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ABSTRACT. Suppose that is an arbitrary Borel measure dhwith com-
pact support and > 0. If Z is a DT(u, c)—operator as defined by Dykema
and Haagerup in [6], then the microstates free entropy démearof Z is 2.
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1 INTRODUCTION.

DT-operators were introduced by Dykema and Haagerup in thaik wn invariant
subspaces of certain operators in afdctor [5, 6]. ADT—-operatorZ is specified
by two parametersy andc, wherec > 0 andy is a Borel probability measure on
C with compact support. Roughly, the operatoiis determined by stating that its
x—distribution is the same as the limitdistribution asV — oo of random matrices

Zn = Dy + Iy,

where Dy are diagonalV x N matrices whose spectral measures convergeito
distribution, whileTy is a strictly upper triangular randofi x N matrix with i.i.d.
Gaussian entries. Equivalently, (see [15], [12], [6] areldppendix of [7]),Z can be
viewed as a sunw = d + ¢T', whered is a normal operator with spectral measpre
contained in a diffuse von Neumann algelrsandT is an A-valued circular operator
with a certain covariance. Finally, a result 8hiady [14] shows that ®T(u, ¢)—
operator is one whose free entropy is maximized among afietfuperators having
Brown measure equal o and with a fixed off—diagonality.

If we write Z = d+cT as above, itis clear thdt*(Z) c W*(d,T) C W*(AU{T}),
while a simple computation show®™ (A U {T'}) = L(F2). By Lemma 6.2 of [6],
for any u we may chooseé having trace of spectral measure equal:tand so that
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d, T € W*(Z); by [7], A C W*(T), so we always hav®*(Z) = L(Fz). ThusZ
can be viewed as an interesting generator for this free dfiamtpr.

In order to test the hypothesis that Voiculescu’s free gaytdimensiony, [16, 17, 20]
is the same for any sets of generators of a von Neumann algeisamportant to
decide whether the free entropy dimensiorzak 2 (L(F2) clearly has another set of
generators of free entropy dimensighn

For another version of free entropy dimension, also define/diculescu, called
the non-microstates free entropy dimension [18], L. Aaddeas recently shown [1]
that the dimension of is indeed2. It is known by [4] that the non-microstates free
entropy dimension dominatég but at present it is open whether the reverse inequality
holds. Thus, Aagaard’s result does not solve the questiotihéooriginal microstates
definition.

In this paper, we show that, indeed(Z) = 2. Our proof uses an equivalent packing
number formulation of the microstates free entropy dimamgilue to Jung [8]. In this
approach, to get the nontrivial lower bound&t2), one must have lower bounds on
the e—packing numbers of spaces of matricial microstatesfawhich are in turn ob-
tained by lower bounds on the volumeesieighborhoods of these microstate spaces.
The kth microstate space is the $etZ;m, k,v), for m,k € N and~y > 0, of all

k x k complex matrices whose-moments up to order. arey—close to the values

of the corresponding—moments ofZ, and the volumes are for Lebesgue measure
A\, on M, (C) viewed as a Euclidean space of real dimensiéf with coordinates
corresponding to the real and imaginary parts of the entfiesmatrix.

In order to outline how we get these lower bounds on volungtsid for convenience
take Z equal to theDT (6, 1)—operatorT’. A key result that we use is a recent one
of Aagaard and Haagerup [2], showing that a certaiperturbation ofl” has Brown
measure uniformly distributed on the disk of radius= 1/,/log(1 4+ ¢~2) centered
at the origin; note how slowly this disk shrinks aspproaches zero. Applying a
result ofSniady [13] to this situation, we find matricels, € M (C) that lie ine—
neighborhoods of microstate spacesTgrwhose eigenvalues are close to uniformly
distributed (a% gets large) in the disk of radius. Thus, in order to get a lower bound
on the volume of @¢—neighborhood of a microstate space gt will suffice to get

a lower bound on the volume of a unitary orbit of @ameighborhood ofi;.

