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1 Introduction

Let F be a totally real number field of degree d, and let B denote a quaternion
algebra over F . For the purposes of this introduction, we assume that either:

• B is definite, meaning that Bv = B ⊗ Fv is non-split for all real places v
of F , or

• B is indefinite, meaning that Bv is split for precisely one real v.

We shall write G to denote the algebraic group over Q whose points over a
Q-algebra A are the set (B ⊗ A)×.
Now let K be an imaginary quadratic extension of F . We suppose that there
is given an embedding K → B. Then associated to the data of B and K, one
can define a collection of points, the so-called CM points. The natural habitat
for these points depends on whether B is definite or indefinite: in the former
case, the CM points are just an infinite discrete set, whereas in the latter, they
inhabit certain canonical algebraic curves, the Shimura curves, associated to
the indefinite algebra B. Our goal in this paper is to study the distribution
of these CM points in certain auxiliary spaces. The main result proven here
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is the key ingredient in our proof in [3] of certain non-vanishing theorems for
certain automorphic L-functions over F and their derivatives. The theorems
of [3] may be regarded as generalizations of Mazur’s conjectures in [12] when
F = Q.

Our original intention was simply to write a single paper proving the non-
vanishing theorems for the L-functions, using the connection between L-
functions and CM points, and proving a basic nontriviality theorem for the
latter. However, in the course of doing this, we realized that although the CM
points in the definite and indefinite cases are a priori very different, the proof
of the main nontriviality result on CM points runs along parallel lines. In light
of this, it seemed somewhat artificial to give essentially the same arguments
twice, once in each of the two cases. The present paper therefore presents a
rather general result about CM points on quaternion algebras, which allows
us to obtain information about CM points in both the definite and indefinite
cases. The former case follows trivially, but the latter requires us to develop
a certain amount of foundational material on Shimura curves, their various
models, and the associated CM points.

Since this paper is neccessarily rather technical, we want to give an overview of
the contents. The first part deals with the abstract results. The main theorems
are given in Theorem 2.9 and Corollary 2.10. Although the statements are
somewhat complicated, they are not hard to prove, in view of our earlier results
[2], [18], [19], where all the main ideas are already present. As before, the basic
ingredient is Ratner’s theorem on unipotent flows on p-adic Lie groups.

The second part is concerned with the applications of the abstract result to
CM points on Shimura curves. We start with basic theory of Shimura curves,
especially their integral models and reduction. In Section 3.1.1, we define
the CM points and supersingular points, and establish the basic fact that the
reduction of a CM point at an inert prime is a supersingular point. The basic
result on CM points on Shimura curves is stated in Theorem 3.5. Section 3.2
gives a series of group theoretic descriptions of the various sets and maps which
appear in Theorem 3.5, thus reducing its proof to a purely group theoretical
statement, which may be deduced from the results in the first part of this
paper.

The final two sections in the paper are meant to shed some light on related
topics: section 3.3.1 investigates the dependence of Shimura curves on a cer-
tain parameter ǫ = ±1, while section 3.3.2 provides some insight on a certain
subgroup of Gal(Kab/K) which plays a prominent role in the statements of
Theorem 3.5 and also appears in the André-Oort conjecture.

In conclusion, we mention that a fuller discussion of the circle of ideas and
theorems that are the excuse for this paper may be found in the introduction
of [3], where the main arithmetical applications are also spelled out. We would
also like to thank Hee Oh for a number of useful conversations, and Nimish
Shah for providing us with the proof of the crucial Lemma 2.30.
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266 C. Cornut and V. Vatsal

2 CM points on quaternion algebras

2.1 CM points, special points and reduction maps

We keep the following notations: F is a totally real number field, K is a totally
imaginary quadratic extension of F and B is any quaternion algebra over F
which is split by K. At this point we make no assumption on B at infinity. We
fix once and for all, an F -embedding ι : K →֒ B and a prime P of F where B
is split. We denote by ̟P ∈ F×

P a local uniformizer at P .
For any quaternion algebra B′ over F , we denote by Ram(B′), Ramf (B′) and
Ram∞(B′) the set of places (resp. finite places, resp. archimedean places) of
F where B′ ramifies.

2.1.1 Quaternion algebras.

Let S be a finite set of finite places of F such that

S1 ∀v ∈ S, B is unramified at v.

S2 |S| + |Ramf (B)| + [F : Q] is even.

S3 ∀v ∈ S, v is inert or ramifies in K.

The first two assumptions imply that there exists a totally definite quaternion
algebra BS over F such that Ramf (BS) = Ramf (B)∪S. The third assumption
implies that there exists an F -embedding ιS : K → BS . We choose such a pair
(BS , ιS).

2.1.2 Algebraic groups

We put

G = ResF/Q(B×), GS = ResF/Q(B×
S ),

T = ResF/Q(K×) and Z = ResF/Q(F×).

These are algebraic groups over Q. We identify Z with the center of G and
GS . We use ι and ιS to embed T as a maximal subtorus in G and GS . We
denote by nr : G → Z and nrS : GS → Z the algebraic group homomorphisms
induced by the reduced norms nr : B× → F× and nrS : B×

S → F×.

2.1.3 Adelic groups

Let Af denote the finite adeles of Q. We shall consider the following locally
compact, totally discontinuous groups:

• G(Af ) = (B ⊗Q Af )×, GS(Af ) = (BS ⊗Q Af )×, T (Af ) = (K ⊗Q Af )×

and Z(Af ) = (F ⊗Q Af )× with their usual topology.
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• G(S) =
∏

v/∈S B×
S,v×

∏
v∈S F×

v where
∏

v/∈S B×
S,v is the restricted product

of the B×
S,v’s over all finite places of F not in S, with respect to the

compact subgroups R×
v ⊂ B×

S,v, where Rv is the closure in BS,v of some
fixed OF -order R in BS .

These groups are related by a commutative diagram of continuous morphisms:

G(Af )

φS $$IIIIIIIII
nr

!!

T (Af )

99ttttttttt

%%JJJJJJJJJ
G(S)

nr′S // Z(Af )

GS(Af )

πS

::uuuuuuuuu

nrS

==

In this diagram,

• T (Af ) → G(Af ) and T (Af ) → GS(Af ) are the closed embeddings in-
duced by ι and ιS .

• nr : G(Af ) → Z(Af ) and nrS : GS(Af ) → Z(Af ) are the continuous,
open and surjective group homomorphisms induced by nr and nrS .

• nr′S : G(S) → Z(Af ) is the continuous, open and surjective group homo-
morphism induced by nrS,v : B×

S,v → F×
v for v /∈ S and by the identity

on the remaining factors.

• πS : GS(Af ) =
∏

v/∈S B×
S,v×

∏
v∈S B×

S,v → G(S) =
∏

v/∈S B×
S,v×

∏
v∈S F×

v

is the continuous, open and surjective group homomorphism induced by
the identity on

∏
v/∈S B×

S,v and by the reduced norms nrS,v : B×
S,v →

F×
v on the remaining factors. It induces an isomorphism of topological

groups between GS(Af )/ker(πS) and G(S). Since ker(πS) ≃ ∏
v∈S B1

S,v

is compact, πS is also a closed map.

The definition of

φS : G(Af ) =
∏

v/∈S B×
v × ∏

v∈S B×
v → G(S) =

∏
v/∈S B×

S,v × ∏
v∈S F×

v

is more involved. By construction, Bv and BS,v are isomorphic for v /∈ S.
We shall construct a collection of isomorphisms (φv : Bv → BS,v)v/∈S such
that (1) ∀v /∈ S, φv ◦ ι = ιS on Kv, and (2) the product of the φv’s yields a
continuous isomorphism between

∏
v/∈S B×

v and
∏

v/∈S B×
S,v. Note that any two

such families are conjugated by an element of
∏

v/∈S K×
v . Once such a family has

been chosen, we may define the morphism φS by taking
∏

v/∈S φv on
∏

v/∈S B×
v

and nrv : B×
v → F×

v on the remaining factors. It is then a continuous, open and
surjective group homomorphism which makes the above diagram commute.

Documenta Mathematica 10 (2005) 263–309



268 C. Cornut and V. Vatsal

We first fix a maximal OF -order R in B (respectively RS in BS). For all but
finitely many v’s, (a) Rv ≃ M2(OFv

) ≃ RS,v and (b) ι−1(Rv) and ι−1
S (RS,v)

are the maximal order of Kv. For such v’s we may choose the isomorphism

φv : Rv
≃−→ RS,v in such a way that φv ◦ ι = ιS on Kv. Indeed, starting with

any isomorphism φ?
v : Rv → RS,v, we obtain two optimal embeddings φ?

v ◦ ι
and ιS of OKv

in RS,v. By [20, Théorème 3.2 p. 44], any two such embeddings
are conjugated by an element of R×

S,v: the corresponding conjugate of φ?
v has

the required property.
For those v’s that satisfy (a) and (b), we thus obtain an isomorphism φv : Bv →
BS,v such that φv(Rv) = RS,v and φv ◦ ι = ιS on Kv. For the remaining v’s
not in S, we only require the second condition: φv ◦ ι = ιS on Kv. Such φv’s do
exists by the Skolem-Noether theorem [20, Théorème 2.1 p. 6]. The resulting
collection (φv)v/∈S satisfies (1) and (2).

2.1.4 Main objects

Definition 2.1 We define the space CM of CM points, the space X (S) of
special points at S and the space Z of connected components by

CM = T (Q)\G(Af )

X (S) = G(S,Q)\G(S)

Z = Z(Q)+\Z(Af )

where T (Q) is the closure of T (Q) in T (Af ), G(S,Q) is the closure of

G(S,Q) = πS(GS(Q)) in G(S) and Z(Q)+ is the closure of Z(Q)+ = F>0

in Z(Af ).

These are locally compact totally discontinuous Hausdorff spaces equipped with
a right, continuous and transitive action of G(Af ) (with G(Af ) acting on X (S)
through φS and on Z through nr). By [20, Théorème 1.4 pp. 61–64], X (S)
and Z are compact spaces.

Definition 2.2 The reduction map REDS at S, the connected component map
cS and their composite

c : CM
REDS // X (S)

cS // Z.

are respectively induced by

nr : G(Af )
φS // G(S)

nr′S // Z(Af ).

Remark 2.3 Since φS(T (Q)) = πS(T (Q)) ⊂ πS(GS(Q)) = G(S,Q), φS maps
T (Q) to G(S,Q) and indeed induces a map CM → X (S). Similarly, cS is well-
defined since nr′S(G(S,Q)) = nrS(GS(Q)) = Z(Q)+ (by the norm theorem [20,
Théorème 4.1 p. 80]).
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It follows from the relevant properties of nr, φS and nr′S that c, REDS and cS

are continuous, open and surjective G(Af )-equivariant maps. Since X (S) is
compact, cS is also a closed map.

Remark 2.4 The terminology CM points, special points and connected com-
ponents is motivated by the example of Shimura curves: see the second part of
this paper, especially section 3.2.

2.1.5 Galois actions

The profinite commutative group T (Q)\T (Af ) acts continuously on CM,
by multiplication on the left. This action is faithful and commutes with
the right action of G(Af ). Using the inverse of Artin’s reciprocity map

recK : T (Q)\T (Af )
≃−→ GalabK , we obtain a continuous, G(Af )-equivariant

and faithful action of GalabK on CM.1

Similarly, Artin’s reciprocity map recF : Z(Q)+\Z(Af )
≃−→ GalabF allows one

to view Z as a principal homogeneous GalabF -space. From this point of view,
c : CM → Z is a GalabK -equivariant map in the sense that for x ∈ CM and
σ ∈ GalabK ,

c(σ · x) = σ |F ab ·c(x).

2.1.6 Further objects

For technical purposes, we will also need to consider the following objects:

• XS = GS(Q)\GS(Af ), where GS(Q) is the closure of GS(Q) in GS(Af ).

• qS : XS → X (S) is induced by πS : GS(Af ) → G(S).

The composite map cS ◦ qS : XS → Z is induced by nrS : GS(Af ) → Z(Af ).
By [20, Théorème 1.4 p. 61], XS is compact. Note that qS is indeed well
defined since πS(GS(Q)) = G(S,Q). In fact, πS(GS(Q)) = G(S,Q) since πS

is a closed map: the fibers of qS are the ker(πS)-orbits in XS . In particular, qS

yields a G(S)-equivariant homeomorphism between XS/ker(πS) and X (S).

2.1.7 Measures

The group G1(S) = ker(nr′S) (resp. G1
S(Af ) = ker(nrS)) acts on the fibers of cS

(resp. cS ◦ qS). In section 2.4.1 below, we shall prove the following proposition.
Recall that a Borel probability measure on a topological space is a measure
defined on its Borel subsets which assigns voume 1 to the total space.

1This action extends to a continuous, G(Af )-equivariant action of Gal(Kab/F ) as follows.

By the Skolem-Noether theorem, there exists an element b ∈ B× such that x 7→ xb =
b−1xb induces the non-trivial F -automorphism of K. In particular, b2 belongs to T (Q).
Multiplication on the left by b induces an involution ι on CM such that for all x ∈ CM and
σ ∈ GalabK , ι(σx) = σιιx where σ 7→ σι is the involution on GalabK which is induced by the
nontrivial element of Gal(K/F ).
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Proposition 2.5 The above actions are transitive and for each z ∈ Z,
(1) there exists a unique G1

S(Af )-invariant Borel probability measure µz on
(cS ◦ qS)−1(z), and (2) there exists a unique G1(S)-invariant Borel probability
measure µz on c−1

S (z).

The uniqueness implies that these two measures are compatible, in the sense
that the (proper) map qS : (cS ◦ qS)−1(z) → c−1

S (z) maps one to the other:
this is why we use the same notation µz for both measures. Similarly, for any
g ∈ G1

S(Af ) (resp. G(S)), the measure µz·g(⋆g) equals µz on (cS ◦ qS)−1(z)
(resp. on c−1

S (z)).

2.1.8 Level structures

For a compact open subgroup H of G(Af ), we denote by CMH , XH(S) and
ZH the quotients of CM, X (S) and Z by the right action of H. We still denote
by c, REDS and cS the induced maps on these quotient spaces:

c : CMH
REDS // XH(S)

cS // ZH .

Note that XH(S) and ZH are finite spaces, being discrete and compact. We
have

ZH = Z/nr(H) and XH(S) = X (S)/H(S) ≃ XS/HS

where H(S) = φS(H) ⊂ G(S) and HS = π−1
S (H(S)) ⊂ GS . The Galois group

GalabK still acts continuously on the (now discrete) spaces CMH and ZH , and c
is a GalabK -equivariant map.

