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The Microstates Free Entropy Dimension
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Abstract. Suppose thatµ is an arbitrary Borel measure onC with com-
pact support andc > 0. If Z is a DT(µ, c)–operator as defined by Dykema
and Haagerup in [6], then the microstates free entropy dimension ofZ is 2.
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1 Introduction.

DT–operators were introduced by Dykema and Haagerup in their work on invariant
subspaces of certain operators in a II1 factor [5, 6]. A DT–operatorZ is specified
by two parameters,µ andc, wherec > 0 andµ is a Borel probability measure on
C with compact support. Roughly, the operatorZ is determined by stating that its
∗–distribution is the same as the limit∗–distribution asN → ∞ of random matrices

ZN = DN + cTN ,

whereDN are diagonalN × N matrices whose spectral measures converge toµ in
distribution, whileTN is a strictly upper triangular randomN × N matrix with i.i.d.
Gaussian entries. Equivalently, (see [15], [12], [6] and the appendix of [7]),Z can be
viewed as a sumZ = d + cT , whered is a normal operator with spectral measureµ
contained in a diffuse von Neumann algebraA, andT is anA-valued circular operator
with a certain covariance. Finally, a result ofŚniady [14] shows that aDT(µ, c)–
operator is one whose free entropy is maximized among all those operators having
Brown measure equal toµ and with a fixed off–diagonality.
If we writeZ = d+cT as above, it is clear thatW ∗(Z) ⊂ W ∗(d, T ) ⊆ W ∗(A∪{T}),
while a simple computation showsW ∗(A ∪ {T}) = L(F2). By Lemma 6.2 of [6],
for any µ we may choosed having trace of spectral measure equal toµ and so that
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d, T ∈ W ∗(Z); by [7], A ⊆ W ∗(T ), so we always haveW ∗(Z) ∼= L(F2). ThusZ
can be viewed as an interesting generator for this free groupfactor.

In order to test the hypothesis that Voiculescu’s free entropy dimensionδ0 [16, 17, 20]
is the same for any sets of generators of a von Neumann algebra, it is important to
decide whether the free entropy dimension ofZ is 2 (L(F2) clearly has another set of
generators of free entropy dimension2).

For another version of free entropy dimension, also defined by Voiculescu, called
the non-microstates free entropy dimension [18], L. Aagaard has recently shown [1]
that the dimension ofZ is indeed2. It is known by [4] that the non-microstates free
entropy dimension dominatesδ0 but at present it is open whether the reverse inequality
holds. Thus, Aagaard’s result does not solve the question for the original microstates
definition.

In this paper, we show that, indeed,δ0(Z) = 2. Our proof uses an equivalent packing
number formulation of the microstates free entropy dimension, due to Jung [8]. In this
approach, to get the nontrivial lower bound onδ0(Z), one must have lower bounds on
theǫ–packing numbers of spaces of matricial microstates forZ, which are in turn ob-
tained by lower bounds on the volume ofǫ–neighborhoods of these microstate spaces.
The kth microstate space is the setΓ(Z;m, k, γ), for m, k ∈ N andγ > 0, of all
k × k complex matrices whose∗–moments up to orderm areγ–close to the values
of the corresponding∗–moments ofZ, and the volumes are for Lebesgue measure
λk on Mk(C) viewed as a Euclidean space of real dimension2k2 with coordinates
corresponding to the real and imaginary parts of the entriesof a matrix.

In order to outline how we get these lower bounds on volumes, let us for convenience
takeZ equal to theDT(δ0, 1)–operatorT . A key result that we use is a recent one
of Aagaard and Haagerup [2], showing that a certainǫ–perturbation ofT has Brown
measure uniformly distributed on the disk of radiusrǫ := 1/

√
log(1 + ǫ−2) centered

at the origin; note how slowly this disk shrinks asǫ approaches zero. Applying a
result of Śniady [13] to this situation, we find matricesAk ∈ Mk(C) that lie in ǫ–
neighborhoods of microstate spaces forT , whose eigenvalues are close to uniformly
distributed (ask gets large) in the disk of radiusrǫ. Thus, in order to get a lower bound
on the volume of a2ǫ–neighborhood of a microstate space forT , it will suffice to get
a lower bound on the volume of a unitary orbit of anǫ–neighborhood ofAk.

