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Abstract. Let Y0(p) be the Drinfeld modular curve parameterizing
Drinfeld modules of rank two over Fq[T ] of general characteristic with
Hecke level p-structure, where p ⊳ Fq[T ] is a prime ideal of degree d. Let
J0(p) denote the Jacobian of the unique smooth irreducible projective

curve containing Y0(p). Define N(p) = qd−1
q−1 , if d is odd, and define

N(p) = qd−1
q2−1 , otherwise. We prove that the torsion subgroup of the

group of Fq(T )-valued points of the abelian variety J0(p) is the cuspidal
divisor group and has order N(p). Similarly the maximal µ-type finite
étale subgroup-scheme of the abelian variety J0(p) is the Shimura group
scheme and has order N(p). We reach our results through a study of the
Eisenstein ideal E(p) of the Hecke algebra T(p) of the curve Y0(p). Along
the way we prove that the completion of the Hecke algebra T(p) at any
maximal ideal in the support of E(p) is Gorenstein.
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1. Introduction

Notation 1.1. Let F = Fq(T ) denote the rational function field of tran-
scendence degree one over a finite field Fq of characteristic p, where T is an
indeterminate, and let A = Fq[T ]. For any non-zero ideal n of A a geomet-
rically irreducible affine algebraic curve Y0(n) is defined over F , the Drinfeld
modular curve parameterizing Drinfeld modules of rank two over A of general
characteristic with Hecke level n-structure. There is a unique non-singular pro-
jective curve X0(n) over F which contains Y0(n) as an open subvariety. Let
J0(n) denote the Jacobian of the curve X0(n). Let p be a prime ideal of A and
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let d denote the degree of the residue field of p over Fq. Define N(p) = qd−1
q−1 ,

if d is odd, and define N(p) = qd−1
q2−1 , otherwise.

Theorem 1.2. The torsion subgroup T (p) of the group of F -valued points of
the abelian variety J0(p) is a cyclic group of order N(p).

It is possible to explicitly determine the group in the theorem above.

Definition 1.3. The geometric points of the zero dimensional complement of
Y0(n) in X0(n) are called cusps of the curve X0(n). They are actually defined
over F . Since we assumed that p is a prime the curve X0(p) has two cusps.
The cyclic group generated by the divisor which is the difference of the two
cusps is called the cuspidal divisor group and it is denoted by C(p).

Theorem 1.4. The group T (p) is equal to C(p).

Notation 1.5. The theorem above has a pair which describes the largest étale
subgroup scheme of J0(p) whose Cartier dual is constant. Let us introduce some
additional notation in order to formulate it. Let Y1(p) denote the Drinfeld
modular curve parameterizing Drinfeld modules of rank two over A of general
characteristic with Γ1-type level p-structure. The forgetful map Y1(p) → Y0(p)
is a Galois cover defined over F with Galois group (A/p)∗/F∗

q . Let Y2(p) →
Y0(p) denote the unique covering intermediate of this covering which is a Galois
covering, cyclic of order N(p), and let J2(p) denote the Jacobian of the unique
geometrically irreducible non-singular projective curve X2(p) containing Y2(p).
The kernel of the homomorphism J0(p) → J2(p) induced by Picard functoriality
is called the Shimura group scheme and it is denoted by S(p). For every field
K let K denote the separable algebraic closure of K. We say that a finite
flat subgroup scheme of J0(p) is a µ-type group scheme if its Cartier dual is
a constant group scheme. If this group scheme is étale, then it is uniquely
determined by the group of its F -valued points. The latter group actually lies
in J0(p)(Fq(T )), where Fq(T ) is the maximal everywhere unramified extension
of F . Let M(p) denote the unique maximal µ-type étale subgroup scheme of
J0(p).

Theorem 1.6. The group schemes M(p) and S(p) are equal. In particular
the former is a cyclic group scheme of rank equal to N(p).

These results are proved via a detailed study of the Eisenstein ideal in the
Hecke algebra of the Drinfeld modular curve Y0(p), defined in [18] first in this
context. In particular we prove that the completion of the Hecke algebra at any
prime ideal in the support of Eisenstein ideal is Gorenstein (Corollary 10.3 and
Theorem 11.6). The main goal to develop such a theory in its original setting
was to classify the rational torsion subgroups of elliptic curves. Some of the
methods and results of this paper can be used to give a similar classification of
the rational torsion subgroups of Drinfeld modules of rank two in our setting as
well, whose complete proof will appear in a forthcoming paper of the author.
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Contents 1.7. Of course this work is strongly influenced by [14], where Mazur
proved similar theorems for elliptic modular curves, conjectured originally by
Ogg. Therefore the structure of the paper is similar to [14], although there are
several significant differences, too. In the next two chapters we develop the
tools necessary to study congruences between automorphic forms with respect
to a modulus prime to the characteristic of F : Fourier expansions and the
multiplicity one theorem. Almost everything we prove is a straightforward
generalization of classical results in [19]. The main idea is that the additive
group of adeles of F is a pro-p group, so it is possible to do Fourier analysis for
locally constant functions taking values in a ring where p is invertible. In the
fourth chapter we prove an analogue of the classical Kronecker limit formula, a
result of independent interest. One motivation for this result in our setting is
that it connects the Eisenstein series with the geometry of the modular curve
directly. We compute the Fourier coefficients of Eisenstein series in the fifth
chapter and give a new, more conceptual proof of a theorem of Gekeler on
the Drinfeld discriminant function. As an application of our previous results
we determine the largest sub-module E0(p, R) of R-valued cuspidal harmonic
forms annihilated by the Eisenstein ideal in the sixth chapter, for certain rings
R. The first cases of Theorem 1.4 are proved in the seventh chapter, where we
connect the geometry of the modular curve to our previous observations via
the uniformization theorem of Gekeler-Reversat (see [11]). With the help of a
theorem of Gekeler and Nonnengardt we show that the image of the n-torsion
part of T (p), n prime to p, in the group of connected components of the Néron
model of J0(p) at ∞ with respect to specialization injects into E0(p, Z/nZ)
without any assumptions on t(p), the greatest common divisor of N(p) and
q − 1. We also show that there is no p-torsion using a result on the reduction
of Y0(p) over the prime p, again due to Gekeler (see [6]). Then we conclude
the proof of Theorem 7.19 by showing that the exponent of the kernel of the
specialization map into the group of connected components at ∞ in T (p) is
only divisible by primes dividing t(p). We prove some important properties
of the Shimura group scheme in the eight chapter. In order to do so, we first
include a section on a model M1(p) of Y1(p) with particular emphasis on the
structure of its fiber at the prime p in this chapter, as the current literature on
the reduction of Drinfeld modular curves is somewhat incomplete. We study
an important finite étale sub-group scheme of J0(p) analogous to the Dihedral
subgroup of Mazur in the next chapter. The latter is an object constructed to
remedy the fact that the intersection of the cuspidal and Shimura subgroups
could be non-empty. Here some of the calculations overlap with the results
of [5], but the author could not resist the temptation to use the methods of
chapters 4 and 5 in this setting, too. The goal of the last two chapters is to
fully implement Mazur’s Eisenstein decent at Eisenstein primes l. The key
idea here is that considerations at the prime l in Mazur’s original paper should
be substituted by similar arguments at the place ∞. In particular the role
of the connected-étale devissage of the l-division group of the Jacobian of the
classical elliptic modular curve is played by the filtration of the l-adic Tate
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module of J0(p) defined by the monodromy-weight spectral sequence at ∞.
His arguments carry over with minor modifications, but it is interesting to
note that the concept of ∗-type groups is only defined for subgroups of the
Jacobian J0(p), unlike in the classical case considered by Mazur, where the
similar concept was absolute. The main Diophantine application of the results
of these chapters are Theorem 1.6 and Theorem 1.4 in the cases not taken care
of by Theorem 7.19. At the end of the paper an index of notations is included
for the convenience of the reader.

Acknowledgment 1.8. I wish to thank the CICMA and the CRM for their
warm hospitality and the pleasant environment they created for productive
research, where the most of this article was written. I also wish to thank the
IHÉS for its welcoming atmosphere, where this work was completed.

2. Fourier expansion

Definition 2.1. A topological group P is a pro-p group if it is a projective
limit of finite p-groups. In other words P is a compact, Haussdorf topological
group which has a basis of translates of finite index subgroups and every finite
quotient is a p-group. In this paper all rings are assumed to be commutative
with unity. If R is a ring, we will write 1/p ∈ R if we want to say that p is
invertible in R. We will call a ring R a coefficient ring if 1/p ∈ R and R is the

quotient of a discrete valuation ring R̃ which contains p-th roots of unity. For
example every algebraically closed field of characteristic different from p is a
coefficient ring. Note that the image of the p-th roots of unity of R̃ in R are
exactly the set of p-th roots of unity of R. If R is a ring, then we say that a
function f : P → R is continuous, if it continuous with respect to the discrete
topology on R. This is equivalent to f being a locally constant function on P .

Lemma 2.2. There is a unique Z〈 1
p 〉-valued function µ on the open and closed

subsets of P such that
(a) for any disjoint disjoint open set U and V we have µ(U ∪V ) = µ(U)+µ(V ),
(b) for any open set U and g ∈ P we have µ(U) = µ(gU) = µ(Ug),
(c) for every open subgroup U we have µ(U) = 1

|P :U | .

Proof. Existence and uniqueness immediately follows from the fact that ev-
ery open and closed subset of P is a pairwise disjoint union of finitely many
translates of some open subgroup U . ¤

Definition 2.3. The function µ will be called the normalized Haar-measure
on P . If R is a ring with 1/p ∈ R, then for every continuous function f : P → R
we define its integral with respect to µ as

∫

P

f(x)dµ(x) =
∑

r∈R

rµ(f−1(r)).

Since all but finitely many terms of the sum above are zero, the integral is
well-defined.
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Definition 2.4. Assume that P is abelian. We denote the set of continuous
homomorphisms χ : P → R∗ by P̂ (R). We define for each continuous function

f : P → R and χ ∈ P̂ (R) a homomorphism:

f̂(χ) =

∫

P

f(x)χ−1(x)dµ(x) ∈ R.

Lemma 2.5. Assume that R is a coefficient ring and P is p-torsion. Then for

each continuous function f : P → R the function f̂ : P̂ (R) → R is supported
on a finite set and

f(x) =
∑

χ∈ bP

f̂(χ)χ(x).

Proof. Let R̃ denote a discrete valuation ring whose quotient is R, just like
in Definition 2.1. Since P is compact, f takes finitely many values, so there is
a continuous function f̃ : P −→ R̃ lifting f , which means that the composition
of f̃ and the surjection R̃ −→ R is f . Since P is p-torsion, all continuous

homomorphisms χ : P → R∗ have a unique lift χ̃ ∈ P̂ (R̃). Hence it is sufficient

to prove the statement for f̃ . There is an open subgroup U ≤ P such that f̃

is U -invariant. Then for all but finitely χ ∈ P̂ (R̃) we have Ker(χ) * U and

hence
̂̃
f(χ) = 0. The formula is then a consequence of the similar formula for

the group P/U , which is well-known. ¤

Notation 2.6. Let F denote the function field of X, where the latter is a
geometrically connected smooth projective curve defined over the finite field
Fq of characteristic p. Let |X|, A, O denote set of places of F , the ring of
adeles of F and its maximal compact subring of A, respectively. F is embedded
canonically into A. The group F\A is compact, totally disconnected and it is
p-torsion, hence it is a pro-p group.

Lemma 2.7. Let R be a coefficient ring. If τ : F\A → R∗ is a non-trivial

continuous homomorphism, then all other elements of F̂\A(R) are of the form
x 7→ τ(ηx) for some η ∈ F .

Proof. Since F\A is p-torsion, the image of any element of F̂\A(R) lies in
the p-th roots of unity of the ring R. This group can be identified with the
subgroup of p-th roots of unity in the field of complex numbers, hence the claim
follows from the same statement for complex-valued characters. ¤

Definition 2.8. For every divisor m of X let m also denote the O-module in
the ring A generated by the ideles whose divisor is m, by abuse of notation.
Let n be an effective divisor of X. By an R-valued automorphic form over
F of level n we mean a locally constant function φ : GL2(A) → R satisfying
φ(γgkz) = φ(g) for all γ ∈ GL2(F ), z ∈ Z(A), and k ∈ K0(n), where Z(A) is
the center of GL2(A), and

K0(n) = {

(
a b
c d

)
∈ GL2(O)|c ≡ 0 mod n}.
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Moreover, if for all g ∈ GL2(A):

∫

F\A

φ(

(
1 x
0 1

)
g)dµ(x) = 0,

where dµ(x) is the normalized Haar measure on F\A, we call φ a cusp form. Let
A(n, R) (respectively A0(n, R)) denote the R-module of R-valued automorphic
forms (respectively cuspidal automorphic forms) of level n.

Notation 2.9. Let Pic(X) and Div(X) denote the Picard group and the di-
visor group of the algebraic curve X, respectively. For every y ∈ A∗ we denote
the corresponding divisor and its class in Pic(X) by the same symbol by abuse
of notation. For any idele or divisor y let |y| and deg(y) denote its normalized
absolute value and degree, respectively, related by the formula |y| = q− deg(y).

Proposition 2.10. Let R be a coefficient ring and let τ : F\A → R∗ be a
nontrivial continuous homomorphism. Then for every φ ∈ A(n, R) there are
functions φ0 : Pic(X) → R and φ∗ : Div(X) → R, the latter vanishing on
non-effective divisors such that

φ(

(
y x
0 1

)
) = φ0(y) +

∑

η∈F∗

φ∗(ηyd−1)τ(ηx),

for all y ∈ A∗ and x ∈ A, where the idele d is such that D = dO, where D is
the O-module defined as

D = {x ∈ A|τ(xO) = 1}.

The functions φ0 and φ∗ are called the Fourier coefficients of the automorphic
form φ with respect to the character τ .

Proof. By the condition of Definition 2.8:

φ(

(
1 η
0 1

)(
y x
0 1

)
) = φ(

(
y x + η
0 1

)
) = φ(

(
y x
0 1

)
),

for every y ∈ A∗ and η ∈ F , so there is a expansion, by Lemma 2.5 and Lemma
2.7:

φ(

(
y x
0 1

)
) =

∑

η∈F

a(η, y)τ(ηx).

Since

φ(

(
η 0
0 1

)(
y x
0 1

)
) = φ(

(
ηy ηx
0 1

)
) = φ(

(
y x
0 1

)
),

for every y ∈ A∗ and η ∈ F ∗, we have a(κ, ηy) = a(κη, y) = a(κηy) for some
function a : A∗ → R.
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For any k ∈ O∗, l ∈ O

φ(

(
y x
0 1

)(
k l
0 1

)
) = φ(

(
yk x + yl
0 1

)
) = φ(

(
y x
0 1

)
),

again by the definition of automorphic forms, we have a(ky)τ(ly) = a(y), which
implies that a(y) only depends on the divisor of y and a(y) is nonzero only if
y is in D. A similar argument gives the existence of φ0. ¤

It is worth noting that this notion of Fourier coefficients coincides with the
classical one when both are defined. Also note that when R contains 1/p, then
the constant Fourier coefficients φ0(·) are still defined.

Notation 2.11. For any valuation v of F we will let Fv, fv and Ov to denote
the corresponding completion of F , its constant field, or its discrete valuation
ring, respectively. For any idele, adele, adele-valued matrix or function defined
on the above which decomposes as an infinite product of functions defined on
the individual components the subscript v will denote the v-th component.
Similar convention will be applied to subsets of adeles and adele-valued matri-
ces. Let B denote the group scheme of invertible upper triangular two by two
matrices. Let P denote the group scheme of invertible upper triangular two by
two matrices with 1 on the lower right corner. Let U denote the group scheme
of invertible upper triangular two by two matrices with ones on the diagonal.

Lemma 2.12. Every φ ∈ A(n, R) is uniquely determined by its restriction to
P (A).

Proof. It is sufficient to prove that GL2(F )B(A) is dense in GL2(A), as
we can determine the values of φ on that set from the values of φ on P (A),
by Definition 2.8. This property is equivalent to the fact that GL2(A) =
GL2(F )B(A)K for every compact, open subgroup K =

∏
v∈|X| Kv. Take any

element g of GL2(A). There is a finite set S of places such that if Kv is not
GL2(Ov), then s ∈ S. As the natural image of GL2(F ) in

∏
v∈S GL2(Fv) is

dense, there is a γ ∈ GL2(F ) such that the v-component of γ−1g is in Kv for
all v ∈ S. But γ−1g is in B(Fv)Kv = B(Fv)GL2(Ov) for all other v by the
Iwasawa decomposition, so the claim above follows. ¤

Proposition 2.13. If R is a coefficient ring, every φ ∈ A0(n, R) (φ ∈ A(n, R))
is uniquely determined by the function φ∗ (by the functions φ∗ and φ0).

Proof. By Lemma 2.12, φ is uniquely determined by its restriction to P (A),
hence it is uniquely determined by the functions φ∗ and φ0. If φ is a cusp form
then φ0 is identically zero, hence φ is uniquely determined by the function φ∗

alone. ¤
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3. Multiplicity one

Definition 3.1. Let m, n be effective divisors of X. Define the set:

H(m, n) =

{

(
a b
c d

)
∈ GL2(A)|a, b, c, d ∈ O, (ad − cb) = m, n ⊇ (c), (d) + n = O}.

The set H(m, n) is compact and it is a double K0(n)-coset, so it is a disjoint
union of finitely many right K0(n)-cosets. Let R(m, n) be a set of representatives
of these cosets. For any φ ∈ A(n, R) (or more generally, for any right K0(n)-
invariant R-valued function) define the function Tm(φ) by the formula:

Tm(φ)(g) =
∑

h∈R(m,n)

φ(gh).

It is easy to check that Tm(φ) is independent of the choice of R(m, n) and
Tm(φ) ∈ A(n, R) as well. So we have an R-linear operator Tm : A(n, R) →
A(n, R).

Lemma 3.2. Let R be a coefficient ring. Then for every φ ∈ A(n, R) and m

ideal

Tm(φ)∗(r) =
∑

c+n=O
r+m⊆c

|c|

|m|
φ∗(

rm

c2
).

Proof. One particular choice of the representative system is

R(m, n) = {

(
a b
0 d

)
|(a, d) ∈ S, b ∈ S(a)},

where S is a O∗×O∗-representative system to all pairs (a, d) ∈ O×O such that
(ad) = m and (d) + n = O, and for each a ∈ O the set S(a) is a representative
system of the cosets of the ideal (a) in O. For any adele y ∈ O:

Tm(φ)∗(y) =

∫

F\A

Tm(φ)(

(
yd x
0 1

)
)τ(−x)dµ(x)

=
∑

(a,d)∈S
b∈S(a)

∫

F\A

φ(

(
yda ydb + dx
0 d

)
)τ(−x)dµ(x)

=
∑

(a,d)∈S

∑

b∈S(a)

τ(ydb/d)

∫

F\A

φ(

(
yda/d x

0 1

)
)τ(−x)dµ(x)

=
∑

(a,d)∈S

φ∗(ya/d)
∑

b∈S(a)

τ(ydb/d).
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If φ∗(ya/d) 6= 0 then ya/d ∈ O and the map b 7→ τ(ydb/d) is an R-valued
character on O/(a). In this case the sum

∑
b∈S(a) τ(ydb/d) = |a|−1, if y/d ∈ O,

and equal to 0, otherwise. Hence if we set c = (d), we get:

Tm(φ)∗(r) =
∑

c+n=O
r+m⊆c

|c|

|m|
φ∗(

rm

c2
). ¤

Corollary 3.3. Let R be a coefficient ring and assume that for each closed
point p of X an element cp ∈ R is given. Then the R-module of cuspidal
automorphic forms φ ∈ A0(n, R) such that Tp(φ) = cpφ for each closed point p

of X is isomorphic to an ideal a ⊳ R via the map φ 7→ φ∗(1).

Proof. For each effective divisor r we are going to show that φ∗(r) is uniquely
determined by the eigenvalues cp and φ∗(1) by induction on the maximum
d(r) of exponents of prime divisors of r. By Proposition 2.13 this implies the
proposition. If d(r) = 0 then the claim is obvious. If d(r) = 1, then r = p1 · · · pn

is the product of pair-wise different prime divisors. By Lemma 3.2 we have:

cp1
· · · cpn

φ∗(1) = Tp1
· · ·Tpn

(φ)∗(1) =
1

|p1 · · · pn|
φ∗(p1 · · · pn).

If d(r) > 1, then r = mp2 for some prime ideal p. The lemma above implies
that we have the recursive relation:

cpφ
∗(mp) = Tp(φ)∗(mp) =

1

|p|
φ∗(mp2) + φ∗(m),

if p does not lie in the support of n, and

cpφ
∗(mp) = Tp(φ)∗(mp) =

1

|p|
φ∗(mp2),

otherwise. ¤

Definition 3.4. Fix a valuation ∞ of F . We may assume that the support of
divisor d attached to the character τ in Proposition 2.10 does not contain ∞.
Let H(n, R) denote the R-module of automorphic forms f of level n∞ satisfying
the following two identities:

φ(g

(
0 1
υ 0

)
) = −φ(g), (∀g ∈ GL2(A)),

and

φ(g

(
0 1
1 0

)
) +

∑

ǫ∈f∞

φ(g

(
1 0
ǫ 1

)
) = 0, (∀g ∈ GL2(A)),

where υ is a uniformizer in F∞ and we consider GL2(F∞) as a subgroup of
GL2(A) and we understand the product of their elements accordingly. Such
automorphic forms are called harmonic. Let H0(n, R) denote the R-module of
R-valued cuspidal harmonic forms of level n∞.
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Lemma 3.5. Let φ be an element of H(n, R). Then T∞(φ) = φ.

Proof. For any ǫ ∈ f
∗
∞ we have the matrix identity:

(
1 0
ǫ 1

)(
ǫ−1 1
0 −ǫ

)(
0 1
υ 0

)
=

(
υ ǫ−1

0 1

)
.

Hence the second identity in Definition 3.4 can be rewritten as follows:

0 =φ(g

(
0 1
1 0

)
) +

∑

ǫ∈f∞

φ(g

(
1 0
ǫ 1

)
)

= − φ(g

(
0 1
1 0

) (
0 1
υ 0

)
) + φ(g) −

∑

ǫ∈f∗
∞

φ(g

(
υ ǫ−1

0 1

)
) = φ(g) − T∞(φ)

using the left K0(n∞)-invariance and the first identity. ¤

Proposition 3.6. Let R be a coefficient ring and assume that for each closed
point p 6= ∞ of X an element cp ∈ R is given. Then the R-module of cuspidal
harmonic forms φ ∈ H0(n, R) such that Tp(φ) = cpφ for each closed point
p 6= ∞ of X is isomorphic to an ideal a ⊳ R via the map φ 7→ φ∗(1).