2.2 Main theorems: the statements

2.2.1 Simultaneous reduction maps

Let S be a nonempty finite collection of finite sets of non-archimedean places
of F not containing P and satisfying conditions S1 to S3 of section 2.1.1. That
is: each element of S is a finite set S of finite places of F such that ∀v ∈ S, v
is not equal to P , Kv is a field, and Bv is split, and |S|+ |Ramf (B)|+ [F : Q]
is even. For each S in S, we choose a totally definite quaternion algebra BS

over F with Ramf (BS) = Ramf (B) ∪ S, an embedding ιS : K → BS and a
collection of isomorphisms (φv : Bv → BS,v)v/∈S as in section 2.1.3.
For each S in S, we thus obtain (among other things) an algebraic group GS

over Q, two locally compact and totally discontinuous adelic groups GS(Af )
and G(S), a commutative diagram of continuous homomorphisms as in Section
2.1.3, a special set X (S) = G(S,Q)\G(S), a reduction map REDS : CM →
X (S) and a connected component map cS : X (S) → Z with the property that
each fiber c−1

S (z) of cS has a unique Borel probability measure µz which is
right invariant under G1(S) = ker(nr′S) (we refer the reader to section 2.1 for
all notations).
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Let R be a nonempty finite subset of GalabK and consider the sequence

CM
Red // X (S,R)

C // Z(S,R)

where

• X (S) =
∏

S∈S
X (S) and X (S,R) =

∏
σ∈R

X (S) =
∏

S,σ X (S);

• Z(S) =
∏

S∈S
Z and Z(S,R) =

∏
σ∈R

Z(S) =
∏

S,σ Z;

• C : X (S,R) → Z(S,R) maps x = (xS,σ) to C(x) = (cS(xS,σ));

• Red : CM → X (S,R) is the simultaneous reduction map which sends x
to Red(x) = (REDS(σ · x)).

We also put G(S,R) =
∏

S,σ G(S) and G1(S,R) =
∏

S,σ G1(S), so that
G(S,R) acts on X (S,R) and Z(S,R), C is equivariant for these actions and
its fibers are the G1(S,R)-orbits in X (S,R). For z = (zS,σ) in Z(S,R), the
measure µz =

∏
S,σ µzS,σ

is a G1(S,R)-invariant Borel probability measure on

C−1(z) =
∏

S,σ c−1
S (zS,σ). If g ∈ G(S,R) and z ∈ Z(S,R), µz·g(⋆g) = µz on

C−1(z).
The Galois group GalabK acts diagonally on Z(S,R) =

∏
S,σ Z (through its

quotient GalabF ) and the composite map C ◦ Red : CM → Z(S,R) is GalabK -
equivariant. For x ∈ CM, we shall frequently write x̄ = C ◦Red(x). Explicitly:

x̄ = C ◦ Red(x) = (σ · c(x))S,σ ∈ Z(S,R) =
∏

S,σ

Z.

2.2.2 Main theorem

In this section, we state the main results, without proofs. The proofs are long,
and will be given later.

Definition 2.6 A P -isogeny class of CM points is a B×
P -orbit in CM. If

H ⊂ CM is a P -isogeny class and f is a C-valued function on CM, we say that
f(x) goes to a ∈ C as x goes to infinity in H if the following holds: for any
ǫ > 0, there exists a compact subset C(ǫ) of CM such that |f(x) − a| ≤ ǫ for
all x ∈ H \ C(ǫ).

Remark 2.7 This definition can be somewhat clarified if we introduce the
Alexandroff “one point” compactification ĈM = CM∪{∞} of the locally com-

pact space CM. It is easy to see that the point ∞ ∈ ĈM lies in the closure
of any P -isogeny class H (simply because P -isogeny classes are not relatively
compact in CM). Our definition of “f(x) goes to a ∈ C as x goes to infinity
in H” is then equivalent to the assertion that the limit of f |H at ∞ exists and
equals a.
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Definition 2.8 An element σ ∈ GalabK is P -rational if σ = recK(λ) for some

λ ∈ K̂× whose P -component λP belongs to the subgroup K× · F×
P of K×

P . We

denote by GalP−rat
K ⊂ GalabK the subgroup of all P -rational elements.

In the above definition, recK : K̂×
։ GalabK is Artin’s reciprocity map. We

normalize the latter by specifying that it sends local uniformizers to geometric
Frobeniuses.

Theorem 2.9 Suppose that the finite subset R of GalabK consists of elements
which are pairwise distinct modulo GalP−rat

K . Let H ⊂ CM be a P -isogeny class

and let G be a compact open subgroup of GalabK with Haar measure dg. Then
for every continuous function f : X (S,R) → C,

x 7→
∫

G

f ◦ Red(g · x)dg −
∫

G

dg

∫

C−1(g·x̄)

fdµg·x̄

goes to 0 as x goes to infinity in H.

2.2.3 Surjectivity

Let H be a compact open subgroup of G(Af ). Replacing CM, X and Z by
CMH , XH and ZH in the constructions of section 2.2.1, we obtain a sequence

CMH
Red // XH(S,R)

C // ZH(S,R)

where

• XH(S,R) =
∏

S,σ XH(S) = X (S,R)/H(S,R) and

• ZH(S,R) =
∏

S,σ ZH = Z(S,R)/H(S,R) with

• H(S,R) =
∏

S,σ H(S), a compact open subgroup of G(S,R).

Applying the main theorem to the characteristic functions of the (finitely many)
elements of XH(S,R), we obtain the following surjectivity result. Let H be
the image of H in CMH .

Corollary 2.10 For all but finitely many x in H,

Red(G · x) = C−1(G · x̄) in XH(S,R)

where x̄ = C ◦ Red(x) ∈ ZH(S,R).
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2.2.4 Equidistribution

When H = R̂× for some Eichler order R in B, we can furthermore specify the
asymptotic behavior (as x varies inside H) of

Prob {Red(G · x) = s} def
=

1

|G · x| |{g · x; Red(g · x) = s, g ∈ G}|

where s is a fixed point in XH(S,R). To state our result, we first need to
define a few constants.
Let N =

∏
Q QnQ be the level of R. By construction, the compact open

subgroup HS = π−1
S φS(H) of GS(Af ) equals R̂×

S for some Eichler order RS ⊂
BS whose level NS is the “prime-to-S” part of N : NS =

∏
Q/∈S QnQ . For

g ∈ GS(Af ) and x = GS(Q)gHS in

XH(S) ≃ XS/HS = GS(Q)\GS(Af )/HS = GS(Q)\GS(Af )/HS

put O(g) = gR̂Sg−1 ∩ BS . This is an OF -order in BS whose B×
S -conjugacy

class depends only upon x. The isomorphism class of the group O(g)×/O×
F also

depends only upon x and since BS is totally definite, this group is finite [20,
p. 139]. The weight ω(x) of x is the order of this group: ω(x) = [O(g)× : O×

F ].
The weight of an element s = (xS,σ) in XH(S,R) is then given by ω(s) =∏

S,σ ω(xS,σ).
Finally, we put

Ω =
1

Ω(G)
·
( ∏

S∈S

Ω(F )

Ω(BS) · Ω(NS)

)|R|

where

• Ω(F ) = 22[F :Q]−1[O×
F : O>0

F ]−1 |ζF (−1)|−1
,

• Ω(BS) =
∏

Q∈Ramf (BS)(‖Q‖ − 1),

• Ω(NS) = ‖NS‖ ·
∏

Q|NS
(‖Q‖−1

+ 1) and

• Ω(G) is the order of the image of G in the Galois group Gal(F+
1 /F ) of

the narrow Hilbert class field F+
1 of F .

Here ‖·‖ denotes the absolute norm.

Corollary 2.11 For all ǫ > 0, there exists a finite set C(ǫ) ⊂ H such that for
all s ∈ XH(S,R) and x ∈ H \ C(ǫ),

∣∣∣∣Prob {Red(G · x) = s} − Ω

ω(s)

∣∣∣∣ ≤ ǫ

if s belongs to C−1(G · x̄) and Prob {Red(G · x) = s} = 0 otherwise.

The remainder of this first part of the paper is devoted to the proofs of Propo-
sition 2.5, Theorem 2.9, Corollary 2.10, Corollary 2.11.
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2.3 Proof of the main theorems: first reductions

Notations

For a continuous function f : X (S,R) → C and x ∈ CM, we put

A(f, x) =

∫

G

f ◦ Red(g · x)dg and B(f, x) = B(f, x̄) =

∫

G

I(f, g · x̄)dg

where x̄ = C ◦ Red(x), with I(f, z) =
∫

C−1(z)
fdµz for z ∈ Z(S,R).

Then the theorem says that for all ǫ > 0, there exists a compact subset C(ǫ) ⊂
CM such that,

∀x ∈ H, x /∈ C(ǫ) : |A(f, x) − B(f, x)| ≤ ǫ.

We claim that the functions x 7→ A(f, x) and x 7→ B(f, x) are well-defined.
This is clear for A(f, x), as g 7→ f ◦Red(g ·x) is continuous on G. For B(f, x),
we claim that g 7→ I(f, g · x̄) is also continuous. Since g 7→ g · x̄ is continuous,
it is sufficient to show that z 7→ I(f, z) is continuous on Z(S,R). Note that
for u ∈ G(S,R),

I(f, z ·u)−I(f, z) =

∫

C−1(z·u)

fdµz·u−
∫

C−1(z)

fdµz =

∫

C−1(z)

(f(⋆u) − f) dµz.

Since f is continuous and X (S,R) is compact, f is uniformly continuous. It
follows that I(f, z · u) − I(f, z) is small when u is small and z 7→ I(f, z) is
indeed continuous.
To prove the theorem, we may assume that f is locally constant. Indeed, there
exists a locally constant function f ′ : X (S,R) → C such that ‖f − f ′‖ ≤ ǫ/3.
If the theorem were known for f ′, we could find a compact subset C(ǫ) ⊂ CM
such that |A(f ′, x) − B(f ′, x)| ≤ ǫ/3 for all x ∈ H with x /∈ C(ǫ), thus obtaining

|A(f, x) − B(f, x)|
≤ |A(f, x) − A(f ′, x)| + |A(f ′, x) − B(f ′, x)| + |B(f ′, x) − B(f, x)|
≤ ǫ/3 + ǫ/3 + ǫ/3 = ǫ.

A decomposition of G · H · H
From now on, we shall thus assume that f is locally constant. Let H be a com-
pact open subgroup of G(Af ) such that f factors through X (S,R)/H(S,R),
where H(S,R) =

∏
S,σ H(S) with H(S) = φS(H). Then

• x 7→ A(x) =
∫
G f ◦ Red(g · x)dg factors through G\CM/H,

• z 7→ I(z) =
∫

C−1(z)
fdµz factors through Z(S,R)/H(S,R), hence

• x 7→ B(x) = B(x̄) =
∫
G I(g · x̄)dg factors through G\CM/H
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(where x̄ = C ◦ Red(x) ∈ Z(S,R) as usual).
For a nonzero nilpotent element N ∈ BP , the formula u(t) = 1 + tN defines a
group isomorphism u : FP → U = u(FP ) ⊂ B×

P . We say that U = {u(t)} is a
one parameter unipotent subgroup of B×

P .

Proposition 2.12 There exists: (1) a finite set I, (2) for each i ∈ I, a point
xi ∈ H and a one parameter unipotent subgroup Ui = {ui(t)} of B×

P , and (3) a
compact open subgroup κ of F×

P such that

1. G · H · H =
⋃

i∈I

⋃
n≥0 G · xi · ui(κn) · H, and

2. ∀i ∈ I and ∀n ≥ 0, G · xi · ui(κn) · H = G · xiui,n · H,

where κn = ̟−n
P κ ⊂ F×

P and ui,n = ui(̟
−n
P ) ∈ ui(κn).

Proof. Section 2.6.

Unipotent orbits: reduction of Theorem 2.9

This decomposition allows us to switch from Galois (=toric) orbits to unipotent
orbits of CM points. To deal with the latter, we have the following proposition.
We fix a CM point x ∈ H and a one parameter unipotent subgroup U = {u(t)}
in B×

P . We also choose a Haar measure λ = dt on FP . Then Theorem 2.9
follows from Proposition 2.12 and

Proposition 2.13 Under the assumptions of Theorem 2.9, for almost all g ∈
GalabK ,

lim
n→∞

1

λ(κn)

∫

κn

f ◦ Red(g · x · u(t))dt =

∫

C−1(g·x̄)

fdµg·x̄.

Proof. Section 2.5.

To deduce Theorem 2.9, we may argue as follows. By taking the integral over
g ∈ G and using (a) Lebesgue’s dominated convergence theorem to exchange∫
G and limn, and (b) Fubini’s theorem to exchange

∫
G and

∫
κn

, we obtain:

lim
n→∞

1

λ(κn)

∫

κn

A(x · u(t))dt = B(x).

This holds for all x and u.
Then for x = xi and u = ui, we also know from part (2) of Proposition 2.12
that t 7→ A(xi · ui(t)) is constant on κn, equal to A(xiui,n). In particular,

∀i ∈ I : lim
n→∞

A(xiui,n) = B(xi).

Fix ǫ > 0 and choose N ≥ 0 such that

∀n > N, ∀i ∈ I : |A(xiui,n) − B(xi)| ≤ ǫ.
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Put C(ǫ) =
⋃

i∈I

⋃N
n=0 G · xiui(κn) · H, a compact subset of CM.

For any x ∈ H, there exists i ∈ I and n ≥ 0 such that x belongs to G ·xiui,nH,
so that A(x) = A(xiui,n) and B(x) = B(xiui,n) = B(xi). If x /∈ C(ǫ), n > N
and |A(x) − B(x)| ≤ ǫ, QED.

Reduction of Corollaries 2.10 and 2.11

Let H be a compact open subgroup of G(Af ) and let f : X (S,R) → {0, 1}
be the characteristic function of some s ∈ XH(S,R), say s = s̃ · H(S,R)
with s̃ ∈ X (S,R). The function z 7→ I(f, z) =

∫
C−1(z)

fdµz factors through

ZH(S,R) and equals 0 outside C(s) = C(s̃) · H(S,R). Let I(s) be its value
on C(s).

For x̃ ∈ CM, we easily obtain:

• A(f, x̃) = Prob {Red(G · x) = s} where x is the image of x̃ in CMH ,

• B(f, x̃) = 0 if x̄ = C ◦ Red(x) does not belong to G · C(s), and

• B(f, x̃) = I(s)/Ω(G,H) otherwise, where Ω(G,H) is the common size of
all G-orbits in Z(S,R)/H(S,R) ≃ ∏

S,σ Z/nr(H), which is also the size
of the G-orbits in Z/nr(H).

If nr(H) is the maximal compact subgroup Ô×
F of Z(Af ) (which occurs when

H = R̂× for some Eichler order R ⊂ B), Z/nr(H) ≃ Gal(F+
1 /F ) and Ω(G,H)

is the order of the image of G in Gal(F+
1 /F ): Ω(G,H) = Ω(G).

