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ABSTRACT. We introduce the notion of a braid group parametrized
by a ring, which is defined by generators and relations and based on
the geometric idea of painted braids. We show that the parametrized
braid group is isomorphic to the semi-direct product of the Steinberg
group (of the ring) with the classical braid group. The technical heart
of the proof is the Pure Braid Lemma, which asserts that certain
elements of the parametrized braid group commute with the pure
braid group. This first part treats the case of the root system A,; in
the second part we prove a similar theorem for the root system D,,.
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1 INTRODUCTION

Suppose that the strands of a braid are painted and that the paint from a strand
spills onto the strand beneath it, modifying the color of the lower strand as in
the picture below.

a = coefficient of spilling

.

v+ au U

Figure 1

I Partially supported by Northwestern University in 2002.
2Partially supported by Université Louis Pasteur in 1998-99.
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392 JEAN-LOUIS LODAY AND MICHAEL R. STEIN

This gives rise, for any ring A, to the parametrized braid group Br,(A), which
is generated by elements y{, where 7 is an integer, 1 <4 <n —1, and a is an
element of A, subject to the relations

(A1) yeydyl = ydydye T
(A1 x A1) vy = oyl if i — j| > 2,
(A2) YRyl = ys iyl Tyt

for any a,b,c € A

A variation of this group first appeared in [L]. The choice of names for these
relations will be explained in section 2 below. The derivation of these relations
from the painted braid model can be seen in Figures 2 and 3 below.)

Observe that when A = {0} (the zero ring), one obtains the classical Artin
braid group Br,, whose presentation is by generators y,, 1 < ¢ <n — 1, and
relations

(Al x A1) YiY; = Y;Y; if [i —j| > 2,
(A2) YiYir1Y: = Yir1Yi Yir1

A question immediately comes to mind: does Figure 1 correctly reflect the
elements of the parametrized braid group? Up to equivalence, a picture would
be completely determined by a braid and a linear transformation of the set of
colors. This linear transformation lies in the subgroup E, (A) of elementary
matrices. Hence if the elements of the parametrized braid group correspond
exactly to the pictures, then the group should be the semi-direct product of
E,(A) by Br,. We will show that this is almost the case: we only need to
replace E,(A) by the Steinberg group St,(A4) (¢f. [St] [Stb]).

THEOREM. For any ring A there is an isomorphism
Bry,(A) = St,(A) x Br,

where the action of Bry, is via the symmetric group Sy,.

The quotient of Br,(A) by the relation yy? = 1 is the group studied by

K2
Kassel and Reutenauer [K-R] (in this quotient group, our relation (A1) becomes
yiydy? = y2T° which is exactly the relation used in [K-R] in place of (A1)).
They show that this quotient is naturally isomorphic to the semi-direct product
Stn(A) xS, of the Steinberg group with the symmetric group. So our theorem

is a lifting of theirs.

The proof consists in constructing maps both ways. The key point about their
existence is a technical result called the Pure Braid Lemma (cf. 2.2.1). It says
that a certain type of parametrized braid commute with the pure braid group.
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PARAMETRIZED BRAID GROUPS 393

In the first part of the paper we give a proof of the above theorem which
corresponds to the family of Coxeter groups A,. In the second part we prove
a similar theorem for the family D, cf. section 3. The Pure Braid Lemma in
the D,, case is based on a family of generators of the pure braid group found
by Digne and Gomi [D-G]. We expect to prove similar theorems for the other
Coxeter groups.

A related result has been announced in [Bon].

2 THE PARAMETRIZED BRAID GROUP

We introduce the parametrized braid group of the family of Coxeter groups
An_1.

DEFINITION 2.0.1. Let A be a ring (not necessarily unital nor commutative).
The parametrized braid group Br,(A) is generated by the elements y¢, where i
is an integer, 1 <i<n—1, and a is an element of A, subject to the relations

(A1) yeydylt = ylylyet?
(A1 x A1) vyl = iyl if li—j > 2,
(AQ) yé‘yf+1yf = yf+1y§’+“ y&-l

for any a,b,c € A.

The geometric motivation for the defining relations of this group, and its con-
nection with braids, can be seen in the following figures in which u,v,w (the
colors) are elements of A, and a,b, ¢ are the coefficients of spilling. Relation
(A1) comes from Figure 2.

Relation (Al x Al) arises because the actions of y¢ and of yé’ on the strands of
the braid are disjoint when |i — j| > 2, so that these two elements commute.
Relation (A2) derives from Figure 3.
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394 JEAN-LOUIS LODAY AND MICHAEL R. STEIN

u v u v
u e
v+ bu u v+ (a+du u
uy = vi
u v+ bu u v+ (a+du
Yi Yi
v+ bu+ au u v+ (a+bdu u
Figure 2
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u v w u v w

X <
> X

v+ cu U w U w—+av v

1N
o X

v4+cu w4+bu wu w + av U v
ac

e ) Yo
> X

w+bu v+cu wu w+av v4cu u
+a(v + cu) +(b+ ac)u
Figure 3

2.1 TECHNICAL LEMMAS

Let ® be the root system A,, or D,, and let A be a ring (not necessarily unital)
which is supposed to be commutative in the D, case. Let A be a simple
subsystem of the root system ®. Elements of A are denoted by « or «;. The
image of b € Br(®) in the Weyl group W (®) is denoted b. The parametrized
braid group Br(D,,, A) is defined in 3.1.1.

