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Abstract. The HVZ theorem is proven for the pseudorelativistic N -
electron Jansen-Hess operator (2 ≤ N ≤ Z) which acts on the spinor
Hilbert space A(H1(R

3)⊗C4)N where A denotes antisymmetrization
with respect to particle exchange. This ’no pair’ operator results from
the decoupling of the electron and positron degrees of freedom up to
second order in the central potential strength γ = Ze2.

2000 Mathematics Subject Classification: 81Q10, 81V45

Introduction

We consider N interacting electrons in a central Coulomb field generated by
a point nucleus of charge number Z which is infinitely heavy and located at
the origin. For stationary electrons where the radiation field and pair creation
can be neglected, the N +1 particle system is described by the Coulomb-Dirac
operator, introduced by Sucher [23]. The Jansen-Hess operator used in the
present work, which acts on the positive spectral subspace of N free electrons,
is derived from the Coulomb-Dirac operator by applying a unitary transforma-
tion scheme [12, 13] which is equivalent to the Douglas-Kroll transformation
scheme [6]. The transformed operator is represented as an infinite series of
operators which do not couple the electron and positron degrees of freedom.
For N = 1, each successive term in this series is of increasing order in the
strength γ of the central field. The series has been shown to be convergent
for subcritical potential strength (γ < γc = 0.3775, corresponding to Z < 52
[21]). For N > 1 the expansion parameter is e2, which comprises the central
field strength Ze2 and the strength e2 of the electron-electron interaction. A
numerical investigation of the cases N = 1, Z − 1 and Z across the periodic
table has revealed [27] that the ground-state energy of an N -electron system is
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418 D. H. Jakubassa-Amundsen

already quite well represented if the series is truncated after the second-order
term. This approximation defines the Jansen-Hess operator (see (3.1) below).
In the present work we provide the localization of the essential spectrum of this
operator. Recently [14] we have proven the HVZ theorem (which dates back
to Hunziker [10], van Winter [26] and Zhislin [28] for the Schrödinger opera-
tor and to Lewis, Siedentop and Vugalter [16] for the scalar pseudorelativistic
Hamiltonian) for the two-particle Brown-Ravenhall operator [2] which is the
first-order term in the above mentioned series of operators. Now we extend
this proof successively to the multiparticle Brown-Ravenhall operator (section
1), to the two-electron Jansen-Hess operator (section 2) and finally to the N -
electron Jansen-Hess operator. We closely follow the earlier work [14] where
the details can be found. A quite different proof of the HVZ theorem for the
multiparticle Brown-Ravenhall operator is presently under investigation [18].

1 Multiparticle Brown-Ravenhall case

For N electrons of mass m in a central field, generated by a point nucleus
which is infinitely heavy and fixed at the origin, the Brown-Ravenhall operator
is given by (in relativistic units, ~ = c = 1)

HBR = Λ+,N (
N

∑

k=1

(D
(k)
0 + V (k)) +

N
∑

k>l=1

V (kl)) Λ+,N (1.1)

where D
(k)
0 = α(k)

pk + β(k)m is the free Dirac operator of electron k, V (k) =
−γ/xk is the central potential with strength γ = Ze2, and V (kl) = e2/|xk −xl|
is the electron-electron interaction, e2 ≈ 1/137.04 being the fine structure
constant and xk = |xk| the distance of electron k from the origin. Further,

Λ+,N = Λ
(1)
+ · · ·ΛN

+ (as shorthand for
N
⊗

k=1

Λ
(k)
+ ) is the (tensor) product of the

single-particle projectors Λ
(k)
+ = 1

2 (1 + D
(k)
0 /Epk

) onto the positive spectral

subspace of D
(k)
0 . HBR acts in the Hilbert space A(L2(R

3) ⊗ C4)N , and is
well-defined in the form sense and positive on A(H1/2(R

3) ⊗ C4)N for γ <

γBR = 2
π/2+2/π ≈ 0.906 (see (1.10) below). For the multi-nucleus case the

Brown-Ravenhall operator was shown to be positive if γ < 0.65 [9].
An equivalent operator, which is defined in a reduced spinor space by means
of (ψ+,HBR ψ+) = (ϕ, hBR ϕ) with ψ+ ∈ Λ+,N (A(H1/2(R

3) ⊗ C4)N ) and
ϕ ∈ A(H1/2(R

3) ⊗ C2)N , is [7]

hBR =
N

∑

k=1

(T (k) + b
(k)
1m) +

N
∑

k>l=1

v(kl). (1.2)

Explicitly, with Ak := A(pk) =
(

Epk
+m

2Epk

)1/2

and Gk := σ(k)
pkg(pk),

Documenta Mathematica 10 (2005) 417–445



N-Electron HVZ Theorem 419

g(pk) = (2Epk
(Epk

+ m))−1/2, one has [14]

T (k) := Epk
=

√

p2
k + m2, b

(k)
1m = −γ (Ak

1

xk
Ak + Gk

1

xk
Gk)

v(kl) = AkAl
e2

|xk − xl|
AkAl + AkGl

e2

|xk − xl|
AkGl (1.3)

+ GkAl
e2

|xk − xl|
GkAl + GkGl

e2

|xk − xl|
GkGl.

Let us consider the two-cluster decompositions {C1j , C2j} of the N -electron
atom, obtained by moving electron j far away from the atom or by separating
the nucleus from all electrons. Denote by C1j the cluster located near the origin
(containing the nucleus), while C2j contains either one electron (j = 1, ..., N)
or all electrons (j = 0). Correspondingly, hBR is split into

hBR = T + aj + rj , j = 0, 1, ..., N, (1.4)

with T :=
N
∑

k=1

T (k), while aj denotes the interaction of the particles located all

in cluster C1j or all in C2j . The remainder rj collects the interactions between
particles sitting in different clusters and is supposed to vanish when C2j is
moved to infinity.
Define for j ∈ {0, 1, ..., N}

Σ0 := min
j

inf σ(T + aj). (1.5)

Then we have

Theorem 1 (HVZ theorem for the multiparticle Brown-Ravenhall
operator).
Let hBR be the Brown-Ravenhall operator for N > 2 electrons in a central field
of strength γ < γBR = 2

π/2+2/π , and let (1.4) be its two-cluster decompositions.

Then the essential spectrum of hBR is given by

σess(h
BR) = [Σ0,∞). (1.6)

In fact, the assertion (1.6) holds even in a more general case. For K ≥ 2
introduce K-cluster decompositions d := {C1, ..., CK} of the N + 1 particles,
and split hBR = T + ad + rd accordingly (where T + ad describes the infinitely
separated clusters while rd comprises all interactions between particles sitting
in two different clusters). Let

Σ1 := min
#d≥2

inf σ(T + ad). (1.7)

Then σess(h
BR) = [Σ1,∞) with Σ1 = Σ0. This result, known from the

Schrödinger case [20, p.122], relies on the fact that the electron-electron inter-
action is repulsive (V (kl) ≥ 0 respective v(kl) ≥ 0) and can be proved as follows.
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First consider K-cluster decompositions of the form #C1 = N + 1 − (K − 1)
and #Ci = 1, i = 2, ...,K (i.e. one ion and K − 1 separated electrons).
For any j ∈ {1, ..., N} we use for the two-cluster decompositions the notation
T + aj = hBR

N−1 + T (j), where the subscript on hBR denotes the number of
electrons in the central field, and assume (1.6) to hold. Then

inf σ(hBR
N ) ≤ inf σess(h

BR
N ) ≤ inf σ(hBR

N−1 + T (j))

= inf σ(hBR
N−1) + m. (1.8)

By induction (corresponding to successive removal of an electron) we get

inf σ(hBR
N−1) ≤ inf σ(hBR

N−1−N ′) + N ′m, 0 ≤ N ′ < N − 1. (1.9)

Since for a K-cluster decomposition of this specific form one has T + ad =
hBR

N−(K−1)+T (1)+...+T (K−1), it follows that inf σ(T+ad) = inf σ(hBR
N−(K−1)) +

(K − 1)m ≥ inf σ(hBR
N−1) + m ≥ Σ0.

Assume now cluster decompositions d with #C1 = N + 1 − (K − 1) fixed
(K ∈ {3, ..., N}) but where #Ci > 1 for at least one i > 1. Then T + ad is in-
creased by (nonnegative) electron-electron interaction terms v(kl) as compared
to the K-cluster decompositions considered above, such that inf σ(T + ad) is
higher (or equal) than for the case #Ci = 1, i = 2, ...,K. Therefore, cluster
decompositions with #Ci > 1 (for some i > 1) do not contribute to Σ1, such
that, together with (1.9), Σ1 = Σ0 is proven.

Let us embark on the proof of Theorem 1. The required lemmata will bear the
same numbers as in [14].
We say that an operator O is 1

R -bounded if O is bounded by c
R with some

constant c > 0.