The main theorem asserts that for all ǫ > 0, there exists a compact subset C(ǫ)
of CM such that for all x ∈ H \ C(ǫ) (where H and C(ǫ) are the images of H
and C(ǫ) in CMH),

|Prob {Red(G · x) = s} − I(s)/Ω(G,H)| ≤ ǫ

if s ∈ C−1(G · x̄) and Prob {Red(G · x) = s} = 0 otherwise. Note that C(ǫ) is
finite, being compact and discrete. To prove the corollaries, it remains to (1)
show that I(s) is nonzero and (2) compute I(s) exactly when H arises from an
Eichler order in B.

Write s = (xS,σ) with xS,σ = x̃S,σHS in X (S)/H(S) ≃ XS/HS (S ∈ S, σ ∈ R

and x̃S,σ ∈ XS). Then I(s) =
∏

S,σ I(s)S,σ with

I(s)S,σ =

∫

(cS◦qS)−1(zS,σ)

fS,σdµzS,σ

where zS,σ = cS ◦ qS(x̃S,σ) ∈ Z and fS,σ : XS → {0, 1} is the characteristic
function of xS,σ.

Proposition 2.14 (1) For all S ∈ S and σ ∈ R, I(s)S,σ > 0.
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(2) If H = R̂× for some Eichler order R ⊂ B of level N ,

I(s)S,σ =
1

ω(xS,σ)
· Ω(F )

Ω(BS) · Ω(NS)

with ω(⋆), Ω(F ), Ω(BS) and Ω(NS) as in section 2.2.4.

Proof. See section 2.4.2, especially Proposition 2.18.

In particular, I(s) > 0 and if H = R̂× with R as above,

I(s) =
1

ω(s)
·
( ∏

S∈S

Ω(F )

Ω(BS) · Ω(NS)

)|R|

.

Thus we obtain Corollaries 2.10 and 2.11.

2.4 Further reductions

The arguments of the last section have reduced our task to proving Propositions
2.5, 2.12, 2.13, and 2.14. In this section, we make some further steps in this
direction. Section 2.4.1 gives the proof of Proposition 2.5. Section 2.4.2 gives
the proof of Proposition 2.14. Finally, Section 2.4.3 is a step towards Ratner’s
theorem and the proof of Proposition 2.14.
Throughout this section, S is a finite set of finite places of F subject to the
condition S1 to S3 of section 2.1.1.

2.4.1 Existence of a measure and proof of Proposition 2.5

We shall repeatedly apply the following principle:

Lemma 2.15 [20, Lemme 1.2, p. 105] Suppose that L and C are topological
groups with L locally compact and C compact. If Λ is a discrete and cocompact
subgroup of L×C, the projection of Λ to L is a discrete and cocompact subgroup
of L.

By [20, Théorème 1.4, p. 61], G1
S(Q) diagonally embedded in G1

S(Af ) ×
G1

S(A∞) is a discrete and cocompact subgroup. Since G1
S(A∞) is compact,

G1
S(Q) is also discrete and cocompact in G1

S(Af ). Since the sequence

1 → ker(πS) → G1
S(Af ) → G1(S) → 1

is split exact with ker(πS) compact, G1(S,Q) = πS(G1
S(Q)) is again a discrete

and cocompact subgroup of G1(S).

Lemma 2.16 The fibers of cS ◦ qS are the G1
S(Af )-orbits in XS. For g ∈

GS(Af ) and x = GS(Q)g in XS, the stabilizer of x in G1
S(Af ) is a discrete

and cocompact subgroup of G1
S(Af ) given by StabG1

S
(Af )(x) = g−1G1

S(Q)g.
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Proof. Fix x = GS(Q)g in XS and put z = cS ◦ qS(x) = Z(Q)+nrS(g) ∈ Z.

The fiber of cS ◦ qS above z is the image of L = nr−1
S

(
Z(Q)+nrS(g)

)
in XS

and the stabilizer of x in G1
S(Af ) equals M = G1

S(Af )∩ g−1GS(Q)g. We have

to show that L = GS(Q)gG1
S(Af ) and M = g−1G1

S(Q)g.

We break this up into a series of steps.

Step 1: GS(Q)gG1
S(Af ) is closed in GS(Af ). This is equivalent to saying

that the G1
S(Af )-orbit of x is closed in XS . Since M contains g−1G1

S(Q)g
which is cocompact in G1

S(Af ), M itself is cocompact in G1
S(Af ). It follows

that x · G1
S(Af ) is compact, hence closed in XS .

Step 2: L = GS(Q)gG1
S(Af ). Since nrS : GS(Af ) → Z(AF ) is open, L is the

closure of nr−1
S (Z(Q)+nrS(g)) in GS(Af ). The norm theorem [20, Théorème

4.1 p. 80] implies that nr−1
S (Z(Q)+nrS(g)) = GS(Q)gG1

S(Af ) and then L =

GS(Q)gG1
S(Af ) by (1).

Step 3: GS(Q) = Z(Q)GS(Q) . This is easy. See for instance the proof of
Corollary 3.10.

Step 4: M = g−1G1
S(Q)g. Suppose that γ belongs to M = G1

S(Af ) ∩
g−1GS(Q)g. By (3), γ = g−1λgQg for some λ ∈ Z(Q) and gQ ∈ GS(Q)

with nrS(γ) = 1. Then α = λ2 = nr(g−1
Q ) belongs to Z(Q)

2 ∩ Z(Q)+ ⊂
Z(Af )2 ∩ Z(Q)+. Since α belongs to Z(Q)+ ⊂ F×, we may form the abelian
extension F (

√
α) of F . Since α also belongs to Z(Af )2, this extension splits

everywhere and is therefore trivial: α = λ2
0 for some λ0 ∈ F×. Then λ/λ0 is

an element of order 2 in Z(Q) ∩ Ô×
F . Since Z(Q) ∩ Ô×

F = O×
F is isomorphic to

the profinite completion of O×
F (a finite type Z-module), λ/λ0 actually belongs

to {±1}, the torsion subgroup of O×
F . We have shown that λ belongs to Z(Q),

hence γ = g−1λgQg belongs to g−1GS(Q)g ∩ G1
S(Af ) = g−1G1

S(Q)g.

Since (1) qS identifies XS/ker(πS) with X (S) and (2) G1
S(Af ) ≃ G1(S) ×

ker(πS) with ker(πS) compact, we obtain:

Lemma 2.17 The fibers of cS are the G1(S)-orbits in X (S). For g ∈ G(S) and
x = G(S,Q)g in X (S), the stabilizer of x in G1(S) is a discrete and cocompact
subgroup of G1(S) given by StabG1(S)(x) = g−1G1(S,Q)g.

For z ∈ Z and x ∈ (cS ◦ qS)−1(z), the map g 7→ x · g induces a G1
S(Af )-

equivariant homeomorphism between Stab(x)\G1
S(Af ) and (cS◦qS)−1(z). Sim-

ilarly, any x ∈ c−1
S (z) defines a G1(S)-equivariant homeomorphism between

Stab(x)\G1(S) and c−1
S (z). Proposition 2.5 easily follows.

2.4.2 A computation.

Any Haar measure µ1 on G1
S(Af ) induces a collection of G1

S(Af )-invariant
Borel measures µ1

z on the fibers (cS ◦ qS)−1(z) of cS ◦ qS : XS → Z. These
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measures are characterized by the fact that for any compact open subgroup
H1

S of G1
S(Af ) and any x ∈ (cS ◦ qS)−1(z),

µ1
z(x · H1

S) =
µ1(H1

S)∣∣∣StabH1

S
(x)

∣∣∣

(StabH1

S
(x) = StabG1

S
(Af )(x) ∩ H1

S is indeed finite since StabG1

S
(Af )(x) is dis-

crete while H1
S is compact). One easily checks that µ1

z·g(⋆g) equals µ1
z on

(cS ◦ qS)−1(z) for any g ∈ GS(Af ). It follows that these measures assign the
same volume λ to each fiber of cS ◦ qS , and µ1

z = λµz on (cS ◦ qS)−1(z).
We shall now simultaneously determine λ (or find out which normalization of
µ1 yields λ = 1) and compute a formula for

ϕz(x) = µz

(
xHS ∩ (cS ◦ qS)−1(z)

)
(x ∈ XS , z ∈ Z)

where HS is a compact open subgroup of GS(Af ). The map z 7→ ϕz(x) factors
through Z/nrS(HS) and equals 0 outside cS ◦ qS(xHS) = cS ◦ qS(x) · nrS(HS).
Let z1, · · · , zn be a set of representatives for Z/nrS(HS) and for 1 ≤ i ≤ n, let
xi,1, · · · , xi,ni

be a set of representatives in (cS ◦ qS)−1(zi) of

(cS ◦ qS)−1(zinrS(HS))/HS = (cS ◦ qS)−1(zi) · HS/HS .

The xi,j ’s then form a set of representatives for XS/HS and
∑

i,jϕzi
(xi,j) =

∑
iµzi

(
∪ni

j=1xi,jHS ∩ (cS ◦ qS)−1(zi)
)

=
∑

i1 = n (1)

since (xi,jHS)ni
j=1 covers (cS ◦ qS)−1(zi).

To compute ϕz(x), we may assume that z = cS ◦ qS(x). Choose g ∈ GS(Af )

such that x = GS(Q)g and put H1
S = HS ∩G1

S(Af ). By Lemma 2.16, the map
b 7→ x · b yields a bijection

g−1G1
S(Q)g\(g−1GS(Q)g · HS) ∩ G1

S(Af )/H1
S

≃−→ xHS ∩ (cS ◦ qS)−1(z)/H1
S .
(2)

Note that g−1GS(Q)g · HS = g−1GS(Q)g · HS . Let (akbk)m
k=1 be a set of

representatives for the left hand side of (2), with ak in g−1GS(Q)g, bk in HS

and nrS(akbk) = 1. Since x · ak = x and bk normalizes H1
S ,

ϕz(x) =

m∑

k=1

µz

(
x · akbkH1

S

)
=

m

|H1
S ∩ g−1G1

S(Q)g| ×
µ1(H1

S)

λ
· .

On the other hand, the map akbk 7→ nrS(ak) = nrS(bk)−1 yields a bijection
between the left hand side of (2) and

nrS

(
HS ∩ g−1GS(Q)g

)
\nrS (HS) ∩ nrS(GS(Q)).

Since nrS(GS(Q)) = Z(Q)+, we obtain

ϕz(x) =
|q(g,HS)|
|k(g,HS)| ×

µ1(H1
S)

λ
(3)
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where k(g,HS) and q(g,HS) are respectively the kernel and cokernel of

gHSg−1 ∩ GS(Q)
nrS−→ nrS(HS) ∩ Z(Q)+.

When HS = R̂×
S for some Eichler order RS in BS , the following simplifications

occur:

• nrS(HS) = Ô×
F , so that n = |Z/nrS(HS)| =

∣∣∣F̂×/F>0Ô×
F

∣∣∣ = h+
F is the

order of the narrow class group of F . Note that h+
F = hF · [O>0

F : (O×
F )2],

where hF is the class number of F and (O×
F )2 = {x2 | x ∈ O×

F }.

• The map g 7→ L(g) = g · R̂S ∩ BS yields a bijection between XS/HS =
GS(Q)\GS(Af )/HS and the set of isomorphism classes of nonzero right

R-ideals in BS . Moreover, the left order O(g) of L(g) equals gR̂Sg−1∩BS ,
so that O(g)× = gHSg−1 ∩ GS(Q).

• The following commutative diagram with exact rows

1 → O×
F → O(g)× → O(g)×/O×

F → 1
2 ↓ nrS ↓ ↓

1 → O>0
F → O>0

F → 1

yields an exact sequence

1 → {±1} → k(g,HS) → O(g)×/O×
F → O>0

F /(O×
F )2 → q(g,HS) → 1.

In particular,
|q(g,HS)|
|k(g,HS)| =

[O>0
F : (O×

F )2]

2 · [O(g)× : O×
F ]

.

Combining this, (1), (3) and [20, Corollaire 2.3 p. 142], we obtain:

µ1(H1
S)

λ
=

2[F :Q] |ζF (−1)|−1

‖NS‖ ·
∏

Q∈Ramf (BS)(‖Q‖ − 1) · ∏Q|NS
(‖Q‖−1

+ 1)

where NS is the level of RS . This tells us how to normalize µ1 in order to have
λ = 1. We have proven:

Proposition 2.18 Let HS be a compact open subgroup of GS(Af ). For x ∈ XS

and z ∈ Z,

µz

(
xHS ∩ (cS ◦ qS)−1(z)

)
=

{
|q(g,HS)|
|k(g,HS)|µ

1(H1
S) if z ∈ cS ◦ qS(xHS)

0 otherwise

where x = GS(Q)g, k(g,HS) and q(g,HS) are as above, H1
S = HS ∩ G1

S(Af )
and µ1 is the unique Haar measure on G1

S(Af ) such that

µ1(H1
S) =

2[F :Q] |ζF (−1)|−1

∏
Q∈Ramf (BS)(‖Q‖ − 1)
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when HS = R̂×
S for some maximal order RS ⊂ BS. Moreover, if HS = R̂×

S for
some Eichler order RS ⊂ BS of level NS,

|q(g,HS)|
|k(g,HS)|µ

1(H1
S) =

1

[O(g)× : O×
F ]

× Ω(F )

Ω(BS) · Ω(NS)

with Ω(F ), Ω(BS) and Ω(NS) as in section 2.2.4.

2.4.3 P -adic uniformization.

Suppose moreover that P does not belong to S (this is the case for all S ∈ S).
Since B splits at P , so does BS .
Let H be a compact open subgroup of G1

S(Af )P =
{
x ∈ G1

S(Af ) | xP = 1
}
.

For z ∈ Z, the right action of G1
S(Af ) on cS ◦ q−1

S (z) induces a right action of
B1

S,P = {b ∈ B×
S,P | nrS(b) = 1} on cS ◦ q−1

S (z)/H.

Lemma 2.19 This action is transitive and the stabilizer of x ∈ cS ◦ q−1
S (z)/H

is a discrete and cocompact subgroup ΓS(x) of B1
S,P . For x = GS(Q)gH (with

g ∈ GS(Af )), ΓS(x) = g−1
P ΓSgP where gP ∈ B×

S,P is the P -component of g

and ΓS = ΓS(gHg−1) is the projection to B1
S,P of G1

S(Q)∩
{
gHg−1 · B1

S,P

}
⊂

G1
S(Af ). The commensurator of ΓS in B×

S,P equals F×
P B×

S .