LEMMA 2.1.1. The following relations in Br(®, A) are consequences of relation
(A1):

(ygygzyg = yg(%gygx
ye(yo) tue =yt
ya® = yo(y2) 9l

Proof. Replacing b by 0 in (A1) shows that y%y® commutes with y¢. From this
follows

Il
—~~
<

v (yd) b

I
—~~
<

0

(o3

0)71 a,0,b
«
0y\—1,,0,,0,,a+b
o) YaYala

= Y
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396 JEAN-LOUIS LODAY AND MICHAEL R. STEIN
Putting b = —a in the second relation yields the third relation. O

LEMMA 2.1.2. Assume that the Pure Braid Lemma holds for the root system ®.
Suppose that o € A and b € Br(®) are such that b(a) € A (where b € W ()
denotes the image of b). Then for any a € A one has

bya(ye) "0 = Ui (Whe)) ! in Br(®, A).

Proof. First let us show that there exists b’ € Br(®) such that b'y2b’' " = Yoo

The two roots a and b(«) have the same length, hence they are connected, in
the Dynkin diagram, by a finite sequence of edges with m = 3 (cf. [Car, Lemma
3.6.3]). Therefore it is sufficient to prove the existence of ¥’ when a and b(«)
are adjacent. In that case a and b(c) generate a subsystem of type As; we
may assume o = «; and b(a) = ay € As; and we can use the particular case
of relation (A2), namely

o,0_,a _ ,a ,0 0
yalyagyal - yagyal yaz

to show that
1 a

0,0 0 \—1/,0 \—
Yo YarYar Wan) ™ Way) ™ = Ya,-
(Here V' = yglyg2, a=o01 =—€ + 62,5’(04) =y = —€y+€3.)
To conclude the proof of the Lemma it is sufficient to show that

bys(yo) bt =yl (yo)

whenever b(a) = a. According to [H, Theorem, p. 22], b is a product of simple
reflections o, for a; € A which are not connected to a in the Dynkin diagram
of A. Hence we can write b as the product of an element in the pure braid
group and generators y,, which commute with y% by relation (A1 x A1). Since
we have assumed that the Pure Braid Lemma holds for ®, we can thus conclude
that by (y) 1o~ = y2(y9)~! as desired. O

2.2 BRAID GROUP AND PURE BRAID GROUP

The group Br,(0) = Br,, is the classical Artin braid group with generators
i, 1 <i<n—1, and relations
viyi = Yivi, li—jl=2,
YiYi+1Yi = Yi+1YilYit+1-
The quotient of Br;, by the relations y;y; = 1,1 <7 <n — 1 is the symmetric
group S,; the image of b € Br, in S, is denoted by b. The kernel of the

surjective homomorphism Br, — S, is the pure braid group, denoted PBr,,.
It is generated by the elements

A5 = YiYi—1 Yl Yi-1Y5,
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PARAMETRIZED BRAID GROUPS 397
for n > j >4 > 1, ([Bir]; see Figure 4 below).

i J

/

Figure 4: the pure braid a;;

LEMMA 2.2.1 (PURE BRAID LEMMA FOR A,,_1). Let yi be a generator of
Br,(A) and let w € PBr, = PBr,(0). Then there exists w' € Br,, indepen-
dent of a, such that

i w = Y.
Hence for any integer k and any element a € A, the element yi(yy) ~! €
PBr,(A) commutes with every element of the pure braid group PBr,,.

NOTATION. Before beginning the proof of Lemma 2.2.1, we want to simplify
our notation. We will abbreviate

= k
)™t = kt
v = k°
Note that k=! does not mean k® for a = —1.

If there exist w’ and w” € Br, such that k%w = &'j%w", we will write
kew ~ jou'.
Observe that ~ is not an equivalence relation, but it is compatible with multi-

plication on the right by elements of Br,: if n € Br,,

lsa, I lea, I

kw ~ j'w" & k% = W'jPW" & kPwn = W'j%W" ) & kPwn ~ j%W"n

For instance

k»kk ~ k° by Lemma 2.1.1,
k*(k—1)k ~ (k—1)° by relation (A2),
k*(k—1) ~ (k—1)"k Dby relation (A2).
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398 JEAN-LOUIS LODAY AND MICHAEL R. STEIN

Proof of Lemma 2.2.1. 1t is clear that the first assertion implies the second
one: since w’ is independent of a, we can set a = 0 to determine that w’ =
y,? w (yg)_l. Substituting this value of w’ in the expression yf w = w’ yf
completes the proof.

To prove the first assertion, we must show, in the notation just introduced,
that k®w ~ k® for every w € PBr,, and it suffices to show this when w is one
of the generators a;; =j (j—1) ---ii--- (j — 1) j above. Since y{ commutes
with y? for all i # k — 1,k,k + 1, it commutes with a;; whenever k < i — 1 or
whenever k > j 4+ 1. So we are left with the following 3 cases:

(la) G+1D%;; ~ (G+1)°
(1b) Jtaji o~ j°
(1c) k%;; ~ k" i—-1<k<j-1

Our proof of case (1a) is by induction on the half-length of w = a;;. When
i=k—1,w=(k—1) (k—1), and we have

k*(k-1)(k—-1) = k*(k—1)ktk(k—-1)
~ (k=1)"k(k—-1)
~ k.

and more generally,

k* (k-1) (k—2)---(k—2) (k—1)
~ (k-1)*k(k—-2)---(k—2)(k—-1)
= (k-1)*(k-2)---(k—2)k(k—-1)
~ (k-1)"k(k-1) (by induction),
~ k.

The proof of case (1b) is also by induction on the half-length of w = a; ;. When
i =k, w =k k, and we have
kk k ~ k* by Lemma 2.1.1.

