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Abstract. A sequence of unitary transformations is applied to the
one-electron Dirac operator in an external Coulomb potential such
that the resulting operator is of the form Λ+AΛ+ + Λ−AΛ− to any
given order in the potential strength, where Λ+ and Λ− project onto
the positive and negative spectral subspaces of the free Dirac operator.
To first order, Λ+AΛ+ coincides with the Brown-Ravenhall operator.
Moreover, there exists a simple relation to the Dirac operator trans-
formed with the help of the Foldy-Wouthuysen technique. By defining
the transformation operators as integral operators in Fourier space it
is shown that they are well-defined and that the resulting transformed
operator is p-form bounded. In the case of a modified Coulomb po-
tential, V = −γx−1+ǫ, ǫ > 0, one can even prove subordinacy of
the n-th order term in γ with respect to the n − 1st order term for
all n > 1, as well as their p-form boundedness with form bound less
than one.
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1 Introduction

Consider a relativistic electron in the Coulomb field V , described by the Dirac
operator (in relativistic units, ~ = c = 1)

H = D0 + V, D0 := −iα ∂/∂x + βm, V (x) := −γ

x
(1.1)

where D0 is the free Dirac operator defined in the Hilbert space L2(R
3) ⊗

C4. D0 is self-adjoint on the Sobolev space H1(R
3)⊗C4 (with Hσ(R3) := {ϕ ∈

L2(R
3) :

∫
dp |ϕ̂(p)|2 (1+ p2)σ < ∞}), and its form domain is H1/2(R

3)⊗C4.
The potential strength of V is γ := Ze2, Z is the nuclear charge number,
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e2 = (137.04)−1 the fine structure constant, α and β the Dirac matrices and
x := |x| [14]. A hat on a function denotes its Fourier transform.
It is well-known that H is not bounded from below. As long as pair creation is
neglected, the conventional way to circumvent this deficiency is the introduc-
tion of the semibounded operator P+HP+ where P+ projects onto the positive
spectral subspace of H. As a first approximation, Brown and Ravenhall [1]
introduced the operator

B := Λ+HΛ+, Λ± :=
1

2

(
1 ± D0

|D0|

)
(1.2)

with Λ+ projecting onto the positive spectral subspace of the free Dirac op-
erator D0, and |D0| =

√
D2

0 is the free energy. In momentum space one
has

D̃0(p) :=

(
D0

|D0|

)
(p) =

αp + βm

Ep
, Ep :=

√
p2 + m2 (1.3)

with the electron mass m. By construction, the Brown-Ravenhall operator B
is of first order in the potential V and has been shown to be bounded from
below for subcritical potential strength γ [5].
An alternative way to derive a semibounded operator from H has been sug-
gested by Douglas and Kroll [4], using the Foldy-Wouthuysen transformation
technique [6]. The decoupling of the positive and negative spectral subspaces
of H to order n in V is achieved by means of n + 1 successive unitary transfor-
mations U ′

j , j = 0, 1, ..., n

(U ′
n · · ·U ′

1 · U ′
0) H (U ′

n · · ·U ′
1 · U ′

0)
−1 =: H ′

n + Rn+1 (1.4)

which cast the tranformed operator into a block-diagonal contribution H ′
n plus

an error term Rn+1 with potential strength given by the n + 1st power of
γ. U ′

0 is the free Foldy-Wouthuysen transformation which block-diagonalises
D0 exactly [14],

U ′
0 := A

(
1 + β

αp

Ep + m

)
, A :=

(
Ep + m

2Ep

) 1
2

, (1.5)

and for U ′
j , Douglas and Kroll [4] use

U ′
j = (1 + W 2

j )
1
2 + Wj , j = 1, ..., n (1.6)

with antisymmetric operators Wj . It should be noted that the choice of U ′
j

is not unique, and neither is the resulting operator H ′
n from (1.4) for n > 4

as has been shown by Wolf, Reiher, and Hess [15]. Applying the free Foldy-
Wouthuysen transformation (1.5) one obtains [4, 9]

U ′
0HU

′−1
0 = βEp + E1 + O1
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E1 := A

(
V +

αp

Ep+ m
V

αp

Ep+ m

)
A, O1 := βA

(
αp

Ep+ m
V − V

αp

Ep+ m

)
A

(1.7)
where the transformed potential has been split into an even term E1 (com-
muting with β) and an odd term O1 (anticommuting with β, since αkβ =
−βαk, k = 1, 2, 3). For an exponential unitary transformation,

U ′
j := e−iSj , j = 1, ..., n (1.8)

with a symmetric operator Sj , the next transformation gives in agreement with
[9]

e−iS1 U ′
0HU

′−1
0 eiS1 = βEp + E1 + O1 + i[βEp, S1] + i[E1 + O1, S1]

−1

2
[ [βEp, S1], S1] + R3. (1.9)

S1 is defined from the requirement that O1 is eliminated,

i [βEp, Sj ] = −Oj , j = 1 (1.10)

hence S1 is odd and of first order in the potential like O1. After each
transformation U ′

j , the j + 1st order term in γ of Rj+1 is decomposed into
even (Ej+1) and odd (Oj+1) contributions, and the successive transformation
U ′

j+1 = e−iSj+1 is chosen to eliminate Oj+1, which is achieved by the condition
(1.10) for the j > 1 under consideration. With this procedure one arrives at
the even (and hence block-diagonal) operator

H ′
n = βEp + E1 + ... + En. (1.11)

The physical quantity of interest is the expectation value of the transformed
Dirac operator. For the Brown-Ravenhall operator, consider the expectation
value formed with 4-spinors ϕ in the positive spectral subspace of D0 which in
momentum space can be expressed in terms of Pauli spinors u ∈ H1/2(R

3)⊗C2,

ϕ̂(p) =
1√

2Ep (Ep + m)

(
(Ep + m) û(p)

pσ û(p)

)
(1.12)

where σ is the vector of the three Pauli matrices. Then, an operator bm acting
on H1/2(R

3) ⊗ C2 may be defined by [5]

(ϕ,Bϕ) =: (u, bmu). (1.13)

On the other hand, in case of the Douglas-Kroll transformed operator H ′
n, its

upper block corresponds to the particle states (having positive energy) and
therefore the expectation value has to be formed with the four-spinor ψ :=

(
u
0

)

with u ∈ H1/2(R
3) ⊗ C2 as above.
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For the first-order term, H ′
1, it is easy to show [2] that its expectation value

agrees with the expectation value of the Brown-Ravenhall operator, i.e.

(u, bmu) =

((
u

0

)
,H ′

1

(
u

0

))
, u ∈ H1/2(R

3) ⊗ C
2, (1.14)

such that H ′
n may be considered as the natural continuation of B to higher order

in V . While H ′
n is known explicitly up to n = 5 [15], the spectral properties,

in particular the boundedness from below, have only been investigated for the
Jansen-Hess operator (i.e. n = 2) [2, 8].
The aim of this work is to prove two theorems.

Theorem 1.1. Let H = D0 + V be the one-particle Dirac operator acting on
S(R3) ⊗ C4 with S the Schwartz space of smooth strongly localised functions.
Let γ be the strength of the Coulomb potential V and p := |p|. Then there
exists a sequence of unitary transformations Uk = eiBk , k = 1, ..., n, such
that the transformed Dirac operator can be written in the following way

(U1 · · ·Un)−1H U1 · · ·Un =: H(n) + R(n+1)

H(n) := Λ+

(
n∑

k=0

Hk

)
Λ+ + Λ−

(
n∑

k=0

Hk

)
Λ−. (1.15)

Here, Λ+ projects onto the positive spectral subspace of D0, Λ− = 1−Λ+, and
Hk is a p-form bounded operator, its form bound being proportional to γk, k =
1, ..., n. The remainder R(n+1) which still couples the spectral subspaces of
D0 is p-form bounded with form bound O(γn+1) when γ tends to zero. The
operators Bk are symmetric and bounded, extending to self-adjoint operators
on L2(R

3) ⊗ C4.