Every element of\/;,(C) has an upper triangular matrix in its unitary orbit. Thus,
letting T (C) denote the set of upper triangular matriceddp(C), there is a measure
v, on Ty (C) such that\;(O) = v, (O N T}) for everyO C M (C) invariant under
unitary conjugation. Freeman Dyson identified such a measu(see Appendix 35
of [11]), and showed that if we vie@},(C) as a Euclidean space of real dimension
k(k — 1) with coordinates corresponding to the real and imaginarsyd the matrix
entries lying on and above the diagonal, thens absolutely continuous with respect
to Lebesgue measure @i (C) and has density given & = (b;;)1<i,j<r € Tx(C)

by

Cr H |bpp_bqq‘2a 1)

1<p<q<k
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FREE DIMENSION OF DT—OPERATORS 249

where the constant is
h(k=1)/2

Cp = —. 2
[T 4! @
We will use this measure of Dyson to find lower bound on the mawf unitary orbits
of ane—neighborhood ofi;, and we may takel;, to be upper triangular. However, so
far we only have information about the eigenvaluesAgf namely the diagonal part
of it. Loosely speaking, in order to get a handle on the padtht above the diagonal,
we use a result of Dykema and Haagerup [6] to redlizes an upper triangular matrix

Ty T2 - TN
1 |0 Ty :
T=——
VN : . Tn-,N
0 --- 0 Ty

of operators where eadh, is a copy ofl’, eachl;; for i < j is circular and the family
(Tij)1<i<j<n is =—free. Thus A, can be taken to be of the form

By By - Bin
0 By :
: . By_1n
0O --- 0 By

where eaclB;; is upper triangular, where we have good knowledge of thene@jae
distributions of eachB;; and where theB,; for i < j approximate«—free circular
elements. Using the strengthened asymptotic freenesksre$oiculescu [19], we

find enough approximants for thegg;. Although we still have no real knowledge
about the entries of thd,; lying above the diagonal, these parts are of negligibly
small dimension a$v gets large, and we are able to get good enough lower bounds.
The techniques we use for estimating integrals of the qyafiij over certain regions

are taken from [9].

2 MICROSTATES FOR Z WITH WELL—SPACED SPECTRAL DENSITIES

The following lemma is an application of the result of Aaghand Haagerup [2]
mentioned in the introduction in order to make perturbaiohgeneral DT-operators
having Brown measure that is relatively well spread out. &oelement: of a non-
commutative probability spadeM, 7), we write | a| s for 7(a*a)'/2.

LEmMA 2.1 Letu be a compactly supported Borel probability measuretband
letc > 0. LetZ be aDT(u, ¢c)—operator in a W—noncommutative probability space
(M, 7). Let us write

S
n=v+ Z a;0,
i=1
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for somes € {0} UN U {o0}, 2; € C anda; > 0, wherev is a diffuse measure and
wherez; # z; if i # j. Consider the Vi-noncommutative probability space

(M, 7) = (M, 1) * (L(F), 75, ).

Then for every > 0, there isZ. € M such that|Z, — Z||; < ec and where the
Brown measure of. is equal to

S
o' =v+ E QiPies
=1

wherep; . is the probability measure that is uniform distribution dretdisk centered

at z; and having radius
a;
T 1= Cy /71(%(1 =

Xs = {(wy,ws) € C? | [wy — we| < 6},

Finally, if 6 > 0 and if

then

(0e x 0)(Xs) < (v x v)(X5) +2)_min(a;,6°clog (14 ae?)).  (3)

i=1

Proof. By results from [6], taking projections onto local specsabspaces af, we
find projections; € M (for 0 < j < s+ 1) such that

b ijopj =1,

e po +p1 + -+ - + pi IS Z—invariant for all integerg such that < k < s + 1,

(o) lv| ifk=0
e T =
Pk ap, F1<k<s+1,

e In (pk/\/lpk,T(pk)*lT[pkMpk), prZpy is DT(Jv| "1y, e/|v]) if k = 0 and is
DT(d,,c/ar) if 1 <k <s+1.