Proof. By the lemma above φ is also an eigenvector for T∞. The claim now
follows from Corollary 3.3. ¤

Remark 3.7. The result above is the analogue of the classical (weak) multi-
plicity one result for mod p modular forms. In order to be useful for some of
the applications we have in mind, we will need a multiplicity one result which
does not require the eigenvalue of Tp to be specified for every closed point p.
We will prove such a result only in a special case. First let us introduce the
following general notation: let Af , Of denote the restricted direct products∏′

x6=∞ Fx and
∏′

x6=∞ Ox, respectively. The former is also called the ring of
finite adeles of F and the latter is its maximal compact subring. For the rest
of the this chapter we assume that F = Fq(T ) is the rational function field
of transcendence degree one over Fq, where T is an indeterminate, and ∞ is
the point at infinity on X = P1(F ). Finally let M [n] denote the n-torsion
submodule of every abelian group M for any natural number n ∈ N.

Proposition 3.8. The map

H(1, R) −→ R, φ 7→ φ0(1)

is an isomorphism onto R[q+1] for every coefficient ring R.

Proof. It is well-known that there is a natural bijection:

ι : GL2(Fq[T ])\GL2(F∞)/Γ∞Z(F∞) −→ GL2(F )\GL2(A)/K0(∞)Z(F∞),
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where Γ∞ = K0(∞)∞ denote the Iwahori subgroup of GL2(F∞):

Γ∞ =

{(
a b
c d

)
∈ GL2(O∞)|∞(c) > 0

}
,

and ι is induced by the natural inclusion GL2(F∞) −→ GL2(A). The for-
mer double coset is the set of edges of the Bruhat-Tits tree of the local
field F∞ = Fq((

1
T )) factored out by GL2(Fq[T ]). Under this bijection el-

ements of H(1, R) correspond to GL2(Fq[T ])-invariant R-valued harmonic
cochains on the Bruhat-Tits tree. This correspondence is bijective, because
Z(A) = Z(F )Z(O)Z(F∞), so every harmonic cochain is invariant with respect
to this group. The reader may find the following description of the quotient
graph above in Proposition 3 of 1.6 of [17], page 86-67:

Proposition 3.9. Let Λn denote the vertex of the Bruhat-Tits tree repre-

sented by the matrix
(

T n 0

0 1

)
for every natural number n ∈ N.

(i) the vertices Λn form a fundamental domain for the action of GL2(Fq[T ])
on the set of vertices of the Bruhat-Tits tree,

(ii) the stabilizer of Λ0 in GL2(Fq[T ]) acts transitively on the set of edges
with origin Λ0,

(iii) for every n there is an edge ΛnΛn+1 with origin Λn and terminal vertex
Λn,

(iv) for every n ≥ 1, the stabilizer of the edge ΛnΛn+1 in GL2(Fq[T ]) acts
transitively on the set of edges with origin Λn distinct from ΛnΛn+1.

Proof. The second half of (i) is the corollary to the proposition quoted above
on page 87 of [17]. ¤

Let us return to the proof of Proposition 3.8. Let α denote the value of the
harmonic cochain Φ corresponding to φ on the edge Λ0Λ1. By (ii) of the
proposition above the value of Φ is α on all other edges with origin Λ0, so
α ∈ R[q + 1] by harmonicity. We are going to show that Φ(ΛnΛn+1) = (−1)nα
for all n by induction. By harmonicity Φ(ΛnΛn−1) = −(−1)n−1α = (−1)nα.
Also note that the value of Φ is (−1)nα on all edges with origin Λn distinct from
ΛnΛn+1 by (iv) of the proposition above. Hence we must have Φ(ΛnΛn+1) =
(−q)(−1)nα = (−1)nα by harmonicity, also using the fact α ∈ R[q + 1]. We
conclude that Φ is uniquely determined by its value on the edge Λ0Λ1. For every
g ∈ GL2(A) the residue of the degree of the divisor det(g) modulo 2 depends
only on its class in GL2(F )\GL2(A)/K0(1)Z(A). In particular if g is equivalent
to the vertex Λn, then n ≡ deg(det(g)) mod 2. Hence our description of Φ
can be reformulated by saying that φ(g) = (−1)deg(det(g))α. Moreover

φ0(1) =

∫

F\A

φ(

(
1 x
0 1

)
)dµ(x) =

∫

F\A

αdµ(x) = α,

because every element of the set, where the integral above is taken, has deter-
minant 1. On the other hand for every α ∈ R[q + 1] the function H(α), whose
value is (−1)nα on every edge of origin Λn, is clearly a harmonic cochain. The
claim follows. ¤
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Proposition 3.10. Let R be a coefficient ring and let p 6= ∞ be a closed point
of X. Then every harmonic form φ ∈ H(p, R) such that φ∗(m) = 0 for each
effective divisor m whose support does not contain p and ∞ is an element of
H(1, R).

Proof. First note that φ∗(m) = 0 even for those effective divisors m whose
support do not contain p, but may contain ∞, since for any effective divisor n

we have:

φ∗(n) = T∞(φ)∗(n) =
1

|∞|
φ∗(n∞),

by Lemma 3.2 and Lemma 3.5, so this seemingly stronger statement follows
from the condition in the claim by induction on the multiplicity of ∞ in m.
For every y ∈ A∗ and a, x ∈ A we have:

φ(

(
y x
0 1

)(
1 a
0 1

)
) =φ(

(
y x + ya
0 1

)
)

=φ0(y) +
∑

η∈F∗

φ∗(ηyd−1)τ(ηya)τ(ηx).

If a ∈ p−1, then φ∗(ηyd−1) = 0 unless τ(ηya) = 1, because φ∗(ηyd−1) 6= 0
implies that ηy ∈ pD, so ηya ∈ pDp−1 ⊂ Ker(τ). Hence the Fourier expansion
above is independent of the choice of a ∈ p−1, so for every g ∈ P (A) and a as
above we have:

φ(g

(
1 a
0 1

)
) = φ(g).

In the proof of Lemma 2.12 we showed that GL2(F )P (A)Z(A) is dense in
GL2(A), so the identity above holds for all g ∈ GL2(A) by continuity. Let
π ∈ A∗

f be an idele such that πOf = p. We define the function ψ : GL2(A) −→ R
by the formula:

ψ(g) = φ(g

(
0 1
π 0

)
), ∀g ∈ GL2(A),

where we consider GL2(A) as a GL2(Af )-module and we understand the prod-
uct of their elements accordingly. We claim that ψ ∈ H(1, R). It is clearly
left-invariant with respect to Z(A)GL2(F ). On the other hand we have:

ψ(g

(
a b
c d

)
) = φ(g

(
a b
c d

)(
0 1
π 0

)
) =φ(g

(
0 1
π 0

) (
d c/π
πb a

)
)

=φ(g

(
0 1
π 0

)
) = ψ(g)

for all
(

a b

c d

)
∈ K0(p) ∩ GL2(Af ), upon using the identity:

(
0 1
π 0

) (
d c/π
πb a

)
=

(
a b
c d

) (
0 1
π 0

)
,

Documenta Mathematica 10 (2005) 131–198



On the Torsion of Drinfeld Modular Curves 143

hence ψ ∈ A(p∞, R). The same identity may be used to show that:

ψ(g

(
1 0
a 1

)
) = φ(g

(
1 0
a 1

) (
0 1
π 0

)
) =φ(g

(
0 1
π 0

)(
1 a/π
0 1

)
)

=φ(g

(
0 1
π 0

)
) = ψ(g)

for all a ∈ Of , hence ψ is even in A(∞, R). Obviously the matrix
(

0 1

π 0

)

commutes with the matrices in Definition 3.4, so ψ is harmonic, too. Using the
Z(A)-invariance of ψ we get:

φ(g) = ψ(g

(
0 π−1

1 0

)
) = ψ(g

(
0 1
π 0

) (
π−1 0
0 π−1

)
) = ψ(g

(
0 1
π 0

)
),

the claim of the proposition follows by the lemma below and applying the same
argument to ψ. ¤

Lemma 3.11. For every harmonic form φ ∈ H(1, R) we have φ∗(m) = 0 for
every effective divisor m.

Proof. It will be sufficient to show that the function x 7→ φ(
( y x

0 1

)
) is constant

on A for each y ∈ O∩A∗. The latter follows from the fact that the determinant
is constant, it is equal to y. ¤

Theorem 3.12. Let R be a coefficient ring and let p 6= ∞ be a closed point
of X. Assume that for each closed point q of X, different from p and ∞,
an element cq ∈ R is given. Then the R-module of cuspidal harmonic forms
φ ∈ H0(p, R) such that Tq(φ) = cqφ for each closed point q of X, different from
p and ∞, is isomorphic to an ideal a ⊳ R via the map φ 7→ φ∗(1).

Proof. It will be sufficient to prove that any such φ with φ∗(1) = 0 is zero
by taking the difference of any two elements of the module with the same first
Fourier coefficient. The argument of Corollary 3.3 implies that φ∗(m) = 0 for
each effective divisor m whose support does not contain p and ∞ for every such
φ. By Proposition 3.10 φ is in H(1, R), hence φ is an element of H0(1, R), too.
The latter R-module is trivial by Proposition 3.8. ¤

4. The Kronecker limit formula

Notation 4.1. We will adopt the convention which assigns 0 or 1 as value to
the empty sum or product, respectively. For every g ∈ GL2(A) (or g ∈ A, etc.)
let gf denote its finite component in GL2(Af ). Let | · | denote the normalized
absolute value with respect to ∞ if its argument is in F∞. For each (u, v) ∈ F 2

∞

let ‖(u, v)‖, ∞(u, v) denote max(|u|, |v|) and min(∞(u),∞(v)), respectively.
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Definition 4.2. Let F 2
< denote the set: F 2

< = {(a, b) ∈ F 2
∞||a| < |b|}. Let

m be an effective divisor on X whose support does not contain ∞. Let the
same symbol also denote the ideal m ∩ Of by abuse of notation. For every
g ∈ GL2(A), (α, β) ∈ (Of/m)2, and n integer let

Wm(α, β, g, n) = {0 6= f ∈ F 2|fgf ∈ (α, β) + mO2
f ,−n = ∞(fg∞)}, and

Vm(α, β, g, n) = {f ∈ Wm(α, β, g, n)|fg∞ ∈ F 2
<}.

Also let

Wm(α, β, gf ) =
⋃

n∈Z

Wm(α, β, g, n) and Vm(α, β, g) =
⋃

n∈Z

Vm(α, β, g, n).

Obviously the first set is well-defined. Finally let Em(α, β, g, s) denote the
C-valued function:

Em(α, β, g, s) = |det(g)|s
∑

f∈Vm(α,β,g)

‖fg∞‖−2s,

for each complex number s and g, (α, β) as above, if the infinite sum is abso-
lutely convergent.

Proposition 4.3. The sum Em(α, β, g, s) converges absolutely, if Re(s) > 1,
for each g ∈ GL2(A).

Proof. The reader may find the same argument in [16]. The series
Em(α, β, g, s) is majorated by the series:

E(g, s) = |det(g)|s
∑

f∈F 2−{0}

fg∈O2
f

‖(fg)∞ ‖−2s,

so it will be sufficient to prove that E(g, s) converges absolutely for each g ∈
GL2(A) if Re(s) > 1. For every g ∈ GL2(A) let E(g) denote the sheaf on X
whose group of sections is for every open subset U ⊆ X is

E(g)(U) = {f ∈ F 2|fg ∈ O2
v,∀v ∈ |U |},

where we denote the set of closed points of U by |U |. The sheaf E(g) is a
coherent locally free sheaf of rank two. If Fn denote the sheaf F ⊗ OX(∞)n

for every coherent sheaf F on X and integer n, then for every g ∈ GL2(A) and
s ∈ C the series above can be rewritten as

E(g, s) =
∑

n∈Z

|H0(X, E(g)n) − H0(X, E(g)n−1)|q
−s deg(E(g)n).
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By the Riemann-Roch theorem for curves:

dimH0(X,F) − dimH0(X,KX ⊗F∨) = 2 − 2g(X) + deg(F)

for any coherent locally free sheaf of rank two F on X, where KX , F∨ and g(X)
is the canonical bundle on X, the dual of F , and the genus of X, respectively.
Because dim H0(X,F−n) = 0 for n sufficiently large depending on F , we have
that

|H0(X, E(g)n)| = q2−2g(X)+deg(E(g))+2n deg(∞) and |H0(X, E(g)−n)| = 1,

if n is a sufficiently large positive number. Hence

E(g, s) = p(q−s) + q2−2g(X)+(1−s) deg(E(g))(1 − q− deg(∞))
∞∑

n=0

q2n(1−s) deg(∞),

where p is a polynomial. The claim now follows from the convergence of the
geometric series. ¤

Notation 4.4. Let Ω denote the rigid analytic upper half plane, or Drinfeld’s
upper half plane over F∞. The set of points of Ω is C∞ −F∞, denoted also by
Ω by abuse of notation, where C∞ is the completion of the algebraic closure
of F∞. For the definition of its rigid analytic structure as well as the other
concepts recalled below see for example [11]. For each holomorphic function
u : Ω −→ C∗

∞ let r(u) : GL2(F∞) −→ Z denote the van der Put logarithmic
derivative of u (see [11], page 40). If u : GL2(Af ) × Ω −→ C∗

∞ is holomorphic
in the second variable for each g ∈ GL2(Af ) then we define r(u) to be the
Z-valued function on the set GL2(A) = GL2(Af ) × GL2(F∞) given by the
formula r(u)(gf , g∞) = r(u(gf , ·))(g∞). For each (α, β) ∈ (Of/m)2, and N
positive integer let ǫm(α, β,N)(g, z) denote the function:

ǫm(α, β,N)(g, z) =
∏

n≤N


 ∏

(a,b)∈Wm(α,β,g,n)

(az + b) ·
∏

(c,d)∈Wm(0,0,g,n)

(cz + d)−1


 .

on the set GL2(Af ) × Ω.

Lemma 4.5. The limit

ǫm(α, β)(g, z) = lim
N−→∞

ǫm(α, β,N)(g, z)

converges uniformly in z on every admissible open subdomain of Ω for every
fixed g and defines a function holomorphic in the second variable.
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Proof. If (α, β) = (0, 0) then the claim is trivial. Otherwise let (α, β) also
denote an element of Wm(α, β, gf ) by abuse of notation. For sufficiently large
N the product ǫm(α, β,N)(g, z) can be rewritten as:

ǫm(α, β,N)(g, z) = (αz + β) ·
∏

n≤N
(a,b)∈Wm(0,0,g,n)

(
1 +

αz + β

az + b

)
.

The system of sets Ω(ω) = {z ∈ C∞|1/ω ≤ |z|i, |z| ≤ ω}, where 1 < ω is any
rational number and |z|i = infx∈F∞

|z + x| is the imaginary absolute value of
z, is a cover of Ω by admissible open subdomains. On the set Ω(ω):

∣∣∣∣
αz + β

az + b

∣∣∣∣ ≤
max(ω|α|, |β|)

max(ω−1|a|, |b|)
,

so it converges to zero as ‖(a, b)‖→ ∞. The claim follows at once. ¤

Definition 4.6. For every ρ ∈ GL2(F∞) and z ∈ P1(C∞) let ρ(z) denote the
image of z under the Möbius transformation corresponding to ρ. Let moreover
D(ρ) denote the open disc

D(ρ) = {z ∈ P1(C∞)|1 < |ρ−1(z)|}.

Set δ(ρ) = −1, if the infinite point of the projective line lies in D(ρ), and let
δ(ρ) = 0, otherwise.

Proposition 4.7. For all g ∈ GL2(A) we have:

r(ǫm(α, β))(g) = δ(g∞) + lim
N→∞


 ∑

n≤N

|Vm(α, β, g, n)| − |Vm(0, 0, g, n)|


 .

Proof. The van der Put logarithmic derivative is continuous with respect to
the limit of the supremum topologies on the affinoid subdomains of Ω, hence

r(ǫm(α, β))(g) = lim
N→∞

r(ǫm(α, β,N))(g)

by Lemma 4.5. More or less by definition (see [11]) for every u ∈ O∗(Ω) rational
function r(u)(ρ) equals to the number of zeros z of u with z ∈ D(ρ) counted
with multiplicities minus the number of poles z of u with z ∈ D(ρ) counted
with multiplicities. If we assume that δ(ρ) = 0 then we can conclude that
r(az + b)(ρ) is 1 if and only if (a, b)ρ ∈ F 2

< and it is 0, otherwise. Hence the
claim holds for g if δ(g∞) = 0 by the additivity of the van der Put derivative.
In particular the limit on the right exists in this case. Let Π ∈ GL2(F∞)
be the matrix whose diagonal entries are zero, and its lower left and upper
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right entry is π and 1, respectively, where π is a uniformizer of F∞. Clearly
F 2
∞ − {0} = F 2

<

∐
F 2

<Π, hence

Wm(α, β, gf ) = Vm(α, β, g)
∐

Vm(α, β, gΠ)

for any g ∈ GL2(A). Also exactly one of the sets D(g∞) and D(g∞Π) contains
the infinite point. Hence it will suffice to show that for any g and sufficiently
large N ∈ N the sum

−1 +
∑

n≤N

(|Wm(α, β, g, n)| − |Wm(0, 0, g, n)|)

vanishes to conclude that the limit in the claim above exits in all cases. This
will also imply that the expression l(g) on right hand side satisfies the functional
equation l(g) + l(gΠ) = 0. Since the left hand side also satisfies this property
the claim will follow. But the sum above vanishes because of the bijection
which we already used implicitly in the proof of Lemma 4.5 when we rewrote
ǫm(α, β,N)(g, z). ¤

Kronecker Limit Formula 4.8. For all g ∈ GL2(A) we have:

r(ǫm(α, β))(g) = δ(g∞) + lim
s→0+

(Em(α, β, g, s) − Em(0, 0, g, s)).

Proof. We have to show that the limit exists on the right hand side and it
equals to the left hand side. For all complex s with Re(s) > 1 we have:

Em(α, β, g, s)−Em(0, 0, g, s) =

|det(g)|s
∞∑

n=−∞

(|Vm(α, β, g, n)| − |Vm(0, 0, g, n)|) |π|2sn.

According to the proof of Proposition 4.3 the cardinalities |Vm(α, β, g, n)| and
|Vm(0, 0, g, n)| are zero if n is sufficiently small. Let (α, β) again denote an
element of Wm(α, β, gf ) by abuse of notation as in the proof of Lemma 4.5. The
map f 7→ (α, β)+ f defines a bijection between Vm(0, 0, g, n) and Vm(α, β, g, n)
if n is sufficiently large, so the limit exists and

lim
s→0+

(Em(α, β, g, s)−Em(0, 0, g, s)) =

lim
N→∞


 ∑

n≤N

|Vm(α, β, g, n)| − |Vm(0, 0, g, n)|


 .

The claim now follows from the previous proposition. ¤
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5. Computation of Fourier expansions

Definition 5.1. For every α ∈ Of/m and z ∈ A∗
f let

Vm(α, z) = {u ∈ F ∗|uz ∈ α + m}.

For each α and z as above let ζm(α, z, s) denote the C-valued function

ζm(α, z, s) =
∑

u∈Vm(α,z)

|u|−s
∞ ,

if this infinite sum is absolutely convergent. For every α ∈ Of/m define ρ(α) to
be 1, if α = 0, and to be 0, otherwise. Let µ be the unique Haar measure on the
locally compact abelian topological group A such that µ(O) is equal to |d|−1/2.
Since this measure is left-invariant with respect to the discrete subgroup F by
definition, it induces a measure on F\A which will be denoted by the same
letter by abuse of notation. By our choice of normalization µ(F\A) = 1, so
our notation is compatible with Definitions 2.3 and 2.8. Note that the former
is the direct product of a Haar measure µf on Af and a Haar measure µ∞

on F∞ such that µf (Of ) = |d|−1/2 and µ∞(O∞) = 1. Finally let q∞ be the
cardinality of f∞.

Proposition 5.2. For each complex s with Re(s) > 1 we have:

Em(α, β, ·, s)0(z) =ρ(α)|z|sζm(β, 1, 2s)

+
|m|

|d|1/2

|z|s(q∞ − 1)

|z|2s−1
∞ (q2s

∞ − q∞)
ζm(α, zf , 2s − 1).

Proof. Recall that the notion of Fourier coefficients are defined for all
complex-valued automorphic forms (see [19]). The claim above should be un-
derstood in this sense. By grouping the terms in the infinite sum of Definition
4.2 we get the following identity:

Em(α, β,

(
z x
0 1

)
, s) = |z|s

∑

(0,u)∈Vm(α,β,
ş z x

0 1

ť

)

|u|−2s
∞ + |z|s

∑

b∈F

∑

a∈F∗

(a,0)∈Vm(α,β,
ş

z x+b

0 1

ť

)

|a(x + b)|−2s
∞ .

According to the Fourier inversion formula the Fourier coefficient
Em(α, β, ·, s)0(z) is given by the formula

Em(α, β, ·, s)0(z) =

∫

F\A

Em(α, β,

(
z x
0 1

)
, s)dµ(x).

By substituting the formula above into this integral and interchanging summa-
tion and integration we get:

Em(α, β, ·, s)0(z) = ρ(α)|z|sζm(β, 1, 2s) + |z|s
∑

a∈Vm(α,z)

|a|−2s
∞

∫

a∈Vm(β,xf )
|x|∞>|z|∞

|x|−2s
∞ dµ(x).
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Note that this computation is justified by the Lebesgue convergence theorem.
The measure of the set {x ∈ Af |a ∈ Vm(β, x)} is:

µf ({x ∈ Af |a ∈ Vm(β, x)}) =µf (a−1
f (β + m))

=|af |
−1|m||d|−1/2 = |a|∞|m||d|−1/2.

On the other hand:
∫

|x|∞>|z|∞

|x|−2s
∞ dµ∞(x) =

∞∑

n=1

|z|−2s
∞ q−2sn

∞

∫

∞(x)=∞(z)−n

dµ∞(x)

=

∞∑

n=1

|z|1−2s
∞ q(1−2s)n

∞ ·
q∞ − 1

q∞
,

so the second term in the sum above is equal to:

|z|s|m||d|−1/2|z|1−2s
∞ ·

q∞ − 1

q2s
∞ − q∞

·
∑

a∈Vm(α,z)

|a|1−2s
∞ . ¤

Definition 5.3. For every α ∈ Of/m and z ∈ A∗
f let

Sm(α, z) = {u ∈ Vm(α, z)|u−1
f mOf ⊆ d}.