Then
Kk (k—1)-(k —

[y
~—

k

k%k (k—1)kk™ ' (k—2)---(k—2) (k-1 k
Kk-1Dk(k-1)(k-2)--- (k-2 )k '(k-1)k
k-1)k-1) (k-2)---(k-2) (k-1 k (k—1)*
k-—1)*k (k—1)""! (by induction)

ke

222Xl

For case (1c) it is sufficient to check the cases

(2a) w = (k+1)(k+1)
(2b) w = (k+1)kk(k+1)
(2¢) w = (k+1)k(k-1)---(k—1)k (k+1)
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PARAMETRIZED BRAID GROUPS 399

which are proved as follows:

kik+1)(k+1) = k¥k+1)k'k(k+1)
~ (k+1)k (k+1)
~ k Case (2a)

k¢(k+1)kk(k+1) ~ (k+1)"k (k+1)
~ k¢ Case (2b)

k®k+1)k (k—1)---(k—1) k (k+1)
~ (k+1)%k—-1)---(k—1) k (k+1)
~ (k+1)k (k+1)
k® Case (2¢)

O

PROPOSITION 2.2.2. For any w € Br,(0) the element wyf(y?) 'w ~! depends
only on the class © of w in S,,. Moreover if w(j) =k and w(j +1) = k+1,
then wyf(yy) tw ! = y;(y?) -1

Proof. The first statement is a consequence of Lemma 2.2.1 since the Weyl
group W(A,—1) = S, is the quotient of Br,, by PBr,,.
The second part is a consequence of relation (Al x Al) and the following
computation:

2711712012 = 192-'1-1'2-112
1°1-t2-11-112
1911 .

2.3 THE STEINBERG GROUP AND AN ACTION OF THE WEYL GROUP

When & = A,,_1, the Steinberg group of the ring A is well-known and custom-
arily denoted St,(A). In that case it is customary to write zf;,; = xi41(a)
for the element z,(a),a = € — ;41 € A, and, more generally, zj; when
=€ —€ € An_1.

DEFINITION 2.3.1 ([STB]). The Steinberg group of the ring A, denoted St,(A),
is presented by the generators xi;,1 < i,j < n,i # j,a € A subject to the
relations

(St0) xfjxfj = x?j‘b
(St1) 33%0521 = 352195%7 i#FlLj#Fk
(St2) xfjxé’»k = x?kx%’xfj, i # k.
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400 JEAN-LOUIS LODAY AND MICHAEL R. STEIN

We should make two observations about this definition. First, it follows from
(St0) that m?j = 1. Second, relation (St2) is given in a perhaps unfamiliar
form. We have chosen this form, which is easily seen to be equivalent to (R2),
because of its geometric significance (¢f. [K-S] for the relationship with the
Stasheff polytope), and for the simplification it brings in computation.

The Weyl group W (A, _1) is the symmetric group S,,. Its action on the Stein-
berg group is induced by the formula

(3) o2 =254, TESna€A

2.4 THE MAIN RESULT
THEOREM 2.4.1. For any (not necessarily unital) ring A the map
¢ : Br,(A) — St,(A) x Bry,

from the parametrized braid group to the semi-direct product of the Artin braid
group with the Steinberg group induced by ¢(y§') = xf; 1 yi is a group isomor-
phism.

Proof. Step (a). We show that ¢ is a well-defined group homomorphism.
e Relation (Al):

PWiyy)) = wavivial Y, osince 2, =1,
= YiYi w?i.21wgi+1yi since Yy, =1€ Sy,
= Yyl by (5t0),

B0y th).

e Relation (A1 x A1) follows immediately from (St1).
e Relation (A2) is proved by using the relations of Br, and the 3 relations
(St0), (St1), (St2) as follows:

a, b c _ a b c
o(y; yi+1yi) = LY Vi1 ipo Vi1 ii41 Yi
——
a b c
= Tyi11Yi Tivyi+oTiit2 Yit1Yi,
————
a c b
= T YT 0%Ti 1 i42Yi+1Yi
a c ) ) )
= Tiip1%i1442Yi Tig1442 Yit1Yis
b
= ¢, .., . x% x% . x. Yi Ui )
i+154+2V5i+2 Liit1vii4+2 Yi Yit+1 Yi s
c ac+b _a
= Tiprit2¥iire Liip1¥Yi+1 YiYit1,
N——
c ac+b a
= Tiy1i42 P42 Yit1 TiiqpoYi Yit1,
—_——— ———
c ac+b a
= Tipri42Yi+l Tigp1Yi Tigaipo Yitls
b+a

= ¢(yf+1yi Cy?+1)~
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PARAMETRIZED BRAID GROUPS 401

Step (b). This is the Pure Braid Lemma 2.2.1 for A,,.

Step (c). We construct a homomorphism 1 : St,,(A) x Br,, — Br,(A). We
first construct ¢ : St,(A) — Ker m, where 7 is the surjection Br,(A) — Bry,,
by setting
Y(a) = w )T T

where w is an element of Br, such that (k) = ¢ and @w(k + 1) = j (for
instance, ¢(xf,) = yf(y7) ™" and ¥(2f3) = y3(y7 (1)) (y2)~"). Observe that
this definition does not depend on the choice of @ (by Lemma 2.1.2), and does
not depend on how we choose a lifting w of @ (by the Pure Braid Lemma 2.2.1).
In order to show that 7 is a homomorphism, we must demonstrate that the
Steinberg relations are preserved.

e Relation (St0): it suffices to show that 1 (z%2%) = 1 (x57?),

Y(agaty) = yf )iyt =y () “2ylyb(y?) !

