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Abstract. We give a “second generation” exposition of the slope
filtration theorem for modules with Frobenius action over the Robba
ring, providing a number of simplifications in the arguments. Some
of these are inspired by parallel work of Hartl and Pink, which points
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1 Introduction

This paper revisits the slope filtration theorem given by the author in [19]. Its
main purpose is expository: it provides a simplified and clarified presentation
of the theory of slope filtrations over rings of Robba type. In the process, we
generalize the theorem in a fashion useful for certain applications, such as the
semistable reduction problem for overconvergent F -isocrystals [24].
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In the remainder of this introduction, we briefly describe the theorem and
some applications, then say a bit more about the nature and structure of this
particular paper.

1.1 The slope filtration theorem

The Dieudonné-Manin classification [18], [29] describes the category of finite
free modules equipped with a Frobenius action, over a complete discrete val-
uation ring with algebraically closed residue field, loosely analogous to the
eigenspace decomposition of a vector space over an algebraically closed field
equipped with a linear transformation. When the residue field is unrestricted,
the classification no longer applies, but one does retrieve a canonical filtration
whose successive quotients are all isotypical of different types if one applies the
Dieudonné-Manin classification after enlarging the residue field.

The results of [19] give an analogous pair of assertions for finite free modules
equipped with a Frobenius action over the Robba ring over a complete discretely
valued field of mixed characteristic. (The Robba ring consists of those formal
Laurent series over the given coefficient field converging on some open annulus
of outer radius 1.) Namely, over a suitable “algebraic closure” of the Robba
ring, every such module admits a decomposition into the same sort of standard
pieces as in Dieudonné-Manin ([19, Theorem 4.16] and Theorem 4.5.7 herein),
and the analogous canonical slope filtration descends back down to the original
module ([19, Theorem 6.10] and Theorem 6.4.1 herein).

1.2 Applications

The original application of the slope filtration theorem was to the p-adic local
monodromy theorem on quasi-unipotence of p-adic differential equations with
Frobenius structure over the Robba ring. (The possibility of, and need for, such
a theorem first arose in the work of Crew [11], [12] on the rigid cohomology of
curves with coefficients, and so the theorem is commonly referred to as “Crew’s
conjecture”.) Specifically, the slope filtration theorem reduces the pLMT to
its unit-root case, established previously by Tsuzuki [35]. We note, for now
in passing, that Crew’s conjecture has also been proved by André [1] and by
Mebkhout [30], using the Christol-Mebkhout index theory for p-adic differential
equations; for more on the relative merits of these proofs, see Remark 7.2.8.

In turn, the p-adic local monodromy theorem is already known to have sev-
eral applications. Many of these are in the study of rigid p-adic cohomology
of varieties over fields of characteristic p: these include a full faithfulness the-
orem for restriction between the categories of overconvergent and convergent
F -isocrystals [20], a finiteness theorem with coefficients [22], and an analogue
of Deligne’s “Weil II” theorem [23]. The pLMT also gives rise to a proof of
Fontaine’s conjecture that every de Rham representation (of the absolute Ga-
lois group of a mixed characteristic local field) is potentially semistable, via a
construction of Berger [3] linking the theory of (φ,Γ)-modules to the theory of
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p-adic differential equations.

Subsequently, other applications of the slope filtration theorem have come to
light. Berger [4] has used it to give a new proof of the theorem of Colmez-
Fontaine that weakly admissible (φ,Γ)-modules are admissible. A variant of
Berger’s proof has been given by Kisin [26], who goes on to give a classification
of crystalline representations with nonpositive Hodge-Tate weights in terms of
certain Frobenius modules; as corollaries, he obtains classification results for p-
divisible groups conjectured by Breuil and Fontaine. Colmez [10] has used the
slope filtration theorem to construct a category of “trianguline representations”
involved in a proposed p-adic Langlands correspondence. André and di Vizio [2]
have used the slope filtration theorem to prove an analogue of Crew’s conjecture
for q-difference equations, by establishing an analogue of Tsuzuki’s theorem
for such equations. (The replacement of differential equations by q-difference
equations does not affect the Frobenius structure, so the slope filtration theorem
applies unchanged.) We expect to see additional applications in the future.

1.3 Purpose of the paper

The purpose of this paper is to give a “second generation” exposition of the
proof of the slope filtration theorem, using ideas we have learned about since
[19] was written. These ideas include a close analogy between the theory of
slopes of Frobenius modules and the formalism of semistable vector bundles;
this analogy is visible in the work of Hartl and Pink [17], which strongly resem-
bles our Dieudonné-Manin classification but takes place in equal characteristic
p > 0. It is also visible in the theory of filtered (φ,N)-modules, used to study
p-adic Galois representations; indeed, this theory is directly related to slope
filtrations via the work of Berger [4] and Kisin [26].

In addition to clarifying the exposition, we have phrased the results at a level
of generality that may be useful for additional applications. In particular,
the results apply to Frobenius modules over what might be called “fake an-
nuli”, which occur in the context of semistable reduction for overconvergent
F -isocrystals (a higher-dimensional analogue of Crew’s conjecture). See [25]
for an analogue of the p-adic local monodromy theorem in this setting.

1.4 Structure of the paper

We conclude this introduction with a summary of the various chapters of the
paper.

In Chapter 2, we construct a number of rings similar to (but more general
than) those occurring in [19, Chapters 2 and 3], and prove that a certain class
of these are Bézout rings (in which every finitely generated ideal is principal).
In Chapter 3, we introduce σ-modules and some basic terminology for dealing
with them. Our presentation is informed by some strongly analogous work (in
equal characteristic p) of Hartl and Pink.

In Chapter 4, we give a uniform presentation of the standard Dieudonné-Manin
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decomposition theorem and of the variant form proved in [19, Chapter 4], again
using the Hartl-Pink framework.
In Chapter 5, we recall some results mostly from [19, Chapter 5] on σ-modules
over the bounded subrings of so-called analytic rings. In particular, we compare
the “generic” and “special” polygons and slope filtrations.
In Chapter 6, we give a streamlined form of the arguments of [19, Chapter 6],
which deduce from the Dieudonné-Manin-style classification the slope filtration
theorem for σ-modules over arbitrary analytic rings.
In Chapter 7, we make some related observations. In particular, we explain
how the slope filtration theorem, together with Tsuzuki’s theorem on unit-root
σ-modules with connection, implies Crew’s conjecture. We also explain the
relevance of the terms “generic” and “special” to the discussion of Chapter 5.

2 The basic rings

In this chapter, we recall and generalize the ring-theoretic setup of [19, Chap-
ter 3].

Convention 2.0.1. Throughout this chapter, fix a prime number p and a
power q = pa of p. Let K be a field of characteristic p, equipped with a valuation
vK ; we will allow vK to be trivial unless otherwise specified. Let K0 denote a
subfield of K on which vK is trivial. We will frequently do matrix calculations;
in so doing, we apply a valuation to a matrix by taking its minimum over entries,
and write In for the n×n identity matrix over any ring. See Conventions 2.2.2
and 2.2.6 for some further notations.

2.1 Witt rings

Convention 2.1.1. Throughout this section only, assume that K and K0 are
perfect.

Definition 2.1.2. Let W (K) denote the ring of p-typical Witt vectors over
K. Then W gives a covariant functor from perfect fields of characteristic p
to complete discrete valuation rings of characteristic 0, with maximal ideal p
and perfect residue field; this functor is in fact an equivalence of categories,
being a quasi-inverse of the residue field functor. In particular, the absolute
(p-power) Frobenius lifts uniquely to an automorphism σ0 of W (K); write σ
for the logp(q)-th power of σ0. Use a horizontal overbar to denote the reduction
map from W (K) to K. In this notation, we have uσ = uq for all u ∈ W (K).

We will also want to allow some ramified extensions of Witt rings.

Definition 2.1.3. Let O be a finite totally ramified extension of W (K0),
equipped with an extension of σ; let π denote a uniformizer of O. Write
W (K,O) for W (K) ⊗W (K0) O, and extend the notations σ, x to W (K,O) in
the natural fashion.
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Definition 2.1.4. For z ∈ K, let [z] ∈ W (K) denote the Teichmüller lift of
K; it can be constructed as limn→∞ ypn

n for any sequence {yn}
∞
n=0 with yn =

z1/pn

. (The point is that this limit is well-defined: if {y′
n}

∞
n=0 is another such

sequence, we have ypn

n ≡ (y′
n)pn

(mod pn).) Then [z]σ = [z]q, and if z′ ∈ K,
then [zz′] = [z][z′]. Note that each x ∈ W (K,O) can be written uniquely as
∑∞

i=0[zi]π
i for some z0, z1, · · · ∈ K; similarly, each x ∈ W (K,O)[π−1] can be

written uniquely as
∑

i∈Z[zi]π
i for some zi ∈ K with zi = 0 for i sufficiently

small.

Definition 2.1.5. Recall that K was assumed to be equipped with a valuation
vK . Given n ∈ Z, we define the “partial valuation” vn on W (K,O)[π−1] by

vn

(

∑

i

[zi]π
i

)

= min
i≤n

{vK(zi)}; (2.1.6)

it satisfies the properties

vn(x + y) ≥ min{vn(x), vn(y)} (x, y ∈ W (K,O)[π−1], n ∈ Z)

vn(xy) ≥ min
m∈Z

{vm(x) + vn−m(y)} (x, y ∈ W (K,O)[π−1], n ∈ Z)

vn(xσ) = qvn(x) (x ∈ W (K,O)[π−1], n ∈ Z)

vn([z]) = vK(z) (z ∈ K,n ≥ 0).

In each of the first two inequalities, one has equality if the minimum is achieved
exactly once. For r > 0, n ∈ Z, and x ∈ W (K,O)[π−1], put

vn,r(x) = rvn(x) + n;

for r = 0, put vn,r(x) = n if vn(x) < ∞ and vn,r(x) = ∞ if vn(x) = ∞. For
r ≥ 0, let Wr(K,O) be the subring of W (K,O) consisting of those x for which
vn,r(x) → ∞ as n → ∞; then σ sends Wqr(K,O) onto Wr(K,O). (Note that
there is no restriction when r = 0.)

Lemma 2.1.7. Given x, y ∈ Wr(K,O)[π−1] nonzero, let i and j be the smallest
and largest integers n achieving minn{vn,r(x)}, and let k and l be the smallest
and largest integers n achieving minn{vn,r(y)}. Then i + k and j + l are the
smallest and largest integers n achieving minn{vn,r(xy)}, and this minimum
equals minn{vn,r(x)} + minn{vn,r(y)}.

Proof. We have

vm,r(xy) ≥ min
n

{vn,r(x) + vm−n,r(y)},

with equality if the minimum on the right is achieved only once. This means
that:

• for all m, the minimum is at least vi,r(x) + vk,r(y);
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• for m = i+k and m = j + l, the value vi,r(x)+vk,r(y) is achieved exactly
once (respectively by n = i and n = j);

• for m < i + k or m > j + l, the value vi,r(x) + vk,r(y) is never achieved.

This implies the desired results.

Definition 2.1.8. Define the map wr : Wr(K,O)[π−1] → R ∪ {∞} by

wr(x) = min
n

{vn,r(x)}; (2.1.9)

also write w for w0. By Lemma 2.1.7, wr is a valuation on Wr(K,O)[π−1];
moreover, wr(x) = wr/q(x

σ). Put

Wcon(K,O) = ∪r>0Wr(K,O);

note that Wcon(K,O) is a discrete valuation ring with residue field K and
maximal ideal generated by π, but is not complete if vK is nontrivial.

Remark 2.1.10. Note that u is a unit in Wr(K,O) if and only if vn,r(u) >
v0,r(u) for n > 0. We will generalize this observation later in Lemma 2.4.7.

Remark 2.1.11. Note that w is a p-adic valuation on W (K,O) normalized
so that w(π) = 1. This indicates two discrepancies from choices made in
[19]. First, we have normalized w(π) = 1 instead of w(p) = 1 for internal
convenience; the normalization will not affect any of the final results. Second,
we use w for the p-adic valuation instead of vp (or simply v) because we are
using v’s for valuations in the “horizontal” direction, such as the valuation on
K, and the partial valuations of Definition 2.1.5. By contrast, decorated w’s
denote “nonhorizontal” valuations, as in Definition 2.1.8.

Lemma 2.1.12. The (noncomplete) discrete valuation ring Wcon(K,O) is
henselian.

Proof. It suffices to verify that if P (x) is a polynomial over Wcon(K,O) and
y ∈ Wcon(K,O) satisfies P (y) ≡ 0 (mod π) and P ′(y) 6≡ 0 (mod π), then there
exists z ∈ Wcon(K,O) with z ≡ y (mod π) and P (z) = 0. To see this, pick
r > 0 such that wr(P (y)/P ′(y)2) > 0; then the usual Newton iteration gives a
series converging under w to a root z of P in W (K,O) with z ≡ y (mod π).
However, the iteration also converges under wr, so we must have z ∈ Wr(K,O).
(Compare [19, Lemma 3.9].)

2.2 Cohen rings

Remember that Convention 2.1.1 is no longer in force, i.e., K0 and K no longer
need be perfect.
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Definition 2.2.1. Let CK denote a Cohen ring of K, i.e., a complete dis-
crete valuation ring with maximal ideal pCK and residue field K. Such a ring
necessarily exists and is unique up to noncanonical isomorphism [15, Proposi-
tion 0.19.8.5]. Moreover, any map K → K ′ can be lifted, again noncanonically,
to a map CK → CK′ .

Convention 2.2.2. For the remainder of the chapter, assume chosen and fixed
a map (necessarily injective) CK0

→ CK . Let O be a finite totally ramified
extension of CK0

, and let π denote a uniformizer of O. Write ΓK for CK⊗CK0
O;

we write Γ for short if K is to be understood, as it will usually be in this chapter.

Definition 2.2.3. By a Frobenius lift on Γ, we mean any endomorphism σ :
Γ → Γ lifting the absolute q-power Frobenius on K. Given σ, we may form the
completion of the direct limit

ΓK σ
→ ΓK σ

→ · · · ; (2.2.4)

for K = K0, this ring is a finite totally ramified extension of ΓK0 = O, which we
denote by Operf . In general, if σ is a Frobenius lift on ΓK which maps O into it-
self, we may identify the completed direct limit of (2.2.4) with W (Kperf ,Operf);
we may thus use the induced embedding ΓK →֒ W (Kperf ,Operf) to define
vn, vn,r, wr, w on Γ.

Remark 2.2.5. In [19], a Frobenius lift is assumed to be a power of a p-power
Frobenius lift, but all calculations therein work in this slightly less restrictive
setting.

Convention 2.2.6. For the remainder of the chapter, assume chosen and fixed
a Frobenius lift σ on Γ which carries O into itself.

Definition 2.2.7. Define the levelwise topology on Γ by declaring that a se-
quence {xl}

∞
l=0 converges to zero if and only if for each n, vn(xl) → ∞ as

l → ∞. This topology is coarser than the usual π-adic topology.

Definition 2.2.8. For L/K finite separable, we may view ΓL as a finite un-
ramified extension of ΓK , and σ extends uniquely to ΓL; if L/K is Galois, then
Gal(L/K) acts on ΓL fixing ΓK . More generally, we say L/K is pseudo-finite
separable if L = M1/qn

for some M/K finite separable and some nonnegative
integer n; in this case, we define ΓL to be a copy of ΓM viewed as a ΓM -algebra
via σn. In particular, we have a unique extension of vK to L, under which L is
complete, and we have a distinguished extension of σ to ΓL (but only because
we built the choice of σ into the definition of ΓL).

Remark 2.2.9. One can establish a rather strong functoriality for the forma-
tion of the ΓL, as in [19, Section 2.2]. One of the simplifications introduced
here is to avoid having to elaborate upon this.

Definition 2.2.10. For r > 0, put Γr = Γ ∩ Wr(K
perf ,O). We say Γ has

enough r-units if every nonzero element of K can be lifted to a unit of Γr. We
say Γ has enough units if Γ has enough r-units for some r > 0.
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Remark 2.2.11. (a) If K is perfect, then Γ has enough r-units for any r > 0,
because a nonzero Teichmüller element is a unit in every Γr.

(b) If ΓK has enough r-units, then ΓK1/q

has enough qr-units, and vice versa.

Lemma 2.2.12. Suppose that ΓK has enough units, and let L be a pseudo-finite
separable extension of K. Then ΓL has enough units.

Proof. It is enough to check the case when L is actually finite separable. Put
d = [L : K]. Apply the primitive element theorem to produce x ∈ L which
generates L over K, and apply Lemma 2.1.12 to produce x ∈ ΓL

con lifting x.
Recall that any two Banach norms on a finite dimensional vector space over
a complete normed field are equivalent [32, Proposition 4.13]. In particular, if
we let vL denote the unique extension of vK to L, then there exists a constant
a > 0 such that whenever y ∈ L and c0, . . . , cd−1 ∈ K satisfy y =

∑d−1
i=0 cix

i,
we have vL(y) ≤ mini{vK(cix

i)} + a.
Pick r > 0 such that ΓK has enough r-units and x is a unit in ΓL

r , and choose
s > 0 such that 1 − s/r > sa. Given y ∈ L, lift each ci to either zero or a unit

in Γr, and set y =
∑d−1

i=0 cix
i. Then for all n ≥ 0,

vn,r(y) ≥ min
i
{vn,r(cix

i)}

≥ min
i
{rvK(ci) + rivL(x)}

≥ rvL(y) − ra.

In particular, vn,s(y) > v0,s(y) for n > 0, so y is a unit in ΓL
s . Since s does not

depend on y, we conclude that ΓL has enough s-units, as desired.

Definition 2.2.13. Suppose that Γ has enough units. Define Γcon = ∪r>0Γr =
Γ ∩ Wcon(K,O); then Γcon is again a discrete valuation ring with maximal
ideal generated by π. Although Γcon is not complete, it is henselian thanks
to Lemma 2.1.12. For L/K pseudo-finite separable, we may view ΓL

con as an
extension of ΓK

con, which is finite unramified if L/K is finite separable.

Remark 2.2.14. Remember that vK is allowed to be trivial, in which case the
distinction between Γ and Γcon collapses.

Proposition 2.2.15. Let L be a finite separable extension of K. Then for
any x ∈ ΓL

con such that x generates L over K, we have ΓL
con

∼= ΓK
con[x]/(P (x)),

where P (x) denotes the minimal polynomial of x.

Proof. Straightforward.

Convention 2.2.16. For L the completed perfect closure or algebraic closure
of K, we replace the superscript L by “perf” or “alg”, respectively, writing Γperf

or Γalg for ΓL and so forth. (Recall that these are obtained by embedding ΓK

into W (Kperf ,O) via σ, and then embedding the latter into W (L,O) via Witt
vector functoriality.) Beware that this convention disagrees with a convention
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of [19], in which Γalg = W (Kalg,O), without the completion; we will comment
further on this discrepancy in Remark 2.4.13.

The next assertions are essentially [13, Proposition 8.1], only cast a bit more
generally; compare also [20, Proposition 4.1].

Definition 2.2.17. By a valuation p-basis of K, we mean a subset S ⊂ K
such that the set U of monomials in S of degree < p in each factor (and degree
0 in almost all factors) is a valuation basis of K over Kp. That is, each x ∈ K
has a unique expression of the form

∑

u∈U cuu, with each cu ∈ Kp and almost
all zero, and one has

vK(x) = min
u∈U

{vK(cuu)}.

Example 2.2.18. For example, K = k((t)) admits a valuation p-basis consist-
ing of t plus a p-basis of k over kp. In a similar vein, if [v(K∗) : v((Kp)∗)] =
[K : Kp] < ∞, then one can choose a valuation p-basis for K by selecting
elements of K∗ whose images under v generate v(K∗)/v((Kp)∗). (See also the
criterion of [27, Chapter 9].)

Lemma 2.2.19. Suppose that Γ has enough units and that K admits a valuation
p-basis S. Then there exists a Γ-linear map f : Γperf → Γ sectioning the
inclusion Γ → Γperf , which maps Γperf

con to Γcon.

Proof. Choose r > 0 such that Γ has enough r-units, and, for each s ∈ S,
choose a unit s of Γr lifting s. Put U0 = {1}. For n a positive integer, let Un

be the set of products
∏

s∈S

(ses)σ−n

in which each es ∈ {0, . . . , qn − 1}, all but finitely many es are zero (so the
product makes sense), and the es are not all divisible by q. Put Vn = U0∪· · ·∪

Un; then the reductions of Vn form a basis of Kq−n

over K. We can thus write
each element of Γσ−n

uniquely as a sum
∑

u∈Vn
xuu, with each xu ∈ Γ and for

any integer m > 0, only finitely many of the xu nonzero modulo πm. Define
the map fn : Γσ−n

→ Γ sending x =
∑

u∈Vn
xuu to x1.

Note that each element of each Un is a unit in (Γσ−n

)r. Since S is a valuation
p-basis, it follows (by induction on m) that if we write x =

∑

u∈Vn
xuu, then

min
j≤m

{vj,r(x)} = min
u∈Vn

min
j≤m

{vj,r(xuu)}.

Hence for any r′ ∈ (0, r], fn sends (Γσ−n

)r′ to Γr′ . That means in particular
that the fn fit together to give a function f that extends by continuity to all
of Γperf , sections the map Γ → Γperf , and carries Γperf

con to Γcon.

Remark 2.2.20. It is not clear to us whether it should be possible to loosen the
restriction that K must have a valuation p-basis, e.g., by imitating the proof
strategy of Lemma 2.2.12.
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Proposition 2.2.21. Suppose that Γ has enough units and that K admits a
valuation p-basis. Let µ : Γ ⊗Γcon

Γalg
con → Γalg denote the multiplication map,

so that µ(x ⊗ y) = xy.

(a) If x1, . . . , xn ∈ Γ are linearly independent over Γcon, and µ(
∑n

i=1 xi ⊗
yi) = 0, then yi = 0 for i = 1, . . . , n.

(b) If x1, . . . , xn ∈ Γ are linearly independent over Γcon, and µ(
∑n

i=1 xi ⊗
yi) ∈ Γ, then yi ∈ Γcon for i = 1, . . . , n.

(c) The map µ is injective.

Proof. (a) Suppose the contrary; choose a counterexample with n minimal.
We may assume without loss of generality that w(y1) = mini{w(yi)}; we
may then divide through by y1 to reduce to the case y1 = 1, where we
will work hereafter.

Any g ∈ Gal(Kalg/Kperf) extends uniquely to an automorphism of Γalg

over Γperf , and to an automorphism of Γalg
con over Γperf

con . Then

0 =
n

∑

i=1

xiyi =
n

∑

i=1

xiy
g
i =

n
∑

i=2

xi(y
g
i − yi);

by the minimality of n, we have yg
i = yi for i = 2, . . . , n. Since this is

true for any g, we have yi ∈ Γperf
con for each i.

Let f be the map from Lemma 2.2.19; then

0 =
∑

xiyi = f
(

∑

xiyi

)

=
∑

xif(yi) =
∑

xi(yi − f(yi)),

so again yi = f(yi) for i = 2, . . . , n. Hence x1 = −
∑n

i=2 xiyi, contradict-
ing the linear independence of the xi over Γcon.

(b) For g as in (a), we have 0 =
∑

xi(y
g
i − yi); by (a), we have yg

i = yi for all
i and g, so yi ∈ Γperf

con . Now 0 =
∑

xi(yi − f(yi)), so yi = f(yi) ∈ Γcon.

(c) Suppose on the contrary that
∑n

i=1 xi⊗yi 6= 0 but
∑n

i=1 xiyi = 0; choose
such a counterexample with n minimal. By (a), the xi must be linearly
dependent over Γcon; without loss of generality, suppose we can write
x1 =

∑n
i=2 cixi with ci ∈ Γcon. Then

∑n
i=1 xi ⊗ yi =

∑n
i=2 xi ⊗ (yi + ci)

is a counterexample with only n − 1 terms, contradicting the minimality
of n.

2.3 Relation to the Robba ring

We now recall how the constructions in the previous section relate to the usual
Robba ring.
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Convention 2.3.1. Throughout this section, assume that K = k((t)) and
K0 = k; we may then describe Γ as the ring of formal Laurent series

∑

i∈Z ciu
i

with each ci ∈ O, and w(ci) → ∞ as i → −∞. Suppose further that the
Frobenius lift is given by

∑

ciu
i 7→

∑

cσ
i (uσ)i, where uσ =

∑

aiu
i with

lim infi→−∞ w(ai)/(−i) > 0.

Definition 2.3.2. Define the näıve partial valuations vnaive
n on Γ by the formula

vnaive
n

(

∑

ciu
i
)

= min{i : w(ci) ≤ n}.

These functions satisfy some identities analogous to those in Definition 2.1.5:

vnaive
n (x + y) ≥ min{vnaive

n (x), vnaive
n (y)} (x, y ∈ Γ[π−1], n ∈ Z)

vnaive
n (xy) ≥ min

m≤n
{vnaive

m (x) + vnaive
n−m(y)} (x, y ∈ Γ[π−1], n ∈ Z).

Again, equality holds in each case if the minimum on the right side is achieved
exactly once. Put

vnaive
n,r (x) = rvnaive

n (x) + n.

For r > 0, let Γnaive
r be the set of x ∈ Γ such that vnaive

n,r (x) → ∞ as n → ∞.