Every element ofMk(C) has an upper triangular matrix in its unitary orbit. Thus,
lettingTk(C) denote the set of upper triangular matrices inMk(C), there is a measure
νk on Tk(C) such thatλk(O) = νk(O ∩ Tk) for everyO ⊆ Mk(C) invariant under
unitary conjugation. Freeman Dyson identified such a measure νk (see Appendix 35
of [11]), and showed that if we viewTk(C) as a Euclidean space of real dimension
k(k − 1) with coordinates corresponding to the real and imaginary parts of the matrix
entries lying on and above the diagonal, thenνk is absolutely continuous with respect
to Lebesgue measure onTk(C) and has density given atB = (bij)1≤i,j≤k ∈ Tk(C)
by

Ck

∏

1≤p<q≤k

|bpp − bqq|2, (1)
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where the constant is

Ck =
πk(k−1)/2

∏k
j=1 j!

. (2)

We will use this measure of Dyson to find lower bound on the volume of unitary orbits
of anǫ–neighborhood ofAk, and we may takeAk to be upper triangular. However, so
far we only have information about the eigenvalues ofAk, namely the diagonal part
of it. Loosely speaking, in order to get a handle on the part strictly above the diagonal,
we use a result of Dykema and Haagerup [6] to realizeT as an upper triangular matrix

T =
1√
N




T11 T12 · · · T1N

0 T22
. ..

...
...

. . .
. .. TN−1,N

0 · · · 0 TNN




of operators where eachTii is a copy ofT , eachTij for i < j is circular and the family
(Tij)1≤i≤j≤N is ∗–free. Thus,Ak can be taken to be of the form




B11 B12 · · · B1N

0 B22
.. .

...
...

. ..
.. . BN−1,N

0 · · · 0 BNN




where eachBii is upper triangular, where we have good knowledge of the eigenvalue
distributions of eachBii and where theBij for i < j approximate∗–free circular
elements. Using the strengthened asymptotic freeness results of Voiculescu [19], we
find enough approximants for theseBij . Although we still have no real knowledge
about the entries of theBii lying above the diagonal, these parts are of negligibly
small dimension asN gets large, and we are able to get good enough lower bounds.
The techniques we use for estimating integrals of the quantity (1) over certain regions
are taken from [9].

2 Microstates for Z with well–spaced spectral densities

The following lemma is an application of the result of Aagaard and Haagerup [2]
mentioned in the introduction in order to make perturbations of general DT–operators
having Brown measure that is relatively well spread out. Foran elementa of a non-
commutative probability space(M, τ), we write‖a‖2 for τ(a∗a)1/2.

Lemma 2.1. Let µ be a compactly supported Borel probability measure onC and
let c > 0. LetZ be aDT(µ, c)–operator in a W∗–noncommutative probability space
(M, τ). Let us write

µ = ν +

s∑

i=1

aiδzi
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for somes ∈ {0} ∪ N ∪ {∞}, zi ∈ C andai > 0, whereν is a diffuse measure and
wherezi 6= zj if i 6= j. Consider the W∗–noncommutative probability space

(M̃, τ̃) = (M, τ) ∗ (L(F2), τF2
).

Then for everyǫ > 0, there isZ̃ǫ ∈ M̃ such that‖Z̃ǫ − Z‖2 ≤ ǫc and where the
Brown measure of̃Zǫ is equal to

σǫ := ν +

s∑

i=1

aiρi,ǫ,

whereρi,ǫ is the probability measure that is uniform distribution on the disk centered
at zi and having radius

ri := c

√
ai

log(1 + aiǫ−2)
.

Finally, if δ > 0 and if

Xδ = {(w1, w2) ∈ C
2 | |w1 − w2| < δ},

then

(σǫ × σǫ)(Xδ) ≤ (ν × ν)(Xδ) + 2

s∑

i=1

min(ai, δ
2c−2 log

(
1 + aiǫ

−2)). (3)

Proof. By results from [6], taking projections onto local spectralsubspaces ofZ, we
find projectionspj ∈ M (for 0 ≤ j < s + 1) such that

• ∑s
j=0 pj = 1,

• p0 + p1 + · · · + pk is Z–invariant for all integersk such that0 ≤ k < s + 1,

• τ(pk) =

{
|ν| if k = 0

ak if 1 ≤ k < s + 1,

• In (pkMpk, τ(pk)−1τ↾pkMpk
), pkZpk is DT(|ν|−1ν, c

√
|ν|) if k = 0 and is

DT(δzk
, c
√

ak) if 1 ≤ k < s + 1.

