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ABSTRACT. One way to reformulate the celebrated theorem of Beilin-
son is that (O(—n),...,0) and (Q"(n),...,Q (1), 0) are strong com-
plete exceptional sequences in D?(CohP™), the bounded derived cat-
egory of coherent sheaves on P". In a series of papers ([Kal], [Ka2],
[Ka3]) M. M. Kapranov generalized this result to flag manifolds of
type A, and quadrics. In another direction, Y. Kawamata has re-
cently proven existence of complete exceptional sequences on toric
varieties ([Kaw]).

Starting point of the present work is a conjecture of F. Catanese which
says that on every rational homogeneous manifold X = G/P, where G
is a connected complex semisimple Lie group and P C G a parabolic
subgroup, there should exist a complete strong exceptional poset (cf.
def. 2.1.7 (B)) and a bijection of the elements of the poset with the
Schubert varieties in X such that the partial order on the poset is
the order induced by the Bruhat-Chevalley order (cf. conjecture 2.2.1
(A)). An answer to this question would also be of interest with re-
gard to a conjecture of B. Dubrovin ([Du], conj. 4.2.2) which has its
source in considerations concerning a hypothetical mirror partner of
a projective variety Y: There is a complete exceptional sequence in
D®(CohY) if and only if the quantum cohomology of Y is generically
semisimple (the complete form of the conjecture also makes a predic-
tion about the Gram matrix of such a collection). A proof of this
conjecture would also support M. Kontsevich’s homological mirror
conjecture, one of the most important open problems in applications
of complex geometry to physics today (cf. [Kon]).

The goal of this work will be to provide further evidence for F.
Catanese’s conjecture, to clarify some aspects of it and to supply
new techniques. In section 2 it is shown among other things that
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the length of every complete exceptional sequence on X must be the
number of Schubert varieties in X and that one can find a complete
exceptional sequence on the product of two varieties once one knows
such sequences on the single factors, both of which follow from known
methods developed by Rudakov, Gorodentsev, Bondal et al. Thus
one reduces the problem to the case X = G/P with G simple. Fur-
thermore it is shown that the conjecture holds true for the sequences
given by Kapranov for Grassmannians and quadrics. One computes
the matrix of the bilinear form on the Grothendieck K-group K, (X)
given by the Euler characteristic with respect to the basis formed by
the classes of structure sheaves of Schubert varieties in X; this matrix
is conjugate to the Gram matrix of a complete exceptional sequence.
Section 3 contains a proof of theorem 3.2.7 which gives complete ex-
ceptional sequences on quadric bundles over base manifolds on which
such sequences are known. This enlarges substantially the class of va-
rieties (in particular rational homogeneous manifolds) on which those
sequences are known to exist. In the remainder of section 3 we con-
sider varieties of isotropic flags in a symplectic resp. orthogonal vector
space. By a theorem due to Orlov (thm. 3.1.5) one reduces the prob-
lem of finding complete exceptional sequences on them to the case of
isotropic Grassmannians. For these, theorem 3.3.3 gives generators of
the derived category which are homogeneous vector bundles; in special
cases those can be used to construct complete exceptional collections.
In subsection 3.4 it is shown how one can extend the preceding method
to the orthogonal case with the help of theorem 3.2.7. In particular we
prove theorem 3.4.1 which gives a generating set for the derived cat-
egory of coherent sheaves on the Grassmannian of isotropic 3-planes
in a 7-dimensional orthogonal vector space. Section 4 is dedicated
to providing the geometric motivation of Catanese’s conjecture and
it contains an alternative approach to the construction of complete
exceptional sequences on rational homogeneous manifolds which is
based on a theorem of M. Brion (thm. 4.1.1) and cellular resolutions
of monomial ideals & la Bayer/Sturmfels. We give a new proof of the
theorem of Beilinson on P” in order to show that this approach might
work in general. We also prove theorem 4.2.5 which gives a concrete
description of certain functors that have to be investigated in this
approach.

2000 Mathematics Subject Classification: 14M15, 14F05; 18E30

Keywords and Phrases: flag varieties, rational homogeneous mani-
folds, derived category

DOCUMENTA MATHEMATICA 11 (2006) 261-331



DERIVED CATEGORIES OF RATIONAL HOMOGENEOUS MANIFOLDS 263

CONTENTS
1 INTRODUCTION 263
2 ToOLS AND BACKGROUND: GETTING OFF THE GROUND 269
2.1 Exceptional sequences . . . . . .. ... ... ... ... 269
2.2 Catanese’s conjecture and the work of Kapranov . . ... ... 278
2.3 Information detected on the level of K-theory . . . . ... ... 286
3 FIBRATIONAL TECHNIQUES 290
3.1 The theorem of Orlov on projective bundles . . . . . .. .. .. 291
3.2 The theorem on quadric bundles . . . . ... ... ... .... 294
3.3 Application to varieties of isotropic flags in a symplectic vector
SPACE .« v i e e e e e e e e e e e 302
3.4 Calculation for the Grassmannian of isotropic 3-planes in a 7-
dimensional orthogonal vector space . . . .. ... ... ... .. 312
4 DEGENERATION TECHNIQUES 316
4.1 A theoremof Brion . . . . . ... ... ... ... ........ 316
4.2 Analysis of the degeneration of the Beilinson functor on P* . . 317

1 INTRODUCTION

The concept of derived category of an Abelian category A, which gives a trans-
parent and compact way to handle the totality of cohomological data attached
to A and puts a given object of A and all of its resolutions on equal footing,
was conceived by Grothendieck at the beginning of the 1960’s and their internal
structure was axiomatized by Verdier through the notion of triangulated cate-
gory in his 1967 thesis (cf. [Verl], [Ver2]). Verdier’s axioms for distinguished
triangles still allow for some pathologies (cf. [GeMal, IV.1, 7) and in [BK] it
was suggested how to replace them by more satisfactory ones, but since the
former are in current use, they will also be the basis of this text. One may
consult [Nee] for foundational questions on triangulated categories.

However, it was only in 1978 that people laid hands on “concrete” derived
categories of geometrical significance (cf. [Bei] and [BGG2]), and A. A. Beilin-
son constructed strong complete exceptional sequences of vector bundles for
D®(CohP™), the bounded derived category of coherent sheaves on P". The
terminology is explained in section 2, def. 2.1.7, below, but roughly the
simplification brought about by Beilinson’s theorem is analogous to the con-
struction of a semi-orthonormal basis (eq,...,eq) for a vector space equipped
with a non-degenerate (non-symmetric) bilinear form x (i.e., x(e;,e;) = 1 Vi,
X(ej,es) = 0%) > ).

Beilinson’s theorem represented a spectacular breakthrough and, among other
things, his technique was applied to the study of moduli spaces of semi-
stable sheaves of given rank and Chern classes on P? and P? by Horrocks,
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Barth/Hulek, Drézet/Le Potier (cf. [OSS], [Po] and references therein).
Recently, A. Canonaco has obtained a generalization of Beilinson’s theorem to
weighted projective spaces and applied it to the study of canonical projections
of surfaces of general type on a 3-dimensional weighted projective space (cf.
[Can], cf. also [AKO]).

From 1984 onwards, in a series of papers [Kal], [Ka2], [Ka3], M. M. Kapranov
found strong complete exceptional sequences on Grassmannians and flag vari-
eties of type A,, and on quadrics. Subsequently, exceptional sequences alongside
with some new concepts introduced in the meantime such as helices, muta-
tions, semi-orthogonal decompositions etc. were intensively studied, especially
in Russia, an account of which can be found in the volume [Rul] summarizing
a series of seminars conducted by A. N. Rudakov in Moscow (cf. also [Bo],
[BoKal], [Or]). Nevertheless, despite the wealth of new techniques introduced
in the process, many basic questions concerning exceptional sequences are still
very much open. These fall into two main classes: first questions of existence:
E.g., do complete exceptional sequences always exist on rational homogeneous
manifolds? (For toric varieties existence of complete exceptional sequences was
proven very recently by Kawamata, cf. [Kaw].) Secondly, one often does not
know if basic intuitions derived from semi-orthogonal linear algebra hold true
in the framework of exceptional sequences, and thus one does not have enough
flexibility to manipulate them, e.g.: Can every exceptional bundle on a vari-
ety X on which complete exceptional sequences are known to exist (projective
spaces, quadrics...) be included in a complete exceptional sequence?

To round off this brief historical sketch, one should not forget to mention that
derived categories have proven to be of geometrical significance in a lot of other
contexts, e.g. through Fourier-Mukai transforms and the reconstruction theo-
rem of Bondal-Orlov for smooth projective varieties with ample canonical or
anti-canonical class (cf. [Or2]), in the theory of perverse sheaves and the gen-
eralized Riemann-Hilbert correspondence (cf. [BBD]), or in the recent proof
of T. Bridgeland that birational Calabi-Yau threefolds have equivalent derived
categories and in particular the same Hodge numbers (cf. [Brid]). Interest in
derived categories was also extremely stimulated by M. Kontsevich’s proposal
for homological mirror symmetry ([Kon]) on the one side and by new applica-
tions to minimal model theory on the other side.

Let me now describe the aim and contents of this work. Roughly speaking, the
problem is to give as concrete as possible a description of the (bounded) derived
categories of coherent sheaves on rational homogeneous manifolds X = G/P,
G a connected complex semisimple Lie group, P C G a parabolic subgroup.
More precisely, the following set of main questions and problems, ranging from
the modest to the more ambitious, have served as programmatic guidelines:

P 1. Find generating sets of D’(Coh X) with as few elements as possible.
(Here a set of elements of D?(Coh X) is called a generating set if the
smallest full triangulated subcategory containing this set is equivalent to
Db(Coh X)).
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We will see in subsection 2.3 below that the number of elements in a generating
set is always bigger or equal to the number of Schubert varieties in X.

In the next two problems we mean by a complete exceptional sequence an
ordered tuple (Ey,...,E,) of objects Fy,...,E, of D’(Coh X) which form
a generating set and such that moreover R*Hom(E;, E;) = 0 for all i > j,
R*Hom(E;, E;) = C (in degree 0) for all . If in addition all extension groups in
nonzero degrees between the elements F; vanish we speak of a strong complete
exceptional sequence. See section 2, def. 2.1.7, for further discussion.

P 2. Do there always exist complete exceptional sequences in D*(Coh X)?

P 3. Do there always exist strong complete exceptional sequences in
D*(Coh X)?

Besides the examples found by Kapranov mentioned above, the only other
substantially different examples I know of in answer to P 3. is the one given
by A. V. Samokhin in [Sa] for the Lagrangian Grassmannian of totally isotropic
3-planes in a 6-dimensional symplectic vector space and, as an extension of this,
some examples in [Kuz].

In the next problem we mean by a complete strong exceptional poset a set of
objects {Ey, ..., E,} of D’(Coh X) that generate D°(Coh X) and satisfy
R*Hom(E;, E;) = C (in degree 0) for all ¢ and such that all extension groups
in nonzero degrees between the F; vanish, together with a partial order < on
{E\,...,E,} subject to the condition: Hom(E;, E;) = 0 for j > ¢, j # i (cf.
def. 2.1.7 (B)).