Define the map wnaive
r on Γnaive

r by

wnaive
r (x) = min

n
{vnaive

n,r (x)};

then wnaive
r is a valuation on Γnaive

r by the same argument as in Lemma 2.1.7.
Put

Γnaive
con = ∪r>0Γ

naive
r .

By the hypothesis on the Frobenius lift, we can choose r > 0 such that uσ/uq

is a unit in Γnaive
r .

Lemma 2.3.3. For r > 0 such that uσ/uq is a unit in Γnaive
r , and s ∈ (0, qr],

we have
min
j≤n

{vnaive
j,s (x)} = min

j≤n
{vnaive

j,s/q (xσ)} (2.3.4)

for each n ≥ 0 and each x ∈ Γ.

Proof. The hypothesis ensures that (2.3.4) holds for x = ui for any i ∈ Z and
any n. For general x, write x =

∑

i ciu
i; then on one hand,

min
j≤n

{vnaive
j,s/q (xσ)} ≥ min

i∈Z
{min

j≤n
{vnaive

j,s/q (cσ
i (uσ)i)}}

= min
i∈Z

{min
j≤n

{vnaive
j,s (ciu

i)}}

= min
j≤n

{vnaive
j,s (x)}.

On the other hand, if we take the smallest j achieving the minimum on the left
side of (2.3.4), then the minimum of vnaive

j,s (ciu
i) is achieved by a unique integer

i. Hence the one inequality in the previous sequence is actually an equality.
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Lemma 2.3.5. For r > 0 such that uσ/uq is a unit in Γnaive
r , and s ∈ (0, qr],

we have
min
j≤n

{vj,s(x)} = min
j≤n

{vnaive
j,s (x)} (2.3.6)

for each n ≥ 0 and each x ∈ Γ. In particular, Γnaive
s = Γs, and ws(x) =

wnaive
s (x) for all x ∈ Γs.

Proof. Write x =
∑∞

i=0[xi]π
i with each xi ∈ Kperf . Choose an integer l such

that xi
ql

∈ K for i = 0, . . . , n, and write xi
ql

=
∑

h∈Z chit
h with chi ∈ k.

Choose chi ∈ O lifting chi, with chi = 0 whenever chi = 0, and put yi =
∑

h chiu
h.

Pick an integer m > n, and define

x′ =

n
∑

i=0

yqm

i (πi)σl+m

;

then w(x′ − xσl+m

) > n. Hence for j ≤ n, vj(x
′) = vj(x

σl+m

) = ql+mvj(x) and

vnaive
j (x′) = vnaive

j (xσl+m

).
From the way we chose the yi, we have

vnaive
j (yqm

i (πi)σl+m

) = ql+mv0(xi) (j ≥ i).

It follows that vnaive
j (x′) = ql+mvj(x) for j ≤ n; that is, we have vnaive

j (xσl+m

) =

ql+mvj(x) for j ≤ n. In particular, we have

min
j≤n

{vj,s(x)} = min
j≤n

{vnaive
j,s/ql+m(xσl+m

)}.

By Lemma 2.3.3, this yields the desired result. (Compare [19, Lemmas 3.6
and 3.7].)

Corollary 2.3.7. For r > 0 such that uσ/uq is a unit in Γnaive
r , Γ has enough

qr-units, and Γcon = Γnaive
con .

Remark 2.3.8. The ring Γnaive
r [π−1] is the ring of bounded rigid analytic func-

tions on the annulus |π|r ≤ |u| < 1, and the valuation wnaive
s is the supremum

norm on the circle |u| = |π|s. This geometric interpretation motivates the
subsequent constructions, and so is worth keeping in mind; indeed, much of
the treatment of analytic rings in the rest of this chapter is modeled on the
treatment of rings of functions on annuli given by Lazard [28], and our results
generalize some of the results in [28] (given Remark 2.3.9 below).

Remark 2.3.9. In the context of this section, the ring Γan,con is what is usually
called the Robba ring over K. The point of view of [19], maintained here, is
that the Robba ring should always be viewed as coming with the “equipment”
of a Frobenius lift σ; this seems to be the most convenient angle from which
to approach σ-modules. However, when discussing a statement about Γan,con
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that depends only on its underlying topological ring (e.g., the Bézout property,
as in Theorem 2.9.6), one is free to use any Frobenius, and so it is sometimes
convenient to use a “standard” Frobenius lift, under which uσ = uq and vnaive

n =
vn for all n. In general, however, one cannot get away with only standard
Frobenius lifts because the property of standardness is not preserved by passing
to ΓL

an,con for L a finite separable extension of k((t)).

Remark 2.3.10. It would be desirable to be able to have it possible for Γnaive
r

to be the ring of rigid analytic functions on an annulus over a p-adic field whose
valuation is not discrete (e.g., the completed algebraic closure Cp of Qp), since
the results of Lazard we are analogizing hold in that context. However, this
seems rather difficult to accommodate in the formalism developed above; for
instance, the vn cannot be described in terms of Teichmüller elements, so an
axiomatic characterization is probably needed. There are additional roadblocks
later in the story; we will flag some of these as we go along.

Remark 2.3.11. One can carry out an analogous comparison between näıve
and true partial valuations when K is the completion of k(x1, . . . , xn) for a
“monomial” valuation, in which v(x1), . . . , v(xn) are linearly independent over
Q; this gives additional examples in which the hypothesis “Γ has enough units”
can be checked, and hence additional examples in which the framework of this
paper applies. See [25] for details.

2.4 Analytic rings

We now proceed roughly as in [19, Section 3.3]; however, we will postpone
certain “reality checks” on the definitions until the next section.

Convention 2.4.1. Throughout this section, and for the rest of the chapter,
assume that the field K is complete with respect to the valuation vK , and that
ΓK has enough r0-units for some fixed r0 > 0. Note that the assumption that
K is complete ensures that Γr is complete under wr for any r ∈ [0, r0).

Definition 2.4.2. Let I be a subinterval of [0, r0) bounded away from r0,
i.e., I ⊆ [0, r] for some r < r0. Let ΓI be the Fréchet completion of Γr0

[π−1]
for the valuations ws for s ∈ I; note that the functions vn, vn,s, ws extend to
ΓI by continuity, and that σ extends to a map σ : ΓI → Γq−1I . For I ⊆ J
subintervals of [0, r0) bounded away from 0, we have a natural map ΓJ → ΓI ;
this map is injective with dense image. For I = [0, s], note that ΓI = Γs[π

−1].
For I = (0, s], we write Γan,s for ΓI .

Remark 2.4.3. In the context of Section 2.3, ΓI is the ring of rigid ana-
lytic functions on the subspace of the open unit disc defined by the condition
log|π| |u| ∈ I; compare Remark 2.3.8.

Definition 2.4.4. For I a subinterval of [0, r0) bounded away from r0, and
for x ∈ ΓI nonzero, define the Newton polygon of x to be the lower convex
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hull of the set of points (vn(x), n), minus any segment the negative of whose
slope is not in I. Define the slopes of x to be the negations of the slopes of the
Newton polygon of x. Define the multiplicity of s ∈ (0, r] as a slope of x to be
the difference in vertical coordinates between the endpoints of the segment of
the Newton polygon of x of slope −s, or 0 if no such segment exists. If x has
only finitely many slopes, define the total multiplicity of x to be the sum of the
multiplicities of all slopes of x. If x has only one slope, we say x is pure of that
slope.

Remark 2.4.5. The analogous definition of total multiplicity for Γnaive
r counts

the total number of zeroes (with multiplicities) that a function has in the
annulus |π|r ≤ |u| < 1.

Remark 2.4.6. Note that the multiplicity of any given slope is always finite.
More generally, for any closed subinterval I = [r′, r] of [0, r0), the total mul-
tiplicity of any x ∈ ΓI is finite. Explicitly, the total multiplicity equals i − j,
where i is the largest n achieving minn{vn,r(x)} and j is the smallest n achiev-
ing minn{vn,r′(x)}. In particular, if x ∈ Γan,r, the slopes of x form a sequence
decreasing to zero.

Lemma 2.4.7. For x, y ∈ ΓI nonzero, the multiplicity of each s ∈ I as a slope
of xy is the sum of the multiplicities of s as a slope of x and of y. In particular,
ΓI is an integral domain.

Proof. For x, y ∈ Γr[π
−1], this follows at once from Lemma 2.1.7. In the general

case, note that the conclusion of Lemma 2.1.7 still holds, by approximating x
and y suitably well by elements of Γr[π

−1].

Definition 2.4.8. Let ΓK
an,con be the union of the ΓK

an,r over all r ∈ (0, r0); this
ring is an integral domain by Lemma 2.4.7. Remember that we are allowing
vK to be trivial, in which case Γan,con = Γcon[π−1] = Γ[π−1].

Example 2.4.9. In the context of Section 2.3, the ring Γan,con consists of formal
Laurent series

∑

n∈Z cnun with each cn ∈ O[π−1], lim infn→−∞ w(cn)/(−n) >
0, and lim infn→∞ w(cn)/n ≥ 0. The latter is none other than the Robba ring
over O[π−1].

We make a few observations about finite extensions of Γan,con.

Proposition 2.4.10. Let L be a finite separable extension of K. Then the
multiplication map

µ : ΓK
an,con ⊗ΓK

con
ΓL

con → ΓL
an,con

is an isomorphism. More precisely, for any x ∈ ΓL
con such that x generates L

over K, we have ΓL
an,con

∼= ΓK
an,con[x]/(P (x)).

Proof. For s > 0 sufficiently small, we have ΓL
s

∼= ΓK
s [x]/(P (x)) by

Lemma 2.1.12, from which the claim follows.
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Corollary 2.4.11. Let L be a finite Galois extension of K. Then the fixed sub-
ring of Frac ΓL

an,con under the action of G = Gal(L/K) is equal to Frac ΓK
an,con.

Proof. By Proposition 2.4.10, the fixed subring of ΓL
an,con under the action of G

is equal to ΓK
an,con. Given x/y ∈ Frac ΓL

an,con fixed under G, put x′ =
∏

g∈G xg;

since x′ is G-invariant, we have x′ ∈ ΓK
an,con. Put y′ = x′y/x ∈ ΓL

an,con; then
x′/y′ = x/y, and both x′ and x′/y′ are G-invariant, so y′ is as well. Thus
x/y ∈ Frac ΓK

an,con, as desired.

Lemma 2.4.12. Let I be a subinterval of (0, r0) bounded away from r0. Then
the union ∪ΓL

I , taken over all pseudo-finite separable extensions L of K, is

dense in Γalg
I .

Proof. Let M be the algebraic closure (not completed) of K. Then ∪ΓL

is clearly dense in ΓM for the p-adic topology. By Remark 2.2.11 and
Lemma 2.2.12, the set of pseudo-finite separable extensions L such that ΓL

has enough r0-units is cofinal. Hence the set U of x ∈ ∪ΓL
r0

with wr0
(x) ≥ 0 is

dense in the set V of x ∈ ΓM
r0

with wr0
(x) ≥ 0 for the p-adic topology. On these

sets, the topology induced on U or V by any one ws with s ∈ (0, r0) is coarser
than the p-adic topology. Thus U is also dense in V for the Fréchet topology
induced by the ws for s ∈ I. It follows that ∪ΓL

I is dense in ΓM
I ; however, the

condition that 0 /∈ I ensures that ΓM
I = Γalg

I , so we have the desired result.

Remark 2.4.13. Recall that in [19] (contrary to our present Convention 2.2.16),
the residue field of Γalg is the algebraic closure of K, rather than the comple-
tion thereof. However, the definition of Γalg

an,con comes out the same, and our
convention here makes a few statements a bit easier to make. For instance, in
the notation of [19], an element x of Γalg

an,con can satisfy vn(x) = ∞ for all n < 0

without belonging to Γalg
con. (Thanks to Francesco Baldassarri for suggesting

this change.)

2.5 Reality checks

Before proceeding further, we must make some tedious but necessary “reality
checks” concerning the analytic rings. This is most easily done for K perfect,
where elements of ΓI have canonical decompositions (related to the “strong
semiunit decompositions” of [19, Proposition 3.14].)

Definition 2.5.1. For K perfect, define the functions fn : Γ[π−1] → K for
n ∈ Z by the formula x =

∑

n∈Z[fn(x)]πn, where the brackets again denote
Teichmüller lifts. Then

vn(x) = min
m≤n

{vK(fm(x))} ≤ vK(fn(x)),

which implies that fn extends uniquely to a continuous function fn : ΓI → K
for any subinterval I ⊆ [0,∞), and that the sum

∑

n∈Z[fn(x)]πn converges to
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x in ΓI . We call this sum the Teichmüller presentation of x. Let x+, x−, x0 be
the sums of [fn(x)]πn over those n for which vK(fn(x)) is positive, negative, or
zero; we call the presentation x = x++x−+x0 the plus-minus-zero presentation
of x.

From the existence of Teichm̈uller presentations, it is obvious that for instance,
if x ∈ Γan,r satisfies vn(x) = ∞ for all n < 0, then x ∈ Γr. In order to make
such statements evident in case K is not perfect, we need an approximation of
the same technique.

Definition 2.5.2. Define a semiunit to be an element of Γr0
which is either

zero or a unit. For I ⊆ [0, r0) bounded away from r0 and x ∈ ΓI , a semiunit
presentation of x (over ΓI) is a convergent sum x =

∑

i∈Z uiπ
i, in which each

ui is a semiunit.

Lemma 2.5.3. Suppose that u0, u1, . . . are semiunits.

(a) For each i ∈ Z and r ∈ (0, r0),

wr(uiπ
i) ≥ min

n≤i







vn,r





i
∑

j=0

ujπ
j











.

(b) Suppose that
∑∞

i=0 uiπ
i converges π-adically to some x such that for some

r ∈ (0, r0), vn,r(x) → ∞ as n → ∞. Then wr(uiπ
i) → ∞ as i → ∞, so

that
∑

i uiπ
i is a semiunit presentation of x over Γr.

Proof. (a) The inequality is evident for i = 0; we prove the general claim by
induction on i. If wr(uiπ

i) ≥ wr(ujπ
j) for some j < i, then the induction

hypothesis yields the claim. Otherwise, wr(uiπ
i) < wr(

∑

j<i ujπ
j), so

vn,r(
∑i

j=0 ujπ
j) = vn,r(uiπ

i), again yielding the claim.

(b) Choose r′ ∈ (r, r0); we can then apply (a) to deduce that

wr′(uiπ
i) ≥ min

n≤i
{vn,r′(x)}

= min
n≤i

{(r′/r)vn,r(x) + (1 − r′/r)n}.

It follows that

wr(uiπ
i) ≥ min

n≤i
{vn,r(x) + (r/r′ − 1)n} + (1 − r/r′)i

= min
n≤i

{vn,r(x) + (1 − r/r′)(i − n)}.

Since vn,r(x) → ∞ as n → ∞, the right side tends to ∞ as n → ∞.
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Lemma 2.5.4. Given a subinterval I of [0, r0) bounded away from r0, and r ∈ I,
suppose that x ∈ Γ[r,r] has the property that for any s ∈ I, vn,s(x) → ∞ as
n → ±∞. Suppose also that

∑

i uiπ
i is a semiunit presentation of x over Γ[r,r].

Then
∑

i uiπ
i converges in ΓI ; in particular, x ∈ ΓI .

Proof. By applying Lemma 2.5.3(a) to
∑N

i=−N uiπ
i and using continuity, we

deduce that wr(uiπ
i) ≥ minn≤i{vn,r(x)}. For s ∈ I with s ≥ r, we have

ws(uiπ
i) ≥ (s/r)wr(uiπ

i) + (s/r − 1)(−i), so ws(uiπ
i) → ∞ as i → −∞. On

the other hand, for s ∈ I with s < r, we have

ws(uiπ
i) = (s/r)wr(uiπ

i) + (1 − s/r)i

≥ (s/r)min
n≤i

{vn,r(x)} + (1 − s/r)i

= (s/r)min
n≤i

{(r/s)vn,s(x) + (1 − r/s)n} + (1 − s/r)i

= min
n≤i

{vn,s(x) + (s/r − 1)(n − i)}

≥ min
n≤i

{vn,s(x)};

by the hypothesis that vn,s(x) → ∞ as n → ±∞, we have ws(uiπ
i) → ∞ as

i → −∞ also in this case.
We conclude that

∑

i<0 uiπ
i converges in ΓI ; put y = x −

∑

i<0 uiπ
i. Then

∑∞
i=0 uiπ

i converges to y under wr, hence also π-adically. By Lemma 2.5.3(b),
∑∞

i=0 uiπ
i converges in Γr, so we have x ∈ ΓI , as desired.

One then has the following variant of [19, Proposition 3.14].

Proposition 2.5.5. For I a subinterval of [0, r0) bounded away from r0, every
x ∈ ΓI admits a semiunit presentation.

Proof. We first verify that for r ∈ (0, r0), every element of Γr admits a semi-
unit presentation. Given x ∈ Γr, we can construct a sum

∑

i uiπ
i converging

π-adically to x, in which each ui is a semiunit. By Lemma 2.5.3(b), this sum
actually converges under ws for each s ∈ [0, r], hence yields a semiunit presen-
tation.
We now proceed to the general case; by Lemma 2.5.4, it is enough to treat
the case I = [r, r]. Choose a sum

∑∞
i=0 xi converging to x in Γ[r,r], with each

xi ∈ Γr[π
−1]. We define elements yil ∈ Γr[π

−1] for i ∈ Z and l ≥ 0, such that for
each l, there are only finitely many i with yil 6= 0, as follows. By the vanishing
condition on the yil, x0 + · · · + xl −

∑

j<l

∑

i yijπ
i belongs to Γr[π

−1] and so

admits a semiunit presentation
∑

i uiπ
i by virtue of the previous paragraph.

For each i with wr(uiπ
i) < wr(xl+1) (of which there are only finitely many),

put yil = ui; for all other i, put yil = 0. Then

wr



x0 + · · · + xl −
∑

j≤l

∑

i

yijπ
i



 ≥ wr(xl+1).
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In particular, the doubly infinite sum
∑

i,l yilπ
i converges to x under wr. If we

set zi =
∑

l yil, then the sum
∑

i ziπ
i converges to x under wr.

Note that whenever yil 6= 0, wr(xl) ≤ wr(yilπ
i) by Lemma 2.5.3, whereas

wr(yilπ
i) < wr(xl+1) by construction. Thus for any fixed i, the values of

wr(yilπ
i), taken over all l such that yil 6= 0, form a strictly increasing sequence.

Since each such yil is a unit in Γr0
, we have wr0

(yilπ
i) = (r0/r)wr(yilπ

i) +
(1 − r0/r)i; hence the values of wr0

(yilπ
i) also form an increasing sequence.

Consequently, the sum
∑

l yil converges in Γr0
(not just under wr) and its limit

zi is a semiunit. Thus
∑

i ziπ
i is a semiunit presentation of x over Γ[r,r], as

desired.

Corollary 2.5.6. For r ∈ (0, r0) and x ∈ Γ[r,r], we have x ∈ Γr if and only
if vn(x) = ∞ for all n < 0.

Proof. If x ∈ Γr, then vn(x) = ∞ for all n < 0. Conversely, suppose that
vn(x) = ∞ for all n < 0. Apply Proposition 2.5.5 to produce a semiunit
presentation x =

∑

i uiπ
i. Suppose there exists j < 0 such that uj 6= 0; pick

such a j minimizing wr(ujπ
j). Then vj,n(x) = wr(ujπ

j) 6= ∞, contrary to
assumption. Hence uj = 0 for j < 0, and so x =

∑∞
i=0 uiπ

i ∈ Γr.

Corollary 2.5.7. Let I ⊆ J be subintervals of [0, r0) bounded away from r0.
Suppose x ∈ ΓI has the property that for each s ∈ J , vn,s(x) → ∞ as n → ±∞.
Then x ∈ ΓJ .

Proof. Produce a semiunit presentation of x over ΓJ using Proposition 2.5.5,
then apply Lemma 2.5.4.

The numerical criterion provided by Corollary 2.5.7 in turn implies a number
of results that are evident in the case of K perfect (using Teichmüller presen-
tations).

Corollary 2.5.8. For K ⊆ K ′ an extension of complete fields such that ΓK

and ΓK′

have enough r0-units, and I ⊆ J ⊆ [0, r0) bounded away from r0, we
have

ΓK
I ∩ ΓK′

J = ΓK
J .

Corollary 2.5.9. Let I = [a, b] and J = [c, d] be subintervals of [0, r0) bounded
away from r0 with a ≤ c ≤ b ≤ d. Then the intersection of ΓI and ΓJ within
ΓI∩J is equal to ΓI∪J . Moreover, any x ∈ ΓI∩J with ws(x) > 0 for s ∈ I ∩ J
can be written as y + z with y ∈ ΓI , z ∈ ΓJ , and

ws(y) ≥ (s/c)wc(x) (s ∈ [a, c])

ws(z) ≥ (s/b)wb(x) (s ∈ [b, d])

min{ws(y), ws(z)} ≥ ws(x) (s ∈ [c, b]).

Proof. The first assertion follows from Corollary 2.5.7. For the second assertion,
apply Proposition 2.5.5 to obtain a semiunit presentation x =

∑

uiπ
i. Put

y =
∑

i≤0 uiπ
i and z =

∑

i>0 uiπ
i; these satisfy the claimed inequalities.
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Remark 2.5.10. The notion of a semiunit presentation is similar to that of a
“semiunit decomposition” as in [19], but somewhat less intricate. In any case,
we will have only limited direct use for semiunit presentations; we will mostly
exploit them indirectly, via their role in proving Lemma 2.5.11 below.

Lemma 2.5.11. Let I be a closed subinterval of [0, r] for some r ∈ (0, r0), and
suppose x ∈ ΓI . Then there exists y ∈ Γr such that

ws(x − y) ≥ min
n<0

{vn,s(x)} (s ∈ I).

Proof. Apply Proposition 2.5.5 to produce a semiunit presentation
∑

i uiπ
i of

x. Then we can choose m > 0 such that ws(uiπ
i) > minn<0{vn,s(x)} for

s ∈ I and i > m. Put y =
∑m

i=0 uiπ
i; then the desired inequality follows from

Lemma 2.5.3(a).

Corollary 2.5.12. A nonzero element x of ΓI is a unit in ΓI if and only if
it has no slopes; if I = (0, r], this happens if and only if x is a unit in Γr[π

−1].

Proof. If x is a unit in ΓI , it has no slopes by Lemma 2.4.7. Conversely, suppose
that x has no slopes; then there exists a single m which minimizes vm,s(x) for
all s ∈ I. Without loss of generality we may assume that m = 0; we may then
apply Lemma 2.5.11 to produce y ∈ Γr such that ws(x−y) ≥ minn<0{vn,s(x)}
for all s ∈ I. Since Γ has enough r-units, we can choose a unit z ∈ Γr such
that w(y − z) > 0; then ws(1 − xz−1) > 0 for all s ∈ I. Hence the series
∑∞

i=0(1 − xz−1)i converges in ΓI , and its limit u satisfies uxz−1 = 1. This
proves that x is a unit.
In case I = (0, r], x has no slopes if and only if there is a unique m which
minimizes vm,s(x) for all s ∈ (0, r]; this is only possible if vn(x) = ∞ for
n < m. By Corollary 2.5.6, this implies x ∈ Γr[π

−1]; by the same argument,
x−1 ∈ Γr[π

−1].

2.6 Principality

In Remark 2.3.8, the annulus of which Γnaive
r is the rigid of rigid analytic

functions is affinoid (in the sense of Berkovich in case the endpoints are not
rational) and one-dimensional, and so Γnaive

r is a principal ideal domain. This
can be established more generally.
Before proceeding further, we mention a useful “positioning lemma”, which is
analogous to but not identical with [19, Lemma 3.24].

Lemma 2.6.1. For r ∈ (0, r0) and x ∈ Γ[r,r] nonzero, there exists a unit u ∈ Γr0

and an integer i such that, if we write y = uπix, then:

(a) wr(y) = 0;

(b) v0(y − 1) > 0;

(c) vn,r(y) > 0 for n < 0.
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Proof. Define i to be the largest integer minimizing v−i,r(x). Apply
Lemma 2.5.11 to find z ∈ Γr such that wr(π

ix − z) ≥ minn<0{vn,r(π
ix)}.

Since Γ has enough r0-units, we can choose a unit u of Γr0
such that u−1 ≡ z

(mod π); then u and i have the desired properties.

Definition 2.6.2. For x ∈ Γr nonzero, define the height of x as the largest n
such that wr(x) = vn,r(x); it can also be described as the p-adic valuation of x
plus the total multiplicity of x. By convention, we say 0 has height −∞.

Lemma 2.6.3 (Division algorithm). For r ∈ (0, r0) and x, y ∈ Γr with x
nonzero, there exists z ∈ Γr such that y − z is divisible by x, and z has height
less than that of x. Moreover, we can ensure that wr(z) ≥ wr(y).

Proof. Let m be the height of x. Apply Proposition 2.5.5 to choose a semiunit
presentation

∑∞
i=0 uiπ

i of x, and put x′ = x −
∑m−1

i=0 uiπ
i; then x′π−m is a

unit in Γr, and by Lemma 2.5.3,

wr(x − x′) ≥ wr(x) + (1 − r/r0).