For each β ∈ Of/m and α, z as above let σm(α, β, z, s) denote the finite C-
valued sum

σm(α, β, z, s) =
∑

u∈Sm(α,z)

τ(−u−1
f β)|u|−s

∞ ,

where β ∈ Of also denotes a representative of the class β by abuse of notation.

The expression above is well-defined because of the condition u−1
f mOf ⊆ d.

Proposition 5.4. For each complex s with Re(s) > 1 we have:

Em(α, β, ·, s)∗(zd−1) =

(
− q2s

∞ +
q∞−1

q∞
·

∞(z)−1∑

n=0

qn(2s−1)
∞

)
|z|s

|m|

|d|1/2
σm(α, β, zf , 2s − 1),

if ∞(z) ≥ 0, and it is zero, otherwise.

Proof. The first summand in the right hand side of the first equation appear-
ing in the proof above is constant in x, so it does not contribute to the Fourier
coefficient Em(α, β, ·, s)∗(zd−1). Hence

Em(α, β, ·, s)∗(zd−1) =

∫

F\A

Em(α, β,

(
z x
0 1

)
, s)τ(−x)dµ(x)

=|z|s
∑

a∈Vm(α,z)

|a|−2s
∞

∫

a∈Vm(β,xf )
|x|∞>|z|∞

|x|−2s
∞ τ(−x)dµ(x).
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interchanging summation and integration. For every a ∈ Vm(α, z) the integral
above is a product:

∫

xf∈a−1
f

(β+m)

|x|∞>|z|∞

|x|−2s
∞ τ(−x)dµ(x) =

τ(−a−1
f β) ·

∫

a−1
f

mOf

τ(−x)dµf (x) ·

∫

|x|∞>|z|∞

|x|−2s
∞ τ∞(−x)dµ∞(x),

where τ∞ is the restriction of the character τ to the ∞-adic component F∞.
The first integral in the product above is zero unless additive group a−1

f mOf

lies in the kernel of τ which is equivalent to a ∈ Sm(α, z). In the latter case it is
equal to µf (a−1

f mOf ) = |a|∞|m||d|−1/2. By assumption O∞ itself is the largest
O∞-submodule of F∞ such that the restriction of τ∞ onto this submodule is
trivial, hence the integral on the right above is zero if ∞(z) < 0, and it is equal
to:

∫

|x|∞>|z|∞

|x|−2s
∞ τ∞(−x)dµ∞(x) =

∞(z)−1∑

n=−1

∫

∞(x)=n

|x|−2s
∞ τ∞(−x)dµ∞(x)

= −q2s
∞ +

q∞ − 1

q∞
·

∞(z)−1∑

n=0

qn(2s−1)
∞ , otherwise. ¤

Definition 5.5. Let A = Of ∩ F : it is a Dedekind domain. The ideals of A
and the effective divisors on X with support away from ∞ are in a bijective
correspondence. These two sets will be identified in all that follows. For any
ideal n ⊳ A let Y0(n) denote the coarse moduli for rank two Drinfeld modules
of general characteristic equipped with a Hecke level-n structure. It is an
affine algebraic curve defined over F . The group GL2(F ) acts on the product
GL2(Af )×Ω on the left by acting on the first factor via the natural embedding
and on Drinfeld’s upper half plane via Möbius transformations. The group
Kf (n) = K0(n)∩GL2(Of ) acts on the right of this product by acting on the first
factor via the regular action. Since the quotient set GL2(F )\GL2(Af )/Kf (n)
is finite, the set

GL2(F )\GL2(Af ) × Ω/Kf (n)

is the disjoint union of finitely many sets of the form Γ\Ω, where Γ is a subgroup
of GL2(F ) of the form GL2(F ) ∩ gKf (n)g−1 for some g ∈ GL2(Af ). As these
groups act on Ω discretely, the set above naturally has the structure of a rigid
analytic curve. Let Y0(n) also denote the underlying rigid analytical space of
the base change of Y0(n) to F∞ by abuse of notation.
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Theorem 5.6. There is a rigid-analytical isomorphism:

Y0(n) ∼= GL2(F )\GL2(Af ) × Ω/Kf (n).

Proof. See [3], Theorem 6.6. ¤

Notation 5.7. From now on we make the same assumptions as we did in
Remark 3.7. In this case A = Fq[T ]. If ψ : A −→ C∞{τ} is a Drinfeld module
of rank two over A, then

ψ(T ) = T + g(ψ)τ + ∆(ψ)τ2,

where ∆ is the Drinfeld discriminant function. It is a Drinfeld modular form of
weight q2−1. Under the identification of Theorem 5.6 the Drinfeld discriminant
function ∆ is a nowhere vanishing function on GL2(Af ) × Ω holomorphic in
the second variable, and it is equal to:

∆(g, z) =
∏

(0,0) 6=(α,β)∈O2
f
/TO2

f

ǫ(T )(α, β)(g, z)

which is an immediate consequence of the uniformization theory of Drinfeld
modules over C∞. For every ideal n = (n) ⊳ A let ∆n denote the modular

form of weight q2 − 1 given by the formula ∆n(g, z) = ∆(g
(

n−1 0

0 1

)
, z). As

the notation indicates ∆n is independent of the choice of the generator n ∈ n.
Finally let En = r(∆/∆n). Since ∆/∆n is a modular form of weight zero, i.e.
it is a modular unit, the function En is a Z-valued harmonic form of level n∞.

Proposition 5.8. If T does not divide n then we have:

E0
n(1) = (q − 1)q(qdeg(n) − 1) and E∗

n(1) =
(q2 − 1)(q − 1)

q
.

Proof. Every α ∈ Of/TOf is represented by a unique element of the constant
field Fq, which will be denoted by the same symbol by abuse of notation. For
all such α and z ∈ Fq[T ] ⊂ A∗

f with T 6 |z we have:

ζ(T )(α, z−1, s) =
∑

0 6=p∈Fq[T ]
p≡αz mod (zT )

q−s deg(p).

Because p ≡ αz mod (zT ) holds if and only if there is a r ∈ Fq[T ] with p =
αz + zTr, we have deg(p) = deg(z) + 1 + deg(r) in this case, unless r = 0 and
p = αz. Therefore

ζ(T )(α, z−1, s) =(1 − ρ(α))q−s deg(z) +

∞∑

k=0

(q − 1)qkq−s(deg(z)+1+k)

=(1 − ρ(α))q−s deg(z) +
(q − 1)q−s(deg(z)+1)

1 − q1−s
.
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For every z ∈ Fq[T ] let z denote the unique idele whose finite component
is z and its infinite component is 1, by abuse of notation. An immedi-
ate consequence of this equation and Proposition 5.2 is that the function
E(T )(α, β, ·, s)0(z−1), originally defined for Re(s) > 1 only, has a meromor-
phic continuation to the whole complex plane and

lim
s→0

E(T )(α, β, ·, s)0(z−1) = −ρ(α)ρ(β) − qdeg(z)(
1

q + 1
− ρ(α)),

using the fact that divisor of d is in the anticanonical class, hence its degree is
two. On the other hand the Limit Formula 4.8 and the description in Notation
5.7 implies that:

E0
n(1) =

∑

(0,0) 6=(α,β)∈F2
q

lim
s−→0

(E(T )(α, β, ·, s)0(1) − E(T )(α, β, ·, s)0(n−1))

− (q2 − 1) lim
s−→0

(E(T )(0, 0, ·, s)0(1) − E(T )(0, 0, ·, s)0(n−1))

=
∑

(0,0) 6=(α,β)∈F2
q

(qdeg(n) − 1)(1 − ρ(α)) = (q − 1)q(qdeg(n) − 1).

By Proposition 5.4 the function E(T )(α, β, ·, s)∗(1) is a meromorphic function
and:

E(T )(α, β, ·, 0)∗(1) = −σ(T )(α, β, d,−1).

By choosing an appropriate character τ , we may assume that d any divisor
of degree two, as every such divisor is linearly equivalent to the anticanonical
class. In particular we may assume that d = T 2

f , which is in accordance with
our previous assumptions. In this case:

S(T )(α, d) = {0 6= p ∈ Fq(T )|pT 2 ∈ α + TFq[T ], p−1 ∈ TFq[T ]},

which is the one element set {αT−2}, if α is non-zero, and it is {γT−1|γ ∈ F∗
q},

otherwise. Hence:

σ(T )(α, β, d,−1) =





1
q2 , if α 6= 0,

− 1
q , if α = 0 and β 6= 0,

q−1
q , if α = 0 and β = 0,

where in the second case we used the fact that the character is non-trivial
on the set of elements γ−1βT , where γ ∈ F∗

q . As all Fourier coefficients

E(T )(α, β, ·, s)∗(n−1) are zero, because the divisor n−1 is not effective, we get:

E∗
n(1) = −

∑

(0,0) 6=(α,β)∈F2
q

σ(T )(α, β, d,−1) + (q2 − 1)σ(T )(0, 0, d,−1)

=
(q2 − 1)(q − 1)

q
. ¤
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Remark 5.9. The modular form ∆n coincides with the function defined by
Gekeler (see for example [8]), which can be seen by passing from the adelic
description to the usual one. The result above is also proved in [8], but the
argument applied there, unlike ours, can not be easily generalized. In particular
the description of the quotient of the Bruhat-Tits tree by the full modular group
(Proposition 3.9) is used which has no analogue in general.

6. Cuspidal harmonic forms annihilated by the Eisenstein ideal

Definition 6.1. Let n be any ideal of A and let H ⊂ GL2(Af ) be a compact
double Kf (n)-coset. It is a disjoint union of finitely many right Kf (n)-cosets.
Let R be a set of representatives of these cosets. For any function u : GL2(Af )×
Ω −→ C∗

∞ holomorphic in the second variable for each g ∈ GL2(Af ), we define
the function TH(u) by the formula:

TH(u)(g) =
∏

h∈R

u(gh).

If we assume that u is right Kf (n)-invariant then the function TH(u) is inde-
pendent of the choice of R and TH(u) is holomorphic in the second variable for
each g ∈ GL2(Af ) as well. Moreover we have the identity:

r(TH(u)) = TH(r(u)),

where TH also denotes the similarly defined linear operator on the set of right
K0(n∞)-invariant functions on GL2(A), slightly extending Definition 3.1. Let
the symbol Tm denote the operator TH , if H = H(m, n∞) ∩ GL2(Af ), where
m⊳A. Since we may choose the representative system R(m, n∞) to be a subset
of GL2(Af ), our new notation is compatible with the old one introduced in
3.1. Finally let p be a prime ideal of A, and let π ∈ A∗

f be an idele such that

πOf = p. The matrix
(

0 1

π 0

)
∈ GL2(Af ) introduced in the proof of Proposition

3.10 normalizes the subgroup K0(p∞), hence its double K0(n∞)-coset as well
as its double Kf (n)-coset consist of only one right coset. Let Wp denote the
corresponding operator.

The following lemma is also proved in [8], but we believe that our proof is
simpler, and in a certain sense more revealing.

Lemma 6.2. We have:

Wp(Ep) = −Ep and Tq(Ep) = (1 + qdeg(q))Ep

for every prime ideal q ⊳ A different from p. Moreover Ep is an eigenvector of
every Hecke operator Tm, with integral eigenvalue.
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Proof. By the discussion above it is sufficient to prove the same for the mod-
ular unit ∆/∆p, up to a non-zero constant, because the van der Put derivative
is zero on constant functions. Under the identification of Theorem 5.6 the mod-
ular unit ∆/∆p corresponds to a nowhere zero rational function on the affine
curve Y0(p). The action of the operators Wp and Tm is just the usual action
induced by the Atkin-Lehmer involution and the Hecke correspondence Tm,
respectively. (See [6] for their definition and properties in this setting). The
latter extend to correspondences on X0(p), the unique non-singular projective
curve which contains Y0(p) as an open subvariety. The complement of Y0(p)
in X0(p) consists of two geometric points, the cusps. These correspondences
leave the group of divisors supported on the cusps invariant. In particular,
the Atkin-Lehmer involution interchanges these two points, while the Hecke
correspondence Tq, where q ⊳ A is a prime ideal different from p, maps them

into themselves with multiplicity 1+ qdeg(q). Since every nowhere zero rational
function on the affine curve Y0(p) is uniquely determined, up to a non-zero
constant, by its divisor, which is of degree zero and is supported on the cusps,
the claim now follows at once. ¤

Proposition 6.3. A harmonic form φ ∈ H(p, R) is cuspidal if any only if the
integrals:

φ0(1) =

∫

F\A

φ(

(
1 x
0 1

)
)dµ(x) and

φ∞(1) =

∫

F\A

φ(

(
1 x
0 1

)(
0 1
π 0

)
)dµ(x)

are both zero.

Proof. The condition is clearly necessary. Also note that φ∞(1) = Wp(φ)0(1)
for every φ ∈ H(p, R), so the condition does not depend on the particular
choice of π. In particular we may assume that all components πv, where v ⊳ A
is different from p, are actually equal to one. If we want to show that it is
sufficient, we need to show that the integral

c(g, φ) =

∫

F\A

φ(

(
1 x
0 1

)
g)dµ(x)

is zero for every g ∈ GL2(A), if φ satisfies the condition of the claim. In order
to do so, we first prove the lemma below. Let υ be a uniformizer in F∞, as in
Definition 3.4.

Lemma 6.4. For every g ∈ GL2(A) and φ ∈ H(p, R) the following holds:

(i) we have c(g, φ) = c(γgkz, φ), if γ ∈ P (F )U(A), k ∈ K0(p∞) and z ∈
Z(A),

(ii) we have c(g, φ) = −c(g
(

0 1

υ 0

)
, φ),

(iii) we have c(g, φ) = |∞|−1c(g
(

υ 0

0 1

)
, φ), if g∞ ∈ B(F∞).

Documenta Mathematica 10 (2005) 131–198



On the Torsion of Drinfeld Modular Curves 155

Proof. We first show (i). If γ =
(

α β

0 1

)
, then:

c(γgkz, φ) =

∫

F\A

φ(

(
1 x
0 1

)
γg)dµ(x)

=

∫

F\A

φ(γ

(
1 α−1x
0 1

)
g)dµ(x) = c(g, φ),

using the right K0(p∞)Z(A)-invariance and the left GL2(F )-invariance of φ,
as well as the fact that the map x 7→ α−1x leaves the Haar-measure µ of the
group F\A invariant for every α ∈ F ∗. Claim (ii) is an immediate consequence

of the first condition in Definition 3.4. Assume now that g∞ =
(

a b

0 c

)
. The

final claim follows from the computation:

c(g, φ) = c(g, T∞(φ)) =
∑

ǫ∈f∞

∫

F\A

φ(

(
1 x
0 1

)
g

(
1 ǫ
0 1

) (
υ 0
0 1

)
)dµ(x)

=
∑

ǫ∈f∞

∫

F\A

φ(

(
1 x + a

c ǫ
0 1

)
g

(
υ 0
0 1

)
)dµ(x)

=
1

|∞|
c(g

(
υ 0
0 1

)
, φ),

where we used Lemma 3.5. ¤

Let us return to the proof of Proposition 6.3. By the Iwasawa decomposition we
may write g as a product bk, where b ∈ B(A) and k ∈ GL2(O). We may assume
that b is a diagonal matrix with 1 in the lower left corner by multiplying g by a
suitable element of U(A)Z(A) on the left, according to Lemma 6.4. We may also
assume that kv is the identity matrix for all v ∈ |X|, different from p and ∞, by
multiplying g by a suitable element of K0(p∞) on the right, using again Lemma
6.4. Since A has class number 1, the equality F ∗O∗

f = A∗
f holds, hence we may

even assume that gv is the identity matrix for all v ∈ |X|, different from p and
∞, by multiplying g by a suitable diagonal element of GL2(F ) on the left and

of K0(p∞) on the right. Moreover GL2(F∞) = B(F∞)Γ∞ ∪B(F∞)
(

0 1

υ 0

)
Γ∞,

hence claim (ii) of the lemma above implies that we may assume that g∞ is a
diagonal matrix with some power of υ in the upper right corner and 1 in the
lower left corner, also repeating some of the arguments above. In this case (iii)
of Lemma 6.4 can be used to reduce to the case when g∞ is the identity matrix,

too. Using the decomposition GL2(Fp) = B(Fp)Γp ∪ B(Fp)
(

0 1

π 0

)
Γp, where

Γp = K0(p∞)p is the Iwahori subgroup in GL2(Fp), the same logic implies that

gp may be assumed to be either the identity matrix or
(

0 1

π 0

)
. The proof is

now complete. ¤

Definition 6.5. Let E0(p, R) be the R-submodule of H0(p, R) of those cusp-
idal harmonic forms φ such that Tq(φ) = (1 + qdeg(q))φ for each closed point
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q of X, different from p and ∞. By Theorem 3.12 the R-module E0(p, R) is
isomorphic to an ideal a ⊳ R via the map φ 7→ φ∗(1). Let d = deg(p) denote
the degree of p.

Theorem 6.6. For every coefficient ring R the map

E0(p, R) −→ R, φ 7→ φ∗(1)

is an isomorphism onto R[N(p)], if d is odd, and is an isomorphism onto
R[2N(p)], if d is even.

Proof. Define the harmonic form ep ∈ H(p, Z〈 1
q2−1 〉) by the formula:

ep =

{ Ep

(q−1)2 , if d is odd,

Ep

(q−1)2(q+1) , if d is even.

For every α ∈ R[q + 1] let H(α) again denote the unique R-valued harmonic
form of level ∞ with H(α)0(1) = α, just as in the proof of Proposition 3.8.
First we are going to show the following

Lemma 6.7. The harmonic form ep is integer-valued.

Proof. By Proposition 5.8 we have e0
p(1) = N(p) and e∗p(1) = q+1

q , if d is odd,

and e∗p(1) = 1
q , if d is even. By Lemma 6.2 the form ep is also an eigenvector for

the Hecke operator Tm, where where m is any prime ideal of A, with integral
eigenvalue. Hence e∗p(m) ∈ Z〈 1

q 〉 for any effective divisor m, arguing the same

way as we did in the proof of Corollary 3.3. Moreover e0
p(y) ∈ Z〈 1

q 〉 for any

y ∈ A∗ using that Pic(X) = Z via the degree map and part (iii) of Lemma 6.4.
The Fourier expansion formula (Proposition 2.10) implies that we must have
ep ∈ H(p, Z〈 1

q 〉), hence ep is an integer valued harmonic form. ¤

Let ep denote the image of this harmonic form in H(p, R) for any coefficient
ring R with respect to the functorial homomorphism H(p, Z) −→ H(p, R), by
abuse of notation.

Lemma 6.8. For any α ∈ R[q + 1] and β ∈ R the harmonic form H(α) + βep

lies in E0(p, R) if and only if the equations α = −βN(p) and α = (−1)dβN(p)
hold.

Proof. By Lemma 6.2 the form ep is an eigenvector for the Hecke operator Tq,

where q is a prime ideal different from p, with qdeg(q) +1 as eigenvalue. The de-
gree of the determinant of every element of the set R(q, p∞) is deg(q) for every
q prime of A different from p, hence Tq(H(α))0(1) = (qdeg(q) + 1)(−1)deg(q)α.

If deg(q) is odd, then q + 1 divides qdeg(q) + 1, hence the expression above is
equal to 0 = (qdeg(q) + 1)α in this case. In particular H(α) is an eigenvector
for the Hecke operator Tq with qdeg(q) + 1 as eigenvalue, too. Therefore it is
sufficient to prove that H(α)+βep ∈ H0(p, R) if and only if the equations hold
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in the claim above. Note that H(α)∞(1) = (−1)dα, as every matrix of the

form
(

πx 1

π 0

)
has determinant π, which has degree d. By Lemma 6.2 we have

Wp(ep) = −ep, hence e∞p (1) = −e0
p(1) = −N(p). The claim now follows from

Proposition 6.3. ¤

Let’s start the proof proper of Theorem 6.6. First assume that d is even. In this
case every φ ∈ E0(p, R) can be written uniquely of the form φ = qφ∗(1)ep +
H(α), for some α ∈ R[q + 1]. By Lemma 6.8 we must have N(p)φ∗(1) =
α/q = −α/q, hence 2N(p)φ∗(1) = 0. On the other hand let β ∈ R[2N(p)] be
arbitrary. First note that R[2] ⊆ R[q + 1]. If q is even, then 2 is invertible in
R, hence R[2] = 0. If q is odd, then 2 divides q + 1, hence R[2] ⊆ R[q + 1].
Therefore α = qN(p)β ∈ R[q + 1], so H(α) is well-defined. By Lemma 6.8 we
have qβep + H(α) ∈ E0(p, R), and its image under the map of the claim is β.

Now assume that d is odd. Let R̃ be a discrete valuation ring and let a ⊳ R̃
be an ideal such that R = R̃/a. Define the coefficient ring R′ as the quotient

R̃/(q + 1)a. The map R −→ R′ given by the rule x 7→ (q + 1)x maps bijectively
onto the ideal (q+1)⊳R′. In particular for every φ ∈ E0(p, R) we have (q+1)φ ∈
E0(p, R′), and the latter can be written of the form (q + 1)φ = qβep + H(α),
for some α ∈ R′[q + 1] and β ∈ R′ which maps to φ∗(1) under the canonical
surjection R′ −→ R. Applying Lemma 6.8 the the coeffient ring R′ we get that
we must have N(p)β = −α/q, hence (q+1)N(p)β = 0. The latter is equivalent
to φ∗(1) ∈ R[N(p)]. On the other hand let β ∈ R[N(p)] be arbitrary. For any
lift β′ ∈ R′ with respect to the natural surjection we have β′ ∈ R′[(q +1)N(p)].
Therefore α = −qN(p)β′ ∈ R′[q + 1], so H(α) is well-defined. By Lemma 6.8
we have qβ′ep + H(α) ∈ E0(p, R′), and its image under the map of the claim is
(q+1)β. If we show that all values of this harmonic form lie in the ideal (q+1),
then we have also shown the surjectivity of the map of the claim in case of the
ring R. The latter would follow if we proved that all Fourier coefficients of this
harmonic form lie in the ideal (q +1), by Proposition 2.10. The constant terms
are obviously zero. By Lemma 3.11 the m-th coefficient is equal to qβ′e∗p(m)
which lies in (q + 1). ¤

Corollary 6.9. For every natural number n relatively prime to p the module
E0(p, Z/nZ) is isomorphic to Z/nZ[N(p)], if d is odd, and it is isomorphic to
Z/nZ[2N(p)], if d is even.