LetY e M be centered circular such thetand Z arex—free andr(Y*Y) = 1. Let
Z.=Z7+¢ Z a;l/chtii. (4)

Then||Z. — Z||3 = 2 35_, a; < 2c2. On the other handZ, is upper triangular
with respect to the projections, p1, . . .; the Brown measure df. is, therefore, equal
to the Brown measure of its diagonal part

S
PoZpo + Z (pini + ea;1/2cptii). (5)
i=1
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But in (p; Mp;, a; 7| 5,,)- the operator a; "?cp;Yp; is a centered circular op-
erator of second momentc? that isx—free from theDT(4,,, ¢,/a;) operatom; Zp;.
Therefore, the random variable

piZpi + ea; PepYp; (6)
has the same-—distribution as:; I + ¢\/a; (T + ea; '/*Y’), whereT is aDT (5, 1)—
operator that is—free fromY". By [2], the Brown measure of the random variable (6)
is equal top; .. This yieldso, for the Brown measure of the operator (5), hence of
itself.
Finally, we have

(0 % 0)(X5) < (v x )(X5) + 23 ailo x i) (X5) ™)

i=1
and
(0e X pie)(Xs) = / pie(w+ dD)do(w) < min(l,égrfz), (8)
C

whereD is the unit disk inC. Taken together, (7) and (8) yield the inequality (3]

The next lemma uses a resultfﬁxﬁiady [13] to find matrix approximants of the oper-
ators appearing in Lemma 2.1.

In the following lemma and throughout this paper, for a matti € M (C) we let
|Aly = try(A*A)Y/2, wheretr;, is the normalized trace of/;(C). Moreover, by
the eigenvalue distribution ol € M} (C) we mean its Brown measure, which is
just the probability measure that is uniformly distributexl its list of eigenvalues
A1, ..., Ak, Where these are listed according to (general) multiplicie. a valuez is
listeddim [ J; >, ker((A — 2I)™) times.

LEMmMA 2.2 Letu be a compactly supported Borel probability measureCoend let
¢ > 0. Then there exists a sequengg)?>> , such that for any > 0, there exists a
sequenceézy )7, such that

® Yi, 2k, € My(C),

vk | @and||zx.|| remain bounded ak — oo,

limsupy,_, o [Yk — 2k.el2 < €c,

y), converges in—moments aé — oo to aDT (1, c)—operator,

the eigenvalue distribution af, . converges weakly & — oo to the measure
o, described in Lemma 2.1.

Proof. Let Z be aDT(u, ¢)-operator, let” be the operatop _, a; "/*cp;Yp; ap-
pearing in (4) in the proof of the preceding lemma, so that= Z + ¢Y. Since
Z can be constructed if(F2) and since free group factors can be embedded in the
ultrapowerR® of the hyperfinite I factor, there are bounded sequenggs?® , and
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(di)32, such thatyy,d, € M(C) and such that the paiy, di, converges in«—
moments to the paier’. Letting zr, = yi + edi, we have that;, converges in
s—moments taZ, ask — oco. By Theorem 7 of [13], there is a sequeneg ()52,
with zi . € M} (C) such that|z,, . —Zx || tends to zero and the eigenvalue distribution

of zj . converges weakly as — oo to the Brown measure di, namely, tos.. O

Suppose thah = ()\j>§=1 is a finite sequence of complex numbers. For each
write Aj = aj + ibj, a;,b; € R. DefineQ. = H?zl[aj — €,a; + 6] and R, =
15 b — €,b; + €]. Set

E.(\) = /R (/Q H (|s,» — s+t — tj\2)1/2 ds)dt,

€1<i,j<k
i#]
whereds = dsy - - - ds;, anddt = dt; - - - dty.
The following lemma proves lower bounds for certain asyrtipsoof the quantities

E.()\). We will apply this lemma to the case whenis the eigenvalue sequence of
matrices like the, . found in Lemma 2.2.