Proof. The stabilizer of x̃ = GS(Q)g in G1
S(Af ) equals Stab(x̃) =

g−1G1
S(Q)g (by Lemma 2.16). The strong approximation theorem [20,

Théorème 4.3, p. 81] implies that Stab(x̃)B1
S,P H = G1

S(Af ). Using
Lemma 2.16 again, we obtain

(cS ◦ qS)−1(z) = x̃ · G1
S(Af ) = x̃ · B1

S,P H = x̃ · HB1
S,P = x · B1

S,P .

In particular, B1
S,P acts transitively on (cS ◦qS)−1(z)/H. An easy computation

shows that ΓS(x) = g−1
P ΓSgP with ΓS as above.

Put U = gHg−1 ·B1
S,P . The continuous map U ∩G1

S(Q)\U →֒ G1
S(Q)\G1

S(Af )

is (1) open since U is open in G1
S(Af ) and (2) surjective by the strong approxi-

mation theorem. In particular, U∩G1
S(Q) is a discrete and cocompact subgroup

of U . Since U = gHg−1 × B1
S,P (with gHg−1 compact), the projection ΓS of

U ∩ G1
S(Q) to B1

S,P is indeed discrete and cocompact in B1
S,P .

Finally, since the compact open subgroups of G1
S(Af )P are all commensurable,

neither the commensurability class of ΓS nor its commensurator in B×
S,P de-

pends upon g or H. When g = 1 and H = R̂×∩G1
S(Af )P for some Eichler order

R ⊂ BS , ΓS is the image in B1
S,P of the subgroup {x ∈ R[1/P ]× | nrS(x) = 1}

of B×
S . The commensurator of ΓS in B×

S,P then equals F×
P B×

S by [20, Corollaire
1.5, p. 106].

Similarly, let H be a compact open subgroup of G1(S)P = {x ∈ G1(S) | xP =
1}. Then B1

S,P acts on c−1
S (z)/H and we have the following lemma.
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Lemma 2.20 This action is transitive and the stabilizer of x ∈ c−1
S (z)/H is a

discrete and cocompact subgroup ΓS(x) of B1
S,P . For x = G(S,Q)gH with g

in G(S), ΓS(x) = g−1
P ΓSgP where ΓS = ΓS(gHg−1) is the projection to B1

S,P

of G1(S,Q) ∩
{
gHg−1 · B1

S,P

}
⊂ G1(S). The commensurator of ΓS in B×

S,P

equals F×
P B×

S .

Proof. The proof is similar, using Lemma 2.17 instead of 2.16. Alternatively,
we may deduce the results for cS from those for cS ◦ qS as follows. Put H ′ =
π−1

S (H). Then H ′ is a compact open subgroup of G1
S(Af ) and qS induces a

B1
S,P -equivariant homeomorphism between (cS ◦ qS)−1(z)/H ′ and c−1

S (z)/H.

In particular, the map b 7→ x · b induces a B1
S,P -equivariant homeomorphism

ΓS(x)\B1
S,P

≃−→ c−1
S (z)/H.

Since ΓS(x) is discrete and cocompact in B1
S,P ≃ SL2(FP ), there exists a unique

B1
S,P -invariant Borel probability measure on the left hand side. It corresponds

on the right hand side to the image of the measure µz through the (proper)
map c−1

S (z) → c−1
S (z)/H: the latter is indeed yet another B1

S,P -invariant Borel
probability measure.

2.5 Reduction of Proposition 2.13 to Ratner’s theorem

Let us fix a point x ∈ CM, a one parameter unipotent subgroup U = {u(t)}
in B×

P , a compact open subgroup κ in F×
P and a Haar measure λ = dt on FP .

For n ≥ 0, we put κn = ̟−n
P κ so that λ(κn) → ∞ as n → ∞. For γ ∈ GalabK

and t ∈ FP ,

C ◦ Red(γ · x · u(t)) = γ · x̄ with x̄ = C ◦ Red(x) ∈ Z(S,R)

where S,R, C and Red are as in section 2.2.1. Our aim is to prove the following
two propositions, which together obviously imply Proposition 2.13.

Proposition 2.21 Suppose that Red(x ·U) is dense in C−1(x̄). Then for any
continuous function f : C−1(x̄) → C,

lim
n→∞

1

λ(κn)

∫

κn

f ◦ Red(x · u(t))dt =

∫

C−1(x̄)

fdµx̄.

Proposition 2.22 Under the assumptions of Theorem 2.9, Red(γ · x · U) is
dense in C−1(γ · x̄) for almost all γ ∈ GalabK .

2.5.1 Reduction of Proposition 2.21

We may assume that f is locally constant (by the same argument that we
already used in section 2.3). In this case, there exists a compact open sub-
group H of G1(Af ) such that f factors through C−1(x̄)/H(S,R). For our
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purposes, it will be sufficient to assume that f is right H(S,R)-invariant when
H is a compact open subgroup of G1(Af )P =

{
x ∈ G1(Af ) | xP = 1

}
. Here,

H(S,R) =
∏

S,σ H(S) with H(S) = φS(H) as usual.

For such an H, the right action of G1(S,R) on C−1(x̄) induces a right action
of

∏
S,σ B1

S,P on C−1(x̄)/H(S,R) which together with the isomorphism

∏
S,σ φS,P : (B1

P )S×R ≃−→ ∏
S,σB1

S,P

yields a right action of (B1
P )S×R on C−1(x̄)/H(S,R).

By Lemma 2.20, the map (bS,σ) 7→ Red(x) · (φS,P (bS,σ)) yields a (B1
P )S×R-

equivariant homeomorphism

Γ(x,H)\(B1
P )S×R ≃−→ C−1(x̄)/H(S,R) (4)

where Γ(x,H) is the stabilizer of Red(x) · H(S,R) in (B1
P )S×R. Note that

Γ(x,H) equals
∏

S,σ ΓS,σ(x,H) where for each S ∈ S and σ ∈ R,

ΓS,σ(x,H) = φ−1
S,P

{
StabB1

S,P
(REDS(σ · x) · H(S))

}

is a discrete and cocompact subgroup of B1
P ≃ SL2(FP ).

Under this equivariant homeomorphism,

• the image of t 7→ Red(x · u(t)) in C−1(x̄)/H(S,R) corresponds to the
image of t 7→ ∆ ◦ u(t) in Γ(x,H)\(B1

P )S×R, where ∆ : B1
P → (B1

P )S×R

is the diagonal map;

• the image of µx̄ on C−1(x̄)/H(S,R) corresponds to the (unique)
(B1

P )S×R-invariant Borel probability measure on Γ(x,H)\(B1
P )S×R.

Writing µΓ(x,H) for the latter measure, the above discussion shows that Propo-
sition 2.21 is a consequence of the following purely P -adic statement, itself a
special case of a theorem of Ratner, Margulis, and Tomanov.

Proposition 2.23 Suppose that Γ(x,H) · ∆(U) is dense in (B1
P )S×R. Then

for any continuous function f : Γ(x,H)\(B1
P )S×R → C ,

lim
n→∞

1

λ(κn)

∫

κn

f(∆ ◦ u(t))dt =

∫

Γ(x,H)\(B1

P
)S×R

fdµΓ(x,H).

Proof. See section 2.7.

2.5.2 Reduction of Proposition 2.22

We keep the above notations and choose:

• an element g ∈ G(Af ) such that x = T (Q)g in CM;
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• for each σ ∈ R, an element λσ ∈ T (Af ) such that σ = recK(λσ) ∈ GalabK .

For S ∈ S and σ ∈ R, we thus obtain (using Lemma 2.20):

• REDS(σ · x) = G(S,Q)φS(λσg) and

• ΓS,σ(x,H) = g−1
P λ−1

σ,P Γ0
S,σ(x,H)λσ,P gP

where λσ,P and gP are the P -components of λσ and g while Γ0
S,σ(x,H) is the

inverse image (through φS,P : B1
P → B1

S,P ) of the projection to B1
S,P of

G1(S,Q) ∩
{
φS

(
λσgHg−1λ−1

σ

)
· B1

S,P

}
⊂ G1(S).

For a subgroup Γ of B1
P , we denote by [Γ] the commensurability class of Γ in

B1
P , namely the set of all subgroups of B1

P which are commensurable with Γ.
The group B×

P acts on the right on the set of all commensurability classes (by
[Γ] · b = [b−1Γb]) and the stabilizer of [Γ] for this action is nothing but the
commensurator of Γ in B×

P .
Since the compact open subgroups of G1(Af )P are all commensurable, the
commensurability class [Γ0

S ] of Γ0
S,σ(x,H) does not depend upon H, x or σ

(but it does depend on S). Similarly, the commensurability class [ΓS,σ(x)] of
ΓS,σ(x,H) does not depend upon H and [ΓS,σ(x)] = [Γ0

S ] · λσ,P gP . Changing

x to γ · x (γ ∈ GalabK ) changes g to λg, where λ is an element of T (Af ) such
that γ = recK(λ). In particular,

[ΓS,σ(γ · x)] = [Γ0
S ] · λσ,P λP gP = [Γ0

S ] · λP λσ,P gP

where λP is the P -component of λ. On the other hand, the stabilizer of [Γ0
S ]

in B×
P equals F×

P φ−1
S (B×

S ) by Lemma 2.20. Since K×
P ∩F×

P φ−1
S (B×

S ) = F×
P K×,

[ΓS,σ(γ · x)] = [ΓS,σ(γ′ · x)] ⇐⇒ γ ≡ γ′ mod GalP−rat
K .

With these notations, we have

Proposition 2.24 Under the assumptions of Theorem 2.9, for (S, σ) and
(S′, σ′) in S × R with (S, σ) 6= (S′, σ′), the set

B((S, σ), (S′, σ′)) =
{

γ ∈ GalabK ; [ΓS,σ(γ · x)] · U = [ΓS′,σ′(γ · x)] · U
}

is the disjoint union of countably many cosets of GalP−rat
K in GalabK .

Proof. Fix (S, σ) 6= (S′, σ′) in S × R. We have to show that (under the
assumptions of Theorem 2.9) the image of

B
′ =

{
λP ∈ K×

P ; [Γ0
S ] · λσ,P λP gP · U = [Γ0

S′ ] · λσ′,P λP gP · U
}

in K×
P /F×

P K× is at most countable. For that purpose we may as well consider
the image of B

′ in K×
P /F×

P .
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We first consider the case where S 6= S′. In this case, we claim that B
′ is

empty. In fact: For S 6= S′, we claim that

[Γ0
S ] · B×

P 6= [Γ0
S′ ] · B×

P .

To see this, suppose that [Γ0
S′ ] = [Γ0

S ] · b for some b ∈ B×
P . Then

b−1F×
P φ−1

S,P (B×
S )b = F×

P φ−1
S′,P (B×

S′), so that F×
P B×

S′ = F×
P φ(B×

S ) in B×
S′,P ,

where φ : BS,P → BS′,P is the isomorphism of FP -algebras which sends α
to φS′,P (b−1φ−1

S,P (α)b). Since FP BS = F×
P B×

S ∪ {0} and similarly for BS′ ,
FP BS′ = FP φ(BS).
We contend that φ maps BS to BS′ . Indeed, suppose that α belongs to BS

and choose η ∈ F such that Tr(α+η) = Tr(α)+2η 6= 0. Since α+η belongs to
BS , there exists µ ∈ FP and β ∈ BS′ such that φ(α + η) = µβ. Taking traces

on both sides we obtain µ = Tr(α+η)
Tr(β) ∈ F , so that φ(α + η) = φ(α) + η belongs

to BS′ , and so does φ(α).
By symmetry, φ−1(BS′) ⊂ BS and φ yields an isomorphism of F -algebras
between BS and BS′ . This is a contradiction, since BS and BS′ are non-
isomorphic quaternion algebras over F when S 6= S′. This proves the proposi-
tion when S 6= S′.
Next we consider the case where S = S′ but σ 6= σ′. In this case, an element
λP in K×

P belongs to B
′ if and only if there exists t ∈ FP such that

b(t) = λP w(t)λ−1
P (λσ,P λ−1

σ′,P ) ∈ F×
P B×

S , (5)

for w(t) = λσ,P φS(gP u(t)g−1
P )λ−1

σ,P . We contend that this condition can only

be satisfied for countably many λP modulo F×
P .

Suppose first that K×
P normalizes the unipotent subgroup W of elements of

the form w(t), for all t ∈ FP . In this situation, K×
P is a split torus, and

we claim that (5) never holds for any λP and t. To see this, observe that if
k ∈ Kp is arbitrary, then, in view of the representation of elements of K×

P

and W by triangular matrices, the commutator [k, b(t)] is unipotent. (This
also follows from standard facts about Borel subgroups.) Since b(t) ∈ F×

P B×
S ,

we can apply this to elements of KP ∩ BS = K, to conclude that either B×
S

contains nontrivial unipotent elements, or that [k, b(t)] is trivial for all k. The
former is impossible, since BS is a definite quaternion algebra, so we conclude
that b(t) commutes with K× which implies that b(t) ∈ KP . It follows that
b(t) ∈ F×

P B×
S ∩ KP = F×

P K×. But now looking at the form of b(t) shows that
w(t) = 1 and (λσ,P λ−1

σ′,P ) ∈ F×
P K×, which contradicts the fact that σ 6≡ σ′

mod GalP−rat
K .

It remains to dispose of the situation where KP fails to normalize W . In this
case, we may argue as follows. Since w(t) is unipotent, the left-hand-side of
(5) has norm independent of λP . On the other hand, the set F×

P B×
S contains

only countably many elements of given norm. It follows that there are only
countably many possibilities for the left-hand-side of (5). Thus consider a given
element α in F×

P B×
S . We want to count the number of cosets λP F×

P ∈ K×
P /F×

P

Documenta Mathematica 10 (2005) 263–309



286 C. Cornut and V. Vatsal

such that there there exists t ∈ FP with

λP w(t)λ−1
P = α(λσ′,P λ−1

σ,P ). (6)

Note that since λσ′,P λ−1
σ,P is not an element of GalP−rat

K by assumption, any

such t is neccesarily nontrivial. But since the normalizer of W in K×
P is precisely

F×
P , we see that if λP and λ′

P belong to different F×
P -cosets, then the conjugates

of W by λP and λ′
P have trivial intersection. It follows that for each α, there

is at most a unique coset in λP F×
P ∈ K×

P /F×
P such that (6) holds for some t.

Since there are only countably many possibilities for α, our contention follows.
¤

We may now prove Proposition 2.22. Put

B =
⋃

(S,σ) 6=(S′,σ′)

B((S, σ), (S′, σ′))

so that B is again the disjoint union of countably many cosets of GalP−rat
K in

GalabK . Since any such coset is negligible, so is B. We claim that Red(γ · x ·U)
is dense in C−1(γ · x̄) if γ belongs to GalabK \ B. In fact:

Lemma 2.25 For γ ∈ GalabK , the following conditions are equivalent:

1. Red(γ · x · U) is dense in C−1(γ · x̄).

2. Γ(γ ·x,H) ·∆(U) is dense in (B1
P )S×R (∀H compact open in G1(Af )P ).