(a) In order to prove the ’hard part’ of the HVZ theorem, σess(h
BR) ⊂

[Σ0,∞), we start by noting that the potential of hBR is T -form bounded with
form bound c < 1 if γ < γBR. With ψ+ ∈ Λ+,NA(H1/2(R

3)⊗C4)N , this follows

from the estimates [4, 25, 13] (using that V (k) ≤ 0 and V (kl) ≥ 0),

(ψ+,

(

N
∑

k=1

V (k) +

N
∑

k>l=1

V (kl)

)

ψ+) ≤
N

∑

k>l=1

e2

γBR
(ψ+, Ep1

ψ+)

=
N − 1

2

e2

γBR
(ψ+, T ψ+)

(ψ+,

(

N
∑

k=1

V (k) +
N

∑

k>l=1

V (kl)

)

ψ+) ≥ − γ

γBR

N
∑

k=1

(ψ+, Ep1
ψ+) (1.10)

= − γ

γBR
(ψ+, T ψ+)
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such that c := max{ γ
γBR

, N−1
2

e2

γBR
}. c < 1 requires γ < γBR for all physical

values of N (N < 250). From (1.10), hBR ≥ 0 for γ ≤ γBR.
In order to establish Persson’s theorem (proven in [5] for Schrödinger operators
and termed Lemma 2 in [14]),

inf σess(h
BR) = lim

R→∞
inf

‖ϕ‖=1
(ϕ, hBR ϕ) (1.11)

if ϕ ∈ A(C∞
0 (R3N\BR(0)) ⊗ C2N ) where BR(0) ⊂ R3N is a ball of radius R

centered at the origin, we need the fact that the Weyl sequence ϕn for a λ in
the essential spectrum of hBR can be chosen such that it is supported outside
a ball Bn(0):

Lemma 1. Let hBR = T + V, let V be relatively form bounded with respect to
T . Then λ ∈ σess(h

BR) iff there exists a sequence of functions
ϕn ∈ A(C∞

0 (R3N\Bn(0)) ⊗ C2N ) with ‖ϕn‖ = 1 such that

‖(hBR − λ) ϕn‖ −→ 0 as n → ∞. (1.12)

If such ϕn exist they form a Weyl sequence because ϕn converge weakly to zero
[14]. For the proof of the converse direction, let λ ∈ σess(h

BR) be characterized

by a Weyl sequence ψn ∈ A(C∞
0 (R3) ⊗ C2)N , ‖ψn‖ = 1, with ψn

w
⇀ 0 and

‖(hBR −λ)ψn‖ → 0 as n → ∞. Let x = (x1, ...,xN ) ∈ R3N be the coordinates
of the N electrons and define a smooth symmetric auxiliary function χ0 ∈
C∞

0 (R3N ) mapping to [0, 1] by means of

χ0(
x

n
) =

{

1, x ≤ n
0, x > 2n

(1.13)

where x = |x| =
√

x2
1 + ... + x2

N . Then we set χn(x) := 1−χ0(x/n) and claim
that a subsequence of the sequence ϕn := ψnχn ∈ A(C∞

0 (R3N\Bn(0)) ⊗ C2N )
satisfies the requirements of Lemma 1.
In order to show that ‖(hBR − λ)ϕn‖ = ‖χn(hBR − λ)ψn + [hBR, χ0]ψn‖ → 0
for n → ∞, we have to estimate the single-particle contributions ‖[T (k), χ0]ψn‖
and ‖[b(k)

1m, χ0]ψn‖. With b
(k)
1m of the form Bk

1
xk

Bk where Bk ∈ {Ak, Gk} is
a bounded multiplication operator in momentum space, we have to consider
commutators of the type pk[Bk, χ0] which are multiplied by bounded operators.
These commutators are shown to be 1

n -bounded in the same way as for N =
2 [14], by working in momentum space and introducing the N -dimensional
Fourier transform (marked by a hat) of the Schwartz function χ0,

(

̂
χ0(

·
n

)

)

(p) =
1

(2π)3N/2

∫

R3N

dx e−ipx χ0(
x

n
) = n3N χ̂0(p1n, ...,pNn),

(1.14)
where p = (p1, ...,pN ), and by using the mean value theorem to estimate
the difference |Bk(pk) − Bk(pk′)| respective |T (k)(pk) − T (k)(pk′)|. The two-
particle contributions ‖[v(kl), χ0]ψn‖ can, according to the representation (1.3)
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of v(kl), also be split into single-particle commutators pk[Bk, χ0] multiplied by
bounded operators. Their estimate as well as the remaining parts of the proof
of Lemma 1 for N > 2 (in particular the normalizability of ϕn for sufficiently
large n which relies on the relative form boundedness of the total potential)
can be mimicked from the case of N = 2.
Our aim is a generalization of the localization formula of Lewis et al [16] to
the operator hBR. We introduce the Ruelle-Simon [22] partition of unity
(φj)j=0,...,N ∈ C∞(R3N ) which is subordinate to the two-cluster decomposi-
tions (1.4). It is defined on the unit sphere in R3N and has the following
properties (see e.g. [5, p.33], [24])

N
∑

j=0

φ2
j = 1, φj(λx) = φj(x) for x = 1 and λ ≥ 1,

suppφj ∩ R3N\B1(0) ⊆ {x ∈ R3N\B1(0) : |xk − xl| ≥ Cx for all k ∈ C1j

(1.15)
and l ∈ C2j , and xk ≥ Cx for all k ∈ C2j}, j = 0, 1, ..., N

where C is a constant and it is again assumed that the nucleus belongs to
cluster C1j . Then we have

Lemma 3. Let hBR = T + aj + rj , (φj)j=0,...,N be the Ruelle-Simon partition
of unity and ϕ ∈ A(C∞

0 (R3N\BR(0)) ⊗ C2N ) with R > 1. Then, with some
constant c,

|(φjϕ, rj φjϕ)| ≤ c

R
‖ϕ‖2, j = 0, .., N. (1.16)

There are two possibilities. rj may (a) consist of terms b
(k)
1m for some k ∈ C2j ,

or (b) of terms v(kl) with particles k and l in different clusters. For the proof, all
summands of rj are estimated separately. For each summand of rj (to a given
cluster decomposition j), a specific smooth auxiliary function χ mapping to
[0, 1] is introduced which is unity on the support of φjϕ, such that φjϕχ = φjϕ.
In case (a) we have suppφjϕ ⊂ R3N\BR(0) ∩ {xk ≥ Cx}, i.e. xk ≥ CR.
Therefore we define the (single-particle) function

χk(
xk

R
) :=

{

0, xk < CR/2
1, xk ≥ CR

. (1.17)

With b
(k)
1m of the form Bk

1
xk

Bk we have to consider

(φjϕ,Bk
1

xk
Bk χkφjϕ) = (φjϕ,Bk

1
xk

χkBk φjϕ) +(φjϕ,Bk
1

xk
[Bk, 1−χk]φjϕ).

The first term is uniformly 2/R-bounded by the choice (1.17) of χk, whereas
the second term can be estimated in momentum space as in the two-electron
case (respective in the proof of Lemma 1).
In case (b) we have suppφjϕ ⊂ R3N\BR(0) ∩ {|xk−xl| ≥ Cx}, i.e. |xk−xl| ≥
CR. Accordingly, we take

χkl(
xk − xl

R
) :=

{

0, |xk − xl| < CR/2
1, |xk − xl| ≥ CR

. (1.18)
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N-Electron HVZ Theorem 423

With the representation (1.3) of v(kl), we have to estimate commutators of the
type pk[Bk Bl, 1 − χkl]. The proof of their uniform 1/R-boundedness can be
copied from the two-electron case.
The second ingredient of the localization formula is an estimate for the com-
mutator of φj with hBR:

Lemma 4. Let hBR from (1.2) and (φj)j=0,...,N be the Ruelle-Simon partition
of unity. Then for ϕ ∈ A(C∞

0 (R3N\BR(0)) ⊗ C2N ) and R > 2 one has

(a) |
N
∑

j=0

(φjϕ, [T, φj ]ϕ)| ≤ c

R2
‖ϕ‖2

(b) |(φjϕ, [b
(k)
1m, φj ]ϕ)| ≤ c

R
‖ϕ‖2 (1.19)

(c) |(φjϕ, [v(kl), φj ]ϕ)| ≤ c

R
‖ϕ‖2

where c is a generic constant.

Item (a) is proven in [16]. For items (b) and (c) we define the smooth auxiliary
N -particle function χ mapping to [0, 1],

χ(
x

R
) :=

{

0, x < R/2
1, x ≥ R

. (1.20)

Then φjϕ = φjϕχ on suppϕ, and therefore (φjϕ, [b
(k)
1m, φj ]ϕ) =

(φjϕ, [b
(k)
1m, φjχ]ϕ). The 1

R -estimate, claimed in (1.19), relies on the scal-
ing property φj(x)χ( x

R ) = φj(
x

R/2 )χ( x

R ) which holds for R > 2 since suppχ

(and hence suppφjχ) is outside BR/2(0). Thus, working in coordinate space
and using the mean value theorem, we get the estimate

|(φjχ)(x1, ...,xk, ...,xN ) − (φjχ)(x1, ...,x
′
k, ...,xN )| ≤ |xk − x

′
k|

c0

R
(1.21)

(only the k-th coordinate in the second entry of the l.h.s. is primed). Since
(1.21) holds for arbitrary k ∈ {1, ..., N}, the proof of (b) and (c) can be carried
out in the same way as done in the two-electron case, by estimating the kernel
of Bk ∈ {Ak, Gk} in coordinate space by c/|xk −x

′
k|3 (using asymptotic analy-

sis [19]) and subsequently proving the uniform 1
R -boundedness of [Bk, φjχ] 1

xk

respective [Bk, φjχ] 1
|xk−xl| .

With Lemmata 3 and 4 we obtain the desired localization formula for hBR,

(ϕ, hBRϕ) =

N
∑

j=0

(φjϕ, (T + aj) φjϕ)

+

N
∑

j=0

(φjϕ, rj φjϕ) −
N

∑

j=0

(φjϕ, [hBR, φj ] ϕ) (1.22)
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=
N

∑

j=0

(φjϕ, (T + aj)φjϕ) + O(
1

R
) ‖ϕ‖2

for R > 2. From Persson’s theorem (1.11) and the definition (1.5) of Σ0 we
therefore get

inf σess(h
BR) = lim

R→∞
inf

‖ϕ‖=1

N
∑

j=0

(φjϕ, (T + aj)φjϕ)

≥ Σ0

N
∑

j=0

(φjϕ, φjϕ) = Σ0 (1.23)

which proves the inclusion σess(h
BR) ⊂ [Σ0,∞).