LEMMA 2.3 Letyu andc be as in Lemma 2.1. For each> 0 andk € N, let
Ake) — <>\§k’5), o )\ff(,:))> be a finite sequence of complex numbers and assume that
for everye > 0,

sup |)\§-k’6)| < oo
keEN, 1< <n(k)

and the probability measures
n(k)

1
— 0y (ke 9
n(k) Z Aft ©
Jj=1
converge weakly to the measureof Lemma 2.1 aé — oo. Let

f(e) = liminf n(k) "2 log(E(\*9)).

k—o0

Then

liminf< 1) ) > 0. (10)

=0 \|loge]

Proof. Note that we must have(k) — oo ask — oo. Givene > 0 small, take
1> § > 3e. Define

Wie = {(i,4) € {1,...,n(k)}? [ i # j, A9 = AB9) < 41,

(ks€)

Writing for eachl < j < k, A, = a; + ib; wherea;,b; € R defineQ.; =

DOCUMENTA MATHEMATICA 10 (2005) 247-261



FREE DIMENSION OF DT—OPERATORS 253

H;L(kl) [a; —€,a; + €|, Ry, = H?(kl) [b; —€,b; +¢],andK, j = Qe r X Re . Now

M) / H |50 = 551 + [t — ;1) 2dsdt

Ken it

> (8 — V/Be) (B —# Wi / TT  si = 851 + [t = t;]*)"/2dsat
Kek (i, J)EWk, e
> (6 — 3¢)"* #W’”(/ |s -—sj|ds)~
Qe (m)ewk
</ I 1t-t |dt>
Re.i (1,5) EWk, e
whereds = dsy - - - ds, )y anddt = dty - - - dt,, ().

We now wish to find a lower bounds for the two integrals in thevabexpression. By
Fubini’s Theorem we can assumg < as < - - < ayx). Let

[—e,e]z(k) ={(z1,.. ., Taw)) € [—€, e |2y <29 < -+ < Tk}

Then by the change of variable[sre,e]z(k) > (21, 2ppy) = (a1 +
L1, ..., An(k) + Tneky) € Qe and Selberg’s Integral Formula it follows that

Lek

|si — sjlds Z/ n k) [T lei—ajldes-daeggy
[—eelZ (4,§) EWpk e

. H |z — aj|dy - - - doy, iy

-6

(4,5)EWk,e

> (2€)~ (M) (k) —#Wi.o) /

[—e,elZ i#£j
(2¢) = ((k)* —n(k)=#Wi.o) /
_ ; dry - - da,,
) g L7 e oy
B (26)n(lc)+#Wk,f ."(k)_l L(j+2)T(j + 1)2
NI S S I R ER I

The same lower bound appliesfg  TI; ;)ew, . Iti —t;]dt so that combining these
two we get

n(k)—1

(26)n(B)+# Wi L(j+2)T( + 1)2)2

Ee(AR9) > (5 — 3e)n 0" —# W ( BT L(n(k) +j+1)
j=0

(2¢)n ) +# W, M

> (5 3¢"™®) (W .

L@ +2)0( + 1)2>2

ENCIOEFESY
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Using
n(k)—1
. L +2)0(+1)°
1 )21 = —2log?2
Jim n(k) ™ log( 31;[0 nk)+]+1)) 08 %
we find
#Wk,e

f(e) > log(d — 3¢) + 21og(2e) hlirisol;p (k)2

Since the measures (9) converge weakly toby standard approximation techniques
one sees
#Wk,e

hoo (k)2

— 4log 2.

= (06 X 06)(X5)7

whereX;isasinLemma2.1. As— 0 choose) = \lolge\ , sothat? log(1+ae=?) —
0foralla > 0and§ — 0 andy 10%5 — 0. Using the upper bound (3) and the fact that
v is diffuse, we get

lin(lJ(cr6 x 0.)(Xs) = 0.