P 4. Catanese’s conjecture: On any X = G/P there exists a complete strong
exceptional poset ({E1,..., E,}, <) together with a bijection of the ele-
ments of the poset with the Schubert varieties in X such that < is the
partial order induced by the Bruhat-Chevalley order (cf. conj. 2.2.1 (A)).

P 5. Dubrovin’s conjecture (cf. [Du], conj. 4.2.2; slightly modified afterwards
in [Bay]; cf. also [B-M]): The (small) quantum cohomology of a smooth
projective variety Y is generically semi-simple if and only if there exists a
complete exceptional sequence in D®(CohY’) (Dubrovin also relates the
Gram matrix of the exceptional sequence to quantum-cohomological data
but we omit this part of the conjecture).

Roughly speaking, quantum cohomology endows the usual cohomology space
with complex coeflicients H*(Y) of Y with a new commutative associative
multiplication o, : H*(Y) x H*(Y) — H*(Y) depending on a complexified
Kihler class w € H?(Y,C), i.e. the imaginary part of w is in the Kihler cone
of Y (here we assume H°%(Y) = 0 to avoid working with supercommutative
rings). The condition that the quantum cohomology of Y is generically semi-
simple means that for generic values of w the resulting algebra is semi-simple.
The validity of this conjecture would provide further evidence for the famous
homological mirror conjecture by Kontsevich ([Kon]). However, we will not
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deal with quantum cohomology in this work.
Before stating the results, a word of explanation is in order to clarify why we
narrow down the focus to rational homogeneous manifolds:

e Exceptional vector bundles need not always exist on an arbitrary smooth
projective variety; e.g., if the canonical class of Y is trivial, they never
exist (see the explanation following definition 2.1.3).

e DY(CohY) need not be finitely generated, e.g., if Y is an Abelian variety
(see the explanation following definition 2.1.3).

o If we assume that Y is Fano, then the Kodaira vanishing theorem tells
us that all line bundles are exceptional, so we have at least some a priori
supply of exceptional bundles.

e Within the class of Fano manifolds, the rational homogeneous spaces X =
G/ P are distinguished by the fact that they are amenable to geometric,
representation-theoretic and combinatorial methods alike.

Next we will state right away the main results obtained, keeping the numbering
of the text and adding a word of explanation to each.

Let V be a 2n-dimensional symplectic vector space and IGrass(k, V') the Grass-
mannian of k-dimensional isotropic subspaces of V' with tautological subbundle
R. X* denotes the Schur functor (see subsection 2.2 below for explanation).

THEOREM 3.3.3. The derived category D®(Coh(IGrass(k,V))) is generated by
the bundles XY R, where v runs over Young diagrams Y which satisfy

(number of columns of Y) < 2n — k&,
k > (number of rows of Y') > (number of columns of V') — 2(n — k).

This result pertains to P 1. Moreover, we will see in subsection 3.3 that P 2.
for isotropic flag manifolds of type C),, can be reduced to P 2. for isotropic
Grassmannians. Through examples 3.3.6-3.3.8 we show that theorem 3.3.3
gives a set of bundles which is in special cases manageable enough to obtain
from it a complete exceptional sequence. In general, however, this last step is
a difficult combinatorial puzzle relying on Bott’s theorem for the cohomology
of homogeneous bundles and Schur complexes derived from tautological exact
sequences on the respective Grassmannians.

For the notion of semi-orthogonal decomposition in the next theorem we refer
to definition 2.1.17 and for the definition of spinor bundles ¥, ©* for the
orthogonal vector bundle Og(—1)*/Og(—1) we refer to subsection 3.2.

THEOREM 3.2.7. Let X be a smooth projective variety, £ an orthogonal vector
bundle of rank r + 1 on X (i.e., £ comes equipped with a quadratic form q €
['(X,Sym?EY) which is non-degenerate on each fibre), Q C P(E) the associated
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quadric bundle, and let £ admit spinor bundles (see subsection 3.2).
Then there is a semiorthogonal decomposition

D*(Q) = (D"(X) @ B(—r +1),D"(X) ® Og(—r +2),
..., D"(X)® 0g(~1),D"(X))

forr+1 odd and

Db(Q) = (D(X) @ 2F (—r +1), DY (X) @ S (—r + 1),
D*(X)® Og(—r+2),...,D"(X) ® Og(—1), D*(X))

forr+1 even.

This theorem is an extension to the relative case of a theorem of [Ka2]. It en-
larges substantially the class of varieties (especially rational-homogeneous vari-
eties) on which complete exceptional sequences are proven to exist (P 2). It will
also be the substantial ingredient in subsection 3.4: Let V' be a 7-dimensional
orthogonal vector space, IGrass(3,V’) the Grassmannian of isotropic 3-planes
in V, R the tautological subbundle on it; L denotes the ample generator of
Pic(IGrass(3,V)) ~ Z (a square root of O(1) in the Pliicker embedding). For
more information cf. subsection 3.4.

THEOREM 3.4.1. The derived category D°(CohlIGrass(3,V)) is generated as
triangulated category by the following 22 vector bundles:

/\2 R(-1), O(=2), R(-=2) ® L, Sym’R(-1) ® L, O(-3) @ L,
/\272(—2) ® L, 22'R(-1)® L, R(-1), O(-2) ® L, O(-1),
R(-1)® L, /\273(—1) ® L, 'R ® L, Sym*RY(-2) ® L, /\2R, o,
SR, Sym’RY(~2), O(-1) @ L, Sym*RY(~1), A" R@ L, R @ L.

This result pertains to P 1. again. It is worth mentioning that the expected
number of elements in a complete exceptional sequence for
DP(Coh1Grass(3,V)) is 8, the number of Schubert varieties in IGrass(3,V). In
addition, one should remark that P 2. for isotropic flag manifold of type B,, or
D,, can again be reduced to isotropic Grassmannians. Moreover, the method
of subsection 3.4 applies to all orthogonal isotropic Grassmannians alike, but
since the computations tend to become very large, we restrict our attention to
a particular case.

Beilinson proved his theorem on P™ using a resolution of the structure sheaf
of the diagonal and considering the functor Rpa.(pj(—) @ Oa) ~ id Db(Coh P7)
(here py1,ps : P* x P* — P" are the projections onto the two factors). The
situation is complicated on general rational homogeneous manifolds X because
resolutions of the structure sheaf of the diagonal A C X x X analogous to
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those used in [Bei], [Kal], [Ka2], [Ka3] to exhibit complete exceptional se-
quences, are not known. The preceding theorems are proved by “fibrational
techniques”. Section 4 outlines an alternative approach: In fact, M. Brion
([Bri]) constructed, for any rational homogeneous manifold X, a degeneration
of the diagonal Ay into Xy, which is a union, over the Schubert varieties in
X, of the products of a Schubert variety with its opposite Schubert variety
(cf. thm. 4.1.1). It turns out that it is important to describe the functors
Rpa.(pi(—) @ Ox,) which, contrary to what one might expect at first glance,
are no longer isomorphic to the identity functor by Orlov’s representability the-
orem [Or2], thm. 3.2.1 (but one might hope to reconstruct the identity out of
Rpa. (pf(—)®@L Ox,) and some infinitesimal data attached to the degeneration).
For P™ this is accomplished by the following

THEOREM 4.2.5. Let {pt} = Lo C L1 C --- C L, = P™ be a full flag of
projective linear subspaces of P (the Schubert varieties in P") and let LY =
P* > LY DD L™ = {pt} be a complete flag in general position with respect
to the L;.

For d > 0 one has in D*(CohP")

Rpa.(p}(O(d)) ®" Ox,) ~ @ Or, @ H(L7,0(d))¥ /H (LT, O(d))” .
j=0

Moreover, one can also describe completely the effect of Rpa.(pi(—) ®@F Ox,)
on morphisms (cf. subsection 4.2 below).

The proof uses the technique of cellular resolutions of monomial ideals of Bayer
and Sturmfels ([B-S]). We also show in subsection 4.2 that Beilinson’s theorem
on P" can be recovered by our method with a proof that uses only Xy (see
remark 4.2.6).

It should be added that we will not completely ignore the second part of P 4.
concerning Hom-spaces: In section 2 we show that the conjecture in P 4. is
valid in full for the complete strong exceptional sequences found by Kapranov
on Grassmannians and quadrics (cf. [Ka3]). In remark 2.3.8 we discuss a pos-
sibility for relating the Gram matrix of a strong complete exceptional sequence
on a rational homogeneous manifold with the Bruhat-Chevalley order on Schu-
bert cells.

Additional information about the content of each section can be found at the
beginning of the respective section.

ACKNOWLEDGEMENTS. [ would like to thank my thesis advisor Fabrizio
Catanese for posing the problem and several discussions on it. Special thanks
also to Michel Brion for filling in my insufficient knowledge of representation
theory and algebraic groups on a number of occasions and for fruitful sugges-
tions and discussions.
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2 TOOLS AND BACKGROUND: GETTING OFF THE GROUND

This section supplies the concepts and dictionary that will be used throughout
the text. We state a conjecture due to F. Catanese which was the motivational
backbone of this work and discuss its relation to work of M. M. Kapranov.
Moreover, we prove some results that are useful in the study of the derived
categories of coherent sheaves on rational homogeneous varieties, but do not
yet tackle the problem of constructing complete exceptional sequences on them:
This will be the subject matter of sections 3 and 4.

2.1 EXCEPTIONAL SEQUENCES

Throughout the text we will work over the ground field C of complex numbers.
The classical theorem of Beilinson (cf. [Bei]) can be stated as follows.

THEOREM 2.1.1. Consider the following two ordered sequences of sheaves on
P =P(V), V an n+ 1 dimensional vector space:

Then D®(CohP™) is equivalent as a triangulated category to the homotopy cat-
egory of bounded complezes of sheaves on P™ whose terms are finite direct sums
of sheaves in B (and the same for B replaced with B’ ).

Moreover, one has the following stronger assertion: If A = @?:01 AV and
S =@, Sym'V* are the Z-graded exterior algebra of V, resp. symmetric al-
gebra of V*, and K[bOJL]A resp. K[bo,n]S are the homotopy categories of bounded
complexes whose terms are finite direct sums of free modules Afi], resp. S[i],
for 0 <i <n, and whose morphisms are homogeneous graded of degree 0, then

K} A = DY(CohP™) K} ;S ~ D"(CohP™)

as triangulated categories, the equivalences being given by sending A[i] to Q(i)
and S[i] to O(—1i) (Ali], S[i] have their generator in degree ).

One would like to have an analogous result on any rational homogeneous va-
riety X, i.e. a rational projective variety with a transitive Lie group action
or equivalently (cf. [Akh], 3.2, thm. 2) a coset manifold G/P where G is a
connected semisimple complex Lie group (which can be assumed to be simply
connected) and P C G is a parabolic subgroup. However, to give a precise
meaning to this wish, one should first try to capture some formal features of
Beilinson’s theorem in the form of suitable definitions; thus we will recall next
a couple of notions which have become standard by now, taking theorem 2.1.1
as a model.