An operator Hk with the properties stated in the theorem is said to be of order
γk.
It is shown below that H0 := D0 and H1 := V such that to first order, the
Brown-Ravenhall operator B is recovered. (1.15) implies that the transformed
Dirac operator can be expressed in terms of projectors to arbitrary order in
the potential strength. Similar transformation schemes are known for bounded
operators on lattices, see e.g. [3] and [13].
The next theorem states the unitary equivalence of the transformed Dirac op-
erators obtained with either the transformation scheme from Theorem 1.1 or
the Douglas-Kroll transformation scheme (1.8) - (1.11).

Theorem 1.2. Let ϕ ∈ Λ+(S(R3) ⊗ C4) be a 4-spinor in the positive spectral
subspace of D0, which defines a Pauli spinor u by means of (1.12). Let H ′

n

be the Douglas-Kroll transformed Dirac operator to n-th order in the potential
strength, obtained with exponential unitary operators U ′

j. Then to any order
n, its expectation value agrees with the one of the transformed Dirac operator
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from (1.15),

(ϕ,H(n) ϕ) =

(
ϕ,

n∑

k=0

Hk ϕ

)
=

((
u

0

)
,H ′

n

(
u

0

))
, n = 1, 2, ... .

(1.16)

This extends the first-order equation (1.14) to arbitrary order n. Actually
(1.16) holds also for other types of unitary operators, provided the same type
is used in all transformations Uk and U ′

k, k ≥ 1.

2 Proof of Theorem 1.1

2.1 Derivation of unitary transformations

The sequence of unitary operators Uk = eiBk is constructed with the help of
an iteration scheme. Following Sobolev [13] we consider Uk as an element of
the group Uk(t) = eiBkt, t ∈ R.
Let A be an arbitrary t-independent operator. The derivative of the trans-
formed operator is given by

d

dt
A(t) :=

d

dt

(
e−iBkt AeiBkt

)
= i Uk(−t) [A,Bk] Uk(t) (2.1)

where the commutator [A,Bk] := ABk − BkA. This equation is easily inte-
grated, noting that A(0) = A,

A(t) = Uk(−t)A Uk(t) = A + i

∫ t

0

dτ Uk(−τ) [A,Bk] Uk(τ). (2.2)

Iterating once, i.e. replacing A by the operator [A,Bk] in (2.2) and inserting
the resulting equation into the r.h.s. of (2.2), one obtains for t = 1

A(1) = A + i[A,Bk] + i2
∫ 1

0

dτ

∫ τ

0

dt′ Uk(−t′) [[A,Bk], Bk]Uk(t′). (2.3)

After n iterations the following representation of A1 is obtained,

A(1) = A + i[A,Bk] +
1

2!
i2 [[A,Bk], Bk] + ... +

1

n!
in [[...[A,Bk], ..., Bk] + R

(2.4)
where the n-th term contains n commutators with Bk, and the remainder R is
an (n + 1)-fold integral.
Let us apply this scheme inductively to the Dirac operator H = D0+V. Assume
that to order n − 1 the transformation has been achieved with a resulting
operator of the form given in Theorem 1.1,

(U1 · · ·Un−1)
−1 H U1 · · ·Un−1 = H(n−1) + Hn + R̃(n+1) (2.5)
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where Hn and R̃(n+1) are respectively of order γn and γn+1, and still couple
the spectral subspaces. Decompose Hn into

Hn = Vn + Wn, Vn := Λ+HnΛ+ + Λ−HnΛ−

Wn := Λ+HnΛ− + Λ−HnΛ+ . (2.6)

The next transformation, Un = eiBn , aims at eliminating the term Wn which,
in contrast to Vn, couples the spectral subspaces. This condition will fix Bn.
We note that from (2.4), the transformation reproduces the operator itself, such
that the term H(n−1), already in the desired form, is preserved. From this it
follows that H(n−1) contains the zero-order term Λ+D0Λ+ + Λ−D0Λ− = D0

(note that Λ± commutes with D0 and Λ2
+ + Λ2

− = 1).
We obtain

U−1
n (H(n−1) + Hn) Un = H(n−1) + Vn + Wn + i[D0, Bn] (2.7)

+ i [(Λ+

n−1∑

k=1

HkΛ+ + Λ−

n−1∑

k=1

HkΛ−), Bn] + R̃,

where R̃ collects the terms containing at least two commutators with Bn. Bn

is determined from the requirement

Wn + i [D0, Bn] = 0. (2.8)

Since Wn is of order γn, Bn is proportional to γn (the boundedness of
Bn is shown later). Moreover, the commutators of the type [(Λ+HkΛ+ +
Λ−HkΛ−), Bn] are of order γn+k with k ≥ 1, and R̃ is of order γ2n. Hence,
these terms are disregarded (together with the remainder R̃(n+1) from (2.5))
in constructing the transformed operator to order n,

H(n) = H(n−1) + Vn = D0 + V1 + V2 + ... + Vn. (2.9)

Particularly interesting are the cases n = 1 and n = 2. For n = 1, we have

H(1) = D0 + V1 = Λ+ (D0 + V ) Λ+ + Λ− (D0 + V ) Λ−. (2.10)

Restricting H(1) to the positive spectral subspace Λ+(S(R3)⊗C4), the second
term on the r.h.s. of (2.10) vanishes and the remaining term agrees with the
Brown-Ravenhall operator.
Let us now consider n = 2. From (2.9) it follows that the transformed Dirac
operator in second order is determined by the first transformation, U1 = eiB1 ,
only. However, the existence of the second transformation, U2 = eiB2 , has to
be established to show that H(2) is indeed the transformed operator, with a
remainder of order γ3. We have

U−1
1 H U1 = D0 + V1 + W1 + i [D0, B1] + i [V,B1] −

1

2
[[D0, B1], B1] + R,
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R = −
∫ 1

0

dτ

∫ τ

0

dt′ U1(−t′) [[V,B1], B1] U1(t
′) (2.11)

− i

∫ 1

0

dτ

∫ τ

0

dt′
∫ t′

0

dτ ′ U1(−τ ′) [[[D0, B1], B1], B1] U1(τ
′).

Making use of the defining relation for B1, W1 + i[D0, B1] = 0, the operator
H(2) takes the form

H(2) = D0 + V1 + Λ+H2Λ+ + Λ−H2Λ− (2.12)

H2 := i [V1, B1] +
i

2
[W1, B1].

2.2 Integral operators in Fourier space and the determination
of B1

Since D0 is a multiplication operator in momentum space, it is convenient to
set up the calculus in Fourier space. Let ϕ ∈ S(R3)⊗C4. We define an integral
operator W acting on ϕ by means of

(W ϕ)(x) :=
1

(2π)3/2

∫
dp eipx w(x,p) ϕ̂(p) (2.13)

where here and in the following the (three-dimensional) momentum integrals
extend over the whole R3. This agrees with the formal definition of a pseudod-
ifferential operator [13] and we will call w(x,p) the symbol of W . Introducing
the Fourier transform ŵ(q,p), Wϕ takes the form

(W ϕ)(x) =
1

(2π)3

∫
dp eipx

∫
dq eiqx ŵ(q,p) ϕ̂(p). (2.14)

From this, the Fourier transform of Wϕ is found

(Ŵϕ)(p′) =
1

(2π)3/2

∫
dp ŵ(p′ − p,p) ϕ̂(p). (2.15)

With ϕ in (2.14) replaced by Gϕ, the symbol of a product WG of two integral
operators is derived,

(W Gϕ)(x) =
1

(2π)3

∫
dp′ eip′

x

∫
dp ŵ(p′ − p,p) Ĝϕ(p). (2.16)

Using (2.15) for Ĝϕ(p), as well as the definition (2.14) of the Fourier trans-
formed symbol ŵg of WG, one gets