(b) We now turn to the ’easy part’ of the proof where we have to verify
[Σ0,∞) ⊂ σess(h

BR).
We start by showing that for every j ∈ {0, 1, ..., N}, σ(T + aj) is continuous,
i.e. for any λ ∈ [inf σ(T + aj),∞) one has λ ∈ σ(T + aj). If the cluster C2j

consists of a single electron j, then T + aj = T (j) + hBR
N−1 where hBR

N−1 does

not contain any interaction with electron j. The continuity of σ(T (j) + hBR
N−1)

then follows from the continuity of σ(T (j)) in the same way as for N = 2.
In the case j = 0 where C2j contains N electrons, the total momentum p0 of

C2j is well-defined and commutes with its Hamiltonian h0 := T +
N
∑

k>l=1

v(kl) =

T + a0. This follows from the absence of any central potential in h0 and from
the symmetry of v(kl),

[(−i∇xk
−i∇xl

),
1

|xk−xl|
]ψ(x) = (−i∇xk

−i∇xl
)(

1

|xk−xl|
) ψ(x) = 0·ψ(x) = 0.

(1.24)
Thus the eigenfunctions to h0 can be chosen as eigenfunctions of p0. For p0 ≥ 0
the associated center of mass energy of C2j is continuous. Therefore, inf σ(h0)
is attained for p0 = 0 and σ(h0) is continuous.
Let λ ∈ [Σ0,∞). We have Σ0 = inf σ(T +aj) for a specific j ∈ {0, ..., N}. Then
λ ∈ σ(T + aj), i.e. there exists a defining sequence ϕn(x) ∈ C∞

0 (R3N ) ⊗ C2N

with ‖ϕn‖ = 1 and ‖(T + aj − λ) ϕn‖ → 0 for n → ∞.
Assume that l electrons belong to cluster C2j which we will enumerate by
N − l + 1, ..., N, and follow [10] to define the unitary translation operator Ta

by means of

Ta ψ(x1, ...,xN ) = ψ(x1, ...,xN−l,xN−l+1 − a, ...,xN − a) (1.25)

with |a| = a and let al := (a, ...,a) ∈ R3l. Hence cluster C2j moves to infinity
as a → ∞.
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N-Electron HVZ Theorem 425

Let ψ
(a)
n := Taϕn and Aψ

(a)
n be the antisymmetric function constructed from

ψ
(a)
n . We claim that Aψ

(a)
n is a defining sequence for λ ∈ σ(hBR). It is

sufficient (as shown below) to prove that ψ
(a)
n has this property. We have

trivially ‖ψ(a)
n ‖ = ‖ϕn‖ and we have to show that ‖(hBR − λ)ψ

(a)
n ‖ → 0 for

n → ∞ and a suitably large a. We have

‖(hBR − λ) ψ(a)
n ‖ ≤ ‖(T + aj − λ) ψ(a)

n ‖ + ‖rj ψ(a)
n ‖. (1.26)

T commutes with Ta because T is a multiplication operator in momentum
space. Since the central potentials contained in aj are not affected by Ta

(because Ta does not act on the particle coordinates of cluster C1j), we also
have [Ta, aj ] = 0. In fact, assuming e.g. that electrons k and l are in cluster
C2j and using the representation (1.3) for v(kl) we have with T ∗

a
Ta = 1 and

Bk, B̃k ∈ {Ak, Gk},

T ∗
a
BkB̃l

1

|xk − xl|
BkB̃l Ta = BkB̃lT

∗
a

1

|xk − xl|
Ta BkB̃l

= BkB̃l
1

|xk + a − (xl + a)| BkB̃l = BkB̃l
1

|xk − xl|
BkB̃l (1.27)

such that [Ta, v
(kl)] = 0. Then, given some ǫ > 0, the first term of (1.26) reduces

to

‖(T +aj −λ) Taϕn‖ = ‖Ta (T +aj −λ) ϕn‖ ≤ ‖Ta‖ ‖(T +aj −λ) ϕn‖ < ǫ/2
(1.28)

if n > N0 for N0 sufficiently large.

For the second term in (1.26) we note that rj consists of terms b
(k)
1m with k /∈ C1j

and terms v(kk′) with k ∈ Ci, k′ ∈ Ci′ , i 6= i′. Moreover, since aj does not

contain any intercluster interactions, we can choose ϕn = ϕ
(n)
1 ·ϕ(n)

2 as a product

of functions (ϕ
(n)
1 ∈ C∞

0 (R3(N−l) ⊗ C2(N−l)), ϕ
(n)
2 ∈ C∞

0 (R3l ⊗ C2l)) each of

which describing the electrons in cluster C1j respective C2j . Let suppϕ
(n)
i ⊂

BRi
(0) for a suitable Ri.

Consider ‖b(k)
1mψ

(a)
n ‖ with k ∈ C2j . We have suppTaϕ

(n)
2 ⊂ BR2

(al). Let a >

2R2. For all k′ ∈ C2j , on the support of Taϕ
(n)
2 we have R2 > |xk′−a| ≥ a−xk′

and thus xk′ > a−R2. Therefore we can write suppTaϕ
(n)
2 ⊂ R3l\B|al|−R2

(0)∩
{xk′ > a − R2 ∀ k′ ∈ C2j}. Assume we can prove

Lemma 5. Let ϕ ∈ C∞
0 (Ω) ⊗ C2l with Ω := {x = (x1, ...,xl) ∈ R3l : xi >

R ∀ i = 1, ..., l} and R > 1. Then for k ∈ {1, ..., l} and some constant c,

‖b(k)
1m ϕ‖ ≤ c

R
‖ϕ‖. (1.29)

Since b
(k)
1m acts only on Taϕ

(n)
2 we obtain

‖b(k)
1m Taϕn‖ = ‖ϕ(n)

1 ‖ ‖b(k)
1m Taϕ

(n)
2 ‖ ≤ c

a − R2
‖Ta ϕ

(n)
2 ‖ <

2c

a
(1.30)
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because the ϕ
(n)
i are normalized. As a consequence, for any k ∈ C2j , the l.h.s.

of (1.30) can be made smaller than ǫ/4l for sufficiently large a.

For the proof of Lemma 5 or, equivalently, of |(φ, b
(k)
1mϕ)| ≤ c

R ‖ϕ‖ ‖φ‖ for
all φ ∈ (C∞

0 (R3) ⊗ C2)l, we note that the basic difference to the respective
assertion for N = 2 lies in the possible multiparticle nature of φ and ϕ. How-
ever, the property of the domain Ω of ϕ allows for the introduction of the
(single-particle) smooth auxiliary function (mapping to [0, 1]),

χ(
xk

R
) :=

{

0, xk < R/2
1, xk ≥ R

, (1.31)

such that ϕχ = ϕ. Then the proof can be copied from the two-electron case.
For the two-particle interaction contained in rj , one has

Lemma 6. Let ψ
(a)
n = Taϕn = Ta ϕ

(n)
1 ϕ

(n)
2 as defined above. Then for all

ϕ ∈ (C∞
0 (R3) ⊗ C2)N and a > 4R,

|(ϕ, v(kk′)ψ(a)
n )| ≤ c0

a − 2R
‖ϕ‖ ‖ψ(a)

n ‖ (1.32)

with some positive constants c0 and R, provided particles k and k′ belong to
two different clusters.

For the proof of Lemma 6, we need again a suitable auxiliary function χ.

Let k′ ∈ C1j , k ∈ C2j . We have suppϕ
(n)
1 ϕ

(n)
2 ⊂ BR1

(0) × BR2
(0) and

suppTaϕ
(n)
1 ϕ

(n)
2 ⊂ BR1

(0)×BR2
(al). Hence xk′ < R1 and xk > a−R2. So the

inter-electron separation can be estimated by |xk−xk′ | ≥ xk−xk′ > a−R2−R1.
Let R := max{R1, R2} and ã := a − 2R. Define

χkk′(
xk − xk′

ã
) :=

{

0, |xk − xk′ | < ã/2
1, |xk − xk′ | ≥ ã

. (1.33)

Then χkk′ is unity on the support of ψ
(a)
n , such that χkk′ψ

(a)
n = ψ

(a)
n . With

this function, the proof of Lemma 6 is done exactly as in the two-electron case.
Collecting results, we obtain for n > N0 and a > 4R sufficiently large

‖(hBR − λ) ψ(a)
n ‖ ≤ ‖(T + aj − λ) ϕn‖ + l

2c

a

+ Ñ
2c0

a
‖ψ(a)

n ‖ < ǫ (1.34)

where Ñ is the total number of two-electron intercluster interactions. This
proves that λ ∈ σ(hBR). Since λ ∈ [Σ0,∞) was chosen arbitrarily, we there-
fore have [Σ0,∞) ⊂ σ(hBR), indicating that σ(hBR) has to be continuous in
[Σ0,∞). Consequently, [Σ0,∞) ⊂ σess(h

BR) which completes the proof of
Theorem 1.
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We are left to show that the defining sequence for λ can be chosen to

be antisymmetric. We write Aψ
(a)
n = c1

∑

σ∈P
sign(σ)ψ

(a)
n,σ where ψ

(a)
n,σ =

ψ
(a)
n (xσ(1), ...,xσ(N)) with P the permutation group of the numbers 1, ..., N ,

and c1 is a normalization constant. Since hBR is symmetric upon particle
exchange we have

‖(hBR − λ) Aψ(a)
n ‖ ≤ c1

∑

σ∈P
‖(hBR − λ) ψ(a)

n,σ‖ = c1 (#σ) ‖(hBR − λ) ψ(a)
n ‖.