Let A be an Abelian category.
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DEFINITION 2.1.2. A class of objects C generates D”(A) if the smallest full
triangulated subcategory containing the objects of C is equivalent to D?(A). If
C is a set, we will also call C a generating set in the sequel.

Unravelling this definition, one finds that this is equivalent to saying that, up to
isomorphism, every object in D’(A) can be obtained by successively enlarging C
through the following operations: Taking finite direct sums, shifting in D?(A)
(i.e., applying the translation functor), and taking a cone Z of a morphism
u: X — Y between objects already constructed: This means we complete u to
a distinguished triangle X — Y — Z — X[1].

The sheaves Q¢(i) and O(—i) in theorem 2.1.1 have the distinctive property of
being “exceptional”.

DEFINITION 2.1.3. An object E in D?(A) is said to be exceptional if
Hom(E,E)~C and Ext'(E,E)=0Vi#0.

If Y is a smooth projective variety of dimension n, exceptional objects need
not always exist (e.g., if Y has trivial canonical class this is simply precluded
by Serre duality since then Hom(E, E) ~ Ext"(FE, E) # 0).

What is worse, D’(CohY’) need not even possess a finite generating set: In
fact we will see in subsection 2.3 below that if D*(CohY) is finitely generated,
then A(Y)® Q = @gizn(l)y A™(Y) ® Q, the rational Chow ring of Y, is finite
dimensional (here A"(Y) denotes the group of cycles of codimension r on Y
modulo rational equivalence). But, for instance, if Y is an Abelian variety,
AYY) ® Q ~ PicY ® Q does not have finite dimension.

Recall that a vector bundle V on a rational homogeneous variety X = G/P
is called G-homogeneous if there is a G-action on V which lifts the G-action
on X and is linear on the fibres. It is well known that this is equivalent to
saying that V ~ G x, V, where g : P — GL(V) is some representation of the
algebraic group P and G x, V is the quotient of G x V by the action of P
given by p - (g,v) := (gp~ 1, 0(p)v), p € P, g € G, v € V. The projection to
G/P is induced by the projection of G x V to G; this construction gives a 1-1
correspondence between representations of the subgroup P and homogeneous
vector bundles over G/P (cf. [Akh], section 4.2).

Then we have the following result (mentioned briefly in a number of places,
e.g. [Rul], 6., but without a precise statement or proof).

PROPOSITION 2.1.4. Let X = G/P be a rational homogeneous manifold with
G a simply connected semisimple group, and let F be an exceptional sheaf on
X. Then F is a G-homogeneous bundle.

Proof. Let us first agree that a deformation of a coherent sheaf G on a complex
space Y is a triple (G, S, sg) where S is another complex space (or germ), sg € S,
G is a coherent sheaf on Y x S, flat over S, with G Iy x{so}~ G and SuppG — S
proper. Then one knows that, for the deformation with base a complex space
germ, there is a versal deformation and its tangent space at the marked point
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is Ext'(G,G) (cf. [S-T]).

Let 0 : G x X — X be the group action; then (¢*F, G, idg) is a deformation of
F (flatness can be seen e.g. by embedding X equivariantly in a projective space
(cf. [Akh], 3.2) and noting that the Hilbert polynomial of o*F [(y)xx= 7, F
is then constant for g € G; here 7, : X — X is the automorphism induced by
g). Since Ext'(F, F) = 0 one has by the above that o*F will be locally trivial
over G, i.e. 0*F ~ pr5F locally over G where pr, : G x X — X is the second
projection (F is “rigid”). In particular 7, F ~ F Vg € G.

Since the locus of points where F is not locally free is a proper algebraic subset
of X and invariant under G by the preceding statement, it is empty because
G acts transitively. Thus F is a vector bundle satisfying 7,7 ~ F Vg € G.
Since G is semisimple and assumed to be simply connected, this is enough to
imply that F is a G-homogeneous bundle (a proof of this last assertion due to
A. Huckleberry is presented in [Ot2] thm. 9.9). d

Remark 2.1.5. In proposition 2.1.4 one must insist that G be simply connected
as an example in [GIT], ch.1, §3 shows : The exceptional bundle Op~ (1) on
P™ is SL,,+1-homogeneous, but not homogeneous for the adjoint form PGL,, 1
with its action o : PGL, .1 x P* — P" since the SL,, | i-action on H°(Opx (1))
does not factor through PGL,, 1.

Remark 2.1.6. It would be interesting to know which rational homogeneous
manifolds X enjoy the property that exceptional objects in D*(Coh X) are ac-
tually just shifts of exceptional sheaves. It is straightforward to check that this
is true on P!. This is because, if C' is a curve, D*(CohC) is not very inter-
esting: In fancy language, the underlying abelian category is hereditary which
means Ext*(F,G) = 0 VF,G € obj (CohC). Tt is easy to see (cf. [Ke], 2.5)
that then every object Z in D®(Coh C) is isomorphic to the direct sum of shifts
of its cohomology sheaves @, ., H'(Z)|—i] whence morphisms between objects
Zy1 and Zs correspond to tuples (¢;, €;)iez with ¢; : HY(Z1) — H*(Z3) a sheaf
morphism and e; € Ext'(H*(Z,), H~(Z,)) an extension class . Exceptional
objects are indecomposable since they are simple.

The same property holds on P? (and more generally on any Del Pezzo surface)
by [Gor], thm. 4.3.3, and is conjectured to be true on P™ in general ([Gor],
3.2.7).

The sequences B and B’ in theorem 2.1.1 are examples of complete strong
exceptional sequences (cf. [Rul] for the development of this notion).

DEFINITION 2.1.7. (A) An n-tuple (FEi,...,E,) of exceptional objects in
DP(A) is called an exceptional sequence if

Ext'(E;,E;) =0 V1<i<j<n and VI€Z.
If in addition

Ext'(E;,E;)=0 V1<i,j<n and VI #0
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we call (E1,...,E,) a strong exceptional sequence. The sequence is com-
plete if Fy, ..., E, generate D°(A).

(B) In order to phrase conjecture 2.2.1 below precisely, it will be conve-
nient to introduce also the following terminology: A set of exceptional
objects {E1,...,E,} in DY(A) that generates D”(A) and such that
Extl(Ej,Ei) =0forall 1 < 4,7 <n andall ]l # 0 will be called a
complete strong exceptional set. A partial order < on a complete strong
exceptional set is admissible if Hom(E;, E;) = 0forall j > 1,7 # j. A pair

({E1, ..., En}, <) consisting of a complete strong exceptional set and an
admissible partial order on it will be called a complete strong exceptional
poset.

(C) A complete very strong exceptional poset is a pair ({E1, ..., E,}, <) where
{E1,...,E,} is a complete strong exceptional set and < is a partial order
on this set such that Hom(E};, E;) = 0 unless ¢ > j.

Obviously every complete strong exceptional sequence is a complete strong ex-
ceptional poset (with the partial order being in fact a total order). I think it
might be possible that for complete strong exceptional posets in D*(Coh X)
which consist of vector bundles, X a rational homogeneous manifold, the con-
verse holds, i.e. any admissible partial order can be refined to a total order
which makes the poset into a complete strong exceptional sequence. But I
cannot prove this.

Moreover, every complete very strong exceptional poset is in particular a com-
plete strong exceptional poset. If we choose a total order refining the partial
order on a complete very strong exceptional poset, we obtain a complete strong
exceptional sequence.

Let me explain the usefulness of these concepts by first saying what kind of
analogues of Beilinson’s theorem 2.1.1 we can expect for D’(A) once we know
the existence of a complete strong exceptional set.

Look at a complete strong exceptional set {E1, ..., E,} in D’(A) consisting
of objects E;, 1 < i < n, of A. If K°({E,...,E,}) denotes the homotopy
category of bounded complexes in A whose terms are finite direct sums of the
E;’s, it is clear that the natural functor

g, gy K'{E,...,E,}) — D°(A)
(composition of the inclusion K*({E,, ..., E,}) — K°(A) with the localization
Q : K*(A) — DP(A)) is an equivalence; indeed ®(p, . p,) is essentially surjec-
tive because {E1, ..., E,} is complete and ® (g, . g, is fully faithful because
Ext?(E;, E;) = 0 for all p > 0 and all ¢ and j implies
Hompo(g,....,1) (A, B) =~ Hompy4) (5, ... 5,) A Pm, ... B,) B)
VA, B objK*({E1,...,E,})
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(cf. [AO], prop. 2.5).

Returning to derived categories of coherent sheaves and dropping the hypoth-
esis that the E;’s be objects of the underlying Abelian category, we have the
following stronger theorem of A. I. Bondal:

THEOREM 2.1.8. Let X be a smooth projective variety and (E1, ..., E,) a strong
complete exceptional sequence in D*(Coh X). Set E = @, E;, let A :=
End(E) = @, ; Hom(E;, Ej) be the algebra of endomorphisms of E, and denote
mod — A the category of right modules over A which are finite dimensional over
C.

Then the functor

RHom®(E, —) : D*(Coh (X)) — D’(mod — A)

is an equivalence of categories (note that, for any object Y of D*(Coh (X)),
RHom®(E,Y) has a natural action from the right by A = Hom(E, F)).
Moreover, the indecomposable projective modules over A are (up to isomor-
phism) exactly the P; :=idg,-A, i = 1,...,n. We have Hompu(cop (x))(Ei, Ej)
~ Homu (P;, P;) and an equivalence

K'({Py,...,P,}) = D(mod — A)

where K°({Py,...,P,}) is the homotopy category of compleves of right A-
modules whose terms are finite direct sums of the P;’s.

For a proof see [Bo], §85 and 6. Thus whenever we have a strong complete
exceptional sequence in D?(Coh (X)) we get an equivalence of the latter with
a homotopy category of projective modules over the algebra of endomorphisms
of the sequence. For the sequences B, B’ in theorem 2.1.1 we recover Beilin-
son’s theorem (although the objects of the module categories K*({Py, ..., P,})
that theorem 2.1.8 produces in each of these cases will be different from the
objects in the module categories K[bOm]S7 resp. KE’O,W]A7 in theorem 2.1.1, the
morphisms correspond and the respective module categories are equivalent).
Next suppose that D?(Coh X) on a smooth projective variety X is generated
by an exceptional sequence (F1, ..., E,) that is not necessarily strong. Since
extension groups in nonzero degrees between members of the sequence need not
vanish in this case, one cannot expect a description of D’(Coh X) on a homo-
topy category level as in theorem 2.1.8. But still the existence of (E1, ..., E,)
makes available some very useful computational tools, e.g. Beilinson type spec-
tral sequences. To state the result, we must briefly review some basic material
on an operation on exceptional sequences called mutation. Mutations are also
needed in subsection 2.2 below. Moreover, the very concept of exceptional se-
quence as a weakening of the concept of strong exceptional sequence was first
introduced because strong exceptionality is in general not preserved by muta-
tions, cf. [Bo], introduction p.24 (exceptional sequences are also more flexible
in other situations, cf. remark 3.1.3 below).
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For A, B € objD*(Coh X) set Hom* (A, B) := @, ., Ext*(4, B), a graded
C-vector space. For a graded C-vector space V, (VV)! := Homc(V ¢, C) de-
fines the grading of the dual, and if X € obj D*(Coh X), then V ® X means
@D,y Vi ® X [—i] where V' ® X[—i] is the direct sum of dim V* copies of X[—i].

