is the unique maximal preordering U of R such that
R+ ⊂ U and v is U -convex.

Definition 2. For v is a convex valuation on R let v# denote the valuation
vP given by the prime cone P : = Pv.∗)

Remarks 12.9. The valuation v# is P -convex, hence convex. We have Av# =
AP (cf.§3), further supp v# = suppP = supp v, and Pv# = R+ + supp (v#) =
P . From v# = vP it follows that v# ≤ v (cf.Th.5.15). Clearly v# = (v#)#.

Lemma 12.10. Assume that v and w are convex valuations on R. The following
are equivalent.
(1) Pv = Pw,
(1′) supp v = suppw,
(2) v# ≤ w,
(3) v# = w#.

Proof. (1) ⇔ (1′): Clear, since for any convex valuation u on R we have
Pu = R+ + suppu and suppu = suppPu.
(1) ⇒ (3): Clear by Definition 2.
(3) ⇒ (2): Clear since w# ≤ w.
(2) ⇒ (1′): We have supp v# = supp v. From v# ≤ w we conclude that
supp v# = suppw.

The lemma leads us to an important result about convex valuations on R.

Definition 3. Given a prime cone P of R with P ⊃ R+ let MP denote the
set of equivalence classes of convex valuations v on R with Pv = P . We endow
MP with the partial ordering given by the coarsening relation v ≤ w.

∗)
vP has been defined in §3.
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As always, we do not distinguish seriously between a valuation and its equiva-
lence class, thus speaking of the convex valuations v with Pv = P as elements
of MP .

Theorem 12.11. Let P be a prime cone of R with R+ ⊂ P , hence P = R+ +q

with q: = suppP .
i) If v and w are convex valuations on R with v ≤ w, and if v ∈ MP or if
w ∈ MP , both v and w are elements of MP .
ii) MP is the set of all convex valutions v on R with v# = vP , and also the set
of all valuations v of R with vP ≤ v.
iii) MP is totally ordered by the coarsening relation and has a minimal and
a maximal element. The minimal element is the valuation vP . The maximal
element is the trivial valuation with support q.

Proof. i): If v ≤ w then supp v = suppw, hence Pv = Pw by Lemma 10.

ii): Let u: = vP . For every v ∈ MP we have v# = u by definition of v#. Further
suppu = suppP (cf.§3, Def.3), hence Pu = R+ + suppP = P . Thus u ∈ MP .
If now v is a convex valuation with v# = u, then u ≤ v (cf.Remarks 9), hence
by i), or again Remarks 9, v ∈ MP .

Finally, if v is any valuation of R with u ≤ v, then v is convex since u is convex
(cf.Remark 5.10.v ), and thus v ∈ MP by i).

iii): If u′ is any valuation on any ring R′ the coarsenings of u′ correspond
uniquely with the convex subgroups of the valuation group of u′ (cf.I §1). Thus
the coarsenings of u′ form a totally ordered set. Clearly u′ is the minimal
element of this set, and the trivial valution with the same support as u′ is the
maximal one.

Later we will also need an “relative” analogue of the valuation v# which takes
into account a given subring Λ of R. In order to define this analogue we
introduce the set

MP,Λ: = {v ∈ MP | Λ ⊂ Av}.
Here – as before – P is a prime cone of R containing R+. The set MP,Λ contains
the maximal element of MP , hence is certainly not empty.

Proposition 12.12. i) The valuation w: = vP,Λ introduced in §3, Def.5 is the
minimal element of MP,Λ.
ii) Aw = C(P,R/Λ) = A(P,R/Λ) = HolP (R/Λ).
iii) If Λ is an ℓ-subring of R then

Aw = {x ∈ R | ∃λ ∈ Λ+: λ ± x ∈ P}.