3. Γ(γ ·x,H) ·∆(U) is dense in (B1
P )S×R (∃H compact open in G1(Af )P ).

4. γ does not belong to B.

Proof. Lemma 2.17 implies that a subset Z of C−1(γ̄ ·x) is everywhere dense
if and only if for every compact open subgroup H of G1(Af )P , the image of
Z in the quotient C−1(γ̄ · x)/H(S,R) is everywhere dense. Applying this to
Z = Red(γ ·x·U) yields (1) ⇔ (2). But now (2) implies (3) and (4) is equivalent
to (3) for any H by Proposition 2.35 below. ¤

In summary, the arguments of this section show that Proposition 2.13 follows
from Proposition 2.23, together with Proposition 2.35 below.

2.6 Proof of Proposition 2.12.

Let V be a simple left BP -module, so that V ≃ F 2
P as an FP -module and

V ≃ KP as a KP -module. We fix a KP -basis e of V and an OFP
-basis (1, ω)

of OKP
. Then (e, ωe) is an FP -basis of V , which we use to identify BP ≃

EndFP
(V ) with M2(FP ). Under this identification, the element x = α + βω of

KP corresponds to the matrix
(

α −βθ
β α+βτ

)
with θ = nr(ω) and τ = Tr(ω).
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Let L be the set of all OFP
-lattices in V . To each L in L, we may attach an

integer n(L) as follows. The set O(L) = {λ ∈ KP ; λL ⊂ L} is an OFP
-order

in KP and therefore equals On = OFP
+ PnOKP

for a unique integer n: we
take n(L) = n. From a matrix point of view, n(L) is the smallest integer n ≥ 0
such that ̟n

P

(
0 −θ
1 τ

)
L ⊂ L.

Lemma 2.26 The map L 7→ n(L) induces a bijection K×
P \L → N.

Proof. For λ ∈ K×
P and L ∈ L, O(λL) = O(L), so that n(λ ·L) = n(L): our

map is well-defined. Conversely, suppose that n(L) = n(L′) = n for L,L′ ∈ L.
Since both L and L′ are free, rank one On-submodules of V = KP · e, there
exists λ ∈ K×

P such that λ · L = L′: our map is injective. It is also surjective,
since n(On · e) = n for all n ∈ N.

Put L0 = O0 · e, R = End(L0) = M2(OFP
), δ =

(
̟P 0
0 1

)
and u(t) = ( 1 t

0 1 ) for
t ∈ FP . Then:

Lemma 2.27 For n ≥ 0 and t ∈ O×
FP

,

n
(
u(̟−n

P t) · L0

)
= 2n and n

(
u(̟−n

P t) · δL0

)
= 2n + 1.

Proof. Left to the reader.

Let us consider a P -isogeny class H ⊂ CM, a compact open subgroup G ⊂ GalabK

and a compact open subgroup H ⊂ G(Af ). We choose an element x0 ∈ H such

that x0 = T (Q) · g0 for some g0 ∈ G(Af ) whose P -component equals 1. Let
KG

P be the kernel of

K×
P →֒ T (Af )

recK−→ Gal ab
K → GalabK /G.

This is an open subgroup of finite index in K×
P . Let N be a positive integer

such that

• 1 + PNO×
KP

⊂ KG
P and

• H contains the image of R(N)× = 1 + PNR ⊂ B×
P in G(Af ).

We denote by I1 ⊂ K×
P (resp. I2 ⊂ R×) a chosen set of representatives for

K×
P /KG

P (resp. R×/R(N)×) and put I = I1×{0, 1}×I2. For i = (λ, ǫ, r) ∈ I,
we put

xi = x0 · λδǫr ∈ H and ui(t) = (δǫr)−1u(t)(δǫr) (t ∈ FP ).

We finally put κ = 1 + PN+1OFP
, a compact open subgroup of F×

P .
The following result gives the proof of Proposition 2.12.

Proposition 2.28 With notations as above,
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1. G · H · H = ∪i∈I ∪n≥0 G · xiui(κn) · H and

2. ∀i ∈ I and ∀n ≥ 0, G · xiui(κn) · H = G · xiui,n · H
where κn = ̟−n

P κ and ui,n = u(̟−n
P ) ⊂ ui(κn).

Proof. Note that xi · ui(t) = x0 · λu(t)δǫr.
(1) We have to show that any element x of H belongs to G · xiui(κn) · H for
some i ∈ I and n ≥ 0. Write x = x0 · b with b ∈ B×

P .
Consider the lattice b ·L0 ⊂ V and write n(b ·L0) = 2n + ǫ with ǫ ∈ {0, 1}. By
Lemma 2.26 and 2.27, there exists λ0 ∈ K×

P such that b·L0 = λ0 ·u(̟−n
P )δǫ ·L0,

hence b = λ0 · u(̟−n
P )δǫ · r0 for some r0 ∈ R×. By definition of I1 and I2,

there exists λ ∈ I1, k ∈ KG
P , r ∈ I2 and h ∈ R(N)× such that λ0 = k · λ and

r0 = rh. Put i = (λ, ǫ, r) ∈ I, t = ̟−n
P ∈ κn and σ = recK(k) ∈ G. Since

x0 · k = σ · x0, we obtain

x = x0 · b = σ · x0 · λu(t)δǫrh = σ · (xiui(t)) · h ∈ G · xi · ui(κn) · H.

(2) We have to show that for i = (λ, ǫ, r) ∈ I, n ≥ 0 and a ∈ κ,

xi · ui(̟
−n
P a) ∈ G · xiui,n · H.

Put ya = 1 − a−1, λn,a = 1 + ̟n
P yaω ∈ K×

P and σn,a = recK(λn,a). Since a
belongs to κ = 1 + PN+1O×

FP
, ya belongs to PN+1, λn,a belongs to KG

P and
σn,a belongs to G. As a matrix,

λn,a =

(
1 −θ̟n

P ya

̟n
P ya 1 + τ̟n

P ya

)
∈ K×

P ⊂ GL2(FP ).

In particular,

δ−ǫu(−̟−n
P )·λn,a ·u(̟−n

P a)δǫ =

(
1 − ya −(θ̟n

P + τ)̟−ǫ
P ya

̟n+ǫ
P ya 1 + (a + τ̟n

P )ya

)
≡ 1 mod PN.

In other words: there exists r′ ∈ R(N)× such that λn,au(̟−n
P a)δǫ =

u(̟−n
P )δǫr′. We thus obtain:

σn,a · xi · ui(̟
−na) = x0 · λλn,au(̟−n

P a)δǫr

= x0 · λu(̟−n
P )δǫr′r

= xi · ui,n · h
with h = r−1r′r ∈ R(N)× ⊂ H. QED.

2.7 An application of Ratner’s Theorem

In this section, we study the distribution of certain unipotent flows on X =
Γ\Gr, where G = SL2(FP ), r is a positive integer and Γ = Γ1 × · · · × Γr is a
product of cocompact lattices in G. Our key tool is the following special case
of a theorem of Margulis and Tomanov [11, Theorem 11.2] (see also Ratner’s
Theorem 3 in [15]). We fix a Haar measure λ on FP .
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Theorem 2.29 (Uniform Distribution) Let V = {v(t)} be a one-
parameter unipotent subgroup of Gr.

1. For every x ∈ X, there exists

• a closed subgroup L ⊃ V of Gr such that x · V = x · L, and

• an L-invariant Borel probability measure µ on X supported on x · V .

2. With x and µ as above, for every continuous function f on X and every
compact set κ of FP with positive measure, we have

lim
|s|→∞

1

λ(s · κ)

∫

s·κ

f(x · v(t))dλ(t) =

∫

X

f(y)dµ(y).

Here λ denotes a choice of Haar measure on FP .

The measure µ is uniquely determined by x and V . On the other hand, we may
replace the closed subgroup L ⊃ V of Gr by Σ = {g ∈ Gr | µ is g-invariant}.
Indeed, Σ is a closed subgroup of Gr which contains L and therefore also V .
Since µ is Σ-invariant, so is its support x · V = x·L. In particular, x · V = x·Σ.
Suppose now that V = ∆(U), where ∆ : G → Gr is the diagonal map and
U = {u(t)} is a (non-trivial) one-parameter unipotent subgroup of G. In this
case, a result of M. Ratner shows that Σ contains some “twisted” diagonal:

Lemma 2.30 There exists an element c ∈ Ur such that c∆(G)c−1 ⊂ Σ.

Proof. This is Corollary 4 of Theorem 6 in [15] when FP = Qp (note that
the centralizer of ∆(U) in Gr equals {±U}r). The case of general FP seems to
be well-known to the experts, see for instance the notes of N. Shah [17].

This leaves only finitely many possible values for Ω = c−1Σc. Indeed:

Lemma 2.31 For any subgroup Ω of Gr such that ∆(G) ⊂ Ω, there exists a
partition {Iα} of {1, · · · , r} such that

∏

α

∆Iα(G) ⊂ Ω ⊂ {±1}r ·
∏

α

∆Iα(G)

where ∆Iα(G) is the diagonal subgroup of {(gi) ∈ Gr; ∀i /∈ Iα, gi = 1}.

Proof. This is a slight generalization of Proposition 3.10 of [2]. According
to the latter, there exists a partition {Iα} of {1, · · · , r} such that

{±1}r · Ω = {±1}r · ∏α∆Iα(G).

Taking the derived group on both sides gives
∏

α ∆Iα(G) = [Ω : Ω] ⊂ Ω.
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The equivalence relation ∼ on {1, · · · , r} which is defined by the above partition
can easily be retrieved from x · ∆(U) = x · Σ by the following rule: for 1 ≤
i, j ≤ r, i ∼ j if and only if the projection

x · ∆(U) ⊂ X → Γi\G × Γj\G
is not surjective. On the other hand, this equivalence relation can also be used
to characterize those Ω-orbits which are closed subsets of X:

Lemma 2.32 For g = (gi) ∈ Gr, the Ω-orbit of y = Γ · g is closed in X if and
only for all 1 ≤ i, j ≤ r with i ∼ j, g−1

i Γigi and g−1
j Γjgj are commensurable

in G.

Proof. The map ω 7→ y ·ω induces a continuous bijection θ : g−1Γg∩Ω\Ω →
y·Ω. We first claim that y·Ω is closed in X if and only if g−1Γg∩Ω\Ω is compact.
The if part is trivial: if g−1Γg ∩Ω\Ω is compact, so is θ(g−1Γg ∩Ω\Ω) = y ·Ω.
To prove the converse, it is sufficient to show that θ is an homeomorphism when
y ·Ω is closed (hence compact). Now if y ·Ω is a closed subset of X, Γ · g ·Ω is a
closed subset of Gr and g−1Γg ·Ω is a Baire space. Since Γ is countable (being
discrete in a σ-compact space), it follows that Ω is open in g−1Γg · Ω and θ is
indeed an homeomorphism.
Put Ω′ =

∏
α ∆Iα(G). Since Ω′ ⊂ Ω ⊂ {±1}r ·Ω′, g−1Γg∩Ω is cocompact in Ω if

and only if g−1Γg∩Ω′ is cocompact in Ω′. Note that g−1Γg∩Ω′\Ω′ ≃ ∏
α Γα\G

where Γα = ∩i∈Iα
g−1

i Γigi, and Γα\G is compact if and only if g−1
i Γigi is

commensurable with g−1
j Γjgj for all i, j ∈ Iα. This finishes the proof of the

lemma.

We thus obtain a second characterization of the equivalence relation ∼.

Definition 2.33 We say that two subgroups Γ and Γ′ of G are U -
commensurable if there exists u ∈ U such that Γ and u−1Γu are commen-
surable.

Corollary 2.34 Write x = Γ · g with g = (gi) ∈ Gr. For 1 ≤ i, j ≤ r, i ∼ j
if and only if g−1

i Γigi and g−1
j Γjgj are U -commensurable in G.

Proof. Write c = (ci) ∈ Ur and put y = x · c = Γ · gc. Then y · Ω = x · Σ =
x · V is a closed subset of X. The lemma implies that (gici)

−1Γi(gici) and
(gjcj)

−1Γj(gjcj) are commensurable in G when i ∼ j. Conversely, suppose
that g−1

i Γigi and α−1g−1
j Γjgjα are commensurable for some α ∈ U . Put Γ′ =

Γi × Γj , X ′ = Γ′\G2, c′ = (1, α) and ∆′(g) = (g, g) for g ∈ G. Let p : X → X ′

be the obvious projection. The lemma implies that p(x) · c′∆′(G)c′−1 is closed
in X ′, so that

p(x · ∆(U)) ⊂ p(x) · ∆′(U) ⊂ p(x) · c′∆′(G)c′−1.

In particular, p(x · ∆(U)) 6= X ′ and i ∼ j.
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Proposition 2.35 The following conditions are equivalent:

1. x · ∆(U) = X.

2. For all 1 ≤ i 6= j ≤ r, g−1
i Γigi and g−1

j Γjgj are not U -commensurable.

The measure µ of Theorem 2.29 is then the (unique) Gr-invariant Borel prob-
ability measure on X.

Proof. Both conditions are equivalent to the assertion that the partition
{Iα} of {1, · · · , r} is trivial. In that case, Ω = Gr = Σ and µ is Gr-invariant.

3 The case of Shimura curves

3.1 Shimura Curves

3.1.1 Definitions

We start by defining the Shimura curves. Let {τ1, · · · , τd} = HomQ(F,R) be
the set of real embeddings of F . We shall always view F as a subfield of R or
C through τ1. Let S be a set of finite primes such that |S|+d is odd, and let B
denote the quaternion algebra over F which ramifies precisely at S∪{τ2, · · · , τd}
(a finite set of even order). Let G be the reductive group over Q whose set of
points on a commutative Q-algebra A is given by G(A) = (B ⊗ A)×.

In particular, GR ≃ G1 × · · · × Gd where Bτi
= B ⊗F,τi

R and Gi is the
algebraic group over R whose set of points on a commutative R-algebra A
is given by Gi(A) = (Bτi

⊗R A)×. Fix ǫ = ±1 and let X be the G(R)-

conjugacy class of the morphism from S
def
= ResC/R(Gm,C) to GR which maps

z = x + iy ∈ S(R) = C× to

[(
x y
−y x

)ǫ

, 1, · · · , 1

]
∈ G1(R) × · · · × Gd(R) ≃ G(R).