DEFINITION 2.1.9. Let (Ey, E3) be an exceptional sequence in D*(Coh X ). The
left mutation Lg, Ey (resp. the right mutation Rg,E1) is the object defined by
the distinguished triangles

Lp, E; — Hom™ (Ey, Ey) ® Ey <5 Ey — L, E»|1]
(resp. Ry, E1[~1] — B, <% Hom™ (B, E»)" ® E» — R, E1 ).
Here can resp. can’ are the canonical morphisms (“evaluations”).

THEOREM 2.1.10. Let € = (Ei,...,E,) be an exceptional sequence in
DY(Coh X). Set, fori=1,...,n—1,

R¢:= (E1,...,Bi_1,Eiy1, R, Ei,Eiys, ..., Ey) |
LZQE = (El, ey Eifl, LEiEi+17 Ei, Ei+27 ey En) .
Then R;€ and L;& are again exceptional sequences. R; and L; are inverse to
each other; the R;’s (or L;’s) induce an action of Bd,, the Artin braid group

on n strings, on the class of exceptional sequences with n terms in D?(Coh X).
If moreover € is complete, so are all the R;&’s and L;€’s.

For a proof see [Bo], §2.
We shall see in example 2.1.13 that the two exceptional sequences B, B’ of
theorem 2.1.1 are closely related through a notion that we will introduce next:

DEFINITION 2.1.11. Let (E4,...,E,) be a complete exceptional sequence in
D*(Coh X). Fori=1,...,n define

Vo
EY:=LgLg,...Lg, En_it1,
\% R
Ei:=Rg,Rp, ,...Rp, . ,Bn_it1-

The complete exceptional sequences (EY,...,EY) resp. (YFEi,...,Y E,) are
called the right resp. left dual of (E1,..., Ey,).

The name is justified by the following
PRrROPOSITION 2.1.12. Under the hypotheses of definition 2.1.11 one has

C ifitj=n+1,i=k+1

Ext*(¥E;, E;) = Ext*(E;, B} ) =
xt"( ) J) xt™(Ei, J) 0 otherwise

Moreover the right (resp. left) dual of (E1,...,E,) is uniquely (up to unique
isomorphism) defined by these equations.
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The proof can be found in [Gor], subsection 2.6.

EXAMPLE 2.1.13. Consider on P = P(V), the projective space of lines in the
vector space V, the complete exceptional sequence B’ = (Q"(n),...,Q(1),0)
and for 1 < p < n the truncation of the p-th exterior power of the Euler
sequence

0— QF, — </\p Vv> ® Opn (—p) — Qﬁ,;l — 0.

Let us replace B’ by (Q2"(n),...,02%(2),0, RoQ!(1)), i.e., mutate Q2'(1) to the
right across O. But in the exact sequence

0— Q1) - VY0 — O(1) —0

the arrow Q!(1) — V¥ ® O is nothing but the canonical morphism Q!(1) —
Hom(Q'(1),0)Y ® O from definition 2.1.9. Therefore RpQ*(1) ~ O(1).
Now in the mutated sequence (2"(n),...,0Q2%(2),0,O(1)) we want to mutate
in the next step Q2(2) across O and O(1) to the right. In the sequence

2
0—0*2) — N\ Vo0 —0'(2) —0

the arrow Q2(2) — A’VY ® O is again the canonical morphism Q2(2) —
Hom(Q%(2),0)" ® O and RpN?(2) ~ Q!(2) and then

0—Q'2) —VVe0@l) — 02) —0

gives Ro(1)Ro?(2) ~ O(2).

Continuing this pattern, one transforms our original sequence B’ by successive
right mutations into (O, O(1), O(2),...,O(n)) which, looking back at definition
2.1.11 and using the braid relations R; R; 11 R; = R;11R;R;+1, one identifies as
the left dual of B’.

Here is Gorodentsev’s theorem on generalized Beilinson spectral sequences.

THEOREM 2.1.14. Let X be a smooth projective variety and let D*(Coh X) be
generated by an exceptional sequence (Ey,...,E,). Let F : D*(Coh X) — A
be a covariant cohomological functor to some Abelian category A.

For any object A in D®(Coh X) there is a spectral sequence

EPT = @ Ext"tV" ' (VE,_,, A) @ F/(Epi1)
i+j=q
= @ Extfi(A,Er\{—p)v ® F/(Ep) = FPH(4A)
i+j=q

(with possibly nonzero entries for 0 < p,q <n—1 only).
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For the proof see [Gor], 2.6.4 (actually one can obtain A as a convolution of
a complex over D?(Coh X) whose terms are computable once one knows the
Ext'(YE;, A), but we don’t need this).

In particular, taking in theorem 2.1.14 the dual exceptional sequences in ex-
ample 2.1.13 and for F the functor that takes an object in D’(CohP™) to its
zeroth cohomology sheaf, we recover the classical Beilinson spectral sequence.
It is occasionally useful to split a derived category into more manageable build-
ing blocks before starting to look for complete exceptional sequences. This is
the motivation for giving the following definitions.

DEFINITION 2.1.15. Let S be a full triangulated subcategory of a triangulated
category 7. The right orthogonal to & in 7 is the full triangulated subcategory
St of T consisting of objects T such that Hom(S,T) = 0 for all objects S of
S. The left orthogonal +S is defined similarly.

DEFINITION 2.1.16. A full triangulated subcategory S of T is right- (resp. left-)
admissible if for every T' € obj 7T there is a distinguished triangle
S—T—8 — S[1] with Se€objS, S cobjSt
(resp. S" — T — S — §”[1] with S € objS, S” € 0bj*S)
and admissible if it is both right- and left-admissible.

Other useful characterizations of admissibility can be found in [Bo], lemma 3.1
or [BoKal, prop. 1.5.

DEFINITION 2.1.17. An n-tuple of admissible subcategories (Si,...,S,) of
a triangulated category 7 is semi-orthogonal if S; belongs to S;- whenever
1 <j<i<n IfS,...,S, generate 7 one calls this a semi-orthogonal
decomposition of 7 and writes

T =(S1,...,8n) .

To conclude, we give a result that describes the derived category of coherent
sheaves on a product of varieties.

PROPOSITION 2.1.18. Let X and Y be smooth, projective varieties and
V1, s Vm)

resp.
Wr,..., W)

be (strong) complete exceptional sequences in D®(Coh(X)) resp. D?(Coh(Y))
where V; and W; are vector bundles on X resp. Y. Let my resp. mo be the
projections of X x'Y on the first resp. second factor and put V; M W; =
TV @ msW,. Let < be the lexicographic order on {1,...,m} x {1,...,n}.
Then
Vi ®W;) 6 j)ef,...omyx{1,...n}

is a (strong) complete exceptional sequence in D®(Coh(X xY')) where V;, KW,
precedes Vi, ®W;, iff (i1, j1) < (i2,72) -
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Proof. The proof is a little less straightforward than it might be expected at
first glance since one does not know explicit resolutions of the structure sheaves
of the diagonalson X x X and Y x Y.

First, by the Kiinneth formula,

Eth(Viz X Wj2avi1 ‘Zle) =~ Hk(X X Yv (Vll ®Vz\;) X (le ®Wj\;))

~ P HAXV, 9V e HR(Y, W), @ W)
k1+ko=k

= @ Ext (Vigs Viy) ® Ext*? Wiz, Wiy)
k1+ko=k

whence it is clear that (V; ®W,) will be a (strong) exceptional sequence for
the ordering < if (V;) and (W) are so.

Therefore we have to show that (V; X W;) generates D?(Coh(X x Y)) (see
[BoBe], lemma 3.4.1). By [Bo], thm. 3.2, the triangulated subcategory 7°
of D*(Coh(X x Y)) generated by the V; ® W;’s is admissible, and thus by
[Bo], lemma 3.1, it suffices to show that the right orthogonal 7+ is zero. Let
Z € obj T+ so that we have

Hompscon(xxyy) (Vi IW;, Z[li + 1]) =0 Vi€ {1,...,m},
VJ S {1, . m}Vlth € 7Z.

But
Hom picon(x xvy) (Vi ®Wj, Z[ly + 12])
=~ Homps (con(x xv)) (WfVi, RHompby con(xxvy) (T Wi Z[ll])[lﬂ)
=~ Hompe (con(x)) (Vi’ R RHom Dby con(x xvy) (M2 W Z[ll])[lﬂ)
using the adjointness of 77 = L7} and Rmy.. But then
Ry RHom Dy (con(x vy (TaWi, Z[h]) =0 Vje{l,....m} Vi, € Z

because the V; generate D®(Coh(X)) and hence there is no non-zero object in
the right orthogonal to (V1,...,V,). Let U C X and V C Y be affine open
sets. Then

0= Rr (U, Rt RHomu o xyy (R W, 211+ zl}))
~ RHom"® (Wj, R?TQ*(ZU] |U><y)[l1]) Vl, L €7

whence Rma.(Z[l] |uxy) = 0 since the W; generate D*(Coh(Y)) (using thm.
2.1.2 in [BoBe]). Therefore we get

RT(U X V,Z)=0.

But R'T(U x V,Z) = T'(U x V, H'(Z)) and thus all cohomology sheaves of Z
are zero, i.e. Z =0 in D*(Coh(X x Y)). d
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Remark 2.1.19. This proposition is very useful for a treatment of the derived
categories of coherent sheaves on rational homogeneous spaces from a system-
atic point of view. For if X = G/P with G a connected semisimple complex
Lie group, P C G a parabolic subgroup, it is well known that one has a de-
composition

XﬁSl/Pl X ... XSN/PN

where S1,..., Sy are connected simply connected simple complex Lie groups
and Pj,..., Py corresponding parabolic subgroups (cf. [Akh], 3.3, p. 74).
Thus for the construction of complete exceptional sequences on any G/P one
can restrict oneself to the case where G is simple.

2.2 CATANESE’S CONJECTURE AND THE WORK OF KAPRANOV

First we fix some notation concerning rational homogenous varieties and
their Schubert varieties that will remain in force throughout the text unless
otherwise stated. References for this are [Se2], [Sp].

G is a complex semi-simple Lie group which is assumed to be con-
nected and simply connected with Lie algebra g.

H C G is a fixed maximal torus in G with Lie algebra the Cartan
subalgebra h C g.

R C b* is the root system associated to (g,h) so that

g=hoPe”

aER

with g® the eigen-subspace of g corresponding to « € h*. Choose a
base S = {a1,...,a,} for R; R denotes the set of positive roots
wrt. S, R~ := —R% sothat R=RTUR™, and g is the half-sum
of the positive roots.