= (y?)b”y?y‘fyi’(y?)*l by 2.2.1,
=yt (yb?)*1 by (A1),
= Y(af3").

e Relation (St1): it suffices to show that (x%y7%,) = ¥(2z5,2¢,) and that
P(a8y1ts) = P(2832%,). The first case is an immediate consequence of the
Pure Braid Lemma 2.2.1 and of relation (Al x Al). Let us prove the second
case, which relies on the Pure Braid Lemma 2.2.1 and relation (A2):

Plafyats) = yi)) syt () (w9t
i b _ _
= () 2ye ylysyt () (W9 ~!
-2 a,b. 0 _ 07/,0\—1/7 0\—1
= (W) 2 ylyar o (W)~ (ya)
0\—2,0,b,a/,0\—1/ 0\—1,0
= (W) Pyaviva (i) (y2) " i
—_—
= ()28 (D) (W) yts
= )20 W) W) T W)y ) !

I
<
—

8
—o
)
<
—~

8
=
S

V(atals) = yid) ™t vh (3!
o\—1,b. 0 —1 0\—1
= W) oy () (ws)
= yiydt () T W) ) !
= yé;‘ ,yl%’? b,yS(y?);l(yO)o‘l(ly?)o‘l1 1
= y5s)  dyt ()t s () T () T (W))
= o)yt () T W) Tyt (v))
———
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402 JEAN-LOUIS LODAY AND MICHAEL R. STEIN

as a consequence of relation (A2).

From 2.2.2 it follows that the action of an element of Br, by conjugation on
Ker 7 depends only on its class in S,,. The definition of ¢ on St,(A) makes
clear that it is an S,,-equivariant map.

Defining v on Br, by ¥(y) = y° € Br,(0) yields a group homomorphism
¥ : St,(A) x Br,, — Ker 7 x Br,, = Br,(4).

The group homomorphisms ¢ and v are clearly inverse to each other since they
interchange y& and x%y,. Hence they are both isomorphisms, as asserted. [

COROLLARY 2.4.2 (KASSEL-REUTENAUER [K-R]). The group presented by
generators y, 1 <i<n-—1, a € A, and relations

W) =1
ye(y?) "ty = ot
vyl =yt ifli— gl >2

a,b c__ ¢ b+ac  a
YiYi+r1Yi = Yi+1Y; Yit+1

a,b,c € A, is isomorphic to the semi-direct product St,(A) X S,.

Observe that when the first relation in this Corollary is deleted, the second
relation has several possible non-equivalent liftings. The one we have chosen,
(A1), is what allows us to prove Theorem 2.4.1.

3 THE PARAMETRIZED BRAID GROUP IN THE D, CASE

In this section we discuss the parametrized braid group Br(D,, A) for a com-
mutative ring A and prove that it is isomorphic to the semi-direct product of
the Steinberg group St(D,,, A) by the braid group Br(D,,0).

3.1 THE BRAID GROUP AND THE PARAMETRIZED BRAID GROUP FOR D,

Let A = {ag, @, as,...,a,} be a fixed simple subsystem of a root system of
type D,,n > 3. We adopt the notation of [D-G] in which the simple roots
on the fork of D, are labeled ag,as . The system D, contains 2 subsys-

tems of type A, _1 generated by the simple subsystems {as,as,...,a,} and
{ag,as,...,a,}, and, for n > 4, a subsystem of type D,,_1 generated by the
simple subsystem {asg, ao, as,. .., @n_1}.
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PARAMETRIZED BRAID GROUPS 403

2/

Dynkin diagram of D,,

The Weyl group W(D,,) is generated by the simple reflections {o; = 0,|a; €
A}, with defining relations

2
0;

(oi05)™09) = 1
fori,5 € {2,2',3,...,n}, where

L 2 if a4, 5 are not connected in the Dynkin diagram,
m(i,j) =

3 if oy, 5 are connected in the Dynkin diagram

Since the only values for m(a, 3) are 1,2 and 3, the group Br(D,,, A) involves
only relations (A1), (Al x A1) and (A2).

DEFINITION 3.1.1. The parametrized braid group of type D,, with parameters
in the commutative ring A, denoted Br(D,,A), is generated by the elements
y&, where « € A and a € A. The relations are, for a,b € A and o, € A

(A1) yaydul = youSyat?
(A1 x A1) ey = yhvs if m(a, B) = 2
(A2)  yhybys = ysuat s ifm(a, ) =3 and a < B

Note that the simple roots in D,, are ordered so that as < as.

3.2 THE STEINBERG GROUP OF D,, AND THE MAIN RESULT

The roots of D,, are {+e; £ ¢;|1 < i # j < n}, [Car],[H]. The Weyl group
W(D,) = (Z/2)" ! x S, [Bour, p. 257, (X)] acts on the roots by permuting
the indices (action of S,,) and changing the signs (action of (Z/2)"~1). For the
simple subsystem A we take a; = —€;_1+¢; fori =2,--- 'n, and ay = €1 +€3.
If w and v are positive integers and «, 3 two roots, the linear combination
ua +v@ is a root if and only if u = 1 = v, o = £¢; £ €5, T €5 £ ¢, and
+e; + €, # 0. In this case the definition of the Steinberg group is as follows.
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404 JEAN-LOUIS LODAY AND MICHAEL R. STEIN

DEFINITION 3.2.1 ([STB][ST]). The Steinberg group of type D,, with parameters
in the commutative ring A, denoted St(D,,A), is generated by elements x2,
where a € ® and a € A, subject to the relations (for a,b € A and o, € D)

(St0) 22xb = zath
(St1) x‘éx% = x%xi ifa+pB & D, and a+ § # 0,
(5t2) :vgx% = m%xgiﬁyg if o+ B € Dy,

The Weyl group W(D,) acts on St(Dy, A) by o - xg = xf,), and we can
construct the semi-direct product St(D,,A) x Br(D,,) with respect to this
action.