We have used an isomorphism of R-algebras Bτ1
≃ M2(R) to identify G1 and

GL2,R; the resulting conjugacy class X does not depend upon this choice (but
it does depend on ǫ, cf. section 3.3.1 below).

For every compact open subgroup H of G(Af ), the quotient of G(Af )/H ×X
by the diagonal left action of G(Q) is a Riemann surface

Man
H

def
= G(Q)\ (G(Af )/H × X)

which is compact unless d = 1 (F = Q) and S = ∅ (G = GL2). The Shimura
curve MH is Shimura’s canonical model for Man

H . It is a smooth curve over F
(the reflex field) whose underlying Riemann surface MH(C) equals Man

H .
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3.1.2 CM points

Among the models of Man
H , the Shimura curve MH is characterized by speci-

fying the action of Galois (the “reciprocity law”) on certain special points. A
morphism h : S → GR in X is special if it factors through the real locus of
some Q-rational subtorus of G and a point x in Man

H is special if x = [g, h] with
h special (and g in G(Af )).
Now let K be an imaginary quadratic extension of F such that there exists
some embedding K → B. Put T = ResK/Q(Gm,K). Any embedding K →֒ B
yields an embedding T →֒ G. In the sequel, we shall fix an embedding of K in
B, and study those special points in X or Man

H for which h : S → GR factors
through the morphism TR →֒ GR which is induced by the fixed F -embedding
K →֒ B. We shall refer to such points as CM points. We denote by CMH

the set of CM points in Man
H = MH(C). It is clear that this set is nonempty.

Furthermore, Shimura’s theory implies that any CM point is algebraic, defined
over the maximal abelian extension Kab of K (see section 3.2.4 below).

3.1.3 Integral models and supersingular points

Let v be a finite place of F where B is split and put S = SpecO(v) where
O(v) is the local ring of F at v. We denote by Fv and Ov the completion
of F at v and its ring of integers. For simplicity, we shall only consider level
structures H ⊂ G(Af ) which decompose as H = HvHv where Hv (resp. Hv)
is a compact open subgroup of

G(Af )v = {g ∈ G(Af ) | gv = 1} (resp. B×
v ⊂ G(Af )).

In the non-compact (classical) case where F = Q and G = GL2, it is well-
known that MH is a coarse moduli space which classifies elliptic curves (with
level structures) over extensions of Q. Extending the moduli problem to elliptic
curves over S-schemes, we obtain a regular model MH/S of MH . A geometric
point in the special fiber of MH is supersingular if it corresponds to (the class
of) a supersingular elliptic curve.
In the general (compact) case, the Shimura curve MH may not be a moduli
space. However, provided that Hv is sufficiently small (a condition depending
upon Hv), Carayol describes in [1] a proper and regular model MH/S of MH ,
which is smooth when Hv is a maximal compact open subgroup of B∗

v . When
Hv fails to be sufficiently small in the sense of [1], we let MH/S be the quotient
of MH′ by the S-linear right action of H/H ′, where H ′ = H ′vHv for a suffi-
ciently small compact, open and normal subgroup H ′v of Hv. Then MH/S is
again a proper and regular model of MH which is smooth when Hv is maximal
(cf. [9, p. 508]), and it does not depend upon the choice of H ′v.
These models form a projective system {MH}H of proper S-schemes with finite
flat transition maps, whose limit M = lim←−MH has a right action of G(Af )
and carries an Ov-divisible module E of height 2 (cf. [1, Appendice] for the
definition and basic properties of Ov-divisible modules). A geometric point
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x in the special fiber of M is said to be ordinary if E | x is isomorphic to
the product of the Ov-divisible constant module Fv/Ov with Σ1, the unique
Ov-formal module of height 1. Otherwise, x is supersingular and E | x is
isomorphic to Σ2, the unique Ov-formal module of height 2. A supersingular
point in the special fiber of MH is one which lifts to a supersingular point in
M.
In the classical case, the supersingular points also have such a description, with
E equal to the relevant Barsotti-Tate group in the universal elliptic curve on
M = lim←−MH .

3.1.4 Reduction maps

Let us choose a place v̄ of Kab above v, with ring of integers O(v̄) ⊂ Kab and
residue field F(v̄), an algebraic closure of the residue field F(v) of v. Consider
the specialization maps:

MH(Kab) = MH(Kab) ← MH(O(v̄)) → MH(F(v̄))

In the compact case, MH is proper over S and the first of these two maps is a
bijection by the valuative criterion of properness. In the classical non-compact
case, the first map is still injective (MH is separated over S); by [16, Theorem
6], its image contains CMH . In both cases, we obtain a reduction map

REDv : CMH → MH(F(v̄)).

Let Mss
H (v) be the set of supersingular points in MH(F(v̄)).

Lemma 3.1 If v does not split in K, REDv(CMH) ⊂ Mss
H (v).

Proof. (Sketch) Let E0 be the Ov-divisible module E “up to isogeny”. There
is an Fv-linear right action of G(Af ) on E0 covering the right action of G(Af )
on M (see [1, 7.5] for the compact case). For any point x on M, we thus obtain
an Fv-linear right action of StabG(Af )(x) on E0 | x. If x is a CM point, say
x = [g, h] for some g ∈ G(Af ) and h : S → TR →֒ GR in X, g−1T (Q)g ⊂
StabG(Af )(x) and the induced Fv-linear action of T (Q) = K∗ on E0 | x (or its
inverse, depending upon ǫ) arises from an Fv-linear right Kv-module structure
on E0 | x. The connected part of the special fiber E0 | REDv(x) therefore
inherits a Kv-module structure. Since EndFv

(Σ0
1) ≃ Fv, this connected part

can not be isomorphic to Σ0
1 unless v splits in K.

3.1.5 Connected components

We now want to define yet another type of “reduction map”. Recall from
Shimura’s theory that the natural map from Man

H to its set of connected com-
ponents π0(M

an
H ) corresponds to an F -morphism c : MH → MH between

the Shimura curve MH and a zero-dimensional Shimura variety MH over F
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whose finitely many points are algebraic over the maximal abelian extension
F ab ⊂ Kab of F . Since MH is regular (hence normal), this morphism extends
over S to a morphism c : MH → MH between MH and the normalization MH

of S in MH , a finite and regular S-scheme. With ZH
def
= π0(M

an
H ) = MH(Kab)

and ZH(v)
def
= MH(F(v)), the following diagram is commutative:

CMH
REDv−→ Mss

H(v)
c ↓ ↓ c

ZH
REDv−→ ZH(v)

Put XH(v) = Mss
H (v) ×ZH(v) ZH . If v does not split in K, we thus obtain a

reduction map and a connected component map

CMH
REDv−→ XH(v)

cv−→ ZH

x 7−→ (REDv(x), c(x)) 7−→ c(x)
(7)

The composite map c = cv ◦REDv : CMH → ZH does not depend upon v and
commutes with the action of GalabK on both sides.

Remark 3.2 In the compact case, MH
c−→ MH → S is the Stein factorization

MH → Spec(Γ(MH ,OMH
)) → S

of the proper morphism MH → S. Indeed, since MH is affine, c factors
through an S-morphism α : Spec(Γ(MH ,OMH

)) → MH . Over the generic
point of S, α/F : Spec(Γ(MH ,OMH

)) → MH is a morphism between finite
étale F -schemes which induces a bijection on complex points: it is therefore
an isomorphism. Since MH is a regular scheme which is proper and flat over
S, Spec(Γ(MH ,OMH

)) is a normal scheme which is finite and flat over S. It
follows that α is an isomorphism.

3.1.6 Simultaneous reduction maps

Let S be a finite set of finite places of F which are non-split in K and away
from S: for each v ∈ S, Kv is a field and Bv ≃ M2(Fv). Let also R be a finite
set of Galois elements in GalabK . We put

XH(S,R)
def
=

∏

v∈S,σ∈R

XH(v) and ZH(S,R)
def
=

∏

v∈S,σ∈R

ZH(v)

and define a simultaneous reduction map and a connected component map

Red : CMH → XH(S,R) and C : XH(S,R) → ZH(S,R)

by Red(x) = (REDv(σx))v∈S,σ∈R and C(xv,σ) = (cv(xv,σ))v∈S,σ∈R. For

x ∈ CMH and τ ∈ GalabK , we have

C ◦ Red(τx) = (τσc(x))v∈S,σ∈R.
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3.1.7 Main theorem

Let P be a maximal ideal of OF and suppose that P /∈ S ∪ S. In particular,
BP ≃ M2(FP ). We make no assumptions on P relative to K: P may either
split, ramify or be inert in K. Then the following definitions reprise the ones
already made in the first section of the paper: we have chosen to repeat them
here for the convenience of the reader.

Definition 3.3 We say that two points x and y ∈ Man
H are P -isogeneous if

x = [g, h] and y = [g′, h] for some h ∈ X and g, g′ ∈ G(Af ) such that gw = g′w
for every finite place w 6= P of F .

Note that a point which is P -isogeneous to a CM point is again a CM point.

Definition 3.4 An element σ ∈ GalabK is P -rational if σ = recK(λ) for some

λ ∈ K̂× whose P -component λP belongs to the subgroup K× · F×
P of K×

P . We

denote by GalP−rat
K ⊂ GalabK the subgroup of all P -rational elements.

In the above definition, recK : K̂×
։ GalabK is Artin’s reciprocity map. We

normalize the latter by specifying that it sends local uniformizers to geometric
Frobeniuses.

Theorem 3.5 Suppose that the finite subset R of GalabK consists of elements
which are pairwise distinct modulo GalP−rat

K . Let H ⊂ CMH be a P -isogeny

class of CM points and let G be a compact open subgroup of GalabK . Then for
all but finitely many points x ∈ H,

Red(G · x) = C−1(C ◦ Red(G · x)).

Remark 3.6 When the level structure H arises from an Eichler order in B,
our proof of this surjectivity statement yields a little bit more: for any y ∈
XH(S,R), we can compute the asymptotic behavior of the probability that
Red(g·x) = y for some g ∈ G, as x goes to infinity inside H (see Corollary 2.11).

3.2 Uniformization

Write CM, Mss(v), Z, Z(v) and X (v) = Mss(v) ×Z(v) Z for the projective
limits of {CMH}, {Mss

H (v)}, {ZH}, {ZH(v)} and {XH(v)}. These sets now
have a right action of G(Af ). For X ∈ {CM,Mss(v),Z,Z(v)}, the natural
map X/H → XH is a bijection while X (v)/H → XH(v) is surjective. The
projective limit of (7) yields G(Af )-equivariant maps

CM
REDv−→ X (v)

cv−→ Z

which we shall now compute.
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3.2.1 CM points

From [4, Proposition 2.1.10] or [14, Theorem 5.27],

Man def
= lim←−Man

H = G(Q)\
(
G(Af )/Z(Q) × X

)

where Z = ResF/Q(Gm,F ) is the center of G and Z(Q) is the closure of Z(Q)

in Z(Af ). Inside Man, CM
def
= lim←−CMH corresponds to those elements which

can be represented by (g, h) with g ∈ G(Af ) and h a CM point in X. Let us
construct such an h and show that any other CM point belongs to the same
G(Q)-orbit.
Since Kv is a field for all v ∈ S ∪ {τ2, · · · , τd} (the set of places of F where
B ramifies), there exists an F -embedding ι : K →֒ B. Moreover, any other
F -embedding K →֒ B is conjugated to ι by an element of B× = G(Q). We
use ι to identify T as a Q-rational subtorus of G and also chose an extension
τ1 : K →֒ C of our distinguished embedding τ1 : F →֒ R. In the sequel, we
shall always view K as a subfield of C through τ1.
Put Ti = ResKτi

/R(Gm,Kτi
) (with Kτi

= K⊗F,τi
R), so that TR ≃ T1×· · ·×Td

and this decomposition is compatible with the decomposition GR ≃ G1 ×
· · · × Gd of section 3.1.1. Moreover, τ1 : K →֒ C induces an isomorphism
between Kτ1

and C which allows us to identify T1 and S. There are exactly
two morphisms s and s̄ : S → TR whose composite with ιR : TR →֒ GR belongs
to X. They are characterized by

s(z) = (zǫ, 1, · · · , 1) and s̄(z) = (z̄ǫ, 1, · · · , 1) for z ∈ C× = S(R).

Finally, there exists an element b ∈ B× = G(Q) such that bι(λ)b−1 = ι(λ̄) for
all λ ∈ K (where λ 7→ λ̄ is the non-trivial F -automorphism of K). But then
b(ιR ◦ s̄)b−1 = ιR ◦ s, so that h = ιR ◦ s and h̄ = ιR ◦ s̄ belong to the same
G(Q)-orbit in X. Since the centralizer of h in G(Q) equals T (Q), we obtain:

Lemma 3.7 The map g 7→ [1, h] · g = [g, h] induces a bijection

T (Q)\G(Af )
≃−→ CM

where T (Q) is the closure of T (Q) in T (Af ).

Proof. The above discussion gives a bijection T (Q)\G(Af )/Z(Q) ≃ CM.

We claim that T (Q)Z(Q) = T (Q). Indeed, Z(Q) is the product of Z(Q) = F×

with the closure of O×
F in Ô×

F ⊂ Z(Af ) = F̂× (this holds more generally for

any number field). Therefore, T (Q)Z(Q) = K×O×
F and

T (Q)Z(Q) ∩ Ô×
K = O×

KO×
F = ∪α∈O×

K
/O×

F
αO×

F .

Since [O×
K : O×

F ] is finite, T (Q)Z(Q) is a locally closed, hence closed subgroup
of T (Af ). Our claim easily follows.
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3.2.2 Connected components

Let G(R)+ and Z(R)+ be the identity components of G(R) and Z(R) and
put G(Q)+ = G(Q) ∩ G(R)+ and Z(Q)+ = Z(Q) ∩ Z(R)+. Thus, G(R)+

is the set of elements in G(R) whose projection to G1(R) ≃ GL2(R) has a
positive determinant while Z(Q)+ is the subgroup of totally positive elements
in Z(Q) = F×. Let X+ = G(R)+ · h be the connected component of h in X.
Since G(Q) is dense in G(R), G(Q) · X+ = X and

Man
H ≃ G(Q)+\

(
G(Af )/H × X+

)
.

It follows that ZH = π0(M
an
H ) ≃ G(Q)+\G(Af )/H.

On the other hand, the reduced norm nr : B → F induces a surjective mor-
phism nr : G → Z whose kernel G1 ⊂ G is the derived group of G. The
norm theorem (nr(G(Q)+) = Z(Q)+, [20, p. 80]) and the strong approx-
imation theorem (G1(Q) is dense in G1(Af ), [20, p. 81]) together imply
that the reduced norm induces a bijection between G(Q)+\G(Af )/H and

Z(Q)+\Z(Af )/nr(H). With Z def
= lim←−ZH , we thus obtain:

Lemma 3.8 The map g 7→ c([1, h]) · g = c([g, h]) factors through the reduced
norm and yields a bijection

Z(Q)+\Z(Af )
≃−→ Z

where Z(Q)+ is the closure of Z(Q)+ in Z(Af ).