Proof. Claims i) and ii) are covered by Theorems 3.10 and 6.2. We have

A(P,R/Λ) = {x ∈ R | ∃λ ∈ Λ ∩ P : λ ± x ∈ P}.
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If Λ is an ℓ-subring of R, then λ ± x ∈ P implies λ+ ± x ∈ P , since λ+ =
λ + λ− ∈ Λ+ and λ− ∈ R+ ⊂ P . Thus

A(P,R/Λ) ⊂ {x ∈ R | ∃λ ∈ Λ+: λ ± x ∈ P}.

The reverse inclusion is trivial.

Definition 3. Let v be a convex valuation on R and P : = Pv. Let Λ be a
subring of R. We define v#

Λ : = vP,Λ.

The following is evident from Theorem 11 and Proposition 12.

Scholium 12.13. Let v and w be convex valuations on R. Then v#
Λ = w#

Λ iff

Pv = Pw iff either v ≤ w or w ≤ v. If Λ ⊂ Av then v#
Λ ≤ v. If Λ 6⊂ Av then

v ≤ v#
Λ but v 6∼ v#

Λ .
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§13 Convexity preorderings and holomorphy bases

The results on convex valuations in §12 will give us new insight about the
interplay between convex Prüfer subrings of an f -ring R and preorderings
T ⊃ R+ of R. We make strong use of the convexity prime cone Pv of a convex
valuation v on R (§12, Def.1) and also of the valuations v# and v#

Λ studied in
§12.

In the whole section R is an f-ring and A is a convex Prüfer subring of R.

Theorem 13.1. There exists a unique maximal preordering U ⊃ R+ of R
such that A is U -convex in R. More precisely, U ⊃ R+, A is U -convex in R,
and U ⊃ U ′ for every preordering U ′ ⊃ R+ of R such that A is U ′-convex. We
have

U =
⋂

v∈ω(R/A)

Pv ,

where – as before (§1) – ω(R/A) denotes the maximal restricted PM-spectrum
of R over A (i.e. the set of all maximal non trivial PM-valuations of R over A).

Proof. Recall that A is the intersection of the rings Av with v running
through ω(R/A). We define U as the intersection of prime cones Pv with v
running through ω(R/A). This is a preordering of R containing R+. Each ring
Av, v ∈ ω(R/A), is Pv-convex by definition of Pv, hence is U -convex in R.
Thus A is U -convex.

Let now a preordering U ′ ⊃ R+ of R be given such that A is U ′-convex in
R. Theorem 6.7 tells us that, for every v ∈ ω(R/A), the ring Av (= A[p] with
p = A∩pv) is U ′-convex in R, hence the valuation v is U ′-convex (cf.Th.5.11). It
follows by Theorem 12.8 that U ′ ⊂ Pv. Since this holds for every v ∈ ω(R/A),
we conclude that U ′ ⊂ U .

Definition 1. We denote this preordering U by TR
A , or TA for short if R is

kept fixed, and we call TA the convexity preordering of A in R.

Remarks 13.2. i) If A is PM in R then TA = Pv with v “the” PM-valuation
of R such that A = Av, as is clear by Theorem 5.11.
ii) In the proof of Theorem 1 we could have worked as well with the whole
restricted PM-spectrum S(R/A) instead of ω(R/A). Thus also

TA =
⋂

v∈S(R/A)

Pv .

iii) In the case A = R the set S(R/A) is empty. We then should read TA = R.
This is the only case where the preordering TA is improper.
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Given any proper subring A of R we denote the conductor of A in R by qA, or
more precisely by qR

A if necessary. By definition

qA = {x ∈ R | Rx ⊂ A},

and qA is the largest ideal of R contained in A.

Recall from Chapter I (Prop.I.2.2) that, if v is a non trivial special valuation on
R, then qAv

= supp v. In the case that v is PM this leads to pleasant relations
between TA and qA if A is Prüfer and convex in R, (which we continue to
assume).

Corollary 13.3. i) qA =
⋂

v∈ω(R/A)

supp v =
⋂

v∈S(R/A)

supp v.

ii) qA is a convex ideal of R and qA =
√

qA.
iii) suppTA = qA.
iv) TA = R+ + qA = {x ∈ R | x− ∈ qA}.