ŵg(q,p) =
1

(2π)3/2

∫
dp′ ŵ(q − p′,p + p′) ĝ(p′,p). (2.17)
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For the goal of determining the transformation U1, its exponent B1 is considered
as an integral operator. One has to solve (2.8) for n = 1, using W1 = Λ+V Λ−+
Λ−V Λ+ and (1.2),

−i [D0, B1] = W1 =
1

2

(
V − D0

|D0|
V

D0

|D0|

)
. (2.18)

Let φ1 be the symbol of B1. From (2.14) and with D0 from (1.1) one has

(D0 B1 ϕ)(x) =
1

(2π)3

∫
dp dq D0 ei(p+q)x φ̂1(q,p) ϕ̂(p)

=
1

(2π)3

∫
dp dq [α(p + q) + βm] ei(p+q)x φ̂1(q,p) ϕ̂(p). (2.19)

The Fourier transforms of D0ϕ and of V ϕ are, respectively, obtained from

(D̂0ϕ)(p) = (αp + βm) ϕ̂(p)

(V ϕ)(x) =
1

(2π)3/2

∫
dq eiqx

(
− γ

2π2q2

) ∫
dp eipx ϕ̂(p) (2.20)

such that the symbol v of V is defined by v̂(q,p) = −
√

2/π γ/q2. Acting
(2.18) on ϕ and equating the respective symbols leads to the following algebraic

equation for φ̂1 :

[α(p + q) + βm] φ̂1(q,p) − φ̂1(q,p) [αp + βm] = i ŵ1(q,p) (2.21)

= − iγ0

q2
[1 − D̃0(q + p) · D̃0(p)]

with γ0 := γ/
√

2π and D̃0(p) the operator from (1.3) with norm unity.
ŵ1(q,p), behaving like q−1 for q → 0, is less singular than v̂(q,p), such
that the prescription (2.6) for W1 implies a regularisation of the potential V .

Lemma 2.1. A solution φ̂1(q,p) for the symbol of B1 is given by

φ̂1(q,p) = − iγ0

q2

1

Ep + E|q+p|

(
D̃0(q + p) − D̃0(p)

)
(2.22)

which satisfies the condition for symmetry of B1 [13],

φ̂1(−q,p + q)∗ = φ̂1(q,p). (2.23)

It is estimated by

|φ̂1(q,p)| ≤ c

q

1

(q + p + 1)2
(2.24)

with some constant c ∈ R+. B1 is a bounded operator on L2(R
3) ⊗ C4.
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Proof. a) Calculation of φ̂1.

In order to solve (2.21) the ansatz is made

φ̂1(q,p) = − iγ0

q2
(c1αq + c2αp + c3β) (2.25)

and from the properties of the Dirac matrices β2 = 1, α2
i = 1, βαi =

−αiβ, i = 1, 2, 3, αiαk = −αkαi (i 6= k), the following identities are
derived

αp · αp = p2, αq · αp = 2pq − αp · αq. (2.26)

Insertion of (2.25) into (2.21) then leads to an equation of the type

λ1 αp · αq + λ2 αq · β + λ3 αp · β + λ4 = 0 (2.27)

where the λk, k = 1, ..., 4, are scalars depending on p and q. (2.27)
must hold for p,q ∈ R3 whence λk = 0, k = 1, ..., 4. The resulting
system of 4 equations for the ci, i = 1, 2, 3 has a unique solution,

c1 (q2+2pq) = 1 − Ep

E|q+p|
, c2 = 2c1 − 1

Ep E|q+p|
, c3 = c2m

(2.28)
such that

φ̂1(q,p)=− iγ0

q2

[
[(q+2p)α+2βm]

1

q2+2pq

(
1− Ep

E|q+p|

)
− pα + βm

EpE|q+p|

]
.

(2.29)
It is readily verified that (2.29) can be cast into the form (2.22), proving

that φ̂1(q,p) is continuous in both variables except for q = 0.

b) The symmetry condition (2.23) follows immediately from (2.22) using the
self-adjointness of α and β.

c) We define the class of our integral operators (2.14) by means of the es-
timate of their symbols in the six-dimensional space (q,p) ∈ R6. This
estimate determines the convergence properties of integrals without the
precise knowledge of the symbols themselves, and it is an easy way to deal
with products of integral operators in proofs of boundedness or p-form
boundedness.
In order to estimate a symbol by its asymptotic behaviour for q, p → 0
and q, p → ∞, it must be a continuous function of the two variables
in R+ × R+. This condition is fulfilled for φ̂1(q,p). By inspection of

(2.22) one finds that φ̂1(q,p) is finite 6= 0 for p = 0 while it behaves
∼ 1/q, q → 0, ∼ 1/q3, q → ∞ and ∼ 1/p2, p → ∞. Taken
into consideration that φ1(x,p) is dimensionless as is B1 (cf. U1 = eiB1

and (2.13)) whence φ̂1(q,p) is of dimension (momentum)−3, the estimate
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|φ̂1(q,p)| ≤ c/q · (q +p+1)−2 is obtained. The constant c is determined

by the maximum of q · |φ̂1(q,p)| in q, p ∈ R+ (which exists due to con-

tinuity) and by the decay constants of φ̂1(q,p) for q → ∞ and p → ∞,
respectively (maximised in the second variable).

d) We present here only the proof of the form boundedness of B1; the oper-
ator boundedness can be shown along the same lines.

The basic ingredient is the Lieb and Yau formula which is a consequence
of the Schur test [12] and which also can be derived from Schwarz’s in-
equality [11]. We give it in a slightly generalised form,

∣∣∣∣
∫

dq dp ϕ̂(q) |K(q,p) | ϕ̂(p)

∣∣∣∣ (2.30)

≤
(∫

dqdp|ϕ̂(p)|2|K(q,p)|
∣∣∣∣
f(p)

f(q)

∣∣∣∣
2
)1

2

·
(∫

dqdp|ϕ̂(p)|2|K(p,q)|
∣∣∣∣
f(p)

f(q)

∣∣∣∣
2
)1

2

with f(p) > 0 for p > 0 a smooth convergence generating function. For
a symmetric kernel, K(p,q) = K(q,p), (2.30) simplifies to the conven-
tional form [11, 5].

From the condition (2.23) we have the following symmetry with respect
to interchange of q and p,

|φ̂∗
1(q − p,p)| = |φ̂1(p − q,q)| q↔p7→ |φ̂1(q − p,p)|. (2.31)

One then obtains for ϕ ∈ L2(R
3) ⊗ C4 applying (2.15) and subsequently

(2.30) and (2.31)

|(ϕ,B1ϕ)| = |(ϕ̂, B̂1ϕ)| ≤ 1

(2π)
3
2

∫
dq |ϕ̂(q)|

∫
dp |φ̂1(q − p,p)| |ϕ̂(p)|

(2.32)

≤ 1

(2π)
3
2

(∫
dq dp |ϕ̂(p)|2 |φ̂1(q − p,p)|

∣∣∣∣
f(p)

f(q)

∣∣∣∣
2
) 1

2

·
(∫

dq dp |ϕ̂(p)|2 |φ̂∗
1(q − p,p)|

∣∣∣∣
f(p)

f(q)

∣∣∣∣
2
) 1

2

.

Both symbol and its adjoint can be estimated by the same expression
(2.24) (from (2.22) one even has φ̂∗

1(q,p) = −φ̂1(q,p)), yielding

|(ϕ,B1ϕ)| ≤ c

(2π)
3
2

∫
dp |ϕ̂(p)|2 · I1(p)

I1(p) :=

∫
dq

1

|q − p|
1

(|q − p| + p + 1)2

∣∣∣∣
f(p)

f(q)

∣∣∣∣
2

. (2.33)
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For the form boundedness of B1 it remains to prove that I1(p) is bounded
for p ∈ R+. The angular integration is performed with the help of the
formula

∫ 1

−1

dx
1√

b + ax

1

(
√

b + ax + p + 1)2
=

2

a

∫ √
b+a

√
b−a

dz

(z + p + 1)2

=
2

a

(
1√

b − a + p + 1
− 1√

b + a + p + 1

)
(2.34)

identifying |q − p| =
√

q2 + p2 − 2qpx =:
√

b + ax, x := cos ϑq,p.