Proof. Since E0(p, Z/nZ) = ⊕E0(p, Z/kZ), where k runs through the set of
components of the primary factorization of n, we may immediately reduce to
the case when n is the power of a prime l. In this case the ring Z/nZ is still

not a coefficient ring in general, but it is close to it. Let R̃ denote the unique
unramified extension of Zl we get by adjoining the p-th roots of unity. The
ring R = R̃/nR̃ is a coefficient ring which is a free Z/nZ-module. It will be
sufficient to show that the map of Theorem 6.6 maps E0(p, Z/nZ) surjectively
onto Z/nZ[N(p)], if d is odd, and onto Z/nZ[2N(p)], if d is even. The latter
follows from the following simple observation: for every β ∈ R[N(p)], if d is
odd, and for every β ∈ R[2N(p)], if d is even, the unique form φ ∈ E0(p, R)
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with the property φ∗(1) = β takes values in the Z/nZ-module generated by
β, which is an immediate consequence of the formula for φ it terms of ep and
H(α) in the proof above. ¤

Remark 6.10. Another interesting consequence of our analysis is the congru-
ence:

Ep

(q − 1)2
≡ H(N(p)) mod (q + 1),

which holds for every prime p of odd degree. In particular the residue of the
form on the left modulo q + 1 is invariant under the full modular group.

7. The Abel-Jacobi map

Definition 7.1. Let Γ0(p) denote GL2(A) ∩ Kf (p). This group also acts on
Ω via Möbius transformations. By Theorem 5.6 the quotient curve Γ0(p)\Ω
is Y0(p). Let moreover Γ0(p)ab = Γ0(p)/[Γ0(p),Γ0(p)] be the abelianization
of Γ0(p), and let Γ0(p) = Γ0(p)ab/(Γ0(p)ab)tors be its maximal torsion-free
quotient. For each γ ∈ Γ0(p) let γ denote its image in Γ0(p). We say that a
meromorphic function θ on Ω is a theta function for Γ0(p) with automorphy
factor φ ∈ Hom(Γ0(p), C∗

∞), if θ(γz) = φ(γ)θ(z) for all z ∈ Ω and γ ∈ Γ0(p).
If D = P1 + · · · + Pr − Q1 + · · · − Qr ∈ Div0(Ω) is a divisor of degree zero on
Ω, define the function

θ(z;D) =
∏

γ∈Γ0(p)

(z − γP1) · · · (z − γPr)

(z − γQ1) · · · (z − γQr)
.

This infinite product converges and defines a meromorphic function on Ω.

Proposition 7.2. (i) The function θ(z;D) is a theta function for Γ0(p).
(ii) Given α ∈ Γ0(p), the theta function θα(z) = θ(z; (w) − (αw)) is holomor-
phic, does not depend on the choice of w ∈ C∞, and depends only on the image
α of α in Γ0(p).

Proof. See [11], pages 62-67. Part (ii) is (iv) of Theorem 5.4.1 of [11], page
65. ¤

Notation 7.3. Let φD be the automorphy factor of θ(z;D). By the above
the value cα(β) = φ(z)−(αz)(β) does not depend on the choice of z ∈ C∞, and

depends only on the image of α and β in Γ0(p). Let j : Γ0(p) −→ H(p, Z) denote
the map which assigns r(θα(z)) to α. It is a homomorphism by (v) of Theorem
5.4.1 of the paper quoted above.

The following result will play a crucial role.

Theorem 7.4. The homomorphism j is an isomorphism onto H0(p, Z).

Proof. By Corollary 5.6.4 of [11], page 69 the image of this map lies in
H0(p, Z). The map is an isomorphism by Theorem 3.3 of [10], page 702. ¤
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Proposition 7.5. The assignment α 7→ cα defines a map

c : Γ0(p) → Hom(Γ0(p), F ∗
∞) ⊂ Hom(Γ0(p), C∗

∞),

which is injective and has discrete image.

Proof. See [11], pages 67-70. ¤

Definition 7.6. Let

ΦAJ : Div0(Ω) → Hom(Γ0(p), C∗
∞)

be the map which associates to the degree zero divisor D the automorphy factor
φD. Let Γ0(p) also denote its own image in Hom(Γ0(p), C∗

∞) with respect to
c by abuse of notation. Given a divisor D of degree zero on the curve Y0(p),

let D̃ denote an arbitrary lift to a degree zero divisor on the Drinfeld upper

half plane. The automorphy factor φ eD depends on the choice of D̃, but its

image in Hom(Γ0(p), C∗
∞)/Γ0(p) depends only on D. Thus ΦAJ induces a map

Div0(Y0(p)(C∞)) → Hom(Γ0(p), C∗
∞)/Γ0(p), which we also denote by ΦAJ by

abuse of notation.

Theorem 7.7. The map

ΦAJ : Div0(Y0(p)(C∞)) −→ Hom(Γ0(p), C∗
∞)/Γ0(p)

defined above is trivial on the group of principal divisors of X0(p), and induces
a Gal(C∞|F∞)-equivariant identification of the C∞-rational points of the Ja-
cobian J0(p) of X0(p) with the torus Hom(Γ0(p), C∗

∞)/Γ0(p).

Proof. See [11], pages 77-80. ¤

Definition 7.8. Recall the Hecke correspondence Tq on the curve X0(p) for
every prime q different from p, which we introduced in the proof of Lemma 6.2.
It induces an endomorphism of the Jacobian J0(p) by functoriality, which will
be denoted by Tq by the usual abuse of notation. Our next task is to describe
this action in terms of the isomorphism of Theorem 7.7.

Theorem 7.9. For every prime q ⊳ A, different from p, there is a unique en-
domorphism Tq of the rigid analytic torus Hom(Γ0(p), C∗

∞), which leaves the

lattice Γ0(p) invariant, and makes the diagram:

0 −−−−→ Γ0(p)
c

−−−−→ Hom(Γ0(p), C∗
∞)

ΦAJ−−−−→ J0(p) −−−−→ 0

Tq

y Tq

y Tq

y

0 −−−−→ Γ0(p)
c

−−−−→ Hom(Γ0(p), C∗
∞)

ΦAJ−−−−→ J0(p) −−−−→ 0

commutative. Moreover the map j : Γ0(p) −→ H0(p, Z) is equivariant with
respect to this action on Γ0(p) and the action of the Hecke operator Tq on
H0(p, Z).
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Proof. The first claim is stated in 9.4 of [11], page 86. By definition, the
action of Tq on Hom(Γ0(p), C∗

∞) is the adjoint of the action of Tq on Γ0(p)
given by the formula 9.3.1 of the same paper on page 85. On the same page
Proposition 9.3.3 states that the lattice Γ0(p) is invariant with respect to Tq,
and its action is given by this formula. The fact that ΦAJ is equivariant is an
immediate consequence of its construction. The second claim is the content of
Lemma 9.3.2 of [11], page 85. ¤

Definition 7.10. Let T(p) denote the commutative algebra with unity gen-
erated by the endomorphisms Tq of the torus Hom(Γ0(p), C∗

∞), where q ⊳ A
is again any prime ideal different from p. Let E(p) denote the ideal of T(p)
generated by the elements Tq − qdeg(q)−1, where q 6= p is any prime. The alge-
bra T(p) will be called Hecke algebra and E(p) is its Eisenstein ideal, although
these differ slightly from the usual definition, since they do not involve the
Atkin-Lehmer operator. The latter will play no role in what follows. Let l be
any prime (l = p allowed): we define the Zl-algebra Tl(p) as the tensor product
T(p)⊗Zl. Let El(p) denote the ideal generated by the Eisenstein ideal in Tl(p),
which we will also call the Eisenstein ideal by slight abuse of terminology. We
say that a prime number l is an Eisenstein prime if l 6= p and the ideal El(p)
is proper in Tl(p). For any prime l different from p the l-adic Tate module of
the torus Hom(Γ0(p), C∗

∞) will be denoted by Tl(p): it is a Tl(p)-module.

Proposition 7.11. The following holds:

(i) the algebra T(p) is a finitely generated, free Z-module,
(ii) the T(p)-module Γ0(p) is faithful,

(iii) the T(p)-module J0(p) is faithful,
(iv) the Tl(p) ⊗Zl

Ql-module H0(p, Ql) is free of rank one,
(v) the Tl(p)-module Tl(p) is locally free of rank one,

(vi) there is a canonical surjection Zl/2N(p)Zl −→ Tl(p)/El(p),

where we also assume that l 6= p in the last two claims.

Proof. Claim (i) is an immediate consequence of claim (ii), since the lat-
ter implies that T(p) is a subalgebra of the endomorphism ring of a finitely
generated, free Z-module. The latter follows from the general fact that rigid
analytic endomorphisms of algebraic tori are algebraic, so they act faithfully
on any Zariski-dense invariant subset. Since ΦAJ injects Hom(Γ0(p),O∗

∞)
into J0(p)(F∞), the third claim also follows by the same token. By a clas-
sical theorem of Harder the elements of H0(p, Ql) are supported on a finite
set in GL2(F )\GL2(A)/K0(p∞)Z(A), so the latter is a finite dimensional
Ql-vectorspace, and H0(p, Ql) = H0(p, Z) ⊗ Ql. Therefore it is a faithful
Tl(p)⊗Zl

Ql-module via the map j by claim (ii). As it is well known, the action
of Hecke operators on H0(p, Ql) is semisimple, hence the algebra Tl(p) ⊗Zl

Ql

itself is semisimple. By the strong multiplicity one result (Theorem 3.12) every
irreducible module of Tl(p) ⊗Zl

Ql has multiplicity one in H0(p, Ql), so this
module is free of rank one, as claim (iv) states.
As we already noted in the proof of Theorem 7.9, the action of the Hecke
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algebra T(p) on Hom(Γ0(p), C∗
∞) is the adjoint of the action of T(p) on Γ0(p) =

H0(p, Z), so H0(p, Zl) = H0(p, Z) ⊗ Zl is the Zl-dual of Tl(p). In particular
Tl(p) ⊗Zl

Ql is a free Tl(p) ⊗Zl
Ql-module. Since Tl(p) is a finitely generated,

free Zl-module, it is a finitely generated module over Tl(p). Hence it will be
sufficient to prove that Tl(p)/mTl(p) is a free module of rank one over km =
Tl(p)/m by the Nakayama lemma, where m⊳Tl(p) is any proper maximal ideal,
in order to conclude claim (v). Its dimension is at least one over km, since the
module Tl(p) ⊗Zl

Ql is free of rank one over Tl(p) ⊗Zl
Ql. For any ring R

let H00(p, R) denote the image of H0(p, Z) ⊗ R in H0(p, R) with respect to
the functorial map induced by the canonical homomorphism Z −→ R. Since
l is an element of m, the Zl-duality between H0(p, Zl) and Tl(p) induces a
Fl-duality between Tl(p)/mTl(p) and the submodule of H00(p, Fl) annihilated
by the ideal m. In general, for any ring R and faithfully flat extension R′ of
R the natural map H00(p, R) ⊗R R′ −→ H00(p, R′) is an isomorphism by the
theorem of Harder quoted above. This implies in particular that submodule of
H00(p, Fl) annihilated by the ideal m is a km sub-vectorspace of the space of
elements of H00(p,km) which are simultaneous eigenvectors for the operators
Tq with eigenvalue Tq mod m. Let lm be a finite extension of km which is also a
coefficient ring. The eigenspace above tensored with lm injects into the similar
eigenspace of H00(p, lm), which is at most one dimensional over lm by Theorem
3.12. Claim (v) is proved.
Finally let us concern ourselves with the proof of claim (vi). It is clear from
the definition that every generator Tq of Tl(p) is congruent to an element of
Zl modulo the Eisenstein ideal, so the natural inclusion of Zl in Tl(p) in-
duces a surjection Zl −→ Tl(p)/El(p). If this map is also injective, then the
Eisenstein ideal generates a non-trivial ideal in Tl(p) ⊗Zl

Ql. This implies,
by claim (iv), that there is a non-zero harmonic form in H0(p, Ql) which is
annihilated by the Eisenstein ideal. But this is impossible by Theorem 6.6.
Therefore the map above induces an isomorphism Zl/NZl −→ Tl(p)/El(p)
for some non-zero N ∈ N. By claim (v) the module Tl(p)/El(p)Tl(p) is
free of rank one over Zl/NZl, therefore the Zl-duality between H0(p, Zl)
and Tl(p) induces a Zl/NZl-duality between Tl(p)/El(p)Tl(p) and the mod-
ule H00(p, Zl/NZl) ∩ E0(p, Zl/NZl). The cardinality of the latter must divide
2N(p) by Corollary 6.9, so does the cardinality of the former, because they are
equal, by duality. ¤

An important consequence of claim (iii) above is that T(p) may be identified
with a subalgebra of the endomorphism ring of the abelian variety J0(p), which
we will do from now on. Also note that the factor 2 is only necessary in (vi)
when l = 2 and d is odd.

Definition 7.12. Let F be local field of characteristic p and let O, r denote
its discrete valuation ring and the cardinality of its residue field, respectively.
Recall that an abelian variety A defined over F is said to have multiplicative
reduction if the connected component A0 of the identity in the special fiber of
its Néron model A over O is a torus. We also say that the abelian variety A
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has totally split multiplicative reduction if it has multiplicative reduction and
A0 is a split torus.

Lemma 7.13. (i) If A has multiplicative reduction then the p-primary tor-
sion subgroup A(F)[p∞] injects into the group of connected components of the
special fiber of A.
(ii) If A has totally split multiplicative reduction then the exponent of the
largest torsion subgroup of A(F) mapping into the connected component A0

under the specialization map divides r − 1.

Proof. While we prove claim (i) we may take an unramified extension of F,
which will be denoted by the same letter, such that A0 becomes a split torus,
since it commutes with the formation of Néron models. In this case A has a
rigid analytic uniformization by a torus Gn

m. The subgroup of A(F) mapping
into A0 under the specialization map is isomorphic to (O∗)n in (F∗)n = Gn

m(F)
via the uniformization map. Since F has characteristic p, the group (O∗)n has
no p-torsion. Claim (i) is now clear. The other half of the lemma also follows
by the same reasoning as the torsion of (O∗)n is (F∗

r)
n. ¤

Let M0(p) denote the coarse moduli of Drinfeld modules over A with Hecke
p-level structure in the sense introduced by Katz and Mazur (see Definition 3.4
of [13], page 100). It is known that M0(p) is a model of Y0(p) over the spectrum
of A which means that its generic fiber is canonically isomorphic to Y0(p).

Proposition 7.14. The model M0(p) is contained in a scheme M0(p) which
has the following properties:

(i) the scheme M0(p) is proper and flat over Spec(A),
(ii) it has good reduction over all primes q different from p,

(iii) it has stable reduction over p with two components which are rational
curves over fp and intersect transversally in N(p) points,

(iv) it is a model of X0(p) over the spectrum of A,
(v) the scheme M0(p) is either regular or has a singularity of type Aq over

fp.

Proof. See 5.1-5.8 of [6], pages 229-233. ¤

Corollary 7.15. The group J0(p)(F ) has no p-primary torsion.

Proof. According to a classical theorem of Raynauld (see Proposition 1.20
of [1], page 219) the connected component of the special fiber of the Néron
model over O of the Jacobian of any regular curve defined over F is isomorphic
to the Picard group scheme of divisors of total degree zero of the special fiber
of a regular, proper model of the curve over the spectrum of O. If we set
F = Fp then the curve X0(p) has F-rational points, namely the cusps. By
Proposition 7.14 it has a regular, proper model over the spectrum of Op such
that each component in the special fiber is a rational curve and they intersect
transversally. Hence J0(p) has multiplicative reduction at p. According to
Lemma 5.9 and Proposition 5.10 of [6], page 234, the order of the group of
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connected components of the Néron model of J0(p) is N(p). The latter is
proved the same way as the corresponding result for elliptic modular curves
(see Theorem A.1 of the Appendix to [14], page 173) as it uses the description
of the group of components by the intersection matrix of the special fiber, again
due to Raynaud. Since N(p) is relatively prime to p, the claim now follows from
Lemma 7.13. ¤

Lemma 7.16. The torsion subgroup T (p) of J0(p)(F ) is annihilated by the
Eisenstein ideal E(p).

Proof. For the sake of simple notation let J0(p) denote the Néron model of
the Jacobian over X, too. Since J0(p) has good reduction over all primes q

different from p, the reduction map injects T (p) into J0(p)(fq) by Corollary
7.15. Let Frobq denote the Frobenius endomorphism of the abelian variety
J0(p)fq . The Hecke operator Tq for each prime q different from p satisfies the
Eichler-Shimura relation:

Frob2
q − Tq · Frobq + qdeg(q) = 0.

Since Frobq fixes the reduction of T (p), the endomorphism 1 − Tq + qdeg(q)

annihilates this group. As the reduction map commutes with the action of the
Hecke algebra, we get that E(p) annihilates the torsion subgroup. ¤

Let t(p) denote the greatest common divisor of N(p) and q − 1.

Corollary 7.17. If the prime l does not divide t(p) then the l-primary torsion
subgroup of T (p) injects into the group of connected components of the special
fiber of the Néron model of J0(p) at ∞ via the specialization map.

Proof. By Corollary 7.15 we may assume that l is different from p. We may
assume that l is odd, too. Otherwise l = 2 and because it does not divide
q− 1, the number q is even, and we already covered this case. The exponent of
the kernel of this map divides both q − 1 and the cardinality of Tl(p)/El(p) by
(ii) of Lemma 7.13 and Lemma 7.16, respectively. The former lemma could be
applied as J0(p) has split multiplicative reduction at ∞ by Theorem 7.7. Since
the latter quantity divides 2N(p) by (vi) of Proposition 7.11, the claim is now
clear. ¤

Proposition 7.18. For every natural number n the image of T (p)[n] with
respect to the specialization map into the group of connected components of
the special fiber of the Néron model of J0(p) at ∞ is a subgroup of E0(p, Z/nZ).

Proof. Since Hom(Γ0(p),O∗
∞) is isomorphic to the subgroup of J0(p)(F∞)

mapping into the connected component under the specialization map at ∞ via
the map ΦAJ , the T(p)-module n−1Γ0(p)/Γ0(p) contains the n-torsion of the
group of connected components at ∞ as a submodule. The former is isomorphic
to H0(p, Z)/nH0(p, Z) by Theorem 7.4, which injects into H0(p, Z/nZ). Since
the specialization map is T(p)-equivariant, the image of T (p)[n] with respect to
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the composition of these maps must lie in the T(p)-submodule of H0(p, Z/nZ)
annihilated by the Eisenstein ideal, according to Lemma 7.16. ¤

The following theorem is the main Diophantine result of this chapter, which
implies Theorems 1.2 and 1.4 under the assumption t(p)=1. The latter is
automatic if q = 2, so we have a much simpler proof of this result in this case.
In the general case we have to prove the Gorenstein property first.

Theorem 7.19. If the prime l does not divide t(p) then the l-primary sub-
groups of T (p) and C(p) are equal.

Proof. Just as in the proof of Corollary 7.17, we may assume that l is odd
and different from p. This result, along with Proposition 7.18 and Corollary
6.9, also implies that the l-primary subgroup of T (p) injects into Zl/N(p)Zl.
Since the order of C(p) is exactly N(p) (see [6], Corollary 5.11 on page 235),
the proof is now complete. ¤

8. The group scheme S(p)

Definition 8.1. For every Fq-algebra B let B{τ} denote the skew-polynomial
ring over B defined by the relation τb = bqτ , where b is any element of B. We
will also simplify our notation by using the symbol B to denote the spectrum of
any ring B. For every non-zero ideal n ⊳ A and Drinfeld module φ : A → B{τ}
let φ[n] denote the finite flat group scheme of Ga over B which is usually called
the n-torsion of the Drinfeld module φ, where B is any A-algebra. For every
scheme G over any base S and any S-scheme T let G(T ) denote the set of
sections over T , as usual. The group of sections φ[n](B) is naturally an A/n-
module under the action of A on Ga defined by φ.
We are going to define the concept of a Γ-level structure of a Drinfeld module φ
of rank two over an A-algebra B, where Γ is either Γ(n) or Γ1(n). Let N(Γ) be
the abstract A-module (A/n)2, if Γ = Γ(n), and let N(Γ) be A/n, if Γ = Γ1(n).
A homomorphism of abstract A-modules ι : N(Γ) → φ[n](B) is said to be a
Γ-level structure on φ over B if the effective Cartier divisor D on Ga over B
of degree |N(Γ)| defined by D =

∑
a∈N(Γ)[ι(a)] is a subgroup scheme of φ[n].

By comparing degrees one can conclude that D is actually equal to φ[n] when
Γ = Γ(n). Hence our concept of Γ(n)-level structure is the same as what is now
called a Drinfeld basis of φ[n] (see 3.1.-3.2 of chapter III in [13], page 98-99).
Let (φ, ι) and (ψ, κ) be ordered pairs of two Drinfeld modules φ and ψ of rank
two over B equipped with a Γ-level structure ι and κ, respectively. We say that
(φ, ι) and (ψ, κ) are isomorphic if there is an isomorphism j : Ga → Ga between
φ and ψ such that the composition j ◦ ι is equal to κ. Let M(n) and M1(n)
denote the functor which associates to each A-algebra B the set of isomorphism
classes of pairs (φ, ι) as above, where ι is a Γ(n)-level and Γ1(n)-level structure,
respectively. If n and m are relatively prime non-zero ideals of A, let M(n,m)
denote the fiber product of M(n) and M1(m) over M(1). Clearly M(n,m) is
the functor which associates to each A-algebra B the set of isomorphism classes
of triples (φ, ι, κ), where ι, κ is a Γ(n)-level and Γ1(m)-level structure of the
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Drinfeld module φ, respectively. The following result is just the Corollary to
Proposition 5.4 of [3], page 577.

Theorem 8.2. Assume that the ideal n has at least two different prime fac-
tors. Then the moduli problem M(n) is representable by a regular fine moduli
scheme M(n). ¤

Remark 8.3. The natural left action of GL2(A/n) on (A/n)2 induces a right
action of GL2(A/n) on M(n), hence a right action on M(n), if the latter exists.
Let Γ(n) denote the kernel of the natural surjection GL2(A/nm) → GL2(A/n)
for any m ⊳ A non-zero ideal, by slight abuse of notation. The pull-back of
the quotients M(nm1)/Γ(n) and M(nm2)/Γ(n) to X − supp(m1m2) − ∞ are
naturally isomorphic whenever M(nm1) and M(nm2) exist and these schemes
glue together to form a coarse moduli scheme for M(n). We let M(n) denote
this moduli scheme. Of course this notation is compatible with the previous
one.

