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1 Introduction

There is no doubt that the recent renaissance in interest about isothermic
surfaces is principally due to the fact that they constitute an integrable system,
as can be seen in several new works where it is shown, for instance, that the
theory of isothermic surfaces in R

3 can be reformulated within the modern
theory of soliton theory [4], or can be analyzed as curved flats in the symmetric
space O(4, 1)/O(3)×O(1, 1) [3]. Additionally, in a recent work of Burstall [1],
we find an account of the theory of isothermic surfaces in R

n from both points
of view: of classic surfaces geometry as well as from the perspective of the
modern theory of integrable systems and loop groups.
The key point of this class of surfaces, as well as of the classic pseudospherical
surfaces and those with constant mean curvature, is that the Gauss-Codazzi
equations are soliton equations, they have a zero-curvature formulation, i.e.,
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the equations should amount to the flatness of a family of connections depend-
ing on an auxiliary parameter. It is well known that this special property allows
actions of an infinite dimensional group on the space of solutions, called the
“dressing action” in the soliton theory. For instance, the geometric transforma-
tions found for the surfaces above such as Backlund, Darboux and Ribaucour,
arise as the dressing action of some simple elements.

More recently, in 1997, Terng in [12] defined a new integrable system, the U/K-
system (or n-dimensional system associated to U/K), which is very closely re-
lated to that of curved flats discovered by Ferus and Pedit [8]. Terng, in [12],
showed that the U/K-system admits a Lax connection and initiated the project
to study the geometry associated with these systems. In fact, using the exis-
tence of this Lax connection, in 2002 Bruck-Du-Park-Terng ([2]) studied the ge-
ometry involved in two particular cases of U/K-systems: O(m+n)/O(m)×O(n)
and O(m+n, 1)/O(m)×O(n, 1)-systems. For these cases, they found that the
isothermic surfaces, submanifolds with constant sectional curvatures and sub-
manifolds admitting principal curvature coordinates are associated to them,
and, that the dressing actions of simple elements on the space of solutions
corresponded to Backlund, Darboux and Ribaucour transformations for sub-
manifolds.

Later, looking for a relation between space-like isothermic surfaces in pseudo-
riemannian space and the U/K-systems, the first author found in [6] that the
class of space-like isothermic surfaces in pseudo-riemannian space R

n−j,j for any
signature j, were associated to the O(n−j+1, j+1)/O(n−j, j)×O(1, 1)-system.
The principal point in this study was the suitable choice of a one maximal
abelian subalgebra, which allows one to obtain elliptic Gauss equations, which
are appropriate for space-like surfaces.

The main goal of this note is to show that time-like isothermic surfaces
in the pseudo-riemannian space R

n−j,j are also associated to the O(n −
j + 1, j + 1)/O(n − j, j) × O(1, 1)-systems, defined by other two maximal
abelian subalgebras, that are not conjugate under the Ad(K)-action, where
K = O(n − j, j) × O(1, 1). We study the class of time-like surfaces both with
diagonal and non-diagonal second fundamental form, in the cases when its prin-
cipal curvatures are real and distinct and when they are complex conjugates.
We show that an isothermic pair i.e, two isothermic time-like surfaces which
are dual, in the diagonal or non-diagonal case, are associated to our systems.
Additionally, in this paper we present a review of the principal results recently
obtained in [7], about the geometric transformations associated to the dressing
action of certain elements with two simple poles on the space of solutions of
the complex O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-system, corresponding
to the timelike isothermic surfaces whose second fundamental forms are non-
diagonal. The geometric transformations associated to real case of timelike
isothermic surfaces with second fundamental forms are diagonal, were already
studied in [14].

Finally, we note that all time-like surfaces of constant mean curvature, all time-
like rotation surfaces and all time-like members of Bonnet families are examples
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of time-like isothermic surfaces [11].

2 The U/K-systems

In this section, we introduce the definition of U/K-system given by Terng in
[12]. Let U be a semi-simple Lie group, σ an involution on U and K the fixed
point set of σ. Then U/K is a symmetric space. The Lie algebra K is the fixed
point set of the differential σ∗ of σ at the identity, in others words, it is the +1
eigenspace of σ∗. Let now P denote the -1 eigenspace of σ∗. Then we have the
Lie algebra of U , U = K ⊕ P and

[K,K] ⊂ K, [K,P] ⊂ P, [P,P] ⊂ K.

Let A be a non-degenerate maximal abelian subalgebra in P, a1, a2, ..., an a
basis for A and A⊥ the orthogonal complement of A in the algebra U with
respect to the Killing form <,>. Then the U/K-system is the following first
order system of non-linear partial differential equations for v : R

n → P ∩A⊥.

[ai, vxj
] − [aj , vxi

] = [[ai, v], [aj , v]], 1 ≤ i 6= j ≤ n, (1)

where vxj
= ∂v

∂xj
.

The first basic result established in [12] is the existence of one-parameter family
of connections whose flatness condition is exactly the U/K-system.

Theorem 2.1. ([12]) The following statements are equivalent for a map v :
R

n → P ∩A⊥:
i) v is solution of the U/K-system (1).
ii)

[
∂

∂xi

+ λai + [ai, v],
∂

∂xj

+ λaj + [aj , v]] = 0 for all λ ∈ C, (2)

iii) θλ is a flat UC = U ⊗ C-connection 1-form on R
n for all λ ∈ C, where

θλ =
∑

(aiλ + [ai, v])dxi. (3)

iv) There exists E so that E−1dE = θλ.

The one-parameter family of flat connections θλ given by (3) is called the
Lax connection of the U/K-system (1).
It is well known that for a flat connection θ =

∑n
i=1 Ai(x)dxi, the trivialization

of θ, is a solution E for the following linear system:

Exi
= EAi. (4)

Or equivalently of E−1dE = θ.
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3 Main Results

In the next two subsections we establish our results that time-like isother-
mic surfaces are associated to the Grassmannian system O(n − j + 1, j +
1)/O(n − j, j) × O(1, 1). In fact, using the existence of another two max-
imal abelian subalgebras in the subspace P, different from that of the
space-like case given in [6] in which the first author obtained elliptic Gauss
equations, we associate to each of these maximal abelian subalgebras one
O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-system. As we will see, these systems
are not equivalent and for each of these maximal abelian subalgebra we obtain
hyperbolic Gauss equations, which are correct for time-like surfaces.
Let U/K = O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1), where

O(n − j + 1, j + 1) =

{X ∈ GL(n + 2)|Xt

(
In−j,j 0

0 J ′

)
X =

(
In−j,j 0

0 J ′

)
},

In−j,j =

(
In−j 0

0 −Ij

)
and J ′ =

(
0 1
1 0

)
.