(1.35)
By (1.34) this can be made smaller than ǫ since the number #σ of permutations
is finite.
It remains to prove that Aψ

(a)
n is normalizable. Without restriction we can

assume in the factorization ϕn = ϕ
(1)
n ·ϕ(2)

n that ϕ
(1)
n and ϕ

(2)
n are antisymmetric,

such that σ can be restricted to the permutation of coordinates relating to
different clusters. We claim that scalar products of the form

(ϕ
(n)
1 (x1, ...,xN−l)ϕ

(n)
2 (xN−l+1−a, ...,xN −a), ϕ

(n)
1 (xσ(1), ...,xσ(N−l)) (1.36)

·ϕ(n)
2 (xσ(N−l+1) − a, ...,xσ(N) − a) )

where ∃ k ∈ {1, ..., N − l} and k′ ∈ {N − l + 1, ..., N} such that σ(k) ∈ {N −
l + 1, ..., N} and σ(k′) ∈ {1, ..., N − l}, can be made arbitrarily small for a

suitably large a. In fact, since xσ(k′) < R1 on suppϕ
(n)
1 and |xσ(k′) − a| < R2

on suppϕ
(n)
2 , we have

∫

R3

dxσ(k′)ϕ
(n)
1 (...,xσ(k′), ...) ϕ

(n)
2 (...,xσ(k′) −a, ...) = 0 if

a > R1 + R2. Thus we get

‖Aψ(a)
n ‖2 = c2

1

∑

σ∈P
(ψ(a)

n,σ, ψ(a)
n,σ ) (1.37)

since all cross terms vanish for sufficiently large a. This guarantees the nor-

malizability of Aψ
(a)
n .

2 The two-electron Jansen-Hess operator

The Jansen-Hess operator includes the terms which are quadratic in the fine
structure constant e2. We restrict ourselves in this section to the two-electron
ion and write the Jansen-Hess operator H(2) in the following form [11]

H(2) = HBR
2 + Λ+,2

(

2
∑

k=1

B
(k)
2m + C(12)

)

Λ+,2 (2.1)

B
(k)
2m :=

γ2

8π2

{

1

xk

(

1 − α(k)
pk+β(k)m

Epk

)

V
(k)
10,m + V

(k)
10,m

(

1 − α(k)
pk+β(k)m

Epk

)

1

xk

}
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V
(k)
10,m := 2π2

∫ ∞

0

dt e−tEpk
1

xk
e−tEpk

where HBR
2 is the Brown-Ravenhall operator from (1.1) indexed by 2 (for N =

2), Λ+,2 = Λ
(1)
+ Λ

(2)
+ and V

(k)
10,m is a bounded single-particle integral operator.

The two-particle second-order contribution C(12) is given by

C(12) :=
2

∑

k=1

(V (12) Λ
(k)
− F

(k)
0 + F

(k)
0 Λ

(k)
− V (12)) (2.2)

F
(k)
0 := − 1

2π

∫ ∞

−∞
dη

1

D
(k)
0 + iη

V (k) 1

D
(k)
0 + iη

and Λ
(k)
− = 1 − Λ

(k)
+ . Also F

(k)
0 is a bounded single-particle integral operator.

In the same way as for the Brown-Ravenhall operator, an equivalent operator
h(2) acting on the reduced spinor space A(L2(R

3) ⊗ C2)2, can be defined,

h(2) = hBR
2 +

2
∑

k=1

b
(k)
2m + c(12) (2.3)

with

b
(k)
2m =

γ2

8π2

{

Ak
1

xk
V

(k)
10,mAk − Gk

1

xk

σ(k)
pk

Epk

V
(k)
10,mAk − Ak

1

xk

m

Epk

V
(k)
10,mAk

(2.4)

+ Gk
1

xk
V

(k)
10,mGk − Ak

1

xk

σ(k)
pk

Epk

V
(k)
10,mGk + Gk

1

xk

m

Epk

V
(k)
10,mGk + h.c.

}

where Ak, Gk are defined below (1.2) and h.c. means Hermitean conjugate

(such that b
(k)
2m is a symmetric operator). Note that, due to the presence of the

projector Λ
(k)
+ in (2.1), b

(k)
2m contains only even powers in σ(k). In a similar

way, c(12) is derived from C(12). The particle mass m is assumed to be nonzero
throughout (for m = 0, the spectrum of the single-particle Jansen-Hess opera-
tor is absolutely continuous with infimum zero [11]).
For potential strength γ < 0.89 (slightly smaller than γBR), it was shown
[13] that the total potential of H(2) (and hence also of h(2)) is relatively
form bounded (with form bound smaller than 1) with respect to the kinetic
energy operator. Therefore, h(2) is well-defined in the form sense and is a self-
adjoint operator by means of the Friedrichs extension of the restriction of h(2)

to A(C∞
0 (R3) ⊗ C2)2. The above form boundedness guarantees the existence

of a µ > 0 such that h(2) + µ > 0 for γ < 0.89. If γ < 0.825, one can even
choose µ = 0 [13].
Let us introduce the operator h̃(2) by means of h(2) =: h̃(2) + c(12) and define
in analogy to (1.4) the two-cluster decompositions of h̃(2) for j=0,1,2,

h̃(2) = T + aj + rj (2.5)
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as well as
Σ0 := min

j
inf σ(T + aj). (2.6)

The aim of this section is to prove

Theorem 2 (HVZ theorem for the two-electron Jansen-Hess oper-
ator).

Let h(2) =
2
∑

k=1

(T (k)+b
(k)
1m+b

(k)
2m) +v(12)+c(12) = h̃(2)+c(12) be the two-electron

Jansen-Hess operator with potential strength γ < 0.66 (Z ≤ 90). Let (2.5) be
the two-cluster decompositions of h̃(2) and Σ0 from (2.6). Then the essential
spectrum of h(2) is given by

σess(h
(2)) = [Σ0,∞). (2.7)

We start by noting that the two-particle second-order potential c(12) does not
change the essential spectrum of h(2) :

Proposition 1. Let h(2) = h̃(2)+c(12) be the two-electron Jansen-Hess operator
with potential strength γ < 0.66. Then one has

σess(h
(2)) = σess(h̃

(2)). (2.8)

Proof.
The proof is performed for the equivalent operator H(2) =: H̃(2) +
Λ+,2C

(12)Λ+,2.
The resolvent difference

Rµ := (H(2) + µ)−1 − (H̃(2) + µ)−1 (2.9)

is bounded for µ ≥ 0 since H(2) as well as H̃(2) are positive for γ < 0.825 which
exceeds the critical γ of Proposition 1. We will show that Rµ is compact.
Then, following the argumentation of [7], one can use Lemma 3 of [20, p.111]
together with the strong spectral mapping theorem ([20, p.109]) to prove that
the essential spectra of H(2) and H̃(2) coincide.

Let T0 := Λ+,2

2
∑

k=1

D
(k)
0 Λ+,2 which is a positive operator (for m 6= 0) on

the positive spectral subspace Λ+,2A(H1(R
3) ⊗ C4)2. (The negative spectral

subspace is disregarded throughout because H(2) = 0 on that subspace.) With
the help of the second resolvent identity, one decomposes Rµ into

Rµ = −(H̃(2) + µ)−1 Λ+,2 C(12) Λ+,2 (H(2) + µ)−1 (2.10)

= −
[

(H̃(2) + µ)−1(T0 + µ)
]

·
{

(T0 + µ)−1 Λ+,2 C(12) Λ+,2 (T0 + µ)−1
}

·
[

(T0 + µ)(H(2) + µ)−1
]

.
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One can show (see [11, proof b) of Theorem II.1 with T replaced by T0]) that
for γ < 0.66, the two operators in square brackets are bounded. This relies
on the relative boundedness of the total potential of H(2) (respective H̃(2))
with respect to T0, with (operator) bound less than one for m = 0 ([11];
Appendix B). Due to scaling (for µ = 0), the boundedness of the operators in
square brackets holds for all m. The operator in curly brackets is shown to be
compact. To this aim it is written as

(T0 + µ)−1Λ+,2 C(12)Λ+,2 (T0 + µ)−1 (2.11)

= (T0 + µ)−1(T + µ) Λ+,2W2 Λ+,2 (T + µ)(T0 + µ)−1

with W2 := (T + µ)−1C(12)(T + µ)−1. According to Herbst [8], W2 is de-
composed into W2n + Rn where (W2n)n∈N is a sequence of Hilbert-Schmidt
operators satisfying ‖W2n − W2‖ → 0 for n → ∞. It follows that W2n is com-
pact such that also W2 is compact (see e.g. [15, III.4.2,V.2.4]). W2n is defined
by regularizing the Coulomb potential by means of 1

x e−ǫx and by introducing
convergence generating functions e−ǫp in momentum space, where ǫ := 1

n > 0
is a small quantity. Details of the proof are found in [11]. The adjacent factors
of W2 in (2.11) are easily seen to be bounded for µ = 0. Since Λ+,2 = Λ2

+,2

commutes with T , one has e.g. Λ+,2TT−1
0 = (Λ+,2TΛ+,2)T

−1
0 = T0T

−1
0 = 1.

Therefore, the operator in curly brackets and hence Rµ is proven to be compact
for µ = 0.

Proof of Theorem 2. With Proposition 1 at hand, it remains to prove the
HVZ theorem for the operator h̃(2), which in fact holds for all γ < γBR.

We proceed along the same lines as done in the proof of the HVZ theorem for
the Brown-Ravenhall operator. It is thus only necessary to extend Lemmata
1,3,4 and 5 to the operator h̃(2) which is obtained from hBR by including

the single-particle second-order potentials b
(k)
2m, k = 1, 2. We start with the

lemmata required for the ’hard part’ of the proof.

a) In the formulation of Lemma 1 we simply replace hBR by h̃(2) throughout
(and take N = 2).