THEOREM 3.2.2. For any commutative ring A the map
¢ : Br(D,,A) — St(Dy,, A) x Br(D,)
induced by ¢(yl) = x2 Yo, 15 a group isomorphism.

COROLLARY 3.2.3. The group presented by generators y&, i = 2/,2,3,--+ ,n,
a € A and relations

(y)* =1
v )yl =yt
iy =yl ifli—jl>2 ori=2j=2,
UYLy = Uiy Tyl where i +1 =3 when i = 2'

fora,b,c € A, is isomorphic to the semi-direct product St(D,,, A) x W(D,,).

Proof of Corollary. For each simple root a; € Dy, write yi' for yg . O
Proof of Theorem 3.2.2.
Step  (a). Since the relations involved in the definitions of

Br(D,,A) and St(D,,, A) are the same as the relations in the case of A,_1,
the map ¢ is well-defined (¢f. Theorem 2.4.1).

Step (b). The proof of the Pure Braid Lemma in the D,, case will be given
below in 3.3.

Step (c¢). Let w : Br(D,,A) — Br(D,) be the projection which sends each
a € A to 0 (as usual we identify Br(D,,0) with Br(D,,)). We define

¥ : St(Dy, A) x Br(D,) — Br(D,, A) =2 Ker m x Br(D,)

on the first component by (%) = y%(y2)~! € Ker 7 for « € A. For any
a € D, there exists 0 € W(D,,) such that o(a) € A. Let 6 € Br(D,) be a
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lifting of o, and define ¢(z%) = 6~ (a2 )0 € Ker . This element is well-
defined since it does not depend on the li%ting of o by the Pure Braid Lemma
for D,, (Lemma 3.3.2), and does not depend on the choice of ¢ by Lemma 2.1.2.
In order to show that 1 is a well-defined group homomorphism, it suffices to
show that the Steinberg relations are preserved. But this is the same verification
as in the A,_; case, (¢f. Theorem 2.4.1.)

The group homomorphisms ¢ and 1 are inverse to each other since they inter-
change y2 and x%y,. Hence they are both isomorphisms. O

3.3 THE PURE BRAID LEMMA FOR D,
3.3.1 GENERATORS FOR THE PURE BRAID GROUP OF D,

In principle, the method of Reidemeister-Schreier [M-K-S] is available to deduce
a presentation of PBr(D,,) from that of Br(D,,). The details have been worked
out by Digne and Gomi [D-G], although not in the specificity we need here.
From their work we can deduce that the group PBr(D,,) is generated by the
elements y2,a € A, together with a very small set of their conjugates. For
example, PBr(D,) is generated by the 12 elements

’ ’ ’
22, 2/27 327 3227 32/2’ 322 327 427 432, 432/27 4322, 4322 327 4322 342

where a prefixed exponent indicates conjugation: "¢ = hgh~!. Here (and
throughout) we use the simplified notations k* = 34 and k = y9 similar to
those of 2.2.

PROPOSITION 3.3.1. Forn >4, PBr(D,,) is generated by the elements

e a,;=jj—-1)...(i+1)ii(i+1)...G—-1)j,n>7>i>2, and

e b, =j(—1)...322'3.. (i—1)iii—1)...32'23G—1)j,n>j >i >3,
where i +1 =3 when i = 2.

Note. Since the notation can be confusing, let us be clear about the definition
of these generators in certain special cases:

o Wheni=ja;; = i2.

e Wheni=3,b;3=jjG—1)...322'332'2...(j — 1)j.

Proof of (3.3.1). We work in the case where W = W(D,,) in the notation of
[D-G]. In the proof of [D-G, Corollary 2.7], we see that Py = Uy, X Pw, 5
taking I, = {s1,82,82,...,8,_1}, n >4, as on [D-G, p. 10], we see that their
Py is equal to (our) PBr(D,) and their Py,  is equal to (our) PBr(Dp-1).
It follows that a set of generators for PBr(D,,) can be obtained as the union
of a set of generators for PBr(D,,—1) with a set of generators for U,,. This sets
the stage for an inductive argument, since D3 = Ag (with {«as, ag, as'} C Ds
identified with {aq, a9, a3} C As). Because W(D,,) is a finite Weyl group, it
follows from [D-G, Proposition 3.6], that U, is generated (not just normally
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generated) by the elements ay, 5, and a list of these generators in our case is
given on [D-G, p. 10].

The calculations necessary to prove the Pure Braid Lemma for D,, are simpler
if we replace the Digne-Gomi generators by the equivalent set in which conju-
gation is replaced by reflection; that is, we replace a generator "¢ = hgh™! by
hgh', where if h = y;, ... yi, B =i, ... yi,- (We already used this trick in the
case of A,_1.) For Dy, this procedure yields as generators of PBr(Dy) the set

22,22 32 3223 3223, 322/322/23, 42, 4324, 432234, 432234,
4322/322/234, 4322/34232/234,

and, more generally, PBr(D,,),n > 4 is generated by the elements stated in
the Proposition. O

LEMMA 3.3.2 (PURE BRAID LEMMA FOR D,). Let ay € D,, let y¢ be a
generator of Br(Dy, A), and letw € PBr(D,,). Then there exists w’ € Br(D,),
independent of a, such that

a _ ! a
Yp W =W Yg.

Hence for any integer k and any element a € A, the element yg(yg)_l €
Br(Dy, A) commutes with every element of the pure braid group PBr(D,,).