Let U = o(n − j + 1, j + 1) be the Lie algebra of U and σ : U → U be an
involution defined by σ(X) = I−1

n,2XIn,2. Denote by K,P the +1, -1 eigenspaces
of σ respectively, i.e.,

K = {

(
Y1 0
0 Y2

) ∣∣∣∣Y1 ∈ o(n − j, j), Y2 ∈ o(1, 1)} = o(n − j, j) × o(1, 1),

and

P = {

(
0 ξ

−J ′ξtIn−j,j 0

) ∣∣∣∣ξ ∈ Mn×2}.

3.1 Time-like case with diagonal second fundamental form

Here we assume the elements a1, a2 ∈ M(n+2)×(n+2), where

a1 = en,n+1 + en,n+2 + en+1,n + en+2,n

a2 = −e1,n+1 + e1,n+2 − en+1,1 + en+2,1,

and eij is the (n + 2) × (n + 2) elementary matrix whose only non-zero entry
is 1 in the ijth place.
Then it is easy to see that the subalgebra A =< a1, a2 > is maximal abelian in
P, that Tr[a2

1]Tr[a2
2] − Tr[a1a2]

2 = 16 with Tr[a2
1] = 4, so the induced metric

on A is positive definite and finally that

P ∩ A⊥ = {

(
0 ξ

−J ′ξtIn−j,j 0

) ∣∣∣∣ξ ∈ Mn×2, ξ11 = ξ12, ξn1 = −ξn2}.
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So using this basis {a1, a2}, the U/K-system (1) for this symmetric space is
the following PDE for

ξ =




ξ1 ξ1

r1,1 r1,2

...
...

rn−2,1 rn−2,2

ξ2 −ξ2




: R
2 → Mn×2,





(ri,2)x1
− (ri,1)x1

= −2(ri,1 + ri,2)ξ2, i = 1, ..., n − 2

(ri,2)x2
+ (ri,1)x2

= 2(ri,2 − ri,1)ξ1, i = 1, ..., n − 2

2((ξ1)x2
+ (ξ2)x1

) =
∑n−2

i=1 σi(r
2
i1 − r2

i2)

(ξ2)x2
+ (ξ1)x1

= 0,

(5)

where σi = 1, i = 1, ..., n − j − 1 and σi = −1, i = n − j, ..., n − 2.
We now denote the entries of ξ by:

(
ξ1 ξ1

ξ2 −ξ2

)
= F and




r1,1 r1,2

...
...

rn−2,1 rn−2,2


 = G.

For convenience, we call the U/K-system (5) the real O(n− j +1, j +1)/O(n−
j, j)×O(1, 1)-system, because this system will correspond to time-like surfaces
in R

n−j,j whose shape operators are diagonalizable.
Continuing with the same notation used in [2], the real O(n−j+1, j+1)/O(n−
j, j) × O(1, 1)-system II is the PDE for (F,G,B) : R

2 → gl∗(2) ×M(n−2)×2 ×
O(1, 1), where gl∗(2) = {N ∈ M2×2|N11 = N12, N21 = −N22}





(ri,2)x1
− (ri,1)x1

= −2ξ2(ri,1 + ri,2), i = 1, ..., n − 2

(ri,1)x2
+ (ri,2)x2

= 2ξ1(ri,2 − ri,1), i = 1, ..., n − 2

2((ξ1)x2
+ (ξ2)x1

) =
∑n−2

i=1 σi(r
2
i1 − r2

i2)

(b11)x1
− (b12)x1

= 2ξ2(b11 + b12)

(b21)x1
− (b22)x1

= 2ξ2(b22 + b21)

(b11)x2
+ (b12)x2

= −2ξ1(b11 − b12)

(b21)x2
+ (b22)x2

= −2ξ1(b21 − b22)

(6)

where the matrix B = (bij) ∈ O(1, 1). Now we recall that if we take

g =

(
A 0
0 B

)
solution of g−1dg = θ0 and B being the particular case

B =

(
b 0
0 1

b

)
=

(
e2u 0
0 e−2u

)
, we obtain the relation

B−1dB =

(
−2ξ1dx2 + 2ξ2dx1 0

0 −2ξ2dx1 + 2ξ1dx2

)
,
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which implies that ξ1 = −ux2
and ξ2 = ux1

, hence the matrix ξ becomes:

ξ =




−ux2
−ux2

r1,1 r1,2

...
...

rn−2,1 rn−2,2

ux1
−ux1




.

So the real O(n−j+1, j+1)/O(n−j, j)×O(1, 1)-system II is the set of partial
differential equations for (u, r1,1, r1,2, . . . , rn−2,1, rn−2,2):





(ri,2)x1
− (ri,1)x1

= −2(ri,1 + ri,2)ux1
, i = 1, ..., n − 2

(ri,1)x2
+ (ri,2)x2

= −2(ri,2 − ri,1)ux2
, i = 1, ..., n − 2

2(ux1x1
− ux2x2

) =
∑n−2

i=1 σi(r
2
i1 − r2

i2)

(7)

We observe that the next proposition follows from Proposition 2.5 in [2].

Proposition 3.1. the following statements are equivalent for map (F,G,B) :
R

2 → gl∗(2) ×M(n−2)×2 × O(1, 1):
(1) (F,G,B) is solution of (6).
(2) θII

λ := g2θλg−1
2 − dg2g

−1
2 is a flat connection on R

2 for all λ ∈ C, where
θλ is the Lax connection associated to the solution ξ of the system (5) and

g2 =

(
I 0
0 B

)
is the O(1, 1)-part of the trivialization g = (g1, g2) of θ0.

(3) θII
λ := g2θλg−1

2 − dg2g
−1
2 is flat for λ = 1, where g2 is the same as in item

(2).

Before showing the relationship between the Grassmannian system and isother-
mic surfaces we give the definition of a time-like isothermic surface with shape
operators diagonalized over R.

Definition 3.1. (Real isothermic surface) Let O be a domain in R
1,1.

An immersion X : O → R
n−j,j is called a real time-like isothermic surface if

it has flat normal bundle and the two fundamental forms are:

I = e2v(−dx2
1 + dx2

2), II = ev

n−1∑

i=2

(gi−1,2dx2
2 − gi−1,1dx2

1)ei,

with respect to some parallel normal frame {ei}. Or equivalently (x1, x2) ∈ O
is conformal and line of curvature coordinate system for X.

We note that each isothermic surface has a dual surface ([11]) and make the
following related definition.

Definition 3.2. (Real isothermic time-like dual pair in R
n−j,j of type

O(1, 1)). Let O be a domain in R
1,1 and Xi : O → R

n−j,j an immersion with
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flat and non-degenerate normal bundle for i = 1, 2. (X1,X2) is called a real
isothermic time-like dual pair in R

n−j,j of type O(1, 1) if :
(i) The normal plane of X1(x) is parallel to the normal plane of X2(x) and
x ∈ O,
(ii) there exists a common parallel normal frame {e2, ..., en−1}, where {ei}

n−j
2

and {ei}
n−1
n−j+1 are space-like and time-like vectors resp.