Now one easily verifies that (10) holds. O

3 THE MAIN RESULT

Before beginning the main result first a few comments on aipgdiormulation for
microstates free entropy dimension are in ordeX I {z1, ..., x,} is ann-tuple of
selfadjoint elements in a tracial von Neumann algebra, thefree entropy dimension
(as defined by Voiculescu [17]) is given by the formula

50(X) = n + limsup X(1+ €81, .., Ty + €Sy S1,...,5p)
e—0 |10g€|
where{sy, ..., s,} is a semicircular family free fronX. The packing formulation

found in [8] and modified slightly in [10] (to remove the norrastriction on mi-
crostates), is

P.(X
0p(X) = limsup (%)
e—0  |logel’

where

P.(X)= inf limsupk 2logP.(I'(X;m,k,7)). (11)

meN, v>0 oo

Here,I'(X;m, k,v) C (M(C)s...)™ is the microstate space of Voiculescu [16], but
taken without norm restriction, as considered in [3], dnds the packing number
with respect to the metric arising from the normalized trace
LetY = {u1,...,yn} be an arbitrary:-tuple of (possibly nonselfadjoint) elements in
a tracial von Neumann algebra. Now the definitioriPpfmakes perfect sense for the
setY if we replace the microstate space in (11) with the non-dg@fat x-microstate
spacel(Y;m, k,v) C (My(C))™, which is the set of alh—tuples ofk x k matrices
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FREE DIMENSION OF DT—OPERATORS 255

whosex—moments up to order. approximate those df within tolerance ofy. Let
us (temporarily) denote the quantity so obtainedbg}”) and define

_ P.(Y
do(Y) = lim sup ( )
e—0 ‘ loge‘

12)

Itis easy to see that iX is a set of selfadjoints, théh (X) > P.(X) > P, (X) and
that in the nonselfadjoint setting the quantity (12) is-algebraic invariant, so that

do(Re(y1),Im(y1), ..., Re(yn), Im(yn)) =
— lim sup ]Pe (Re(y1)7 Im(yl)a R Re(yn)7 Im(yn))
0 | log €|
— limsup Pc(Re(y1), Im(y1), ..., Re(yn), Im(y,))
e—0 ‘ log E|

P(Y) —
= lim sup (¥) =(Y),
-0  |loge|

whereRe(y;) andlm(y;) are the real and imaginary partsgf Moreover, if X is set
of selfadjoints, then

P.(X , P.(X
00(X) = limsup (X) = lim sup (X)
0 |loge] =0 |loge|

= 0o(X).

The following notational conventions, which will be usedlire remainder of this pa-
per, are, therefore, justified: for any finite set of operaioselfadjoint or otherwise)
in a tracial von Neumann algebra we will wrike(Y") for the packing quantity derived
from the nonselfadjoint microstates (that was den@tgd”) above) and we will write
50(Y") for the free entropy dimension af that was denoted, (Y") above.

In the proof of the main result, we will usg.(A) for A € M (C) to meanE,(\),
where = </\j>§:1 are the eigenvalues of listed according to general multiplicity
(see the description immediately before Lemma 2.2). Ndheéthis is independent
of the choice ofA sinceE, () o o) = E.(A) for any permutatiow of {1,...,k}.

THEOREM 3.1 Let Z be aDT(u, c)—operator, for any compactly supported Borel
probability measurg: on the complex plane and any> 0. Thendy(Z) = 2.

Proof. Obviouslydy(Z) < 2 so it suffices to show the reverse inequality.
We may without loss of generality assume= 1 (see Proposition 2.12 of [6]). Fix
N € Nwith N > 2. By Theorem 4.12 of [6],

By Bip - Bin
0 B € M ® My(C) (13)
: . By_1n
0O -~ 0 Byy
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isaDT(p, 1)—operator wher¢Bi1, ..., Byn} U (Bij)i<i<j<n IS ax-free family in
M, the B;; areDT (i, ﬁ)—operators, and eadB;; is circular withy(| B |) = -
From this we see that finding microstates fois equivalent to finding microstates for
the operator (13) i\l @ My (C).