Proof. Let us show that the first assertion implies the second one. Let w €
PBr(D,,) C PBr(D,,A). By the first assertion of the Lemma we have

a _ /. .a
Ypw = WY

for some w’ € Br(D,,0), independent of a. Setting a = 0 tells us that w’ =
ey Thos

1 1

Y () e = wyi (y)~

as desired.

Before beginning the proof of the first assertion, we recall some notation intro-
duced in 2.2. We abbreviate yg by k® and ygk by k. Whenever there exist
w" and w” € Br(D,,) such that k%w = w'j%", we will write k®w ~ j%". This

is not an equivalence relation, but it is compatible with multiplication on the
right by elements of Br(D,,): if n € Br(D,,),
lsa, I lsa, I

k% ~ j%" & k% = W'j'W" < kwn = Wiy & kPwn ~ j%"n

From defining relations (A1), (Al x Al), and (A2) of 2, we can deduce the
following:
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(4a) kkk ~ k°

(4b) kK" (k-1)k ~ (k—1)°

(4c) k* (k-1 k! ~ (k—1)*

(4d) k(k+1)k ~ (k+1)*

(4e) (k+1)’k(k+1) ~ k°

(4f)  (k+1)kk+1)"" ~ k°

(4g) kk+1Dk ! ~ (k+1)°

(4h) kK'k+1) k' ~ (k+1)°

(4) (k+1)"k '(k+1)"" ~ k°

(4) k%k(k—-1) ~ (k—1)%k-1k!

Proof, continued. In the notation just introduced, we must show, for every
w € PBr(D,,), that k®w ~ k®, and it suffices to show this when w is one of the
generators a;; or b;; of 3.3.1. That is, we must show

Ha k%a;; ~ k* n>j>i>2, 1<k<n
7,
(5b) kabjﬂ' ~ Kk 77,2]2223, 1§k§n

The proofs of (ba) for i > 3 are exactly the same as the corresponding proofs
for A, _1 (see section 2); the additional case i = 2’ presents no new issues.
Thus we shall concentrate on proving (5b); the proof proceeds by induction on
n.

The case n = 3 is the case of the root system D3 = Ajz, which is part of the
Pure Braid Lemma 2.2.1 for A,,_;. Hence we may assume n > 4, and that (5b)
holds whenever j, k < n — 1. That is, we must prove (5b) in these cases:

k=n,j<n—-1, k<n—-1,7=n; k=n,j=n

which further subdivide into the cases

(6) k=n, j<n-—-2
(7 k=n, j=n-1
(8) Ek<n—-2, j=n
9) k=n—-1, j=n

(10) k=n, j=n

e Case (6) k = n and j < n—2. Since i < j < n — 2, it follows from
relation (A1 x Al) that n® commutes with every generator which occurs in the
expression for b; ;; hence
nb;; = n%(j—1)...322'3...(i—1)ii(i—1)...32'23(j — 1)j
= b;n®
a

n
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as desired.

e Case (T) k=nand j=n—1.

If i <n—2, then
n“b,_1,
n“(n—1)(n—2)...322'3...(i—1)ii(i—1)...32'23...(n - 2)(n - 1)
= n(n—1)n 'nn-2)...322'3...(i—1)ii(i—1)...32'23... (n — 2)(n — 1)
N

~ (m—1)n(n-2)...322'3...(i—1)ii(i—1)...32'23...(n - 2)(n — 1)
= (n-1)*n-2)...3223...(i—1)ii(i—1)...32'23...(n - 2)n(n - 1)

~ (mn-—1)"nn-1)

a
~

as desired.
The case k = n,i = j = n—1, is considerably more complicated. We first prove
some preliminary lemmas.

LEMMA 3.3.3.
n“(n—1)(n—2)...322" ~232’4...(n—2)(n—1)n

Proof.
n‘n—1)(n-2)...322" = n%mn-1)n"'n(n-2)...322
~ (n—1)"n(n-2)...322
= (n-1)%n-2)...322'n
~ 3%22'4...(n—2)(n—1)n
= 3°237!32'4...(n—2)(n—1)n
~ 2°32'4... (n—2)(n—1)n
0
LEMMA 3.3.4.

32'4354...(n - 3)(n—1)(n—2)nn=345...(n— 1)nn2'34... (n — 2)
Proof.
32/4354...(n—3)(n—1)(n — 2)nn
= 32'4354...(n—3)(n— 1)nn(n — 2)
32'4354...(n — 1)nn(n — 3)(n — 2)

= 345...(n—1)nn2'34...(n — 2)
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We now complete the case k =n,i =j5=n—1.

nabn—l,n—l
= n“(n-1)(n-2)...322'3...(n - 2)(n - 1)(n—1)(n—2)...
...3223...(n—-2)(n-1)
~ 2°324..(n—-2)n—-1)n3...(n—-2)(n—-1)(n—-1)(n—2)...
...32'23...(n—2)(n—1) (by Lemma 3.3.3)
= 2°32'4..n-2)n-1)3..n—2)n(n—1)n 'nn-1)(n-2)...
N’

...32'23...(n—2)(n—1)
= 2°32'4..n-2)(n-1)3...(n—2)(n—1)"'n(n—1)n(n—1)(n—2)...
———

...32'23. .. (n—2)(n—-1)
= 2°324..n-2)3..n-1)n—-2)(n—1)"'nn—1)nn—-1)(n—2)...

...32'23...(n—2)(n—1)
= 2°32'4..(n-2)3...n-2)"'(n-1)(n—-2)n(n—1)n(n—1)(n—2)...