Let Y ∈ M̃ be centered circular such thatY andZ are∗–free and̃τ(Y ∗Y ) = 1. Let

Z̃ǫ = Z + ǫ

s∑

i=1

a
−1/2
i cpiY pi. (4)

Then‖Z̃ǫ − Z‖2
2 = ǫ2c2

∑s
i=1 ai ≤ ǫ2c2. On the other hand,̃Zǫ is upper triangular

with respect to the projectionsp0, p1, . . .; the Brown measure of̃Zǫ is, therefore, equal
to the Brown measure of its diagonal part

p0Zp0 +

s∑

i=1

(
piZpi + ǫ a

−1/2
i cpiY pi

)
. (5)
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But in (piM̃pi, a
−1
i τ̃↾

pi
fMpi

), the operatorǫ a
−1/2
i cpiY pi is a centered circular op-

erator of second momentǫ2c2 that is∗–free from theDT(δzi
, c
√

ai) operatorpiZpi.
Therefore, the random variable

piZpi + ǫ a
−1/2
i cpiY pi (6)

has the same∗–distribution asziI + c
√

ai(T + ǫ a
−1/2
i Y ), whereT is aDT(δ0, 1)–

operator that is∗–free fromY . By [2], the Brown measure of the random variable (6)
is equal toρi,ǫ. This yieldsσǫ for the Brown measure of the operator (5), hence ofZ̃ǫ

itself.
Finally, we have

(σǫ × σǫ)(Xδ) ≤ (ν × ν)(Xδ) + 2

s∑

i=1

ai(σǫ × ρi,ǫ)(Xδ) (7)

and

(σǫ × ρi,ǫ)(Xδ) =

∫

C

ρi,ǫ(w + δ D)dσǫ(w) ≤ min(1, δ2r−2
i ), (8)

whereD is the unit disk inC. Taken together, (7) and (8) yield the inequality (3).

The next lemma uses a result ofŚniady [13] to find matrix approximants of the oper-
ators appearing in Lemma 2.1.
In the following lemma and throughout this paper, for a matrix A ∈ Mk(C) we let
|A|2 = trk(A∗A)1/2, wheretrk is the normalized trace onMk(C). Moreover, by
the eigenvalue distribution ofA ∈ Mk(C) we mean its Brown measure, which is
just the probability measure that is uniformly distributedon its list of eigenvalues
λ1, . . . , λk, where these are listed according to (general) multiplicity, i.e. a valuez is
listeddim

⋃∞
n=1 ker((A − zI)n) times.

Lemma 2.2. Letµ be a compactly supported Borel probability measure onC and let
c > 0. Then there exists a sequence〈yk〉∞k=1 such that for anyǫ > 0, there exists a
sequence〈zk,ǫ〉∞k=1 such that

• yk, zk,ǫ ∈ Mk(C),

• ‖yk‖ and‖zk,ǫ‖ remain bounded ask → ∞,

• lim supk→∞ |yk − zk,ǫ|2 ≤ ǫc,

• yk converges in∗–moments ask → ∞ to aDT(µ, c)–operator,

• the eigenvalue distribution ofzk,ǫ converges weakly ask → ∞ to the measure
σǫ described in Lemma 2.1.

Proof. Let Z be aDT(µ, c)–operator, let̃Y be the operator
∑s

i=1 a
−1/2
i cpiY pi ap-

pearing in (4) in the proof of the preceding lemma, so thatZ̃ǫ = Z + ǫỸ . Since
Z can be constructed inL(F2) and since free group factors can be embedded in the
ultrapowerRω of the hyperfinite II1 factor, there are bounded sequences〈yk〉∞k=1 and
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〈dk〉∞k=1 such thatyk, dk ∈ Mk(C) and such that the pairyk, dk converges in∗–
moments to the pairZ, Ỹ . Letting z̃k = yk + ǫdk, we have that̃zk converges in
∗–moments toZ̃ǫ ask → ∞. By Theorem 7 of [13], there is a sequence〈zk,ǫ〉∞k=1

with zk,ǫ ∈ Mk(C) such that‖zk,ǫ−z̃k,ǫ‖ tends to zero and the eigenvalue distribution
of zk,ǫ converges weakly ask → ∞ to the Brown measure of̃Zǫ, namely, toσǫ.

Suppose thatλ = 〈λj〉kj=1 is a finite sequence of complex numbers. For eachj,

write λj = aj + ibj , aj , bj ∈ R. DefineQǫ =
∏k

j=1[aj − ǫ, aj + ǫ] andRǫ =
∏k

j=1[bj − ǫ, bj + ǫ]. Set

Eǫ(λ) =

∫

Rǫ

( ∫

Qǫ

∏

1≤i,j≤k
i6=j

(
|si − sj | + |ti − tj |2

)1/2
ds

)
dt,

whereds = ds1 · · · dsk anddt = dt1 · · · dtk.
The following lemma proves lower bounds for certain asymptotics of the quantities
Eǫ(λ). We will apply this lemma to the case whenλ is the eigenvalue sequence of
matrices like thezk,ǫ found in Lemma 2.2.