Consider the sequencg; 3>, constructed in Lemma 3.2 and for each- 0 small
enough, the corresponding sequefige. )2 ,. LetR > 1, m € N, v > 0 and take
v =~/16™(R+1)™ > 0. By Corollary 2.11 of [19] there exig¢tx k complex unitary
matricesu i, uak, - . ., ugr SUCh that{uipyruiy,, ..., unkyruy,} is an(m,~')——
free family in M, (C). Also,by an application of Corollary 2.14 of [19], there &tsia
setQ), C FR(<Bij>1§i<j§N§ m, k, ’y/) such that for an;(nij>1§i<j§1v e Oy,

{uiryputy, - - unkyrung U (i) i<icj<n

is an(m,~')-* free family and such that

lim inf <k2 -log(vol(Q2)) + w -log k:> >

k—oo

> X((ReBij)1<i<j<n, (ImBij)1<icj<n) > —00,

where the volume is computed with respect to the product efEhclidean norm
k'/2| . |5. Since the operator (13) is a copy8f for any (1;;)1<i<j<n € Q. We have

ULKYEUT, 12 e mn
* . :
0 U2kY2Ugy, : ) eI(Z;m,Nk,~).
: . NMN-1,N
0 - 0 uNkRYRUNL

Because every complex matrix can be put into an upper-talanéprm with respect to
an orthonormal basis, we can find for edck j < N, ak x k unitary matrixv;;, such
thatvjkujkzk’eujkv;fk is upper triangular. Observe now that for afy;)1<i<j<n €
Qy, the product of matrices

vip, 0 - 0 ULKYEUT 712 MmN
0 v - 0 Uk Yk Usy,
0 ; o NN-LN
0 0 UNE 0 0 uNkyku},k
v, 0 - 0
0 vy :
0
0 0 vy
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is also an element df(Z; m, Nk,~) and is equal to

V1RULEYRUT VT V1EN12V5, e V11N Vs
* ok .
0 V2 U2k Yk Uy, Voy,

U(N_1)7k77N_17N’U}FVk)
0 cee 0 kauNkyku}‘Vkv}"\,k

Moreover,

VKU 2k, UGV — VjkWikYkU iV k|2 = |2ke — Ykl2
andlimsup,_, o |2ke — ykl2 < €¢/VN. Therefore, fork sufficiently large and for
eachl < j < N we have|vjkujkzk7€u;kv;‘k — vjkujkyku;'fkv;k[g < e. Setdj, =
VjkUjkZE, W VS), and denote by, the set of allNk x Nk matrices of the form

dir  vikMi2vy, - V1M NVUNE

0 dor, :

: V(N—1),kIN—1,NUN}

0 A 0 dnk
where(n;;)1<i<j<n € Q. Notice that eacld;, is upper triangular and its eigenvalue
distribution is exactly the same as thatgf.. For k sufficiently large, the sef, lies
in the e-neighborhood of(Z; m, Nk,~). Let6(G}) denote the unitary orbit offj,
in My (C). We will now find lower bounds for the-packing numbers of(G) and

thus, ones fof'(Z; m, Nk,~).
Denote byH;, C My (C) all matrices of the form

0 vignigvs, - VI MNVUNE

0 0

: g " UN-1)kTIN-1,NUNE

0 . .. 0
where(n;;)1<i<j<n € . Notice thatH, is isometric to the space of all matrices of
the form

0 ma2 - MN
0 0 :

: : NIN—1,N
0o - .. 0

where (n;;)1<i<j<n € . It follows that H, must also have the same volume as
the above subspace, computed in the obvious ambient Hapare of block upper
triangular matrices obeying the above decomposition. Réw for n € N, T,,(C)
denotes the set of uppertriangular matricedfn(C); let T;, - (C) denote the matrices
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in T,,(C) that have zero diagonal, i.e. the strictly upper triangmiatrices inM,, (C).
Denote bylV;, the subset of n«, < (C) consisting of all matrices such thatx|s < €
andz;; = Owheneverl <p < g < Nand(p—1)k <i < pkand(¢g—1)k < j < gk.
Thus, W}, consists of N x N diagonal matrices whose diagonal entries are strictly
upper triangulak x k& matrices. Denote by, the subset of diagonal matricesof
My, (C) such thafz|, < ey/2. It follows that if f;, is the matrix