Aut(b*) D W := (sq | Sa the reflection with vector « leaving R
invariant) ~ N(H)/H is the Weyl group of R.

Let b:=h® P, o08% b™ :=bD P, 9" be opposite Borel sub-
algebras of g corresponding to h and S, and p DO b a parabolic
subalgebra corresponding uniquely to a subset I C S (then

p=p)=be P P o

a€RT aeR—(I)

where R~(I) :={a € R~ | a = Y;_, kia; with k; < 0 for all ¢
and k; = 0 for all @; € I}). Let B, B~, P = P(I) D B be the
corresponding connected subgroups of G with Lie algebras b, b™,

p.
X := G/P is the rational homogeneous variety corresponding to G
and P.
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I(w) is the length of an element w € W relative to the set of gener-
ators {s, | @ € S}, i.e. the least number of factors in a decompo-
sition

W= Sa; Sai, - - Sa;, » Vi € S;
A decomposition with | = [(w) is called reduced. Omne has the
Bruhat order < on W, ie. z < w for z, w € W iff x can be
obtained by erasing some factors of a reduced decomposition of w.
Wp is the Weyl group of P, the subgroup of W generated by the
simple reflections s, with « ¢ I. In each coset wWp € W/Wp
there exists a unique element of minimal length and W denotes
the set of minimal representatives of W/W?¥. One has W = {w €
W | l(ww') = l(w) + (') Yw' € Wp}.
For w € WP, C,, denotes the double coset BwP/P in X, called a
Bruhat cell, C,, ~ A{®) TIts closure in X is the Schubert variety
Xy. Cp = B~wP/P is the opposite Bruhat cell of codimension
l(w) in X, X¥ = Cy is the Schubert variety opposite to X,,.
There is the extended version of the Bruhat decomposition

G/P= || Cu

weWwr

(a paving of X by affine spaces) and for v, w € WF: v <w < X, C
Xuw; we denote the boundaries 0X,, := X,\Cy, 0X" := X¥“\C,,,
which have pure codimension 1 in X,, resp. X™.

Moreover, we need to recall some facts and introduce further notation concern-
ing representations of the subgroup P = P(I) C G, which will be needed in
subsection 3 below. References are [A], [Se2], [Sp], [Ot2], [Stei].

The spaces b, := [g% g% C h, « € R, are 1-dimensional, one
has g = P csba ® Pocr+ 8¢ D Pocr- 9° and there is a unique
H, € b, such that a(H,) = 2.

Then we have the weight lattice A := {w € b* | w(H,) €
Z VYo € R} (which one identifies with the character group of H)
and the set of dominant weights AT = {w € b* | w(H,) €
NVa € R}. {wi,...,w,} denotes the basis of h* dual to the basis
{Hea,,-..,Hy, } of h. The w; are the fundamental weights. If (-, -) is
the inner product on h* induced by the Killing form, they can also
be characterized by the equations 2(w;, oj)/(ey, o) = ;5 (Kro-
necker delta). It is well known that the irreducible finite dimen-
sional representations of g are in one-to-one correspondence with
the w € AT, these w occurring as highest weights.

I recall the Levi-Maléev decomposition of P(I) (resp. p(I)): The

algebras
spi= P e P (@og

aES\I aEeR~(I)
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resp.

=P P (“oe)

aes a€R—(I)

are the semisimple resp. reductive parts of p(I) containing b, the
corresponding connected subgroups of G will be denoted Sp resp.

Lp. The algebra
we @ o

aeR-\R—(I)

is an ideal of p(I), p(I) = [p @ up, and the corresponding normal
subgroup R, (P) is the unipotent radical of P. One has

P=Lpx R,(P),

the Levi-Malcev decomposition of P. The center Z of the Levi
subgroup Lp is Z = {g € H|a(g) = 1Va € S\I}. The connected
center corresponds to the Lie algebra @ ., ho and is isomorphic

to the torus (C*)ul. One has
P=7-5px R,(P).

Under the hypothesis that G is simply connected, also Sp is simply
connected.

If r : P — GL(V) is an irreducible finite-dimensional represen-
tation, R, (P) acts trivially, and thus those r are in one-to-one
correspondence with irreducible representations of the reductive
Levi-subgroup Lp and as such possess a well-defined highest weight
w € A. Then the irreducible finite dimensional representations of
P(I) correspond bijectively to weights w € h* such that w can be
written as w = Z§=1 kiw;, k; € Z, such that k; € N for all j such
that a; ¢ I. We will say that such an w is the highest weight of the
representation r : P — GL(V).

The homogeneous vector bundle on G/P associated to r will be
G %,V :i=GxV/{(g,v) ~ (gp~t,r(pyv), pe P,ge G, veV}
as above. However, for a character x : H — C (which will often
be identified with dx € §*), L(x) will denote the homogeneous line
bundle on G/B whose fibre at the point e- B is the one-dimensional
representation of B corresponding to the character —x. This has
the advantage that L£(x) will be ample iff dy = Z§:1 kjw; with
k; >0, k; € Z for all j, and it will also prove a reasonable conven-
tion in later applications of Bott’s theorem.

The initial stimulus for this work was a conjecture due to F. Catanese. This is
variant (A) of conjecture 2.2.1. Variant (B) is a modification of (A) due to the
author, but closely related.
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CONJECTURE 2.2.1.  (A) On any rational homogeneous variety X = G/P
there exists a complete strong exceptional poset (cf. def. 2.1.7 (B))
and a bijection of the elements of the poset with the Schubert varieties
in X such that the partial order of the poset is the one induced by the
Bruhat-Chevalley order.

(B) For any X = G/P there exists a strong complete exceptional sequence

¢ = (E,...,E,) in D*(Coh X) with n = |[W?|, the number of Schubert
varieties in X (which is the topological Euler characteristic of X).
Moreover, since there is a natural partial order <g on the set of objects
in € by defining that £/ <¢ F for objects F and E’ of € iff there are
objects Fi,. .., F,. of € such that Hom(E’, F}) # 0, Hom(Fy, Fy) #0, .. .,
Hom(F,, E) # 0 (the order of the exceptional sequence € itself is a total
order refining <¢), there should be a relation between the Bruhat order
on W¥ and <¢ (for special choice of ).
If P = P(«a;), some i € {1,...,7}, is a maximal parabolic subgroup in G
and G is simple, then one may conjecture more precisely: There exists
a strong complete exceptional sequence € = (Ey, ..., E,) in D*(Coh X)
and a bijection

b:{E.,....E,} = {X,|wewP}

such that

We would like to add the following two questions:

(C) Does there always exist on X a complete very strong exceptional poset
(cf. def. 2.1.7 (C)) and a bijection of the elements of the poset with the
Schubert varieties in X such that the partial order of the poset is the one
induced by the Bruhat-Chevalley order?

(D) Can we achieve that the E;’s in (A), (B) and/or (C) are homogeneous
vector bundles?

It is clear that, if the answer to (C) is positive, this implies (A). Moreover, the
existence of a complete very strong exceptional poset entails the existence of a
complete strong exceptional sequence.

For P maximal parabolic, part (B) of conjecture 2.2.1 is stronger than part
(A). We will concentrate on that case in the following.

In the next subsection we will see that, at least upon adopting the right point of
view, it is clear that the number of terms in any complete exceptional sequence
in D*(Coh X) must equal the number of Schubert varieties in X.

To begin with, let me show how conjecture 2.2.1 can be brought in line with
results of Kapranov obtained in [Ka3] (and [Kal], [Ka2]) which are summarized
in theorems 2.2.2, 2.2.3, 2.2.4 below.

One more piece of notation: If L is an m-dimensional vector space and A =
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(A1,. .., Am) is a non-increasing sequence of integers, then ¥ L will denote the
space of the irreducible representation gy : GL(L) — GL(X*L) of GL(L) ~
GL,,C with highest weight A. ¥* is called the Schur functor associated to
X; if £ is a rank m vector bundle on a variety Y, ¥*E will denote the vector
bundle Por(€) gy ZMNL) i= Par(€) x SND)/A(f,w) ~ (fg~ L ox(g)w), f €
Pcr(&), w € ¥ L, g € GL,,C} where Pgr,(€) is the principal GL,,C- bundle
of local frames in £.

THEOREM 2.2.2. Let Grass(k,V') be the Grassmanian of k-dimensional sub-
spaces of an n-dimensional vector space V, and let R be the tautological
rank k subbundle on Grass(k,V). Then the bundles Y R where A runs over
Y (k,n—k), the set of Young diagrams with no more than k rows and no more
than n — k columns, are all exceptional, have no higher extension groups be-
tween each other and generate D®(Coh Grass(k,V)).

Moreover, Hom(X R, SHR) # 0 iff Ay > p; Vi = 1,...,k. (Thus these ¥ R
form a strong complete exceptional sequence in D®(Coh Grass(k,V)) when ap-
propriately ordered).

THEOREM 2.2.3. IfV is an n-dimensional vector space, 1 < ky <--- <k <n
a strictly increasing sequence of integers, and Flag(ky, ..., k;; V) the variety of
flags of subspaces of type (k1,...,k;) inV, and if R, C --- C Ry, denotes the
tautological flag of subbundles, then the bundles

YMRy, @ - @ MRy,

where \j, j =1,...,1 =1, runs over Y (k;,kj11 — kj), the set of Young dia-
grams with no more than k; rows and no more than kji1 — k; columns, and
A runs over Y (kj,n — ki), form a strong complete exceptional sequence in
D®(Coh Flag(ki, ..., k; V) if we order them as follows:

Choose a total order <; on each of the sets Y (kj, kjt1 — k;) and <; on
Y (ki,n — ki) such that if X <; p (or A < p) then the Young diagram of A
is not contained in the Young diagram of u; endow the set Y = Y (k;,n —
k) x Y(ki—1,k; — ki—1) X -+ x Y(ky, ko — k1) with the resulting lexicographic
order <. Then ZAlel R ® ZAlel precedes LFTRE, @ - @ XM Ry, iff
()‘la"'7>\1) =< (Iu’l""’lu’l)'

THEOREM 2.2.4. Let V' be again an n-dimensional vector space and Q C P(V)
a nonsingular quadric hypersurface.

If n is odd and 3 denotes the spinor bundle on Q, then the following constitutes
a strong complete exceptional sequence in D®(Coh Q):

(E(—n + 2), OQ(—TL + 3), ceey OQ(—l), OQ)

and Hom(E,E") # 0 for two bundles £, £ in this sequence iff £ precedes £ in
the ordering of the sequence.
If n is even and X7, ¥~ denote the spinor bundles on Q, then

(Z+(—1’L +2), ¥ (—n+2), Og(—n + 3), ey OQ(—l), OQ)
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is a strong complete exceptional sequence in D®(Coh Q) and Hom(&E,E') # 0
for two bundles £, £ in this sequence iff £ precedes £ in the ordering of the
sequence with the one exception that Hom(Xt(—n +2),X7 (—n +2)) = 0.