(iii) x ∈ O is a conformal line of curvature coordinate system with respect to
{e2, ..., en−1} for each Xk such that the fundamental forms of Xk are:





I1 = b−2(−dx2
1 + dx2

2),

II1 = b−1
∑n−1

i=2 [−(gi−1,1 + gi−1,2)dx2
1 + (gi−1,2 − gi−1,1)dx2

2]ei,

I2 = b2(−dx2
1 + dx2

2),

II2 = b
∑n−1

i=2 [−(gi−1,1 + gi−1,2)dx2
1 − (gi−1,2 − gi−1,1)dx2

2]ei,

(8)

where B =

(
b 0
0 b−1

)
is in O(1, 1) and a M(n−2)×2-valued map G = (gij).

Our first result, whose proof follows the same lines of Theorem 6.8 or 7.4 in
[2], gives us the relationship between the dual pair of real isothermic timelke
surfaces in R

n−j,j of type O(1, 1) and the solutions of the real O(n− j + 1, j +
1)/O(n − j, j) × O(1, 1)-system II (6):

Theorem 3.1. Suppose (u, r1,1, r1,2, . . . , rn−2,1, rn−2,2) is solution of (7) and
F , B are given by

F =

(
ξ1 ξ1

ξ2 −ξ2

)
=

(
−ux2

−ux2

ux1
−ux1

)
, B =

(
e2u 0
0 e−2u

)
.

Then: (a)
ω =




0 ǫ1β1dx2 . . . ǫn−2βn−2dx2 2(−ξ1dx1 + ξ2dx2)
−β1dx2 0 . . . 0 −η1dx1

−β2dx2 0 . . . 0 −η2dx1

...
... . . .

...
...

−βn−2dx2 0 . . . 0 −ηn−2dx1

2(ξ2dx2 − ξ1dx1) −ǫ1η1dx1 . . . −ǫn−2ηn−2dx1 0




(9)
where ǫi = 1 for i < n − j and ǫi = −1 for i ≥ n − j, and where βi =
(ri,2 − ri,1), ηi = (ri,1 + ri,2), i = 1, ..., n − 2, is a flat o(n − j, j)-valued
connection 1-form. Hence there exists A : R

2 → O(n − j, j) such that

A−1dA = ω, (10)

where ω is given by (9).
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(b)

A

(
−dx2 0 . . . 0 dx1

dx2 0 . . . 0 dx1

)t

B−1

is exact. So there exists a map X : R
2 → Mn×2 such that

dX = A

(
−dx2 0 . . . 0 dx1

dx2 0 . . . 0 dx1

)t

B−1 (11)

(c) Let Xj : R
2 → R

n−j,j denote the j-th column of X (solution of 11) and ei

denote the i-th column of A. Then (X1,X2) is a dual pair of real isothermic
timelike surfaces in R

n−j,j of type O(1, 1). I.e. (X1,X2) have the following
properties:
(1) e1, en are resp. space-like and time-like tangent vectors to X1 and X2, i.e,
the tangent planes of X1,X2 are parallel.
(2) {e2, ..., en−1} is a parallel normal frame for X1 and X2, with {e2, ..., en−j}
and {en−j+1, ..., en−1} being resp. space-like and time-like vectors.
(3) the two fundamental forms for the immersion Xk are:





I1 = e−4u(dx2
2 − dx2

1)

II1 = e−2u
∑n−1

i=2 [(ri−1,2 − ri−1,1)dx2
2 − (ri−1,1 + ri−1,2)dx2

1]ei

I2 = e4u(dx2
2 − dx2

1)

II2 = e2u
∑n−1

i=2 [−(ri−1,2 − ri−1,1)dx2
2 − (ri−1,1 + ri−1,2)dx2

1]ei

Remark 3.1. We observe that we can prove a theorem like Theorem (3.1) for
a general solution (F,G,B) of system (6) by taking a generic F = (fij) and

B = (bij) =

(
b 0
0 b−1

)
∈ O(1, 1), i.e, we conclude that if (F,G,B) is a solution

of system (6), we obtain a real isothermic timelike dual pair in R
n−j,j of type

O(1, 1) with I and II fundamental forms like in (8).

Now for the converse, we have the following result.

Theorem 3.2. Let (X1,X2) be a real isothermic time-like dual pair in R
n−j,j

of type O(1, 1), {e2, ..., en−1} a common parallel normal frame and (x1, x2) a
common isothermal line of curvature coordinates for X1 and X2, such that the

two fundamental forms Ik, IIk for Xk are given by (8). Set f11 = −
bx2

2b
=

f12, f22 = −
bx1

2b
= −f21, and F = (fij)2×2. Then if all entries of G and the

gi−1,1 + gi−1,2, gi−1,2 − gi−1,1 are non-zero, then (F,G,B) is a solution of (6).

Proof. From the definition of real isothermic time-like pair in R
n−j,j , we have

ω
(1)
1 = −b−1dx2, ω(1)

n = b−1dx1 ω
(2)
1 = bdx2, ω(2)

n = bdx1

is a dual 1-frame for Xk and ω
(k)
1α = lα(gα−1,2−gα−1,1)dx2, ω

(k)
nα = −lα(gα−1,1+

gα−1,2)dx1 for each Xk, where lα = 1 if α = 2, ..., n − j and lα = −1 if
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α = n − j + 1, ..., n − 1. We observe that ω
(k)
iα , i = 1, n, α = 2, ..., n − 1 are

independent of k. We find that the Levi-civita connection 1-form for the metric
Ik is:

ω
(k)
1n =

bx1

b
dx2 +

bx2

b
dx1 = 2(−f

(k)
22 dx2 − f

(k)
11 dx1),

which are independent from k. Hence ω
(k)
1n = ω

(1)
1n = 2(−f22dx2 − f11dx1) =

2(ξ2dx2 − ξ1dx1). So the structure equations and the Gauss-Codazzi equations
for X1,X2 imply that (F,G,B) is a solution of system (6). ¥

So, from Theorems (3.1), (3.2) and Remark (3.1), it follows that there exists a
correspondence between the solutions (F,G,B) of system (6) and a dual pair
of real isothermic timelike surfaces in R

n−j,j of type O(1, 1).