Definition 8.4. Let G be a finite flat group scheme over the base scheme S
equipped with the action of a ring R. The latter implies that there is a natural
R-module structure on G(T ) for any S-scheme T . Let N be a finite abelian
group which is also an R-module. Let HomR(N,G) denote the functor which
associates to each S-scheme T the set of homomorphisms of abstract R-modules
ι : N → G(T ). This functor is representable by a fine moduli scheme which
will be denoted by the same symbol by the usual abuse of notation.
Let φ : A → B{τ} be a Drinfeld module over the A-algebra B, let G be the
kernel of a non-zero isogeny on φ, and let N be a finite A-module. Note that
the group scheme G is naturally an A-module under the action of A on Ga

defined by φ. Let StrA(N,G) denote the sub-functor of HomA(N,G) which
associates to each B-algebra C the set of those homomorphisms of abstract
A-modules ι : N → G(C) such that the effective Cartier divisor D on Ga over
C of degree |N | defined by D =

∑
a∈N [ι(a)] is a subgroup scheme of G.

Lemma 8.5. The functor StrA(N,G) is represented by a closed subscheme of
HomA(N,G). If G is étale then StrA(N,G) is either empty or finite, étale over
every connected component of B.

Proof. In 1.5.1 of chapter in [13], page 20-21, the concept of N -level structure
was defined. By Proposition 1.6.3, Corollary 1.6.3 on page 23 of the same book
the functor which associates to each B-algebra C the set of N -level structures on
the n-torsion of the pull-back of φ to C is represented by a closed subscheme of
HomZ(N,G). Our functor is represented by the scheme-theoretical intersection
of this scheme and HomA(N,G). The second claim follows from Proposition
1.10.12 of [13], page 46-47. ¤

Definition 8.6. We say that an A-algebra B has characteristic p if the an-
nihilator of the A-module B contains p. This assumption implies that B is

an fp-algebra. We let xp denote xqdeg(p)

for every fp-algebra B and element
x ∈ B. We say that a Drinfeld module φ : A → B{τ} has characteristic p if the

Documenta Mathematica 10 (2005) 131–198



166 Ambrus Pál

A-algebra B has characteristic p. For every Drinfeld module φ : A → B{τ} of
characteristic p we let φ(p) : A → B{τ} denote the Drinfeld module which as a
homomorphism from A to B{τ} is the composition of φ and the unique homo-
morphism Fp : B{τ} → B{τ} such that Fp(τ) = τ and Fp(x) = xp for every

x ∈ B. Note that φ(p) is a Drinfeld module because the homomorphism x 7→ xp

fixes the field fp, so the composition of φ(p) and the derivation ∂ : B{τ} → B
is the reduction map A → fp as required by definition. As obvious from the
definition the endomorphism x 7→ xp of the group scheme Ga defines an isogeny
F from φ to φ(p) which will be called Frobenius. We let kp denote the algebraic
closure of the field fp.

Proposition 8.7. For every Drinfeld module φ : A → B{τ} of characteristic
p the kernel of the isogeny F is a sub-group scheme of φ[p].

Proof. Let f ∈ A = Fq[T ] be a polynomial which generates p. We are going
to prove the following stronger formulation of the statement which claims that
φ(f) =

∑
n anτn ∈ B{τ} has no terms of degree less then deg(p) in τ . This

claim may be checked locally in the étale topology on B. Let n be an ideal of
A which is relatively prime to p and has at least two different prime factors.
By Lemma 8.5 the B-scheme StrA((A/n)2, φ[n]) is étale, since it is not empty
over any component. The latter can be seen by noticing that the base change
of φ to every geometric point of B has a Γ(n)-level structure. Hence we may
assume that φ is equipped with a Γ(n)-level structure. By Theorem 8.2 the
Drinfeld module φ is the pull-back of the universal Drinfeld module Φ on the
fiber of the fine moduli scheme over fp. It will be sufficient to prove the claim
for the latter. The fiber of the scheme M(n) over fp is smooth, so we only
have to show that the terms of Φ(f) of degree less then deg(p) are vanishing
at the geometric points of this fiber. The latter follows from the fact that the
proposition holds for Drinfeld modules over kp. This last claim is the content
of the remark following Proposition 5.1 of [4], page 178. ¤

Definition 8.8. By the above τdeg(p) divides φ(f) on the right in the ring
B{τ}, so there is a unique isogeny V from φ(p) to φ such that the composition
V ◦F is φ(f). The isogeny V will be called Verschiebung. Note that V depends
on the choice of f . But the latter is unique up to a non-zero element of Fq,
so Ker(V ) is well-defined. Let n be any ideal of A relatively prime to p. We
let I(p) and I(n, p) denote the functor which associates to each fp-algebra B
the set of isomorphism classes of pairs (φ, ι) (of triples (φ, ι, κ), respectively),
where φ : A → B{τ} is a Drinfeld module of rank two and ι is an element
of StrA(A/p,Ker(V )) (and κ is a Γ(n)-level structure of φ, respectively). We
say that two pairs (φ, ι) and (ψ, κ) as above are isomorphic if there is an
isomorphism j : Ga → Ga between φ and ψ such that the composition jp ◦ ι is
equal to κ. (Note that the definition makes sense because jp is an isomorphism
between φ(p) and ψ(p)). We define the concept of isomorphism of the triples
appearing in the definition of I(n, p) similarly.
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Proposition 8.9. Let ψ : A → kp{τ} be a Drinfeld module of rank two. The
following conditions are equivalent:

(i) the group scheme ψ[p] is connected,
(ii) the group scheme Ker(V ) is connected,

(iii) the group scheme Ker(V ) is not étale.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are obvious. If the group
scheme Ker(V ) is not étale then all terms of ψ(f) have degree greater than
deg(p). The latter is equivalent to (i) by Satz 5.3 of [4], page 179. ¤

Definition 8.10. In complete analogy with the classical theory of elliptic
curves over algebraic fields of positive characteristic, such Drinfeld modules are
called supersingular. Let Rp be the maximal unramified extension of Op. By
definition the residue field of the latter is kp. Let Cp denote the category whose
objects are artin local Rp-algebras with residue field kp and the morphisms are
local Rp-homomorphisms. Let φ : A → kp{τ} be a Drinfeld module of rank
two. We say that the Drinfeld module Φ : A → Rp[[x]]{τ} of rank two is its
universal formal deformation if the latter is the universal object over Rp[[x]]
pro-representing the functor which associates to each object B of Cp the set of
strict isomorphism classes of Drinfeld modules over B lifting φ. (Recall that
two Drinfeld modules over B are strictly isomorphic if there is an isomorphism
between them whose pull-back to the residue field is the identity). Under our
assumption A = Fq[T ] it is very easy to see that the universal deformation
exits: up to an isomorphism φ(T ) is of the form T +τ2 or T +τ +∆τ2 where ∆
is a non-zero element of kp. Then we may choose Φ to be the unique Drinfeld
module over Rp[[x]] with Φ(T ) = T + xτ + τ2 or Φ(T ) = T + τ + (∆ + x)τ2.

Proposition 8.11. Assume that the ideal n has at least two different prime
factors. Then the moduli problem M(n, p) is representable by a regular fine
moduli scheme M(n, p).

Proof. Let (φ, ι) be the universal object over the fine moduli scheme M(n).
It is clear that the moduli problem M(n, p) is represented by StrA(A/p, φ[p]).
Now we only have to show that this scheme M(n, p) is regular. The group
scheme φ[p] is étale over the base change of M(n) to X − p − ∞. Hence the
base change of M(n, p) to X − p − ∞ is étale over M(n), in particular it is
regular. (One may see that StrA(A/p, φ[p]) is non-empty by looking at its
fibers over geometric points). Therefore we only have to show that M(n, p) is
regular at the closed points of its special fiber over p. By a suitable analogue of
the Deligne homogeneity principle (see Theorem 5.2.1 of [13], pages 130-134),
whose proof we do not include because it is completely the same as the result
quoted above, we only have to check the latter at the supersingular points.
This is exactly what the next proposition claims. ¤

Let ψ0 : A → kp{τ} be a supersingular Drinfeld module of rank two, and let Ψ :
A → Rp[[x]]{τ} be its universal formal deformation. Fix a ι0 : (A/n)2 → ψ0[n]
level structure of Γ(n)-type. Let M(n, p,Ψ) be the functor which associates to
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each object B of Cp the set of isomorphism classes of triples (Ψ|B , ι, κ), where
Ψ|B is the pull-back of the Drinfeld module Ψ to B, and ι, κ is a Γ(n)-level
and Γ1(p)-level structure of the Drinfeld module Ψ|B , respectively, such that
the base change of ι to kp with respect to the residue map is the level structure
ι0 above.

Proposition 8.12. The following holds:

(i) the set M(n, p,Ψ)(kp) consists of one element,
(ii) the functor M(n, p,Ψ) is pro-represented by the spectrum of a regular

local ring.

Proof. By assumption the group scheme ψ0[p] is connected, so the Drinfeld
module ψ0 has only one Γ1(p)-level structure: the identically zero map. Hence
claim (i) is clear. We may apply the argument of Proposition 5.2.2 of [13],
page 135, to reduce claim (ii) to the seemingly weaker claim that the functor
M(n, p,Ψ) is pro-represented by the spectrum of a local ring whose maximal
ideal is generated by two elements. The pro-representability of M(n, p,Ψ) by
the spectrum of a ring A is clear since M(n, p) itself is representable. By claim
(i) this ring A is local. It is also a finite Rp[[x]]-algebra by Lemma 8.5, so
it is complete. Let (Ψ|A, α, β) be the universal object over A with respect to
the moduli problem M(n, p,Ψ). The section β(1) ∈ Ga(A) corresponds to an
element y ∈ A which lies in the maximal ideal M of A, since the reduction
of β(1) modulo M lies in the connected group scheme ψ0[p]. We claim that
the parameter x of Rp[[x]] and y generate the maximal ideal M. In light of
the universal property and completeness of A we only need to show that for
every B artin local Rp-algebra and φ : A → B homomorphism of local Rp-
algebras with φ(x) = φ(y) = 0 the map φ factors through the residue map
A → A/M = kp, which is equivalent to the rigidity assertion below. ¤

Lemma 8.13. If B is an artin local Rp-algebra and if φ : A → B is a homomor-
phism of local Rp-algebras with φ(x) = φ(y) = 0, then B is a kp-algebra and
the induced triple (Ψ|B , α|B , β|B) comes from the triple (ψ0, ι0, 0) by extension
of scalars kp → B.

Proof. Let f ∈ A = Fq[T ] be a polynomial which generates p. By assumption
β|B(1) ∈ Ga(B) is the zero section, hence the zero scheme of the polynomial

Xqdeg(p)

∈ B[X] is a subgroup scheme of Ψ|B [p]. Hence it must divide the

monic polynomial Ψ|B(f) = X2qdeg(p)

+ · · ·+ fX ∈ B[X]. In particular f must
be zero in B, so the latter is a kp-algebra. Since φ(x) = 0 in B as well, the
Drinfeld module Ψ|B must be constant in the sense that it is the pull-back
of ψ0 via the extension of scalars kp → B. Since the group scheme Ψ|B [n]
is étale, the Drinfeld module Ψ|B has exactly one Γ(n)-level structure up to
isomorphism whose base change to kp with respect to residue map of the local
ring B is isomorphic to the level structure ι0 above, namely the pull-back of ι0
via the extension of scalars. ¤
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Proposition 8.14. Assume that the ideal n has at least two different prime
factors. Then the moduli problem I(n, p) is representable by a smooth affine
curve I(n, p) over fp and the natural map I(n, p) → M(n) ×A fp is finite and
flat.

Proof. Let M(n)p denote the fiber of M(n) over fp and let (φ, ι) be the
universal object over the scheme M(n)p which is a fine moduli for Drinfeld
modules of characteristic p equipped with a Γ(n)-level structure. It is clear that
the moduli problem I(n, p) is represented by StrA(A/p,Ker(V )). In particular
it is finite over M(n)p. By Satz 5.9 of [4], page 181, there are only finitely
many kp-valued points of M(n)p such that the corresponding Drinfeld module
is supersingular. We may reformulate this claim by saying that there is a zero-
dimensional closed sub-scheme M(n)ss

p of the smooth affine curve M(n)p whose
base change to kp represents supersingular Drinfeld modules equipped with a
Γ(n)-level structure. Here a Drinfeld module over a kp-algebra is supersingular
if its p-torsion group scheme is connected. By Propositions 8.7 and 8.9 we
may define M(n)ss

p as the zero scheme of the Hasse invariant of Gekeler, i.e.
the coefficient of the term of φ(f) of degree deg(p), where f is a polynomial
which generates the ideal p. The finite, flat group scheme Ker(V ) over the
open complement M(n)ord

p of M(n)ss
p is étale, because its pull-back to every

kp-valued point is étale by Proposition 8.7. Hence the map I(n, p) → M(n)p

is étale over the open sub-scheme M(n)ord
p by Lemma 8.5. Therefore the pre-

image of M(n)ord
p in I(n, p) is a smooth curve.

Hence we only have to show that I(n, p) is smooth of dimension one at its su-
persingular locus, i.e. at the pre-image of M(n)ss

p , because every finite, almost
everywhere unramified map between smooth curves is automatically flat. It
is sufficient do so after base change to kp. Our argument is very similar to
the proof of Proposition 8.12. Let (ψ0, ι0) be a pair which corresponds to a
supersingular point of M(n), which means that ψ0 : A → kp{τ} is a super-
singular Drinfeld module of rank two and ι0 : (A/n)2 → ψ0[n] is a Γ(n)-level

structure. As the group scheme Ker(V ) ⊆ ψ
(p)
0 [p] is connected, this point has

a unique lift (ψ, ι0, κ0) to I(n, p). Let Ψ : A → kp[[x]]{τ} be the universal
formal deformation of ψ0 for local artin kp-algebras. Since the group scheme
Ψ[n] is étale, there is a unique level structure ι : (A/n)2 → Ψ[n] lifting ι0 up to
strict isomorphism. The pair (Ψ, ι) is the universal object over kp[[x]] which
pro-represents the deformations of the pair (ψ0, ι0) over local artin kp-algebras.

Let A be the local complete kp[[x]]-algebra whose spectrum is StrA(A/p,Ψ[p]):
this ring is the completion of the local ring of the scheme I(n, p) ×fp

kp at
the closed point (ψ, ι0, κ0). It will be sufficient to show that A is a formal
power series ring over kp. We only need to find a parameter in A because we
proved already that A is finite over kp[[x]] and it has dimension one. Note
that A pro-represents the deformations of the triple (ψ0, ι0, κ0) over local artin
kp-algebras. Let (Ψ, ι, κ) be the universal object over this ring. The section
κ(1) ∈ Ga(A) corresponds to an element y ∈ A which lies in the maximal
ideal M of A, since the reduction of κ(1) modulo M lies in the connected
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group scheme Ker(V ) ⊆ ψ
(p)
0 [p]. We claim that y generates the maximal ideal

M. Because of the universal property of A it will be sufficient to show the
following rigidity assertion: if B is an artin local kp-algebra and if φ : A → B
is a homomorphism of local kp-algebras with φ(y) = 0, then the induced triple
(Ψ|B , ι|B , κ|B) comes from the triple (ψ0, ι0, κ0) by extension of scalars kp →
B. Under these assumptions Ker(V ) ⊆ Ψ(p)|B [p] is connected, hence so does
Ψ|B [p], because the latter is the extension of Ker(F ) by Ker(V ). By Lemma
5.5 of [4], page 191, the scheme M(n)ss

p is reduced, so the pair (Ψ|B , ι|B) is
constant. The level structure κ|B is constant by assumption, so does the triple
(Ψ|B , ι|B , κ|B). ¤

Definition 8.15. The natural left action of GL2(A/n) on (A/n)2 induces
a right action of GL2(A/n) on M(n, p), hence a right action on M(n, p),
if the latter exists. We may glue together open pieces of the quotients
M(n, p)/GL2(A/n) for various n to form a coarse moduli scheme for M1(p),
as in Remark 8.3. We let M1(p) denote this moduli scheme. Similarly we may
construct a coarse moduli scheme I(p) representing the functor I(p) by gluing
together open pieces of the quotients I(n, p)/GL2(A/n). Also note that there
is a morphism I(p) → M1(p) ×A fp induced by the natural map which assigns

to every pair (φ, ι) of the type appearing in Definition 8.8 the pair (φ(p), ι).

Proposition 8.16. The coarse moduli M1(p) has the following properties:

(i) it is a model of Y1(p) over the spectrum of A,
(ii) it is normal and affine over Spec(A),

(iii) the reduced scheme associated to its reduction over p has two irreducible
components which are smooth curves over fp and intersect transversally
in N(p) supersingular points.

Proof. We start our proof by showing the following remark: if R is a normal
integral domain and G is a finite group acting on R, then the subring RG of
invariants is also integrally closed. Let Q be the quotient field of R. This field is
equipped with an action of G which extends the action of the latter on R. The
field QG of invariants clearly contains the quotient field of RG. Any element of
QG integral over RG must lie in RG = R ∩ QG because R is integrally closed.
Hence the remark is true.
The first claim is obvious. Zariski-locally on Spec(A) the scheme M1(p) is
the quotient of an affine and regular scheme by a finite group, so the sec-
ond claim is also clear by the remark above. Recall that the reduction of
M0(p) over p has two irreducible components: M00(p) and M01(p), whose
kp-valued points correspond to pairs (φ,Ker(F )) and (φ(p),Ker(V )), respec-
tively, where φ : A → kp{τ} is any Drinfeld module of rank two over kp. Let
M10(p) and M11(p) denote the pre-image of M00(p) and M01(p) via the natu-
ral map M1(p) → M0(p), respectively. The composition of the canonical map
M10(p)red → M10(p) and the restriction M10(p) → M00(p) induces a bijection
between the set of kp-valued points of M10(p)red and M00(p) because the group
scheme Ker(F ) is always connected. By Hilbert’s Nullstellensatz the compo-
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sition map above must be a finite map of degree 1 between irreducible curves,
in particular M10(p)red is connected. But M00(p) is normal, so this map is an
isomorphism. Hence M10(p)red is smooth, too.
For every A-algebra B of characteristic p the set I(p)(B) injects into M1(p)(B)
under the natural map which induces the map I(p) → M1(p)×A fp of Definition
8.15, so the latter is a closed immersion. Clearly M11(p) is the image of I(p), so
it is smooth by Proposition 8.14. The same proposition implies that the natural
map I(p) → M(1) ×A fp is a branched covering which totally ramifies over
the supersingular points. The latter follows from the fact every supersingular
Drinfeld module of rank two over kp has a unique I(p)-structure, because its
p-torsion group scheme is connected. Hence M11(p) is connected, too. For the
same reason we know that every supersingular point in the reduction of M0(p)
over p has a unique lift to M1(p). Claim (iii) is now fully proved. ¤

Lemma 8.17. The finite group scheme S(p) is étale and µ-type of rank N(p),
and as a subgroup of J0(p)(F ) it is cyclic.

Proof. We will gather some facts about the cover X1(p) → X0(p), where
X1(p) is the unique geometrically irreducible non-singular projective curve con-
taining Y1(p), which could be also excavated from [5], section 4 of chapter V
and section 5 of chapter VII, with some effort. We call a geometric point on
a Drinfeld modular curve elliptic, if the automorphism group the underlying
Drinfeld module of rank two is strictly larger than F∗

q . First note that both the
cover Y0(p) → Y0(1) and the cover Y1(p) → Y0(1) could ramify only over the
unique elliptic point of Y0(1). Hence the cover X1(p) → X0(p) could ramify
only at elliptic points and at the cusps. By counting the latter we get that the
cover is actually unramified at them. The number of elliptic points on Y1(p) is
(q2d−1)/(q2−1). The number of elliptic points on Y0(p) is (qd +1)/(q+1), if d
is odd, and it is qd + 1, if d is even. Hence the cover X1(p) → X0(p) ramifies if
and only if d is even, when the ramification index is q +1 at each elliptic point.
We get that the cover X2(p) → X0(p) is unramified. Since it is also Galois over
F with a cyclic Galois group of order N(p), the lemma follows immediately by
the same standard argument as in the proof of Proposition 11.6 of [14], page
100. ¤

Proposition 8.18. The image of S(p) with respect to the specialization map
into the the special fiber of the Néron model of J0(p)

(i) at ∞ lies in the connected component of the identity,
(ii) at p does not intersect the connected component of the identity.

Proof. First note that the two claims make sense because S(p) is étale, so it
has a well-defined extension into the Néron model of J0(p). In this paragraph
we will use the notation and results of [11] without extra notice. (Recall that

Γ0(p) = Γ0(p) under the notation introduced by Definition 7.1). Let K∞ be
the maximal unramified extension of F∞ and let R∞ be its discrete valuation
ring. Let J00(p)(K∞) and J20(p)(K∞) be the pre-image of the connected com-
ponent under the reduction map in the Lie groups J0(p)(K∞) and J2(p)(K∞),
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respectively. In order to prove claim (i) it will be sufficient to construct a sub-
group of order N(p) in the kernel of the map j : J00(p)(K∞) → J20(p)(K∞)
induced by Picard functoriality by the previous lemma. By the definition of
the Abel-Jacobi map as an automorphy factor there is a commutative diagram
of exact sequences:

0 −−−−→ Hom(Γ0(p),R∗
∞)

ΦAJ−−−−→ J00(p)(K∞) −−−−→ 0

i

y j

y

0 −−−−→ Hom(Γ2(p),R∗
∞)

ΦAJ−−−−→ J20(p)(K∞) −−−−→ 0

where the first vertical map is induced by the abelianization of the canonical
injection Γ2(p) → Γ0(p). Of course Γ2(p) is the normal arithmetic subgroup of
Γ0(p) corresponding to the cover Y2(p) → Y0(p). By the above we only need to
construct a sub-group of the kernel of the map i whose order is N(p). Since R∗

∞

contains a cyclic group of order n for any natural number n relatively prime
to p, it will be sufficient to construct a surjective homomorphism h : Γ0(p) →
Z/N(p)Z whose kernel contains Γ2(p). We define h as the composition of the
reduction map r : Γ0(p) → B(A/p) ⊂ GL2(A/p), the upper left corner element
a : B(A/p) → (A/p)∗ and the unique surjection p : (A/p)∗ → Z/N(p)Z.