Here by ¥ (resp. X7, ¥7), we mean the homogeneous vector bundles on
@ = Spin,,C/P(ay), a; the simple root corresponding to the first node in
the Dynkin diagram of type B,,, n = 2m + 1, (resp. the Dynkin diagram
of type D,,, n = 2m), that are the duals of the vector bundles associated to
the irreducible representation of P () with highest weight w,, (resp. highest
weights wp,, wm-1). We will deal more extensively with spinor bundles in
subsection 3.2 below.
First look at theorem 2.2.2. It is well known (cf. [BiLa], section 3.1) that if
one sets

D o= {i= (i1,... i) ENF[1 <y <-o- <ip <n}
and if V; := {(vy,...,v;) where (vq,...,v,) is a basis for V, then the Schubert
varieties in Grass(k, V') can be identified with

X;={L€Grass(k,V)|dm(LNV;,) >j VI<j<k}, i€,
and the Bruhat order is reflected by
X;C Xy = i;<i; VI<j<Kk

and the ¢ € I, bijectively correspond to Young diagrams in Y (k,n — k) by
associating to ¢ the Young diagram A(i) defined by

)\(l)t :Zk,t+1—(ki—t+1> Vlgtfk’

Then containment of Schubert varieties corresponds to containment of asso-
ciated Young diagrams. Thus conjecture 2.2.1 (B) is verified by the strong
complete exceptional sequence of theorem 2.2.2.

In the case of Flag(ky, ..., k;; V) (theorem 2.2.3) one can describe the Schubert
subvarieties and the Bruhat order as follows (cf. [BiLa], section 3.2): Define

Lyt = { (i 10) € Iy X oo X T |19 C2UFD 1< <i-1]
Then the Schubert varieties in Flag(ky, ..., k;; V) can be identified with the
X(i(1>’_“7i(,)) = {(L1,...,L;) € Flag(ky,...,k;; V) C Grass(k1,V) x ...

oo X Grass(k, V)| L; € X;i V1<j< l}

&, (keeping the preceding notation for the

.....

for (z(l), ... ,z(l)) running over Iy,

Grassmannian). The Bruhat order on the Schubert varieties may be identified
with the following partial order on Iy, . ,:

(;'(1),...,1’(”) < (l'“),...,i(”) — W <j® vi<t<l.
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To set up a natural bijection between the set Y in theorem 2.2.3 and Iy, ..k,
associate toi:= (z(l), e 72(1)) the following Young diagrams: A;(i) € Y (k;,n—
k;) is defined by

M@ =i~k —t+1) V1<t <k.

Now since g’(j) C 1'(j+1) V1 < j <1 —1 one can write

(i Gi+1
Zg]) :Z,E,j(s) )7 821,...,I€j

where 1 < (1) < ... <r(k;j) < kjy1. One then defines \;(i) € Y(k;, kjp1—k;)
by

N =1k —t+1) = (kj —t+1) VI <t<k.

However it is not clear to me in this case how to relate the Bruhat order on
Iy, ...k, with the vanishing or non-vanishing of Hom-spaces between members of
the strong complete exceptional sequence in theorem 2.2.3 (there is an explicit
combinatorial criterion for the non-vanishing of

Hom (XM Ry, @ -+ @ BN Ry, MRy, @ -+ @ DM Ry, )

formulated in [Ka3], 3.12, but if this relates in any perspicuous way to the
Bruhat order is not clear). In this respect, for the time being, conjecture 2.2.1
(parts (A) and (B)) must remain within the confines of wishful thinking.

If in the set-up of theorem 2.2.4 Q C P(V), dimV =n =2m + 1 odd, is a
smooth quadric hypersurface, then there are 2m Schubert varieties in @) and
the Bruhat order on them is linear (cf. [BiLal], pp. 139/140), so the strong
complete exceptional sequence of theorem 2.2.4 satisfies conjecture 2.2.1. (B).
The case of a smooth quadric hypersurface @ C P(V) with dimV =n = 2m
even, is more interesting. The Bruhat order on the set of Schubert varieties
can be depicted in the following way (cf. [BiLa], p. 142/143):
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Xo

X1

X/

m—1

Xom—2

Here Xo,..., Xm-2, Xm-1, X, 1, X, ..., Xom—2 are labels for the Schubert
varieties in  and the subscript denotes the codimension in . The strong

complete exceptional sequence
(ST (=2m+2), 7 (=2m +2), Og(—2m +3),...,0q(-1), Og)

does not verify conjecture 2.2.1 (B), but we claim that there is a strong complete
exceptional sequence in the same braid group orbit (see thm. 2.1.10) that does.
In fact, by [Ott], theorem 2.8, there are two natural exact sequences on Q

0 — X*(—1) — Hom(Z"(-1),09)" ® Og — X~ — 0

0 — X7 (1) — Hom(X"(~1),00)" ® Og — " — 0
where the (injective) arrows are the canonical morphisms of definition 2.1.9; one
also has dim Hom(X%(—1),0g)Y = dimHom(X7(—1),0q)" = 2m~1. (Cau-
tion: the spinor bundles in [Ott] are the duals of the bundles that are called
spinor bundles in this text which is clear from the discussion in [Ott], p.305!).
It follows that if in the above strong complete exceptional sequence we mutate
Y7 (—2m+2) across Og(—2m+3),...,0g(—m+1) to the right and afterwards

mutate X (—2m + 2) across Og(—2m + 3),...,0g(—m + 1) to the right, we
will obtain the following complete exceptional sequences in D®(Coh Q):

If m is odd:

(Og(—2m+3),...,0¢(-m+1), St (-=m +1), T~ (-m +1),
OQ(—m—I—Q),...,OQ(—l), OQ),
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if m is even:

(Oo(—2m +3),...,00(-m+1), " (-m+1), ST (=m + 1),
OQ(—m+2),...,OQ(—1), OQ)

One finds (e.g. using theorem 2.2.4 and [Ott], thm.2.3 and thm. 2.8)
that these exceptional sequences are again strong and if we let the bun-
dles occurring in them (in the order given by the sequences) correspond to
Xo,.o oy Xp—o, X1, X! Xmy .-y Xom—2 (in this order), then the above

m—1>
two strong complete exceptional sequences verify conjecture 2.2.1. (B).

2.3 INFORMATION DETECTED ON THE LEVEL OF K-THEORY

The cellular decomposition of X has the following impact on D*(Coh X).

PROPOSITION 2.3.1. The structure sheaves Ox,,, w € W, of Schubert vari-
eties in X generate D*(Coh X) as a triangulated category.

Since we have the Bruhat decomposition and each Bruhat cell is isomorphic to
an affine space, the proof of the proposition will follow from the next lemma.

LEMMA 2.3.2. LetY be a reduced algebraic scheme, U C'Y an open subscheme
with U ~ A%, for somed € N, Z :=Y\U,i:U — Y, j: Z <Y the natural
embeddings. Look at the sequence of triangulated categories and functors

D¥(Coh Z) —— DY(CohY) ——— D¥(CohU)

(thus j. is extension by 0 outside Z which is exact, and i* is the restriction to
U, likewise exact). Suppose Z1,. .., Zy, € obj D?(Coh Z) generate D*(Coh Z).
Then D*(CohY) is generated by j.Z1, ..., jcZn, Oy.

Proof. D*(CohY) is generated by CohY so it suffices to prove that each co-
herent sheaf F on Y is isomorphic to an object in the triangulated subcategory
generated by j.Z1,...,J+Zn, Oy. By the Hilbert syzygy theorem ¢*F has a
resolution

() 0oL —...>Ly—=i"F—0

where the £; are finite direct sums of Oy. We recall the following facts (cf.
[FuLa] , VI, lemmas 3.5, 3.6, 3.7):

(1) For any coherent sheaf G on U there is a coherent extension GtoY.

(2) Any short exact sequence of coherent sheaves on U is the restriction of
an exact sequence of coherent sheaves on Y.

(3) If G is coherent on U and Gy, Gy are two coherent extensions of G to Y/,

then there are a coherent sheaf G on Y and homomorphisms G 7, G,
g g, G- which restrict to isomorphisms over U.
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Note that in the set-up of the last item we can write

0 — ker(f) HEL@ — coker(f) — 0,
0 — ker(g) — G -4 Gy — coker(g) — 0

and ker(f), coker(f), ker(g), coker(g) are sheaves with support in Z, i.e. in
the image of j.. Thus they will be isomorphic to an object in the subcate-
gory generated by j.Z1,...,J«Zn. In conclusion we see that if one coherent
extension G; of G is isomorphic to an object in the subcategory generated by
JsZ1y .. jxZn, Oy, the same will be true for any other coherent extension Gs.
The rest of the proof is now clear: We split (*) into short exact sequences
and write down extensions of these to Y by item (2) above. Since the £, are
finite direct sums of Oy one deduces from the preceding observation that F is
indeed isomorphic to an object in the triangulated subcategory generated by
JxZ1y .oy JxZn, Oy. O

Remark 2.3.3. On P™ it is possible to prove Beilinson’s theorem with the help
of proposition 2.3.1. Indeed the structure sheaves of a flag of linear subspaces
{Opn, Opn-1,...,0p1, Opo } admit the Koszul resolutions

0—-0(-1) - 0O — Opa-1 — 0
0— O(-2) = O(-1)*% - O — Opn—2 — 0

0—O0(-n) = O0(=(n—1))%" - ... - O(-1)®" - O — Opo — 0

from which one concludes inductively that (O(—n),...,O(—1), O) generates
Db(CohP™).

Next we want to explain a point of view on exceptional sequences that in par-
ticular makes obvious the fact that the number of terms in any complete ex-

ceptional sequence on X = G/P equals the number |W | of Schubert varieties
in X.

DEFINITION 2.3.4. Let 7 be a triangulated category. The Grothendieck group
Ko(T) of T is the quotient of the free abelian group on the isomorphism classes
[A] of objects of 7" by the subgroup generated by expressions

[A] = [B] + [C]
for every distinguished triangle A — B — C — A[l] in 7.

If T = D%A), A an Abelian category, then we also have K,(A) the
Grothendieck group of A, i.e. the free abelian group on the isomorphism
classes of objects of A modulo relations [D'] — [D] + [D”] for every short
exact sequence 0 — D’ — D — D” — 0 in A, and it is clear that in
this case Ko(Db(A)) ~ K,(A) ( to a complex A € obj D’(A) one associates
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>iez(—1)"[H(A)] € K.(A) which is a map that is additive on distinguished
triangles by the long exact cohomology sequence and hence descends to a
map K,(D?(A)) — Ko(A); the inverse map is induced by the embedding
A< D(A)).

Let now Y be some smooth projective variety. Then to Z;, Z» € obj D*(CohY)
one can assign the integer Y., (—1)" dim¢ Ext’(Z1, Z5), a map which is biad-
ditive on distinguished triangles. Set Ko (Y) := K,(CohY).

DEFINITION 2.3.5. The (in general nonsymmetric) bilinear pairing
X: K (Y)Xx Ko (Y) = Z
([Z1].[Z2]) — > _(—1)" dimc Ext' (21, Z2)
i€Z
is called the Euler bilinear form (cf.[Gor]).