Define a sequence {yl}
∞
l=0 as follows. Put y0 = y. Given yl with yl − y divisible

by x and wr(yl) ≥ wr(y), if yl has height less than m, we may take z = yl and
be done with the proof of the lemma. So we may assume that yl has height at
least m, which means that minn{vn,r(yl)} is achieved by at least one n ≥ m.
Pick y′

l ∈ Γr0
with wr(y

′
l−yl) ≥ wr(yl)+(1−r/r0), and apply Lemma 2.5.11 to

y′
lπ

−m to produce zl ∈ Γr0
such that wr0

(zl−y′
lπ

−m) ≥ minn<0{vn,r0
(y′

lπ
−m)}.

Put

yl+1 = yl − zl(π
m/x′)x

= (yl − y′
l) + (y′

l − zlπ
m) + zlπ

m(1 − x′/x).

By construction, we have wr(yl − y′
l) ≥ wr(yl) + (1 − r/r0) and wr(zlπ

m(1 −
x′/x)) ≥ wr(yl) + (1 − r/r0). Moreover, for n ≥ m, we have

vn,r(y
′
l − zlπ

m) = (r/r0)vn,r0
(y′

l − zlπ
m) + (1 − r/r0)n

≥ (r/r0)wr0
(y′

l − zlπ
m) + (1 − r/r0)m

≥ (r/r0) min
j<m

{vj,r0
(y′

l)} + (1 − r/r0)m

= min
j<m

{vj,r(y
′
l) + (1 − r/r0)(m − j)}

≥ min
j<m

{vj,r(y
′
l)} + (1 − r/r0)

≥ wr(y
′
l) + (1 − r/r0) = wr(yl) + (1 − r/r0).

It follows that for n ≥ m, we have vn,r(yl+1) ≥ wr(yl) + (1 − r/r0). We
may assume that yl+1 also has height at least m, in which case wr(yl+1) ≥
wr(yl) + (1 − r/r0). Hence (unless the process stops at some finite l, in which
case we already know that we win) the yl converge to zero under wr, and

y = x
∞
∑

l=0

(yl − yl+1)/x ∈ Γr
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is divisible by x, so we may take z = 0.

Remark 2.6.4. Note how we used the fact that ΓK has enough r0-units, not
just enough r-units. Also, note that the discreteness of the valuation on K was
essential to ensuring that the sequence {yl} converges to zero.

This division algorithm has the usual consequence.

Proposition 2.6.5. For r ∈ (0, r0), Γr is a principal ideal domain.

Proof. Let J be a nonzero ideal of Γr, and pick x ∈ J of minimal height. Then
for any y ∈ J , apply Lemma 2.6.3 to produce z of height less than x with y− z
divisible by x. Then z ∈ J , so we must have z = 0 by the minimality in the
choice of x. In other words, every y ∈ J is divisible by x, as claimed.

Remark 2.6.6. Here is one of the roadblocks mentioned in Remark 2.3.10: if
O is not discretely valued, then it is not even a PID itself, so the analogue of
Γr cannot be one either.

To extend Proposition 2.6.5 to more ΓI , we use the following factorization
lemma (compare [19, Lemma 3.25]). We will refine this lemma a bit later; see
Lemma 2.9.1.

Lemma 2.6.7. For I = [r′, r] ⊆ [0, r0) and x ∈ ΓI , there exists a unit u of ΓI

such that ux ∈ Γr, and all of the slopes of ux in [0, r] belong to I.

Proof. By applying Lemma 2.6.1, we may reduce to the case where wr′(x) = 0,
v0(x − 1) > 0, and vn,r′(x) > 0 for n < 0; then for n < 0, we must have
vn(x) > 0 and so vn,s(x) > 0 for all s ∈ I. Put

c = min
s∈I

{min
n≤0

{vn,s(x − 1)}} > 0.

Define the sequence u0, u1, . . . of units of ΓI as follows. First set u0 = 1. Given
ul such that minn≤0{vn,s(ulx − 1)} ≥ c for all s ∈ I, apply Lemma 2.5.11 to
produce yl ∈ Γr such that ws(yl − ulx) ≥ minn<0{vn,s(ulx)} for all s ∈ I. We
may thus take ul+1 = ul(1− yl + ulx), because ws(yl − ulx) ≥ c; moreover, for
n < 0,

vn,r′(ul+1x) = vn,r′(yl − ul+1x)

= vn,r′((yl − ulx)(1 − ulx))

≥ min
m

{vm,r′(yl − ulx) + vn−m,r′(1 − ulx)}.

This last minimum is at least minn<0{vn,r′(ulx)}. Moreover, if it is ever
less than minn<0{vn,r′(ulx)} + c, then the smallest value of n achieving
minn{vn,r′(ul+1x)} is strictly greater than the smallest value of n achieving
minn{vn,r′(ulx)} (since in that case, terms in the last minimum above with
m ≤ 0 cannot affect the minimum of the left side over all n < 0).
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In other words, for every l, there exists l′ > l such that

min
n<0

{vn,r′(ul′x)} ≥ min
n<0

{vn,r′(ulx)} + c.

Hence in case s = r′, we have minn<0{vn,s(ulx)} → ∞ as l → ∞; consequently,
the same also holds for s ∈ I. It follows that the sequence {ul} converges
to a limit u ∈ ΓI , and that vn,s(ux) = ∞ for n < 0, so that ux ∈ Γr by
Corollary 2.5.6. Moreover, by construction, minn{vn,r′(ux)} is achieved by
n = 0, so all of the slopes of ux are at least r′.

Proposition 2.6.8. Let I be a closed subinterval of [0, r0). Then ΓI is a
principal ideal domain.

Proof. Put I = [r′, r], and let J be a nonzero ideal of ΓI . By Lemma 2.6.7, each
element x of J can be written (nonuniquely) as a unit u of ΓI times an element
y of Γr. Let J ′ be the ideal of Γr generated by all such y; by Proposition 2.6.8,
J ′ is principal, generated by some z. Since J ′ ⊆ J ∩ Γr, we have z ∈ J ; on
the other hand, each x ∈ J has the form uy with u ∈ ΓI and y ∈ Γr, and y
is a multiple of z in Γr, so x is a multiple of z in ΓI . Hence z generates J , as
desired.

Remark 2.6.9. Proposition 2.6.8 generalizes Lazard’s [28, Corollaire de Propo-
sition 4].

2.7 Matrix approximations and factorizations

We need a matrix approximation lemma similar to [19, Lemma 6.2]; it is in
some sense a matricial analogue of Lemma 2.6.1.

Lemma 2.7.1. Let I be a closed subinterval of [0, r] for some r ∈ (0, r0), and
let M be an invertible n × n matrix over ΓI . Then there exists an invertible
n× n matrix U over Γr[π

−1] such that ws(MU − In) > 0 for s ∈ I. Moreover,
if ws(det(M) − 1) > 0, we can ensure that det(U) = 1.

Proof. By applying Lemma 2.6.1 to det(M) (and then multiplying a single row
of U by the resulting unit), we can ensure that ws(det(M) − 1) > 0 for s ∈ I.
With this extra hypothesis, we proceed by induction on n.
Let Ci denote the cofactor of Mni in M , so that det(M) =

∑n
i=1 CiMni, and in

fact Ci = (M−1)in det(M). Put αi = det(M)−1Mni, so that
∑n

i=1 αiCi = 1.
Choose β1, . . . , βn−1, β

′
n ∈ Γr[π

−1] such that for s ∈ I and i = 1, . . . , n − 1,

ws(βi − αi) > −ws(Ci) ws(β
′
n − αn) > −ws(Cn).

Note that for c ∈ O with w(c) sufficiently large, βn = β′
n + c satisfies ws(βn −

αn) > −ws(Cn) for s ∈ I. Moreover, by Proposition 2.6.8, we can find γ ∈
Γr[π

−1] generating the ideal generated by β1, . . . , βn−1; then the β′
n + c are

pairwise coprime for different c ∈ O, so only finitely many of them can have
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a nontrivial common factor with γ. In particular, for w(c) sufficiently large,
β1, . . . , βn generate the unit ideal in Γr[π

−1].
With β1, . . . , βn so chosen, we can choose a matrix A over Γr[π

−1] of determi-
nant 1 such that Ani = βi for i = 1, . . . , n (because Γr[π

−1] is a PID, again by
Proposition 2.6.8). Put M ′ = MA−1, and let C ′

n be the cofactor of M ′
nn in

M ′. Then

C ′
n = (AM−1)nn det(M)

=

n
∑

i=1

Ani(M
−1)in det(M) =

n
∑

i=1

βiCi,

so that

C ′
n = 1 +

n
∑

i=1

(βi − αi)Ci

and so ws(C
′
n − 1) > 0 for s ∈ I. In particular, C ′

n is a unit in ΓI .
Apply the induction hypothesis to the upper left (n − 1) × (n − 1) submatrix
of M ′, and extend the resulting (n− 1)× (n− 1) matrix V to an n× n matrix
by setting Vni = Vin = 0 for i = 1, . . . , n − 1 and Vnn = 1. Then we have
det(M ′V ) = det(M), so ws(det(M ′V ) − 1) > 0 for s ∈ I, and

ws((M
′V − In)ij) > 0 (i = 1, . . . , n − 1; j = 1, . . . , n − 1; s ∈ I).

We now perform an “approximate Gaussian elimination” over ΓI to transform
M ′V into a new matrix N with ws(N − In) > 0 for s ∈ I. First, define a
sequence of matrices {X(h)}∞h=0 by X(0) = M ′V and

X
(h+1)
ij =

{

X
(h)
ij i < n

X
(h)
nj −

∑n−1
m=1 X

(h)
nmX

(h)
mj i = n;

note that X(h+1) is obtained from X(h) by subtracting X
(h)
nm times the m-th

row from the n-th row for m = 1, . . . , n−1 in succession. At each step, for each

s ∈ I, min1≤j≤n−1{ws(X
(h)
nj )} increases by at least min1≤i,j≤n−1{ws((M

′V −
In)ij)}; the latter is bounded away from zero over all s ∈ I, because I is closed
and ws(x) is a continuous function of s. Thus for h sufficiently large, we have

ws(X
(h)
nj ) > max{0, max

1≤i≤n−1
{−ws(X

(h)
in )}} (s ∈ I; j = 1, . . . , n − 1).

Pick such an h and set X = X(h); note that det(X) = det(M ′V ), so
ws(det(X) − 1) > 0 for s ∈ I. For s ∈ I,

ws((X − In)ij) > 0 (i = 1, . . . , n; j = 1, . . . , n − 1)

ws(XinXnj) > 0 (i = 1, . . . , n − 1; j = 1, . . . , n − 1)

and hence also ws(Xnn − 1) > 0.
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Next, we perform “approximate backsubstitution”. Define a sequence of ma-
trices {W (h)}∞h=0 by setting W (0) = X and

W
(h+1)
ij =

{

W
(h)
ij − W

(h)
in W

(h)
nj i < n

W
(h)
ij i = n;

note that W (h+1) is obtained from W (h) by subtracting W
(h)
in times the n-th

row from the i-th row for i = 1, . . . , n − 1. At each step, for s ∈ I, ws(W
(h)
in )

increases by at least ws(Xnn − 1); again, the latter is bounded away from zero
over all s ∈ I because I is closed and ws(x) is continuous in s. Thus for h
sufficiently large,

ws(W
(h)
in ) > 0 (s ∈ I; 1 ≤ i ≤ n − 1).

Pick such an h and set W = Wh; then ws(W − In) > 0 for s ∈ I. (Note
that the inequality ws(XinXnj) > 0 for i = 1, . . . , n − 1 and j = 1, . . . , n − 1
ensures that the second set of row operations does not disturb the fact that

ws(W
(h)
ij ) > 0 for i = 1, . . . , n − 1 and j = 1, . . . , n − 1.)

To conclude, note that by construction, (M ′V )−1W is a product of elementary
matrices over ΓI , each consisting of the diagonal matrix plus one off-diagonal
entry. By suitably approximating the off-diagonal entry of each matrix in the
product by an element of Γr, we get an invertible matrix Y over Γr such that
ws(M

′V Y − In) > 0 for s ∈ I. We may thus take U = A−1V Y to obtain the
desired result.

We also need a factorization lemma in the manner of [19, Lemma 6.4].

Lemma 2.7.2. Let I = [a, b] and J = [c, d] be subintervals of [0, r0) bounded
away from r0, with a ≤ c ≤ b ≤ d, and let M be an n × n matrix over ΓI∩J

with ws(M − In) > 0 for s ∈ I ∩ J . Then there exist invertible n × n matrices
U over ΓI and V over ΓJ such that M = UV .

Proof. We construct sequences of matrices Ul and Vl over ΓI and ΓJ , respec-
tively, with

ws(Ul − In) ≥ (s/c)wc(M − In) (s ∈ [a, c])

ws(Vl − In) ≥ (s/b)wb(M − In) (s ∈ [b, d])

min{ws(Ul − In), ws(Vl − In)} ≥ ws(M − In) (s ∈ [c, b])

ws(U
−1
l MV −1

l − In) ≥ 2lws(M − In) (s ∈ [c, b]),

as follows. Start with U0 = V0 = In. Given Ul, Vl, put Ml = U−1
l MV −1

l .
Apply Corollary 2.5.9 to split Ml − In = Yl + Zl with Yl defined over ΓI , Zl

defined over ΓJ , and

ws(Yl) ≥ (s/c)wc(Ml − In) ≥ (s/c)wc(M − In) (s ∈ [a, c])

ws(Zl) ≥ (s/b)wb(Ml − In) ≥ (s/b)wb(M − In) (s ∈ [b, d])

min{ws(Yl), ws(Zl)} ≥ ws(Ml − In) ≥ 2lws(M − In) (s ∈ [c, b]).
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Put Ul+1 = Ul(I+Yl) and Vl+1 = (I+Zl)Vl; then one calculates that ws(Ml+1−
In) ≥ 2l+1ws(M − In) for s ∈ [c, b].

We deduce that the sequences {Ul} and {Vl} each converge under ws for s ∈
[c, b], and the limits U and V satisfy min{ws(U−In), ws(V −In)} ≥ ws(M−In)
for s ∈ [c, b], and M = UV . However, the subset x ∈ ΓI on which

ws(x) ≥

{

(s/c)wc(M − In) s ∈ [a, c]

ws(M − In) s ∈ [c, b]

is complete under any one ws, so U has entries in ΓI and ws(U − In) ≥
(s/c)wc(M − In) for s ∈ [a, c]. Similarly, V has entries in ΓJ and ws(V − In) ≥
(s/b)wb(M − In) for s ∈ [b, d]. In particular, U and V are invertible over ΓI

and ΓJ , and M = UV , yielding the desired factorization.

2.8 Vector bundles

Over an open rigid analytic annulus, one specifies a vector bundle by specifying
a vector bundle (necessarily freely generated by global sections) on each closed
subannulus and providing glueing data; if the field of coefficients is spherically
complete, it can be shown that the result is again freely generated by global
sections. Here we generalize the discretely valued case of this result to analytic
rings. (For rank 1, the annulus statement can be extracted from results of [28];
the general case can be found in [21, Theorem 3.4.3]. In any case, it follows
from our Theorem 2.8.4 below.)

Definition 2.8.1. Let I be a subinterval of [0, r0) bounded away from r0, and
let S be a collection of closed subintervals of I closed under finite intersections,
whose union is all of I. Define an S-vector bundle over ΓI to be a collection
consisting of one finite free ΓJ -module MJ for each J ∈ S, plus isomorphisms

ιJ1,J2
: MJ1

⊗ΓJ1
ΓJ2

∼= MJ2

whenever J2 ⊆ J1, satisfying the compatibility condition ιJ2,J3
◦ ιJ1,J2

= ιJ1,J3

whenever J3 ⊆ J2 ⊆ J1. These may be viewed as forming a category in which
a morphism between the collections {MJ} and {NJ} consists of a collection of
morphisms MJ → NJ of ΓJ -modules which commute with the isomorphisms
ιJ1,J2

.

This definition obeys the analogue of the usual glueing property for coherent
sheaves on an affinoid space (i.e., the theorem of Kiehl-Tate).

Lemma 2.8.2. Let I be a subinterval of [0, r0) bounded away from r0, and let
S1 ⊆ S2 be two collections of closed subintervals of I as in Definition 2.8.1.
Then the natural functor from the category of S2-vector bundles over ΓI to
S1-vector bundles over ΓI is an equivalence.
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Proof. We define a quasi-inverse functor as follows. Given J ∈ S2, by com-
pactness we can choose J1, . . . , Jm ∈ S1 with J ⊆ J ′ = J1 ∪ · · · ∪ Jm; it is
enough to consider the case where m = 2 and J1 ∩ J2 6= ∅, as we can repeat
the construction to treat the general case.
Define MJ ′ to be the ΓJ ′ -submodule of MJ1

⊕ MJ2
consisting of those pairs

(v1,v2) such that

ιJ1,J1∩J2
(v1) = ιJ2,J1∩J2

(v2).

Let v1, . . . ,vn be a basis of MJ1
and let w1, . . . ,wn be a basis of MJ2

. Then
there is an invertible n×n matrix A over MJ1∩J2

given by wj =
∑

i Aijvi. By
Lemma 2.7.2, A can be factored as UV , where U is invertible over ΓJ1

and V
is invertible over ΓJ2

. Set

ej =

(

∑

i

Uijvi,
∑

i

(V −1)ijwi

)

;

then e1, . . . , en form a basis of MJ ′ , since the first components form a basis of
MJ1

, the second components form a basis of MJ2
, and the intersection of ΓJ1

and ΓJ2
within ΓJ1∩J2

equals ΓJ1∪J2
(by Corollary 2.5.9). In particular, the

natural maps MJ ′ ⊗ΓJ′
ΓJi

→ MJi
for i = 1, 2 are isomorphisms. We may thus

set MJ = MJ ′ ⊗ΓJ′
ΓJ .

Definition 2.8.3. By Lemma 2.8.2, the category of S-vector bundles over ΓI

is canonically independent of the choice of S. We thus refer to its elements
simply as vector bundles over ΓI .

It follows that for I closed, any vector bundle over ΓI is represented by a free
module; a key result for us is that one has a similar result over Γan,r.

Theorem 2.8.4. For r ∈ (0, r0), the natural functor from finite free Γan,r-
modules to vector bundles over Γan,r = Γ(0,r] is an equivalence.

Proof. To produce a quasi-inverse functor, let J1 ⊆ J2 ⊆ · · · be an increasing
sequence of closed intervals with right endpoints r, whose union is (0, r]; for
ease of notation, write Γi for ΓJi

. We can specify a vector bundle over Γi by
specifying a finite free Γi-module Ei for each i, plus identifications Ei+1 ⊗Γi+1

Γi
∼= Ei.

Choose a basis v1,1, . . . ,v1,n of E1. Given a basis vi,1, . . . ,vi,n of Ei, we choose
a basis vi+1,1, . . . ,vi+1,n of Ei+1 as follows. Pick any basis e1, . . . , en of Ei+1,
and define an invertible n×n matrix Mi over Γi by writing el =

∑

j(Mi)jlvi,j .
Apply Lemma 2.7.1 to produce an invertible n×n matrix Ui over Γr such that
ws(MiUi−In) > 0 for s ∈ Ji. Apply Lemma 2.5.11 to produce an n×n matrix
Vi over Γr with ws(MiUi−In−Vi) ≥ minm<0{vm,s(MiUi−In)} for s ∈ Ji; then
wr(Vi) > 0, so In + Vi is invertible over Γr. Put Wi = MiUi(In + Vi)

−1, and
define vi+1,1, . . . ,vi+1,n by vi+1,l =

∑

j(Wi)jlvi,j ; these form another basis of
Ei+1 because we changed basis over Γr.
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If we write Ji = [ri, r], then for any fixed s ∈ (0, r], we have

ws(Wi − In) = ws((MiUi − In − Vi)(In + Vi)
−1)

≥ min
m<0

{vm,s(MiUi − In)}

= min
m<0

{(s/ri)vm,ri
(MiUi − In) + (1 − s/ri)m}

≥ min
m<0

{vm,ri
(MiUi − In)} + (s/ri − 1)

> (s/ri − 1),

which tends to ∞ as i → ∞. Thus the product W1W2 · · · converges to an
invertible matrix W over Γan,r, and the basis e1, . . . , en of E1 defined by

el =
∑

j

Wjlv1,j

actually forms a basis of each Ei. Hence the original vector bundle can be
reconstructed from the free Γan,r-module generated by e1, . . . , en; this yields
the desired quasi-inverse.

Corollary 2.8.5. For r ∈ (0, r0), let M be a finite free Γan,r-module. Then
every closed submodule of M is free; in particular, every closed ideal of Γan,r

is principal.

Proof. A submodule is closed if and only if it gives rise to a sub-vector bundle of
the vector bundle associated to M ; thus the claim follows from Theorem 2.8.4.

Remark 2.8.6. One might expect that more generally every vector bundle over
ΓI is represented by a finite free ΓI -module; we did not verify this.

2.9 The Bézout property

One pleasant consequence of Theorem 2.8.4 is the fact that the ring Γan,r has
the Bézout property, as we verify in this section. We start by refining the
conclusion of Lemma 2.6.7 (again, compare [19, Lemma 3.25]).

Lemma 2.9.1. For r, s, s′ ∈ (0, r0) with s′ < s < r, and f ∈ Γ[s′,r], there exists
g ∈ Γr[π

−1] with the following properties.

(a) The ideals generated by f and g in Γ[s,r] coincide.

(b) The slopes of g in [0, r] are all contained in [s, r].

Moreover, any such g also has the following property.

(c) f is divisible by g in Γ[s′,r].
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Proof. By Lemma 2.6.7, we can find a unit u of Γ[s′,r] such that uf ∈ Γr[π
−1]

and the slopes of uf in [0, r] are all contained in [s, r]. We may thus take
g = uf to obtain at least one g ∈ Γr[π

−1] satisfying (a) and (b); hereafter, we
let g be any element of Γr[π

−1] satisfying (a) and (b). Then the multiplicity of
each element of [s, r] as a slope of g is equal to its multiplicity as a slope of f .
Since Γr[π

−1] is a PID by Proposition 2.6.8, we can find an element h ∈ Γr[π
−1]

generating the ideal generated by uf and g in Γr[π
−1]; in particular, the mul-

tiplicity of each element of [s, r] as a slope of h is less than or equal to its
multiplicity as a slope of g. However, h must also generate the ideal generated
by f and g in Γ[s,r], which is generated already by f alone; in particular, the
multiplicity of each element of [s, r] as a slope of f is equal to its multiplicity
as a slope of h.
We conclude that each element of [s, r] occurs as a slope of f, g, h all with
the same multiplicity. Since g only has slopes in [s, r], g/h must be a unit in
Γr[π

−1]; hence uf is already divisible by g in Γr[π
−1], so f is divisible by g in

Γ[s′,r] as desired.

Lemma 2.9.2. Given r ∈ (0, r0) and x ∈ Γr[π
−1] with greatest slope s0 < r,

choose r′ ∈ (s0, r). Then for any y ∈ Γr[π
−1] and any c > 0, there exists

z ∈ Γr[π
−1] with y−z divisible by x in Γan,r, such that ws(z) > c for s ∈ [r′, r].

Proof. As in the proof of Lemma 2.6.1, we can find a unit u ∈ Γr and an integer
i such that minn{vn,r(uxπi)} is achieved by n = 0 but not by any n > 0, and
that v0(uxπi − 1) > 0. Since s0 < r, in fact minn{vn,r(uxπi)} is only achieved
by n = 0, so wr(uxπi − 1) > 0. Similarly, ws(uxπi − 1) > 0 for s ∈ [r′, r]; since
[r′, r] is a closed interval, we can choose d > 0 such that ws(uxπi − 1) ≥ d for
s ∈ [r′, r]. Now simply take

z = y(1 − uxπi)N

for some integer N with Nd + ws(y) > c for s ∈ [r′, r].

We next introduce a “principal parts lemma” (compare [19, Lemma 3.31]).

Lemma 2.9.3. For r ∈ (0, r0), let I1 ⊂ I2 ⊂ · · · be an increasing sequence of
closed subintervals of (0, r] with right endpoints r, whose union is all of (0, r],
and put Γi = ΓIi

. Given f ∈ Γan,r and gi ∈ Γi such that for each i, gi+1 − gi is
divisible by f in Γi, there exists g ∈ Γan,r such that for each i, g−gi is divisible
by f in Γi.

Proof. Apply Lemma 2.9.1 to produce fi ∈ Γr dividing f in Γan,r, such that f
and fi generate the same ideal in Γi, fi only has slopes in Ii, and f/fi has no
slopes in Ii; put f0 = 1. By Lemma 2.9.1 again (with s′ varying), fi is divisible
by fi−1 in Γan,r, hence also in Γr[π

−1]; put hi = fi/fi−1 ∈ Γr[π
−1] and h0 = 1.

Set x0 = 0. Given xi ∈ Γr[π
−1] with xi − gi divisible by fi in Γi, note that

the ideal generated by hi+1 and fi in Γr[π
−1] is principal by Proposition 2.6.8.