Lemma 2.3. Let µ and c be as in Lemma 2.1. For eachǫ > 0 and k ∈ N, let
λ(k,ǫ) = 〈λ(k,ǫ)

1 , . . . , λ
(k,ǫ)
n(k) 〉 be a finite sequence of complex numbers and assume that

for everyǫ > 0,

sup
k∈N, 1≤j≤n(k)

|λ(k,ǫ)
j | < ∞

and the probability measures

1

n(k)

n(k)∑

j=1

δ
λ

(k,ǫ)
j

(9)

converge weakly to the measureσǫ of Lemma 2.1 ask → ∞. Let

f(ǫ) = lim inf
k→∞

n(k)−2 log(Eǫ(λ
(k,ǫ))).

Then

lim inf
ǫ→0

(
f(ǫ)

| log ǫ|

)
≥ 0. (10)

Proof. Note that we must haven(k) → ∞ ask → ∞. Given ǫ > 0 small, take
1 ≥ δ > 3ǫ. Define

Wk,ǫ = {(i, j) ∈ {1, . . . , n(k)}2 | i 6= j, |λ(k,ǫ)
i − λ

(k,ǫ)
j | < δ}.

Writing for each1 ≤ j ≤ k, λ
(k,ǫ)
j = aj + ibj whereaj , bj ∈ R defineQǫ,k =
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∏n(k)
j=1 [aj − ǫ, aj + ǫ], Rǫ,k =

∏n(k)
j=1 [bj − ǫ, bj + ǫ], andKǫ,k = Qǫ,k × Rǫ,k. Now

Eǫ(λ
(k,ǫ)) =

∫

Kǫ,k

∏

i6=j

(|si − sj |2 + |ti − tj |2)1/2dsdt

≥ (δ −
√

8ǫ)n(k)2−#Wk,ǫ

∫

Kǫ,k

∏

(i,j)∈Wk,ǫ

(|si − sj |2 + |ti − tj |2)1/2dsdt

≥ (δ − 3ǫ)n(k)2−#Wk,ǫ

( ∫

Qǫ,k

∏

(i,j)∈Wk,ǫ

|si − sj |ds

)
·

( ∫

Rǫ,k

∏

(i,j)∈Wk,ǫ

|ti − tj |dt

)
,

whereds = ds1 · · · dsn(k) anddt = dt1 · · · dtn(k).
We now wish to find a lower bounds for the two integrals in the above expression. By
Fubini’s Theorem we can assumea1 ≤ a2 ≤ · · · ≤ an(k). Let

[−ǫ, ǫ]
n(k)
< = {(x1, . . . , xn(k)) ∈ [−ǫ, ǫ]n(k) | x1 < x2 < · · · < xn(k)}.

Then by the change of variables[−ǫ, ǫ]
n(k)
< ∋ (x1, . . . , xn(k)) 7→ (a1 +

x1, . . . , an(k) + xn(k)) ∈ Qǫ,k and Selberg’s Integral Formula it follows that

∫

Qǫ,k

∏

(i,j)∈Wk,ǫ

|si − sj |ds ≥
∫

[−ǫ,ǫ]
n(k)
<

∏

(i,j)∈Wk,ǫ

|xi − xj |dx1 · · · dxn(k)

≥ (2ǫ)−(n(k)2−n(k)−#Wk,ǫ) ·
∫

[−ǫ,ǫ]
n(k)
<

∏

i6=j

|xi − xj |dx1 · · · dxn(k)

=
(2ǫ)−(n(k)2−n(k)−#Wk,ǫ)

n(k)!
·
∫

[−ǫ,ǫ]n(k)

∏

i6=j

|xi − xj |dx1 · · · dxn(k)

=
(2ǫ)n(k)+#Wk,ǫ

n(k)!
·

n(k)−1∏

j=0

Γ(j + 2)Γ(j + 1)2

Γ(n(k) + j + 1)
,

The same lower bound applies to
∫

Rǫ,k

∏
(i,j)∈Wk,ǫ

|ti − tj |dt so that combining these
two we get

Eǫ(λ
(k,ǫ)) ≥ (δ − 3ǫ)n(k)2−#Wk,ǫ

(
(2ǫ)n(k)+#Wk,ǫ

n(k)!
·

n(k)−1∏

j=0

Γ(j + 2)Γ(j + 1)2

Γ(n(k) + j + 1)