Theorem 3.3. The real O(n− j + 1, j + 1)/O(n− j, j)×O(1, 1)-system II (6)
is the Gauss-Codazzi equation for a time-like surface in R

n−j,j such that:
(

I = e4u(dx2
2
− dx2

1
)

II = e2u
Pn−1

i=2
[−(ri−1,2 − ri−1,1)dx2

2
− (ri−1,1 + ri−1,2)dx2

1
]ei

(12)

Proof. We can read from I and II that: ω1 = e2udx2, ωn = e2udx1, ω1,i =
ηi(ri−1,2 − ri−1,1)dx2, and ωn,i = −ηi(ri−1,2 + ri−1,1)dx1, where ηi = 1 if
i = 2, ..., n − j and ηi = −1 if i = n − j + 1, ..., n − 1. Now use the structure
equations: dω1 = ωn ∧ ω1n and dωn = ω1 ∧ ωn1, to obtain:

ω1n = 2(ux1
dx2 + ux2

dx1).

Now from the Gauss equation: dω1n = −
∑n−j

i=2 ω1,i∧ωn,i+
∑n−1

i=n−j+1 ω1,i∧ωn,i,
we have that

ux1x1
− ux2x2

=
1

2
[

n−2∑

i=1

σi(r
2
i1 − r2

i2)].

The Codazzi equations: dω1,i = −ω1n ∧ ωn,i and dωn,i = −ωn1 ∧ ω1,i for
i = 2, ..., n − 1, yield, for these values of i,

(ri−1,2)x1
− (ri−1,1)x1

= −2(ri−1,2 + ri−1,1)ux1

(ri−1,1)x2
+ (ri−1,2)x2

= −2(ri−1,2 − ri−1,1)ux2
.

Collecting our information we see that the Gauss-Codazzi equation is the fol-
lowing system for (u, r1,1, r1,2, . . . , rn−2,1, rn−2,2):

8

>

<

>

:

(ri−1,2)x1
− (ri−1,1)x1

= −2(ri−1,2 + ri−1,1)ux1
, i = 2, ..., n − 1

(ri−1,1)x2
+ (ri−1,2)x2

= −2(ri−1,2 − ri−1,1)ux2
, i = 2, ..., n − 1

2(ux1x1
− ux2x2

) =
Pn−2

i=1
σi(r

2
i1

− r2
i2

)

(13)

Hence if we put

B =

(
e2u 0
0 e−2u

)
, F =

(
−ux2

−ux2

ux1
−ux1

)
, G =




r1,1 r1,2

...
...

rn−2,1 rn−2,2


 , (14)
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we see that (F,G,B) is solution of the real O(n−j+1, j+1)/O(n−j, j)×O(1, 1)-
system II. Conversely, if (F,G,B) is solution of the real O(n−j+1, j+1)/O(n−
j, j)×O(1, 1)-system II (6), and we assume B being as in (14), then the fourth
and sixth equation of system (6), imply that

ξ2 = ux1
, ξ1 = −ux2

ie, (F,G,B) is the form (14). Finally writing the real O(n− j +1, j +1)/O(n−
j, j)×O(1, 1)-system II for this (F,G,B) in terms of u and rij we get equation
(13). ¥

The next result follows from Theorem (3.1) and Theorem (3.3).

Theorem 3.4. Let O be a domain of R
1,1, and X2 : O → R

n−j,j an immersion
with flat normal bundle and (x1, x2) ∈ O an isothermal line of curvature coor-
dinate system with respect to a parallel normal frame {e2, ..., en−1}, such that
I and II fundamental forms are given by (12). Then there exists an immersion
X1, unique up to translation, such that (X1,X2) is a real isothermic timelike
dual pair in R

n−j,j of type O(1, 1). Moreover, the fundamental forms of X1,X2

are respectively:





I1 = e−4u(dx2
2 − dx2

1)

II1 = e−2u
∑n−1

i=2 [(ri−1,2 − ri−1,1)dx2
2 − (ri−1,1 + ri−1,2)dx2

1]ei

I2 = e4u(dx2
2 − dx2

1)

II2 = e2u
∑n−1

i=2 [−(ri−1,2 − ri−1,1)dx2
2 − (ri−1,1 + ri−1,2)dx2

1]ei

(15)

It follows from Gauss equation that the Gaussian curvatures of X1 and X2 of

the real isothermic timelike dual pair (15), denoted by K
(1)
G , K

(2)
G , and the

mean curvatures, denoted by η(1) and η(2), are given by

K
(1)
G = −e4u

n−2∑

i=1

σi(r
2
i,1 − r2

i,2), K
(2)
G = e−4u

n−2∑

i=1

σi(r
2
i,1 − r2

i,2),

η(1) = e2u

n−2∑

i=1

ri,2ei+1, η(2) = e−2u

n−2∑

i=1

ri,1ei+1,

where σi = 1, i = 1, ..., n − j − 1 and σi = −1, i = n − j, ..., n − 2.

3.2 Timelike case with non-diagonal second fundamental form

We continue with the same notational convention used in the subsection above.
For this new case, we take the elements a1, a2 ∈ M(n+2)×(n+2), to be

a1 = e1,n+1 + en,n+2 + en+1,n − en+2,1

a2 = −e1,n+2 + en,n+1 + en+1,1 + en+2,n.
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We note that Tr[a2
1]Tr[a2

2] − Tr[a1a2]
2 = −16 and Tr[a2

1] = 0, so that the
induced metric on A is time-like.

One can see easily that the space A spanned by a1 and a2 is a maximal abelian
subalgebra contain in P, and that

A⊥ ∩ P = {

(
0 ξ

−J ′ξtIn−j,j 0

)
|ξ ∈ Mn×2, ξ11 = −ξn2, ξ12 = ξn1}.

So the matrix v ∈ A⊥ ∩ P if and only if

v =




0 . . . . . . 0 ξ1 ξ2

0 . . . . . . 0 r1,1 r1,2

... . . . . . .
...

...
...

0 . . . . . . 0 rn−2,1 rn−2,2

0 . . . . . . 0 ξ2 −ξ1

−ξ2 −r1,2 . . . rn−2,2 −ξ1 0 0
−ξ1 −r1,1 . . . rn−2,1 ξ2 0 0




.

Then using this basis {a1, a2}, the U/K-system (1) for this symmetric space is
the following PDE for

ξ =




ξ1 ξ2

r1,1 r1,2

...
...

rn−2,1 rn−2,2

ξ2 −ξ1




: R
2 → Mn×2,





−ri,2x2

− ri,1x1

= 2(ri,2ξ1 − ri,1ξ2), i = 1, ..., n − 2

−ri,1x2

+ ri,2x1

= −2(ri,1ξ1 + ri,2ξ2), i = 1, ..., n − 2

(−2ξ1)x2
+ (2ξ2)x1

=
∑n−2

i=1 σi(r
2
i,1 + r2

i,2)

(2ξ2)x2
− (2ξ1)x1

= 0.

(16)

We now denote the entries of ξ by:

(
ξ1 ξ2

ξ2 −ξ1

)
= F and




r1,1 r1,2

...
...

rn−2,1 rn−2,2


 = G.