Moreover, any generator has no slopes by Lemma 2.4.7 and so must be a unit
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in Γr[π
−1] by Corollary 2.5.12. That is, we can find ai+1, bi+1 ∈ Γr[π

−1]
with ai+1hi+1 + bi+1fi = 1. Moreover, by applying Lemma 2.9.2, we may
choose ai+1, bi+1 with ws(bi+1(gi+1 − xi)fi) ≥ i for s ∈ Ii. (More precisely,
apply Lemma 2.9.2 with the roles of x and y therein played by hi+1 and bi+1,
respectively; this is valid because hi+1 has greatest slope less than any element
of Ii.)
Now put xi+1 = xi + bi+1(gi+1 − xi)fi; then xi+1 − gi is divisible by fi in Γi,
as then is xi+1 − gi+1 since gi+1 − gi is divisible by fi in Γi. By Lemma 2.9.1,
xi+1 − gi+1 is divisible by fi also in Γi+1. Since xi+1 − gi+1 is also divisible by
hi+1 in Γi+1, xi+1 − gi+1 is divisible by fi+1 in Γi+1.
For any given s, we have ws(xi+1 − xi) ≥ i for i large, so the xi converge to a
limit g in Γan,r. Since g − gi is divisible by fi in Γi, it is also divisible by f in
Γi. This yields the desired result.

Remark 2.9.4. The use of the fi in the proof of Lemma 2.9.3 is analogous
to the use of “slope factorizations” in [19]. Slope factorizations (convergent
products of pure elements converging to a specified element of Γan,r), which
are inspired by the comparable construction in [28], will not be used explicitly
here; see [19, Lemma 3.26] for their construction.

We are finally ready to analyze the Bézout property.

Definition 2.9.5. A Bézout ring/domain is a ring/domain in which every
finitely generated ideal is principal. Such rings look like principal ideal rings
from the point of view of finitely generated modules. For instance:

• Every n-tuple of elements of a Bézout domain which generate the unit
ideal is unimodular, i.e., it occurs as the first row of a matrix of deter-
minant 1 [19, Lemma 2.3]. (Beware that [19, Lemma 2.3] is stated for a
Bézout ring but is only valid for a Bézout domain.)

• The saturated span of any subset of a finite free module over a Bézout
domain is a direct summand [19, Lemma 2.4].

• Every finitely generated locally free module over a Bézout domain is free
[19, Proposition 2.5], as is every finitely presented torsion-free module
[12, Proposition 4.9].

• Any finitely generated submodule of a finite free module over a Bézout
ring is free (straightforward).

Theorem 2.9.6. For r ∈ (0, r0), the ring Γan,r is a Bézout domain (as then is
Γan,con). More precisely, if J is an ideal of Γan,r, the following are equivalent.

(a) The ideal J is closed.

(b) The ideal J is finitely generated.

(c) The ideal J is principal.
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Proof. Clearly (c) implies both (a) and (b). Also, (a) implies (c) by Theo-
rem 2.8.4. It thus suffices to show that (b) implies (a); by induction, it is
enough to check in case J is generated by two nonzero elements x, y. More-
over, we may form the closure of J , find a generator z, and then divide x and
y by z; in other words, we may assume that 1 is in the closure of J , and then
what we are to show is that 1 ∈ J .
Let I1 ⊂ I2 ⊂ · · · be an increasing sequence of closed subintervals of (0, r],
with right endpoints r, whose union is all of (0, r]. Then x and y generate
the unit ideal in Γi = ΓIi

for each i; that is, we can choose ai, bi ∈ Γi with
aix + biy = 1. Note that bi+1 − bi is divisible by x in Γi; by Lemma 2.9.3, we
can choose b ∈ Γan,r with b − bi divisible by x in Γi for each i. Then by − 1
is divisible by x in each Γi, hence also in Γan,r (by Corollary 2.5.7); that is, x
and y generate the unit ideal in Γan,r, as desired.
We have thus shown that (a), (b), (c) are equivalent, proving that Γan,r is a
Bézout ring. Since Γan,con is the union of the Γan,r for r ∈ (0, r0), it is also
a Bézout ring because any finitely generated ideal is generated by elements of
some Γan,r.

Remark 2.9.7. In Lazard’s theory (in which ΓI becomes the ring of rigid
analytic functions on the annulus log|π| |u| ∈ I), the implication (b) =⇒ (a) is
[28, Proposition 11], and holds without restriction on the coefficient field. The
implication (a) =⇒ (b) is equivalent to spherical completeness of the coefficient
field [28, Théorème 2]; however, the analogue here would probably require K
also to be spherically complete (compare Remark 2.8.6), which is an undesirable
restriction. For instance, it would complicate the process of descending the
slope filtration in Chapter 6.

3 σ-modules

We now introduce modules equipped with a semilinear endomorphism (σ-
modules) and study their properties, specifically over Γan,con. In order to high-
light the parallels between this theory and the theory of stable vector bundles
(see for instance [33]), we have shaped our presentation along the lines of that
of Hartl and Pink [17]; they study vector bundles with a Frobenius structure on
a punctured disc over a complete nonarchimedean field of equal characteristic
p, and prove results very similar to our results over Γalg

an,con.
Beware that our overall sign convention is “arithmetic” and not “geometric”;
it thus agrees with the sign conventions of [18] (and of [19]), but disagrees with
the sign convention of [17] and with the usual convention in the vector bundle
setting.

Remark 3.0.1. We retain all notation from Chapter 2, except that we redefine
the term “slope”; see Definition 3.4.1. In particular, K is a field complete
with respect to the valuation vK , and ΓK is assumed to have enough r0-units
for some r0 > 0. Remember that vK is allowed to be trivial unless otherwise

Documenta Mathematica 10 (2005) 447–525



478 Kiran S. Kedlaya

specified; that means any result about Γan,con also applies to Γ[π−1], unless its
statement explicitly requires vK to be nontrivial.

3.1 σ-modules

Definition 3.1.1. For a ring R containing O in which π is not a zero divisor,
equipped with a ring endomorphism σ, a σ-module over a ring R is a finite
locally free R-module M equipped with a map F : σ∗M → M (the Frobenius
action) which becomes an isomorphism after inverting π. (Here σ∗M = M⊗R,σ

R; that is, view R as a module over itself via σ, and tensor it with M over R.)
We can view M as a left module over the twisted polynomial ring R{σ}; we can
also view F as a σ-linear additive endomorphism of M . A homomorphism of σ-
modules is a module homomorphism equivariant with respect to the Frobenius
actions.

Remark 3.1.2. We will mostly consider σ-modules over Bézout rings like
Γan,con, in which case there is no harm in replacing “locally free” by “free”
in the definition of a σ-module.

Remark 3.1.3. The category of σ-modules is typically not abelian (unless vK

is trivial), because we cannot form cokernels thanks to the requirement that
the underlying modules be locally free.

Remark 3.1.4. For any positive integer a, σa is also a Frobenius lift, so we
may speak of σa-modules. This will be relevant when we want to perform
“restriction of scalars” in Section 3.2. However, there is no loss of generality in
stating definitions and theorems in the case a = 1, i.e., for σ-modules.

Definition 3.1.5. Given a σ-module M of rank n and an integer c (which must
be nonnegative if π−1 /∈ R), define the twist M(c) of M by c to be the module
M with the Frobenius action multiplied by πc. (Beware that this definition
reflects an earlier choice of normalization, as in Remark 2.1.11, and a choice
of a sign convention.) If π is invertible in R, define the dual M∨ of M to be
the σ-module HomR(M,R) ∼= (∧n−1M) ⊗ (∧nM)⊗−1 and the internal hom of
M,N as M∨ ⊗ N .

Definition 3.1.6. Given a σ-module M over a ring R, let H0(M) and H1(M)
denote the kernel and cokernel, respectively, of the map F−1 on M ; note that if
N is another σ-module, then there is a natural bilinear map H0(M)×H1(N) →
H1(M ⊗ N). Given two σ-modules M1 and M2 over R, put Ext(M1,M2) =
H1(M∨

1 ⊗M2); a standard homological calculation (as in [17, Proposition 2.4])
shows that Ext(M1,M2) coincides with the Yoneda Ext1 in this category. That
is, Ext(M1,M2) classifies short exact sequences 0 → M2 → M → M1 → 0 of
σ-modules over R, up to isomorphisms

0 // M2
//

²²

M //

²²

M1
//

²²

0

0 // M2
// M // M1

// 0
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which induce the identity maps on M1 and M2.

3.2 Restriction of Frobenius

We now introduce two functors analogous to those induced by the “finite maps”
in [17, Section 7]. Beware that the analogy is not perfect; see Remark 3.2.2.

Definition 3.2.1. Fix a ring R equipped with an endomorphism σ. For a a
positive integer, let [a] : R{σa} → R{σ} be the natural inclusion homomor-
phism of twisted polynomial rings. Define the a-pushforward functor [a]∗, from
σ-modules to σa-modules, to be the restriction functor along [a]. Define the
a-pullback functor [a]∗, from σa-modules to σ-modules, to be the extension of
scalars functor

M 7→ R{σ} ⊗R{σa} M.

Note that [a]∗ and [a]∗ are left and right adjoints of each other. Also, [a]∗[a′]∗ =
[aa′]∗ and [a]∗[a

′]∗ = [aa′]∗. Furthermore, [a]∗(M(c)) = ([a]∗M)(ac).

Remark 3.2.2. There are some discrepancies in the analogy with [17], due
to the fact that there the corresponding map [a] is actually a homomorphism
of the underlying ring, rather than a change of Frobenius. The result is that
some (but not all!) of the properties of the pullback and pushforward are
swapped between here and [17]. For an example of this mismatch in action,
see Proposition 3.4.4.

Remark 3.2.3. The functors [a] will ultimately serve to rescale the slopes of a
σ-module; using them makes it possible to avoid the reliance in [19, Chapter 4]
on making extensions of O. Among other things, this lets us get away with
normalizing w in terms of the choice of O, since we will not have to change
that choice at any point except in Lemma 5.2.4.

Lemma 3.2.4. For any positive integer a and any integer c, [a]∗[a]∗(R(c)) ∼=
R(c)⊕a.

Proof. We can write

[a]∗[a]∗(R(c)) ∼= ⊕a−1
i=0 {σ

i}(R(c)),

where on the right side R{σa} acts separately on each factor. Hence the claim
follows. (Compare [17, Proposition 7.4].)

Lemma 3.2.5. Suppose that the residue field of O contains an algebraic closure
of Fq. For i a positive integer, let Li be the fixed field of O[π−1] under σi.

(a) For any σ-module M over Γan,con and any positive integer a,
H0([a]∗M) = H0(M) ⊗L1

La.

(b) For any σ-modules M and N over Γan,con and any positive integer a,
M ∼= N if and only if [a]∗M ∼= [a]∗N .
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Proof. (a) It suffices to show that H0([a]∗M) admits a basis invariant under
the induced action of σ. Since σ generates Gal(La/L1), this follows from
Hilbert’s Theorem 90.

(b) A morphism [a]∗M → [a]∗N corresponds to an element of V =
H0(([a]∗M)∨⊗ [a]∗N) ∼= H0([a]∗(M

∨⊗N)), which by (a) coincides with
H0(M∨ ⊗ N) ⊗L1

La. If there is an isomorphism [a]∗M ∼= [a]∗N , then
the determinant locus on V is not all of V ; hence the same is true on
H0(M∨ ⊗ N). We can thus find an F -invariant element of M∨ ⊗ N cor-
responding to an isomorphism M ∼= N . (Compare [17, Propositions 7.3
and 7.5].)

3.3 σ-modules of rank 1

In this section, we analyze some σ-modules of rank 1 over Γan,con; this amounts
to solving some simple equations involving σ, as in [19, Proposition 3.19] (com-
pare also [17, Propositions 3.1 and 3.3]).

Definition 3.3.1. Define the twisted powers π{m} of π by the two-way recur-
rence

π{0} = 1, π{m+1} = (π{m})σπ.

First, we give a classification result.

Proposition 3.3.2. Let M be a σ-module of rank 1 over R, for R one of
Γalg

con,Γalg
con[π−1],Γalg

an,con. Then there exists a unique integer n, which is nonneg-

ative if R = Γalg
con, such that M ∼= R(n).

Proof. Let v be a generator of M , and write Fv = xv. Then x must be a
unit in R, so by Corollary 2.5.12, x ∈ Γalg

con[π−1] and so w(x) is defined. If
M ∼= R(n), we must then have n = w(x); hence n is unique if it exists.
Since the residue field of Γalg

con is algebraically closed, we can find a unit u in Γalg
con

such that uσπ−nx ≡ u (mod π). Choose r > 0 such that wr(u
σπ−nx/u− 1) >

0; then there exists a unit y ∈ Γalg with uσπ−nx/u = yσ/y, and a direct
calculation (by induction on m) shows that vm,r(y) > 0 for all m > 0. (For
details, see the proof of Lemma 5.4.1.) Hence y is a unit in Γalg

con, and so
w = (u/y)v is a generator of M satisfying Fw = πn

w. Thus there exists an
isomorphism M ∼= R(n).

We next compute some instances of H0.

Lemma 3.3.3. Let n be a nonnegative integer. If x ∈ Γan,con and x − πnxσ ∈
Γcon[π−1], then x ∈ Γcon[π−1].

Proof. Suppose the contrary; put y = x−πnxσ. We can find m with vm(y) = ∞
and 0 < vm(x) < ∞, since both hold for m sufficiently small by Corollary 2.5.6.
Then

vm(x) > q−1vm(x) = q−1vm(πnxσ) = q−1vm−n(xσ) = vm−n(x) ≥ vm(x),

Documenta Mathematica 10 (2005) 447–525



Slope Filtrations Revisited 481

contradiction.

Proposition 3.3.4. Let n be an integer.

(a) If n = 0, then H0(Γcon[π−1](n)) = H0(Γan,con(n)) 6= 0; moreover, any
nonzero element of H0(Γan,con) is a unit in Γan,con.

(b) If n > 0, then H0(Γan,con(n)) = 0.

(c1) If n < 0 and vK is trivial, then H0(Γan,con(n)) = 0.

(c2) If n < 0, vK is nontrivial, and K is perfect, then H0(Γan,con(n)) 6= 0.

Proof. The group H0(R(n)) consists of those x ∈ R with

πnxσ = x, (3.3.5)

so our assertions are all really about the solvability of this equation.

(a) If n = 0, then H0(Γcon[π−1](n)) = H0(Γan,con(n)) by Lemma 3.3.3, and
the former equals the fixed field of O[π−1] under σ.

(b) By Lemma 3.3.3, any solution x of (3.3.5) over Γan,con actually belongs
to Γcon[π−1]. In particular, w(x) = w(xσ) is well-defined. But (3.3.5)
yields w(xσ) + n = w(x), which for n > 0 forces x = 0.

(c1) If n < 0 and vK is trivial, then w(x) = w(xσ) is well-defined, but (3.3.5)
yields w(xσ) + n = w(x), which forces x = 0.

(c2) If n < 0, vK is nontrivial, and K is perfect, we may pick u ∈ K with
vK(u) > 0 (since vK is nontrivial), and then set x to be the limit of the
convergent series

∑

m∈Z

(π{m})n[uqm

]

to obtain a nonzero solution of (3.3.5).

Remark 3.3.6. If n < 0, vK is nontrivial, and K is not perfect, then the
size of H0(Γan,con(n)) depends on the particular choice of the Frobenius lift
σ on Γan,con. For instance, in the notation of Section 2.3, if σ is a so-called
“standard Frobenius lift” sending u to uq, then any solution x =

∑

xiu
i of

(3.3.5) must have xi = 0 whenever i is not divisible by q. By the same token,
xi = 0 whenever i is not divisible by q2, or by q3, and so on; hence we must
have x ∈ O[π−1], which as in (b) above is impossible for n > 0. On the other
hand, if uσ = (u + 1)q − 1, then x = log(1 + u) ∈ Γan,con satisfies xσ = qx;
indeed, the existence of such an x is a backbone of the theory of (Φ,Γ)-modules
associated to p-adic Galois representations, as in [4].

We next consider H1.
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Proposition 3.3.7. Let n be an integer.

(a) If n = 0 and K is separably closed, then H1(Γcon[π−1](n)) =
H1(Γan,con(n)) = 0.

(b1) If n ≥ 0, then the map H1(Γcon[π−1](n)) → H1(Γan,con(n)) is injective.

(b2) If n > 0 and vK is trivial, then H1(Γan,con(n)) = 0.

(b3) If n > 0, vK is nontrivial, and K is perfect, then H1(Γan,con(n)) 6= 0,
with a nonzero element given by [x] for any x ∈ K with vK(x) < 0.

(c) If n < 0 and K is perfect, then H1(Γcon[π−1](n)) = H1(Γan,con(n)) = 0.

Proof. The group H1(R(n)) consists of the quotient of the additive group of R
by the subgroup of those x ∈ R for which the equation

x = y − πnyσ (3.3.8)

has a solution y ∈ R, so our assertions are all really about the solvability of
this equation.

(a) If n = 0 and K is separably closed, then for each x ∈ Γ, there exists
y ∈ Γ such that x ≡ y − yq (mod π). By iterating this construction, we
can produce for any x ∈ Γ[π−1] an element y ∈ Γ[π−1] satisfying (3.3.8),
such that

vm(y) ≥ min{vm(x), vm(x)/q};

in particular, if x ∈ Γcon[π−1], then y ∈ Γcon[π−1]. Moreover, given
x ∈ Γan,con, we can write x as a convergent series of elements of
Γcon[π−1], and thus produce a solution of (3.3.8). Hence H1(Γcon(n)) =
H1(Γan,con(n)) = 0.

(b1) This follows at once from Lemma 3.3.3.

(b2) If n > 0 and vK is trivial, then for any x ∈ Γan,con, the series

y =
∞
∑

m=0

(π{m})nxσm

converges π-adically to a solution of (3.3.8).

(b3) By (b1), it suffices to show that x = [x] represents a nonzero element of
H1(Γcon[π−1](n)). By (b2), there exists a unique y ∈ Γ[π−1] satisfying
(3.3.8); however, we have vmn(y) = qmvK(x) for all m ≥ 0, and so
y /∈ Γcon[π−1].
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(c) Let x =
∑

i[xi]π
i be the Teichmüller presentation of x. Pick c > 0, and

let z1 and z2 be the sums of [xi]π
i over those i for which vK(xi) < c and

vK(xi) ≥ c, respectively. Then the sums

y1 =
∞
∑

m=0

−(π{−m−1})nzσ−m−1

1

y2 =

∞
∑

m=0

(π{m})nzσm

2

converge to solutions of z1 = y1 −πnyσ
1 and z2 = y2 −πnyσ

2 , respectively.
Hence y = y1 + y2 is a solution of (3.3.8). Moreover, if x ∈ Γcon[π−1],
then xi = 0 for i sufficiently small, so we can choose c to ensure z2 = 0;
then y = y1 ∈ Γcon[π−1].

3.4 Stability and semistability

As in [17], we can set up a formal analogy between the study of σ-modules over
Γan,con and the study of stability of vector bundles.

Definition 3.4.1. For M a σ-module of rank 1 over Γan,con generated by some
v, define the degree of M , denoted deg(M), to be the unique integer n such
that M ⊗ Γalg

an,con
∼= Γalg

an,con(n), as provided by Proposition 3.3.2; concretely,
deg(M) is the valuation of the unit via which F acts on a generator of M .
For a σ-module M over Γan,con of rank n, define deg(M) = deg(∧nM). Define
µ(M) = deg(M)/ rank(M); we refer to µ(M) as the slope of M (or as the
weight of M , per the terminology of [17, Section 6]).

Lemma 3.4.2. Let M be a σ-module over Γan,con, and let N be a σ-submodule
of M with rank(M) = rank(N). Then deg(N) ≥ deg(M), with equality if and
only if M = N ; moreover, equality must hold if vK is trivial.

Proof. By taking exterior powers, it suffices to check this for rankM =
rankN = 1; also, there is no harm in assuming that K is algebraically closed.
By Proposition 3.3.2, M ∼= Γalg

an,con(c) and N ∼= Γalg
an,con(d) for some integers

c, d. By twisting, we may reduce to the case d = 0. Then by Proposition 3.3.4,
we have 0 ≥ c, with equality forced if vK is trivial; moreover, if c = 0, then
N contains a generator which also belongs to H0(M). But every nonzero ele-
ment of the latter also generates M , so c = 0 implies M = N . (Compare [17,
Proposition 6.2].)

Lemma 3.4.3. If 0 → M1 → M → M2 → 0 is a short exact sequence of
σ-modules over Γan,con, then deg(M) = deg(M1) + deg(M2).
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Proof. Put n1 = rank(M1) and n2 = rank(M2). Then the claim follows from
the existence of the isomorphism

∧n1+n2M ∼= (∧n1M1) ⊗ (∧n2M2)

of σ-modules.

Proposition 3.4.4. Let a be a positive integer, let M be a σ-module over
Γan,con, and let N be a σa-module over Γan,con.

(a) deg([a]∗M) = adeg(M) and deg([a]∗N) = deg(N).

(b) rank([a]∗M) = rank(M) and rank([a]∗N) = a rank(N).

(c) µ([a]∗M) = aµ(M) and µ([a]∗N) = 1
aµ(N).

Proof. Straightforward (compare [17, Proposition 7.1], but note that the roles
of the pullback and pushforward are interchanged here).

Definition 3.4.5. We say a σ-module M over Γan,con is semistable if µ(M) ≤
µ(N) for any nonzero σ-submodule N of M . We say M is stable if µ(M) <
µ(N) for any nonzero proper σ-submodule N of M . Note that the direct sum of
semistable σ-modules of the same slope is also semistable. By Proposition 3.4.4,
for any positive integer a, if [a]∗M is (semi)stable, then M is (semi)stable.

Remark 3.4.6. As noted earlier, the inequalities are reversed from the usual
definitions of stability and semistability for vector bundles, because of an overall
choice of sign convention.

Remark 3.4.7. Beware that this use of the term “semistable” is only distantly
related to its use to describe p-adic Galois representations!

Lemma 3.4.8. For any integer c and any positive integer n, the σ-module
Γan,con(c)⊕n is semistable of slope c.

Proof. There is no harm in assuming that K is algebraically closed, and that
vK is nontrivial. Let N be a nonzero σ-submodule of M of rank d′ and degree
c′. Then

Γalg
an,con(c′) ∼= ∧d′

N ⊆ ∧d′

Γalg
an,con(c)⊕n ∼= Γalg

an,con(cd′)⊕(n
d′).

In particular, H0(Γalg
an,con(cd′ − c′)) 6= 0; by Proposition 3.3.4(b), this implies

c′ ≥ cd′, yielding semistability. (Compare [17, Proposition 6.3(b)].)

Lemma 3.4.9. For any positive integer a and any integer c, the σ-module
[a]∗(Γan,con(c)) over Γan,con is semistable of rank a, degree c, and slope c/a.
Moreover, if a and c are coprime, then [a]∗(Γan,con(c)) is stable.
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Proof. By Lemma 3.2.4 and Lemma 3.4.8, [a]∗[a]∗(Γan,con(c)) is semistable of
rank a and slope c; as noted in Definition 3.4.5, it follows that [a]∗(Γan,con(c))
is semistable.
Let M be a nonzero σ-submodule of [a]∗(Γan,con(c)). If a and c are coprime,
then deg(M) = (c/a) rank(M) is an integer; since rank(M) ≤ a, this is only
possible for rank(M) = a. But then Lemma 3.4.2 implies that µ(M) > c/a
unless M = [a]∗(Γan,con(c)). We conclude that [a]∗(Γan,con(c)) is stable. (Com-
pare [17, Proposition 8.2].)

3.5 Harder-Narasimhan filtrations

Using the notions of degree and slope, we can make the usual formal construc-
tion of Harder-Narasimhan filtrations, with its usual properties.

Definition 3.5.1. Given a multiset S of n real numbers, define the Newton
polygon of S to be the graph of the piecewise linear function on [0, n] sending
0 to 0, whose slope on [i − 1, i] is the i-th smallest element of S; we refer to
the point on the graph corresponding to the image of n as the endpoint of the
polygon. Conversely, given such a graph, define its slope multiset to be the
slopes of the piecewise linear function on [i− 1, i] for i = 1, . . . , n. We say that
the Newton polygon of S lies above the Newton polygon of S′ if no vertex of
the polygon of S lies below the polygon of S′, and the two polygons have the
same endpoint.

Definition 3.5.2. Let M be a σ-module over Γan,con. A semistable filtration
of M is an exhaustive filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M of M
by saturated σ-submodules, such that each successive quotient Mi/Mi−1 is
semistable of some slope si. A Harder-Narasimhan filtration (or HN-filtration)
of M is a semistable filtration with s1 < · · · < sl. An HN-filtration is unique if
it exists, as M1 can then be characterized as the unique maximal σ-submodule
of M of minimal slope, and so on.

Definition 3.5.3. Let M be a σ-module over Γan,con. Given a semistable
filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M of M , form the multiset consisting
of, for i = 1, . . . , l, the slope µ(Mi/Mi−1) with multiplicity rank(Mi/Mi−1).
We call this the slope multiset of the filtration, and we call the associated
Newton polygon the slope polygon of the filtration. If M admits a Harder-
Narasimhan filtration, we refer to the slope multiset as the Harder-Narasimhan
slope multiset (or HN-slope multiset) of M , and to the Newton polygon as the
Harder-Narasimhan polygon (or HN-polygon) of M .

Proposition 3.5.4. Let M be a σ-module over Γan,con admitting an HN-
filtration. Then the HN-polygon lies above the slope polygon of any semistable
filtration of M .