)2

≥ (δ − 3ǫ)n(k)2
(

(2ǫ)n(k)+#Wk,ǫ

n(k)!
·

n(k)−1∏

j=0

Γ(j + 2)Γ(j + 1)2

Γ(n(k) + j + 1)

)2

.
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Using

lim
k→∞

n(k)−2 log(

n(k)−1∏

j=0

Γ(j + 2)Γ(j + 1)2

Γ(n(k) + j + 1)
) = −2 log 2,

we find

f(ǫ) ≥ log(δ − 3ǫ) + 2 log(2ǫ) lim sup
k→∞

#Wk,ǫ

n(k)2
− 4 log 2.

Since the measures (9) converge weakly toσǫ, by standard approximation techniques
one sees

lim
k→∞

#Wk,ǫ

n(k)2
= (σǫ × σǫ)(Xδ),

whereXδ is as in Lemma 2.1. Asǫ → 0 chooseδ = 1
| log ǫ| , so thatδ2 log(1+aǫ−2) →

0 for all a > 0 and ǫ
δ → 0 and log δ

log ǫ → 0. Using the upper bound (3) and the fact that
ν is diffuse, we get

lim
ǫ→0

(σǫ × σǫ)(Xδ) = 0.

Now one easily verifies that (10) holds.

3 The Main Result

Before beginning the main result first a few comments on a packing formulation for
microstates free entropy dimension are in order. IfX = {x1, . . . , xn} is ann-tuple of
selfadjoint elements in a tracial von Neumann algebra, thenthe free entropy dimension
(as defined by Voiculescu [17]) is given by the formula

δ0(X) = n + lim sup
ǫ→0

χ(x1 + ǫs1, . . . , xn + ǫsn : s1, . . . , sn)

| log ǫ|
where{s1, . . . , sn} is a semicircular family free fromX. The packing formulation
found in [8] and modified slightly in [10] (to remove the norm restriction on mi-
crostates), is

δ0(X) = lim sup
ǫ→0

Pǫ(X)

| log ǫ| ,

where
Pǫ(X) = inf

m∈N, γ>0
lim sup

k→∞
k−2 log Pǫ(Γ(X;m, k, γ)). (11)

Here,Γ(X;m, k, γ) ⊆ (Mk(C)s.a.)
n is the microstate space of Voiculescu [16], but

taken without norm restriction, as considered in [3], andPǫ is the packing number
with respect to the metric arising from the normalized trace.
Let Y = {y1, . . . , yn} be an arbitraryn-tuple of (possibly nonselfadjoint) elements in
a tracial von Neumann algebra. Now the definition ofPǫ makes perfect sense for the
setY if we replace the microstate space in (11) with the non-selfadjoint ∗-microstate
spaceΓ(Y ;m, k, γ) ⊆ (Mk(C))n, which is the set of alln–tuples ofk × k matrices
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whose∗–moments up to orderm approximate those ofY within tolerance ofγ. Let
us (temporarily) denote the quantity so obtained byPǫ(Y ) and define

δ0(Y ) = lim sup
ǫ→0

Pǫ(Y )

| log ǫ| . (12)

It is easy to see that ifX is a set of selfadjoints, thenPǫ(X) ≥ Pǫ(X) ≥ P2ǫ(X) and
that in the nonselfadjoint setting the quantity (12) is a∗-algebraic invariant, so that

δ0(Re(y1),Im(y1), . . . ,Re(yn), Im(yn)) =

= lim sup
ǫ→0

Pǫ(Re(y1), Im(y1), . . . ,Re(yn), Im(yn))

| log ǫ|

= lim sup
ǫ→0

Pǫ(Re(y1), Im(y1), . . . ,Re(yn), Im(yn))

| log ǫ|

= lim sup
ǫ→0

Pǫ(Y )

| log ǫ| = δ0(Y ),

whereRe(yi) andIm(yi) are the real and imaginary parts ofyi. Moreover, ifX is set
of selfadjoints, then

δ0(X) = lim sup
ǫ→0

Pǫ(X)

| log ǫ| = lim sup
ǫ→0

Pǫ(X)

| log ǫ| = δ0(X).