For convenience, we call the U/K-system (16) the complex O(n − j + 1, j +
1)/O(n−j, j)×O(1, 1)-system, because this system will correspond to time-like
surfaces in R

n−j,j whose shape operators have complex eigenvalues.

Now, the complex O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-system II is the
following PDE for (F,G,B) : R

2 → gl∗(2) ×M(n−2)×2 × O(1, 1), where gl∗(2)
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is the set of matrices 2 × 2 such that −f11 = f22, f21 = f12,




−ri,2x2

− ri,1x1

= 2(ri,2ξ1 − ri,1ξ2),

−ri,1x2

+ ri,2x1

= −2(ri,1ξ1 + ri,2ξ2),

(−2ξ1)x2
+ (2ξ2)x1

=
∑n−2

i=1 σi(r
2
i,1 + r2

i,2)

b22x2
+ b21x1

= −2b22ξ1 + 2b21ξ2,

b12x2
+ b11x1

= −2b12ξ1 + 2b11ξ2,

b21x2
− b22x1

= 2b21ξ1 + 2b22ξ2,

b11x2
− b12x1

= 2b11ξ1 + 2b12ξ2,

(17)

where the matrix B = (bij) ∈ O(1, 1) and 1 ≤ i ≤ n − 2. Now taking B =(
e2u 0
0 e−2u

)
, and using the fact that

B−1dB =

(
2ξ2dx1 + 2ξ1dx2 0

0 −2ξ2dx1 − 2ξ1dx2

)
,

we have

ξ =




ux2
ux1

r1,1 r1,2

...
...

rn−2,1 rn−2,2

ux1
−ux2




.

So the complex O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-system II is the PDE
for (u, r1,1, r1,2, . . . , rn−2,1, rn−2,2):





−ri,2x2

− ri,1x1

= 2(ri,2ξ1 − ri,1ξ2),

−ri,1x2

+ ri,2x1

= −2(ri,1ξ1 + ri,2ξ2),

−2ux2x2
+ 2ux1x1

=
∑n−2

i=1 σi(r
2
i,1 + r2

i,2).

(18)

Remark 3.2. We recall that the complex O(n−j+1, j+1)/O(n−j, j)×O(1, 1)-
system II is the flatness condition for the family:

θII
λ =

(
ω MB−1

BN 0

)

where B = (bij) ∈ O(1, 1) and the matrices ω ∈ Mn×n,M ∈ Mn×2, N ∈
M2×n are given by:

ω =




0 ~a ~b c

−~a t 0 0 ~d t

~b t 0 0 ~e t

c ~d −~e 0


 , M = λ




dx1 −dx2

0 0
...

...
0 0

dx2 dx1




(19)

N = λ

(
dx2 0 . . . 0 dx1

−dx1 0 . . . 0 dx2

)
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where

~a = (a1, . . . , an−j−1) and ak = rk,1dx2 − rk,2dx1, for 1 ≤ k ≤ n − j − 1,

~b = (bn−j , . . . , bn−2) and bq = −rq,1dx2 + rq,2dx1, for n − j ≤ q ≤ n − 2,

c = −2ξ1dx1 − 2ξ2dx2

~d = (d1, . . . , dn−j−1) and dk = −rk,1dx1 − rk,2dx2, for 1 ≤ k ≤ n − j − 1,

~e = (eq, . . . , en−2) and eq = −rq,1dx1 − rq,2dx2, for n − j ≤ q ≤ n − 2.

We note that a proposition similar to Proposition (3.1), can be proven in this
new case.
At this point we need the appropriate definition of a complex isothermic surface,
i.e., one that has an isothermal coordinate system with respect to which all the
shape operators are diagonalized over C.

Definition 3.3. (Complex isothermic surface) Let O be a domain in
R

1,1. An immersion X : O → R
n−j,j is called a complex time-like isothermic

surface if it has flat normal bundle and the two fundamental forms are:

I = ±e2v(−dx2
1 + dx2

2), II =
n−1∑

i=2

ev(gi1(dx2
2 − dx2

1) − 2gi2dx1dx2)ei,

with respect to some parallel normal frame {ei}.

Remark 3.3. We note that given any complex isothermic surface there is a
dual isothermic surface with parallel normal space ([11]). The U/K system
generates this pair of dual surfaces, making it clear that they should be consid-
ered essentially as a single unit.

Definition 3.4. (Complex isothermic time-like dual pair in R
n−j,j of

type O(1, 1)). Let O be a domain in R
1,1 and Xi : O → R

n−j,j an immersion
with flat and non-degenerate normal bundle for i = 1, 2. (X1,X2) is called a
complex isothermic timelike dual pair in R

n−j,j of type O(1, 1) if :
(i) The normal plane of X1(x) is parallel to the normal plane of X2(x) and
x ∈ O,
(ii) there exists a common parallel normal frame {e2, ..., en−1}, where {ei}

n−j
2

and {ei}
n−1
n−j+1 are space-like and time-like vectors resp.

(iii) x ∈ O is a isothermal coordinate system with respect to {e2, ..., en−1}, for
each Xk, such that the fundamental forms of Xk are diagonalizable over C.
Namely,





I1 = b−2(dx2
1 − dx2

2),

II1 = −b−1
∑n−2

i=1 [gi,2(dx2
2 − dx2

1) + 2gi,1dx1dx2]ei+1,

I2 = b2(−dx2
1 + dx2

2),

II2 = b
∑n−2

i=1 [gi,1(dx2
2 − dx2

1) − 2gi,2dx1dx2]ei+1,

(20)
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where B =

(
b 0
0 b−1

)
is in O(1, 1) and a M(n−2)×2-valued map G = (gij).

Theorem 3.5. Suppose (u, r1,1, r1,2, . . . , rn−2,1, rn−2,2) is solution of (18) and
F , B are given by

F =

(
ux2

ux1

ux1
−ux2

)
, B =

(
e2u 0
0 e−2u

)
.

Then: (a) The ω defined by (19) is a flat o(n− j, j)-valued connection 1-form.
Hence there exists A : R

2 → O(n − j, j) such that

A−1dA = ω. (21)

(b)

A

(
dx1 0 . . . 0 dx2

−dx2 0 . . . 0 dx1

)t

B−1

is exact. So there exists a map X : R
2 → Mn×2 such that

dX = A

(
dx1 0 . . . 0 dx2

−dx2 0 . . . 0 dx1

)t

B−1. (22)

(c) Let Xi : R
2 → R

n−j,j denote the i-th column of X (solution of (22)) and
ei denote the i-th column of A. Then X1 and X2 are a dual pair of isothermic
time-like surfaces in R

n−j,j with common isothermal coordinates and second
fundamental forms diagonalized over C, so that:
(1) e1, en are space-like and time-like tangent vectors to X1 and X2, i.e, the
tangent planes of X1,X2 are parallel.
(2) {e2, . . . , en−1} form a parallel normal frame for X1 and X2 of signature
{n − j − 1, j − 1}.
(3) the two fundamental forms for the immersion Xi are:





I1 = e−4u(dx2
1 − dx2

2)

II1 = −e−2u
∑n−2

i=1 [ri,2(dx2
2 − dx2

1) + 2ri,1dx1dx2]ei+1

I2 = e4u(dx2
2 − dx2

1)

II2 = e2u
∑n−2

i=1 [ri,1(dx2
2 − dx2

1) − 2ri,2dx1dx2]ei+1.