Proof. Let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M be an HN-filtration, and let
0 = M ′

0 ⊂ M ′
1 ⊂ · · · ⊂ M ′

m = M be a semistable filtration. To prove the
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inequality, it suffices to prove that for each of i = 1, . . . , l, we can choose
rank(M/Mi) slopes from the slope multiset of the semistable filtration whose
sum is greater than or equal to the sum of the greatest rank(M/Mi) HN-slopes
of M ; note that the latter is just deg(M/Mi).
For l = 1, . . . ,m, put

dl = rank(M ′
l + Mi) − rank(M ′

l−1 + Mi) ≤ rank(M ′
l/M

′
l−1).

Since M ′
l/M

′
l−1 is semistable and (M ′

l + Mi)/(M ′
l−1 + Mi) is a quotient of

M ′
l/M

′
l−1, we have

µ(M ′
l/M

′
l−1) ≥ µ((M ′

l + Mi)/(M ′
l−1 + Mi)).

However, we also have

l
∑

i=1

dlµ((M ′
l + Mi)/(M ′

l−1 + Mi)) = deg(M/Mi),

yielding the desired inequality.

Remark 3.5.5. We will ultimately prove that every σ-module over Γan,con

admits a Harder-Narasimhan filtration (Proposition 4.2.5), and that the suc-
cessive quotients become isomorphic over Γalg

an,con to direct sums of “standard”
σ-modules of the right slope (Theorems 6.3.3 and 6.4.1). Using the formalism
of Harder-Narasimhan filtrations makes it a bit more convenient to articulate
the proofs of these assertions.

3.6 Descending subobjects

We will ultimately be showing that the formation of a Harder-Narasimhan
filtration of a σ-module over Γan,con commutes with base change. In order to
prove this sort of statement, it will be useful to have a bit of terminology.

Definition 3.6.1. Given an injection R →֒ S of integral domains equipped
with compatible endomorphisms σ, a σ-module M over R, and a saturated
σ-submodule NS of MS = M ⊗R S, we say that NS descends to R if there
is a saturated σ-submodule N of M such that NS = N ⊗R S; note that N
is unique if it exists, because it can be characterized as M ∩ NS . Likewise,
given a filtration of MS , we say the filtration descends to R if it is induced by
a filtration of M .

The following lemma lets us reduce most descent questions to consideration of
submodules of rank 1.

Lemma 3.6.2. With notation as in Definition 3.6.1, suppose that R is a Bézout
domain, and put d = rankNS. Then NS descends to R if and only if ∧dNS ⊆
(∧dM)S descends to R.
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Proof. If NS = N ⊗R S, then ∧dNS = (∧dN)⊗R S descends to R. Conversely,
if ∧dNS = (N ′)⊗RS, let N be the σ-submodule of M consisting of those v ∈ M
such that v ∧ w = 0 for all w ∈ N ′. Then N is saturated and N ⊗R S = NS ,
since N is defined by linear conditions which in MS cut out precisely NS . Since
R is a Bézout domain, this suffices to ensure that N is free; since N is visibly
stable under F , N is in fact a σ-submodule of M , and so NS descends to R.

4 Slope filtrations of σ-modules

In this chapter, we give a classification of σ-modules over Γalg
an,con, as in [19,

Chapter 4]. However, this presentation looks somewhat different, mainly be-
cause of the formalism introduced in the previous chapter. We also have in-
tegrated into a single presentation the cases where vK is nontrivial and where
vK is trivial; these are presented separately in [19] (in Chapters 4 and 5 re-
spectively). These two cases do have different flavors, which we will point out
as we go along.
Beware that although we have mostly made the exposition self-contained, there
remains one notable exception: we do not repeat the key calculation made in
[19, Lemma 4.12]. See Lemma 4.3.3 for the relevance of this calculation.

Convention 4.0.1. To lighten the notational load, we write R for Γalg
an,con.

Whenever working over R, we also make the harmless assumption that π is
σ-invariant.

4.1 Standard σ-modules

Following [17, Section 8], we introduce the standard building blocks into which
we will decompose σ-modules over R.

Definition 4.1.1. Let c, d be coprime integers with d > 0. Define the σ-module
Mc,d = [d]∗(R(c)) over R; that is, Mc,d is freely generated by e1, . . . , ed with

Fe1 = e2, . . . , Fed−1 = ed, Fed = πc
e1.

This σ-module is stable of slope c/d by Lemma 3.4.9. We say a σ-module M is
standard if it is isomorphic to some Mc,d; in that case, we say a basis e1, . . . , ed

as above is a standard basis of M .

Lemma 4.1.2. (a) Mc,d ⊗ Mc′,d′
∼= M

⊕dd′/d′′

c′′,d′′ , where c/d + c′/d′ = c′′/d′′ in
lowest terms.

(b) Mc,d(c
′) ∼= Mc+c′d,d.

(c) M∨
c,d

∼= M−c,d.

Proof. To verify (a), it is enough to do so after applying [dd′]∗ thanks to
Lemma 3.2.5. Then the desired isomorphism follows from Lemma 3.2.4. Asser-
tion (b) follows from (a), and (c) follows from the explicit description of Mc,d

given above. (Compare [17, Proposition 8.3].)
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Proposition 4.1.3. Let c, d be coprime integers with d > 0.

(a) The group H0(Mc,d) is nonzero if and only if vK is nontrivial and c/d ≤
0, or vK is trivial and c/d = 0.

(b) The group H1(Mc,d) is nonzero if and only if vK is nontrivial and c/d >
0.

Proof. These assertions follow from Propositions 3.3.4 and 3.3.7, plus the fact
that Hi([d]∗M) ∼= Hi(M) for i = 0, 1.

Corollary 4.1.4. Let c, c′, d, d′ be integers, with d, d′ positive and gcd(c, d) =
gcd(c′, d′) = 1.

(a) We have Hom(Mc′,d′ ,Mc,d) 6= 0 if and only if vK is nontrivial and c′/d′ ≥
c/d, or vK is trivial and c′/d′ = c/d.

(b) We have Ext(Mc′,d′ ,Mc,d) 6= 0 if and only if vK is nontrivial and c′/d′ <
c/d.

Remark 4.1.5. One can show that End(Mc,d) is a division algebra (this can
be deduced from the fact that Mc,d is stable) and even describe it explicitly,
as in [17, Proposition 8.6]. For our purposes, it will be enough to check that
End(Mc,d) is a division algebra after establishing the existence of Dieudonné-
Manin decompositions; see Corollary 4.5.9.

4.2 Existence of eigenvectors

In classifying σ-modules over R, it is useful to employ the language of “eigen-
vectors”.

Definition 4.2.1. Let d be a positive integer. A d-eigenvector (or simply
eigenvector if d = 1) of a σ-module M over R is a nonzero element v of M
such that F d

v = πc
v for some integer c. We refer to the quotient c/d as the

slope of v.

Proposition 4.2.2. Suppose that vK is nontrivial. Then every nontrivial σ-
module over R contains an eigenvector.

Proof. The calculation is basically that of [19, Proposition 4.8]: use the fact
that F makes things with “very positive partial valuations” converge better
whereas F−1 makes things with “very negative partial valuations” converge
better. However, one can simplify the final analysis a bit, as is done in [17,
Theorem 4.1].
We first set some notation as in [19, Proposition 4.8]. Let M be a nontrivial
σ-module over R. Choose a basis e1, . . . , en of M , and define the invertible
n × n matrix A over R by the equation Fej =

∑

i Aijei. Choose r > 0 such
that A and its inverse have entries in Γalg

an,r. Choose ǫ > 0, and choose an
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integer c with c ≤ min{wr(A), wr((A
−1)σ−1

)} − ǫ. Choose an integer m > c
such that the interval

(

−c + m

(q − 1)r
,
q(c + m)

(q − 1)r

)

is nonempty (true for m sufficiently large), and choose d in the intersection of
that interval with the image of vK . (The choice of d is possible because vK is
nontrivial and the residue field of Γalg

con is algebraically closed, so the image of
vK contains a copy of Q and hence is dense in R.)
For an interval I ⊆ (0, r], define the functions a, b : ΓI → ΓI as follows. For x ∈
ΓI , let

∑

j∈Z[xj ]π
j be the Teichmüller presentation of x (as in Definition 2.5.1).

Let a(x) and b(x) be the sums of [xj ]π
j over those j with vK(xj) < d and

vK(xj) ≥ d, respectively. We may think of a and b as splitting x into “negative”
and “positive” terms. (This decomposition shares its canonicality with the
corresponding decomposition in [17, Theorem 4.1] but not with the one in [19,
Proposition 4.8].)
For I ⊆ (0, r], let MI denote the ΓI -span of the ei. For v ∈ MI , write v =
∑

i xiei, and for s ∈ I, define

vn,s(v) = min
i
{vn,s(xi)}

ws(v) = min
i
{ws(xi)}.

Put a(v) =
∑

i a(xi)ei and b(v) =
∑

i b(xi)ei; then by the choice of d, we have
for v ∈ M(0,r],

wr(π
mF−1(a(v))) ≥ wr(a(v)) + ǫ

wr(π
−mF (b(v))) ≥ wr(b(v)) + ǫ.

Put
f(v) = π−mb(v) − F−1(a(v)).

If v ∈ M(0,r] is such that w = Fv − πm
v also lies in M(0,r], then

F (v + f(w)) − πm(v + f(w))

= F (f(w)) − πmf(w) + w

= F (π−mb(w)) − a(w) − b(w) + πmF−1(a(w)) + w

= π−mF (b(w)) + πmF−1(a(w))

lies in M(0,r] as well, and

wr(f(w)) ≥ wr(π
−m

w)

wr(F (v + f(w)) − πm(v + f(w))) ≥ wr(w) + ǫ.

Now define a sequence {vl}
∞
l=0 in M(0,r] as follows. Pick x ∈ K with vK(x) = d,

and set
v0 = π−m[x]e1 + [x1/q]F−1

e1.
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Given vl ∈ M(0,r], set

wl = Fvl − πm
vl, vl+1 = vl + f(wl).

We calculated above that wl ∈ M(0,r] implies wl+1 ∈ M(0,r]; since w0 ∈ M(0,r]

evidently, we have wl ∈ M(0,r] for all l, so vl+1 ∈ M(0,r] and the iteration
continues. Moreover,

wr(vl+1 − vl) ≥ wr(π
−m

wl)

wr(wl) = wr(F (vl−1 + f(w)) − πm(vl−1 + f(w)))

≥ wr(wl−1) + ǫ.

Hence wl → 0 and f(wl) → 0 under wr as l → ∞, so the vl converge to a limit
v ∈ M[r,r].
We now check that v 6= 0. Since wr(wl+1) ≥ wr(wl) + ǫ for all l, we certainly
have wr(wl) ≥ wr(w0) for all l, and hence wr(vl+1 − vl) ≥ wr(π

−m
w0). To

compute wr(w0), note that wr(π
−m[x]e1) = dr − m, whereas

wr([x
1/q]F−1

e1) ≥ dr/q + c

> dr − m

by the choice of d. Hence wr(v0) = dr − m. On the other hand,

wr(π
−m

w0) = wr(π
−mFv0 − v0)

= wr(π
−2m[xq]Fe1 − [x1/q]F−1

e1)

≥ min{dqr + c − 2m, dr/q + c}.

The second term is strictly greater than dr − m as above, while the first term
equals dr − m plus dr(q − 1) + c − m, and the latter is positive again by the
choice of d. Thus wr(π

−m
w0) > wr(v0), and so wr(vl+1 − vl) > wr(v0); in

particular, wr(v) = wr(v0) and so v 6= 0.
Since the vl converge to v in M[r,r], the Fvl converge to Fv in M[r/q,r/q]. On
the other hand, Fvl = wl + πm

vl, so the Fvl converge to πm
v in M[r,r]. In

particular, the Fvl form a Cauchy sequence under ws for s = r/q and s = r,
hence also for all s ∈ [r/q, r], and the limit in M[r/q,r] must equal both Fv

and πm
v. Therefore v ∈ M[r/q,r] and Fv = πm

v in M[r/q,r/q]. But now
by induction on i, v ∈ M[r/qi,r] for all i, so v ∈ M(0,r] ⊂ M is a nonzero
eigenvector, as desired.

Lemma 4.2.3. Suppose that vK is nontrivial. Let M be a σ-module of rank n
over R.

(a) There exists an integer c0 such that for any integer c ≥ c0, there exists
an injection R(c)⊕n →֒ M .

(b) There exists an integer c1 such that for any integer c ≤ c1, there exists
an injection M →֒ R(c)⊕n.
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Proof. By taking duals, we may reduce (b) to (a). We prove (a) by induction on
n, with empty base case n = 0. By Proposition 4.2.2, there exists an eigenvector
of M ; the saturated span of this eigenvector is a rank 1 σ-submodule of M ,
necessarily isomorphic to some R(m) by Proposition 3.3.2. By the induction
hypothesis, we can choose c0 ≥ m so that R(c0)

n−1 injects into M/R(m). Let
N be the preimage of R(c0)

n−1 in M ; then there exists an exact sequence

0 → R(m) → N → R(c0)
n−1 → 0,

which splits by Corollary 4.1.4. Thus N ∼= R(m) ⊕R(c0)
n−1 ⊆ M , and R(m)

contains a copy of R(c0) by Corollary 4.1.4. This yields the desired result by
Corollary 4.1.4 again.

Proposition 4.2.4. For any nonzero σ-module M over Γan,con, the slopes of
all nonzero σ-submodules of N are bounded below. Moreover, there is a nonzero
σ-submodule of N of minimal slope, and any such σ-submodule is semistable.

Proof. To check the first assertion, we may assume (by enlarging K as needed)
that K is algebraically closed, so that Γan,con = R, and that vK is nontrivial.
By Lemma 4.2.3, there exists an injection M →֒ R(c)⊕n for some c, where
n = rankM . By Lemma 3.4.8, it follows that µ(N) ≥ c for any σ-submodule
N of M , yielding the first assertion.
As for the second assertion, the slopes of σ-submodules of M form a discrete
subset of Q, because their denominators are bounded above by n. Hence this
set has a least element, yielding the remaining assertions.

Proposition 4.2.5. Every σ-module over Γan,con admits a Harder-Narasimhan
filtration.

Proof. Let M be a nontrivial σ-module over Γan,con. By Proposition 4.2.4, the
set of slopes of nonzero σ-submodules of M has a least element s1. Suppose that
N1, N2 are σ-submodules of M with µ(N1) = µ(N2) = s1; then the internal
sum N1 + N2 is a quotient of the direct sum N1 ⊕ N2. By Proposition 4.2.4,
each of N1 and N2 is semistable, as then is N1 ⊕ N2. Hence µ(N1 + N2) ≤ s1;
by the minimality of s1, we have µ(N1 + N2) = s1. Consequently, the set of
σ-submodules of M of slope s1 has a maximal element M1. Repeating this
argument with M replaced by M/M1, and so on, yields a Harder-Narasimhan
filtration.

Remark 4.2.6. Running this argument is a severe obstacle to working with
spherically complete coefficients (as suggested by Remark 2.3.10), as it is no
longer clear that there exists a minimum slope among the σ-submodules of a
given σ-module.

Remark 4.2.7. It may be possible to simplify the calculations in this section
by using Lemma 6.1.1; we have not looked thoroughly into this possibility.
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4.3 More eigenvectors

We now give a crucial refinement of the conclusion of Proposition 4.2.2 by
extracting an eigenvector of a specific slope in a key situation. This is essentially
[19, Proposition 4.15]; compare also [17, Proposition 9.1]. Beware that we are
omitting one particularly unpleasant part of the calculation; see Lemma 4.3.3
below.
We start by identifying H0(R(−1)).

Lemma 4.3.1. The map

y 7→
∑

i∈Z

[yq−i

]πi

induces a bijection mK → H0(R(−1)), where mK denotes the subset of K on
which vK is positive.

Proof. On one hand, for vK(y) > 0, the sum y =
∑

i∈Z[yq−i

]πi converges
and satisfies yσ = πy. Conversely, if yσ = πy, comparing the Teichmüller
presentations of yσ and of πy forces y to assume the desired form.

We next give a “positioning argument” for elements of H1(R(m)), following
[19, Lemmas 4.13 and 4.14].

Lemma 4.3.2. For m a positive integer, every nonzero element of H1(R(m))
is represented by some x ∈ Γalg

con with vn(x) = vm−1(x) for n ≥ m. Moreover,
we can ensure that for each n ≥ 0, either vn(x) = ∞ or vn(x) < 0.

Proof. We first verify that each element of H1(R(m)) is represented by an

element of Γalg
con[π−1]. If vn(x) ≥ 0 for all n ∈ Z, then the sum y =

∑∞
i=0 xσi

πmi

converges in R and satisfies y − πmyσ = x, so x represents the zero class
in H1(R(m)). In other words, if x ∈ R has plus-minus-zero representation
x+ + x− + x0, then x and x− represent the same class in H1(R(m)), and
visibly x− ∈ Γalg

con[π−1].
We next verify that each element of H1(R(m)) is represented by an element x of
Γalg

con[π−1] with infn{vn(x)} > −∞. Given any x ∈ Γalg
con[π−1], let x =

∑

i[xi]π
i

be the Teichmüller representation of x. For each i, let ci be the smallest
nonnegative integer such that q−civK(xi) ≥ −1, and put

yi =

ci
∑

j=1

[xi
q−j

]πi−mj ;

since ci grows only logarithmically in i, i − mci → ∞ and the sum
∑

i yi

converges π-adically. Moreover,

lim sup
i→∞

min
1≤j≤ci

{−q−jv0(xi)/(i − mj)}

is finite, because the same is true for each of q−j (clear), −v0(xi)/i (by the
definition of R), and i/(i−mj) (because ci grows logarithmically in i). Hence
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the sum y =
∑

i yi actually converges in R; if we set x′ = x − πmyσ + y, then
x and x′ represent the same class in H1(R(m)). However,

x′ =
∑

i

[xi
q−ci

]πi−mci

satisfies vn(x′) ≥ −1 for all n.
Since x and πmxσ represent the same element of H1(R(m)), we can also say
that each element of H1(R(m)) is represented by an element x of Γalg

con with
infn{vn(x)} > −∞. Given such an x, put h = infn{vn(x)}; we attempt to
construct a sequence x0, x1, . . . with the following properties:

(a) x0 = x;

(b) each xl generates the same element of H1(R(m)) as does x;

(c) xl ≡ 0 (mod πlm);

(d) for each n and l, vn(xl) ≥ h.

We do this as follows. Given xl, let
∑∞

i=lm[xl,i]π
i be the Teichmüller presen-

tation of xl, and put

ul =

lm+m−1
∑

i=lm

[xl,i]π
i.

If vlm+m−1(xl) ≥ h/q, put xl+1 = xl − ul + πmuσ
l ; otherwise, leave xl+1

undefined.
If xl is defined for each l, then set y =

∑∞
l=0 ul; this sum converges in R, and

its limit satisfies x− y + πmyσ = 0. Hence in this case, x represents the trivial
class in H1(R(m)).
On the other hand, if we are able to define xl but not xl+1, put

y = xl − ul

z = π−(l+1)myσ−l−1

+ π−lmuσ−l

l ;

then x and z represent the same class in H1(R(m)). Moreover, h/q > vn(u)

and vn(y) ≥ h for all n, so hq−l−1 > vn(π−lmuσ−l

l ) and vn(π−(l+1)myσ−l−1

) ≥
hq−l−1; consequently vn(z) = vm−1(z) for n ≥ m. In addition, we can pass
from z to the minus part z− of its plus-minus-zero representation (since z and
z− represent the same class in H1(R(m)), as noted above) to ensure that vn(z−)
is either infinite or negative for all n ≥ 0. We conclude that every nonzero class
in H1(R(m)) has a representative of the desired form.

Lemma 4.3.3. Let d be a positive integer. For any x ∈ H1([d]∗(R(d+1))), there
exists y ∈ H0(R(−1)) nonzero such that x and y pair to zero in H1(R(−1) ⊗
[d]∗(R(d + 1))) = H1([d]∗(R(1))).
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Proof. Identify H1([d]∗(R(d+1))) and H1([d]∗(R(1))) with H1(R(d+1)) and
H1(R(1)), respectively, where the modules in the latter cases are σd-modules.
Then the question can be stated as follows: for any x ∈ R, there exist y, z ∈ R
with y nonzero, such that

yσ = πy, xy = z − πzσd

.

By Lemma 4.3.2, we may assume that x ∈ Γalg
con and that vn(x) = vd(x) < 0 for

n > d. In this case, the claim follows from a rather involved calculation [19,
Lemma 4.12] which we will not repeat here. (For a closely related calculation,
see [17, Proposition 9.5].)

Proposition 4.3.4. Assume that vK is nontrivial. For d a positive integer,
suppose that

0 → M1,d → M → M−1,1 → 0

is a short exact sequence of σ-modules over R. Then M contains an eigenvector
of slope 0.

Proof. The short exact sequence corresponds to a class in

Ext(M−1,1,M1,d) ∼= H1(M1,1 ⊗ M1,d)

∼= H1(Md+1,d)

∼= H1([d]∗(R(d + 1))).

From the snake lemma, we obtain an exact sequence

H0(M) → H0(M−1,1) = H0(R(−1)) → H1(M1,d) = H1([d]∗R(1)),

in which the second map (the connecting homomorphism) coincides with the
pairing with the given class in H1([d]∗(R(d + 1))). By Lemma 4.3.3, this
homomorphism is not injective; hence H0(M) 6= 0, as desired.

Corollary 4.3.5. Assume that vK is nontrivial. For d a positive integer,
suppose that

0 → M1,1 → M → M−1,d → 0

is a short exact sequence of σ-modules over R. Then M∨ contains an eigen-
vector of slope 0.

Proof. Dualize Proposition 4.3.4.

Corollary 4.3.6. Assume that vK is nontrivial. For c, c′, c′′ integers with
c + c′ ≤ 2c′′, suppose that

0 → Mc,1 → M → Mc′,1 → 0

is a short exact sequence of σ-modules over R. Then M contains an eigenvector
of slope c′′.
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Proof. By twisting, we may reduce to the case c′′ = 0. If c ≤ 0, then already
Mc,1 contains an eigenvector of slope 0 by Corollary 4.1.4, so we may assume
c ≥ 0. Since c + c′ ≤ 0, by Corollary 4.1.4, we can find a copy of M−c,1 within
Mc′,1; taking the preimage of M−c,1 within M allows us to reduce to the case
c′ = −c.
We treat the cases c ≥ 0 by induction, with base case c = 0 already treated. If
c > 0, then twisting yields an exact sequence

0 → Mc−1,1 → M(−1) → M−c−1,1 → 0.

By Corollary 4.1.4, we can choose a submodule of M−c−1,1 isomorphic to
M−c+1,1; let N be its inverse image in M(−1). Applying the induction hy-
pothesis to the sequence

0 → Mc−1,1 → N → M−c+1,1 → 0

yields an eigenvector of N of slope 0, and hence an eigenvector of M of slope
1. Let P be the saturated span of that eigenvector; it is isomorphic to Mm,1

for some m by Proposition 3.3.2, and we must have m ≤ 1 by Corollary 4.1.4.
If m ≤ 0, M has an eigenvector of slope 0, so suppose instead that m = 1. We
then have an exact sequence

0 → P ∼= M1,1 → M → M/P → 0

in which M/P , which has rank 1 and degree −1 (by Lemma 3.4.3), is isomorphic
to M−1,1 by Proposition 3.3.2. Applying Proposition 4.3.4 now yields the
desired result. (Compare [17, Corollary 9.2].)

4.4 Existence of standard submodules

We now run the induction setup of [17, Theorem 11.1] to produce standard
submodules of a σ-module of small slope.

Definition 4.4.1. For a given integer n ≥ 1, let (An), (Bn) denote the follow-
ing statements about n.

(An) Let a be any positive integer, and let M be any σa-module over R. If
rank(M) ≤ n and deg(M) ≤ 0, then M contains an eigenvector of slope
0.

(Bn) Let a be any positive integer, and let M be any σa-module over R.
If rank(M) ≤ n, then M contains a saturated σa-submodule which is
standard of slope ≤ µ(M).

Note that if vK is nontrivial, both (A1) and (B1) hold thanks to Proposi-
tion 3.3.2.

Lemma 4.4.2. Assume that vK is nontrivial. For n ≥ 2, if (An−1) and (Bn−1)
hold, then (An) holds.
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Proof. It suffices to show that if M is a σa-module over R with rank(M) = n
and deg(M) ≤ 0, then M contains an eigenvector of slope 0; after twisting, we
may reduce to the case 1 − n ≤ deg(M) ≤ 0. Suppose on the contrary that no
such eigenvector exists; by Corollary 4.1.4, M then contains no eigenvector of
any nonpositive slope.
On the other hand, by Proposition 4.2.2, M contains an eigenvector; in partic-
ular, M contains a saturated σa-submodule of rank 1. By Proposition 3.3.2,
we thus have an exact sequence

0 → Mc,1 → M → N → 0

for some integer c, which by hypothesis must be positive.
Choose c as small as possible; then deg(N) = deg(M)− c ≤ 0 by Lemma 3.4.3,
so by (An−1), N contains an eigenvector of slope 0. That is, N contains a σa-
submodule isomorphic to M0,1; let M ′ be the preimage in M of that submodule.
We then have an exact sequence

0 → Mc,1 → M ′ → M0,1 → 0.