Proof. i): This is an immediate consequence of the facts that A is the inter-
section of the rings Av, with v running through ω(R/A) or S(R/A), and that
qAv

= supp v.
ii): Now clear, since each ideal supp v is prime and convex in R.
iii): suppTA = TA ∩ (−TA) =

⋂

v∈ω(R/A)

Pv ∩ ⋂

v∈ω(R/A)

(−Pv) =

⋂

v∈ω(R/A)

(Pv ∩ −Pv) =
⋂

v∈ω(R/A)

supp v = qA.

iv): For each v ∈ ω(R/A) we have Pv = R+ + supp v = {x ∈ R | x− ∈ supp v}.
Intersecting the Pv we obtain TA = R+ + qA = {x ∈ R | x− ∈ qA}.

Example 13.4. Let X be a topological space, R: = C(X) and A: = Cb(X).
Assume that X is not pseudocompact, i.e. A 6= R. We choose on R the partial
ordering R+: = {f ∈ R | f(x) ≥ 0 for every x ∈ X}. Then R is an f -ring and
A is an absolutely convex ℓ-subring of R. We know for long that A is Prüfer
in R (even Bezout). By the corollary we have TA = R+ + qA. It is clear that
qA contains the ideal Cc(X) of R consisting of all f ∈ C(X) with compact
support. If the space X is both locally compact and σ-compact (e.g. X = Rn

for some n), then it is just an exercise to prove that qA = Cc(X). Thus in this
case TA is the set of all f ∈ R such that {x ∈ X | f(x) < 0} has a compact
closure.

We return to an arbitrary f -ring R and a convex Prüfer subring A of R.

Given an R-overring B of A in R we know that B is a sublattice of R, hence
again an f -ring, since B is Prüfer in R (Cor.12.3). We state relations between
TR

A and TB
A and, in case that B is also convex in R, between TR

A and TR
B .

Proposition 13.5. Let B be an overring of A in R.
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i) B ∩ TR
A ⊂ TB

A , B ∩ qR
A ⊂ qB

A .
ii) qR

A ⊂ qR
B .

iii) If B is convex in R, then TR
A ⊂ TR

B and B ∩ TR
A ⊂ TB

A ∩ TR
B .

Proof. i): A is TR
A -convex in R, hence (B ∩ TR

A )-convex in B. This implies
B ∩ TR

A ⊂ TB
A . Taking supports of these preorderings we obtain B ∩ qR

A ⊂ qB
A .

(By the way this trivially holds for any sequence of ring extensions A ⊂ B ⊂ R.)
ii): A trivial consequence of the definition of conductors.
iii): Assume now that B is convex in R. We obtain from ii) that

TR
A = R+ + qR

A ⊂ R+ + qR
B = TR

B .

It follows that B ∩ TR
A ⊂ B ∩ TR

B ⊂ TR
B . By i) we have B ∩ TR

A ⊂ TB
A . We

conclude that B ∩ TR
A ⊂ TB

A ∩ TR
B .

Remark 13.6. If B is an overring of A in R which is convex in R, and
U is a preordering of R with U ⊃ R+, and A is U -convex, then it follows
from TR

A ⊂ TR
B that B is U -convex. Acutally we know more: If U is any

preordering of R such that A is U -convex, then also B is U -convex. This holds
by Theorem 8.7, cf. there (i) ⇒ (iv). Indeed, since A is absolutely convex in
R, A is 2-saturated in R, so the theorem applies. We could have used this fact
in the proof of Proposition 4.

Definition 2. We denote the holomorphy ring HolTA
(R) of the preordering

TA in R (cf.§6, Def.1) by HA, more precisely by HR
A if necessary. We call HA

the holomorphy base of A (in R). {Recall that we assume A to be Prüfer and
convex in R.}
Since the preordering TA is clearly saturated, we know by Theorem 6.3.c that
HA is the smallest TA-convex subring of R,

HA = C(TA, R) = A(TA, R).