3.2.3 Supersingular points

Proposition 3.9 (1) The right action of G(Af ) on X (v)
def
= lim←−XH(v) is

transitive and factors through the surjective group homomorphism

(1,nrv) : G(Af ) = G(Af )v × B×
v → G(Af )v × F×

v

where G(Af )v = {g ∈ G(Af ); gv = 1}.
(2) For any point x ∈ X (v) (such as x = REDv([1, h]) if v does not split in
K), the stabilizer of x in G(Af )v × F×

v may be computed as follows.
Let B′ be the quaternion algebra over F which is obtained from B by changing
the invariants at v and τ1: B′ is totally definite and RamfB′ = RamfB ∪{v}.
Put G′ = ResF/Q(B′×), a reductive group over Q with center Z. There exists

an isomorphism φv
x : G(Af )v ≃−→ G′(Af )v such that (φv

x,1) : G(Af )v×F×
v

≃−→
G′(Af )v × F×

v maps Stab(x) to the image of G′(Q)Z(Q) ⊂ G′(Af ) through
the (surjective) map

(1,nrv) : G′(Af ) = G′(Af )v × B′×
v → G′(Af )v × F×

v .

Proof. In the compact case, this is exactly how Carayol describes the action
of G(Af ) on a set which he denotes by S, cf. Proposition 11.2 of [1]. The fact
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that Carayol’s set S equals our X (v) follows from the discussion of [1, Section
10.1]. The non-compact case is similar.

Define

G(v)
def
= G′(Af )v × F×

v ,

φx(v)
def
= (φv

x,nrv) : G(Af ) ։ G(v),

and let G(Q, v) be the image of G′(Q) in G(v):

G(Q, v) = (1,nrv)(G
′(Q)).

Corollary 3.10 The map g 7→ x · g factors through φx(v) and induces a
bijection

G(Q, v)\G(v)
≃−→ X (v)

where G(Q, v) is the closure of G(Q, v) in G(v).

Proof. We have to show that G(Q, v) = (1,nrv)(G′(Q)Z(Q)). We first claim
that G′(Q)Z(Q) is locally closed (hence closed) in G′(Af ). Indeed, let R be a

maximal OF -order in B′. As Z(Q) = F×O×
F ,

(
G′(Q)Z(Q)

)
∩ R̂× =

(
B′×O×

F

)
∩ R̂× = R×O×

F = ∪α∈R×/O×

F
αO×

F

is closed because [R× : O×
F ] is finite (use [20, p. 139]). The map nrv : B′×

v →
F×

v is open and surjective with a compact kernel: it is therefore a closed map,
and so is (1,nrv) : G′(Af ) → G(v). In particular, (1,nrv)(G′(Q)Z(Q)) is

closed in G(v), so that G(Q, v) ⊂ (1,nrv)(G′(Q)Z(Q)) and the other inclusion
is trivial.

3.2.4 Reciprocity laws

We now want to describe the reciprocity laws for CM points and connected
components, following [14] instead of [4] (see the remark at the end of [14, §12]).
In particular: (1) reciprocity maps send uniformizers to geometric Frobenius;
(2) Galois actions on geometric points are left actions.
Let µ : Gm,C → TC be the cocharacter which is defined by µ(z) = s ◦ r(z),
where r : Gm,C → SC ≃ Gm,C×Gm,C maps z to (z, 1) (and SC ≃ Gm,C×Gm,C

is induced by z ⊗R a 7→ (za, z̄a) for z ∈ C and a in some C-algebra A). The
isomorphism

TC

λ⊗a7→(τ(λ)a)τ
// G

Hom(K,C)
m,C

yields a bijection between the set of cocharacters of T and ZHom(K,C), with
σ ∈ Aut(C) acting on the latter set by (nτ )τ · σ = (nστ )τ . The cocharacter µ
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corresponds to nτ = ǫ if τ = τ1 and nτ = 0 otherwise. In particular, the field
of definition of µ equals τ1(K) ≃ K and the morphism

T = ResK/Q(Gm,K)
ResK/Q(µ)

// ResK/Q(TK)
NormK/Q

// T

sends z to zǫ. We thus obtain:

Lemma 3.11 The CM points are algebraic, defined over the maximal abelian
extension Kab of K. For σ = recK(λ) with λ ∈ T (Af ) = K̂×, the action of σ

on CM ≃ T (Q)\G(Af ) is given by multiplication on the left by λǫ.

Similarly:

Lemma 3.12 The connected components are defined over the maximal abelian
extension F ab of F . For σ = recF (λ) with λ ∈ Z(Af ) = F̂×, the action of σ

on Z ≃ Z(Q)
+\Z(Af ) is given by multiplication by λǫ.

In particular, the pro-étale F -scheme M def
= lim←−MH together with its right

action of G(Af ) is (non-canonically) isomorphic to Spec(F ab) on which G(Af )

acts through g 7→ Spec(σ) with σ = recF (nr(g)ǫ), while M
def
= lim←−MH is

(non-canonically) isomorphic to the spectrum of the ring of v-integers in F ab.
It follows that the reduction map Z = M(F ab) → Z(v) = M(F(v)) identifies
Z(v) with Z/O×

v (viewing O×
v as a subgroup of Z(Af ) = Z(Af )v × F×

v ).
Since O×

v also acts trivially on Mss(v) = lim←−Mss
H (v) (cf. [1, section 11.2]), the

projection X (v) → Mss(v) also identifies Mss(v) with X (v)/O×
v (viewing now

O×
v as a subgroup of G(v) = G′(Af )v × F×

v ).

Corollary 3.13 If nr(Hv) = O×
v (1) MH is a finite étale S-scheme, (2)

ZH ≃ ZH(v) and (3) X (v)/H ≃ XH(v) ≃ Mss
H (v).

Proof. In general, MH is isomorphic to the spectrum of the ring of v-integers
in the abelian extension FH of F which is cut out by recK(nr(H)). If O×

v ⊂
nr(H), FH is unramified at v and MH is therefore a finite étale S-scheme. This
proves (1) and (2), and (2) implies that XH(v) = Mss

H (v)×ZH(v)ZH ≃ Mss
H (v).

Finally, since X (v)/O×
v ≃ Mss(v), X (v)/H ≃ Mss(v)/H ≃ Mss

H (v).

Remark 3.14 The assumption nr(Hv) = O×
v holds true when H = R̂× for

some Eichler order R ⊂ B.
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3.2.5 Conclusion

Putting lemmas 3.7, 3.8 and Corollary 3.10 together, we obtain a commutative
diagram

T (Q)\G(Af )
(1)−→ G(Q, v)\G(v)

(2)−→ Z(Q)+\Z(Af )
≃↓ ≃↓ ≃↓
CM

REDv−→ X (v)
cv−→ Z

where (1) is induced by φx(v) : G(Af ) → G(v) (with x = REDv([1, h])) while
(2) is induced by the morphism

G′(Af )v × F×
v = G(v) −→ Z(Af ) = Z(Af )v × F×

v

(gv, λv) 7−→ (nr(gv), λv)

For a compact open subgroup H of G(Af ), put H(v) = φx(v)(H) ⊂ G(v). We
thus obtain a diagram

T (Q)\G(Af )/H −→ G(Q, v)\G(v)/H(v) −→ Z(Q)+\Z(Af )/nr(H)
≃↓ ↓ ≃↓

CMH
REDv−→ XH(v)

cv−→ ZH

in which the middle vertical arrow is surjective (and a bijection when H = R̂×

for some Eichler order R ⊂ B). Theorem 3.5 is therefore a consequence of
a special case (S) of Theorem 2.9, corresponding to the situation where S

(in the notations of Theorem 2.9) equals {{v}, v ∈ S} (in the notations of
Theorem 3.5).

3.3 Complements

3.3.1 On the parameter ǫ = ±1

Let us fix an isomorphism of R-algebras between Bτ1
and M2(R), thus obtain-

ing an isomorphism of group schemes over R between G1 and GL2(R). Let
Xǫ be the G(R)-conjugacy class of the morphism hǫ : S → GR which sends
z = x + iy to

hǫ(z) =

[(
x y
−y x

)ǫ

, 1, · · · , 1

]
∈ G1(R) × · · · × Gd(R) ≃ G(R)

and let {MH(ǫ)} be the corresponding collection of Shimura curves. We thus

have a compatible system of isomorphisms ψH(ǫ) : MH(ǫ) ×F C → Malg
H (ǫ),

where Malg
H (ǫ) is the algebraic curve over C whose underlying Riemann surface

equals
Man

H (ǫ) = G(Q)\ (G(Af )/H × Xǫ) .

The topology, the differentiable structure and the real analytic structure of Xǫ

are induced from those of G(R) through the map g 7→ ghǫg
−1. For h ∈ Xǫ and
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z ∈ C× = S(R), the map x 7→ h(z)xh(z)−1 fixes h and therefore induces an
R-linear map Th(adh(z)) on the tangent space ThXǫ of Xǫ at h. The almost
complex structure on Xǫ is characterized by the fact that Th(adh(z)) acts by
multiplication by z/z̄ on ThXǫ for all h ∈ Xǫ and z ∈ C×. This almost complex
structure is known to be integrable.

Remark 3.15 Most authors replace Xǫ by C−R with G(R) acting through the

projection on the first component G1(R) ≃ GL2(R), by

(
a b
c d

)
· λ = aλ+b

cλ+d

(λ ∈ C − R). This corresponds to ǫ = 1. Indeed, the map gh1g
−1 7→ g · i

yields a diffeomorphism between X1 and C−R and for z ∈ C×, the derivative
of λ 7→ gh1(z)g−1 · λ at λ = g · i equals z/z̄. On the other hand, our main
reference [1] on Shimura curves very explicitly uses ǫ = −1. While it seems
clear that Carayol’s constructions could easily be transfered to the ǫ = 1 case,
we will show below that the choice of ǫ is, in fact, irrelevant.

From the above discussion, we know that the G(R)-equivariant map Φ : Xǫ →
X−ǫ which sends h to h−1 is an antiholomorphic diffeomorphism. For any
compact open subgroup H of G(Af ), Φ therefore induces an antiholomor-
phic diffeomorphism between Man

H (ǫ) and Man
H (−ǫ) and an antilinear isomor-

phism between Malg
H (ǫ) and Malg

H (−ǫ), namely an isomorphism of schemes

Φ : Malg
H (ǫ) → Malg

H (−ǫ) such that the diagram

Malg
H (ǫ)

Φ−→ Malg
H (−ǫ)

↓ ↓
Spec(C)

Spec(τ)−→ Spec(C)

is commutative (τ=complex conjugation).
For any scheme X over Spec(C), we denote by τX → Spec(C) the pull-back
of X → Spec(C) through Spec(τ) : Spec(C) → Spec(C). The above diagram

thus yields an isomorphism of complex curves between Malg
H (ǫ) and τMalg

H (−ǫ)
which together with ψH(ǫ) and ψH(−ǫ) induces an isomorphism

Φ′ : MH(ǫ) ×F C → MH(−ǫ) ×F C ≃ τ(MH(−ǫ) ×F C)

(recall that F is embedded in C through τ1 : F →֒ R). In other words, MH(−ǫ)
is a twist of MH(ǫ). We shall now determine this twist.
For σ ∈ Aut(C/F ), let ρ(σ) be the F -automorphism of MH(ǫ) such that ρ(σ) ·
[g, h] = [gλ, h] for g ∈ G(Af ) and h ∈ Xǫ, where λ is any element of Z(Af ) (the

center of G(Af )) such that recF (λ) = σ in GalabF . One easily checks that σ 7→
ρ(σ) is a well-defined group homomorphism ρ : Aut(C/F ) → AutF (MH(ǫ))
which factors through Gal(F ′

H/F ) where F ′
H is the abelian extension of F

corresponding to the subgroup F× · (Z(Af ) ∩ H) of Z(Af ) = F̂×.

Lemma 3.16 Φ′ realizes MH(−ǫ) as the twist of MH(ǫ) by ρ−ǫ.
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Proof. On the level of complex points, Φ′ is the composite of Φ with the
action of complex conjugation. The latter is described by a conjecture of Lang-
lands [10], proven in [13]. We obtain: for x = [g, h] ∈ Man

H (ǫ) (with g ∈ G(Af )
and h ∈ Xǫ), Φ′(x) = [g, h̄−1] ∈ Man

H (−ǫ) where h̄ : S → GR maps z to h(z̄).
Note that h 7→ h̄ is indeed an involution of Xǫ since

h̄ǫ(x + iy) =

[(
x −y
y x

)ǫ

, 1, · · · , 1

]
= ωhǫ(x + iy)ω−1

where ω =

[(
0 1
1 0

)
, 1, · · · , 1

]
∈ G(R).

If h is a special point of Xǫ, h̄−1 is a special point of X−ǫ. More precisely,
suppose that h : S → GR factors through T ′

R for some maximal Q-rational
subtorus T ′ ⊂ G. Let µh : Gm,C → T ′

C be the induced cocharacter (µh(z) =
h(z, 1)), let Eh ⊂ C be the field of definition of µh (so that F ⊂ Eh) and put
rech = NormEh/Q ◦ ResEh/Q(µh) :

rech : ResEh/Q(Gm,Eh
) → ResEh/Q(T ′

Eh
) → T ′.

Let also µ0 : Gm,C → ZC ⊂ T ′
C be the cocharacter defined by

µ0(z) =

[(
z

z

)
, 1, · · · , 1

]
∈ Z(R) ⊂ G(R) ≃ G1(R) × · · · × Gd(R).

Then µ0 is defined over F and

Z = ResF/Q(Gm,F )
ResF/Q(µ0)−→ ResF/Q(ZF )

NormF/Q−→ Z

is the identity map. Since µh · µh̄ = µǫ
0, µh̄ is also defined over Eh and

rech · rech̄ = Normǫ
Eh/F : ResEh/Q(Gm,Eh

) → ResF/Q(Gm,F ) = Z ⊂ T ′.

It follows that (1) for g ∈ G(Af ), both x = [g, h] and Φ′(x) = [g, h̄−1] are

defined over the maximal abelian extension Eab
h ⊂ C of Eh; (2) for λ ∈ Ê×

h =

ResEh/Q(Af ) and σ = recEh
(λ) ∈ GalabEh

,

Φ′(ρ(σ)−ǫ(σ · x)) = [rech(λ)gNorm−ǫ
Eh/F (λ), h̄−1]

= [rech(λ)Norm−ǫ
Eh/F (λ)g, h̄−1]

= [rech̄−1(λ)g, h̄−1]

= σ · Φ′(x).