Choosing f(p) := p
1
2 , one obtains

I1(p) = 2π

∫ ∞

0

dq

(
1

|q − p|+p+1
− 1

q+2p+1

)
= 4π ln

2p + 1

p + 1
< ∞.

(2.35)

As a consequence of the boundedness on L2(R
3) ⊗ C4 and the symmetry, B1

is self-adjoint and U1 = eiB1 is unitary.

2.3 Existence of B2 and the transformations of higher order

Let φn denote the symbol of Bn. It is briefly indicated how φ2 can be obtained
explicitly, but for Bn, n ≥ 2, the calculus with operator classes is applied
instead. B2 is defined by

−i[D0, B2]=W2 = iΛ+

[
[V1, B1]+

1

2
[W1, B1]

]
Λ− + iΛ−

[
[V1, B1]+

1

2
[W1, B1]

]
Λ+.

(2.36)
With W1 from (2.18) and V1 = V − W1 one obtains

W2 =
i

8

(
3 [V,B1] + [D̃0, V D̃0 B1] + [D̃0, B1D̃0V ] + 3 D̃0 [B1, V ] D̃0

)
.

(2.37)
(2.36) is, like the corresponding equation for B1, solved in momentum space by
introducing the respective symbols of the operators. The Fourier transformed
symbol ŵ2 of W2 is composed of expressions of the type (cf (2.17))

v̂φ1(q,p) = − γ

2π2

∫
dp′ 1

|q − p′|2 φ̂1(p
′,p) (2.38)

where v̂φ1 is the Fourier transformed symbol of the product V B1. This implies
that — in contrast to (2.21) — the equation for φ̂2(p,q),

[α (p + q) + βm] φ̂2(q,p) − φ̂2(q,p) [αp + βm] = i ŵ2(q,p), (2.39)
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involves an extra integral on the r.h.s. and is solved with the ansatz (using

(2.22) for φ̂1(p
′,p))

φ̂2(q,p) = − iγγ0

16π2

∫
dp′ 1

p′2
1

|q − p′|2 (c1 + c2 αp · βm

+ c3 αq · βm + c4 αp′ · βm + c5 αp′ · αp + c6 αq · αp + c7 αq · αp′) .
(2.40)

The scalar coefficients cj , j = 1, ..., 7 (depending on q,p and p′) are uniquely
determined.
The matter of interest is, however, not the explicit form of B2 or generally, of
Bn, n ≥ 2, but the existence of the potentials Wn and Vn on the form domain
H1/2(R

3) ⊗ C4 of the free Dirac operator, such that the expectation value of

H(n) from (2.9) is well defined.

Lemma 2.2. Let Un = eiBn , n ≥ 1, be the transformations from Theorem
1.1. Let φn be the symbol of Bn and Wn the potential in the defining equation
for φn. Then Wn is p-form bounded on H1/2(R

3) ⊗ C4 by means of

|(ϕ,Wnϕ)| ≤ c (ϕ, pϕ) (2.41)

with c ∈ R+, and Bn extends to a bounded operator on L2(R
3) ⊗ C4.

From the inductive definition of the transformation scheme it is easily seen
that Wn is symmetric. As a consequence of (2.8), Bn is symmetric and hence
self-adjoint, such that Un is unitary for all n ≥ 1.

Proof.

a) p-form boundedness of Wn

The proof is by induction. The p-form boundedness of W1, eq. (2.18), follows
from Kato’s inequality [10] and from the self-adjointness and boundedness of
D̃0,

|(ϕ,W1ϕ)| ≤ 1

2
|(ϕ, V ϕ)| +

1

2
|(D̃0ϕ, V D̃0ϕ)| ≤ γπ

4
(ϕ, pϕ) +

γπ

4
(ϕ, pϕ)

(2.42)
where in the second term, D̃0pD̃0 = p has been used.
Let n ≥ 2. According to the transformation scheme outlined in section 2.1, Wn

is composed of multiple commutators of V with Bk, k < n. In particular for
n = 2, [V,B1] contributes (see (2.37)) and for n = 3, one needs [[V,B1], B1]
and [V,B2]. The additionally occurring factors D̃0 can be disregarded in the
context of p-form boundedness since D̃0 is a bounded multiplication operator in
momentum space. In the general case, the product of all factors Bk, k ≤ n−1,
which enter into a given commutator contributing to Wn must be proportional
to γn−1 since Wn is of the order γn.
By induction hypothesis, Wk is p-form bounded on H1/2(R

3) ⊗ C4 for k ≤
n − 1. This means that all commutators of smaller order than n in γ are
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p-form bounded. In the induction step one has to show that [V,Bn−1] and
[[·], Bk], k < n − 1, are p-form bounded where [·] denotes a p-form bounded
multiple commutator.
Without loss of generality one may assume that [·] is symmetric. This guaran-

tees the symmetry property (2.31) for the Fourier transformed symbol [̂·](p,q).

We estimate |[̂·]| ≤ |[̂·]| + |[̂·]
∗
| and apply the Lieb and Yau formula for this

symmetrised kernel. Then, using that a symbol can be estimated by its adjoint
and vice versa, p-form boundedness can be expressed in the following way

|(ϕ, [·]ϕ)|≤ 1

(2π)
3
2

∫
dp |ϕ̂(p)|2

∫
dq

( ∣∣∣[̂·](q−p,p)
∣∣∣ +

∣∣∣[̂·]
∗
(q−p,p)

∣∣∣
)∣∣∣∣

f(p)

f(q)

∣∣∣∣
2

≤ 1

(2π)3/2

∫
dp |ϕ̂(p)|2 c p = c′ (ϕ, pϕ) (2.43)

with some constant c > 0. The inequality in the second line of (2.43) restricts
the convergence generating function to f(p) := pλ with 1

2 < λ < 3
2 . This

is true because both [̂·](q − p,p) and [̂·](p − q,q) are regular for q → 0
(since all operators of which [·] is composed have symbols which are regular

when the second variable tends to zero), restricting λ < 3
2 , and because [̂·] is of

dimension (momentum)−2, decreasing like q−2 for q → ∞, such that λ > 1
2 is

required. These properties hold also for the symmetric operator Wk. Thus for
k < n when Wk is p-form bounded, (2.43) therefore is also valid for its Fourier

transformed symbol ŵk in place of [̂·].
Another ingredient in the proof of p-form boundedness of Wn is the fact that
the symbol φn can be estimated by wn. First note that the estimate of φ̂n is
related to the estimate of ŵn by an equation of the type (2.39), derived from

the defining equation (2.8). This equation implies that the behaviour of φ̂n for
p → 0 and q → 0 is that of ŵn, while there occurs an extra power of q−1 and
p−1 for q → ∞ and p → ∞, respectively. Therefore

|φ̂n(q,p)| ≤ c

q + p + 1
|ŵn(q,p)|. (2.44)

i) p-form boundedness of [V,Bn−1]

From the symmetry of V,Bn−1 and (2.15) we get

|(ϕ, [V,Bn−1]ϕ)| ≤ |(V̂ ϕ, B̂n−1ϕ)| + |(B̂n−1ϕ, V̂ ϕ)|

≤ 1

(2π)3

∫
dp′dp dq |ϕ̂(p)|

{
|v̂∗(p′ − p,p)| |φ̂n−1(p

′ − q,q)|

+ |φ̂∗
n−1(p

′ − p,p)| |v̂(p′ − q,q)|
}
|ϕ̂(q)|. (2.45)

Due to the symmetry in p and q, the Lieb and Yau formula can be
applied in the same way as in (2.32) and in (2.43). Using f(p) := p for

Documenta Mathematica 10 (2005) 331–356



344 D. H. Jakubassa-Amundsen

the convergence generating function and estimating v̂ one gets

|(ϕ, [V,Bn−1]ϕ)| ≤ c

∫
dp |ϕ̂(p)|2

{∫
dp′ 1

|p′ − p|2
p2

p′2
·
∫

dq

∣∣∣φ̂n−1(p
′−q,q)

∣∣∣ p
′2

q2
+

∫
dp′

∣∣∣φ̂n−1(p − p′,p′)
∣∣∣ p2

p′2
·
∫

dq
1

|p′ − q|2
p

′2

q2

}
.