...32'23. .. (n—-2)(n—-1)

= 2°32'4347'54...

...32'23.. . (n—-2)(n—-1)
= 2%3237'4354...(n—1)(n— 2 -1 —1)(n—2
n—1)(n—2)n(n-1)nn-1)(n-2)

...32'23...(n—2)(n—1)

~ 2°32'4354...(n—1)(n—2n(n—)n(n—-1)(n—2)...

...32'23. .. (n—2)(n—-1)

= 2°32/4354...n—1)(n—2)nn(n—1)n(n—2)...

...32'23...(n—-2)(n—1)
= 2°345...(n—1)nn2'34...(n — 2)(n — )n(n—2) ...
...32'23...(n—2)(n—1) (by Lemma 3.3.4)

We now manipulate part of this expression so that we can apply induction.

2%345...(n — 1)nn2’
= 2°345..(n—1)nn(n—1)...5433'47'5 ' ... (n—1)""2

~ 2°87'47'57 . (n—1)""2
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(by the case of A,—1 = {a2,a3,...,a,}). Hence
n’b,_1,n_1

= 2374757 ... (n-1)""'2'34..n—-2)(n—1)n(n - 2)(n—3)...
...32'23...(n—-2)(n—-1)

= 2374757 ... (n-1)""'2'34.. n—-2)(n—1)(n—2)n(n—3)...
...32'23. .. (n—2)(n—1)

= 2374757 ... (n-1)"'2'34.. (n—-1)(n—2)(n—1)n(n—3)...
...32'23. . . (n—2)(n—-1)

= 2374757 .. . (n—-2)'2'34... (n—2)(n—1)n(n—3)...
...32'23...(n—2)(n—1)

= 2°37'2'34.. (n-2)(n—1)n2'23...(n - 2)(n — 1)
= 2°37'2'32'4...(n - 2)(n—1)n23...(n — 2)(n— 1)
= 2°37'32'34..(n—2)(n—1)n23...(n — 2)(n — 1)
= 2°2'34.. (n—-2)(n—1)n23...(n—2)(n—1)

~ 2°84..(n—2)(n—-1)n23...(n—2)(n—1)

= 2°324..(n—-2)(n—1)n3...(n—2)(n—1)

~ 34..n-2)(n—1)n3...(n—2)(n-1)

~ (m—1)"n(n-1)

a

~ n
as desired. g
e Case (8) k<n—2and j=n.

k®by,,;
= k°n(n-1)...322'3...(i—1)ii(i—-1)...32'23...(n - 1)n
~ k%k+1)...322'3...(i—1)ii(i—1)...32'23...(k+1)(k+2)...(n—1)n

~ k%k+2)...n (by induction)

~ k%
as desired.
o Case (9) k=n—1and j =n.

(Il — 1)abn7i
=(m-1)n(n—-1)...322'3...(i—1)ii(i—1)...32'23...(n — 1)n
=(m-1)n(n—-1)...322'3...(i—1)ii(i—1)...32' 223...(n— 1)n

—_——————
(1) ~n%n-2)...322'3...(i—-1)ii(i—1)...32'23...(n— 1)n
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Suppose first that i <n — 2. Then
(f) = n%(n-2)...322'3...(i—1)iii—-1)...32'23...(n — 1)n
= (n—2)...322'3...(i—-1)ii(i—1)...32'23...(n — 2)n°(n — 1)n

~ nn-1)n

~ (mn-1)*
as desired.
Ifi=n-1
(1) = nn-2)...322'3..n-2)(n—1)(n—1)(n—-2)...

...32'23 ... (n—1)n
~ nn-1)(n-1)(n—-2)...32'23...(n— 1)n
D ——

~ n%n-2)...32'23...(n—1)n (by the case A2 = {a@n_1,an})
~ n%mn-1)n (by relation (Al x Al))

~ (n-1)°
as desired.
Ifi=n
(f) = n°n-2)...322'3...(n—1)nn(n-1)...32'23...(n— 1)n
~ n’(n—-1)nn(n—-1)(n—2)...32'23...(n—1)n
~ (mn—1)n(n-1)(n—2)...32'23...(n— 1)n
~ n’(n-2)...32'23...(n—1)n
~ n“n-1)n
~ (@m-1)"
as desired.
o Case (10) k=n and j =n.
n“b, ;

=nn(n—1)(n—-2)...322'3...(i—1)ii(i—1)...3223...(n— 1)n
(1) ~m—1)"m—-1)n '(n—2)...322'3...(i—1)ii(i—1)...32'23...(n— 1)n

If i <n—2, then

(t)

=m-1)*n-1)(n-2)...322'3...(i—1)ii(i—1)...32'23...n '(n— 1)n
—_———

=m-1)"n—1)(n—2)...322'3...(i—1)ii(i—1)...32'23...(n—1)n(n—1)""

~(n-1)*n(n—-1)"" (by induction)

a
~ 1
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as desired.

If i =n—1, then

()

mh-1)"n-1)(n-2)...
...322'3.. . n—2)n '(n—1)(n—1)(n—2)...32'23...(n—1)n

3“322’4‘135‘14 .

=)' -2n""n-1)(n-1)(n—-2)...32'23...(n— 1)n

3%322'47'357'4..n-1) "'m-2)n 'n—1)nn '(n—-1)(n—-2)...
N———

...32'23. .. (n—1)n
3°322/47'357'4. ..
.m=1)"'"m-2)(n-1)nn-1)""n"'n-1)(n—-2)...

...32'23...(n—1)n
3°322'47'357'4. ..
.m=3)n-2)(n—-1)(n—-2)"'nnn-1)"'n"'n-2)...