Let’s start the proof of the second claim. For every projective curve C (reduced,
one-dimensional, but not necessarily irreducible projective scheme over a field)
let Pic0(C) denote the Picard group of divisors of total degree zero. First note
that there is a projective scheme M1(p) over A which contains M1(p) as a
Zariski-dense open sub-scheme such that the natural map p : M1(p) → M0(p)
has an extension p : M1(p) → M0(p). We may define M1(p) as the closure of
the graph of p in the product of M0(p) and any projective completion of M1(p)

over A. Let r : M̃0(p) → M0(p) be the minimal resolution of singularities of the
surface M0(p) over A. Because M0(p) is either regular or has a singularity of
type Aq over fp at a supersingular point, the induced map r∗ : Pic0(M0(p)×A

kp) → Pic0(M̃0(p) ×A kp) is an isomorphism. Let M̃1(p) be the minimal

resolution of singularities of the fiber product M1(p) ×A M̃0(p) over A. By
construction there is a commutative diagram:

M̃1(p)
t

−−−−→ M̃0(p)

s

y r

y

M1(p)
p

−−−−→ M0(p)

where the vertical maps are birational. Let S1 and S̃1 be the closure of the
special fiber of M1(p) over kp in M1(p)×A kp and its pre-image with respect to
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s, respectively. By Picard functoriality we have another commutative diagram:

Pic0((S̃1)red)
j∗

←−−−− Pic0((M̃1(p) ×A kp)red)
t∗

←−−−− Pic0(M̃0(p) ×A kp)

s|∗
S1

x s∗

x r∗

x

Pic0((S1)red)
i∗

←−−−− Pic0((M1(p) ×A kp)red)
p∗

←−−−− Pic0(M0(p) ×A kp)

By the classical theorem of Raynauld already quoted above it will be sufficient
to show that the map t∗ is injective in order to prove the second claim. Because
r∗ is bijective, trivial diagram chasing shows that we only have to prove that
the composition s|∗

S1
◦i∗◦p∗ is injective. The scheme (S1)red has two irreducible

components. Their image with respect to p intersect inside of the Zariski open
set M0(p) only, so they themselves intersect inside of the Zariski open set M1(p)
only. Hence Zariski’s main theorem implies that the pre-image of every cross-

point of (S1)red is connected in (S̃1)red as M1(p) is normal. Therefore the
restriction s|∗

S1
of the map s∗ is injective on the toric part of the semi-abelian

variety Pic0((S1)red). On the other hand the composition of p∗ and the map
i∗ induced by the closed immersion i : (S1)red → (M1(p)×A kp)red is injective
which can be seen by applying the argument in the proof of Proposition 11.9
of [14], pages 102-103. The semi-abelian variety Pic0(M0(p)×A kp) is a torus,
so the composition i∗ ◦ p∗ maps into the toric part of the semi-abelian variety
Pic0((S1)red). Therefore the homomorphism s|∗

S1
◦i∗◦p∗ is injective, as claimed.

¤

In the next claim and its proof we let J0(p)l and J0(p) denote the Galois module
J0(p)(F ) and the Néron model of the Jacobian J0(p), respectively.

Lemma 8.19. Let l be an Eisenstein prime and let B be a subgroup of either
C(p)l or S(p)l. Then we have an exact sequence:

0 −→ B −→ J0(p)I
l −→ (J0(p)l/B)I −→ 0,

where the subscript denotes the module of elements fixed under the action of
the inertia group I at p.

Proof. (Compare with Lemma 16.5 of [14], pages 125-126). What we need
to show is that the map J0(p)I

l −→ (J0(p)l/B)I is surjective. Any element of
J0(p)I

l is fixed by the absolute Galois group of some finite, unramified extension
K of Fp. Since the formation of Néron models commutes with unramified base
change, the group C(p) maps isomorphically onto the group of components of
J0(p) over K. Hence J0(p)I

l = J00(p)(fp)l×C(p), where J00(p) is the connected
component. Because J0(p) has semi-stable reduction, the monodromy filtration
on J0(p)l has two steps, in other words (γ − 1)e ∈ J0(p)I

l for any e ∈ J0(p)l

and γ ∈ I. Since J0(p)l is an l-divisible group, its image under the map
γ − 1 is l-divisible, too. As l divides the order of C(p) the l-divisible part of
J0(p)I

l is the factor J00(p)(fp)l of the direct product decomposition above. We
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may conclude that (γ − 1)e must lie in J00(p)(fp). Let e be any element of
(J0(p)l/B)I and take an element e in J0(p)l which maps to e. For any γ ∈ I
we have (γ − 1)e ∈ B by definition. By the above this expression also lies in
J00(p)(fp)l whose intersection with B is trivial because both C(p) and S(p) has
trivial intersection with that group. (The former is proved in 5.11 of [6], page
235, the latter is (ii) of Proposition 8.18). Hence e ∈ J0(p)I

l . ¤

9. The group scheme D(p)[l]

Definition 9.1. The subgroup B(A) of upper triangular matrices of GL2(A)
is the stabilizer of the point ∞ on the projective line in GL2(A) with respect
to the Möbius action. Also note that B(A) leaves the set Ωc = {z ∈ Ω|c ≤ |z|i}
invariant for any positive c ∈ Q. If u : Ω −→ C∗

∞ is a B(A)-invariant holomor-
phic function then its van der Put logarithmic derivative r(u) : GL2(F∞) −→ Z
is also invariant with respect to the left regular action of B(A). In particular
the integral

r(u)0 =

∫

A\F∞

r(u)

(
1 x
0 1

)
dµ∞(x)

is well-defined, where µ∞ is the Haar measure introduced in Definition 5.1. Let
e(z) : Ω → C∗

∞ denote the classical Carlitz-exponential:

e(z) = z
∏

0 6=λ∈A

(
1 −

z

λ

)

and define t(z) as e(z)q−1. It is well known (see for example 2.7 of [11], page
44-45) that the function t−1 is B(A)-invariant and it is a biholomorphic map
between the quotient B(A)\Ωc and a small open disc around 0 punctured at 0
for a sufficiently large c. We say that the B(A)-invariant holomorphic function
u on Ω is meromorphic at ∞ if the composition of u and the inverse of the
biholomorphic map t is meromorphic at 0 for some (and hence all) such c
number. In this case we can speak about its value, order of zero or order
of pole at ∞. Of course our definition is just a specialization of the general
definition in [5].

Proposition 9.2. Assume that the holomorphic function u : Ω −→ C∗
∞ is

B(A)-invariant and it is meromorphic at ∞ in the sense defined above. Then
its order of vanishing at ∞ is equal to r(u)0/(q − 1).

Proof. It is sufficient to prove the claim in the following two cases:

(i) the function u is non-zero at ∞,
(ii) the function u is equal to t(z).

In the first case we need to show that r(u)0 = 0. Let υ be a uniformizer of F∞

as in Definition 3.4. Since r(u) is a harmonic cochain on the Bruhat-Tits tree
of GL2(F∞), it satisfies the identity:

r(u)(g) =
∑

ǫ∈Fq

r(u)(g

(
υ ǫ
0 1

)
)
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for all g ∈ GL2(F∞). By an n-fold application of this identity we get the
formula:

∫

A\F∞

r(u)

(
υ−n x
0 1

)
dµ∞(x) =

∑

ǫ∈Fq

∫

A\F∞

r(u)

(
υ1−n x + ǫ

0 1

)
dµ∞(x)

=q

∫

A\F∞

r(u)

(
υ1−n x

0 1

)
dµ∞(x)

= . . . = qnr(u)0.

Because u is non-zero at ∞, its absolute value is constant on the the set Ωc

for a sufficiently large c as the latter set maps to a small neighborhood of 0
with respect to t−1. Choose the natural number n large enough such that the
positive number c = |υ−n| has the property above. For every ρ ∈ GL2(F∞) let
C(ρ) denote the annulus

C(ρ) = {z ∈ P1(C∞)|1 = |ρ−1(z)|}.

By our assumptions the holomorphic function u has constant absolute value

on the non-empty affinoid subdomain C(
(

υ−n x

0 1

)
) ∩ Ωc for any x ∈ F∞ hence

either by its description in 1.7.3 of [11], page 40 as a difference of logarithms
of absolute values on subdomains of this affinoid or by the results of [16], the

value of r(u)(
(

υ−n x

0 1

)
) is zero. Hence the integral on the left in the equation

above is also zero which implies that r(u)0 is zero, too.
In the second case we need to show that r(t(z))0 = 1 − q. By definition:

r(e(z))(g) = −|{λ ∈ A|λ /∈ D(g)}|

for every g ∈ GL2(F∞) such that ∞ ∈ D(g). As

∞ ∈ D(

(
1 x
0 1

)
) = {z ∈ P1(C∞)|1 < |z − x|}

for any x ∈ F∞, we get:

r(e(z))(

(
1 x
0 1

)
) = −|{λ ∈ A||λ − x| ≤ 1}.

Since for every x ∈ F∞ there are exactly q elements λ of A such that |λ−x| ≤ 1
holds, we get that r(t(z)) = −(q − 1)qµ∞(A\F∞) = 1 − q. ¤

Proposition 9.3. (i) In C(p) the kernel of the specialization map into the
group of connected components of the special fiber of the Néron model of J0(p)
at ∞ is its unique cyclic group of order t(p).
(ii) The intersection of C(p) and S(p) is their unique cyclic group of order t(p).
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Proof. Claim (i) of the proposition above is just (i) of Theorem 5.9 in [7],
page 371. The intersection of C(p) and S(p) is a constant and a µ-type Galois
module at the same time, so it is contained in the unique cyclic group of
order t(p) in the cuspidal divisor group. Hence it is sufficient to prove that
the latter lies in the kernel of the homomorphism J0(p) → J2(p) induced by
Picard functoriality. By Corollary 3.18 of [8] on page 198 the modular unit
∆/∆p admits an r(p)-th root in O∗(Ω), where r(p) = (q − 1)2, if d is odd, and
r(p) = (q − 1)2(q + 1), if d is even. (Incidentally, the latter also follows from
Lemma 6.7.) Let Dp be such a root. By Theorem 3.20 of [8], page 199 the
latter transforms under Γ0(p) through a certain character ωp : Γ0(p) → C∗

∞

of order q − 1 such that ω
(q−1)/t(p)
p is trivial on Γ2(p) using the notations of

the proof of Proposition 8.18. Hence D
(q−1)/t(p)
p defines a rational function on

X2(p) whose divisor generates the pull-back of the subgroup above. ¤

Definition 9.4. Let l be a prime dividing t(p). We are going to construct
a group scheme D(p)[l] which will play a role similar to S(p)[l] ⊕ C(p)[l] for
Eisenstein primes l not dividing t(p). Let l(p) be the largest l-power dividing

t(p). Assume first that l divides N(p)
l(p) . In light of the proposition above it is

clear that in this case there is an x ∈ S(p) and a y ∈ C(p) such that

(i) the order of x and y are both equal to l · l(p),
(ii) we have lx = ly ∈ S(p) ∩ C(p),

(iii) the natural topological generator Frob of the maximal constant field
extension of F maps x to (1 + αl(p))x for some 1 ≤ α < l integer.

Property (iii) holds because the Galois module generated by x is isomorphic to
µl·l(p) by property (i). We define D(p)[l] as the group generated by u = x − y
and v = αl(p)x = αl(p)y.

Lemma 9.5. The group D(p)[l] is l-torsion, Galois-invariant and as a Galois
module everywhere unramified.

Proof. The order of u, v is l by (i) and (ii) of the preceding paragraph above,
so the first claim holds. The element v is fixed by the absolute Galois group
and the latter acts on u through its maximal unramified quotient. By (iii)
above Frob(u) = u + v, so the last two claims are true as well. ¤

Remark 9.6. By the above D(p)[l] contains S(p)[l] and its quotient by this
subgroup is a constant Galois module of order l which will be denoted by
F(p)[l]. The simple construction above does not exist when l does not divide
N(p)
l(p) . In this case we will give another, more involved construction which will

be denoted by D(p)[l], too. Actually this case occurs, here is a little analysis.
First assume that d is odd. Since t(p) is the greatest common divisor of d and
q − 1 in this case, we may compute as follows:

N(p) =

d−1∑

k=0

(1+(q−1))k ≡
d−1∑

k=0

1+k(q−1) ≡ d+(q−1)
d(d − 1)

2
≡ d mod l·l(p).
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Hence the phenomenon occurs if and only if l · l(p) does not divide d. Now
we consider the case when d is even. In this case t(p) is the greatest common
divisor of d/2 and q − 1, so we may compute as follows:

N(p) =

d/2−1∑

k=0

(1 + (q − 1))2k

≡

d/2−1∑

k=0

1 + 2k(q − 1) ≡
d

2
+ (q − 1)

d(d − 2)

4
≡

d

2
mod l · l(p).

Hence the phenomenon occurs if and only if l · l(p) does not divide d/2. Ob-
viously these conditions can always be satisfied by choosing an appropriate
d.

Notation 9.7. We start our construction by introducing a set of new notations
and definitions. Every α ∈ fp is represented by a unique element of Fq[T ] whose
degree is less then deg(p), which will be denoted by the same symbol by abuse
of notation. Let Γ(p) ⊳ GL2(A) be the principal congruence subgroup of level
p, that is the kernel of the reduction map GL2(A) → GL2(A/p). For every
0 6= (α, β) ∈ f

2
p let (α : β) denote the set of points (a : b) ∈ P1(F ) where a and

b are in A, they are relatively prime and (a, b) ≡ (α, β) mod p. This set is an
orbit of the natural left action of Γ(p) on P1(F ). As the quotient Γ(p)\P1(F ) is
the set of cusps of the Drinfeld modular curve Γ(p)\Ω parameterizing Drinfeld
modules of rank two equipped with a full level p-structure, we may identify the
set (α : β) and the cusp it represents.

Definition 9.8. Let π : f∗p → f
∗
p /F∗

q be the canonical surjection and let I ⊂ f
∗
p

be a complete set of representatives of the cosets of the projection π. We will
specify a convenient choice of I later. Let φ : f

∗
p /F∗

q → µl ⊆ F∗
q be the unique

surjection onto the l-th roots of unity. For every α ∈ f
∗
p let α denote φ ◦ π(α)

and for every d ∈ A not in p let d similarly denote the value of φ ◦ π on
the reduction of d mod p by slight abuse of notation. For every x ∈ µl let
CI(x) ⊂ f

∗
p be the set {α ∈ I|α = x}. For any ring R let R[µl]0 denote the

set of all R-valued functions on µl whose sum over the elements of µl is zero.
For every D ∈ Z[µl]0 we define the holomorphic function ǫD : Ω → C∗

∞ as the
product:

ǫD(z) =
∏

x∈µl

∏

α∈CI(x)

ǫp(0, α)(z)D(x).

Definition 9.9. Let Y#l(p) → Y0(p) denote the unique covering intermediate
of the covering Y2(p) → Y0(p) which is a cyclic Galois covering of order l.
Let J#l(p) denote the Jacobian of the unique geometrically irreducible non-
singular projective curve X#l(p) containing Y#l(p). The kernel of the map
J0(p) → J#l(p) induced by Picard functoriality is the unique subgroup of
the Shimura group of order l. The set of geometric points of X#l(p) in the
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complement of Y#l(p) are the cusps of X#l(p). The quotients Γ1(p)\Ω and
Γ#l(p)\Ω of the arithmetic subgroups

Γ1(p) ={

(
a b
c d

)
∈ GL2(O)|c ≡ 0 mod p, a ≡ 1 mod p} and

Γ#l(p) ={

(
a b
c d

)
∈ GL2(O)|c ≡ 0 mod p, a = 1}

of GL2(A) are the modular curves Y1(p) and Y#l(p), respectively. Since for
every subgroup Γ ≤ GL2(A) the set of cusps of the modular curve Γ\Ω is the
quotient Γ\P1(F ), the set

{(α : 0)|0 6= α ∈ fp} ∪ {(0 : β)|0 6= β ∈ fp}

is a full set of representatives for the cusps of Y1(p). It is also clear that set of
sets above also represent the cusps of Y#l(p) and the sets (α : 0) and (β : 0)

(respectively (0 : α) and (0 : β)) represent the same cusp if and only if α = β.

Proposition 9.10. The function ǫD is a modular unit on Y#l(p) defined over
F .

Proof. For every (α, β) ∈ f
2
p we have the following transformation law:

ǫp(α, β)

(
az + b

cz + d

)
=

1

cz + d
ǫp(aα + cβ, bα + dβ)(z), ∀

(
a b
c d

)
∈ GL2(A).

From this formula it is clear the every holomorphic function which is the the
product of functions of the form ǫp(α, β)(z)/ǫp(α

′, β′)(z), such as ǫD, is in-
variant under the action of Γ(p), so it defines a holomorphic function on the
Drinfeld modular curve Y (p) = Γ(p)\Ω parameterizing Drinfeld modules with
full level p-structure. Moreover every function on Y (p) arising from such a
quotient is the base change to C∞ of the universal modular object associating
to every rank two Drinfeld module ψ : A → K{τ} of general characteristic
equipped with a level structure ι : f

2
p → ψ[p] the fraction ι(α, β)(z)/ι(α′, β′),

so it is a modular unit defined over F . Hence we only have to show that the
function ǫD is actually invariant under the action of Γ#l(p), too.

For every β ∈ f
∗
p and α ∈ CI(x) there is a unique αβ ∈ CI(βx) and a tα(β) ∈ F∗

q

such that βα = tα(β)αβ . Clearly the map CI(x) → CI(βx) given by the rule
α 7→ αβ is bijective. Hence

∏

α∈CI(x)

tα(β) ·
∏

γ∈CI(βx)

γ =
∏

α∈CI(x)

tα(β)αβ = β
qd

−1
l(q−1) ·

∏

α∈CI(x)

α.

Substituting the equation above into the third line of the equation below we
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get the following identity:

ǫD

(
az + b

cz + d

)
=

∏

x∈µl

∏

α∈CI(x)

1

(cz + d)D(x)
ǫp(0, dα)(z)D(x)

=
∏

x∈µl

(cz + d)−
D(x)(qd

−1)
l(q−1)

∏

α∈CI(x)

ǫp(0, tα(d)αd)(z)D(x)

=
∏

x∈µl

∏

α∈CI(x)

tα(d)D(x) ·
∏

y∈µl

∏

β∈CI(dy)

ǫp(0, β)(z)D(y)

=
∏

α∈I

αD(α)−D(dα) · ǫD(d·)(z), ∀

(
a b
c d

)
∈ Γ0(p),

where we also used the transformation law at the start of our proof in the
first equation and the simple identity ǫp(γα, γβ)(z) = γǫp(α, β)(z) valid for all
γ ∈ F∗

q in the third equation. From this identity the claim follows immediately.
¤

Lemma 9.11. For any 0 6= z ∈ A ⊂ A∗
f and (α, β) ∈ (fp)

2 we have:
∫

F\A

r(ǫp(α, β))(

(
z−1 x
0 1

)
)dµ(x) = 1−ρ(α)ρ(β)−q1+deg(αz)−deg(p)(1−ρ(α)).

Proof. Recall our convention which for every v ∈ A∗
f denote the unique idele

whose finite component is v and whose ∞-adic component is 1 by the symbol v
as well. The equation above should be understood in this sense. By the Limit
Formula 4.8 the restriction of r(ǫp(α, β)) onto B(A) is the limit of automorphic
forms, so in particular it is B(F )-invariant. Hence the integral on the right
hand side in the equation above, which we will denote by r(ǫp(α, β))0(z−1), is
well-defined. Fix an f ∈ A generator of the ideal p. For all α ∈ fp we have:

ζp(α, z−1, s) =
∑

0 6=u∈Fq[T ]
u≡αz mod (zf)

q−s deg(u).

Applying the same argument as in the proof of Proposition 5.8, we get that:

ζp(α, z−1, s) = (1 − ρ(α))q−s deg(αz) +
(q − 1)q−s deg(fz)

1 − q1−s
.

An immediate consequence of this equation and Proposition 5.2 is that the
function Ep(α, β, ·, s)0(z−1), originally defined for Re(s) > 1 only, has a mero-
morphic continuation to the whole complex plane and

Ep(α, β, ·, s)0(z−1) = −ρ(α)ρ(β) − q1+deg(αz)−deg(p)(1 − ρ(α)) +
q1+deg(z)

q + 1
,

arguing the same was as in the proof of Proposition 5.8 and using the fact that
|p| = q− deg(p). Hence by the Limit Formula 4.8 the following equation holds:

r(ǫp(α, β))0(z−1) =Ep(α, β, ·, 0)0(z−1) − Ep(0, 0, ·, 0)0(z−1))

=1 − ρ(α)ρ(β) − q1+deg(αz)−deg(p)(1 − ρ(α)). ¤
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Proposition 9.12. For any D ∈ Z[µl]0 and β ∈ f
∗
p the order of vanishing of

the modular unit ǫD at the cusp (0 : β) is zero and at the cusp (β : 0) is equal
to:

1

1 − q

∑

α∈I

D(α/β)qdeg(α).

Proof. Let ord(α:β)(u) denote the order of vanishing of any modular unit u

on the curve Y#l(p) at the cusp (α : β). Let
(

a b

c d

)
∈ Γ0(p) be a matrix such

that d ≡ β mod p. Then:

ord(0:β)ǫD(z) =ord(0:β)ǫD(β
−1

·)
(
az + b

cz + d
) = ord(0:1)ǫD(β

−1
·)
(z) =

r(ǫ
D(β

−1
·)
)0

q − 1

=
1

q2 − q

∑

α∈I

D(α/β)r(ǫp(0, α))0(1) =
1

q2 − q

∑

α∈I

D(α/β) = 0.

Let us explain why this sequence of equalities hold. The first equation is the
consequence of the transformation rule we derived at the end of the proof of
Proposition 9.10. The second equation follows from the fact that the image of

the cusp (0 : 1) under the automorphism of Y#l(p) induced by
(

a b

c d

)
is the cusp

(0 : β). The group Γ#l(p) contains B(A), so the third equation is just a special
case of Proposition 9.2. Note that for every g : F\A → C continuous and Of -
translation invariant function there is a unique g∞ : A\F∞ → C continuous
function such that g(x) = g∞(x) for every x ∈ F∞. Moreover

∫

F\A

gdµ(x) = µf (Of )

∫

A\F∞

g∞(x)dµ∞(x)

using the notation of Definition 5.1. Hence the fourth equation follows from
the relation between the usual van der Put derivative and its adelic version
introduced in Notation 4.4. The fifth equation is just a special case of Lemma
9.11 and the last equation holds by definition.