(2.46)
The last q-integral is evaluated with the substitution q′ := q/p′ and with
ep′ := p′/p′,

∫
dq

1

|q − p′|2
p

′2

q2
= p′

∫ ∞

0

dq′
∫

S2

dΩq′

1

|q′−ep′ |2 = 2πp′
∫ ∞

0

dq′

q′
ln

∣∣∣∣
1 + q′

1 − q′

∣∣∣∣

= π3p′. (2.47)

Also φ̂n−1 is estimated by ŵn−1 via (2.44). One obtains for the second
term in curly brackets of (2.46) with the help of the p-form boundedness
of Wn−1 by means of (2.43)

∫
dp′|φ̂n−1(p−p′,p′)| p

2

p′2
·π3p′≤ c̃

∫
dp′ 1

|p−p′|+p′+1
|ŵn−1(p−p′,p′)|p

2

p′

≤ c′′p (2.48)

where |p − p′| + p′ + 1 ≥ p′ has been used. Further we note that the
factor (|p′ − q| + q + 1)−1 is bounded for all q ≥ 0 and hence can be
estimated by its value at q = 0. We thus get for the other q-integral

∫
dq |φ̂n−1(p

′ − q,q)| p
′2

q2
≤ c̃

p′ + 1

∫
dq |ŵn−1(p

′ − q,q)| p
′2

q2

≤ c̃

p′ + 1
· cp′ ≤ c̃c (2.49)

such that by means of (2.47), the first term in the curly brackets of (2.46)
is estimated by c′p with some constant c′ ∈ R+. This proves the p-form
boundedness of [V,Bn−1].

ii) p-form boundedness of [[·], Bk]

In (2.45), V and Bn−1 are replaced with [·] and Bk, respectively, and the
expression in curly brackets (integrated over p′) is taken as the kernel
K(q,p) in the Lieb and Yau formula (2.30). Then, estimating the symbol
by its adjoint and vice versa, one arrives at

|(ϕ, [ [·], Bk]ϕ)| ≤ c̃

(2π)3

∫
dp |ϕ̂(p)|2 ·

{∫
dp′

∣∣∣[̂·](p − p′,p′)
∣∣∣ p2

p′2
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·
∫

dq
∣∣∣φ̂k(p′−q,q)

∣∣∣ p
′2

q2
+

∫
dp′

∣∣∣φ̂k(p−p′,p′)
∣∣∣ p2

p′2

∫
dq

∣∣∣[̂·](p′−q,q)
∣∣∣ p

′2

q2

}
.

(2.50)
By (2.43), the last q-integral is bounded by cp′ such that the second term
in the curly brackets can be estimated by

∫
dp′|φ̂k(p − p′,p′)|p

2

p′
≤ c

∫
dp′ 1

|p −p′| +p′ +1
|ŵk(p − p′,p′)|p

2

p′
≤ c′p

(2.51)
according to (2.48) because ŵk is p-form bounded. By (2.49), the other
q-integral is estimated by a constant c̃, such that the first term of (2.50)
in curly brackets is with (2.43) estimated by p · c′′ with some constant c′′.
This proves the p-form boundedness of [[·], Bk], k < n − 1, and hence
together with (i) the p-form boundedness of Wn.

From the p-form boundedness of Wn, n ≥ 1, on H1/2(R
3)⊗C4, proven above,

follows immediately the p-form boundedness of Vn, n ≥ 1 since both operators
differ only by factors D̃0. We have therefore proven that to arbitrary order n,

|(ϕ, (V1 + ... + Vn) ϕ)| ≤ c (ϕ, pϕ) (2.52)

for ϕ ∈ H1/2(R
3) ⊗ C4.

b) Boundedness of Bn

This is a consequence of the p-form boundedness of Wn. From (2.43) with [·]
replaced by Bn one gets

|(ϕ,Bnϕ)| ≤ c

(2π)3/2

∫
dp |ϕ̂(p)|2

∫
dq |φ̂∗

n(q − p,p)| p2

q2
(2.53)

where the convergence generating function is again chosen as f(p) := p. From
(2.49) the q-integral is estimated by a constant. Hence,

|(ϕ,Bnϕ)| ≤ const (ϕ,ϕ). (2.54)

Remark. Due to logarithmic divergencies occurring in the estimates of
ŵn(q,p), n ≥ 1, the proof of boundedness of Bn cannot be based on the
algebra of symbol estimates, a powerful method in the case of periodic poten-
tials [13].

2.4 The Remainder R(n+1) and its p-form boundedness

From its definition as remainder after multiple iterations of (2.3)-type equations
(see e.g. (2.11)), R(n+1) is composed of a finite number of compact integrals
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over a unitary transform of the same multiple commutators [·] which would
contribute to the n + 1st order term Vn+1 after one additional transformation
(for the commutator involving D0, use (2.8)). These commutators are p-form
bounded according to the proof of Lemma 2.2, and it remains to show that the
unitary transform preserves the p-form boundedness. Consider

|(ϕ, Uk(−τ) [·]Uk(τ)ϕ)| = |(Uk(τ)ϕ, [·]Uk(τ)ϕ)|

≤ c (Uk(τ)ϕ, pUk(τ)ϕ) = c (ϕ, Uk(−τ) pUk(τ)ϕ). (2.55)

Since Uk(τ) = eiBkτ with Bk a bounded operator, we can Taylor expand

(ϕ, e−iBkτ p eiBkτ ϕ) ≤
∞∑

n,m=0

τn

n!

τm

m!
|(ϕ,Bn

k pBm
k ϕ)|. (2.56)

The sum on the r.h.s. represents a symmetric operator such that its kernel
has the required symmetry property to apply the Lieb and Yau formula (with
convergence generating function f(p) = p). Our proof proceeds in 4 steps: We
prove p-form boundedness of (i) pBk, (ii) pBm

k (by induction), (iii) BkpBm
k ,

(iv) Bn
k pBm

k .
According to (2.32) we establish boundedness of an operator A by means of
boundedness of the integral IA over its Fourier transformed symbol ŝA. For
Bk, we have boundedness from (2.49),

IBk
:=

1

(2π)3/2

∫
dq |φ̂k(p − q,q)| p2

q2
≤ ck. (2.57)

p-form boundedness is proven by showing that the integrals IA (with A :=
Bn

k pBm
k ) are proportional to p.

(i)

IpBk
=

1

(2π)3/2

∫
dq p |φ̂k(p − q,q)| p2

q2
≤ p ck. (2.58)

(ii) Our induction hypothesis is IpBm
k

≤ pcm
k . We decompose pBm+1

k = pBm
k ·

Bk and use (2.17) for the symbol of a product of operators. Then with (2.57),

IpBm+1
k

=
1

(2π)3/2

∫
dq′ |ŝpBm+1

k
(p − q′,q′)| p2

q′2
(2.59)

≤ 1

(2π)3

∫
dq |ŝpBm

k
(p−q,q)| p2

q2
·
∫

dq′ |φ̂k(q−q′,q′)| q2

q′2
≤ p cm

k ·ck = p cm+1
k .

(iii) Decomposing BkpBm
k = Bk · pBm

k , one has from (2.51)

IBkpBm
k

≤ 1

(2π)3

∫
dq |φ̂k(p − q,q)| p2

q2
·
∫

dq′ |ŝpBm
k

(q − q′,q′)| q2

q′2

≤ cm
k

1

(2π)3/2

∫
dq |φ̂k(p − q,q)| p2

q
≤ cm

k c′k p. (2.60)
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(iv) We claim IBn
k

pBm
k

≤ p c
′n
k cm

k . Then, using (2.60)

IBn+1
k

pBm
k

≤ 1

(2π)3

∫
dq |φ̂k(p − q,q)| p2

q2
·
∫

dq′ |ŝBn
k

pBm
k

(q − q′,q′)| q2

q′2

≤ c
′n
k cm

k · c′k p = p c
′n+1
k cm

k . (2.61)

Thus we obtain from the Lieb and Yau formula applied to (2.56)

∞∑

n,m=0

τn

n!