In particular, HA ⊂ A. By definition, HA is the intersection of the rings Av

with v running through all TA-convex valuations of R, hence HA is a sublattice
of R. It follows that HA is absolutely convex in R.

We will often need the assumption that HA is Prüfer in R. This certainly holds
if the absolute holomorphy ring Hol(R) is Prüfer in R, since Hol(R) ⊂ HA.
Thus it holds for example if R has positive definite inversion (Th.2.6) or if for
every x ∈ R there exists some d ∈ N with 1 + x2d ∈ R∗ (Th.2.6′).

Proposition 13.7. Assume that HA is Prüfer in R.
i) Then TA is also the convexity preordering of HA.
ii) If also B is a convex Prüfer subring of R the following are equivalent.
(1) TA ⊂ TB ,
(2) qA ⊂ qB ,
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(3) HB ⊃ HA,
(4) B ⊃ HA.

Proof. i): HA is TA-convex in R. Thus TA ⊂ THA
. Since HA ⊂ A we also

have THA
⊂ TA (Prop.4.iii). Thus TA = THA

.
ii): (1) ⇒ (2): Clear, since qA = suppTA and qB = suppTB .
(1) ⇒ (3): B is TA-convex by assumption. Thus HB ⊃ HA.
(3) ⇒ (4): Trivial, since B ⊃ HB .
(4) ⇒ (1): By Proposition 4 and i) above we have TB ⊃ THA

= TA.

Remark. In (ii) the implications (1) ⇔ (2) ⇒ (3) ⇒ (4) hold under the sole
assumption that both A and B are convex and Prüfer in R. {(2) ⇒ (1) is clear,
since TA = R+ + qA and TB = R+ + qB .} But for (4) ⇒ (1) we need to know
that HA is Prüfer in R.

Corollary 13.8. We assume as before that HA is Prüfer in R. Let C be a
subring of A which is convex and Prüfer in A, hence in R. Then TC = TA iff
HA ⊂ C. In this case HC = HA.

Proof. If TC = TA then HC = HA by definition of HA and HC . Hence
HA ⊂ HC . {For this implication we do not need that HA is Prüfer in R.}
Assume now that HA ⊂ C. Proposition 7 tells us that TA ⊂ TC . On the other
hand TC ⊂ TA since C ⊂ A. Thus TA = TC .

In order to understand the amount of convexity carried by subrings of R it is
helpful to have also “relative holomorphy bases” at ones disposal, to be defined
now. As before we assume that A is a convex Prüfer subring of R.

Definition 3. Let Λ be any subring of A. The holomorphy base HA/Λ of A
over Λ (in R) is the holomorphy ring of R over Λ of the preordering TA,

HA/Λ: = HR
A/Λ: = HolTA

(R/Λ).

Remarks 13.9.
i) Hol(R) ⊂ HA = HA/Z·1R

⊂ HA/Λ ⊂ A.
ii) As in the case Λ = Z ·1R we have HA/Λ = C(TA, R/Λ) = A(TA, R/Λ), again
by Theorem 6.3.c.
iii) Assume that HA is Prüfer in R. Then HA/Λ = Λ · HA, as follows from
Remark 7.1.iii.
iv) If HA/Λ is Prüfer in R, all statements in Proposition 7 remain true if
we replace HA and HB there by HA/Λ, HB/Λ, of course assuming that Λ is a
subring of both A and B. We thus also have an obvious analogue of Corollary 8
for relative holomorphy bases.

Comment. It is already here that we can see an advantage to deal with relative
instead of just “absolute” holomorphy bases. If A and B are overrings of Λ in
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R then we have a result as Proposition 7 under the hypothesis that HA/Λ is
Prüfer in R instead of the stronger hypothesis that HA is Prüfer in R.