For any
(

h j

m n

)
∈ Γ#l(p) we have hn ∈ F∗

q ⊂ f
∗
p mod p and h = 1 by definition,

hence the equation n = 1 also holds as F∗
q is in the kernel of φ ◦ π. Therefore

the group Γ#l(p) is normalized by the matrix
(

0 1

f 0

)
, where f ∈ A is again

a generator of the prime ideal p. Hence this matrix induces an involution of
the modular curve Y#l(p) exchanging the cusps (0 : β) and (β : 0). For every
H ∈ Z[µl]0 we define the holomorphic function ǫ̂H : Ω → C∗

∞ as the product:

ǫ̂H(z) =
∏

x∈µl

∏

α∈CI(x)

ǫp(α, 0)(fz)H(x).

Then the transformation law at the start of the proof of Proposition 9.10 imply
that

ǫ̂H(
1

fz
) = ǫH(z),
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in particular ǫ̂H is also a modular unit on the curve Y#l(p). Therefore

ord(β:0)ǫD(z) =ord(β:0)ǫD(β
−1

·)
(
az + b

cz + d
) = ord(1:0)ǫD(β

−1
·)
(z)

=ord(1:0)ǫ̂D(β
−1

·)
(

1

fz
) = ord(0:1)ǫ̂D(β

−1
·)
(z) =

r(ǫ̂
D(β

−1
·)
)0

q − 1

=
1

q2 − q

∑

α∈I

D(α/β)r(ǫp(α, 0)(f ·))0(1)

=
1

q2 − q

∑

α∈I

D(α/β)r(ǫp(α, 0))0(f−1)

=
1

q2 − q

∑

α∈I

D(α/β)(1 − q1+deg(α))

=
1

1 − q

∑

α∈I

D(α/β)qdeg(α). ¤

Corollary 9.13. Let D ∈ Z[µl]0 be a function such that D(y) mod l does
not depend on y ∈ µl. Then the divisor of the modular unit ǫD is divisible by
l.

Proof. The property of D in the claim above is clearly invariant under the
action of the group ring Z[µl], hence it is sufficient to show that

∑

y∈µl

D(y)
∑

α∈CI(y)

qdeg(α) ≡ 0 mod (q − 1)l

when D(y) = 1 + lC(y) for some function C : µl → Z. We have
∑

α∈CI(y)

qdeg(α) =
∑

α∈CI(y)

(1 + (q − 1))deg(α)

≡
∑

α∈CI(y)

(1 + (q − 1) deg(α)) mod (q − 1)l

for any y ∈ µl, therefore

∑

y∈µl

D(y)
∑

α∈CI(y)

qdeg(α) ≡
qd − 1

(q − 1)l

∑

y∈µl

D(y)

+ (q − 1)
∑

y∈µl

(1 + lC(y))
∑

α∈CI(y)

deg(α)

≡(q − 1)
∑

α∈I

deg(α) ≡ (q − 1)

d−1∑

j=0

jqj

≡(q − 1)

d−1∑

j=0

j ≡
(q − 1)d(d − 1)

2
mod (q − 1)l.
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If l is odd then 2 is invertible modulo l and l divides d. If l = 2 then d is even
and l divides d/2. ¤

Lemma 9.14. (i) If M ≤ Z[µl]0 is a µl-invariant Z-submodule then M is either
trivial or its Z-rank is l − 1.

(ii) If M1 © M2 ≤ Zl[µl]0 are non-trivial µl-invariant Zl-submodules and the
natural µl-action on the quotient M2/M1 is trivial then M2/M1 is a cyclic
group of order l.

Proof. The Q-span MQ of M in the Q-vectorspace Q[µl]0 has the same Q-
rank as the Z-rank of the free Z-module M . Since MQ is also µl-invariant, it is
the direct sum of some of the irreducible µl-invariant subspaces. On the other
hand it is also fixed by the natural action of the absolute Galois group of Q on
the tensor product Q[µl]0 = Q[µl]0 ⊗ Q. This action permutes the irreducible
µl-invariant subspaces transitively, therefore MQ is either trivial or it is the

whole Q-vector space.

We start the proof of the second claim by noting that the first claim also
holds when the role of the ring Z is played by the ring Zl. The proof is
identical. Hence for every non-trivial µl-invariant Zl-submodule M ≤ Zl[µl]0
there is a unique natural number n(M) ∈ N such that ln(M)Zl[µl]0 ≤ M
but ln(M)−1Zl[µl]0 6≤ M . Let σ be a generator of µl. We are going to show
that there is a natural number m(M) ∈ N such that M is the image of the
endomorphism x 7→ (1 − σ)m(M) by induction on n(M). The µl-invariant
subgroups of the quotient Zl[µl]0/Zl[µl]0 = Fl[µl]0 are exactly the proper ideals
of the group ring Fl[µl] = Fl[T ]/(T − 1)l. As the latter form a chain whose
Jordan-Hölder components are all isomorphic to Fl, the claim is now obvious
when n(M) = 1. Since the map x 7→ (1 − σ)m(M) is injective, the general
case follows using induction and the same argument where the role of Zl[µl]0
is played by M + ln(M)−1Zl[µl]0. Now claim (ii) follows. ¤

Definition 9.15. Let F#l(p) ⊂ J#l(p)(F ) denote the Galois module gen-
erated by the linear equivalence classes of degree zero divisors supported on
the cusps of X#l(p) mapping to the cusp 0 of the curve X0(p). Moreover let
F(p)[l] ⊆ F#l(p) denote subgroup of elements of l-primary order fixed by the
decking transformations of the cover X#l(p) → X0(p). The next proposition
partially justifies our choice of notation.

Proposition 9.16. The group F(p)[l] is cyclic of order l.

Proof. Let J ⊂ Ker(φ ◦ π) ⊂ f
∗
p be a complete set of representatives of the

cosets of the restriction of the projection π onto Ker(φ ◦ π). Moreover let ξ be

a generator of the cyclic group f
∗
p . We define the set I as the union ∪l−1

j=0ξ
jJ .

Pick a
(

h j

m n

)
∈ Γ0(p) matrix with n = ξ and let D ∈ Z[µl]0 be the function
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with D(1) = 1, D(ξ) = −1 and all the other values are zero. Then

l−1∏

j=0

ǫD(

(
h j
m n

)j

z) =
∏

α∈J

ǫp(0, α)(z)

ǫp(0, ξα)(z)
·
∏

α∈J

ǫp(0, ξα)(z)

ǫp(0, ξ2α)(z)
· · ·

∏

α∈J

ǫp(0, ξ
l−1α)(z)

ǫp(0, ξlα)(z)

=
∏

α∈J

ǫp(0, α)(z)

ǫp(0, ξlα)(z)
=

∏

α∈J

tξl(α)−1 = ξ
qd

−1
1−q /∈ (F ∗)l

using the notation of the proof of Proposition 9.10. Let Y and P denote the
group of degree zero divisors supported on the cusps of X#l(p) mapping to the
cusp 0 of the curve X0(p) and its subgroup of principal divisors, respectively.
Let U denote the group of divisors of units of the form ǫD introduced in Defi-
nition 9.8. Fix a non-zero element σ ∈ µl. For every y ∈ µl let z 7→ zy denote
the decking transformation of X#l(p) corresponding to y. It is characterized
by the property that it maps the cusp (0 : 1) to (0 : α) where α = y. For
every non-zero F -rational function g on the curve X#l(p) whose divisor lies in
P the divisor of the product N(g) =

∏
y∈µl

g(zy) is µl-invariant, hence it is

trivial. Therefore N(g) is constant. It is also clear that its class in F ∗/(F ∗)l

only depends on the divisor of g modulo l. We let N denote the corresponding
homomorphism P/lP → F ∗/(F ∗)l as well. It is clear from the above that this
homomorphism is non-trivial restricted to U/lU . An immediate consequence is
that the µl-invariant modules P and U are non-trivial. Hence they have Z-rank
l − 1 by claim (i) of Lemma 9.14. In particular the group F#l(p) is torsion.
Note that the map N is µl-invariant, so it induces an embedding of U/(1−σ)U
into F ∗/(F ∗)l. We claim that U ⊗ Zl = P ⊗ Zl. If this were false then there
would be an element H of P such that (1− σ)H lies in U but it does not lie in
(1−σ)U by claim (ii) of Lemma 9.14. The latter can be applied as the module
Y⊗Zl is isomorphic to Zl[µl]0 as a µl-module. Since N(g(z)/g(zσ)) = 1 for any
F -rational function g on X#(p) whose divisor is in P, we get a contradiction.
On the other hand we claim that P ⊗Zl is strictly smaller than Y ⊗Zl. By the
above we only have to prove this for U ⊗ Zl. It will be enough to show that
the unique smallest µl-invariant Zl-submodule of U ⊗ Zl strictly larger than
l(U ⊗Zl) is contained in l(Y ⊗Zl). But this is exactly the content of Corollary
9.13. Therefore the l-torsion of F#l(p) is non-trivial, and the claim now follows
from claim (ii) of Lemma 9.14. ¤

Definition 9.17. We define D(p)[l] ⊂ J0(p)(F ) to be the pre-image of
F(p)[l] under the map J0(p) → J#l(p) induced by Picard functoriality.

In this paragraph let S denote the base change of the F -scheme S to F .
Since the map X#l(p) → X0(p) is a Galois covering with Galois group µl,

there is a Hochschild-Serre spectral sequence Hp(µl,H
q(X#l(p), Ql/Zl)) ⇒

Hp+q(X0(p), Ql/Zl)) which gives rise to an exact sequence

H1(X0(p), Ql/Zl)) −→ H1(X#l(p), Ql/Zl)
µl −→ H2(µl,H

0(X#l(p), Ql/Zl)) = 0

By definition D(p)[l] contains S(p)[l] and its quotient by this subgroup is iso-
morphic to the Galois module F(p)[l] by the above. Also note that D(p)[l] is
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l-torsion as our choice of notation indicates. We argue as follows: the compo-
sition of the morphisms J0(p) → J#l(p) and J#l(p) → J0(p) induced by Picard
and Albanese functoriality respectively is multiplication by l on J0(p). On the
other hand the image of every element of F(p)[l] under the Albanese map is
represented by the direct image of a divisor supported on the pre-image of the
cusp 0 under the map X#l(p) → X0(p), hence it must be zero.

Proposition 9.18. The following holds:

(i) the Galois modules S(p)[l] and F(p)[l] are constant of order l,
(ii) the Galois module D(p)[l] is everywhere unramified,

(iii) both S(p)[l] and D(p)[l] are T(p)-invariant and annihilated by the Eisen-
stein ideal,

(iv) the exact sequence:

0 −→ S(p)[l] −→ D(p)[l] −→ F(p)[l] −→ 0

of Galois modules does not split over F ,
(v) the intersection of D(p)[l] and Hom(Γ0(p), C∗

∞)[l] is S(p)[l].

Proof. First consider the case when l divides N(p)/l(p). Claims (i) and (ii)
are immediate consequences of Lemma 9.5. In order to show claim (iii) it will
be sufficient to show that both C(p) and S(p) are T(p)-invariant and annihilated
by the Eisenstein ideal, since in this case every subgroup of the sum C(p)+S(p)
is fixed by the Eisenstein ideal as it acts on the latter by scalar multiplication.
Using the same argument again we are reduced to show that T (p) and M(p)
are T(p)-invariant and annihilated by the Eisenstein ideal. These groups are
obviously Hecke-invariant, and the annihilation by the Eisenstein ideal follows
from the Eichler-Shimura relation, spelled out in Lemma 7.16 and Lemma 10.4,
respectively. By the proof of Lemma 9.5 the exact sequence above is not even
split over F∞, hence claim (iv) holds. The the intersection of D(p)[l] and
Hom(Γ0(p), C∗

∞)[l] contains S(p)[l] by Proposition 8.18. If it were larger, then
the group scheme D(p)[l] would be µ-type over F∞ which it is not by the above,
so claim (v) is true.

Now consider the case when l does not divide N(p)/l(p). The cusps of X#l(p)
mapping to the cusp 0 of the curve X0(p) are actually defined over F , so the
group F(p)[l] is constant as a Galois-module. The Galois module S(p)[l] is
µ-type of order l, so it is constant, too. This proves the first claim. Lemma
8.19 and claim (i) implies that D is unramified at p. Note that that D(p)[l]
is a tamely ramified Galois module. It is the extension of the constant Galois
module Fl by itself, so there is an Fl-basis of this module where the Galois
action is given by upper triangular matrices with ones on the diagonal. So the
Galois action is given by a homomorphism from the absolute Galois group of
F into Fl. That is a tame abelian extension of F. As every tamely ramified
Galois module which only ramifies at ∞ is in fact everywhere unramified, we
get that claim (ii) holds.
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As we already noted the group S(p)[l] is both T(p)-invariant and Galois-
invariant. Hence the quotient module J0(p)(C∗

∞)[l]/S(p)[l] is equipped with
a commuting action of T(p) and the absolute Galois group which also satis-
fies the Eichler-Shimura relations. By repeating the arguments above we get
that the Galois submodule F(p)[l] of the quotient Galois module above is T(p)-
invariant. Therefore its pre-image D(p)[l] in J0(p)(C∗

∞)[l] is also T(p)-invariant.
Since D(p)[l] is the extension of a constant Galois module by a µ-type Galois
module, the identity (Frobq − 1)(Frobq − qdeg(q)) holds on D(p)[l] for every
q 6= p prime. By subtracting this identity from the Eichler-Shimura relations
we get that Frobq(Tq − 1 − qdeg(q)) = 0. Since Frobq is invertible we get that
D(p)[l] is annihilated by the Eisenstein ideal. This concludes the proof of claim
(iii).
We will continue to use the notation introduced in the proof of Proposition 9.16.
Take an element H of Y which represents a non-zero element of F(p)[l]. Then
(1− σ)H lies in P but it does not lie in (1− σ)P. Since N is µl-invariant, it is
trivial on (1−σ)(P/lP), therefore (1−σ)H is the divisor of a non-zero rational
function e such that N(e) /∈ (F ∗)l. Assume that claim (iv) is false. Then there
is an F -rational divisor E on X0(p) whose pull-back E∗ to X#l(p) is linearly
equivalent to H, that is there is a a non-zero F -rational function g such that
H = E∗ + (g). Since σ fixes this pull-back E∗ there is a constant u ∈ F ∗ such
that e(z) = ug(z)/g(zσ). Hence N(e) = ul which is a contradiction. Because
the Galois module D(p)[l] is unramified, it does not split over F∞ either. Hence
claim (v) follows from claim (iv), as we already saw. ¤

Remark 9.19. The integers
∑

α∈CI(y) qdeg(α) are analogues of the Bernoulli

numbers. This is more or less clear from the computations of this chapter,
but we will give an alternative argument here. We continue to let f denote
a generator of the prime ideal p. Let O denote the ring of integers in the
extension of Ql we get by adjoining the l-th roots of unity. We define the O-
valued Dirichlet character χ by requiring that χ(f) = 0 and χ(g) = g for every
g ∈ Fq[T ] relatively prime to f , where we consider µl as a subset of O. We

let U denote P1
Fq

− {p} and let U denote its base change to Fq. By class field

theory we have a corresponding Galois representation χ : π̂ab
1 (U) → O∗ which

is tamely ramified at p and it is totally split at ∞. More precisely the Artin
L-function of χ is

L(χ, t) =
∏

p 6=x∈|P1
Fq

|

(1 − χ(Frx)tdeg(x))−1 =
1

(1 − t)(q − 1)

∑

f 6 |g∈Fq[T ]

χ(g)tdeg(g),

where Frx ∈ π̂ab
1 (U) is the arithmetic Frobenius at the place x. For every l-

adic Galois representation ρ of π̂1(U,∞) will use the same symbol to denote
the lisse sheaf on U corresponding to ρ as well its base change to U . By the
Grothendieck-Verdier trace formula:

L(χ, t) =
2∏

i=0

det(1 − Ft|H1
c (U,χ−1)(−1)i+1

,
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where F is the Frobenius operator acting on the étale cohomology of χ−1. Since
χ as a representation of π̂1(U,∞) is irreducible and non-trivial, the groups
H0

c (U,χ−1) and H2
c (U,χ−1) are zero, and by the Ogg-Shafarevich formula the

dimension of H1
c (U,χ−1)) is deg(p)−2. Hence L(χ, t) is a polynomial of degree

deg(p) − 2 and

L(χ, t) =
1

(1 − t)(q − 1)

∑

0 6=g∈Fq[T ]
deg(g)<deg(p)

g tdeg(d) =
∑

y∈µl

y

1 − t
·

∑

α∈CI(y)

tdeg(α).

10. Mazur’s Eisenstein decent at primes l not dividing t(p)

Definition 10.1. For the rest of the paper, unless we say otherwise explicitly,
we fix an Eisenstein prime l. Introduce the shorthand notation E = El(p)
for the Eisenstein ideal in Tl(p). Let P ⊳ Tl(p) be the unique prime ideal lying
above E. As Zl surjects onto Tl(p)/E via its natural inclusion into Tl(p), clearly
P = (E, l). Hence the latter is a maximal ideal with residue field Fl. Let ηq

denote the element Tq − qdeg(q) − 1 ∈ T(p), where q ⊳ A is any prime ideal
different from p. Let q ⊳ A be a prime ideal and let r(T ) ∈ A be the unique
monic polynomial which generates q. We say that q is a good prime if the
following holds:

(i) the prime ideal q is not equal to p,
(ii) the image of the reduction of the polynomial r(T ) modulo p in the

quotient (A/p)∗/F∗
q is not an l-th power,

(iii) if l does not divide t(p) then it also does not divide qdeg(q) − 1,
(iv) if l does divide t(p) then it does not divide deg(q).

Note that every Eisenstein prime l divides qd−1
q−1 . This number is the order

of the quotient group (A/p)∗/F∗
q , so the l-power map is not invertible on the

latter. Hence the Chebotarev density theorem implies that there are infinitely
many good primes.

For the rest of this chapter we assume that l does not divide t(p), unless we
say otherwise explicitly. Now we can state the main result of this section:

Theorem 10.2. The ideal P is generated by l and ηq for every good prime q.

As explained in [14], Propositions 15.3 and 16.2, this theorem implies the fol-
lowing

Corollary 10.3. The completion TP of the Hecke algebra Tl(p) at the prime
ideal P is Gorenstein.

Before we start to prove Theorem 10.2, let us deduce its main Diophantine
application from the corollary above. Let E(p) denote the largest torsion sub-
group of J0(p)(F ) annihilated by the Eisenstein ideal E(p)⊳T(p). We will need
the following preliminary result.
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Lemma 10.4. The group E(p) contains M(p).

Proof. For the sake of simple notation let J0(p) denote the Néron model of
the Jacobian over X, too. The Cartier dual of a constant p-torsion group
scheme is not étale in characteristic p, so the group scheme M(p) has no p-
torsion. Hence the reduction map injects M(p) into J0(p)(fq), for every prime
q different from p. The Frobenius endomorphism Frobq of the abelian variety

J0(p)fq acts as multiplication by qdeg(q) on the reduction of M(p). Therefore

the Eichler-Shimura relation implies that the endomorphism 1 − Tq + qdeg(q)

annihilates this group. ¤

Theorem 10.5. The group schemes M(p)l and S(p)l are equal for any prime
l not dividing t(p).

Proof. Clearly the claim only needs demonstration when l is Eisenstein. The
Frobenius Frob∞ at ∞ acts non-trivially on the l-primary subgroup of M(p),
hence the latter must lie in the torsion of the torus Hom(Γ0(p), C∗

∞) annihi-
lated by the ideal E according to Lemma 10.4. The latter module is dual to
T∨

l /ET∨
l , where the subscript ∨ denotes the Tl(p)-dual. As TP is Gorenstein,

the completion of the locally free Tl(p)-module Tl at P is isomorphic to its
dual, so the module above is isomorphic to TP/ETP, because E is supported
on P. The latter has the same order as Zl/N(p)Zl, hence it has the same order
as the l-primary component of S(p). ¤

We start our proof of Theorem 10.2 by proving a useful proposition about finite
étale group schemes over the base P1

Fq
− {p} which will function as a suitable

analogue for the criteria for constancy and purity of [14] (Lemma 3.4 on page
57 and Proposition 4.5 on page 59, respectively).

Definition 10.6. In this paragraph, the next proposition and its proof l is
any Eisenstein prime. We say that the group scheme G over the base S is
µ-type if it is finite, flat and its Cartier dual is a constant group scheme over S.
We say that the group scheme G is pure if it is the direct sum of a constant and
a µ-type group scheme. Let Z/lnZ and µln denote the constant group scheme
of order ln and its Cartier dual, respectively. We say that a group scheme G is
admissible if it is finite, étale and has a filtration by group schemes such that
the successive quotients are pure. Clearly all these concepts make sense for the
special case of finite Galois modules over fields.

Proposition 10.7. Let G be an admissible group scheme of l-primary rank
over the base P1

Fq
− {p} and let q be a good prime. Then the group scheme G

is constant (resp. µ-type) if and only if it is constant (resp. µ-type) as a Galois
module both over Fq and over F∞.

Proof. For the sake of simple notation let U denote P1
Fq
−{p} and let U denote

its base change to Fp. First note that the criterion for constancy implies the
other criterion by taking the Cartier-dual. In the former case clearly what we
have to show is that the cardinality of the étale cohomology group H0

et(U,G)
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is the same as the rank of G. We are going to show the latter by induction on
the rank of G. Since G is admissible, it contains a group scheme H isomorphic
to either µl or Z/lZ. The group scheme H is constant as a Galois module over
F∞, hence it is isomorphic to Z/lZ. Therefore G is an extension:

0 −→ Z/lZ −→ G −→ M −→ 0.