τm

m!
|(ϕ,Bn

k pBm
k ϕ)| ≤ c

∞∑

n,m=0

τn

n!

τm

m!
c
′n
k cm

k (ϕ, pϕ)

= c ec′kτ+ckτ (ϕ, pϕ) (2.62)

with c a constant resulting from using the same estimate for symbol and its
adjoint. This shows that (ϕ,Uk(−τ)pUk(τ)ϕ) is p-form bounded and com-
pletes the proof since exp(c′kτ + ckτ) is a continuous function of τ. With the
same reasoning, any multiple finite-dimensional compact integral over multiple
unitary transforms of p-form bounded commutators is therefore again p-form
bounded.

3 Subordinacy of the higher-order contributions

Since to any order n the p-form bound of H(n) is proportional to γn while
for the remainder R(n+1) it is proportional to γn+1, one gets convergence of
the expansion in the strength of the Coulomb field for γ → 0. However, for
larger γ < 1, the p-form bounds of Vn obtained with the above estimates can
in general not be restricted to numbers less than 1. In this section we will
consider a slight modification of the Coulomb potential,

V (x) := − γ

x1−ǫ
, v̂(q) = −γ

√
2

π

fǫ

q2+ǫ
, ǫ > 0 (3.1)

where v̂(q) is the Fourier transform and fǫ := cos πǫ
2 ·Γ(1 + ǫ) → 1 for ǫ → 0.

All quantities defined previously will now pertain to the modified potential
(3.1).
Our results are collected in the following proposition.

Proposition 3.1. For the modified Coulomb potential (3.1) we have

(i) For every k ∈ N, ǫ < 1
k+1 , the k-th order potential term Vk is p-form

bounded with form bound less than 1.

(ii) Let ϕ ∈ S(R3)⊗C4. Let µk > 0 for k ∈ N be the infimum of the constant
c in the estimate |(ϕ, Vkϕ)| ≤ c (ϕ, p1−kǫϕ). Then Vk+1 is subordinate to
Vk in the sense

|(ϕ, Vk+1 ϕ)| ≤ δ |(ϕ, Vkϕ)| + C (ϕ,ϕ) (3.2)

with 0 < δ < 1 and C ∈ R+ a constant depending on δ.
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(iii) Let R(n+1) := U∗
n · · ·U∗

1 HU1 · · ·Un − H(n) be the remainder of order
n + 1 in the potential strength. Then R(n+1) is subordinate to Vn.

For the proof, a lemma is needed.

Lemma 3.2. For 0 < (n + 1)ǫ < 1, c0 ∈ R+, n ∈ N and every ϕ ∈
H1/2(R

3) ⊗ C4 one has

c0 (ϕ, p1−(n+1)ǫϕ) ≤ c (ϕ, p1−nǫϕ) + C (ϕ,ϕ) (3.3)

with c < 1 and C ∈ R+. For n = 0 this implies p-form boundedness with form
bound < 1,

c0 (ϕ, p1−ǫϕ) ≤ c (ϕ, pϕ) + C (ϕ,ϕ). (3.4)

Proof. We use an elementary inequality from analysis,

a · b ≤ aλ

λ
+

bµ

µ
, a, b > 0,

1

λ
+

1

µ
= 1, (3.5)

choose λ := 1−nǫ
1−(n+1)ǫ > 1, µ = 1−nǫ

ǫ and 0 < δ < 1 to be specified later.

We decompose

p1−(n+1)ǫ =
(
δp1−(n+1)ǫ

)
· 1
δ
≤ 1 − (n + 1)ǫ

1 − nǫ
δ

1−nǫ
1−(n+1)ǫ p1−nǫ +

ǫ

1 − nǫ

(
1

δ

)1−nǫ
ǫ

.

(3.6)
Then, estimating further (using δλ < δ),

c0 (ϕ, p1−(n+1)ǫϕ) ≤ c0 δ (ϕ, p1−nǫϕ) + c0
ǫ

1 − nǫ
δ−

1−nǫ
ǫ (ϕ,ϕ). (3.7)

With the choice δ := min{ 1
2c0

, 1
2}, (3.3) is verified.

Proof of Proposition.

We start by showing that |(ϕ, Vkϕ)| ≤ c (ϕ, p1−kǫϕ) with some constant c > 0,
such that the definition of µk in (ii) makes sense. Since 0 < (ϕ, p1−kǫϕ) < ∞
(for ϕ 6= 0), µk = 0 implies (ϕ, Vkϕ) = 0 which means that in this case Vk

does not contribute to the expectation value of the transformed Dirac operator
(2.9) and hence can be disregarded.
First we estimate the expectation value of V1. According to (2.21), the symbol
of V1 is given by
v̂1(q,p) = v̂(q) − ŵ1(q,p) = − γ0

q2+ǫ fǫ (1 + D̃0(q + p) · D̃0(p)) . Since the

multiplier of q−(2+ǫ) is a bounded operator which is estimated by a constant,
one finds according to (2.32) and (2.33) with f(p) := p

|(ϕ, V1 ϕ)| ≤ 1

(2π)3/2

∫
dp |ϕ̂(p)|2 I1(p), (3.8)
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I1(p) :=

∫
dq |v̂1(q − p,p)|

∣∣∣∣
f(p)

f(q)

∣∣∣∣
2

≤ c1

∫
dq

1

|q − p|2+ǫ
· p2

q2
.

With the substitution pq′ := (q − p) one obtains for the latter integral

p3

∫
dq′ 1

(pq′)2+ǫ

p2

|pq′ + p|2 = 2π p1−ǫ

∫ ∞

0

dq′

q′1+ǫ
ln

∣∣∣∣
q′ + 1

q′ − 1

∣∣∣∣ ≤ c · p1−ǫ

(3.9)
resulting in |(ϕ, V1ϕ)| ≤ c0 (ϕ, p1−ǫϕ) where c1, c, c0 ∈ R+ are constants.
Equation (3.4) completes the proof of (i) for k = 1. Note that since µ1 =
inf c0 > 0, we have |(ϕ, V1ϕ)| > µ1

2 (ϕ, p1−ǫϕ).
The proof of (ii) is by induction. First we show (ii) for k = 1. From (2.12) we
have V2 = i[V1, B1] + i

2 [W1, B1] − W2 with W2 from (2.37). Following the

argumentation given in section 2.3 one can disregard the bounded operators D̃0

in the estimates of p-form boundedness and consider V2 as being represented
by the commutator [V,B1].
With the modified Coulomb potential the symbol of B1 which is proportional
to ŵ1(q,p) according to (2.21), is estimated by |φ̂1(q,p)| ≤ c

q1+ǫ
1

(q+p+1)2 .

The estimate of |(ϕ, [V,B1]ϕ)| is obtained from (2.46) by means of interchang-

ing φ̂n+1 with φ̂1 and |p′−p|2, |p′−q|2 with |p′−p|2+ǫ, |p′−q|2+ǫ. Recalling

that |φ̂1| can be replaced by its adjoint |φ̂∗
1| and substituting q′ := q/p′ in

the first integral one obtains

|(ϕ, [V,B1]ϕ)| ≤ c

∫
dp |ϕ̂(p)|2 {I11(p) + I12(p)} (3.10)

I11(p) =

∫
dp′ 1

|p′ − p|2+ǫ

p2

p′2
·
∫

dq′ 1

q′2

1

p′ǫ|q′−ep′ |1+ǫ(|q′−ep′ | + 1 + 1
p′

)2

I12(p) =

∫
dp′ 1

|p′ − p|1+ǫ(|p′ − p| + p + 1)2
p2

p′2
·
∫

dq
1

|p′ − q|2+ǫ

p
′2

q2
.