Below we will study relations between the restricted PM-spectra S(R/A) and
S(R/B) in the case that A ⊂ B and TA = TB. For many arguments it will
again suffice to assume that HA/Λ (= HB/Λ) is Prüfer in R. Without invoking
relative holomorphy bases we would have to assume that HA is Prüfer in R.

Assume – as before – that A is a convex Prüfer subring of R and Λ ⊂ A. Let
H: = HA/Λ. Striving for a better understanding of holomorphy bases we look
for relations between the PM-valuations of R over A and over H.

Proposition 13.10. Assume that v is a non trivial Manis valuation of R over
A, i.e. v ∈ S(R/A).
a) Then H ⊂ Av#

Λ

.

b) Assume in addition that H is Prüfer in A. {N.B. This holds if Hol(A) is

Prüfer in A.} Then v#
Λ is a maximal PM-valuation over H, i.e. v#

Λ ∈ ω(R/H).

Proof. a): Let P : = Pv and v′: = v#
Λ . The valuation v is TA-convex, since A

is TA-convex in R. Thus TA ⊂ P . {Actually we know that TA =
⋂

u∈S(R/A)

Pu.}

The valuation v′ is P -convex, hence again TA-convex. Thus Av′ is TA-convex
in R. This implies H ⊂ Av′ .
b): Let u: = v′|R, i.e. u is the special valuation v′|cv′(Γ) associated with
v′:R → Γ ∪ ∞ (cf.I,§1). We have Au = Av′ ⊃ H, and we conclude that u
is a PM-valuation of R over H. From v′ ≤ v we infer that Au ⊂ Av. Since
both u and v are PM and v is not trivial, it follows that u ≤ v, and then, that
suppu = supp v = supp v′. This forces u = v′. The valuation u is not trivial,
since Au ⊂ Av 6= R. Thus v′ ∈ S(R/H).

If w ∈ S(R/H) and w ≤ v′ then it is clear that w = v′ since Λ ⊂ H ⊂ Aw

(cf.§12, Def.3 and Prop.12.12.i). Thus v′ ∈ ω(R/H).

Lemma 13.11. Assume that H is Prüfer in R. For every u ∈ ω(R/H) we have

u = u#
Λ .

Proof. u is TH -convex and TH = TA. Thus u#
Λ is TA-convex. This implies

Au#

Λ

⊃ H. u#
Λ is certainly not trivial, since u#

Λ ≤ u. Thus u#
Λ ∈ S(R/H).

Again taking into account that u#
Λ ≤ u, we conclude that u#

Λ = u.

Theorem 13.12. Assume that H is Prüfer in R. Let u ∈ ω(R/H) be given.

There exists a valuation v ∈ ω(R/A) with v#
Λ = u iff AAu 6= R. In this case

v is uniquely determined by u (up to equivalence). We have AuA = Av and

v = u#
A .
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Proof. If v ∈ S(R/A) and v#
Λ = u then u ≤ v, hence Au ⊂ Av. Since also

A ⊂ Av, we conclude that AAu ⊂ Av. In particular, AAu 6= R.

Conversely, if AAu 6= R then, since u is PM, we have AAu = Av with v a non
trivial PM-valuation on R and u ≤ v (cf.Cor.III.3.2). Moreover v ∈ S(R/A),

since A ⊂ Av. By Theorem 12.11 and Lemma 10 we infer that v#
Λ = u#

Λ = u.
Clearly v is the minimal coarsening of u with valuation ring Av ⊃ A. Thus
v = u#

A (cf.Prop.12.12).

If w ∈ S(R/A) and w ≤ v then w is a coarsening of u, again by Theorem 12.11,

hence v = u#
A ≤ w, hence v ∼ w. This proves that v ∈ ω(R/A).

Finally, if w ∈ ω(R/A) and w#
Λ = u then w is again a coarsening of u. Thus

v = u#
A ≤ w, hence v ∼ w.

Corollary 13.13. Assume that H is Prüfer in R. Let v ∈ S(R/A) be given.
There exists a unique valuation (up to equivalence) w ∈ ω(R/A) with w ≤ v.