PROPOSITION 2.3.6. Suppose that the derived category D*(CohY) of a smooth
projective variety Y is generated by an exceptional sequence (E1, ..., E,). Then
Ko(Y) =~ Z" is a free Z-module of rank n with basis given by ([E1],...,[Fn]).
The Euler bilinear form x is unimodular with Gram matrix with respect to the
basis ([Enl, ..., [En]):

1
0 1 *
0 0 1 .
o000 --- 1
in other words, ([E1),...,[Eyn]) is a semi-orthonormal basis w.r.t. x.

Moreover, n = rk K,(Y) = @;iizn(l)y rk A™(Y'), where A™(Y) is the group of
codimension r algebraic cycles on 'Y modulo rational equivalence (so that
AY) =6, A"(Y) is the Chow ring of Y').

Proof. Since the E;, i =1,...,n, generate D*(CohY) in the sense of definition
2.1..2 it is clear that the [E;] generate K,(Y) (note that for X, X', X" €
obj D*(CohY) we have [X[n]] = (-1)"[X], n € Z, [X' ® X"] = [X'] + [X"]
and for every distinguished triangle X’ — X — X" — X'[1] one has [X"] =
(] — [X)).

[E1] # 0 because x([E1], [E1]) = 1 since Fj is exceptional. Assume inductively
that [E4],...,[E;] are linearly independent in K,(Y) ® Q. We claim [E;;1] ¢
([B1],...,[Ei])g. Indeed otherwise [Ej11] = Y% ) Aj[Ej]; since [Eiq] # 0
there is [ := min{j | A; # 0}. Then

X([Eiv1], [E1]) = X(Z NIESL[E]) = M #0
=l

(using Ext*(E;, E;) = 0 Vk € Z Vi < j) contradicting the fact that
X([Eix1], [E1]) = 0 since I < i+ 1. Thus the ([E1], ..., [Ey]) form a free Z-basis
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of K5(Y). The remaining assertions concerning x are obvious from the above
arguments.

The last equality follows from the fact that the Grothendieck Chern character
ch gives an isomorphism

ch: K,(Y)Q— AY)®Q
(cf. [Ful], 15.2.16 (b)). O

COROLLARY 2.3.7. If (E1,...,E,) is an exceptional sequence that generates
D(Coh X), X a rational homogeneous variety, then n = |WT|, the number of
Schubert varieties X,, in X.

Proof. It suffices to show that the [Ox,|’s likewise form a free Z-basis of
Ko(X). One way to see this is as follows: By proposition 2.3.1 it is clear
that the [Ox,] generate K,(X). Ko(X) is a ring for the product [F] - [G] :=
Ziez(—l)i[’for;-x(]:, G)] and

B:Ko(X)x Ko(X) > Z
(IF1,[6) = D _(=1)'h(X, [F] - [G])

1€EL

is a symmetric bilinear form. One can compute that 8([Ox, ], [Oxv(—0XY)]) =
8Y (Kronecker delta) for z, y € WF, cf. [BL], proof of lemma 6, for details. [

It should be noted at this point that the constructions in subsection 2.1 relating
to semi-orthogonal decompositions, mutations etc. all have their counterparts
on the K-theory level and in fact appear more natural in that context (cf. [Gor],
81).

Remark 2.3.8. Suppose that on X = G/P we have a strong complete excep-
tional sequence (F1,...,FE,). Then the Gram matrix I' of x w.r.t. the basis
([EA], ..., [En]) on Ko(X) ~ Z™ is upper triangular with ones on the diagonal
and (4, j)-entry equal to dim¢c Hom(E;, E;). Thus with regard to conjecture
2.2.1 it would be interesting to know the Gram matrix I of x in the basis
given by the [Ox,]s, w € WF | since I and I will be conjugate.

The following computation was suggested to me by M. Brion. Without loss
of generality one may reduce to the case X = G/B using the fibration
7w : G/B — G/P: Indeed, the pull-back under 7 of the Schubert variety X, p,
w € WP, is the Schubert variety X, wo,p 11 G/B where wy, p is the element of
maximal length of Wp, and 7*Ox,, = Ox,, wy - Moreover, by the projection
formula and because Rm.Oq,p = Og,p, we have R, om* ~ idpev(con /Py and

x(m*€, 7 F) = x(&,F)

for any £, F € obj D*(Coh G/P).
Therefore, let X = G/B and let , y € W. The first observation is that
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X, = woX"¥ and x(Ox,,0x,) = x(Ox,,Oxwov). This follows from the
facts that there is a connected chain of rational curves in G joining ¢ to idg
(since G is generated by images of homomorphisms C — G and C* — @) and

that flat families of sheaves indexed by open subsets of A! yield the same class
in Ko(X), thus [Oxwos] =[Oy, xwov]. We have

RHOIH.(OXm s Oxwoy) =~ RF(X, RHom'(OXm, Oxwoy))
~ RI(X, RHom®(Ox,,0x) ®F Oxwou)
(cf. [Hal], prop. 5.3/5.14). Now Schubert varieties are Cohen-Macaulay, in
fact they have rational singularities (cf. [Ral]), whence
RHom®(Ox,,0x) ~ ExtimX) (O Ox)[—codim(X,)]
~ wy, ®wy' [~codim(X,)].
But wx, ® wy' =~ L(0)|x,(—0X,) (L(0) is the line bundle associated to the
character ), cf. [Ral], prop. 2 and thm. 4. Now X, and X™°¥ are Cohen-
Macaulay and their scheme theoretic intersection is proper in X and reduced
([Ral], thm. 3) whence TorX (Ox,,Oxwov) =0 for all i > 1 (cf. [Bri], lemma
1). Since 90X, is likewise Cohen-Macaulay by [Bri], lemma 4, we get by the
same reasoning 7 orX (Opx,,Oxwov) = 0 for all i > 1. Thus by the exact

sequence
0— OXI(—aXz) - OXI - OaXI —0

and the long exact sequence of Tor’s we see that Tor:X (Ox, (—0X,), Oxwov) =
0 for all ¢ > 1.
Therefore

RHom*(Ox,,Oxwov) ~ RT(X, L(0)|x, (—0X,)[—codim(X,)] ® Oxwov)
so that setting X% := X, N X"¥ and (9X,)" ¥ := 90X, N XWo¥
\(Ox,.0x,) = (—1=m Xy (£(g)] s (—(0,)")

This is 0 unless woy < x (because X¥oV is non-empty iff woy < z, see [BL],
lemma 1); moreover if woy < x there are no higher h® in the latter Euler
characteristic by [BL], prop. 2. In conclusion

(_1)codim(Xm)h0 (E(Q)|X;voy(—(an)w°y)) if woy <
0 otherwise

x(Ox,,0x,) = {

though the impact of this on conjecture 2.2.1 ((A) or (B)) is not clear to me.
Cf. also [Bri2] for this circle of ideas.

3 FIBRATIONAL TECHNIQUES

The main idea pervading this section is that the theorem of Beilinson on the
structure of the derived category of coherent sheaves on projective space ([Bei])
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and the related results of Kapranov ([Kal], [Ka2], [Ka3]) for Grassmannians,
flag varieties and quadrics, generalize without substantial difficulty from the
absolute to the relative setting, i.e. to projective bundles etc. For projective
bundles, Grassmann and flag bundles this has been done in [Or]. We review
these results in subsection 3.1; the case of quadric bundles is dealt with in
subsection 3.2. Aside from being technically a little more involved, the re-
sult follows rather mechanically combining the techniques from [Ka3] and [Or].
Thus armed, we deduce information on the derived category of coherent sheaves
on isotropic Grassmannians and flag varieties in the symplectic and orthogonal
cases; we follow an idea first exploited in [Sa] using successions of projective
and quadric bundles.

3.1 THE THEOREM OF ORLOV ON PROJECTIVE BUNDLES

Let X be a smooth projective variety, £ a vector bundle of rank r + 1 on
X. Denote by P(E) the associated projective bundle T and 7 : P() — X
the projection. Set D*(&) := D*(Coh(P(£))), D*(X) := D*(Coh(X)). There
are the functors Rm, : D°(E) — DP(X) (note that Rm, : DT (Coh(P(£))) —
DT (Coh(X)), where D*(—) denotes the derived category of complexes
bounded to the left in an abelian category, maps D’(£) to D°(X) using
Rim (F) = 0Vi > dimP(€) VF € ObCoh(P(£)) and the spectral sequence
in hypercohomology) and 7* : D¥(X) — DP(E) (r is flat, hence 7* is exact and
passes to the derived category without taking the left derived functor).

We identify D®(X) with a full subcategory in D®(€) via 7* (cf. [Or], lemma
2.1). More generally we denote by D®(X)®0Og(m) for m € Z the subcategory of
DP(€) which is the image of D*(X) in D®(£) under the functor 7*(—)® Og (m),
where Og(1) is the relative hyperplane bundle on P(£). Then one has the fol-
lowing result (cf. [Or], thm. 2.6):

THEOREM 3.1.1. The categories D*(X)®0g(m) are all admissible subcategories
of D*(E) and we have a semiorthogonal decomposition

DY) = (D"(X) ® Og(—r),...,D"(X) ® Og(—1), D*(X)) .
We record the useful
COROLLARY 3.1.2. If DY(X) is generated by a complete exceptional sequence
(Ey1,...,E,),
then D®(&) is generated by the complete exceptional sequence

(T"Ey @ Og(=1)y..., 7" E, @ Og(—1), 7" E1 @ Og(—r + 1),
cey By, T Ey).

THere and in the following P(£) denotes Proj(Sym®(£V)), i.e. the bundle of 1-dimensional
subspaces in the fibres of £, and contrary to Grothendieck’s notation NOT the bundle
Proj(Sym® £) of hyperplanes in the fibres of £ which might be less intuitive in the sequel.
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Proof. This is stated in [Or], cor. 2.7; for the sake of completeness and because
the method will be used repeatedly in the sequel, we give a proof. One just
checks that

Eth(’IT*Ei ® Og(—r1), 7" E; ® Og(—12)) =0
VEVI<i,j<nV0<r <ry<randVk,Vl<j<i<n,r; =rs Indeed,

Ext®(1*E; @ Og(—r1), 7" E; @ Og(—12)) =~ Ext* (7" E;, 1" E; ® Og(r1 — 73))
~ Eth(EZ', Ej (9 RW*(OE(Tl - 7“2)))

where for the second isomorphism we use that Rm, is right adjoint to 7*, and
the projection formula (cf. [Ha2], II, prop. 5.6). When r; = ro and i > j
then Rm,.Of ~ Ox and Ext*(E;, E;) = 0 for all k because (Ei,...,E,) is
exceptional. If on the other hand 0 < ry < ry <7 then —r <r; —ry <0 and
R (Og(r1 —ra)) = 0.