For I11, the q′-integral is estimated by dropping 1
p′

in the last factor of the

denominator. Using (2.47) together with the substitution k := q′ − ep′ , one
finds

∫
dq′

q′2

1

|q′ − ep′ |1+ǫ

1

(|q′ − ep′ | + 1)2
=

∫ ∞

0

dk
k1−ǫ

(k + 1)2
· 2π

k
ln

∣∣∣∣
k + 1

k − 1

∣∣∣∣ < ∞.

(3.11)
The p′-integral results with the substitution pp′′ := p′ and with the same
techniques for the angular integration as applied in (2.34), in

p2

∫
dp′ 1

|p′ − p|2+ǫ

1

p′2+ǫ
= p1−2ǫ

∫ ∞

0

dp′′
1

p′′ǫ

2π

ǫp′′

(
1

|p′′ − 1|ǫ − 1

|p′′ + 1|ǫ
)

≤ c · p1−2ǫ (3.12)

with a constant c.
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I12 is treated in a similar way. The q-integral is the one from (3.8) which is
estimated by c p

′1−ǫ. The remaining integral is estimated by replacing |p′ −
p| + p + 1 with |p′ − p| + p. With the substitution p′ =: pk + p and with
the techniques from (2.34) one obtains

p2

∫
dp′ 1

|p′ − p|1+ǫ (|p′ − p| + p)2 p′1+ǫ

= p1−2ǫ

∫ ∞

0

k1−ǫdk

(k + 1)2
· 2π

k(1 − ǫ)

[
(k + 1)1−ǫ − |k − 1|1−ǫ

]
≤ c p1−2ǫ (3.13)

with some constant c. Using (3.7) and the definition of µk one thus obtains

|(ϕ, V2ϕ)| ≤ c0 (ϕ, p1−2ǫϕ) ≤ c0 δ (ϕ, p1−ǫϕ) + C (ϕ,ϕ) (3.14)

<
2c0 δ

µ1
|(ϕ, V1ϕ)| + C(ϕ,ϕ)

with 2c0δ/µ1 < 1 for a suitably chosen δ. This proves (ii) of Proposition 3.1
for k = 1.

The proof of the induction step from k to k + 1 proceeds along the same lines
as applied in section 2.3 to show the p-form boundedness of Vn and Wn. By
induction hypothesis commutators of order m ≤ k in the potential strength,
denoted by [·]m, have the following symbol estimates (compare (2.43))

∫
dq

( ∣∣∣[̂·]m(q − p,p)
∣∣∣ +

∣∣∣[̂·]
∗
m(q − p,p)

∣∣∣
) (

p

q

)2λ

≤ c p1−mǫ (3.15)

where λ can be chosen in the interval ]12 , 3
2 [ . We demonstrate the proof for the

commutator [[·]m, Bk−m+1] which contributes to Vk+1. For the commutator
[V,Bk] which also contributes to Vk+1 the proof is similar. Since the symbol
classes of Wm and [·]m are equal, it follows from (2.44)

|φ̂m(q,p)| ≤ c

q + p + 1

∣∣∣[̂·]m(q,p)
∣∣∣ ≤ c

q + 1

∣∣∣[̂·]m(q,p)
∣∣∣ . (3.16)

Then from (2.50), one has with some c0 ∈ R+,

|(ϕ, [[·]m, Bk−m+1]ϕ)| ≤ c0

(2π)3

∫
dp |ϕ̂(p)|2 (I00 + I01) (3.17)

I00 :=

∫
dp′|[̂·]m(p − p′,p′)| p

2

p′2
·
∫

dq
1

|q−p′| + p′ + 1
|[̂·]k−m+1(q − p′,p′)|p

′2

q2

I01 :=

∫
dp′ 1

|p − p′| + p′ + 1
|[̂·]k−m+1(p − p′,p′)| p

2

p′2
·
∫

dq |[̂·]m(p′ − q,q)|p
′2

q2
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where in the term denoted by I00, |φ̂k−m+1(p
′ − q,q)| was estimated by its

adjoint before applying (3.16). In I01, the q-integral is by (3.15) estimated by
c p

′1−mǫ. Further one has with a ≥ 0 and δ > 0

∫
dq

1

a + q + 1
|[̂·]n(p − q,q)| p2

q2
· q1−δ ≤ p−δ

∫
dq |[̂·]n(p − q,q)| p2+δ

q2+δ

≤ c p1−nǫ−δ (3.18)

if 1 + δ
2 < 3

2 . Then with δ := mǫ, I01 ≤ c̃ p1−(k−m+1)ǫ p−mǫ = c̃ p1−(k+1)ǫ.
In I00 we estimate in the denominator |q−p′|+p′+1 by p′ and subsequently use
(3.15) to estimate the q-integral by c p

′−(k−m+1)ǫ. With λ := 1+ k−m+1
2 ǫ (for

(k−m+1)ǫ < 1) in (3.15) we obtain I00 ≤ c̃ p−(k−m+1)ǫ·p1−mǫ = c̃ p1−(k+1)ǫ.
Therefore

|(ϕ, [[·]m, Bk−m+1]ϕ)| ≤ c0 (ϕ, p1−(k+1)ǫϕ) (3.19)

which proves (3.15) for k + 1. The same estimate can be shown for
|(ϕ, [V,Bk]ϕ)|. Hence

|(ϕ, Vk+1ϕ)| ≤ c′ (ϕ, p1−(k+1)ǫϕ) ≤ c′ δ
2

µk
|(ϕ, Vkϕ)| + C (ϕ,ϕ) (3.20)

which completes the proof of Proposition 3.1 (ii).
The proof of (i) for k > 1 is again by induction. Assume Vk is p-form bounded
with form bound c1 < 1. Then we have from (ii)

|(ϕ, Vk+1ϕ)| ≤ δ|(ϕ, Vkϕ)| + C(ϕ,ϕ) ≤ δ (c1(ϕ, pϕ) + C1(ϕ,ϕ)) + C(ϕ,ϕ).
(3.21)

Since δ can be chosen arbitrarily small, one has δc1 < 1. A consequence of
(3.21) is the p-form boundedness (with form bound < 1) of every finite sum
V1 + ... + Vn.
For the proof of (iii) we have to show that all Bk are bounded operators. Then
we can proceed as in section 2.4 to show that a unitary transform Uk = eiBkτ

preserves the p1−(n+1)ǫ-form boundedness of the commutators of order n + 1
in the potential strength of which R(n+1) is consisting. Consequently, one has
with (ϕ, p1−kǫϕ) < 2

µk
|(ϕ, Vkϕ)| for k = n + 1 and with (3.2),

|(ϕ,R(n+1) ϕ)| ≤ const·|(ϕ, Vn+1ϕ)| ≤ const·δ |(ϕ, Vnϕ)| + C ′ (ϕ,ϕ) (3.22)

with const · δ < 1 for a suitably chosen δ. This shows the subordinacy with
respect to Vn.
It remains to prove the boundedness of Bk. We will show this directly by using
the algebra of symbol estimates. For B1, from (2.57) with the substitution
q′ := q − p,

IB1
≤ c

(2π)3/2

∫
dq

1

|p − q|1+ǫ

1

(|p − q| + q + 1)2
· p1−ǫ

q1−ǫ
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≤ c

(2π)3/2

∫
dq′ 1

q′1+ǫ

1

(q′ + 1)2
· p1−ǫ

|p + q′|1−ǫ
≤ c′ (3.23)

since the integral is finite for p → 0 and for p → ∞ and the singularity of
the last factor at p = −q′ is integrable. The convergence generating function

f(p) = p
1−ǫ
2 was chosen to allow for a (2.60)-type estimate when showing that

the presence of Uk plays no role (but to prove boundedness of IB1
, one can also

take f(p) = 1).