The following notational conventions, which will be used inthe remainder of this pa-
per, are, therefore, justified: for any finite set of operatorsY (selfadjoint or otherwise)
in a tracial von Neumann algebra we will writePǫ(Y ) for the packing quantity derived
from the nonselfadjoint microstates (that was denotedPǫ(Y ) above) and we will write
δ0(Y ) for the free entropy dimension ofY that was denotedδ0(Y ) above.
In the proof of the main result, we will useEǫ(A) for A ∈ Mk(C) to meanEǫ(λ),
whereλ = 〈λj〉kj=1 are the eigenvalues ofA listed according to general multiplicity
(see the description immediately before Lemma 2.2). Noticethat this is independent
of the choice ofλ sinceEǫ(λ ◦ σ) = Eǫ(λ) for any permutationσ of {1, . . . , k}.

Theorem 3.1. Let Z be aDT(µ, c)–operator, for any compactly supported Borel
probability measureµ on the complex plane and anyc > 0. Thenδ0(Z) = 2.

Proof. Obviouslyδ0(Z) ≤ 2 so it suffices to show the reverse inequality.
We may without loss of generality assumec = 1 (see Proposition 2.12 of [6]). Fix
N ∈ N with N ≥ 2. By Theorem 4.12 of [6],




B11 B12 · · · B1N

0 B22
. ..

...
...

. . .
. .. BN−1,N

0 · · · 0 BNN



∈ M⊗ MN (C) (13)
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is aDT(µ, 1)–operator where{B11, . . . , BNN}∪ 〈Bij〉1≤i<j≤N is a∗-free family in
M, theBii areDT(µ, 1√

N
)–operators, and eachBij is circular withϕ(|B2

ij |) = 1
N .

From this we see that finding microstates forZ is equivalent to finding microstates for
the operator (13) inM⊗ MN (C).
Consider the sequence〈yk〉∞k=1 constructed in Lemma 3.2 and for eachǫ > 0 small
enough, the corresponding sequence〈zk,ǫ〉∞k=1. Let R > 1, m ∈ N, γ > 0 and take
γ′ = γ/16m(R+1)m > 0. By Corollary 2.11 of [19] there existk×k complex unitary
matricesu1k, u2k, . . . , ukk such that{u1kyku∗

1k, . . . , uNkyku∗
Nk} is an (m, γ′)–∗–

free family inMk(C). Also,by an application of Corollary 2.14 of [19], there exists a
setΩk ⊂ ΓR(〈Bij〉1≤i<j≤N ;m, k, γ′) such that for any〈ηij〉1≤i<j≤N ∈ Ωk,

{u1kyku∗
1k, . . . , uNkyku∗

Nk} ∪ 〈ηij〉1≤i<j≤N

is an(m, γ′)-∗ free family and such that

lim inf
k→∞

(
k−2 · log(vol(Ωk)) +

N(N − 1)

2
· log k

)
≥

≥ χ(〈ReBij〉1≤i<j≤N , 〈ImBij〉1≤i<j≤N ) > −∞,

where the volume is computed with respect to the product of the Euclidean norm
k1/2| · |2. Since the operator (13) is a copy ofZ, for any〈ηij〉1≤i<j≤N ∈ Ωk we have




u1kyku∗
1k η12 · · · η1N

0 u2ky2u
∗
2k

. . .
...

...
. ..

. . . ηN−1,N

0 · · · 0 uNkyku∗
Nk



∈ Γ(Z;m,Nk, γ).

Because every complex matrix can be put into an upper-triangular form with respect to
an orthonormal basis, we can find for each1 ≤ j ≤ N, ak×k unitary matrixvjk such
thatvjkujkzk,ǫu

∗
jkv∗

jk is upper triangular. Observe now that for any〈ηij〉1≤i<j≤n ∈
Ωk, the product of matrices




v1k 0 · · · 0

0 v2k
. ..

...
...

.. .
. .. 0

0 · · · 0 vNk







u1kyku∗
1k η12 · · · η1N

0 u2kyku∗
2k

.. .
...

...
. . .

.. . ηN−1,N

0 · · · 0 uNkyku∗
Nk



·

·




v∗
1k 0 · · · 0

0 v∗
2k

. . .
...

...
. ..

. . . 0
0 · · · 0 v∗

Nk.



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is also an element ofΓ(Z;m,Nk, γ) and is equal to



v1ku1kyku∗
1kv∗

1k v1kη12v
∗
2k · · · v1jη1Nv∗

2k

0 v2ju2kyku∗
2kv∗

2k

. ..
...

...
. . .

. .. v(N−1),kηN−1,Nv∗
Nk

0 · · · 0 vNkuNkyku∗
Nkv∗

Nk




.