In order to prove ‖[h̃(2), χ0]ψn‖ ≤ c
n ‖ψn‖ with ψn ∈ A(C∞

0 (R3) ⊗ C2)2 a

Weyl sequence for λ ∈ σess(h̃
(2)) and χ0 from (1.13) with x := (x1,x2), we

have to show in addition to the Brown-Ravenhall case,

|(φ, [b
(1)
2m, χ0] ψn)| ≤ c

n
‖φ‖ ‖ψn‖ (2.12)

for all φ ∈ C∞
0 (R6) ⊗ C4. Due to the symmetry property of ψn, the same

bound holds also for [b
(2)
2m, χ0]. The operator b

(1)
2m defined in (2.4) is a sum of

terms of the structure B(p1)
1
x1

Bλ(p1)V
(1)
10,mBµ(p1) where B(p1) ∈ {A1, G1}

like for b
(1)
1m whereas Bλ(p1), Bµ(p1) ∈ {1, σ

(1)
p1

Ep1
, m

Ep1
, A1, G1} are all analytic,
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bounded multiplication operators in momentum space. We pick for the sake of
demonstration the second term of (2.4) and decompose

[G1
1

x1

σ(1)
p1

Ep1

V
(1)
10,mA1, χ0] = [G1, χ0] p1 ·

1

p1x1

σ(1)
p1

Ep1

V
(1)
10,mA1

+ G1
1

x1p1
· p1 [

σ(1)
p1

Ep1

, χ0]V
(1)
10,mA1 + G1

1

x1p1

σ(1)
p1

Ep1

· p1 [V
(1)
10,m, χ0]A1

+ G1
1

x1p1

σ(1)
p1

Ep1

· p1 V
(1)
10,m

1

p1
· p1 [A1, χ0]. (2.13)

We will show that the commutators (including the factor p1) are 1
n -bounded and

the adjacent factors bounded. The latter is trivial (since also 1
x1p1

is bounded,

‖ 1
x1p1

‖ = 2, see e.g. [8]) except for the operator p1V
(1)
10,m

1
p1

in the last term.
The boundedness of this operator is readily proved by invoking its kernel in
momentum space. From (2.1) we have

‖ p1 V
(1)
10,m

1

p1
‖ = 2π2 ‖

∫ ∞

0

dt e−tEp1 p1
1

x1p1
e−tEp1 ‖

≤ 2π2 ‖
∫ ∞

0

dt e−tEp1 p1 ‖ · ‖
1

x1p1
‖ · ‖e−tEp1 ‖ ≤ 4π2 (2.14)

where
∞
∫

0

dt e−tEp1 = 1/Ep1
has been used.

The commutators p1 [A1, χ0] and p1 [G1, χ0] have already been dealt with in

the context of the Brown-Ravenhall operator. p1 [σ
(1)

p1

Ep1
, χ0] is of the same

type, because for any Bλ, one has the estimate |Bλ(p1) − Bλ(p′
1)| = |p1 −

p
′
1| |∇p1

Bλ(ξ)| ≤ |p1 − p
′
1| c0

1+p1
from the mean value theorem, where ξ is

some point between p1 and p
′
1. For the commutator with V

(1)
10,m we have

p1 [V
(1)
10,m, χ0] = 2π2

∫ ∞

0

dt p1 [e−tEp1 , χ0]
1

x1
e−tEp1

+ 2π2

∫ ∞

0

dt p1 e−tEp1
1

x1
[e−tEp1 , χ0]. (2.15)

The proof of its 1
n -boundedness proceeds with the help of the Lieb and Yau

formula [17], derived from the Schwarz inequality (see also [14, Lemma 7]), in
momentum space. Explicitly, in the estimate

|(φ̂, Ô ψn)| ≤
(

∫

R6

dp |φ̂(p)|2 I(p)

)
1
2

(
∫

R6

dp′ |ψ̂n(p′)|2 J(p′)

)
1
2

(2.16)

where O := p1[V
(1)
10,m, χ0] and kO its kernel, one has to show that the integrals

I and J obey

I(p) :=

∫

R6

dp′ |kO(p,p′)| f(p)

f(p′)
≤ c

n
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J(p′) :=

∫

R6

dp |kO(p,p′)| f(p′)

f(p)
≤ c

n
(2.17)

with some constant c (independent of p,p′) for a suitably chosen nonnegative
convergence generating function f .
We use the two-dimensional (N = 2) Fourier transform (1.14) of χ0 and the
momentum representation of 1

x1
to write for the first term in (2.15),

(

∫ ∞

0

dt
̂

p1[e
−tEp1 , χ0]

1

x1
e−tEp1 ϕ)(p1,p2) =

∫

R6

dqdp′
2k1(p1,p2,q,p′

2)ϕ̂(q,p′
2)

k1(p1,p2,q,p′
2) :=

1

(2π)3
1

2π2
p1 n6

∫ ∞

0

dt

∫

R3

dp′
1 χ̂0(n(p1−p

′
1), n(p2−p

′
2))

(2.18)

·(e−tEp1 − e
−tEp′

1 )
1

|p′
1 − q|2 e−tEq .

From the mean value theorem we get

|e−tEp1 − e
−tEp′

1 | = |p1 − p
′
1| |te−tEξ

ξ

Eξ
| ≤ |p1 − p

′
1| t e−tEξ (2.19)

with ξ = λp
′
1+(1−λ)p1 for some λ ∈ [0, 1]. We have to show that the integral

over the modulus of the kernel of (2.18), with a suitable convergence generating
function f , is 1

n -bounded. We choose f(p) = p and make the substitution
yi := n(pi − p

′
i) for p

′
i, i = 1, 2. Then

I(p1,p2) :=

∫

R6

dq dp′
2 |k1(p1,p2,q,p′

2)|
f(p1)

f(q)

≤ 1

(2π)4π
p1

∫ ∞

0

dt

∫

R3

dq

∫

R6

dy1 dy2 |χ̂0(y1,y2)| (2.20)

· y1

n
t e−tEξ

1

|q − (p1 − y1/n)|2 e−tEq · p1

q
.

The t-integral can be carried out,
∞
∫

0

dt te−(Eξ+Eq) = (Eξ + Eq)
−2 with ξ =

p1 − λ
ny1. Define q1 := p1 − y1/n and consider

S := p2
1

∫

R3

dq
1

|q − q1|2
1

q

1

(Eξ + Eq)2
. (2.21)

Estimating the last factor by 1
Eξ

· 1
q and performing the angular integration,

one obtains

S ≤ p2
1

2π

q1

1

Eξ

∫ ∞

0

dq

q
ln

∣

∣

∣

∣

q + q1

q − q1

∣

∣

∣

∣

= π3 p1

|p1 − y1/n|
p1

√

(p1 − λ
ny1)2 + m2

.

(2.22)
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Insertion into (2.20) gives

I(p1,p2) ≤ 1

(4π)2
1

n

∫

R6

dy1 dy2 |χ̂0(y1,y2)| y1

· p1

|p1 − y1/n|
p1

√

(p1 − λ
ny1)2 + m2

≤ c

n
(2.23)

because the singularity at y1 = np1 is integrable and the integral is finite
for all p1 ≥ 0 due to χ̂0 ∈ S(R6). Since the kernel k1 is not symmetric in

p1,q, the estimate of J(q,p′
2) :=

∫

R6

dp1 dp2 |k1(p1,p2,q,p′
2)| f(q)

f(p1)
is needed

too. The 1
n -boundedness of J(q,p′

2) can be shown along the same lines, using

(Eξ′ + Eq)
−2 ≤ ξ

′−2 with ξ′ := p
′
1 + λ(p1 − p

′
1).

We still have to estimate the second term in (2.15). Its kernel is

k2(p1,p2,q,p′
2) :=

1

(2π)3
1

2π2
p1 n6

∫ ∞

0

dt e−tEp1

∫

R3

dp′
1

1

|p1 − p
′
1|2

χ̂0(n(p′
1 − q), n(p2 − p

′
2)) (e

−tEp′
1 − e−tEq ). (2.24)

With (2.19) the t-integral can be carried out as before. Making the substitution
y1 := n(p′

1 − q), y2 := n(p2 − p
′
2) for q and p

′
2, respectively, one gets with

the choice f(p) = p
1
2 ,

Ĩ(p1,p2) :=

∫

R6

dq dp′
2 |k2(p1,p2,q,p′

2)|
f(p1)

f(q)
(2.25)

≤ 1

(2π)4π
p1

∫

R6

dy1dy2|χ̂0(y1,y2)|
∫

R3

dp′
1

1

|p1−p
′
1|2

y1

n

1

(Ep1
+Eξ̃)

2
· p

1
2
1

|p′
1− y1

n | 12

with ξ̃ := λq+(1−λ)p′
1 = p

′
1 − λ

ny1. We estimate (Ep1
+Eξ̃)

−2 ≤ p
− 1

2
1 E

− 3
2

ξ̃
.

Then the integral over p
′
1 reduces to

S̃ := p1

∫

R3

dp′
1

1

|p1 − p
′
1|2

1

|p′
1 − y1

n | 12
1

[(p′
1 − λ

ny1)2 + m2]
3
4

. (2.26)

Even when the two singularities coincide (for y1 = np1), they are integrable.

Since the integrand behaves like p
′−2
1 for p′1 → ∞, S̃ is finite for all 0 ≤ p1 <

∞. It remains to estimate S̃ for p1 → ∞. We substitute p1x := p
′
1 − p1, such

that with ep1
:= p1/p1,

S̃ =

∫

R3

dx

x2

1

|x + ep1
− y1

np1
| 12

1

[(x + ep1
− λ

np1
y1)2 + m2

p2
1
]
3
4

−→
∫

R3

dx

x2

1

|x + ep1
|2 = π3 as p1 → ∞. (2.27)
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Therefore, Ĩ is 1
n -bounded for all p1 ≥ 0. It is easy to prove that also

J̃(q,p′
2) :=

∫

R6

dp1 dp2 |k2(p1,p2,q,p′
2)| q

1
2

p
1
2
1

is 1
n -bounded, using the estimate

(Ep1
+ E|q+λ(p′

1−q)|)
−2 ≤ p−2

1 .

Collecting results, this shows the 1
n -boundedness of p1[V

(1)
10,m, χ0]. With the

same tools, the 1
n -boundedness of the commutator of χ0 with the remaining

contributions from (2.4) to b
(1)
2m is established.