For B2, we use the estimate (2.44) of φ̂2 by ŵ2 and recall that W2 is determined
from the commutator [V,B1]. Consider the symbol of V B1 via (2.17),

|v̂φ1(q,p)| ≤ c

(2π)3/2

∫
dp′ 1

|q − p′|2+ǫ
· 1

p′1+ǫ(p′ + p + 1)2
. (3.24)

It is found that |v̂φ1(q,p)| = const for p = 0, ∼ 1/p2 for p → ∞ and
∼ 1/q2+ǫ for q → ∞ while it diverges for q → 0. The behaviour near q = 0 is
obtained by performing the angular integration with the help of a (2.34)-type
formula such that one gets for q 6= 0, ǫ 6= 0,

|v̂φ1(q,p)| ≤ c̃

q

∫ ∞

0

dp′

p′ǫ

1

(p′ + p + 1)2

(
1

|q − p′|ǫ − 1

|q + p′|ǫ
)

. (3.25)

Since the divergence at q = 0 results from the behaviour of the integral near
p′ = 0, it is sufficient to reduce the integration region to [0, 1] and estimate
(p′ + p + 1)−2 ≤ 1. The resulting integral can be performed analytically with
the help of hypergeometric functions [7, p.284], and it behaves ∼ q1−2ǫ for
q → 0. B1V is in the same operator class such that we obtain

|ŵ2(q,p)| ≤ c
1 + qǫ

q2ǫ(q + p + 1)2
. (3.26)

By induction, one can show that for k > 2, one has |ŵk(q,p)| ≤ c
(q+p+1)2+ǫ .

Thus one obtains regularisation upon increasing k, resulting in bounded oper-
ators Bk, k > 1. ¤

Proposition 3.1 provides justification for representing the transformed Dirac
operator in terms of a series expansion in the potential strength. Note, however,

that the limit ǫ → 0 cannot be carried out since in (3.7), ǫ
1−nǫ δ−

1−nǫ
ǫ → ∞

as ǫ → 0, which implies C → ∞ in (3.3). Therefore, this limit cannot be used
to prove for the Coulomb potential the p-form boundedness of Vk, 1 ≤ k ≤ n
with form bound < 1. On the other hand, it has been shown with different
tools that this property holds for V1 and V1 + V2 in case of the Coulomb field
[2, 8].

4 Proof of Theorem 1.2

The link between the two transformation schemes under consideration is pro-
vided by the following lemma.
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Lemma 4.1. Let H = D0 + V and Uj = eiBj , j = 1, ..., n be the transfor-
mation scheme from section 2.1, where the potential term of k-th order in γ is
decomposed into Vk + Wk. Let U ′

0, U ′
j = e−iSj , j = 1, ..., n be the Douglas-

Kroll transformation scheme with the decomposition Ek + Ok of the k-th order
potential term. Then one has the identification

βEp = U ′
0 D0 U

′−1
0 , Ek = U ′

0 Vk U
′−1
0 , Ok = U ′

0 Wk U
′−1
0

Sk = U ′
0 Bk U

′−1
0 , k = 1, ..., n (4.1)

with U ′
0 from (1.5).

The key observation is the relation between the spinor ψ =
(
u
0

)
and the spinor

ϕ in the positive spectral subspace of D0,

ϕ = U
′−1
0 ψ. (4.2)

In momentum space, this equation is easily verified from U
′−1
0 = ( αp

Ep+m β +

1)A and from the explicit form (1.12) of ϕ̂(p). Then with the help of (2.6),
the assertion (1.16) of Theorem 2.1 reads

(
ϕ, (D0 +

n∑

k=1

Vk) ϕ

)
=

(
U

′−1
0 ψ,

n∑

k=0

Hk U
′−1
0 ψ

)
= (ψ,H ′

n ψ). (4.3)

Identifying terms of fixed order k ≤ n and using (1.11), the assertion (4.3) is a
consequence of

U ′
0 Vk U

′−1
0 = Ek, k = 1, 2... and U ′

0 D0 U
′−1
0 = βEp (4.4)

and hence of Lemma 4.1.

Proof of Lemma 4.1.

a) Verification of (4.1) up to first order in γ

The equality U ′
0D0U

′−1
0 = βEp is a consequence of (1.7) for zero potential. By

means of explicit calculation (which for the sake of simplicity is only presented
for the massless case m = 0), one gets from (2.18)

U ′
0W1U

′−1
0 =

1√
2

(
1 + β

αp

p

)
· 1

2

(
V − αp

p
V

αp

p

)
· 1√

2

(
1 +

αp

p
β

)

=
1

2

[
β

αp

p
V − βV

αp

p

]
= O1 (4.5)

and similarly, U ′
0V1U

′−1
0 = E1 with V1 = 1

2

(
V + αp

p V αp

p

)
. For the m 6= 0

case, one needs the relation m
Ep

+ p2

Ep(Ep+m) = 1.

Documenta Mathematica 10 (2005) 331–356



354 D. H. Jakubassa-Amundsen

In order to prove S1 = U ′
0B1U

′−1
0 we first show that S1 is uniquely determined

by (1.10). Representing S1 and O1 by their respective symbols s1 and o1 via
(2.14) and noting that βEp is a multiplication operator in Fourier space, one
obtains from (1.10)

−ô1(q,p) = iβE|p+q| ŝ1(q,p) − iŝ1(q,p) βEp

= iβ
(
E|p+q| + Ep) ŝ1(q,p

)
(4.6)

which can be uniquely solved for ŝ1(q,p). We now transform the defining
equation (2.8) for B1 with U ′

0

U ′
0 W1 U

′−1
0 = −i (U ′

0D0U
′−1
0 )(U ′

0B1U
′−1
0 ) + i (U ′

0B1U
′−1
0 )(U ′

0D0U
′−1
0 )

⇐⇒ O1 = −i
[
βEp, U

′
0B1 U

′−1
0

]
. (4.7)

From the uniqueness of the solution it follows from (4.7) and (1.10) that

U ′
0B1U

′−1
0 = S1 and hence the uniqueness of the operator B1.

b) Proof of (4.1) by induction for arbitrary order n in γ

We assume that to order n − 1 the assertion of Lemma 4.1 holds. Then, the
relation between the Dirac operators transformed to n− 1st order, asserted by
Theorem 1.2, is also true, i.e. (including the n-th order terms)

βEp + E1 + E2 + ... + En−1 + En + On

= U ′
0 (D0 + V1 + ... + Vn−1 + Vn + Wn) U

′−1
0 (4.8)

since En and On only depend on βEp, Ej , Oj , Sj , j = 1, ..., n − 1, with the
identical dependence of Vn and Wn on D0, Vj , Wj , Bj , j = 1, ..., n − 1.

From (4.1) for j = 1, ..., n − 1 it therefore follows that En = U ′
0VnU

′−1
0 and

On = U ′
0WnU

′−1
0 . Carrying out the n-th transformation one gets

U ′
n · · ·U ′

0HU
′−1
0 · · ·U ′−1

n =βEp + E1 + ... + En−1+ En +On + i[βEp, Sn] + Rn+1

U∗
n· · ·U∗

1 HU1· · ·Un=D0 +V1 + ...+Vn−1+Vn +Wn + i[D0, Bn]+R(n+1). (4.9)

Bn is obtained from Wn = −i [D0, Bn], or transformed with U ′
0,

U ′
0 Wn U

′−1
0 = On = −iU ′

0 [D0, Bn] U
′−1
0 = −i [βEp, U

′
0BnU

′−1
0 ]. (4.10)

Since the solution Sn to On = −i[βEp, Sn] is unique, one gets U ′
0BnU

′−1
0 =

Sn. ¤

From the correspondence of the two transformation schemes it follows that for
n = 2, H(2) from (2.12) when acting on the positive spectral subspace of D0,
reduces to Λ+(D0 + V + i

2 [W1, B1])Λ+ since i[V1, B1] corresponds to an odd
operator which vanishes upon projection.
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