dirz O 0
0 dog
. 0
0 dnk

then fy, + Dy + Wi + Hy C N3.(Gy), where the3e neighborhood is taken in the
ambient spac#y (C) with respect to the metric induced by|,. Now observe that
the space of diagonaVk x Nk matrices andl'nx,~(C) are orthogonal subspaces
of Ty, (C). Let03.(Gy) denote thede—neighborhood of the unitary orb#(Gy,) of
G Thus, denoting byl.X Lebesgue measure @i, (C) whereX = (z;;)1<i<j<k,
using Dyson’s formula we have

V01(93€(Gk)) Z CNk . / H \xii - Z‘jj|2dX

S+ De+WitHi 1 << j<NE

= Cnyg - vol(Wy + Hy,) - / H |z — x5 dzs - dznvay (vn)
fetDi 1<icj<NE

> Cnp - vol(Wy + Hy,) - Ee(z,e ® In), (14)

where the constar'y, is as in 2 and whereol(05.(Gy,)) is computed inM 1 (C)
andvol(W}, + H},) is computed iy, (C), both being Euclidean volumes corre-
sponding to the normgVk)'/2|-|5. Clearlyfs.(G1) C Nue(T'(Z;m, Nk,v)), so (14)
gives a lower bound onol(N,(T'(Z; m, Nk, ~)) as well.

Using (14) and the standard volume comparison test, we have

VOI(N46(F(Z7 m, Nk’ 7)))

. >
P.(T(Z;m, Nk,7)) > vol(Bge)

T((NEk)? +1)
7(NE)? (G(Nk)1/26)2(Nk)2 ’

whereBg. is a ball inM . (C) of radius6e with respect td- |2, and we are computing
volumes corresponding to the Euclidean naiivNk)!'/?| - |,. SinceW,, and H, are
orthogonal, we haveol(W), + Hj,) = vol(W},)vol(Hy), where each volume is taken
in the subspace of appropriate dimension. Bt is a ball of radiug Nk)'/2¢ in a
space of real dimensiaNk(k — 1), so

71”(;*1) ((Nk)l/Qe)Nk(k—l)

P(EE=D )

> Cng -Ee(zk@ ® In) - vol(Wy, + Hy,) -

™

vol(Wy, + Hy) = . (N1/2)k2N(N—1)V01(Qk).
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Applying Stirling’s formula, we find

P(Z;m,y) > lim inf(Nk)?log P.(T'(Z;m, Nk,v))

> likm inf(Nk) 2 log(Ec(zr.c ® In))

1 1
. _9 =
+hknig.}f<(Nk) log(Cng) + N log k + Nloge

1 Nk(k — 1)

~ N log( 5 ) + log((Nk)?) —logk

—2loge+ (Nk)™2 log(vol(Qk))> + K,

= liminf(Nk) ?log(E. (21 ® Iy))

k—o0

1
+ lim inf ((Nk:)2 log(Cnk) + 3 log k)

k—o0

1

1
. . —2 -
+ hkrggéf ((Nk) log(vol(Q%)) + (2 5 ) log k)

+(2— N"Y|loge| + K

= lim inf(Nk) 2 log(Ec(zx. ® In))
+N*x((ReBijhi<i<j<n, (ImBij)1<i<j<n)
+(2-— N_1)| loge| + K3,

whereK, K, and K3 are constants independentepfn and~. Takingm — oo and
~v — 0, we get

P.(Z) > lim inf(Nk) 2 log(Ee(zx,c ® In))
+N7x((ReBij)1<icj<n. (ImBij)1<i<j<n)
+(2 - N"Y|loge| + K3.

Since the eigenvalue distribution of . ® Ix converges as — oo to the measure.
of Lemma 2.1, dividing by log ¢| and applying Lemma 2.3 now yields

00(Z) = limsup P(2) >

> +2-N"'>2-N"1L
-0 |loge] e—0 |loge|

SinceN was arbitrary, it follows thaéy(Z) > 2, thereby completing the proof. O
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