Moreover,

|vjkujkzk,ǫu
∗
jkv∗

jk − vjkujkyku∗
jkv∗

jk|2 = |zk,ǫ − yk|2

and lim supk→∞ |zk,ǫ − yk|2 ≤ ǫ/
√

N . Therefore, fork sufficiently large and for
each1 ≤ j ≤ N we have|vjkujkzk,ǫu

∗
jkv∗

jk − vjkujkyku∗
jkv∗

jk|2 ≤ ǫ. Setdjk =
vjkujkzk,ǫu

∗
jkv∗

jk, and denote byGk the set of allNk × Nk matrices of the form




d1k v1kη12v
∗
2k · · · v1jη1Nv∗

Nk

0 d2k
. ..

...
...

.. .
. .. v(N−1),kηN−1,Nv∗

Nk

0 · · · 0 dNk




where〈ηij〉1≤i<j≤N ∈ Ωk. Notice that eachdjk is upper triangular and its eigenvalue
distribution is exactly the same as that ofzk,ǫ. Fork sufficiently large, the setGk lies
in the ǫ-neighborhood ofΓ(Z;m,Nk, γ). Let θ(Gk) denote the unitary orbit ofGk

in MNk(C). We will now find lower bounds for theǫ-packing numbers ofθ(Gk) and
thus, ones forΓ(Z;m,Nk, γ).
Denote byHk ⊂ MNk(C) all matrices of the form




0 v1kη12v
∗
2k · · · v1jη1Nv∗

Nk

0 0
.. .

...
...

. . .
.. . v(N−1),kηN−1,Nv∗

Nk

0 · · · · · · 0




where〈ηij〉1≤i<j≤N ∈ Ωk. Notice thatHk is isometric to the space of all matrices of
the form




0 η12 · · · η1N

0 0
.. .

...
...

. ..
.. . ηN−1,N

0 · · · · 0




where〈ηij〉1≤i<j≤N ∈ Ωk. It follows that Hk must also have the same volume as
the above subspace, computed in the obvious ambient Hilbertspace of block upper
triangular matrices obeying the above decomposition. Recall that for n ∈ N, Tn(C)
denotes the set of uppertriangular matrices inMn(C); let Tn,<(C) denote the matrices
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in Tn(C) that have zero diagonal, i.e. the strictly upper triangularmatrices inMn(C).
Denote byWk the subset ofTNk,<(C) consisting of all matricesx such that|x|2 < ǫ
andxij = 0 whenever1 ≤ p < q ≤ N and(p−1)k < i ≤ pk and(q−1)k < j ≤ qk.
Thus,Wk consists ofN × N diagonal matrices whose diagonal entries are strictly
upper triangulark × k matrices. Denote byDk the subset of diagonal matricesx of
MNk(C) such that|x|2 < ǫ

√
2. It follows that if fk is the matrix




d1k 0 · · · 0

0 d2k
. . .

...
...

. . .
. . . 0

0 · · · · · · dNk




thenfk + Dk + Wk + Hk ⊂ N3ǫ(Gk), where the3ǫ neighborhood is taken in the
ambient spaceTNk(C) with respect to the metric induced by| · |2. Now observe that
the space of diagonalNk × Nk matrices andTNk,<(C) are orthogonal subspaces
of TNk(C). Let θ3ǫ(Gk) denote the3ǫ–neighborhood of the unitary orbitθ(Gk) of
Gk. Thus, denoting bydX Lebesgue measure onTNk(C) whereX = 〈xij〉1≤i≤j≤k,
using Dyson’s formula we have

vol(θ3ǫ(Gk)) ≥ CNk ·
∫

fk+Dk+Wk+Hk

∏

1≤i<j≤Nk

|xii − xjj |2dX

= CNk · vol(Wk + Hk) ·
∫

fk+Dk

∏

1≤i<j≤Nk

|xii − xjj |2dx11 · · · dx(Nk)(Nk)

≥ CNk · vol(Wk + Hk) · Eǫ(zk,ǫ ⊗ IN ), (14)

where the constantCNk is as in 2 and wherevol(θ3ǫ(Gk)) is computed inMNk(C)
andvol(Wk + Hk) is computed inTNk,<(C), both being Euclidean volumes corre-
sponding to the norms(Nk)1/2|·|2. Clearlyθ3ǫ(Gk) ⊂ N4ǫ(Γ(Z;m,Nk, γ)), so (14)
gives a lower bound onvol(N4ǫ(Γ(Z;m,Nk, γ)) as well.
Using (14) and the standard volume comparison test, we have