Our claim now easily follows from the uniqueness of canonical models.

As a scheme over F , the twist MH(ǫ)′ of MH(ǫ) by ρ−ǫ may be constructed as
the quotient of MH(ǫ) ×Spec(F ) Spec(F ′

H) by the (right) action of Gal(F ′
H/F )

which maps σ to the F -automorphism α(σ) = (ρ(σ)ǫ,Spec(σ)) of MH(ǫ) ×F

Spec(F ′
H).
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Lemma 3.17 Suppose that H = H̄ where g 7→ ḡ is the anticommutative involu-
tion of G(Af ) which is induced by the canonical involution of B. Then MH(ǫ)′

is isomorphic to MH(ǫ). In particular, MH(ǫ) ≃ MH(−ǫ).

Proof. We shall construct an involution θ of MH(ǫ) with the property that

for all σ ∈ ΓH
def
= Gal(F ′

H/F ),

θ ◦ α(σ) = (1 × Spec(σ)) ◦ θ on MH(ǫ) ×F Spec(F ′
H).

Such a θ induces an F -isomorphism between MH(ǫ)′ and MH(ǫ).
Recall that MH(ǫ) = Spec

(
Γ(OMH(ǫ),MH(ǫ))

)
is non-canonically isomorphic

to Spec(FH) where FH is the abelian extension of F cut out by F×
>0 · nr(H) ⊂

F̂×. Since (F× ·H∩F̂×)2 ⊂ F×
>0 ·nr(H), there is a well defined group homomor-

phism κ : ΓH → Gal(FH/F ) given by κ(recF (λ)) = recF (λ2) for λ ∈ F̂×. It fol-
lows from the discussion after Lemma 3.12 that for σ ∈ ΓH and x ∈ MH(ǫ)(C),

c(ρ(σ)(x)) = κ(σ)ǫ · c(x) inMH(ǫ)(C) = MH(ǫ)(FH).

On the other hand, F ′
H is a subfield of FH whenever F×

>0 ·nr(H) ⊂ F× ·H∩F̂×.
This is indeed the case when H̄ = H. In particular, we may choose an F -
morphism MH(ǫ) → Spec(F ′

H), thus obtaining an F -morphism c′ : MH(ǫ) →
Spec(F ′

H) such that

∀σ ∈ ΓH , c′ ◦ ρ(σ) = Spec(σ2ǫ) ◦ c′.

Let A be an F -algebra and let z = (x, y) be an A-valued point of the F -scheme
MH(ǫ) ×F Spec(F ′

H). Then c′(x) and y are A-valued points of Spec(F ′
H). If

Spec(A) is connected, there exists a unique element γ
def
= γ(z) in ΓH such that

c′(x) = Spec(γ−ǫ) ◦ y. This defines an F -morphism z 7→ γ(z) from MH(ǫ) ×F

Spec(F ′
H) to the constant F -scheme ΓH . For z = (x, y) as above, we put

θ(z) = (ρ(γ(z))(x), y). One easily checks that θ has the required properties.

When H = H̄, we thus obtain an F -isomorphism between MH(ǫ) and MH(−ǫ).
On the level of complex points, such an isomorphism is given by

[g, h] ∈ Man
H (ǫ) 7→ [ḡ−1, h̄−1] ∈ Man

H (−ǫ).

Note that the condition H = H̄ defines a cofinal subset of the set of all compact
open subgroups H of G(Af ). Also, H = H̄ when H = R̂× for some Eichler
order R in B, in which case FH and F ′

H are respectively the Hilbert class field
and the narrow Hilbert class field of F .

3.3.2 P -rational elements of GalabK .

It may seem rather surprising that the bizarre subgroup GalP−rat
K of P -rational

elements in GalabK should play any role in the theory of CM points. For instance,
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GalP−rat
K is not a closed subgroup of GalabK , although it contains the closed

subgroup

Gal(Kab/K[P∞]) = recK

{
λ ∈ Ô×

K , λP ∈ O×
FP

}
.

The Galois group Gal(K[P∞]/K) is topologically isomorphic to G0 ×Z
[FP :Qp]
p

where p is the residue characteristic of P and G0 is a finite group, the torsion
subgroup of Gal(K[P∞]/K). The subfield of K[P∞] which is fixed by G0 is
the composite of all Zp-extensions of K which are unramified outside P and

Galois and dihedral over F . The image of GalP−rat
K in Gal(K[P∞]/K) is a

dense but countable subgroup which is generated by the Frobeniuses of those
primes of K which are not above P (the intersection of this subgroup with G0

plays a key role in [3], where it is denoted by G1). In particular, GalP−rat
K is a

dense but negligible (i.e. measurable with trivial measure) subgroup of GalabK .
The map σ = recK(λ) 7→ λP yields a bijection between GalabK /GalP−rat

K and
K×

P /K×F×
P .

However, the appearance of rational elements is perhaps less surprising when
one recalls that the present work originated in the study of elliptic curves over
anticyclotomic towers of number fields, since the distinction between suitably
defined rational and irrational elements of Galois groups occurs quite frequently
in the context of Iwasawa theory. For instance, the celebrated theorems of Fer-
rero and Washington on the growth of class numbers in Zp extensions of abelian
fields rely crucially on the fact that nontrivial roots of unity are irrational. An-
other example of this occurs in recent work of Hida [7], [8] on anticyclotomic
families of Hecke characters, where the key observation is the irrationality of
certain Galois actions on Serre-Tate deformation spaces. In fact, the irrational-
ity arguments given by Ferrero and Washington were the original motivation
for the introduction in [18] of rational and irrational elements to the study of
CM points.
In this section, we shall provide some further evidence for the relevance of
P -rational elements by relating them to the André-Oort conjecture:

Proposition 3.18 For σ ∈ GalabK and x ∈ CMH , put δ(x) = (x, σx) ∈
MH(C)2. The following conditions are equivalent.

1. σ is a P -rational element.

2. For any collection E ⊂ CMH of P -isogeneous CM points, the Zariski
closure of δ(E) in (MH ×F C)2 has dimension ≤ 1.

3. For some collection E ⊂ CMH of P -isogeneous CM points, the Zariski
closure of δ(E) has dimension 1.

For the proof of this proposition, we may and do assume that H = R̂× for
some maximal order R ⊂ B. For any CM point

x = [g] ∈ CMH = T (Q)\G(Af )/H,
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the stabilizer of x in GalabK then equals recK(K×O(x)×) where O(x) = K ∩
gHg−1 is an OF -order in B. Moreover, there exists a unique integral ideal

C ⊂ OF such that O(x) = OK,C
def
= OF + COK . We refer to C def

= C(x) as the
conductor of x and denote by ℓP (x) ≥ 0 the exponent of P in C(x), so that
C(x) = C0(x)P ℓP (x) for some integral ideal C0(x) which is relatively prime to
P . By construction, x 7→ C(x) is constant on GalabK -orbits while x 7→ C0(x) is
constant on P -isogeny classes. It follows from [20, pp. 42-44] that the fibers of
C are finite. In particular:

Lemma 3.19 The function x 7→ ℓP (x) has finite fibers on any P -isogeny class.

This function is related to the usual distance d on the Bruhat-Tits tree

T = F×
P \B×

P /R×
P ≃ F×

P \GL2(FP )/GL2(OFP
).

Indeed, the group K×
P acts on the left on T by isometries, and for v = [b] ∈ T

(with b ∈ B×
P ), the stabilizer of v in K×

P equals F×
P O(v)×where O(v) = KP ∩

bRP b−1 is an OFP
-order in KP . Just as above, there exists a unique integer

n
def
= n(v) ∈ N such that O(v) = On with On

def
= OFP

+ PnOKP
(On is the

completion of OK,C0P n at P for any integral ideal C0 ⊂ OF which is relatively
prime to P ). It is clear that for a CM point x = [g] ∈ CMH , ℓP (x) = n(v)
where v = [gP ] (gP ∈ B×

P is the P -component of g ∈ G(Af )).
It is well-known that

• The map v 7→ n(v) yields a bijection between K×
P \T and N.

• The subset T0 = {v ∈ T ; n(v) = 0} of T consists of a vertex, two adjacent
vertices or the set of vertices on a line in T , depending upon whether P
is inert, ramifies or splits in K.

• For any v ∈ T , n(v) is also the distance between v and T0.

In particular, suppose that (vn, vn−1, · · · , v0) and (wm, wm−1, · · · , w0) are
geodesics in T from v = vn and w = wm to T0. Then n(vi) = i for 0 ≤ i ≤ n
and n(wj) = j for 0 ≤ j ≤ m. The geodesic γ between v and w may then be
computed as follows:

• if v0 6= w0, γ = (vn, vn−1, · · · , v0, u1, · · · , ur−1, w0, w1, · · · , wm) where
(v0, u1, · · · , ur−1, w0) is the geodesic between v0 and w0 inside the con-
nected subtree T0 of T .

• if v0 = w0, γ = (vn, vn−1, · · · , vc = wc, wc+1, · · · , wm) where c is the
largest integer ≤ n,m such that vc = wc.

In the special case where w = λv for some λ ∈ K×
P , n = m = n(v) and wi = λvi

for 0 ≤ i ≤ n. If moreover d(v, λv) ≤ 2n, it thus must be that v0 = w0. With
c as above, d(v, w) = 2(n− c) and vc = wc = λvc, so that λ belongs to F×

P O×
c .

We have obtained:
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Lemma 3.20 Suppose that d(v, λv) ≤ 2n(v) (with v ∈ T and λ ∈ K×
P ). Then

d(v, λv) = 2k for some k ∈ {0, · · · , n(v)} and λ belongs to F×
P O×

n(v)−k.

We may now sketch the proof of Proposition 3.18. Of course, (2) implies (3).

Proof that (1) implies (2)

We have to show that for any P -isogeny class H ⊂ CMH , δ(H) is contained
in a one dimensional subscheme of (MH ×F C)2 if σ = recK(λ) for some λ ∈
T (Af ) = K̂× whose P -component λP belongs to K×F×

P . Choose g0 ∈ G(Af )
such that

H = T (Q)\T (Q)B×
P g0H/H inside CMH = T (Q)\G(Af )/H.

Using Lemma 3.11, we find that

δ(H) =
{
([bg0], [λ

ǫbg0]) ; b ∈ B×
P

}

=
{
([bg0], [bg0γ]) ; b ∈ B×

P

}

where γ = g−1
0 λǫg0. Indeed, bg0γ = bλǫg0 = λǫbg0 for any b ∈ B×

P as λǫ
P be-

longs to F×
P . In particular, δ(H) is contained in the 1-dimensional image of the

(algebraic!) morphism MH∩γHγ−1 → M2
H which sends [g, h] to ([g, h], [gγ, h])

(g ∈ G(Af ), h ∈ X).

Proof that (3) implies (1)

Write σ = recK(λ) with λ ∈ K̂×. Suppose that the Zariski closure of δ(E) in
(MH ×F C)2 has dimension 1 for some (infinite) collection E of P -isogeneous
CM points. We have to show that the P -component λP ∈ K×

P of λ belongs to
F×

P K×.

By a proven case of the André-Oort conjecture [6, Theorem 1.2] there exists an
infinite subset E ′ ⊂ E and some element γ ∈ G(Af ) such that δ(E ′) is contained
in the image of a morphism MH∩γHγ−1 → M2

H as above. Fix x = [g0] ∈ E ′ and
let {g1, · · · , gs} ⊂ H be a set of representatives for H/H ∩ γHγ−1. For each
x′ = [bg0] ∈ E ′ (with b ∈ B×

P ), we know that x = [bg0gi] for any i ∈ {1, · · · , s}
while

σ · x ∈ {[bg0g1γ], · · · , [bg0gsγ]} .

Replacing g0 by g0gi for a suitable 1 ≤ i ≤ s and using lemmas 3.11 and 3.19,

we obtain: there exists a sequence bn ∈ B×
P such that (a) ϕ(n)

def
= ℓP ([bng0])

goes to infinity with n and (b) [λǫbng0] = [bng0γ] for all n ≥ 0. By (b), there
exists λn ∈ T (Q) = K× and hn ∈ H such that for all n ≥ 0,

λnλǫbng0 = bng0γhn in G(Af ).
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Put vn = [bng0,P ] ∈ T and µn = λnλǫ. Since µn,P ·vn = [bng0,P γP ], d(vn, µn,P ·
vn) = d0 does not depend upon n. Pick N ≥ 0 such that ∀n ≥ N , d0 ≤ 2ϕ(n).
By Lemma 3.20, d0 = 2k and

∀n ≥ N : µn,P ∈ F×
P O×

ϕ(n)−k. (8)

On the other hand, µnµ−1
N = bng0γhng−1

0 b−1
n bNg0h

−1
N γ−1g−1

0 b−1
N . Away from

P , this equation simplifies to (µnµ−1
N )P = (g0γhnh−1

N γ−1g−1
0 )P , so that

(µnµ−1
N )Q ∈ K×

Q ∩ (g0γ)QR×
Q(g0γ)−1

Q ⊂ O×
KQ

(9)

for all Q 6= P .
Let UF ⊂ UK be the groups of all elements z ∈ F× (resp. z ∈ K×) which are
units away from P . Since K is a totally imaginary quadratic extension of F ,
rankZUK = rankZUF if P does not split in K and rankZUK = rankZUF + 1
otherwise. Let U ′

K be the subgroup of UK defined by U ′
K = UK ∩ F×

P O×
KP

.
Then UF ⊂ U ′

K ⊂ UK , and [UF : U ′
K ] is finite. Let R ⊂ U ′

K be a set of
representatives for U ′

K/UF .
By (9), µnµ−1

N = λnλ−1
N belongs to UK for all n ≥ 0. Then (8) shows that

µnµ−1
N belongs to U ′

K for all n ≥ N . For such n’s, we may thus write

λn = λNr(n)u(n) with r(n) ∈ R and u(n) ∈ UF .

Using (8) again, we find that λNr(n)λǫ
P belongs to F×

P O×
ϕ(n)−k for all n ≥ N .

Choosing a subsequence on which r(n) = r is constant, we finally obtain:

λNrλǫ
P ∈ F×

P = ∩n≥0F
×
P O×

n .

Since λNr belongs to K×, λP indeed belongs to K×F×
P .

Remark 3.21 More generally, it may be shown that for any infinite collection
E ⊂ CMH of P -isogeneous CM points and any finite subset R = {σ1, · · · , σr}
of GalabK , the Zariski closure of {(σ1x, · · · , σrx); x ∈ E} in V = (MH ×F C)r

contains a connected component of V if and only if the σi’s are pairwise distinct
modulo GalP−rat

K (Hint: use section 7.3 of [6] and a variant of Proposition 2.1
of [5]).
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