We have Aw = AAv#

Λ

and w = v#
A .

Proof. There exists some w ∈ ω(R/A) with w ≤ v. It is clear by Theo-
rem 12.11 that w is unique, and that v# = w#. Theorem 12 tells us that
Aw = AAw# = AAv# , and w = w#

A . From w ≤ v we infer that w#
A = v#

A

(cf.Scholium 12.13).

The corollary generalizes readily as follows.

Proposition 13.14. Assume that H is Prüfer in R. Let C be a subring of
A which is TA-convex in A (hence in R). For every v ∈ S(R/A) there exists a

unique w ∈ ω(R/C) with w ≤ v. We have Aw = CAv#

Λ

and w = v#
C .

Proof. HC/Λ = H (cf.Corollary 8 and Remark 9.iv), and v ∈ S(R/C). The
preceding corollary gives the claim.

As before we always assume that A is Prüfer and convex in R and Λ is a

subring of A.

Open Problem. For which subrings Λ of A is

ω(R/HA/Λ) = {v#
Λ | v ∈ ω(R/A)} ?

(Do there exist subrings for which this does not hold?)

Since this problem looks rather difficult we introduce a modification of the
holomorphy base HA/Λ which seems to be more tractable.

Definition 4. The weak holomorphy base of A over Λ (in R) is the ring

H ′
A/Λ: =

(

HR
A/Λ

)′

: =
⋂

v∈ω(R/A)

Av#

Λ

.
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It is clear from above that HA/Λ ⊂ H ′
A/Λ ⊂ A, and that H ′

A/Λ = HA/Λ iff the

question above has a positive answer for the triple (R,A,Λ).

We fix a triple (R,A,Λ) and abbreviate H ′: = H ′
A/Λ, H: = HA/Λ. It follows

from H ⊂ H ′ ⊂ A that TH′ = TA (cf.Cor.8). Moreover, quite a few results
stated in Proposition 10 to Proposition 14 for H take over to H ′ with minor
modifications.

Proposition 13.15. Assume that H ′ is Prüfer in R.
i) v#

Λ ∈ ω(R/H ′) for every v ∈ S(R/A).

ii) If v ∈ ω(R/A) and u: = v#
Λ then u#

A = v and AAu = Av.

Proof. If v ∈ S(R/A) then H ′ ⊂ Av#

Λ

by definition of H ′. Thus v#
Λ ∈

S(R/H ′). Running again through the arguments in part b) of the proof of
Proposition 10, with H replaced by H ′, we obtain all claims.

Proposition 13.16. Assume that H is Prüfer in R. Let u ∈ ω(R/H ′) be
given. The following are equivalent:
(1) There exists some v ∈ ω(R/A) with v#

Λ = u.
(2) AAu 6= R.
If (1), (2) hold then u ∈ ω(R/H).

Proof. If (1) holds then AAu ⊂ Av, hence AAu 6= R. Assume now (2). Let

u0: = u#
Λ . Applying Proposition 10 and Theorem 12 to the extension H ⊂ H ′,

we learn that u0 ∈ ω(R/H) and H ′Au0
= Au and u = (u0)

#
A . We have

AAu0
= AH ′Au0

= AAu 6= R, and we obtain, again by Theorem 12, that there

exists a unique valuation v ∈ ω(R/A) with v#
Λ = u0. By definition of H ′ we

have u0 ∈ S(R/H ′). We conclude from u0 ≤ u that u0 = u. Thus v#
Λ = u and

u ∈ ω(R/H).

We have gained a modest insight into the restricted PM-spectra of R over
the holomorphy base HA/Λ and the weak holomorphy base H ′

A/Λ for rings
Λ ⊂ A ⊂ R with A convex and Prüfer in R. A lot remains to be done to
determine HA/Λ and H ′

A/Λ in more concrete terms in general and in examples.
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Prüfer Extensions in Real Algebra 109

[Z1] D. Zhang, The real holomorphy rings and the Schmüdgen property.
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