(23)

Remark 3.4. We observe that we can prove a theorem like Theorem (3.5) for
a general solution (F,G,B) of system (17) by taking a generic F = (fij) and

B = (bij) =

(
b 0
0 b−1

)
∈ O(1, 1), i.e, we conclude that if (F,G,B) is a solution

of system (17), we obtain a complex isothermic timelike dual pair in R
n−j,j of

type O(1, 1) with I and II fundamental forms like in (20).

Now for the converse, we have the following result.
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Theorem 3.6. Let (X1,X2) be a complex isothermic timelike dual pair in
R

n−j,j of type O(1, 1), {e2, ..., en−1} a common parallel normal frame and
(x1, x2) a common isothermal coordinates for X1 and X2, such that the two fun-

damental forms Ik, IIk for Xk are given by (20). Set f11 =
bx2

2b
= −f22, f12 =

bx1

2b
= f21, and F = (fij)2×2. Then if all entries of G are non-zero, then

(F,G,B) is a solution of (17).

Proof. From the definition of complex isothermic timelike dual pair in R
n−j,j ,

we have

ω
(1)
1 = b−1dx1, ω(1)

n = b−1dx2, ω
(2)
1 = −bdx2, ω(2)

n = bdx1

is a dual 1-frame for Xk and ω
(k)
1α = lα(−gα−1,2dx1 + gα−1,1dx2), ω

(k)
nα =

−lα(gα−1,1dx1 + gα−1,2dx2) for each Xk, where lα = 1 if α = 2, ..., n − j and

lα = −1 if α = n−j+1, ..., n−1. We observe that ω
(k)
iα , i = 1, n, α = 2, ..., n−1

are independent of k. We find that the Levi-civita connection 1-form for the
metric Ik is:

ω
(k)
1n = −

bx2

b
dx1 −

bx1

b
dx2,

which are independent from k. Hence ω
(k)
1n = ω

(1)
1n = 2(f22dx1 − f12dx2) =

−2(ξ1dx1+ξ2dx2). So the structure equations and the Gauss-Codazzi equations
for X1,X2 imply that (F,G,B) is a solution of system (17). ¥

So, from Theorems (3.5), (3.6) and Remark (3.4), follows that exists a corre-
spondence between the solutions (F,G,B) of system (17) and a dual pair of
complex isothermic timelike surfaces in R

n−j,j of type O(1, 1).

Theorem 3.7. The complex O(n− j +1, j +1)/O(n− j, j)×O(1, 1)-system II
(17) is the Gauss-Codazzi equation for a time-like surface in R

n−j,j such that:
(

I = e4u(dx2
2
− dx2

1
)

II = e2u
Pn−2

i=1
[ri,1(dx2

2
− dx2

1
) − 2ri,2dx1dx2]ei+1.

(24)

Proof. For this surface we can read off from the fundamental forms I and II
that 




ω1 = −e2udx2

ωn = e2udx1

ω1 i = σi(ri−1,1dx2 − ri−1,2dx1) for 2 ≤ i ≤ n − 1

ωn i = −σi(ri−1,1dx1 + ri−1,2dx2) for 2 ≤ i ≤ n − 1.

Using the structure equations, we can see that

ω1n = −2ux2
dx1 − 2ux1

dx2,

and that the Gauss and Codazzi equations are the same as (18), since we have

ux1
= ξ2, ux2

= ξ1.
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Hence if we put

B =

(
e2u 0
0 e−2u

)
, F =

(
ux2

ux1

ux1
−ux2

)
, (25)

G =




r1,1 r1,2

...
...

rn−2,1 rn−2,2




we have that (F,G,B) is solution of the complex O(n − j + 1, j + 1)/O(n −
j, j)×O(1, 1)-system II (17). Conversely, if (F,G,B) is solution of the complex
O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-system II (17), and B is as in (25),
then the fourth and sixth equation from system (17), imply that

ξ2 = ux1
, ξ1 = ux2

i.e., (F,G,B) has the form (25). Finally writing the O(n− j + 1, j + 1)/O(n−
j, j) × O(1, 1)-system II (17) for this (F,G,B), in terms of u and ri we get
equation (18). ¥

The next result follows from Theorem (3.5) and Theorem (3.7).

Theorem 3.8. Let O be a domain of R
1,1, and X2 : O → R

n−j,j an im-
mersion with flat normal bundle and (x1, x2) ∈ O a isothermal coordinates
system with respect to a parallel normal frame {e2, ..., en−1}, such that I and
II fundamental forms are given by (24). Then there exists an immersion X1,
unique up to translation, such that (X1,X2) is a complex isothermic timelike
dual pair in R

n−j,j of type O(1, 1). Moreover, the fundamental forms of X1,X2

are respectively:





I1 = e−4u(dx2
1 − dx2

2)

II1 = −e−2u
∑n−2

i=1 [ri,2(dx2
2 − dx2

1) + 2ri,1dx1dx2]ei+1

I2 = e4u(dx2
2 − dx2

1)

II2 = e2u
∑n−2

i=1 [ri,1(dx2
2 − dx2

1) − 2ri,2dx1dx2]ei+1.

(26)

Finally, it follows from Gauss equation that the Gaussian curvatures of X1 and

X2 of a complex isothermic timelike dual pair (26), denoted by K
(1)
G , K

(2)
G , are

given by

K
(1)
G = e4u

n−2∑

i=1

σi(r
2
i,1 + r2

i,2), K
(2)
G = e−4u

n−2∑

i=1

σi(r
2
i,1 + r2

i,2),

where σi = 1, i = 1, ..., n − j − 1 and σi = −1, i = n − j, ..., n − 2.

Example: Next we give an explicit example of a dual pair of complex time-
like isothermic surfaces in R

2,1 and the associated solution to the complex
O(3, 2)/O(2, 1) × O(1, 1)-system II.
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We consider first the Lorentzian helicoid

X(x1, x2) = (x2, sinh(x1) sinh(x2), cosh(x2) sinh(x1))

with normal vector:

N(x1, x2) =
1

cosh(x1)
(− sinh(x1), cosh(x2), sinh(x2)).