The second item of Lemma 1, the normalizability of the sequence ϕn := (1 −
χ0)ψn, follows immediately from the proof concerning the Brown-Ravenhall
operator, because of the relative form boundedness of the total potential of
h̃(2) with form bound smaller than one for γ < γBR ( see [13] and Lemma 7).

b) In the formulation of Lemma 3, the only change is again the replacement of
hBR with h̃(2) (and N = 2).

We consider the case j = 1 where r1 = b
(1)
1m + b

(1)
2m + v(12), and we have to show

in addition to the Brown-Ravenhall case that

|(φ1ϕ, b
(1)
2m φ1ϕ)| ≤ c

R
‖ϕ‖2 (2.28)

provided ϕ ∈ A(C∞
0 (R6\BR(0)) ⊗ C4) and R > 1.

We note that every summand of b
(1)
2m in (2.4) is of the form B1

1
x1

W1 or W1
1
x1

B1

where B1 is a bounded multiplication operator in momentum space, while W1

is a bounded integral operator. For operators of the first type we take the
smooth auxiliary function χ1(

x1

R ) from (1.17) which is unity on the support of
φ1ϕ and decompose

(χ1φ1ϕ,B1
1

x1
W1 φ1ϕ) = (φ1ϕ,B1χ1

1

x1
W1 φ1ϕ) + (φ1ϕ, [χ1, B1]

1

x1
W1 φ1ϕ).

(2.29)
Since suppχ1 ⊂ R3\BCR/2(0) we have

|(B1φ1ϕ, χ1
1

x1
W1φ1ϕ)| ≤ 2

CR

∫

R6

dx1dx2|(B1φ1ϕ)(x1,x2)| χ1|(W1φ1ϕ)(x1,x2)|

≤ 2

CR
‖B1‖ ‖ϕ‖ ‖W1‖ ‖ϕ‖ ≤ c0

R
‖ϕ‖2. (2.30)

For the second contribution to (2.29), we have to estimate [χ1,0, B1]p1 with
χ1,0 := 1 − χ1 in momentum space. Since B1 ∈ {A1, G1} we use the relation

|(ϕ̃, [χ1,0, B1]p1 ψ̃)| = |(ψ̃, p1[B1, χ1,0] ϕ̃)| (for suitable ϕ̃, ψ̃), the uniform 1
R -

boundedness of which has already been proven in the context of the Brown-
Ravenhall case. The second operator, W1

1
x1

B1 is treated in the same way,

using W1
1
x1

B1χ1 φ1ϕ = W1
1
x1

χ1B1 φ1ϕ + W1
1
x1

[B1, χ1]φ1ϕ.

In the case j = 0 we have r0 =
2
∑

k=1

(b
(k)
1m + b

(k)
2m), and since suppφ0 requires

x1 ≥ Cx as well as x2 ≥ Cx, x = (x1,x2), the auxiliary function can be
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taken from (1.17) for k = 1 or k = 2. The further proof of the lemma is
identical to the one for j = 1.

c) Lemma 4 (formulated for h̃(2) in place of hBR) which is needed for the
localization formula, has to be supplemented with the following estimate

(d) |(φjϕ, [b
(k)
2m, φj ] ϕ)| ≤ c

R
‖ϕ‖2 (2.31)

for ϕ ∈ A(C∞
0 (R6\BR(0)) ⊗ C4) and R > 2.

The proof is carried out in coordinate space as are the proofs of the Brown-
Ravenhall items of Lemma 4. We split the commutator in the same way as in
the proof of Lemma 1. In order to show how to proceed, we pick again the
second term of (2.4), take k = 1 and decompose

[G1
1

x1

σ(1)
p1

Ep1

V
(1)
10,m A1, φj ] = [G1, φj ]

1

x1
· σ(1)

p1

Ep1

V
(1)
10,m A1

+ G1
1

x1
[
σ(1)

p1

Ep1

, φj ]V
(1)
10,m A1 + G1

1

x1

σ(1)
p1

Ep1

x1 ·
1

x1
[V

(1)
10,m, φj ]A1 (2.32)

+ G1
1

x1

σ(1)
p1

Ep1

V
(1)
10,m x1 ·

1

x1
[A1, φj ].

We have to prove the 1
R -boundedness of the commutators (including the factor

1
x1

) and to assure the boundedness of the adjacent operators. The commutators
with G1 and A1 have already been dealt with in the Brown-Ravenhall case. As

concerns [σ
(1)

p1

Ep1
, φj ]

1
x1

, we have to show that its kernel obeys the estimate

|ǩ
σ

(1)p1
1

Ep1

(x1,x
′
1)| ≤ c

|x1 − x
′
1|3

(2.33)

with some constant c. When dealing with the Brown-Ravenhall operator,
we have shown the corresponding estimate for the kernel of the operator
σ(1)

p1g(p1) with g(p1) = [2(p2
1 +m2 +m

√

p2
1 + m2 )]−

1
2 . Replacing g(p1) with

(p2
1 + m2)−

1
2 does neither change the analyticity property of the kernel nor its

behaviour as |x1 − x
′
1| tends to 0 or infinity, from which (2.33) is established

[14].
For the further proof of the 1

R -boundedness of the commutator, we can sub-
stitute φj with φjχ where χ( x

R ) is defined in (1.20) with x = (x1,x2) (see
the discussion below (1.20)). Thus we can use the estimate (1.21) (for k = 1
and N = 2) derived from the mean value theorem and mimic the proof of the
two-electron Brown-Ravenhall case.
For the treatment of the remaining commutator, [V

(1)
10,m, φjχ] 1

x1
, we set ψj :=

φjχ and decompose

[V
(1)
10,m, ψj ]

1

x1
= [V

(1)
10,m

1

x1
, ψj ] (2.34)
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= 2π2

∫ ∞

0

dt [e−tEp1 , ψj ]
1

x1
e−tEp1

1

x1
+ 2π2

∫ ∞

0

dt e−tEp1
1

x1
[e−tEp1 , ψj ]

1

x1
.

The kernel of e−tEp1 in coordinate space is given by [17]

ǩe−tEp1 (x1,x
′
1, t) = ǩe−tEp1 (x̃, t) =

t

2π2

m2

x̃2 + t2
K2(m

√

x̃2 + t2 ) (2.35)

where K2 is a modified Bessel function of the second kind and x̃ := x1 − x
′
1.

Making use of the analyticity of K2(z) for z > 0 and its behaviour K2(z) ∼ 2
z2

for z → 0 and K2(z) ∼
√

π
2z e−z for z → ∞ [1, p.377] we have

|K2(z)| ≤ 2c1

z2
(2.36)

and therefore we can estimate ǩe−tEp1 by the corresponding kernel for m = 0,

|ǩe−tEp1 (x̃, t)| ≤ t

π2

c1

(x̃2 + t2)2
= c1 ǩe−tp1 (x̃, t). (2.37)

Thus we obtain for the kernel of the second contribution to (2.34), using (2.37)
and (1.21),

S0 :=

∣

∣

∣

∣

∫ ∞

0

dt ǩe−tEp1 1
x1

[e−tEp1 ,ψj ]
1

x1

(x1,y1,x2)

∣

∣

∣

∣

(2.38)

=

∣

∣

∣

∣

∫ ∞

0

dt

∫

R3

dx′
1

t

2π2

m2

(x1 − x
′
1)

2 + t2
K2(m

√

(x1 − x
′
1)

2 + t2 )
1

x′
1

· t

2π2

m2

(x′
1 − y1)2 + t2

K2(m
√

(x′
1 − y1)2 + t2 )

1

y1
(ψj(y1,x2) − ψj(x

′
1,x2))

∣

∣

∣

∣

≤ c2
1

π4

∫ ∞

0

t2 dt

∫

R3

dx′
1

1

[(x1 − x
′
1)

2 + t2]2
1

x′
1

1

[(x′
1 − y1)2 + t2]2

1

y1
·|x′

1−y1|
c0

R
.

With the help of the estimate 1
[(x′

1−y1)2+t2]2 ≤ 1
t

1
|x′

1−y1|3 , the t-integral can

be carried out,

∫ ∞

0

dt
t

[(x1 − x
′
1)

2 + t2]2
=

1

2 |x1 − x
′
1|2

. (2.39)

According to the Lieb and Yau formula (2.16) in coordinate space, the 1
R -

boundedness of S0 integrated over y1, respectively over x1, with a suitably
chosen convergence generating function f , has to be shown (in analogy to
(2.17)).
With the choice f(x) = xα and (2.39) we have

I(x1) :=

∫

R3

dy1 S0
f(x1)

f(y1)
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≤ c̃

R

∫

R3

dx′
1

1

|x1 − x
′
1|2

1

x′
1

∫

R3

dy1
1

y1

1

|x′
1 − y1|2

· xα
1

yα
1

. (2.40)

With the substitutions y1 =: x′
1z and then x

′
1 =: x1ξ the two integrals separate

such that (with ex := x/x)

I(x1) ≤ c̃

R

∫

R3

dξ

ξ1+α

1

|ex1
− ξ|2 ·

∫

R3

dz

z1+α

1

|ex′
1
− z|2 ≤ C

R
(2.41)

if 0 < α < 2 [3]. In the same way it is shown that J(y1) :=
∫

R3

dx1 S0
yα
1

xα
1
≤ C

R

for 1 < α < 3. Thus α = 3/2 assures the 1/R-boundedness of I and J . The
first contribution to (2.34) is treated along the same lines. This proves the

1/R-boundedness of [V
(1)
10,m, ψj ]

1
x1

.