...32'23. .. (n—1)n
3°322/47'357'4...
.m=3)(n-2)n—1)nnn—-2)""n-1)""n" ' (n-2)...
...32'23...(n—1)n

3°322'47'34...(n—2)(n— 1)nn4"'57" ...

...mn=1)"'n""(n-2)...32'23...(n— 1)n
2°237'2'3437'5...(n—1)nn4 '5"' ... (n—1)"'n '(n—-2)...
——

...32'23. .. (n—1)n

2922’32 '4.. . n—1)nn3 '47'57 .. . (n—1)"'n '(n-2)...
...32'23...(n—1)n

2°22'34...(n—1)nn2 " '37'47'57 .. . n-1)"'"n"'(n-2)...
...32'23...(n—1)n

2°234..(n—-1)nn2 7 '37'47'57 .. (n-1)"'n'(n-2)...
...32'23. .. (n—1)n

2°234. ..

...m—1)nn(n—-1)...43227'37 47" (n—1)"'27'37 a5 .

.n=1)""'n"'(n-2)...
...3223...(n—1)n
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~ 2%27'37'47"
m=1)7'27"'37'47'57 . . (n-1)"'"n"'(n—-2)...32'23 ... (n — 1)n
(by the case of An—1 = {a2,as,...,an})

~ 2%27'37'47"
(m—1)"'27'3 s
.m=3)"m-2)""mn-1)""m-2)n"'(n—-3)...

...32'23...(n—1)n
= 227'37"47' (mn-1)"'27'37'¢7 57 .. . (n—3)7!
m-—1)n-2""n-1)""'n""'n-3)...

...32'23. .. (n—1)n

= 2°27'37 a7 .
oon=1)""(n-1)2""'37 4757 .
.n=3)"m-2)""n-1)""n"(n-3)...
...32'23...(n—1)n

= 2273747 . (n-2)27'37 a5 L.
o.m=3)"m-2)""n-1)""n"'(n-3)...
...32'23. .. (n—1)n

= 2°27'37'27'37'47' _ n'223...(n—1)n
= 2°27'37'27'37'2’47' . . n"'23...(n—1)n
——

= 2°27'37'327'37'47"...n7'23...(n—1)n
~ 2'27'37'47' ..n7'23...(n—1)n

= 2°27'37'247' .n'3...(n—1)n

————
= 2°327'37'47' . .n'3...(n—1)n
——

~ 3"87'47'...n'3...(n—1)n (by (4g))

~ m-1)'n-1)"n'(n—1)n (by (4g))
|

= (n—l)a(n—l)fl(n—l)n(n—l)f1
= (n—-1)nn-1)"

a

as desired.
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If i = n, then

(t)

m—1)*n—1)n" '(n—2)...322'3...(n— 1)nn(n—1)...
...32'23...(n—1)n

m—1)*mn-1)(n—-2)...322'3...n '(n—1)nn(n—1)...
~——

...32'23. .. (n—1)n
m-1)n—1)(n—-2)...322'3...(n—2)(n—1)n(n—1)"'n(n-1)...

...32'23...(n—1)n

mn—1)*mn-1)(n-2)...322'3...(n—2)(n— )nn(n—1)n "(n—2)...

...32'23. .. (n—1)n
(n—1)%mn-1)(n—-2)...322'3...(n—2)(n— )nn(n —1)(n - 2)...
...3223..n"'(n—1)n
(n—1)%mn-1)(n—-2)...322'3...(n—2)(n— )nn(n —1)(n - 2)...
...3223...(n—1)nn-1)"

m—2)m—-2)n-1)""'n-3)...
...322'3...(n—2)(n - )nn(n —1)(n - 2)...
...32'23...(n—1)n(n—-1)"" (by (4g))

n-2)n—2)(n-23)...
...322'3..n-1)"'n-2)(n—1)nn(n—-1)(n—-2)...
...3223...(n—1)nn-1)"

mn-—2)"n—2)(n-3)...

...322'3..n—2)(n—1)(n—2) 'nn(n—1)(n—2)...
...3223...(n—1)nn-1)"

n—2)"(n—2)(n—3)...
...322'3..n—2)(n—1)nn(n—-2)"'(n-1)(n—2)...
...3223...(n—1)n(n-1)"

n—2)"(n—2)(n—38)...
...322'3..mn—2)n—1)nn(n—1)(n—2)(n—1)"" ...
...3223...(n—1)nn-1)"
(n—2)"(n—2)(n—3)...322'3...(n—2)(n— )nn(n —1)(n - 2)...
...3223..n—-3)n—1)"'n—2)(n—1)nn-1)"
(n—2)"(n—-2)(n—3)...322'3...(n—2)(n— )nn(n —1)(n —2)...
...3223..n-3)(n—2)n—-1)(n—2)""'n(n-1)""
(n-2)"(n—2)(n—-3)...322'3...(n - 2)(n — )nn(n — 1)(n — 2).. ..
...3223..n-3)(n—2)n—1)nn-2)"'(n-1)"
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~ 2°22'3...(n—1)nn(n—1)...
...32'23..mn—1)n27'37".. . (n—1)"" (by (4g))
~ 2°23..(n—1)nn(n—-1)...322'3...(n—1)n27'37" ... (n—1)""

~ 2°2'3...(n—-1)n27'37'. .. (n—-1)""
(by the case of Ap_1 = {a2,03,...,an})

~ 2. (m—1)m27'37 ... (n-1)""

= 2327' .. n-1)n3"'...(n—-1)""

= 34.. (n—1)n3'.. . (n-1)"

= (mn-1)nn-1)"

a
= n

as desired. O
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