The dual surface to this surface is:

X̂(x1, x2) =
1

cosh(x1)
(sinh(x1),− cosh(x2),− sinh(x2)),

which is a parametrization of part of the standard immersion of the Lorenztian
sphere (see[11]). They constitute a dual pair of complex timelike isothermic
surfaces in R

2,1, with first and second fundamental forms given resp. by

I1 = cosh2(x1)[−dx2
1 + dx2

2], II1 = 2dx1dx2,

I2 = (1/ cosh2(x1))[dx2
1 − dx2

2], II2 = (1/ cosh2(x1))[dx2
2 − dx2

1].

Here

B =

(
cosh x1 0

0 cosh−1 x1

)
, F =

(
0 tanh x1

2
tanh x1

2 0

)
,

and

G =
(
0, − cosh−1 x1

)
,

are a solution of the complex O(3, 2)/O(2, 1) × O(1, 1)-system II. More specif-
ically, taking e2u = coshx1, we have (u, 0,− cosh−1 x1) is a solution of the
complex O(3, 2)/O(2, 1) × O(1, 1)-system II.

4 Appendix: Associated Geometric transformations

The first part of this appendix concerns the geometric transformations on sur-
faces in the pseudo-euclidean space R

n−j,j corresponding to the action of an
element with two simple poles on the space of local solutions of our complex
O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-system II (17). In particular, the
results which will be established here were proved by the authors in [7], hence
we invite the reader to see in [7] the proof’s details. In addition, the reader will
find in [7], an explicit example of an isothermic timelike dual pair in R

2,1 of
type O(1, 1) constructed by applying the Darboux transformation to the trivial
solution of complex system II (18). We note that the study of the geometric
transformations associated to the real case, was already considered in [14].

In the second part of this appendix, we establish the moving frame formulas
for timelike surfaces in R

n−j,j .
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Initially in [7], we made a natural extension of the Ribaucour transformation
definition given in [5], and of the definition of Darboux transformation for
surfaces in R

m for our case of complex timelike surfaces. Later, we found the
rational element gs,π whose action corresponds to the Ribaucour and Darboux
transformations just as we defined them. We now review the principal results
of [7].

We start by defining Ribaucour and Darboux transformations for timelike sur-
faces in R

n−j,j whose shape operators have conjugate eigenvalues as follows:

For x ∈ R
n−j,j and v ∈ (TR

n−j,j)x, where let γx,v(t) = x + tv denote the
geodesic starting at x in the direction of v.

Definition 4.1. Let Mm and M̃m be Lorentzian submanifolds whose shape
operators are all diagonalizable over R or C immersed in the pseudo-riemannian
space R

n−j,j, 0 < j < n. A sphere congruence is a vector bundle isomorphism
P : V(M) → V(M̃) that covers a diffeomorphism φ : M → M̃ with the following
conditions:

(1) If ξ is a parallel normal vector field of M , then P ◦ ξ ◦ φ−1 is a parallel

normal field of M̃ .

(2) For any nonzero vector ξ ∈ Vx(M), the geodesics γx,ξ and γφ(x),P (ξ) inter-
sect at a point that is the same parameter value t away from x and φ(x).

For the following definition we assume that each shape operator is diagonalized
over the real or complex numbers. We note that there are submanifolds for
which this does not hold.

Definition 4.2. A sphere congruence P : V(M) → V(M̃) that covers a diffeo-

morphism φ : M → M̃ is called a Ribaucour transformation if it satisfies the
following additional properties:

(1) If e is an eigenvector of the shape operator Aξ of M , corresponding to a

real eigenvalue then φ∗(e) is an eigenvector of the shape operator AP (ξ) of M̃
corresponding to a real eigenvalue.

If e1 + ie2 is an eigenvector of Aξ on (TM)C corresponding to the complex
eigenvalue a + ib (so that e1 − ie2 corresponds to the eigenvalue a − ib), then
φ∗(e1) + iφ∗(e2) is an eigenvector corresponding to a complex eigenvalue for
AP (ξ).

(2) The geodesics γx,e and γφ(x),φ∗(e) intersect at a point that is equidistant to
x and φ(x) for real eigenvectors e, and γx,ej

and γφ(x),φ∗(ej) meet for the real
and imaginary parts of complex eigenvectors e1 + ie2, i.e., for j = 1, 2.

Definition 4.3. Let M,M̃ be two timelike surfaces in R
n−j,j with flat and

non-degenerate normal bundle, shape operators that are diagonalizable over C

and P : V(M) → V(M̃) a Ribaucour transformation that covers the map φ :

M → M̃ . If, in addition, φ is a sign-reversing conformal diffeomorphism then
P is called a Darboux transformation.
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In definition (4.3), by a sign-reversing conformal diffeomorphism we mean that
the time-like and space like vectors are interchanged and the conformal coor-
dinates remain conformal.
Next we define the rational element

gs,π(λ) = (π +
λ − is

λ + is
(I − π))(π +

λ + is

λ − is
(I − π)) (27)

where 0 6= s ∈ R, π is the orthogonal projection of C
n+2 onto the span of

(
W
iZ

)

with respect to the bi-linear form 〈, 〉2 given by

〈U, V 〉2 =

u1v1 + ... + un−jvn−j − un−j+1vn−j+1 − ... − unvn + un+1vn+2 + un+2vn+1,

for W ∈ R
n−j,j , Z ∈ R

1,1 unit vectors.
It is easy to see that gs,π belongs to the group:

G− = {g : S2 → UC | g is meromorphic, g(∞) = I and satisfies

the reality conditions},

where UC = O(n− j + 1, j + 1; C) and the reality conditions are the following,
for a map g : C → UC:





g(λ) = g(λ)

In,2 g(−λ) In,2 = g(λ)

g(λ)t

(
In−j,j 0

0 J ′

)
g(λ) =

(
In−j,j 0

0 J ′

)
.

(28)

With this, we have:

Theorem 4.1. Let (X1,X2) be a complex isothermic timelike dual pair in
R

n−j,j of type O(1, 1) corresponding to the solution (u,G) of the system (18),

and let ξ =

(
F
G

)
the corresponding solution of the system (16), where

F =

(
ux2

ux1

ux1
−ux2

)
, B =

(
e2u 0
0 e−2u

)
.

Let gs,π defined in (27), and Ŵ , Ẑ as in Main Lemma 4.1 (see below), for the

solution ξ of the system (16). Let (Ẽ♯
II

, Ã♯, B̃♯) = gs,π.(EII , A,B) the action

of gs,π over (EII , A,B) where A,B, Ã♯, B̃♯ are the entries of

E(x, 0) =

(
A(x) 0

0 B(x)

)
, Ẽ♯(x, 0) =

(
Ã♯(x) 0

0 B̃♯(x)

)
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and EII is the frame corresponding to the solution (F,G,B) of the complex

system II (18). Write A = (e1, ..., en) and Ã♯ = (ẽ1, ..., ẽn). Set
{

X̃1 = X1 + 2
s
ẑ2e

−2u
∑n

i=1 ŵiei,

X̃2 = X2 + 2
s
ẑ1e

2u
∑n

i=1 ŵiei,
(29)

Then
(i) (ũ, G̃) is the solution of system (18), corresponding to X̃ = (X̃1, X̃2), where

e4eu =
4bz4

2

e4u and G̃ = (r̃ij) is defined by Main Lemma 4.1, for the new solution ξ̃
of the system (16).