Finally the boundedness of the two operators occurring in (2.32), 1
x1

σ
(1)

p1

Ep1
x1

and 1
x1

V
(1)
10,mx1, has to be shown. We use the fact that for any bounded op-

erator O, 1
x1

Ox1 = 1
x1

[O, x1] + O, such that for the first operator, only

the boundedness of 1
x1

[σ
(1)

p1

Ep1
, x1] has to be established. We use the estimate

(2.33) to write

|ǩ
1

x1
[
σ

(1)
p1

Ep1
,x1]

(x1,x
′
1)|

=

∣

∣

∣

∣

1

x1
ǩ

σ
(1)

p1
Ep1

(x1,x
′
1) · (x1 − x′

1)

∣

∣

∣

∣

≤ c̃

x1

1

|x1 − x
′
1|2

(2.42)

and with the choice f(x) = x3/2, (2.42) multiplied by f(x1)/f(x′
1) and inte-

grated over dx′
1, respective multiplied by f(x′

1)/f(x1) and integrated over dx1,
is finite. This proves the desired boundedness.

Concerning the operator 1
x1

V
(1)
10,mx1 we decompose

1

x1
V

(1)
10,m x1 = 2π2

∫ ∞

0

dt
1

x1
e−tEp1

1

x1

{

[e−tEp1 , x1] + x1e
−tEp1

}

. (2.43)

In the second contribution the t-integral can be carried out,
∞
∫

0

dt 1
x1

e−2tEp1 =

1
2x1Ep1

which is a bounded operator. For the first contribution, we can again

use the estimate (2.36) for the Bessel function together with the estimate for
the t-dependence, resulting in (2.39), such that

S̃0 :=

∣

∣

∣

∣

∫ ∞

0

dt ǩ 1
x1

e−tEp1 1
x1

[e−tEp1 ,x1]
(x1,y1)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

dt
1

x1

∫

R3

dx′
1

t

2π2

m2

|x1 − x
′
1|2 + t2

K2(m
√

(x1 − x
′
1)

2 + t2 )
1

x′
1
(2.44)
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· t

2π2

m2

(x′
1 − y1)2 + t2

K2(m
√

(x′
1 − y1)2 + t2 ) (y1 − x′

1)

∣

∣

∣

∣

≤ c̃0
1

x1

∫

R3

dx′
1

1

|x1 − x
′
1|2

1

x′
1

1

|x′
1 − y1|2

.

With α = 3/2, in the same way as shown in the step from (2.40) to (2.41), one

obtains Ĩ(x1) :=
∫

R3

dy1 S̃0
xα
1

yα
1

≤ c and J̃(y1) :=
∫

R3

dx1 S̃0
yα
1

xα
1

≤ c. Thus the

boundedness of 1
x1

V
(1)
10,mx1 is shown.

In the remaining contributions to [b
(1)
2m, φjχ] the terms not treated so far

are [ m
Ep1

, φjχ] 1
x1

, the 1
R -boundedness of which follows from the estimate

|ǩ m
Ep1

(x1,x
′
1)| ≤ c/|x1 − x

′
1|3 (which is proven in the same way as the corre-

sponding Brown-Ravenhall estimate for g̃(p1) := m√
2

(Ep1
+

√

E2
p1

+ mEp1
)−1

in place of m/Ep1
[14]). The boundedness of the additional term 1

x1

m
Ep1

x1

(respective 1
x1

[ m
Ep1

, x1]) follows from (2.42) formulated for ǩ m
Ep1

.

This completes the proof of Lemma 4.

We now turn to the ’easy part’ of the HVZ theorem, where we have to assure
that [Σ0,∞) ⊂ σess(h̃

(2)). We use the method of proof applied to the multi-
particle Brown-Ravenhall operator (see section 1 (b)). The proof of continuity
of σ(T +aj) for j ∈ {0, ..., N} with aj from (2.5) does not depend on the choice
of the single-particle potential and hence also holds true for the Jansen-Hess
operator. With Ta from (1.25) for N = 2 and ϕn ∈ C∞

0 (R6) ⊗ C4 a defin-
ing sequence for λ ∈ σ(T + aj) we have (according to (1.26)) to show that
‖rj Taϕn‖ < ǫ for n and a sufficiently large, where rj now includes the terms

b
(k)
2m with k /∈ C1j .

(d) Lemma 5 has therefore to be supplemented with the conjecture

‖b(k)
2m ϕ‖ ≤ c

R
‖ϕ‖ (2.45)

where ϕ ∈ C∞
0 (Ω) ⊗ C2l with Ω := {x = (x1, ...,xl) ∈ R3l : xi > R ∀ i =

1, ..., l}, R > 1 and k ∈ {1, ..., l} where l is the number of electrons in cluster
C2j . The domain Ω allows for the introduction of the auxiliary function χ from
(1.31) which is unity on the support of ϕ.

As discussed in the proof of Lemma 3, b
(k)
2m consists (for k = 1) of terms like

W1
1
x1

B1 (and its Hermitean conjugate), such that the idea of (2.29) can be
used,

|(φ,W1
1

x1
B1 ϕ)| ≤ |(W1φ,

1

x1
χ B1 ϕ)| + |(W1φ,

1

x1
[χ,B1]ϕ)|. (2.46)

Therefore, the proof of Lemma 3 establishes the validity of (2.45), too.
Thus the proof of Theorem 2 is complete. ¤
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We remark that the two-particle potentials of h̃(2) coincide with those of hBR

and hence are nonnegative. Therefore, as demonstrated in section 1 (below
(1.9)), j = 0 (corresponding to the cluster decomposition where the nucleus is
separated from all electrons) can be omitted in the determination of Σ0. Thus
the infimum of the essential spectrum of h(2) is given by the first ionization
threshold (i.e. the infimum of the spectrum of the operator describing an ion
with one electron less) increased by the electron’s rest energy m.

3 The multiparticle Jansen-Hess operator

Let

H
(2)
N := HBR + Λ+,N (

N
∑

k=1

B
(k)
2m +

N
∑

k>l=1

C(kl)) Λ+,N (3.1)

=: H̃
(2)
N + Λ+,N

N
∑

k>l=1

C(kl) Λ+,N

with HBR from (1.1) and the second-order potentials from (2.1) and (2.2).
According to section 1, the proofs of the required lemmata to assure the HVZ

theorem for H̃
(2)
N are easily generalized to the N -electron case (with the ex-

ception of Lemma 1). For Lemma 1 to hold, we have to establish the form

boundedness of the total potential W̃0 of H̃
(2)
N with respect to the multiparticle

kinetic energy T0. We can prove (see Appendix A)

Lemma 7. Let H̃
(2)
N =: T0 + W̃0 be (as defined in (3.1) with T0 :=

Λ+,N

N
∑

k=1

D
(k)
0 Λ+,N ) the N -electron Jansen-Hess operator without the second-

order two-electron interaction terms, acting on A(H1(R
3)⊗C4)N . Then W̃0 is

relatively form bounded with respect to the kinetic energy operator T0,

|(ψ, W̃0ψ)| ≤ c1 (ψ, T0 ψ) + C1 (ψ,ψ) (3.2)

with c1 < 1 for γ < γBR irrespective of the electron number N (for N ≤ Z).

We remark that the relative form boundedness of the total potential

W0 := H
(2)
N − T0 holds only for a smaller critical γ. Using the estimate

|(ψ+,
N
∑

k>l=1

C(kl)ψ+)| ≤ γ e2π2

2
N−1

2 (ψ, T0ψ) with ψ+ := Λ+,Nψ [13], we found

γ < 0.454 (Z ≤ 62) for N = Z.

The proof of Lemma 1 for the N -electron operator H̃
(2)
N is then done in the

same way as for the Brown-Ravenhall operator in section 1 (using the estimates
for the second-order single-particle interaction from section 2 (a)).
For the proof of Proposition 1 formulated for the N -electron case we note

that the resolvent RN,µ := (H
(2)
N + µ)−1 − (H̃

(2)
N + µ)−1 can be written as a

finite sum of compact operators of the type (2.10). In place of W2, we have
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Wkl := (T + µ)−1C(kl)(T + µ)−1 with the N -particle kinetic energy T . Since,
however, (T + µ)−1 ≤ (T (k) + T (l) + µ)−1, the compactness proof for Wkl can
be copied from the N = 2 case. In addition, we have to assure the relative

operator boundedness of the total potential of H
(2)
N :

Lemma 8. Let H
(2)
N =: T0 + W0 be the N -electron Jansen-Hess operator. For

γ < γ1 the total potential W0 is bounded by the kinetic energy operator,

‖W0 ψ‖ ≤ c0 ‖T0 ψ‖ (3.3)

with c0 < 1. For N = Z (and m = 0), γ1 = 0.285 (Z ≤ 39).

The proof is given in Appendix B. A consequence of this proof is the relative

boundedness of the total potential of H̃
(2)
N (with bound < 1) for γ < γ1. We

note that the critical potential strength may well be improved by using more
refined techniques for the estimate of W0ψ in the case of large N .
Collecting results, we have shown that the HVZ theorem holds also for the N -
electron Jansen-Hess operator, provided γ is below a critical potential strength
(γ < 0.285 if N = Z).