By Corollary 4.3.6, M ′ contains an eigenvector of slope ⌈c/2⌉. By the mini-
mality of the choice of c, we must have c ≤ ⌈c/2⌉, or c = 1.
Put c′ = deg(M) − 1 = deg(N), so that c′ < 0. By (Bn−1), N contains a
saturated σa-submodule P which is standard of slope ≤ c′/(n − 1); let P ′ be
the preimage in M of that σa-submodule. If rank(P ) < n − 1, then deg(P ′) ≤
1 + rank(P )(c′/(n − 1)) < 1; since deg(P ′) is an integer, we have deg(P ′) ≤ 0.
By (An−1), P ′ contains an eigenvector of slope 0, contradicting our hypothesis.
If rank(P ) = n − 1, we have an exact sequence

0 → M1,1 → P ′ → P ∼= Mc′′,n−1 → 0

for some c′′ ≤ −1. By Corollary 4.1.4, there is a nonzero homomorphism
M−1,n−1 → Mc′′,n−1; if its image has rank < n − 1, then again (An−1) forces
P ′ to contain an eigenvector of slope 0, contrary to assumption. Hence Mc′′,n−1

contains a copy of M−1,n−1; choose such a copy and let P ′′ be its inverse image
in P ′. By Corollary 4.3.5, (P ′′)∨ contains an eigenvector of slope 0, and hence
a primitive eigenvector of slope at most 0; this eigenvector corresponds to a
rank n − 1 submodule of P ′′ of slope at most 0. By (An−1), P ′′ contains an
eigenvector of slope 0, contradicting our hypothesis.
In any case, our hypothesis that M contains no eigenvector of slope 0 has been
contradicted, yielding the desired result.

Lemma 4.4.3. Assume that vK is nontrivial. For n ≥ 2, if (An) and (Bn−1)
hold, then (Bn) holds.

Proof. Let M be a σa-module of rank n and degree c. Put b = n/ gcd(n, c);
then by (An) applied after twisting, [b]∗M (which has rank n and degree bc,
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by Proposition 3.4.4) has an eigenvector of slope bc/n. That is, M has a b-
eigenvector v of slope c/n; this gives a nontrivial map f : Mbc/n,b → M sending

a standard basis to v, Fv, . . . , F b−1
v. Let N be the saturated span of the image

of f , and put m = rankN . Then ∧mN admits a b-eigenvector of slope cm/n,
so by Corollary 4.1.4, the slope of N is at most c/n. If m < n, we may apply
(Bn−1) to N to obtain the desired result.
Suppose instead that m = n, which also implies b = n since necessarily m ≤
b ≤ n. Then the map f is injective, so its image has slope c/n. By Lemma 3.4.2,
f must in fact be surjective; thus M ∼= Mc,n, as desired.

4.5 Dieudonné-Manin decompositions

Definition 4.5.1. A Dieudonné-Manin decomposition of a σ-module M over
R is a direct sum decomposition M = ⊕m

i=1Mci,di
of M into standard σ-

submodules. The slope multiset of such a decomposition is the union of the
multisets consisting of ci/di with multiplicity di for i = 1, . . . ,m.

Remark 4.5.2. If M admits a Dieudonné-Manin decomposition, then M ad-
mits a basis of n-eigenvectors for n = (rankM)!; more precisely, any basis of
H0([n]∗M) over the fixed field of σn gives a basis of [n]∗M over R. The slopes
of these n-eigenvectors coincide with the slope multiset of the decomposition.

Proposition 4.5.3. Assume that vK is nontrivial. Then every σ-module M
over R admits a Dieudonné-Manin decomposition.

Proof. We first show that every semistable σ-module M over R is isomorphic to
a direct sum of standard σ-submodules of slope µ(M). We see this by induction
on rank(M); by Lemmas 4.4.2 and 4.4.3, we have (Bn) for all n, so M contains
a saturated σ-submodule N which is standard of some slope ≤ µ(M). Since
M has been assumed semistable, we have µ(N) ≥ µ(M); hence µ(N) = µ(M),
and M/N is also semistable. By the induction hypothesis, M/N splits as a
direct sum of standard σ-submodules of slope µ(M); then by Corollary 4.1.4,
the exact sequence

0 → N → M → M/N → 0

splits. This yields the desired result.
In the general case, by Proposition 4.2.5, M has an HN-filtration 0 = M0 ⊂
M1 ⊂ · · · ⊂ Ml = M , with each successive quotient Mi/Mi−1 semistable of
slope si, and s1 < · · · < sl. By the above, Mi/Mi−1 admits a Dieudonné-
Manin decomposition with all slopes si; the filtration then splits thanks to
Corollary 4.1.4. Hence M admits a Dieudonné-Manin decomposition.

We will use the case of vK nontrivial to establish the existence of Dieudonné-
Manin decompositions also when vK is trivial.

Definition 4.5.4. For R a (commutative) ring, let R((tQ)) denote the Hahn-
Mal’cev-Neumann algebra of generalized power series

∑

i∈Q cit
i, where each
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ci ∈ R and the set of i ∈ Q with ci 6= 0 is well-ordered (has no infinite decreas-
ing subsequence); these series form a ring under formal series multiplication,
with a natural valuation v given by v(

∑

i cit
i) = min{i : ci 6= 0}. For R an al-

gebraically closed field, R((tQ)) is also algebraically closed; see [31, Chapter 13]
for this and other properties of these algebras.

Lemma 4.5.5. Suppose that k is algebraically closed and that K = k((tQ)). Let
M be a σ-module over O[π−1] such that M ⊗R admits a basis of eigenvectors.
Then any such basis is a basis of M .

Proof. We may identify ΓK with the π-adic completion of O((tQ)). In so doing,
elements of R can be viewed as formal sums

∑

i∈Q cit
i with ci ∈ O[π−1].

Suppose v ∈ M ⊗R nonzero satisfies Fv = πm
v. We can then formally write

v =
∑

i∈Q vit
i with vi ∈ M , and then we have Fvi = πm

vqi for each i. If

vi 6= 0 for some i < 0, we then have vqli = π−lmF l
vi, but this violates the

convergence condition defining R. Hence vi = 0 for i < 0.
Let R+ be the subring of R consisting of series

∑

i cit
i with ci = 0 for i < 0.

Now if M⊗R admits a basis of eigenvectors, then we have just shown that each
basis element belongs to M ⊗R+, and likewise for the dual basis of M∨⊗R+.
We can then reduce modulo the ideal of R+ consisting of series with constant
coefficient zero, to produce a basis of eigenvectors of M .

Remark 4.5.6. Beware that in the proof of Lemma 4.5.5, there do exist nonzero
eigenvectors in M ⊗ R+ with constant coefficient zero; however, these eigen-
vectors cannot be part of a basis.

Theorem 4.5.7. Let M be a σ-module over R.

(a) There exists a Dieudonné-Manin decomposition of M .

(b) For any Dieudonné-Manin decomposition M = ⊕m
j=1Mcj ,dj

of M , let
s1 < · · · < sl be the distinct elements of the slope multiset of the decom-
position. For i = 1, . . . , l, let Mi be the direct sum of Mcj ,dj

over all j for
which cj/dj ≤ si. Then the filtration 0 ⊂ M1 ⊂ · · · ⊂ Ml = M coincides
with the HN-filtration of M .

(c) The slope multiset of any Dieudonné-Manin decomposition of M consists
of the HN-slopes of M . In particular, the slope multiset does not depend
on the choice of the decomposition.

Proof. (a) For vK nontrivial, this is Proposition 4.5.3, so we need only treat
the case of vK trivial. Another way to say this is every σ-module M over
O[π−1] is isomorphic to a direct sum of standard σ-submodules.

Set notation as in Lemma 4.5.5. By Proposition 4.5.3, M ⊗ R is iso-
morphic to a direct sum of standard σ-modules. That direct sum has
the form N ⊗ R, where N is the corresponding direct sum of standard
σ-modules over O[π−1]. The isomorphism M ⊗R → N ⊗R corresponds
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to an element of H0((M∨ ⊗ N) ⊗R), which extends to a basis of eigen-
vectors of [n]∗(M

∨ ⊗ N) ⊗ R for some n. By Lemma 4.5.5, this basis
consists of elements of [n]∗(M

∨ ⊗ N); hence M ∼= N , as desired.

(b) By Lemma 3.4.9, any standard σ-module is stable; hence a direct sum of
standard σ-modules of a single slope is semistable. Thus the described
filtration is indeed an HN-filtration.

(c) This follows from (b).

Remark 4.5.8. The case of vK trivial in Theorem 4.5.7(a) is precisely the stan-
dard Dieudonné-Manin classification of σ-modules over a complete discretely
valued field with algebraically closed residue field. It is more commonly derived
on its own, as in [14], [29], [18], or [19, Theorem 5.6].

Corollary 4.5.9. For any coprime integers c, d with d > 0, End(Mc,d) is a
division algebra.

Proof. Suppose φ ∈ End(Mc,d) is nonzero. Decompose im(φ) according to
Theorem 4.5.7; then each standard summand of im(φ) must have slope ≤ c/d
by Corollary 4.1.4. On the other hand, each summand is a σ-submodule of
Mc,d, so must have slope ≥ c/d again by Corollary 4.1.4. Thus each standard
summand of im(φ) must have slope exactly c/d. In particular, there can be only
one such summand, it must have rank d, and by Lemma 3.4.2, im(φ) = Mc,d.
Hence φ is surjective; since φ is a linear map between free modules of the same
finite rank, it is also injective. We conclude that End(Mc,d) is indeed a division
algebra, as desired.

Proposition 4.5.10. A σ-module M over R is semistable (resp. stable) if and
only if M ∼= M⊕n

c,d for some c, d, n (resp. M ∼= Mc,d for some c, d).

Proof. This is an immediate corollary of Theorem 4.5.7. (Compare [17, Corol-
lary 11.6].)

Remark 4.5.11. By Theorem 4.5.7, every σ-module over R decomposes as
a direct sum of semistable σ-modules, i.e., the Harder-Narasimhan filtration
splits. However, when vK is nontrivial, this decomposition/splitting is not
canonical, so it does not make sense to try to prove any descent results for
such decompositions. (When vK is trivial, the splitting is unique by virtue of
Corollary 4.1.4.) Of course, the number and type of summands in a Dieudonné-
Manin decomposition are unique, since they are determined by the HN-polygon;
indeed, they constitute complete invariants for isomorphism of σ-modules over
R (compare [17, Corollary 11.8]).

Proposition 4.5.12. Let M be a σ-module over R, let M1 be the first step in
the Harder-Narasimhan filtration, and put d = rank(M1). Then ∧dM1 is the
first step in the Harder-Narasimhan filtration of ∧dM .
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Proof. Decompose M according to Theorem 4.5.7, so that M1 is the direct
sum of the summands of minimum slope s1. Take the d-th exterior power of
this decomposition (i.e., apply the Künneth formula); by Lemma 4.1.2, the
minimum slope among the new summands is ds1, achieved only by ∧dM1.

Remark 4.5.13. More generally, the first step in the Harder-Narasimhan filtra-
tion of ∧iM is ∧iMj , for the smallest j such that rank(Mj) ≥ i; the argument
is similar.

Proposition 4.5.14. Let M be a σ-module over R, and let M ∼= ⊕l
i=1Mci,di

be a Dieudonné-Manin decomposition of M .

(a) If vK is nontrivial, then there exists a nonzero homomorphism f : Mc,d →
M of σ-modules if and only if c/d ≥ mini{ci/di}, and there exists a
nonzero homomorphism f : M → Mc,d of σ-modules if and only if c/d ≤
maxi{ci/di}.

(b) If vK is trivial, then there exists a nonzero homomorphism f : Mc,d → M
or f : M → Mc,d of σ-modules if and only if c/d ∈ {c1/d1, . . . , cl/dl}.

Proof. Apply Corollary 4.1.4.

4.6 The calculus of slopes

Theorem 4.5.7 affords a number of consequences for the calculus of slopes.

Definition 4.6.1. Let M be a σ-module over Γan,con. Define the absolute HN-
slopes and absolute HN-polygon of M to be the HN-slopes and HN-polygon of
M ⊗ R, and denote the latter by P (M). We say M is pure (or isoclinic) of
slope s if the absolute HN-slopes of M are all equal to s. By Proposition 4.5.10,
M is isoclinic if and only if M ⊗R is semistable. We use the adjective unit-root
to mean “isoclinic of slope 0”.

Remark 4.6.2. We will show later (Theorem 6.4.1) that the HN-filtration of
M ⊗R coincides with the base extension of the HN-filtration of M , which will
mean that the absolute HN-slopes of M coincide with the HN-slopes of M .

Proposition 4.6.3. Let M and M ′ be σ-modules over Γan,con. Let c1, . . . , cm

and c′1, . . . , c
′
n be the absolute HN-slopes of M and M ′, respectively.

(a) The absolute HN-slopes of M ⊕ M ′ are c1, . . . , cm, c′1, . . . , c
′
n.

(b) The absolute HN-slopes of M⊗M ′ are cic
′
j for i = 1, . . . ,m, j = 1, . . . , n.

(c) The absolute HN-slopes of ∧dM are ci1 + · · · + cid
for all 1 ≤ i1 < · · · <

id ≤ m.

(d) The absolute HN-slopes of [a]∗M are ac1, . . . , acm.

(e) The absolute HN-slopes of M(b) are c1 + b, . . . , cm + b.
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Proof. There is no harm in tensoring up to R, or in applying [a]∗ for some
positive integer a. In particular, using Theorem 4.5.7, we may reduce to the
case where M and M ′ admit bases of eigenvectors, whose slopes must be the ci

and the c′j . Then we obtain bases of eigenvectors of M ⊕ M ′, M ⊗ M ′, ∧dM ,
[a]∗M , M(b), and thus may read off the claims.

Proposition 4.6.4. Let M1,M2 be σ-modules over Γan,con such that each
absolute HN-slope of M1 is less than each absolute HN-slope of M2. Then
Hom(M1,M2) = 0.

Proof. Tensor up to R, then apply Theorem 4.5.7 and Proposition 4.5.14.

4.7 Splitting exact sequences

As we have seen already (e.g., in Proposition 4.3.4), a short exact sequence
of σ-modules over Γan,con may or may not split. Whether or not it splits
depends very much on the Newton polygons involved. For starters, we have
the following.

Definition 4.7.1. Given Newton polygons P1, . . . , Pm, define the sum P1 +
· · · + Pm of these polygons to be the Newton polygon whose slope multiset is
the union of the slope multisets of P1, . . . , Pm. Also, write P1 ≥ P2 to mean
that P1 lies above P2.

Proposition 4.7.2. Let 0 → M1 → M → M2 → 0 be an exact sequence of
σ-modules over Γan,con.

(a) We have P (M) ≥ P (M1) + P (M2).

(b) We have P (M) = P (M1)+P (M2) if and only if the exact sequence splits
over R.

Proof. For (a), note that from the HN-filtrations of M1 ⊗R and M2 ⊗R, we
obtain a semistable filtration of M ⊗ R whose Newton polygon is P (M1) +
P (M2). The claim now follows from Proposition 3.5.4.

For (b), note that if the sequence splits, then P (M) = P (M1) + P (M2) by
Proposition 4.6.3. Conversely, suppose that P (M) = P (M1) + P (M2); we
prove by induction on rank that if Γan,con = R, then the exact sequence splits.
Our base case is where M1 and M2 are standard. If µ(M1) ≤ µ(M2), then the
exact sequence splits by Corollary 4.1.4, so assume that µ(M1) > µ(M2). By
Theorem 4.5.7, we have an isomorphism M ∼= M1 ⊕ M2, which gives a map
M2 → M . By Corollary 4.5.9, the composition M2 → M → M2 is either zero
or an isomorphism; in the former case, by exactness the image of M2 → M
must land in M1 ⊆ M . But that violates Corollary 4.1.4, so the composition
M2 → M → M2 is an isomorphism, and the exact sequence splits.
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We next treat the case of M1 nonstandard. Apply Theorem 4.5.7 to obtain a
decomposition M1

∼= N ⊕ N ′ with N standard. We have

P (M) ≥ P (N) + P (M/N) [by (a)]

≥ P (N) + P (M1/N) + P (M2) [by (a)]

= P (M1) + P (M2) [because N is a summand of M1]

= P (M) [by hypothesis].

Hence all of the inequalities must be equalities; in particular, P (M/N) =
P (M1/N) + P (M2). By the induction hypothesis, the exact sequence 0 →
M1/N → M/N → M2 → 0 splits; consequently, the exact sequence 0 → N ′ →
M → M/N ′ → 0 splits. But we have an exact sequence 0 → N → M/N ′ →
M2 → 0 and as above, we have P (M/N ′) = P (N) + P (M2), so this sequence
also splits by the induction hypothesis. This yields the claim.
To conclude, note that the case of M2 nonstandard follows from the case of M1

nonstandard by taking duals. Hence we have covered all cases.

Corollary 4.7.3. Let 0 → M1 → M → M2 → 0 be an exact sequence of
σ-modules over R, such that every slope of M1 is less than or equal to every
slope of M2. Then the exact sequence splits; in particular, the HN-multiset of
M is the union of the HN-multiset of M1 and M2.

Proof. With the assumption on the slopes, the filtration induced by the HN-
filtrations of M1 and M2 becomes an HN-filtration after possibly removing one
redundant step in the middle (in case the highest slope of M1 coincides with the
lowest slope of M2). Thus its Newton polygon coincides with the HN-polygon,
so Proposition 4.7.2 yields the claim.

Corollary 4.7.4. Let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M be a filtration of a σ-
module M over R by saturated σ-submodules with isoclinic quotients. Suppose
that the Newton polygon of the filtration coincides with the HN-polygon of M .
Then the filtration splits.

Remark 4.7.5. In certain contexts, one can obtain stronger splitting theorems;
for instance, the key step in [20] is a splitting theorem for σ-modules with
connection over Γcon (in the notation of Section 2.3).

5 Generic and special slope filtrations

Given a σ-module over Γcon[π−1], we have two paradigms for constructing
slopes and HN-polygons: the “generic” paradigm, in which we pass to Γ[π−1] as
if vK were trivial, and the “special” paradigm, in which we pass to Γan,con. (See
Section 7.3 for an explanation of the use of these adjectives.) In this chapter,
we compare these paradigms: our main results are that the special HN-polygon
lies above the generic one (Proposition 5.5.1), and that when the two polygons
coincide, one obtains a common HN-filtration over Γalg

con[π−1] (Theorem 5.5.2).
This last result is a key tool for constructing slope filtrations in general.
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Convention 5.0.1. We continue to retain notations as in Chapter 2. We again
point out that when working over Γcon[π−1], the adjective “generic” will imply
passage to Γ[π−1], while the adjective “special” will imply passage to Γan,con.
We also abbreviate such expressions as “generic absolute HN-slopes” to “generic
HN-slopes”. (Keep in mind that the modifier “absolute” will ultimately be
rendered superfluous anyway by Theorem 6.4.1.)

5.1 Interlude: lattices

Besides descending subobjects, we will also have need to descend entire σ-
modules; this matter is naturally discussed in terms of lattices.

Definition 5.1.1. Let R →֒ S be an injection of domains, and let M be a
finite locally free S-module. An R-lattice in M is an R-submodule N of M
such that the induced map N ⊗R S → M is a bijection. If M is a σ-module, an
R-lattice in the category of σ-modules is a module-theoretic R-lattice which is
stable under F .

The existence of a Γ-lattice for a σ-module defined over Γ[π−1] is closely tied
to nonnegativity of the slopes.

Proposition 5.1.2. Let M be a σ-module over Γcon[π−1] with nonnegative
generic slopes. Then M contains an F -stable Γcon-lattice N . Moreover, if the
generic slopes of M are all zero, then N can be chosen so that F : σ∗M → M
is an isomorphism.

Proof. Put M ′ = M ⊗ Γalg[π−1]; then by Theorem 4.5.7, we can write M ′

as a direct sum of standard submodules, whose slopes by hypothesis are non-
negative. From this presentation, we immediately obtain a Γalg-lattice of M ′

(generated by standard basis vectors of the standard submodules); its intersec-
tion with M gives the desired lattice.

Proposition 5.1.2 also has the following converse.

Proposition 5.1.3. Let M be a σ-module over Γ. Then the generic HN-
slopes of M are all nonnegative; moreover, they are all zero if and only if
F : σ∗M → M is an isomorphism.

Proof. Let e1, . . . , en be a basis of M , and define the n × n matrix A over Γ
by Fej =

∑

i Aijei. Suppose v is an eigenvector of M , and write v =
∑

i ciei

and Fv =
∑

i diei; then mini{w(di)} − mini{w(ci)} is the slope of v. But
w(Aij) ≥ 0 for all i, j, so mini{w(di)} ≥ mini{w(ci)}. This yields the first
claim.
For the second claim, note on one hand that if F : σ∗M → M is an isomor-
phism, then M∨ is also a σ-module over Γ, and so the generic HN-slopes of both
M and M∨ are nonnegative. Since these slopes are negatives of each other by
Proposition 4.6.3, they must all be zero. On the other hand, if the generic HN-
slopes of M are all zero, then by Theorem 4.5.7, M ⊗ Γalg[π−1] admits a basis
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e1, . . . , en of eigenvectors of slope 0. Put M ′ = M ⊗ Γalg; for i = 0, . . . , n, let
M ′

i be the intersection of M ′ with the Γalg[π−1]-span of e1, . . . , ei. Then each
M ′

i is F -stable; moreover, M ′
i/M

′
i−1 is spanned by the image of πci

ei for some
ci, and so F : σ∗(M ′

i/M
′
i−1) → (M ′

i/M
′
i−1) is an isomorphism for each i. It

follows that F : σ∗M ′ → M ′ is an isomorphism, as then is F : σ∗M → M .

Remark 5.1.4. The results in this section can also be proved using cyclic
vectors, as in [19, Proposition 5.8]; compare Lemma 5.2.4 below.

5.2 The generic HN-filtration

Since the distinction between vK trivial and nontrivial was not pronounced in
the previous chapter, it is worth taking time out to clarify some phenomena
specific to the “generic” (vK trivial) setting.

Proposition 5.2.1. For any σ-module M over Γalg[π−1], there is a unique
decomposition M = P1 ⊕ · · · ⊕ Pl, where each Pi is isoclinic, and the generic
slopes µ(P1), . . . , µ(Pl) are all distinct.

Proof. The existence of such a decomposition follows from Theorem 4.5.7; the
uniqueness follows from repeated application of Corollary 4.1.4.

Definition 5.2.2. Let M be a σ-module over Γalg[π−1]. Define the slope
decomposition of M to be the decomposition M = P1 ⊕ · · · ⊕ Pl given by
Proposition 5.2.1.

For the rest of this section, we catalog some routine methods for identifying
the generic slopes of a σ-module.

Definition 5.2.3. Let M be a σ-module over Γ[π−1] of rank n. A cyclic vector
of M is an element v ∈ M such that v, Fv, · · · , Fn−1

v form a basis of M .

Lemma 5.2.4. Let M be a σ-module over Γ[π−1] of rank n. Let v be a cyclic
vector of M , and define a0, . . . , an−1 ∈ Γ[π−1] by the equation

Fn
v + an−1F

n−1
v + · · · + a0v = 0.

Then the generic HN-polygon of M coincides with the Newton polygon of the
polynomial xn + an−1x

n−1 + · · · + a0.

Proof. There is no harm in assuming that K is algebraically closed, that π is
fixed by σ, or that O is large enough that the slopes of M are all integers.
Then M admits a basis e1, . . . , en with Fei = πci

ei for some integers ci.
Put v0 = v. Given vl, write vl = xl,1e1 + · · ·+xl,nen, put bl = πclxσ

l,l/xl,l, and
put vl+1 = Fvl − blvl. Then vl lies in the span of el+1, . . . , en; in particular,
vn = 0.
We then have

(F − bn−1) · · · (F − b1)(F − b0)v = 0;
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since v is a cyclic vector, there is a unique way to write Fn
v as a linear

combination of v, Fv, · · · , Fn−1
v. Hence we have an equality of operators

(F − bn−1) · · · (F − b1)(F − b0) = Fn + an−1F
n−1 + · · · + a0,

from which the equality of polygons may be read off directly.

Remark 5.2.5. One can turn Lemma 5.2.4 around and use it to prove the
existence of Dieudonné-Manin decompositions in the case of vK trivial; for
instance, this is the approach in [19, Theorem 5.6]. One of the essential diffi-
culties in [19] is that there is no analogous way to “read off” the HN-polygon
of a σ-module over Γan,con; this forces the approach to constructing the slope
filtration over Γan,con to be somewhat indirect.

Lemma 5.2.4 is sometimes inconvenient to apply, because the calculus of cyclic
vectors is quite “nonlinear”. The following criterion will prove to be more
useful for our purposes.

Lemma 5.2.6. Let M be a σ-module over Γalg[π−1]. Suppose that there exists
a basis e1, . . . , en of M with the property that the matrix A given by Fej =
∑

i Aijei satisfies w(AD−1 − In) > 0 for some n × n diagonal matrix D over
Γalg[π−1]. Then the generic slopes of M are equal to the valuations of the
diagonal entries of D. Moreover, there exists an invertible matrix U over Γalg

with w(U − In) > 0, w(DUσD−1 − In) > 0, and U−1AUσ = D.

Proof. One can directly solve for U ; see [19, Proposition 5.9] for this calculation.
Note that it does not matter whether the D−1 appears to the left or to the right
of A, as a change of basis will flip it over to the other side; the entries of D will
get hit by σ or its inverse, but their valuations will not change. Alternatively,
the existence of U also follows from Proposition 5.4.5 below.