(ii) The fundamental forms of pair (X̃1, X̃2) are respectively




Ĩ1 = e4eu(−dx2
1 + dx2

2)

ĨI1 = e2eu
∑n−2

i=1 [r̃i,1(dx2
2 − dx2

1) − 2r̃i,2dx1dx2]ẽi+1.

Ĩ2 = e−4eu(dx2
1 − dx2

2)

ĨI2 = −e−2eu
∑n−2

i=1 r̃i,2(dx2
2 − dx2

1) + 2r̃i,1dx1dx2]ẽi+1.

(iii) The bundle morphism P (ek(x)) = ẽk(x), k = 2, ..., n− 1 covering the map

Xi → X̃i is a Darboux transformation for each i = 1, 2.

Proof. For (i) and (ii) we just observe that

dX̃ = Ã♯

(
dx1 0 . . . 0 dx2

−dx2 0 . . . 0 dx1

)t

B̃♯
−1

,

and calculate.
For (iii) we observe that the map φ : Xi → X̃i is sign-reversing conformal

because the coordinates (x1, x2) are isothermic for Xi and X̃i but timelike
and spacelike vectors are interchanged. The rest of the properties of Darboux
transformation follows from Lemma 4.2 below. ¥

Lemma 4.1. (Main Lemma) Let ξ =

(
F
G

)
be a solution of the system (16),

and E(x, λ) a frame of ξ such that E(x, λ) is holomorphic for λ ∈ C. Let gs,π

the map defined by (27) and π̃(x) the orthogonal projection onto C

(
W̃

iZ̃

)
(x)

with respect to 〈, 〉2, where
(

W̃

iZ̃

)
(x) = E(x,−is)−1

(
W
iZ

)
. (30)

Let Ŵ =
fW

‖fW‖n−j,j

and Ẑ =
eZ

‖ eZ‖1,1

, Ẽ(x, λ) = gs,π(λ)E(x, λ)gs,eπ(x)(λ)−1,

ξ̃ = ξ − 2s(Ŵ ẐtJ ′)∗, (31)

where (ϑ∗) is the projection onto the span of {a1, a2}
⊥. Then ξ̃ is a solution

of system (16), Ẽ is a frame for ξ̃ and Ẽ(x, λ) is holomorphic in λ ∈ C.
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For the Proof of the Main Lemma see ([7]).

Writing the new solution given by Main Lemma 4.1 as ξ̃ =

(
F̃

G̃

)
, one sees the

components of ξ̃ are:





f̃11 = −f̃22 = f11 − s(ŵ1ẑ2 − ŵnẑ1),

f̃12 = f̃21 = f12 − s(ŵ1ẑ1 + ŵnẑ2),

r̃i1 = ri1 − 2sŵ1+iẑ2

r̃i2 = ri2 − 2sŵ1+iẑ1,

(32)

for F = (fij)2×2, G = (rij)(n−2)×2, F̃ = (f̃ij)2×2, G̃ = (r̃ij)(n−2)×2.

Lemma 4.2. Let ξ =

(
F
G

)
solution of (16), E frame of ξ, E(x, 0) =

(
A(x) 0

0 B(x)

)
, (F,G,B) a solution corresponding to complex O(n− j +1, j +

1)/O(n − j, j) × O(1, 1)-system II, and

(F̃ , G̃, B̃♯, Ẽ♯
II

) = gs,π.(F,G,B,EII), Ã♯ = gs,π.A

the action of gs,π over the solution (F,G,B) and the matrix A, resp.. Let ei, ẽi

denote the i-th column of A and Ã♯ resp. Then we have
(i) X = (X1,X2) and X̃ = (X̃1, X̃2) are complex isothermic timelike dual pairs
in R

n−j,j of type O(1, 1) such that {e2, ...en−1} and {ẽ2, ..., ẽn−1} are parallel

normal frames for Xj and X̃j respectively for j = 1, 2, where {eα}
n−j
α=2 and

{eα}
n−1
α=n−j+1 are spacelike and timelike vectors resp.

(ii) The solutions of the complex O(n−j+1, j+1)/O(n−j, j)×O(1, 1)-system

II corresponding to X and X̃ are (F,G,B) and (F̃ , G̃, B̃♯) resp.
(iii) The bundle morphism P (ek(x)) = ẽk(x) k = 2, ..., n − 1, is a Ribaucour

Transformation covering the map Xj(x) 7→ X̃j(x) for each j = 1, 2.

(iv) There exist smooth functions ψik such that Xi + ψikek = X̃i + ψikẽk for
1 ≤ i ≤ 2 and 1 ≤ k ≤ n.

For the proof of Lemma 4.2, see ([7]).

Now we begin the second part of this appendix, where we review the method
of moving frames for time-like surfaces in the Lorentz space R

n−j,j . Set

eA · eB = σAB = In−j,j =

(
In−j 0

0 −Ij

)
.

We also let σi := σii.
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For the time-like immersion X set dX = ω1e1 + ωnen, so that a space-like unit
tangent vector to the surface is e1, a time-like unit vector to the surface is en

and the normal space is spanned by eα, for 2 ≤ α ≤ n − 1. Define

deB =
∑

A

ωABeA. (33)

This gives ωAB = σAeA · deB and

ωABσA + ωBAσB = 0. (34)

From d(dX) = 0 we get:

dω1 = ωn ∧ ω1n (35)

dωn = ω1 ∧ ωn1 (36)

ω1 ∧ ωα1 + ωn ∧ ωαn = 0, (37)

for α as above.
In addition, by Cartan’s Lemma we have:

ω1α = hα
11ω1 + hα

1nωn, ωnα = hα
n1ω1 + hα

nnωn.

This makes the first fundamental form:

I : ω2
1 − ω2

n (38)

and the second fundamental form is:

II : −
∑

k=1,n

∑
α ωkασk ωk σα eα = (39)

−
∑

α (hα
11ω1 + hα

1nωn)ω1 σα eα +
∑

α (hα
n1ω1 + hα

nnωn)ωn σα eα.

We also have: dωCA = −
∑

B ωCB ∧ ωBA, which yield the Gauss and Codazzi
equations. The Gauss equation comes from examining dω1n, while the Codazzi
equations are from dω1α and dωnα.
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