The group scheme M is also admissible of l-primary rank which is constant as
a Galois module both over Fq and over F∞. Hence by the induction hypothe-
sis M is constant. Therefore it will be enough to show that the coboundary
map δ : H0

et(U,M) → H1
et(U, Z/lZ) of the cohomological exact sequence of

the short exact sequence above is trivial. Since G is constant as a Galois
module both over Fq and over F∞, the coboundary maps δ : H0(Fq,M) →
H1(Fq, Z/lZ) and δ : H0(F∞,M) → H1(F∞, Z/lZ) of the base change of the
short exact sequence to the spectrum of Fq and F∞ respectively are trivial. (Of
course the cohomology groups above are Galois cohomology groups.) Therefore
we only have to show that the natural map H1

et(U, Z/lZ) → H1(Fq, Z/lZ) ⊕
H1(F∞, Z/lZ) is injective. The cohomology group H1

et(U, Z/lZ) is equal to
the group cohomology H1(π̂ab

1 (U), Z/lZ) = Hom(π̂ab
1 (U), Z/lZ), where π̂ab

1 (U)
denotes the abelianization of the étale fundamental group of U . The map above
is just the evaluation of the corresponding homomorphism π̂ab

1 (U) → Z/lZ
on the Frobenius elements Frobq and Frob∞ in π̂ab

1 (U). Hence we only have
to prove that the image of Frobq and Frob∞ in π̂ab

1 (U)/lπ̂ab
1 (U) generate this

group. By class field theory the latter is a consequence of (in fact it is equivalent
to) the second condition in the definition of good primes. Let us give a quick
proof of this fact. By class field theory the group π̂ab

1 (U) is isomorphic to
F ∗\A∗/Up, where Up is the direct product

∏
x6=p O

∗
x. Under this identification

the Frobenius elements Frobq and Frob∞ are represented by ideles πq and π∞

whose divisor is q and ∞, respectively, such that all components of πv, where
v 6= q or ∞, which are different from q or ∞, respectively, are actually equal
to one. This identification also implies that there is an exact sequence

0 −→ O∗
p/(lO∗

p)F∗
q −→ π̂ab

1 (U)/lπ̂ab
1 (U) −→ Z/lZ −→ 0,

where the second map is the degree mod l of the divisor of any idele representing
the class in π̂ab

1 (U)/lπ̂ab
1 (U). In particular π̂ab

1 (U)/lπ̂ab
1 (U) is two-dimensional

as a vector space over Fl, because l divides qd−1
q−1 . We also get that if the image

of πq and π∞ in π̂ab
1 (U)/lπ̂ab

1 (U) do not generate this group then the image

of πqπ
− deg(q)
∞ is trivial in π̂ab

1 (U)/lπ̂ab
1 (U). The latter can be reformulated by

saying that πqπ
− deg(q)
∞ = f(T )ugl, where f(T ) ∈ F ∗, u ∈ Up and g ∈ A∗. It is

clear from this equation that f(T ) is an l-th power in F ∗
p . Because every degree

zero divisor on P1 is principal, we get that f(T ) = cr(T )s(T )l by comparing
the divisors of the two sides of the equation above, where c ∈ F∗

q is a constant,
r(T ) ∈ A is again the unique monic polynomial generating q and s(T ) ∈ F ∗.
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Looking at the p-adic components of the two sides of the equation above we
get that cr(T ) is an l-th power modulo p. ¤

For any smooth group scheme G let Gl denote its maximal l-primary subgroup
scheme.

Proposition 10.8. The group E(p)l is the direct sum of C(p)l and M(p)l.

Proof. We first prove that E(p)l is admissible. The latter has a filtration by
the subgroups E(p)[ln], where n ∈ Z. The quotient E(p)[ln+1]/E(p)[ln] injects
into E(p)[l] via the map x 7→ lnx, hence it will be sufficient to prove that E(p)[l]
is admissible. Let W(p) denote the direct sum of E(p)[l] and its Cartier dual. It
is a Tl(p)-module annihilated by P. It is also a Galois module over F which is
unramified for every prime q 6= p of A such that the action of the Galois group
commutes with the action of the Hecke algebra. The fact that the action of
the Hecke operator Tq on W(p) satisfies the Eichler-Shimura relations implies
that the action of the Frobenius Frobq for any prime q 6= p of A satisfies the
relation

(Frobq − 1)(Frobq − qdeg(q)) = 0.

Hence the only eigenvalues possible for the action of Frobq on W(p) are 1

and qdeg(p). Since the latter is Cartier self-dual, the multiplicities of these
eigenvalues must be the same, hence the characteristic polynomial of Frobq

acting on W(p) must be (x − 1)m(x − qdeg(q))m, where 2m is the dimension
of W(p) as a vector space over Fl. By the Chebotarev theorem we get that
the characteristic polynomial of any element in the absolute Galois group of
F acting on W(p) is the same as the characteristic polynomial of its action on
the Galois module (Z/lZ)m ⊕ (µl)

m. The Brauer-Nesbitt theorem implies that
the semi-simplification of these modules must be equal, so W(p), and therefore
E(p)l, are admissible.
As l does not divide q − 1, the intersection of C(p)l and M(p)l is trivial. Now
we only have to show that their direct sum is the whole l-primary subgroup
of E(p). Since C(p) is fixed by the absolute Galois group of F , the quotient
H(p) = E(p)/C(p) is a Galois module. This module is unramified at all places
different from ∞ and p, because E(p) is. The proof of Proposition 7.18 shows
that the quotient of E(p)l by the torsion of the torus Hom(Γ0(p), C∗

∞) injects
into Zl/N(p)Zl. The restriction of this map onto C(p)l is surjective, as we
already saw in the proof of Theorem 7.19. Hence H(p)l as a Galois module over
F∞ is isomorphic to a submodule of the torsion of the torus Hom(Γ0(p), C∗

∞),
in particular it is also unramified at ∞. As E(p)l is admissible as a Galois
module over F , so does H(p)l. Therefore the unique finite étale group scheme
over P1

Fq
− {p} prolonging H(p)l is also admissible. Moreover this admissible

group scheme is µ-type as a Galois module over F∞, because the l-primary
torsion of the torus Hom(Γ0(p), C∗

∞) is. We also get that all Jordan-Hölder
components of this admissible group scheme must be isomorphic to µl. Let q

be any admissible prime of A. The operator ηq annihilates E(p), so does the

endomorphism (Frobq−1)(Frobq−qdeg(q)) by the Eichler-Shimura relations. By
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the above Frobq − 1 must be invertible on H(p)l, so we get that Frobq − qdeg(q)

must annihilate this Galois module. Hence the module H(p)l must be µ-type
by Proposition 10.7. In particular it is fixed under the action of the inertia
group I at p. By Lemma 8.19 we get that the whole module E(p)l is fixed by I,
too. As E(p)l is the direct sum of C(p)l and E(p)l ∩Hom(Γ(p), C∗

∞)l, where the
latter is a Galois sub-module over F∞ isomorphic to H(p)l, the module E(p)l is
unramified at ∞, too, so it is in fact everywhere unramified. Since it is pure as
a Galois module over F∞, it is pure as a Galois module over F , and the claim
is now obvious. ¤

Fix a good prime q. For any natural number r let Gr denote the largest
subgroup-scheme of J0(p)l annihilated by the ideal (EPr, ηq).

Proposition 10.9. The group scheme Gr is the direct sum of the group C(p)l

and a µ-type group Mr.

Proof. We are going to prove the claim by induction on r. As G0 = E(p)l,
this case has already been proved. Now we assume that the claim has been
proved for Gr, and we are going to show it for Gr+1. Let a1, a2, . . . , am be a
set of elements of Pr such that their class mod Pr+1 is a basis of the Fl vector
space Pr/Pr+1. The map x 7→ a1x ⊕ · · · ⊕ amx defines a homomorphism
Gr+1 → E(p)m

l with kernel Gr, hence the quotient Galois module Gr+1/Gr is
pure as a submodule of a pure Galois module. Let Gr+1/Gr = Ar ⊕Nr, where
Ar, Nr are constant and µ-type Galois modules, respectively.
Let G be the pre-image of Ar in Gr+1 and let G be the quotient G/Mr (recall
that Mr is the µ-type component of Gr). Clearly G is a Galois module over
F which is admissible, because it is the extension of the constant module Ar

by the constant module C(p)l. The natural action of the Hecke algebra on
the quotient Galois module Gr+1/Gr commutes with the action of the Galois
group, so it must preserve the eigenspace Ar of the latter. Therefore it leaves
the Galois module G invariant, moreover it acts on its quotient G, because it
leaves the module Mr invariant. The module G injects into the quotient of
J0(p)l by the l-primary torsion of the torus Hom(Γ0(p), C∗

∞). Therefore it is
constant as a Galois module over F∞. The operator ηq annihilates G, so does

the endomorphism (Frobq−1)(Frobq−qdeg(q)) by the Eichler-Shimura relations.

By the above Frobq − qdeg(q) must be invertible on G, so we get that Frobq − 1
must annihilate this Galois module as well. Now we may apply Proposition
10.7 to conclude that G is actually constant as a Galois module over F . As
we already saw in the proof of Lemma 7.16, this fact and the Eichler-Shimura
relations imply that G is annihilated by the Eisenstein ideal. Hence G = C(p)l

according to the proof of Proposition 7.18.
We get that Ar = 0, so Gr+1 is the extension of C(p)l by a group scheme which
the extension of the µ-type group scheme Nr by the µ-type group scheme Mr.
In particular the latter is admissible, and it must lie in the l-primary torsion
of the torus Hom(Γ0(p), C∗

∞). Therefore the argument presented above shows
that this module is µ-type over F , and the claim is now proved. ¤
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Proof of Theorem 10.2. Let x ∈ J0(p)l be any element annihilated by
ηq. Then x is actually annihilated by the ideal (ηq, l

n) for some n. The latter
contains EPr for some r, hence x is an element of Gr in this case. Since ηq anni-
hilates E(p)l, we get that the group of elements x ∈ J0(p)l annihilated by ηq is
M(p)l⊕C(p)l, using Propositions 10.8 and 10.9. Also note that ηq is actually an
isogeny of J0(p). If it were not, then J0(p) would contain an abelian subvariety
such that the action of the Frobenius at q on this variety would have 1 or qdeg(q)

as an eigenvalue by the Eichler-Shimura relations. The latter is impossible by
Weil’s theorem. Therefore ηq is injective as an endomorphism of Tl. By dual-

izing we get that it is surjective as an endomorphism of Hom(Γ0(p), C∗
∞)l. Let

y ∈ H00(p, Fl) be any element annihilated by ηq. Pick an element x ∈ J0(p)l

whose specialization (i.e. its class in the quotient of J0(p)l by the l-primary
torsion of the torus Hom(Γ0(p), C∗

∞)) is y. Then ηq(x) ∈ Hom(Γ0(p), C∗
∞)l. By

the above there is a z ∈ Hom(Γ0(p), C∗
∞)l such that ηq(z) = ηq(x). Then the

element x − z is annihilated by ηq and its specialization is y. We get that the
specialization map from C(p)[l] into the submodule of H00(p, Fl) annihilated
by ηq is an isomorphism, in particular the latter is 1-dimensional as a vector
space over Fl. The latter is also dual to Tl/(ηq, l). Since Tl is locally free of
rank one as a Tl(p)-module, we get that (ηq, l) is a prime ideal, hence the claim
holds. ¤

11. Mazur’s Eisenstein decent for primes l dividing t(p)

Definition 11.1. For the rest of this chapter we fix a prime l dividing t(p).
Then l is automatically an Eisenstein prime. We also introduce the shorthand
notation S = S(p)[l], F = F(p)[l] and D = D(p)[l]. A Galois sub-module
G ⊂ J0(p)l is ∗-type, if

(i) it contains D,
(ii) the intersection G0 = G ∩ Hom(Γ0(p), C∗

∞)l is Galois-invariant,
(iii) the Galois module G0 is admissible,
(iv) the quotient G/G0 is equal to F .

In this case let G00 ⊆ G0 denote pre-image of the largest µ-type subgroup of
G0/S under the quotient map. Note that under this definition D itself is a
∗-type group by Proposition 9.18.

Lemma 11.2. Let G ⊂ J0(p)l be a ∗-type Galois module. Then G00 is µ-type.

Proof. By Lemma 8.19 the Galois module G00 is unramified at p. Since every
tame Galois module which only ramifies at ∞ is in fact everywhere unramified,
we get that G00 is everywhere unramified. It is µ-type as a Galois module over
F∞, being a sub-module of G0, hence it is µ-type as a Galois module over F ,
too. ¤

The following proposition corresponds to Lemma 17.5 of [14], pages 131-133.

Proposition 11.3. Let q be a good prime and let G ⊂ H ⊂ J0(p)l be two
T(p)-invariant Galois modules annihilated by ηq and assume that

(i) the Galois module G is ∗-type,
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(ii) the quotient H/G has order l,
(iii) the quotient H/H ∩ Hom(Γ0(p), C∗

∞)l is l-torsion.

Then H is ∗-type, too.

Proof. Let H0 denote the intersection H ∩ Hom(Γ0(p), C∗
∞)l. Since the quo-

tient groups H/G and G/G0 both have order l, the quotient H/G0 must have
order l2. Hence it is either isomorphic to Z/l2Z or to F2

l as a group. In the first
case H0 must be equal to G, since H0/G0 must be a proper subgroup of H/G0

by condition (iii), but Z/l2Z has only one proper subgroup. Since G does not
lie in Hom(Γ0(p), C∗

∞)l, this is a contradiction. Hence H/G0 is l-torsion.
Because H is annihilated by the operator ηq, the Eichler-Shimura relation has

the shape (Frobq − 1)(Frobq − qdeg(q)) = 0 in H for the prime q. The Galois
module H/G is also equipped with an action of the Hecke algebra T(p) which
satisfies the Eichler-Shimura relations. Since q ≡ 1 mod l by assumption,
we get that (Frobq − 1)2 = 0 on H/G. Since the latter is a one-dimensional
vector space over Fl, we get that Frobq − 1 annihilates H/G, in other words
(Frobq − 1)(H) lies in G. Using the Eichler-Shimura relation for the prime q

in H again we get that the image of Frobq − 1 actually lies in the kernel M of

Frobq − qdeg(q) in G.
Note that G/D is µ-type as a Galois module over F∞. Hence the image of M
in this group under the quotient map is µ-type by Proposition 10.7. As the
natural map G0/S → G/D is an isomorphism, the image of M in G/D must
lie in the image of G00 by the above. Hence M lies in the group generated by
G00 and D. Assume that M does not lie in G00. By Lemma 11.2 the module
G00 is µ-type, hence it is annihilated by Frobq − qdeg(q), or in other words it
is in M . This implies that M must contain D, too. The latter is everywhere
unramified, but does not split by (ii) and (iv) of Proposition 9.18. Therefore the
action of Frobq could not be trivial as Frobq generates the maximal everywhere
unramified l-torsion abelian Galois extension of F because of the condition that
l does not divide deg(q). This is a contradiction, so M lies in G00 ⊆ G0. Hence
we get that Frobq − 1 annihilates H/G0.
Now assume that H0 = G0. In this case H/G0 injects naturally into the
quotient J0(p)l/Hom(Γ(p), C∗

∞)l. Hence it is trivial as a Galois module over
F∞, so it is even trivial as a Galois module over F by Proposition 10.7. The
Galois module G0 is also T(p)-invariant, so there is an induced action of the
Hecke algebra T(p) on H/G0. The latter satisfies the Eichler-Shimura relations,
so the Eisenstein ideal annihilates H/G0 applying again the argument in the
proof of Lemma 7.16. Since the inclusion of H/G0 in J0(p)l/Hom(Γ(p), C∗

∞)l is
T(p)-equivariant, we get that the former must be one-dimensional as a vector
space over Fl by the strong multiplicity one theorem.
This is a contradiction, so H0 is strictly larger than G0. As we already see in
the first paragraph, the group H0/G0 can not be equal to G/G0, so H/G0 has
two proper subgroups invariant under the action of the absolute Galois group
of F∞. Hence H/G0 must be trivial as a Galois module over F∞. By repeating
the argument above we get that H/G0 is trivial as a Galois module over F . In
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particular H0/G0 is Galois-invariant, hence H0 is a Galois-invariant subgroup
of H. Since it is the extension of Z/lZ by the admissible Galois module G0, it
must be admissible, too. The quotient H/H0 has order l, so it must be equal
to F . Since condition (i) of Definition 11.1 is automatic for H, the claim is
now proved. ¤

Definition 11.4. Fix a good prime q. Let P = (E, l) be the Eisenstein
prime ideal above l. For any natural number r let H(r) denote the largest
subgroup of J0(p)l annihilated by the ideal (lr, ηq). Let G(0) be D, and for
every positive integer r let G(r) be the pre-image of the largest submodule of
H00(p, Fl) annihilated by ηq in H(r) under the specialization map and let G0(r)

denote the intersection G(r) ∩ Hom(Γ0(p), C∗
∞)l. Both groups are invariant

under the action of Tl and the absolute Galois group of F∞. What is not clear
that these groups are Galois modules over F .

The following proposition corresponds to Lemma 17.7 of [14], pages 133-134.

Proposition 11.5. The group G(r) is Galois-invariant, and as a Galois module
it is ∗-type.

Proof. We are going to prove the claim by induction on r. As G(0) = D,
the claim is clear for r = 0. Now we assume that the claim is true for r and
then we are going to prove it for r + 1. If x ∈ H(r + 1), then by the defining
property of G(r + 1) we have x ∈ G(r + 1) if and only if lx ∈ G0(r). (This
is true even when r = 0 as G(1) = H(1) is l-torsion.) We first need to show
that σ(x) ∈ G(r +1) for any σ ∈ Gal(F |F ). Equivalently we have to show that
lσ(x) ∈ G0(r), but this is true because σ leaves G0(r) stable by the induction
hypothesis and σ(lx) = lσ(x).
The Galois module G(r + 1) is admissible because it is a Galois sub-module of
H(r + 1), which is admissible. The latter can be seen by noting that H(r +
1) has a filtration by Tl-invariant Galois submodules whose components are
annihilated by the ideal (l, ηq), hence by some power of the Eisenstein ideal.
Therefore the arguments at the start of the proof of Propositions 10.8 and 10.9
can be applied to these components to show that they are admissible.
The Galois modules G(r) and G(r + 1) are both Tl-invariant, so there is a
filtration:

G(r) = F0 ⊂ F1 ⊂ . . . ⊂ Fj ⊂ . . . ⊂ Fm = G(r + 1)

by TP[Gal(F |F )]-modules such that the successive quotients are irreducible

modules over the group algebra TP[Gal(F |F )], where TP is the completion of
the Hecke algebra Tl(p) at the prime ideal P. These modules must be anni-
hilated by P, because they are irreducible. But TP/P = Z/lZ, so these com-

ponents are actually irreducible Gal(F |F )-modules. Since they are admissible,
too, their order is l. Therefore it follows that Fj is ∗-type using Proposition
11.3 by induction on j: the modules Fj are Tl-invariant by their construction,
condition (i) is the induction hypothesis, condition (ii) has just been proved,
and condition (iii) holds because G(r + 1)/G0(r + 1) is l-torsion by definition.
¤
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Theorem 11.6. The ideal P is generated by l and ηq for every good prime q.
In particular TP is Gorenstein.

Proof. Let y ∈ H00(p, Fl) be any element annihilated by ηq. Pick an el-
ement x ∈ J0(p)l whose specialization (i.e. its class in the quotient of
J0(p)l by the l-primary torsion of the torus Hom(Γ0(p), C∗

∞)) is y. Then
ηq(x) ∈ Hom(Γ0(p), C∗

∞)l. Since ηq is an isogeny of J0(p), there is a z ∈
Hom(Γ0(p), C∗

∞)l such that ηq(z) = ηq(x). Then the element u = x − z is an-
nihilated by ηq and its specialization is y. As u must be an element of G(r) for
some natural number r, we get that the submodule of H00(p, Fl) annihilated
by ηq is 1-dimensional as a vector space over Fl by Proposition 11.5. The latter
is also dual to Tl/(ηq, l). Since Tl is locally free of rank one as a Tl(p)-module,
we get that (ηq, l) is a prime ideal, hence the claim holds. ¤

Corollary 11.7. The groups E(p)[l] and D are equal.

Proof. As we already noted, E(p)[l] contains D. By the strong multiplicity
one theorem the image of the specialization of E(p)[l] is equal to the image
of the specialization of D (see the proof of Proposition 7.18). Because TP is

Gorenstein by Theorem 11.6, the intersection E(p)∩Hom(Γ0(p), C∗
∞)[l] is a free

TP/ETP module of rank one. Hence it has the same order as S, so they are
equal, too. Since this module is the kernel of the specialization map, the claim
is now obvious. ¤

Corollary 11.8. The l-primary subgroups of M(p) (resp. T (p)) and S(p)
(resp. C(p)) are equal.

Proof. First note that the intersection E(p)l∩Hom(Γ0(p), C∗
∞)l is S(p)l. This

can be seen very easily by repeating the proof of Theorem 10.5 if either d is
odd or l 6= 2. This condition is necessary to guarantee that the order of
E(p)l∩Hom(Γ0(p), C∗

∞)l is the same as the order of S(p)l while using claim (vi)
of Proposition 7.11, which rests on Theorem 6.6. If d = deg(p) is even and l = 2
then the same argument (and the claim quoted above) only shows that S(p)2
is a subgroup of index at most two in the group E2 = E(p) ∩Hom(Γ0(p), C∗

∞)2
as the order of the latter is the same as the index of the Eisenstein ideal
E2(p)⊳T2(p). Note that E2 is the intersection of E(p) and the union ∪r∈NG0(r),
so it is a Galois module. The quotient group E2/S(p) is admissible of order at
most two, so it must be µ-type. Hence Lemma 8.19 can be applied to show that
E2 is unramified at p. By the Néron property this group has a specialization
map into the group of components of J0(p) at p. The restriction of this map
to S(p) is injective by (ii) of Proposition 8.18, so it is injective as E2 is a cyclic
group by the strong multiplicity one theorem. The order of the maximal 2-
primary subgroup of the group of components of J0(p) at p is the same as the
order of S(p)2, so the latter is the whole group E2. By reversing the logic of
the argument at the start of this paragraph we get that Tl/El(p) = Zl/N(p)Zl

even when d is even and l = 2.
Let l(p) denote the largest power of l dividing N(p). If the claim above is
false then there is an element x in M(p)l − S(p)l (resp. in T (p)l − C(p)l) such
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that lx is in S(p)l (resp. in C(p)l). The element x is annihilated by l(p), since

it is annihilated by the Eisenstein ideal. Therefore lx is annihilated by l(p)
l .

Since both S(p)l and C(p)l are cyclic of order l(p), the element lx must have
an l-root u in S(p)l (resp. in C(p)l) by the above. Subtracting u from x we
get that we may assume that x is l-torsion. By Corollary 11.7 we must have
x ∈ D. Since the Galois module D is not pure, we conclude that x is actually
in S. The intersection of S(p)l and C(p)l is exactly the largest constant Galois
submodule of the former by Proposition 9.3, so the claim is now clear. ¤

Remark 11.9. An interesting corollary of the proof above that the inclusion
H00(p, Z2/2N(p)Z2) → H0(p, Z2/2N(p)Z2) is not surjective if d = deg(p) is
even, i.e. there is a cuspidal harmonic form with values in Z2/2N(p)Z2 which
cannot be lifted to an integer-valued cuspidal harmonic form. Our proof of this
fact is quite involved and geometric, and wanders out of the natural algebraic
universe where this question lives. It would be nice to see a more conceptual
and general proof.
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