Remark 5.2.7. Lemmas 5.2.4 and 5.2.6 suggest that one can read off the
generic HN-polygon of a σ-module over Γ[π−1] by computing the slopes of
eigenvectors of a matrix via which F acts on some basis. This does not work
in general, as observed by Katz [18].

5.3 Descending the generic HN-filtration

In the generic setting (vK trivial), we have the following descent property for
Harder-Narasimhan filtrations.

Proposition 5.3.1. Let M be a σ-module over Γ[π−1]. Then the Harder-
Narasimhan filtration of M , tensored up to Γalg[π−1], gives the Harder-
Narasimhan filtration of M ⊗ Γalg[π−1].

Proof. One can prove this by Galois descent, as in [19, Proposition 5.10]; here
is an alternate argument. It suffices to check that the first step M ′

1 of the
Harder-Narasimhan filtration of M ′ = M ⊗ Γalg[π−1] descends to Γ[π−1]; by
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Lemma 3.6.2 and Proposition 4.5.12, we may by taking exterior powers reduce
to the case where M ′

1 has rank 1. In particular, the least slope s1 must be an
integer. By twisting, we may assume that s1 = 0.
By Proposition 5.1.2, we can find a σ-stable Γ-lattice N of M ; put N ′ =
N ⊗ Γalg. Then N ′ ∩ M ′

1 may be characterized as the set of limit points, for
the π-adic topology, of sequences of the form {F l

vl}
∞
l=0 with vl ∈ N ′ for each

l. (This may be verified on a basis of d-eigenvectors for appropriate d thanks
to Theorem 4.5.7, where it is evident.)
The characterization of N ′ ∩ M ′

1 we just gave is linear, so it cuts out a rank
one submodule of N already over Γ. This yields the desired result.

5.4 de Jong’s reverse filtration

We now consider the case of σ-modules over Γcon[π−1], in which case we have
a “generic” HN-filtration defined over Γalg[π−1], and a “special” HN-filtration
defined over Γalg

an,con. These two filtrations are not directly comparable, because
they live over incompatible overrings of Γcon[π−1]. To compare them, we must
use a “reverse filtration” that meets both halfway; the construction is due to de
Jong [13, Proposition 5.8], but our presentation follows [19, Proposition 5.11]
(wherein it is called the “descending generic filtration”).
We first need a lemma that descends some eigenvectors from Γalg to Γalg

con;
besides de Jong’s [13, Proposition 5.8], this generalizes a lemma of Tsuzuki
[34, 4.1.1].

Lemma 5.4.1. Let M be a σ-module over Γalg
con[π−1] all of whose generic slopes

are nonpositive. Let v ∈ M ⊗ Γalg[π−1] be an eigenvector of slope 0. Then
v ∈ M .

Proof. By Proposition 5.1.2, we can find an F -stable Γalg
con-lattice N∨ of M∨;

the dual lattice N is an F−1-stable Γalg
con-lattice of M . Let e1, . . . , en be a basis

of N , define the n × n matrix A over Γalg
con by the equation F−1

ej =
∑

i Aijei,
and choose r > 0 such that A is invertible over Γalg

r .
Let v ∈ M ⊗ Γalg[π−1] be an eigenvector of slope 0; in showing that v ∈ M ,
there is no harm in assuming (by multiplying by a power of π as needed) that
v ∈ N ⊗ Γalg. Write v =

∑

xiei with xi ∈ Γalg. Then for each l ≥ 0, we have

min
i

min
m≤l

{vm,r(xi)} ≥ wr(A) + min
i

min
m≤l

{vm,r(x
σ−1

i )}

≥ wr(A) + q−1 min
i

min
m≤l

{vm,r(xi)}.

It follows that
min

i
min
m≤l

{vm,r(xi)} ≥ qwr(A)/(q − 1),

and so xi ∈ Γalg
con. Hence v ∈ M , as desired.

We now proceed to construct the reverse filtration.
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Definition 5.4.2. Let M be a σ-module over Γalg[π−1] with slope decompo-
sition P1 ⊕ · · · ⊕ Pl, labeled so that µ(P1) > · · · > µ(Pl). Define the reverse
filtration of M as the semistable filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M
with Mi = P1 ⊕ · · · ⊕ Pi for i = 1, . . . , l. By construction, its Newton polygon
coincides with the generic Newton polygon of M .

Proposition 5.4.3. Let M be a σ-module over Γalg
con[π−1]. Then the reverse

filtration of M ⊗ Γalg[π−1] descends to Γalg
con[π−1].

Proof. Put M ′ = M ⊗ Γalg[π−1], and let 0 = M ′
0 ⊂ M ′

1 ⊂ · · · ⊂ M ′
l = M ′ be

the reverse filtration of M ′. It suffices to show that M ′
1 descends to Γalg

con[π−1];
by Lemma 3.6.2, we may reduce to the case where rank M ′

1 = 1 by passing
from M to an exterior power. By twisting, we may then reduce to the case
µ(M ′

1) = 0. By Proposition 3.3.2, M ′
1 is then generated by an eigenvector of

slope 0; by Lemma 5.4.1, that eigenvector belongs to M . Hence M ′
1 descends

to M , proving the claim. (Compare [19, Proposition 5.11].)

Remark 5.4.4. The reverse filtration actually descends all the way to Γcon[π−1]
whenever K is perfect, but we will not need this.

It may also be useful for some applications to have a quantitative version of
Proposition 5.4.3.

Proposition 5.4.5. Let M be a σ-module over Γalg
con[π−1]. Suppose that for

some r > 0, there exists a basis e1, . . . , en of M with the property that the n×n
matrix A given by Fej =

∑

i Aijei has entries in Γalg
r [π−1]. Suppose further

that w(AD−1 − In) > 0 and wr(AD−1 − In) > 0 for some n × n diagonal
matrix D over O[π−1], with w(D11) ≥ · · · ≥ w(Dnn). Then there exists an
invertible n × n matrix U over Γalg

qr with w(U − In) > 0, wr(U − In) > 0,
w(DUσD−1 − In) > 0, wr(DUσD−1 − In) > 0, such that U−1AUσD−1 − In is
upper triangular nilpotent.

Proof. Put c0 = min{w(AD−1 − In), wr(AD−1 − In)} and U0 = In. Given
Ul, put Al = U−1

l AUσ
l , and write AlD

−1 − In = Bl + Cl with Bl upper
triangular nilpotent and Cl lower triangular. Suppose that min{w(AlD

−1 −
In), wr(AlD

−1 − In)} ≥ c0; put cl = min{w(Cl), wr(Cl)}. Choose a matrix Xl

over Γqr with

Cl + Xl = DXσ
l D−1,

min{w(Xl), w(DXσ
l D−1)} ≥ w(Cl),

min{wr(Xl), wr(DXσ
l D−1)} ≥ cl.

(This amounts to solving a system of equations of the form c + x = λ−1xσ for
λ ∈ O; the analysis is as in Proposition 3.3.7.)
Put Ul+1 = Ul(In + Xl). We then have

Al+1D
−1 = (In − Xl + X2

l − · · · )(In + Bl + Cl)(In + DXσ
l D−1),
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whence w(Cl+1) ≥ w(Cl) + c0 and wr(Cl+1) ≥ cl + c0. Consequently cl ≥
(l+1)c0, so the Ul converge under wqr to a limit U such that U−1AUσD−1−In

is upper triangular nilpotent, as desired.

Remark 5.4.6. For more on de Jong’s original application of the reverse fil-
tration, see Section 7.5.

5.5 Comparison of polygons

Using the reverse filtration, we obtain the fundamental comparison between
the generic and special Newton polygons of a σ-module over Γcon[π−1].

Proposition 5.5.1. Let M be a σ-module over Γcon[π−1]. Then the special
HN-polygon of M (i.e., the HN-polygon of M ⊗ Γalg

an,con) lies above the generic

HN-polygon (i.e., the HN-polygon of M ⊗ Γalg[π−1]).

Proof. Tensor up to Γalg
con[π−1], then apply Proposition 3.5.4 to the reverse

filtration (Proposition 5.4.3).

The case where the polygons coincide is especially pleasant, and will be crucial
to our later results.

Theorem 5.5.2. Let M be a σ-module over Γcon[π−1] whose generic and special
HN-polygons coincide. Then the generic and special HN-filtrations of M ⊗
Γalg[π−1] and M ⊗ Γalg

an,con, respectively, are both obtained by base change from
an exhaustive filtration of M .

Proof. It suffices to check that the first steps of the generic and special HN-
filtrations descend and coincide; by Lemma 3.6.2, we may reduce to the case
where the least slope of the common polygon occurs with multiplicity 1. Choose
a basis e1, . . . , en of M , let v ∈ M ⊗ Γalg[π−1] be a generator of the first step
of the HN-filtration of M ⊗ Γalg[π−1], and write v = a1v1 + · · · + anvn. By
Proposition 5.3.1, ai/aj ∈ Γ[π−1] for any i, j with aj 6= 0.
By Corollary 4.7.4, the reverse filtration splits over Γalg

an,con; by Proposi-

tion 3.3.7(b1), it also splits over Γalg
con[π−1]. Hence ai/aj ∈ Γalg

con[π−1] for any i, j
with aj 6= 0. Since Γ[π−1] ∩ Γalg

con[π−1] = Γcon[π−1], we have ai/aj ∈ Γcon[π−1]
for any i, j with aj 6= 0. Hence the first step of the generic HN-filtration de-
scends to Γcon[π−1]; let M1 be the corresponding σ-submodule of M⊗Γcon[π−1].
Let M ′

1 be the first step of the HN-filtration of M ⊗ Γalg
an,con; then as in the

proof of Proposition 4.2.5, M ′
1 is the maximal σ-submodule of M ⊗ Γalg

an,con of

slope µ(M ′
1) = µ(M1). In particular, M1 ⊗Γalg

an,con ⊆ M ′
1, and by Lemma 3.4.2,

M1 ⊗Γalg
an,con and M ′

1 actually coincide. Hence the first step of the special HN-
filtration is also a base extension of M1. This yields the claim. (Compare [19,
Proposition 5.16].)

Remark 5.5.3. The conditions of Theorem 5.5.2 may look restrictive, and
indeed they are: many “natural” examples of σ-modules over Γcon[π−1] do
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not have the same special and generic HN-polygons (e.g., the example of Sec-
tion 7.3). However, Theorem 5.5.2 represents a critical step in the descent pro-
cess for slope filtrations, as it allows us to move information from the generic
paradigm into the special paradigm: specifically, the descent from algebraically
closed K down to general K is much easier in the generic setting. Of course,
in order to use this link, we must be able to force ourselves into the setting of
Theorem 5.5.2; this is done in the next chapter.

Note that Theorem 5.5.2 implies that the generic and special HN-polygons of
M coincide if and only if the generic HN-filtration descends to Γalg

con[π−1]. In
some applications, it may be more useful to have a quantitative refinement of
that statement; we can give one (in imitation of the proof of Proposition 4.3.4)
as follows.

Proposition 5.5.4. Let M be a σ-module over Γalg
con[π−1]. Suppose that for

some r > 0, there exists a basis e1, . . . , en of M with the property that the n×n
matrix A given by Fej =

∑

i Aijei has entries in Γalg
r [π−1]. Suppose further

that w(AD−1 − In) > 0 and wr(AD−1 − In) > 0 for some n × n diagonal
matrix D over O[π−1], with w(D11) ≥ · · · ≥ w(Dnn). Let U be an invertible
n × n matrix over Γalg such that w(U − In) > 0, w(DUσD−1 − In) > 0, and
U−1AUσ = D (as in Lemma 5.2.6). Then the generic and special HN-polygons
of M coincide if and only if

wr(U − In) > 0, wr(DUσD−1 − In) > 0. (5.5.5)

Proof. The conditions on U imply that M admits a basis of eigenvectors over
Γalg

con[π−1]; the slopes of these eigenvectors then give both the generic and special
HN-slopes. Conversely, if the generic and special HN-polygons of M coincide,
then U is invertible over Γalg

con by Theorem 5.5.2. It thus remains to prove that
if U has entries in Γalg

con, then in fact (5.5.5) holds.
We start with a series of reductions. By Proposition 5.4.5, we may reduce to the
case where AD−1 − In is upper triangular nilpotent. Considering all matrices
now as block matrices by grouping rows and columns where the diagonal entries
of D have the same valuation, we see that the matrix U must now be block
upper triangular, with diagonal blocks invertible over O. Neither this property
nor (5.5.5) is disturbed by multiplying U by a block diagonal matrix over O,
so we may reduce to the case where U is block upper triangular with identity
matrices on the diagonal. Finally, note that at this point it suffices to check
the case where n = 2, w(D11) > w(D22), and

AD−1 =

(

1 a
0 1

)

, U =

(

1 u
0 1

)

,

as the general case follows by repeated application of this case.
Put λ ∈ D11D

−1
22 ∈ πO. Then what we are to show is that given a ∈ Γalg

r ,
u ∈ Γalg

con with

wr(a) > 0, w(u) > 0, λa + u = λuσ, (5.5.6)
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we must have u ∈ Γalg
r and wr(u) > 0. Before verifying this, we make one

further simplifying reduction, using the fact that there is no harm in replacing
a by a − b + λ−1bσ−1

as long as wr(b) > 0 and wr(λ
−1bσ−1

) > 0.
Note that for b = πm[x] with x ∈ Kalg, the condition that

wr(b) ≤ wr(λ
−1bσ−1

)

is equivalent to

vK(x) ≤ −
q

(q − 1)r
w(λ).

Moreover, this condition and the bound wr(b) ≥ 0 together imply that

w(λ−1bσ−1

) > 0.
Now write a =

∑∞
i=0 πi[ai], and put c = qw(λ)/(q − 1)r. For each i, let ji

be the smallest nonnegative integer such that q−jivK(ai) > −c. We may then
replace a by

a′ =

∞
∑

i=0

λ−1λ−σ−1

· · ·λ−σji−1

(πi[ai])
σ−ji

without disturbing the truth of (5.5.6). In particular, we may reduce to the
case where vn(a) > −c for all n ≥ 0.
Under these conditions, put m = w(λ) > 0, and note that if vn(u) ≤ −c/q for
some u, then vn+m(λuσ) = qvn(u) ≤ −c, so the equation λa+u = λuσ implies
vn+m(u) = qvn(u). By induction on l, we have

vn+lm(u) = qlvn(u)

for all nonnegative integers l, but this contradicts the hypothesis that u ∈ Γalg
con.

Consequently, we must have vn(u) > −c/q for all n.
Since −c/q ≥ −c(q − 1)/q = −w(λ)/r, the bound vn(u) > −c/q implies that
vn,r(u) > 0 for n ≥ m. Since u ≡ 0 (mod λ), we have wr(u) > 0, as desired.

6 Descents

We now show that the formation of the Harder-Narasimhan filtration commutes
with base change, thus establishing the slope filtration theorem; the strategy is
to show that a σ-module over Γan,con admits a model over Γcon whose special
and generic Newton polygons coincide, then invoke Theorem 5.5.2. The ma-
terial here is derived from [19, Chapter 6], but our presentation here is much
more streamlined.

6.1 A matrix lemma

The following lemma is analogous to [19, Proposition 6.8], but in our new
approach, we can prove much less and still eventually get the desired conclusion;
this simplifies the matrix calculation considerably.
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Lemma 6.1.1. For r > 0, suppose that Γ = ΓK contains enough r0-units for
some r0 > qr. Let D be an invertible n × n matrix over Γ[r,r], and put h =
−wr(D)−wr(D

−1). Let A be an n×n matrix over Γ[r,r] such that wr(AD−1−
In) > h/(q−1). Then there exists an invertible n×n matrix U over Γ[r,qr] such
that U−1AUσD−1 − In has entries in πΓr and wr(U

−1AUσD−1 − In) > 0.

Proof. Put c0 = wr(AD−1 − In) − h/(q − 1). Define sequences of matrices
U0, U1, . . . and A0, A1, . . . as follows. Start with U0 = In. Given an invertible
n×n matrix Ul over Γ[r,qr], put Al = U−1

l AUσ
l . Suppose that wr(AlD

−1−In) ≥
c0 + h/(q − 1); put

cl = min
m≤0

{vm,r(AlD
−1 − In)} − h/(q − 1),

so that cl ≥ c0 > 0.
Let

∑

uijlmπm be a semiunit presentation of (AlD
−1 − In)ij . Let Xl be the

n × n matrix with (Xl)ij =
∑

m≤0 uijlmπm, and put Ul+1 = Ul(In + Xl). By
Lemma 2.5.3, for m ≤ 0 and s ∈ [r, qr],

ws(uijlmπm) ≥ (s/r)wr(uijlmπm)

≥ (s/r) min
k≤m

{vk,r(AlD
−1 − In)}

≥ (s/r)(cl + h/(q − 1));

hence Ul+1 is also invertible over Γ[r,qr]. Moreover,

wr(DXσ
l D−1) ≥ wr(D) + wr(X

σ
l ) + wr(D

−1)

= wqr(Xl) − h

≥ q(cl + h/(q − 1)) − h

≥ qcl + h/(q − 1).

Since
Al+1D

−1 = (In + Xl)
−1(AlD

−1)(In + DXσ
l D−1),

we then have wr(Al+1D
−1−In) ≥ c0+h/(q−1), so the iteration may continue.

We now prove by induction that cl ≥ (l + 1)c0 for l = 0, 1, . . . ; this is clearly
true for l = 0. Given the claim for l, write

(In + Xl)
−1AlD

−1 =

In + (AlD
−1 − In − Xl) − Xl(AlD

−1 − In) + X2
l (In + Xl)

−1AlD
−1.

Note that

vm(AlD
−1 − In − Xl) = ∞ (m ≤ 0)

wr(Xl(AlD
−1 − I)) ≥ (l + 2)c0 + 2h/(q − 1)

wr(X
2
l (In + Xl)

−1AlD
−1) ≥ 2(l + 1)c0 + 2h/(q − 1).
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Putting this together, this means

vm,r((In + Xl)
−1AlD

−1 − In) ≥ (l + 2)c0 + h/(q − 1) (m ≤ 0).

Since wr(DXσ
l D−1) ≥ qcl + h/(q − 1) ≥ (l + 2)c0 + h/(q − 1), we have

vm,r(Al+1D
−1 − In) ≥ (l + 2)c0 + h/(q − 1) for m ≤ 0, i.e., cl+1 ≥ (l + 2)c0.

Since ws(Xl) ≥ (s/r)(cl + h/(q − 1)) for s ∈ [r, qr], and cl → ∞ as l →
∞, the sequence {Ul} converges to a limit U , which is an invertible n × n
matrix over Γ[r,qr] satisfying wr(U

−1AUσD−1 − In) ≥ c0 + h/(q − 1) > 0.
Moreover, by construction, we have vm(U−1AUσD−1 − In) = ∞ for m ≤ 0; by
Corollary 2.5.6, U−1AUσD−1 − In has entries in πΓr, as desired.

6.2 Good models of σ-modules

We now give a highly streamlined version of some arguments from [19, Chap-
ter 6], that produce “good integral models” of σ-modules over Γan,con.

Lemma 6.2.1. In Lemma 6.1.1, suppose that A and D are both invertible over
Γan,r. Then U is invertible over Γan,qr.

Proof. Put B = U−1AUσD−1, so that B is invertible over Γr. In the equation

U−1AUσ = BD,

the matrices A,Uσ, B,D are all invertible over Γ[r/q,r], so U must be as well.
Since the entries of U and U−1 already belong to Γ[r,qr], they in fact belong to
Γ[r/q,qr] by Corollary 2.5.7. Repeating this argument, we see that U is invertible
over Γ[r/qi,qr] for all positive integers i, yielding the desired result.

Proposition 6.2.2. Let M be a σ-module over ΓK
an,con. Then there exists a

finite separable extension L of K and a σ-module N over ΓL
con[π−1] such that

N ⊗ ΓL
an,con

∼= M ⊗ ΓK
an,con and the generic and special HN-polygons of N

coincide.

Proof. Note that it is enough to do this with L pseudo-finite separable, since
applying F allows to pass from L to Lq. Also, there is no harm in assuming
that the slopes of M are integers, after applying [a]∗ as necessary.
Let e1, . . . , en be a basis of M , and define the invertible n × n matrix A over
ΓK

an,con by Fej =
∑

i Aijei. By Theorem 4.5.7, there exists an invertible n× n

matrix U over Γalg
an,con and a diagonal n × n matrix D whose diagonal entries

are powers of π, such that U−1AUσ = D. Put h = maxi,j{w(Dii)−w(Djj)} =
−w(D) − w(D−1).
Choose r > 0 such that Γ has enough r0-units for some r0 > qr, A is defined
and invertible over ΓK

an,r, and U is defined and invertible over Γalg
an,qr. Let Mr

be the ΓK
an,qr-span of the ei. By Lemma 2.4.12, we can choose L pseudo-finite

separable over K such that ΓL has enough r0-units, and such that there exists
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an n × n matrix V over ΓL
[r,qr] with ws(V − U) > −ws(U

−1) + qh/(q − 1) for

s ∈ [r, qr]. Since

V −1AV σD−1 = (U−1V )−1D(U−1V )σD−1,

it follows that wr(V
−1AV σD−1 − In) > h/(q − 1).

By Lemma 6.1.1, there exists an invertible n × n matrix W over ΓL
[r,qr] for

which the matrix B = (V W )−1A(V W )σ is such that BD−1 − In has entries
in πΓL

r and wr(BD−1 − In) > 0. By Lemma 6.2.1, the matrix V W is actually
invertible over ΓL

an,qr.

Let N be the σ-module over ΓL
con[π−1]-module generated by v1, . . . ,vn with

Frobenius action defined by Fvj =
∑

i Bijvi; then by what we have just shown,
N⊗ΓL

an,con
∼= M⊗ΓL

an,con. By Lemma 5.2.6, the generic HN-slopes of N are the
w(Dii), which by construction are also the special HN-slopes of N . (Compare
[19, Proposition 6.9].)

Remark 6.2.3. It should also be possible to establish Proposition 6.2.2 without
the finite extension L of K.

6.3 Isoclinic σ-modules

Before proceeding to the general descent problem for HN-filtrations, we analyze
the isoclinic case.

Definition 6.3.1. Let M be a σ-module over Γcon[π−1]. We say that M is
isoclinic (of slope µ(M)) if M ⊗ Γalg[π−1] is isoclinic. By Proposition 5.5.1,
this implies that M ⊗ Γalg

an,con is also isoclinic.

Proposition 6.3.2. Let M be a σ-module over Γcon[π−1] which is unit-root
(isoclinic of slope 0). Then

H0(M) = H0(M ⊗ Γ[π−1]) = H0(M ⊗ Γan,con[π−1]);

in particular, if K is algebraically closed, then M admits a basis of eigenvectors.

Proof. There is no harm (thanks to Corollary 2.5.8) in assuming from the outset
that K is algebraically closed. In this case, the eigenvectors of M ⊗ Γalg[π−1]
all have slope 0 by Corollary 4.1.4; by Lemma 5.4.1, they all belong to M .
Hence M admits a basis of eigenvectors; in particular, M ∼= M⊕n

0,1 . Then

H0(M) = H0(M ⊗ Γan,con[π−1]) by Proposition 3.3.4.

Theorem 6.3.3. (a) The base change functor, from isoclinic σ-modules over
Γcon[π−1] of some prescribed slope s to isoclinic σ-modules over Γ[π−1]
of slope s, is fully faithful.

(b) The base change functor, from isoclinic σ-modules over Γcon[π−1] of slope
s to isoclinic σ-modules over Γan,con of slope s, is an equivalence of cat-
egories.
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In particular, any isoclinic σ-module over Γalg
con[π−1] is isomorphic to a direct

sum of standard σ-modules of the same slope (and hence is semistable by Propo-
sition 4.5.10).

Proof. To see that the functors are fully faithful, let M and N be isoclinic
σ-modules over Γcon[π−1] of the same slope s. Then M∨ ⊗ N is unit-root,
and Hom(M,N) = H0(M∨⊗N), so the full faithfulness assertion follows from
Proposition 6.3.2.
To see that the functor in (b) is essentially surjective, apply Proposition 6.2.2 to
produce an F -stable ΓL

con[π−1]-lattice N in M⊗ΓL
an,con for some finite separable

extension L of K, which we may take to be Galois. Note that N is unique by
full faithfulness of the base change functor (from ΓL

con[π−1] to ΓL
an,con); hence

the action of G = Gal(L/K) on M ⊗ ΓL
an,con induces an action on N . By

ordinary Galois descent, there is a unique Γcon[π−1]-lattice Mb of N such that
N = Mb ⊗ ΓL

con[π−1]; because of the uniqueness, Mb is F -stable. This yields
the desired result. (Compare [19, Theorem 6.10].)

Remark 6.3.4. The functor in (a) is not essentially surjective in general. For
instance, if K = k((t)) with k perfect, M is an isoclinic σ-module over Γcon,
and bn is the highest break of the representation of Gal(Ksep/K) on the images
modulo πn of the eigenvectors of M ⊗Γalg, then bn/n is bounded. By contrast,
if M is an isoclinic σ-module over Γ, bn/n need not be bounded.

Incidentally, Theorem 6.3.3 allows us to give a more succinct characterization
of isoclinic σ-modules, which one could take as an alternate definition.