Appendix A (Proof of Lemma 7)

When showing the relative form boundedness of the potential W̃0, we can dis-
regard the projectors Λ+,N in (1.1) and (3.1). In fact, define the potential

W̃ by H̃
(2)
N = T0 + W̃0 =: Λ+,N (

N
∑

k=1

D
(k)
0 + W̃ ) Λ+,N . Assume we prove for

ψ+ := Λ+,N ψ ∈ Λ+,N (A(H1(R
3) ⊗ C4)N ) an N -particle function in the posi-

tive spectral subspace and T = Ep1
+ ... + EpN

,

|(ψ+, W̃ψ+)| ≤ c1 (ψ+, Tψ+) + C1 (ψ+, ψ+) (A.1)

with constants c1 < 1 and C1 ≥ 0. Then we get

(ψ, W̃0ψ) = (ψ,Λ+,NW̃Λ+,N ψ) = (ψ+, W̃ ψ+). (A.2)

Noting that (ψ+, Tψ+) = (ψ+,
N
∑

k=1

D
(k)
0 ψ+) = (ψ, T0 ψ) and ‖Λ+,N ψ‖ ≤

‖Λ+,N‖ ‖ψ‖ ≤ ‖ψ‖ because ‖Λ+,N‖ = ‖Λ(1)
+ ‖ · · · ‖Λ(n)

+ ‖ = 1, Lemma 7 is
verified with the help of (A.1).
In order to show (A.1) we start by estimating from below. We use V (kl) ≥
0, |(ψ+, V (k)ψ+)| ≤ γ

γBR
(ψ+, Ep1

ψ+) (for γ ≤ γBR; [4, 13]) as well as

(ψ+, B
(k)
2mψ+) ≥ −md0γ

2 (ψ+, ψ+) (for γ ≤ 4/π) with d0 := 8 + 12
√

2 [3, 13].
Then

(ψ+, W̃ψ+) ≥ − γ

γBR

N
∑

k=1

(ψ+, Ep1
ψ+) − md0γ

2
N

∑

k=1

(ψ+, ψ+)
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= − γ

γBR
(ψ+, Tψ+) − md0Nγ2 (ψ+, ψ+). (A.3)

For the estimate from above we use (ψ+, (V (k) + B
(k)
2m)ψ+) ≤ m(d0γ

2 +
3
2γ) (ψ+, ψ+) for γ ≤ 4/π [3], [11, Lemma II.8] as well as (ψ+, V (kl)ψ+) ≤
e2

γBR
(ψ+, Ep1

ψ+) (for γ ≤ γBR) which is an immediate consequence of the

estimate of V (k). Then

(ψ+, W̃ ψ+) ≤ m(d0γ
2 +

3

2
γ)N (ψ+, ψ+) +

N − 1

2

e2

γBR
(ψ+, Tψ+) (A.4)

such that (A.1) holds with c1 := max{ γ
γBR

, N−1
2

e2

γBR
}. For N ≤ Z, one has

c1 = γ
γBR

which is smaller than one if γ < γBR.

Appendix B (Proof of Lemma 8)

For the proof of the relative boundedness of the total potential W0, let H
(2)
N =

T0 + W0 =: Λ+,N (
N
∑

k=1

D
(k)
0 + W )Λ+,N where W denotes the total potential

from (3.1). Assume that

‖Wψ+‖ ≤ c0 ‖
N

∑

k=1

D
(k)
0 ψ+‖ = c0 ‖Tψ+‖ (B.1)

with ψ+ = Λ+,N ψ. Then

‖W0ψ‖ = ‖Λ+,NWΛ+,Nψ‖ ≤ ‖Λ+,N‖ ‖Wψ+‖ ≤ c0 ‖
N

∑

k=1

D
(k)
0 ψ+‖

= c0 ‖Λ+,N

N
∑

k=1

D
(k)
0 Λ+,Nψ‖ = c0 ‖T0ψ‖ (B.2)

since Λ+,N = Λ2
+,N commutes with D

(k)
0 .

In order to verify (B.1) we set W (k) := V (k) + B
(k)
2m and estimate

‖Wψ+‖ ≤ ‖
N

∑

k=1

W (k)ψ+‖ + ‖
N

∑

k>l=1

V (kl)ψ+‖ + 2‖
N

∑

k>l=1

C(kl)
a ψ+‖ + 2‖

N
∑

k>l=1

C
(kl)
b ψ+‖

(B.3)

where according to (2.2), C
(kl)
a := V (kl)Λ

(l)
− F

(l)
0 and C

(kl)
b := F

(l)
0 Λ

(l)
− V (kl) =

C
(kl)∗
a , and the antisymmetry of ψ+ with respect to particle exchange was used

to reduce the four contributions to C(kl) to two.

From [11] it follows that ‖
N
∑

k=1

W (k)ψ+‖ ≤ √
cw ‖Tψ+‖ with cw := (4

3γ + 2
9γ2)2

and ‖V (kl)ψ+‖ ≤ √
cv ‖Epk

ψ+‖ with cv := 4e4. Likewise, using ‖Λ(l)
− ‖ = 1
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and ‖F (l)
0 ‖ ≤ γ

π (π2

4 − 1) [11], one has ‖C(kl)
a ψ+‖ ≤ √

cv ‖Epk
(Λ

(l)
− F

(l)
0 ψ+)‖ ≤

√
cv ‖F (l)

0 ‖ ‖Epk
ψ+‖ ≤

√
c̃s ‖Epk

ψ+‖ and the same estimate for ‖C(kl)
b ψ+‖,

with c̃s := ( γ
π (π2

4 −1))2cv (for m = 0). For the cross terms V (kl)V (kl′) (l 6= l′)
we substitute yl := xl −xk and yl′ := xl′ −xk for xl and xl′ , respectively, and
get

(ψ+, V (kl)V (kl′)ψ+) =

∫

R3N

(

N
∏

k′=1
k′ 6=l,l′

dxk′) dyl dyl′
e2

yl
ψ+(...,yl + xk,yl′ + xk, ...)

· e2

yl′
ψ+(...,yl + xk,yl′ + xk, ...). (B.4)

Keeping for the moment xk′ fixed and using the Fourier representation with
respect to yl and yl′ (setting ϕ+(yl,yl′) := ψ+(...,yl + xk,yl′ + xk, ...)),

(
1̂

yl′
ϕ+)(pl,pl′) =

1

2π2

∫

R3

dp′ 1

|pl′ − p′|2 ϕ̂+(pl,p
′), (B.5)

the Lieb and Yau formula (2.16) with the convergence generating function
f(p) = p3/2 gives

∣

∣

∣

∣

∫

R6

dyl dyl′
e2

yl
ϕ+

e2

yl′
ϕ+

∣

∣

∣

∣

≤ 4e4

∫

R6

dpl dpl′ |ϕ̂+(pl,pl′)|2 plpl′ (B.6)

such that, using p ≤ Ep,

|(ψ+, V (kl)V (kl′)ψ+)| ≤ cv (ψ+, plpl′ψ+) ≤ cv (ψ+, Epl
Epl′

ψ+). The same es-

timate holds for V (kl)V (k′l′) with distinct indices. The symmetry of ψ+ with

respect to particle exchange and
N
∑

k>l=1

1 = N(N−1)
2 then leads to the result

‖
N
∑

k>l=1

V (kl)ψ+‖2 ≤ cv · max{N−1
2 , 1

2 [N(N−1)
2 − 1]} ‖Tψ+‖2.

The remaining contribution to (B.3) can partly be reduced to the estimate of

V (kl). Let k, l, k′, l′ be distinct indices and set ϕl := Λ
(l)
− F

(l)
0 ψ+. Then we obtain

for the cross terms of (
N
∑

k>l=1

C
(kl)
a )2,

|(C(kl)
a ψ+, C(k′l′)

a ψ+)| = |(Λ(l)
− F

(l)
0 ψ+, V (kl)V (k′l′)Λ

(l′)
− F

(l′)
0 ψ+)|

= |(ϕl, V
(kl)V (k′l′)ϕl′)| ≤ cv (ϕl, pkpk′ϕl)

1
2 (ϕl′ , pkpk′ϕl′)

1
2 . (B.7)

Since l 6= k′, pk′ commutes with Λ
(l)
− F

(l)
0 such that

(ϕl, pkpk′ϕl) = ‖(pkpk′)
1
2 ϕl‖2 = ‖Λ(l)

− F
(l)
0 (pkpk′)

1
2 ϕ+‖2

≤ ‖F (l)
0 ‖2 (ψ+, pkpk′ψ+). (B.8)
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The cross terms of (
N
∑

k>l=1

C
(kl)
b )2 have the same estimate. In fact,

|(C(kl)
b ψ+, C

(k′l′)
b ψ+)| = |(ψ+, V (kl)Λ

(l)
− F

(l)
0 F

(l′)
0 Λ

(l′)
− V (k′l′)ψ+)|

= |(ϕl′ , V
(kl)V (k′l′)ϕl)| ≤ cv ‖F (l)

0 ‖2 (ψ+, pkpk′ψ+). (B.9)

If any two indices coincide, we use for simplicity a weaker estimate, e.g.

|(C(kl)
b ψ+, C

(k′l)
b ψ+)| ≤ ‖C(kl)

b ψ+‖‖C(k′l)
b ψ+‖ ≤ c̃s‖Epk

ψ+‖2 ≤ c̃s
1

N
‖Tψ+‖2

(B.10)

and similarly for C
(kl)
a .

Counting terms in the sum
N
∑

k>l=1

C
(kl)
a

N
∑

k′>l′=1

C
(k′l′)
a we have N(N−1)

2 square

terms, 1
4N(N − 1)(N − 2)(N − 3) terms with four distinct indices and N(N −

1)(N − 2) terms where two of the four indices agree (while the other two are
distinct). For all terms of the last type, the estimate (B.10) is used whereas

for the other terms we proceed as in the case of (
N
∑

k>l=1

V (kl))2. This leads to

‖
N

∑

k>l=1

C(kl)
a ψ+‖2 ≤ c̃s · max{N − 1

2
,
(N − 2)(N − 3)

4
} ‖Tψ+‖2

+ c̃s (N − 1)(N − 2) ‖Tψ+‖2. (B.11)

Inserting our results into (B.3) we find ‖Wψ+‖ ≤ c0‖Tψ+‖ with

c0 :=
√

cw +

√

cv · max{N − 1

2
,
1

2
[
N(N − 1)

2
− 1]} (B.12)

+ 4
√

c̃s

√

max{N − 1

2
,
(N − 2)(N − 3)

4
} + (N − 1)(N − 2).

For N = Z we get c0 < 1 for γ < 0.285 which corresponds to Z ≤ 39. For
N = 2, we need γ < 0.66 (Z ≤ 90) which slightly improves on our earlier
estimate (Z ≤ 89 [11]), obtained by using (B.10)-type estimates for all two-
particle interaction cross terms.
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