Pǫ(Γ(Z;m,Nk, γ)) ≥ vol(N4ǫ(Γ(Z;m,Nk, γ)))

vol(B6ǫ)

≥ CNk · Eǫ(zk,ǫ ⊗ IN ) · vol(Wk + Hk) · Γ((Nk)2 + 1)

π(Nk)2(6(Nk)1/2ǫ)2(Nk)2
,

whereB6ǫ is a ball inMNk(C) of radius6ǫ with respect to| · |2, and we are computing
volumes corresponding to the Euclidean norm(Nk)1/2| · |2. SinceWk andHk are
orthogonal, we havevol(Wk + Hk) = vol(Wk)vol(Hk), where each volume is taken
in the subspace of appropriate dimension. ButWk is a ball of radius(Nk)1/2ǫ in a
space of real dimensionNk(k − 1), so

vol(Wk + Hk) =
π

Nk(k−1)
2 ((Nk)1/2ǫ)Nk(k−1)

Γ(Nk(k−1)
2 + 1)

· (N1/2)k2N(N−1)vol(Ωk).
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Applying Stirling’s formula, we find

Pǫ(Z;m, γ) ≥ lim inf
k→∞

(Nk)−2 log Pǫ(Γ(Z;m,Nk, γ))

≥ lim inf
k→∞

(Nk)−2 log(Eǫ(zk,ǫ ⊗ IN ))

+ lim inf
k→∞

(
(Nk)−2 log(CNk) +

1

2N
log k +

1

N
log ǫ

− 1

2N
log(

Nk(k − 1)

2
) + log((Nk)2) − log k

− 2 log ǫ + (Nk)−2 log(vol(Ωk))

)
+ K1

= lim inf
k→∞

(Nk)−2 log(Eǫ(zk,ǫ ⊗ IN ))

+ lim inf
k→∞

(
(Nk)−2 log(CNk) +

1

2
log k

)

+ lim inf
k→∞

(
(Nk)−2 log(vol(Ωk)) + (

1

2
− 1

2N
) log k

)

+(2 − N−1)| log ǫ| + K2

= lim inf
k→∞

(Nk)−2 log(Eǫ(zk,ǫ ⊗ IN ))

+N−2χ(〈ReBij〉1≤i<j≤N , 〈ImBij〉1≤i<j≤N )

+ (2 − N−1)| log ǫ| + K3,

whereK1, K2 andK3 are constants independent ofǫ, m andγ. Takingm → ∞ and
γ → 0, we get

Pǫ(Z) ≥ lim inf
k→∞

(Nk)−2 log(Eǫ(zk,ǫ ⊗ IN ))

+N−2χ(〈ReBij〉1≤i<j≤N , 〈ImBij〉1≤i<j≤N )

+ (2 − N−1)| log ǫ| + K3.

Since the eigenvalue distribution ofzk,ǫ ⊗ IN converges ask → ∞ to the measureσǫ

of Lemma 2.1, dividing by| log ǫ| and applying Lemma 2.3 now yields

δ0(Z) = lim sup
ǫ→0

Pǫ(Z)

| log ǫ| ≥ lim inf
ǫ→0

f(ǫ)

| log ǫ| + 2 − N−1 ≥ 2 − N−1.

SinceN was arbitrary, it follows thatδ0(Z) ≥ 2, thereby completing the proof.
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[13] Śniady, P. ‘Random regularization of Brown spectral measure’, J. Funct. Anal.
193 (2002), 291-313.
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[15] Śniady, P. ’Multinomial identities arising from the free probability’, J. Comb.
Theory A101 (2003), 1-19.

Documenta Mathematica 10 (2005) 247–261



Free Dimension of DT–operators 261

[16] Voiculescu, D. ‘The analogues of entropy and of Fisher’s information measure
in free probability theory, II’.Invent. Math.118, (1994), 411-440.

[17] Voiculescu, D. ‘The analogues of entropy and of Fisher’s information measure
in free probability theory III: The absence of Cartan subalgebras’,Geom. Funct.
Anal.6 (1996), 172-199.

[18] Voiculescu, D. ’The analogues of entropy and of Fisher’s information measure
in free probabilility, V’, Invent. Math.132 (1998), 189–227.

[19] Voiculescu, D. ‘A strengthened asymptotic freeness result for random matrices
with applications to free entropy’Internat. Math. Res. Notices1998, 41-64.

[20] Voiculescu, D. ‘Free entropy’.Bull. London Math. Soc.34 (2002), 257-332.

K. Dykema
Mathematisches Institut
Westf̈alische
Wilhelms–Universiẗat Münster
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