Proposition 6.3.5. Let c, d be integers with d > 0. Then a σ-module M over
Γan,con is isoclinic of slope s = c/d if and only if M admits a Γcon-lattice N
such that π−cF d maps some (any) basis of N to another basis of N .

Proof. If such a lattice exists, then we may apply Proposition 5.1.3 to
([d]∗M)(−c) to deduce that its generic HN-slopes are all zero. By Proposi-
tion 4.6.3, M is isoclinic of slope c/d.
Conversely, suppose M is isoclinic of slope s; then ([d]∗M)(−c) is isoclinic of
slope 0. By Theorem 6.3.3, ([d]∗M)(−c) admits a unique F -stable Γcon[π−1]-
lattice N ′. By Proposition 5.1.2, N ′ in turn admits an F -stable Γcon-lattice N ;
by Proposition 5.1.3, the Frobenius on N carries any basis to another basis.

6.4 Descent of the HN-filtration

At last, we are ready to establish the slope filtration theorem [19, Theo-
rem 6.10].

Theorem 6.4.1. Let M be a σ-module over Γan,con. Then there exists a unique
filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M of M by saturated σ-submodules with
the following properties.

(a) For i = 1, . . . , l, the quotient Mi/Mi−1 is isoclinic of some slope si.
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(b) s1 < · · · < sl.

Moreover, this filtration coincides with the Harder-Narasimhan filtration of M .

Proof. Since isoclinic σ-modules are semistable by Theorem 6.3.3, any filtration
as in (a) and (b) is a Harder-Narasimhan filtration. In particular, the filtration
is unique if it exists.
To prove existence, it suffices to show that the HN-filtration of M ′ = M⊗Γalg

an,con

descends to Γan,con. Let M ′
1 be the first step of that filtration; by Lemma 3.6.2,

it is enough to check that M ′
1 descends to Γan,con in the case rank(M ′

1) = 1.
By Proposition 6.2.2, there exists a finite separable extension L of K and a σ-
module N over ΓL

con[π−1] such that M ⊗ ΓL
an,con

∼= N ⊗ ΓL
an,con, and N has the

same generic and special HN-polygons. Of course there is no harm in assuming
L is Galois with Gal(L/K) = G. By Theorem 5.5.2, M ′

1 descends to ΓL
an,con;

let M1 be the descended submodule of M ⊗ ΓL
an,con.

Let e1, . . . , en be a basis of M , let v be a generator of M1, and write v = a1e1+
· · ·+anen with ai ∈ ΓL

an,con. Then for each i, j with aj 6= 0, ai/aj ∈ Frac ΓL
an,con

is invariant under G. By Corollary 2.4.11, ai/aj ∈ Frac ΓK
an,con for each i, j with

aj 6= 0; clearing denominators, we obtain a nonzero element of M1 ∩M . Hence
M1 descends to Γan,con, as desired. (Compare [19, Theorem 6.10].)

Corollary 6.4.2. For any extension K ′ of K (complete with respect to a
valuation vK′ extending vK , such that ΓK′

has enough units), and any σ-module
M over ΓK

an,con, the HN-filtration of M ⊗ ΓK′

an,con coincides with the result of

tensoring the HN-filtration of M with ΓK′

an,con. In other words, the formation
of the HN-filtration commutes with base change.

Proof. The characterization of the HN-filtration given by Theorem 6.4.1 is
stable under base change.

Corollary 6.4.3. A σ-module over Γan,con is semistable if and only if it is
isoclinic.

Proof. If M is an isoclinic σ-module over Γan,con, then M is semistable by
Proposition 4.5.10. Conversely, if M is not isoclinic, then by Theorem 6.4.1, M
admits a nonzero σ-submodule M1 with µ(M1) < µ(M), so M is not semistable.

7 Complements

7.1 Differentials and the slope filtration

The slope filtration turns out to behave nicely with respect to differentials; this
is what allows the application to Crew’s conjecture.

Definition 7.1.1. Let S/R be an extension of topological rings. A module
of continuous differentials is a topological S-module Ω1

S/R equipped with a
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continuous R-linear derivation d : S → Ω1
S/R, having the following universal

property: for any topological S-module M equipped with a continuous R-
linear derivation D : S → M , there exists a unique morphism φ : Ω1

S/R → M
of topological S-modules such that D = φ ◦ d. Since the definition is via
a universal property, the module of continuous differentials is unique up to
unique isomorphism if it exists at all.

Convention 7.1.2. For the remainder of this section, assume that Γcon, viewed
as a topological O-algebra via the levelwise topology, has a module of continu-
ous differentials Ω1

Γcon/O which is finite free over Γcon. In this case, for any finite

separable extension L of K, Ω1
Γcon/O ⊗Γcon

ΓL
an,con is a module of continuous

differentials of ΓL
an,con over O[π−1].

Example 7.1.3. If K = k((t)) as in Section 2.3, we have a module of contin-
uous differentials for Γcon over O given by Ω1

Γcon/O = Γcon dt with the formal

derivation d sending
∑

cit
i to (

∑

icit
i−1)dt.

Remark 7.1.4. Note that Ω1
Γcon/O may be viewed as a σ-module, via the action

of dσ. Since dσ(ω) ≡ 0 (mod π) for any ω ∈ Ω1
Γcon/O, by Proposition 5.1.3 the

generic slopes of Ω1
Γcon/O as a σ-module are all positive. By Proposition 5.5.1,

the special slopes of Ω1
Γan,con/O as a σ-module are also nonnegative.

Definition 7.1.5. For S = Γcon,Γcon[π−1],Γan,con, define a ∇-module over
S to be a finite free S-module equipped with an integrable connection ∇ :
M → M ⊗ Ω1

S/O. (Integrability here means that the composition of ∇ with

the induced map M ⊗Ω1
S/O → M ⊗∧2

SΩ1
S/O is the zero map.) Define a (σ,∇)-

module over S to be a finite free S-module M equipped with the structures of
both a σ-module and a ∇-module, which commute as in the following diagram:

M
∇

//

F

²²

M ⊗ Ω1
S/O

F⊗dσ

²²

M
∇

// M ⊗ Ω1
S/O.

Proposition 7.1.6. Let M be a (σ,∇)-module over Γan,con. Then each step
of the HN-filtration of M is a (σ,∇)-submodule of M .

Proof. Let M1 be the first step of the HN-filtration, which is isoclinic by Theo-
rem 6.4.1; it suffices to check that M1 is a (σ,∇)-submodule of M . To simplify
notation, write N for Ω1

Γan,con/O. Then the map M1 → (M/M1) ⊗ N induced

by ∇ is a morphism of σ-modules, and the slopes of (M/M1)⊗N are all strictly
greater than the slope of M1 by Remark 7.1.4. By Proposition 4.6.4, the map
M1 → (M/M1) ⊗ N must be zero; that is, M1 is a ∇-submodule of M . This
proves the desired result.
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Proposition 7.1.7. Let M be an isoclinic σ-module over Γcon[π−1] such that
M ⊗ Γan,con admits the structure of a (σ,∇)-module. Then M admits a corre-
sponding structure of a (σ,∇)-module.

Proof. Write N for Ω1
Γcon[π−1]/O, so that ∇ induces an additive map M ⊗

Γan,con → (M ⊗N)⊗Γan,con. Pick a basis e1, . . . , en of M , and define the map
f : M → M ⊗ N by

f
(

∑

ciei

)

=
∑

i

ei ⊗ dci.

Then ∇− f is Γan,con-linear, so we may view it as an element v of M∨ ⊗M ⊗
N ⊗ Γan,con. That element satisfies Fv − v = w for some w ∈ M∨ ⊗ M ⊗ N
by the commutation relation between F and ∇. However, M∨ ⊗ M is unit-
root, so the (generic and special) slopes of M∨ ⊗ M ⊗ N are all positive by
Remark 7.1.4. By Theorem 4.5.7 and Proposition 3.3.7(b1), it follows that
v ∈ M∨ ⊗ M ⊗ N , so ∇ acts on M , as desired. (Compare [19, Theorem 6.12]
and [3, Lemme V.14].)

Remark 7.1.8. We suspect there is a more conceptual way of saying this in
terms of splitting a certain exact sequence of σ-modules.

7.2 The p-adic local monodromy theorem

We recall briefly how the slope filtration theorem, plus a theorem of Tsuzuki,
yields the p-adic local monodromy theorem (formerly Crew’s conjecture).

Convention 7.2.1. Throughout this section, retain notation as in Section 2.3,
i.e., Γan,con is the Robba ring. Note that in this case, the integrability condition
in Definition 7.1.5 is vacuous, since Ω1

Γan,con/O is free of rank 1.

Definition 7.2.2. We say a ∇-module M over Γan,con is constant if it is
spanned by the kernel of ∇; equivalently, M is isomorphic to a direct sum
of trivial ∇-modules. (The “trivial” ∇-module here means Γan,con itself with
the connection given by d.) We say M is quasi-constant if M ⊗ ΓL

an,con is con-
stant for some finite separable extension L of K. We say a (σ,∇)-module is
(quasi-)constant if its underlying ∇-module is (quasi-)constant.

The key external result we need here is the following result essentially due to
Tsuzuki [35]. A simplified proof of Tsuzuki’s result has been given by Christol
[5]; however, see [2] for the corrections of some errors in [5].

Proposition 7.2.3. Let M be a unit-root (σ,∇)-module over Γcon[π−1]. Then
M ⊗ Γan,con is quasi-constant; in fact, for some finite separable extension L of
K, M ⊗ ΓL

con[π−1] admits a basis in the kernel of ∇.

Proof. Suppose first that M = M0 ⊗ Γcon[π−1] for a unit-root (σ,∇)-module
M0 over Γcon. Then our desired statement is Tsuzuki’s theorem [35, Theo-
rem 4.2.6]. To reduce to this case, apply Proposition 5.1.2 to obtain a σ-stable
Γcon-lattice M0; by applying Frobenius repeatedly, we see that M0 must also
be ∇-stable. Thus Tsuzuki’s theorem applies to give the claimed result.
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Definition 7.2.4. We say a ∇-module M over Γan,con is said to be unipotent if
it admits an exhaustive filtration by ∇-submodules whose successive quotients
are constant. We say M is quasi-unipotent if M ⊗ΓL

an,con is unipotent for some
finite separable extension L of K. We say a (σ,∇)-module is (quasi-)unipotent
if its underlying ∇-module is (quasi-)unipotent.

Theorem 7.2.5 (p-adic local monodromy theorem). With notations as
in Section 2.3 (i.e., Γan,con is the Robba ring), let M be a (σ,∇)-module over
Γan,con. Then M is quasi-unipotent.

Proof. By Proposition 7.1.6, each step of the HN-filtration of M is ∇-stable.
It is thus enough to check that each successive quotient is quasi-unipotent; in
other words, we may assume that M itself is isoclinic.
Note that the definition of unipotence does not depend on the Frobenius lift,
so there is no harm in either applying the functor [b]∗ or in twisting. We may
thus reduce to the case where M is isoclinic of slope zero (i.e., is unit-root).
Applying Proposition 7.2.3 then yields the desired result.

Example 7.2.6. In Theorem 7.2.5, it can certainly happen that M fails to be
quasi-constant. For instance, if uσ = qu, and M has rank two with a basis
e1, e2 such that

Fe1 = e1, Fe2 = qe2

∇e1 = 0, ∇e2 = e1 ⊗
du

u
,

then M is a (σ,∇)-module which is unipotent but not quasi-constant.

Remark 7.2.7. The fact that quasi-unipotence follows from the existence of a
slope filtration as in Theorem 6.4.1 was originally pointed out by Tsuzuki [36,
Theorem 5.2.1]. Indeed, that observation was the principal motivation for the
construction of slope filtrations of σ-modules in [19].

Remark 7.2.8. We remind the reader that Theorem 7.2.5 has also been proved
(independently) by André [1] and by Mebkhout [30], using the index theory for
p-adic differential equations developed in a series of papers by Christol and
Mebkhout [6], [7], [8], [9]. This represents a completely orthogonal approach
to ours, as it primarily involves the structure of the connection rather than
the Frobenius. The different approaches seem to have different strengths. For
example, on one hand, the Christol-Mebkhout approach seems to say more
about p-adic differential equations on annuli over p-adic fields which are not
discretely valued. On the other hand, our approach has a certain flexibility that
the Christol-Mebkhout approach lacks; for instance, it carries over directly to
the q-difference situation considered by André and di Vizio in [1], whereas
the analogue of the Christol-Mebkhout theory seems much more difficult to
develop. It also carries over to the setting of “fake annuli” arising in the prob-
lem of semistable reduction for overconvergent F -isocrystals: in this setting,
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one replaces k((t)) by the completion of k[t1, t
−1
1 , . . . , tn, t−1

n ] for a valuation
which totally orders monomials (i.e., the valuations of t1, . . . , tn are linearly
independent over Q). See [25] for further details.

7.3 Generic versus special revisited

The adjectives “generic” and “special” were introduced in Chapter 5 to describe
the two paradigms for attaching slopes to σ-modules over Γcon[π−1]. Here is
a bit of clarification as to why this was done. Throughout this section, retain
notation as in Section 2.3.
Let X → Spec kJtK be a smooth proper morphism, for k a field of characteristic
p > 0. Then the crystalline cohomology of X, equipped with the action of the
absolute Frobenius, gives a (σ,∇)-module M over the ring OJuK; the crystalline
cohomology of the generic fibre corresponds to M ⊗ Γ, whereas the crystalline
cohomology of the special fibre corresponds to M ⊗ (OJuK/uOJuK). However,
the latter is isomorphic to M ⊗ (Γan,con ∩ O[π−1]JuK) by “Dwork’s trick” [13,
Lemma 6.3]. Thus the generic and special HN-polygons correspond precisely to
the Newton polygons of the generic and special fibres; the fact that the special
HN-polygon lies above the generic HN-polygon (i.e., Proposition 5.5.1) in this
case follows from Grothendieck’s specialization theorem.
This gives a theoretical explanation for why Proposition 5.5.1 holds, but a more
computationally explicit example may also be useful. (Thanks to Frans Oort
for suggesting this presentation.) Suppose that σ is chosen so that uσ = up.
Let M be the rank 2 σ-module over Γcon defined by

Fv1 = v2, Fv2 = pv1 + uv2.

Then v1 is a cyclic vector and F 2
v1 − uFv1 − pv1 = 0, so by Lemma 5.2.4,

the generic HN-polygon of M has the same slopes as the Newton polygon of
the polynomial x2 −ux− p, namely 0 and 1. On the other hand, Dwork’s trick
implies that the special HN-polygon of M has slopes 1/2 and 1/2.

7.4 Splitting exact sequences (again)

For reference, we collect here some more results about computing H1 of σ-
modules.

Proposition 7.4.1. For any σ-modules M1,M2 over Γcon[π−1], the map
Ext(M1,M2) → Ext(M1 ⊗ Γan,con,M2 ⊗ Γan,con) is surjective.

Proof. Let
0 → M2 ⊗ Γan,con → M → M1 ⊗ Γan,con → 0

be a short exact sequence of σ-modules. Choose a basis of M2, then lift to M a
basis of M1; the result is a basis of M . Let A be the matrix via which F acts on
this basis; after rescaling the basis of M2 suitably, we can put ourselves into the
situation of Lemma 6.1.1. We can now perform the iteration of Lemma 6.1.1 in
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such a way as to respect the short exact sequence (i.e., take uijlm = 0 whenever
the pair (i, j) falls in the lower left block); as in the proof of Proposition 6.2.2,
we end up with a model Mb of M over Γcon[π−1], which by construction sits
in an exact sequence 0 → M2 → Mb → M1 → 0. This yields the desired
surjectivity.

We next give some generalizations of parts of Proposition 3.3.7.

Proposition 7.4.2. Let M be a σ-module over Γcon[π−1] whose generic HN-
slopes are all nonnegative. Then the map H1(M) → H1(M ⊗Γan,con) is injec-
tive.

Proof. By Proposition 5.1.2, we can choose an F -stable Γcon-lattice M0 of
M . Let e1, . . . , en be a basis of M0, and define the matrix A over Γcon by
Fej =

∑

i Aijei. Choose r > 0 such that A has entries in Γr and wr(A) ≥ 0.

Suppose v ∈ M and w ∈ M ⊗ Γan,con satisfy v = w − Fw, and write v =
∑

i xiei and w =
∑

i yiei with xi ∈ Γcon[π−1] and yi ∈ Γan,con; then xi =
yi −

∑

j Aijy
σ
j .

If w /∈ M , we can choose m < 0 such that vm(xi) = ∞ and 0 <
mini minl≤m{vl,r(yi)} < ∞. Then

min
l≤m

{vl,r(yi)} > q−1 min
l≤m

{vl,r(yi)}

≥ q−1 min
l≤m

min
j

{vl,r(Aijy
σ
j )}

≥ q−1 min
l≤m

min
j

{vl,r(y
σ
j )}

= q−1 min
l≤m

min
j

{rvl(y
σ
j ) + l}

≥ min
l≤m

min
j

{rvl(yj) + l}

= min
l≤m

min
j

{vl,r(yj)};

taking the minimum over all i yields a contradiction. Hence w ∈ M , yielding
the injectivity of the map H1(M) → H1(M ⊗ Γan,con).

Proposition 7.4.3. Let M be a σ-module over Γ[π−1] whose HN-slopes are all
positive. Then F − 1 is a bijection on M , i.e., H0(M) = H1(M) = 0.

Proof. By Proposition 5.1.2, we can choose an F -stable Γ-lattice M0 of M such
that F (M0) ⊆ πM0. Then F − 1 is a bijection on M0/πM0, hence also on M0

and M .

Lemma 7.4.4. For L/K a finite Galois extension, and M a σ-module over
Γan,con, the map H1(M) → H1(M ⊗ ΓL

an,con) is injective.
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Proof. Put G = Gal(L/K). Given w ∈ M , suppose that there exists v ∈
M ⊗ ΓL

an,con such that w = v − Fv. Then we also have w = v
′ − Fv

′ for

v
′ =

1

#G

∑

g∈G

v
g,

which is G-invariant and hence belongs to M .

Theorem 7.4.5. Let M be a σ-module over Γan,con whose HN-slopes are all
positive. Then the exact sequence

0 → M → N → Γan,con → 0 (7.4.6)

splits if and only if N has smallest HN-slope zero.

Proof. If the sequence splits, then P (N) = P (M) + P (Γan,con) by Proposi-
tion 4.7.2, so N has smallest HN-slope zero. We verify the converse first in the
case where K is algebraically closed, so that Γan,con = Γalg

an,con.
We proceed by induction on rank(M). In case M is isoclinic, then the inequality
P (N) ≥ P (M) + P (Γan,con) from Proposition 4.7.2 and the hypothesis that N
has smallest HN-slope zero together force P (N) = P (M) + P (Γan,con); by
Proposition 4.7.2 again, (7.4.6) splits. In case M is not isoclinic, let M1 be the
first step in the HN-filtration of M . By Proposition 4.7.2, we have

P (N) ≥ P (M1) + P (N/M1) ≥ P (M1) + P (M/M1) + P (Γan,con);

since P (N) has smallest slope 0, so does P (M1) + P (N/M1). Since P (M1)
has positive slope, P (N/M1) must have smallest slope zero. Hence by the
induction hypothesis, the exact sequence 0 → M/M1 → N/M1 → Γan,con → 0
splits, say as N/M1

∼= M/M1 ⊕ M ′ with M ′ ∼= Γan,con. Let N ′ be the inverse
image of M ′ under the surjection N → N/M1; it follows now that (7.4.6) splits
if and only if 0 → M1 → N ′ → M ′ → 0 splits. By Proposition 4.7.2 again,
P (N) ≥ P (N ′)+P (M/M1) ≥ P (M1)+P (M/M1)+P (Γan,con), and P (M/M1)
has all slopes positive, so P (N ′) has smallest slope zero. Again by the induction
hypothesis, 0 → M1 → N ′ → M ′ → 0 splits, yielding the splitting of (7.4.6).
To summarize, we have proved that if N has smallest HN-slope zero, then
(7.4.6) splits after tensoring with Γalg

an,con; it remains to descend this split-
ting back to Γan,con. To do this, apply Proposition 6.2.2 to produce a σ-
module M0 over ΓL

con[π−1], for some finite Galois extension L of K, with
M0 ⊗ ΓL

an,con
∼= M ⊗ ΓL

an,con. Then apply Proposition 7.4.1 to descend the

given exact sequence, after tensoring up to ΓL
an,con, to an exact sequence

0 → M0 → N0 → ΓL
con[π−1] → 0. We have shown that the exact sequence

0 → M0 ⊗ Γalg
an,con → N0 ⊗ Γalg

an,con → Γalg
an,con → 0 splits; by Proposition 7.4.2,

the exact sequence 0 → M0 ⊗ Γalg
con[π−1] → N0 ⊗ Γalg

con[π−1] → Γalg
con[π−1] → 0

splits.
Choose w ∈ M0 whose image in H1(M0) corresponds to the exact sequence
0 → M0 → N0 → ΓL

con[π−1] → 0; we have now shown that the class of w
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in H1(M0 ⊗ Γalg
con[π−1]) vanishes. By Proposition 7.4.3, there exists a unique

v ∈ M0⊗ΓL[π−1] with w = v−Fv. Since the class of w in H1(M0⊗Γalg
con[π−1])

vanishes, we have v ∈ M0 ⊗ Γalg
con[π−1]; since M0 is free over ΓL

con[π−1] and
Γalg

con[π−1] ∩ ΓL[π−1] = ΓL
con[π−1], we have v ∈ M0. Hence the sequence (7.4.6)

splits after tensoring with ΓL
an,con. By Lemma 7.4.4, (7.4.6) also splits, as

desired.

7.5 Full faithfulness

Here is de Jong’s original application of the reverse filtration [13, Proposi-
tion 8.2].

Proposition 7.5.1. Suppose that K admits a valuation p-basis. Let M be a
σ-module over Γcon[π−1] admitting an injective F -equivariant Γcon[π−1]-linear
morphism φ : M → Γ[π−1](m) for some integer m. Then φ−1(Γcon[π−1]) is a
σ-submodule of M of rank 1, and its extension to Γalg

con[π−1] is equal to the first
step of the reverse filtration of M . In particular, M has highest generic slope
m with multiplicity 1.

Proof. We first suppose K is algebraically closed (this case being [13, Corol-
lary 5.7]). Let M1 be the first step of the reverse filtration of M . Then
M1 ⊗ Γalg[π−1] is isomorphic to a direct sum of standard σ-modules of some
slope s1 = c/d; by Lemma 5.4.1 (applied to ([d]∗(M1 ⊗ Γalg

con[π−1]))(−c)), M1

itself is isomorphic to a direct sum of standard σ-modules of slope s1.
The map φ induces a nonzero F -equivariant map M1 ⊗ Γalg[π−1] →
Γalg[π−1](m), and hence a nonzero element of H0(M∨

1 ⊗ Γalg[π−1](m)). By
Corollary 4.1.4, we must have m = s1, and so M1

∼= Γalg
con[π−1](m)⊕n for some

n. By Proposition 3.3.4, we have H0(M∨
1 (m)) = H0(M∨

1 ⊗Γalg[π−1](m)), and
so φ actually induces an injective F -equivariant map M1 → Γalg

con[π−1](m).
To summarize, M has highest generic slope m, and the first step of the reverse
filtration is contained in φ−1(Γalg

con[π−1]). Since the latter is a σ-submodule of
M of rank no more than 1, we have the desired result.
We now suppose K is general. Put M ′ = M ⊗Γcon[π−1] Γalg

con[π−1]; by Proposi-
tion 2.2.21(c), the composite map

ψ : M ′ φ⊗1
→ Γ[π−1] ⊗Γcon[π−1] Γalg

con[π−1]
µ
→ Γalg[π−1]

is also injective. By the above, ψ−1(Γalg
con[π−1]) is a σ-submodule of M ′ of rank

1, and coincides with the first step of the reverse filtration of M ′. Let e1, . . . , en

be a basis of M , put v = ψ−1(1), and write v =
∑

xiei with xi ∈ Γalg
con[π−1].

Then 1 = ψ(v) =
∑

xiφ(ei); by Proposition 2.2.21(b), we have xi ∈ Γcon[π−1]
for i = 1, . . . , n. Hence v ∈ φ−1(Γcon[π−1]), so the latter is a σ-submodule of
M of rank 1. This yields the desired result.

Remark 7.5.2. Proposition 7.5.1 can be used to reduce instances of showing
H0(M) = H0(M ⊗ Γ[π−1]), for M an F -module over Γcon[π−1], to showing
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that a certain class in H1(N), where N is a related F -module over Γcon[π−1]
with positive HN-slopes, vanishes. Thanks to Proposition 7.4.2, this in turn
reduces to checking vanishing of the class in H1(N ⊗ Γan,con), where either
Dwork’s trick, in the case of [13], or the p-adic local monodromy theorem, in
the case of [20], can be brought to bear. Note that by Theorem 7.4.5, it is
enough to check vanishing of a class in H1(N ⊗ Γan,con) after replacing K by
a finite separable extension.
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[16] G. Harder and M.S. Narasimhan, On the cohomology groups of moduli
spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215–248.

[17] U. Hartl and R. Pink, Vector bundles with a Frobenius structure on the
punctured unit disc, Compos. Math. 140 (2004), 689–716.

[18] N.M. Katz, Slope filtration of F -crystals, in Journées de Géométrie
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valué complet, Publ. Math. IHÉS 14 (1962), 47–75.
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