It remains to see that each 7*E; ® Og(—r1) is exceptional. From the above
calculation it is clear that this follows exactly from the exceptionality of E;. [

Remark 3.1.3. From the above proof it is clear that even if we start in
corollary 3.1.2 with a strong complete exceptional sequence (Ey,..., E,) (i.e.
Ext” (E;, E;) = 0Vi, jVk # 0), the resulting exceptional sequence on P(£) need
not again be strong: For example take X = P! with strong complete exceptional
sequence (O(—1),0) and € = O @ O(h), h > 2, so that P(£) = F, —— P! is
a Hirzebruch surface. Then (7*O(—1) ® Og(—1), Og(—1),7*O(—1) ® Og, O¢)
is an exceptional sequence on F, that generates D®(Coh(Fy)), but it is not
a strong one since Ext'(Og(—1),0¢) ~ H'(P', 7, Og(1)) ~ H' (PO @
O(—h)) ~ Sym"~2C2 # 0.

Analogous results hold for relative Grassmannians and flag varieties. Specif-
ically, if £ is again a rank r + 1 vector bundle on a smooth projective vari-
ety X, denote by Grassx (k,&) the relative Grassmannian of k-planes in the
fibres of £ with projection 7 : Grassx(k,&) — X and tautological subbun-
dle R of rank k in 7#*€. Denote by Y(k,r + 1 — k) the set of partitions
A= (A, ) with 0 < A < A1 < oo <A <7+ 1 —k or equiv-
alently the set of Young diagrams with at most k& rows and no more than
r +1 —k columns. For A € V(k,r + 1 — k) we have the Schur functor ¥*
and bundles ¥ R on Grassy (k, £). Moreover, as before we can talk about full
subcategories D?(X) ® ¥ R of Db(Coh(Grassx(k,£))). Choose a total order
< on Y(k,r +1 — k) such that if A < u then the Young diagram of A is not
contained in the Young diagram of y, i.e. 3i: yu; < A;. Then one has (cf. [Or],
p. 137):

THEOREM 3.1.4. There is a semiorthogonal decomposition
D*(Coh(Grassx (k,£))) = (..., D"(X) @ *R,..., D"(X) ® "R, ...)
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(A=)
If (Ey,...,E,) is a complete exceptional sequence in D(X), then

(...m™Ey @S 'R,..., 7" E, ® 2R,
L TTEL@YHR, .. T E, @ XFR, )

is a complete exceptional sequence in D*(Coh(Grassx (k,&))). Here all 7 E; ®
YAMR, i € {1,...,n}, A € Y(k,7 + 1 — k) occur in the list, and 7" E; @ Y R
precedes T E; @ YFR iff A< por A=p andi < j.

More generally, we can consider for 1 < k; < ... < k; < r + 1 the variety
Flagy (k1,...,k:; E) of relative flags of type (k1, ..., k) in the fibres of £, with
projection 7 and tautological subbundles Ry, C ... C Ry, C 7*E. If we denote
again by Y (a,b) the set of Young diagrams with at most a rows and b columns,
we consider the sheaves YM Ry, ®. .. @Y Ry, on Flagy (ki, . .., ki; €) with Ag, €
Y (ke,r+1—k) and A\j € Y(kj, kji1—k;) for j =1,...,t—1 and subcategories
DY(X) @ YMRy, @ ... ® XMRy, of DP(Coh(Flagy (ki,- ..,k E))). Choose a
total order <; on each of the sets Y (k;, kj+1 —k;) and <, on Y (ky,r +1 —ky)
with the same property as above for the relative Grassmannian, and endow the
set Y =Y (ky,r+1—ke) x ... x Y (k1, ko — k1) with the resulting lexicographic
order <.

THEOREM 3.1.5. There is a semiorthogonal decomposition

DP(Coh(Flagx (ki,...,k;; €)= (..., D*(X) @ SN Ry, ® ... @ MRy,
DY X))@ Ry, @ ... @ ZHRy,, ..

(()\t,...7>\1) =< (,ut,...,,ul)).
If (Ey,...,E,) is a complete exceptional sequence in D°(X), then

(T B @SMRy, @, @M R, T E, @ MRy, @ .. @ MRy, ...,
T'EI @XM Ry, ... 8" Ry, ..., T E, @M Ry, ® ... Q0 LM Ry,,...)
is a complete exceptional sequence in D®(Coh(Flagy (k1, ...,k E))). Here all
TE @ YMRy, @ ... @ XMRy,, i € {1,...,n}, (\,..., A1) €Y occur in the
list, and 7 E; @ SM Ry, @ ... @ LM Ry, precedes 7 E; @XM Ry, ®... @ YF Ry,
iﬁ(kta--w)\l) = (:utw”a,ul) or (At7"'7A1) = (:uta'-'vlul) and i <.]

Proof. Apply theorem 3.1.4 iteratively to the succession of Grassmann bundles

FlagX (/fl, ceey kt; 5) = GrassFlagX(kz,_.’k“g) (kl, sz)
- Flagx(kg, ey kt;g) = GraSSFlagX(kg,“.,kt;S)(k27ng) —...— X
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3.2 THE THEOREM ON QUADRIC BUNDLES

Let us now work out in detail how the methods of Orlov ([Or]) and Kapranov
([Ka2], [Ka3]) yield a result for quadric bundles that is analogous to theorems
3.1.1, 3.1.4, 3.1.5.

As in subsection 3.1, X is a smooth projective variety with a vector bundle £
of rank 7 + 1 endowed with a symmetric quadratic form ¢ € T'(X, Sym? £ V)
which is nondegenerate on each fibre; Q := {g = 0} C P(€) is the associated
quadric bundle:

Write D?(X) := D*(Coh X), D*(Q) := D*(Coh Q), D*(&) := D*(CohP(€)).
LEMMA 3.2.1. The functor

m* = Lr*: D’(X) — D"(Q)
is fully faithful.

Proof. Since Q is a locally trivial fibre bundle over X with rational homoge-
neous fibre, we have 7,0g = Ox and R'm,Og = 0 for i > 0. The right adjoint
to L7* is R, and R, o L7* is isomorphic to the identity on D?(X) because
of the projection formula and Rm,.Og = Ox. Hence Lr* is fully faithful (and
equal to 7* since 7 is flat). O

Henceforth D®(X) is identified with a full subcategory of D®(Q).
We will now define two bundles of graded algebras, A = @ A, and B =

n>0
@ B, on X. Form the tensor algebra T*(€[h]) where h is an indeterminate
n>0
with degh = 2 and germs of sections in £ have degree 1 and take the quotient
modulo the two-sided ideal Z of relations with Z(x) := (e®e—q(e)h, eQh—h®
€)eee(z), (v € X). This quotient is A, the bundle of graded Clifford algebras
of the orthogonal vector bundle £. On the other hand, B is simply defined as

@ . Og(n), the relative coordinate algebra of the quadric bundle Q.
n>0

For each graded left A-module M = @,_, M; with M; vector bundles on X
we get a complex L*(M) of bundles on Q

L*(M): ... = 1" M; ®c Og(j) SN M1 ®c Og(j+1) — ...
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with differentials given as follows: For z € X and e € £(z) we get a family of
mappings

@ (z,e) : Mj(x) = M (z)
given by left multiplication by e on M;(z) and linear in e which globalize to
mappings II*M; ® Og(j) — II* M1 ® Og(j + 1). When restricted to Q two
successive maps compose to 0 and we get the required complex.

We recall at this point the relative version of Serre’s correspondence (cf. e.g.
[EGA], 11, §3):

THEOREM 3.2.2. Let Mod¥ be the category whose objects are coherent sheaves
over X of graded Sym®*EY -modules of finite type with morphisms

Hom 045 (M, N) := lim Homgyme ev (6 Mi, D N)

>n i>n

(the direct limit running over the groups of homomorphisms of sheaves of
graded modules over Sym® £V which are homogeneous of degree 0). If F €
obj(Coh(P(E))) set

alF) = @H*(}"(n))
n=0

Then the functor o : Coh(P(E))) — Mod¥ is an equivalence of categories with
quasi-inverse (—)~ which is an additive and exact functor.

The key remark is now that L*(AY) is exact since it arises by applying the
Serre functor (—)™ to the complex P*® given by

L Ay eB[-2] — AY @B[-1] —2— Ay @B — Ox — 0.

Here, if (e1,...,e,41) is a local frame of &€ = A; and (ey,...,e/ ) is the
corresponding dual frame for £Y = By, the differential d is Z::ll l;/i ®ley, where
le, : A[=1] — A is left multiplication by e; and analogously [y : B[-1] — B.
This complex is exact since it is so fibrewise as a complex of vector bundles; the
fibre over a point z € X is just Priddy’s generalized Koszul complex associated
to the dual quadratic algebras B(z) = @;H°(Q(x), Og(y)(i)) and A(xz), the
graded Clifford algebra of the vector space £(x). See [Ka3], 4.1 and [Pri].
Define bundles ¥;, ¢ > 0, on Q by a twisted truncation, i.e., by the requirement
that

0=V, -1 A) - 17" A, ®0g(1) — ... = T Af ® Og(i) — 0
be exact. Look at the fibre product
ACQxxQ —— Q
o]
Q —" - X
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together with the relative diagonal A. The goal is to cook up an infinite to
the left but eventually periodic resolution of the sheaf Oa on Q x x Q, then
truncate it in a certain degree and identify the remaining kernel explicitly.
Write ¥; K O(—1) for pj¥; @ p5Og(—i) and consider the maps ¥; K O(—i) —
U, 1 KO(—i+ 1) induced by the maps of complexes

(MA@ O)RO(=i) —— (AL, ©@0(1)RO(=i) —— ...

! l

(A ;@ O0)KO(—i+1) —— (7" A, @ O01)RO(—i+1) —— ...

where the vertical arrows are given by Z;;l (m*ry, ®id) Kl,v; here again we're
using the local frames (e1,...,e,41), resp. (ef,...,e/ ), 7e, : A[-1] — A
is right multiplication by e; and l.y is the map induced by l.v : B[-1] — B
between the associated sheaves (via the Serre correspondence).

This is truly a map of complexes since right and left Clifford multiplication
commute with each other. Moreover, we obtain a complex, infinite on the left

side
R: . ..U, KO(-i)— ... o Uy KO(-2) > U1 KO(—1) = Ogx 0 -

LEMMA 3.2.3. The complex R® is a left resolution of Oa, A C @ Xx Q being
the diagonal.

Proof. Consider B? := @, B; ®o, B, the “Segre product of B with itself”
(i.e. the homogeneous coordinate ring of Q X x Q under the (relative) Segre
morphism). Look at the following double complex D*® of B2-modules:

o D Bi2®@Bi 2

T

LS 692 AY @ Biy1 @ Big — @i Bit1 ® Bi—1

T !

L @iA¥®Bi®Bi_2 — @1A¥®Bl®gl_1 — @ZB}G@BZ

Here the columns correspond to the right resolutions of ¥y X O, ¥y K O(-1),
Uy KO(—2) ete. (starting from the right) if we pass from complexes of coherent
sheaves on Q xx Q to complexes of graded B%-modules via Serre’s theorem.
For example, the left-most column in the above diagram arises from

(T*"AY ® Og) R O(-2) — (7" A} © Og(1)) B O(-2)
— (" Ay ® 0g(2)) R O(-2) — 0
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The horizontal arrows in the above diagram then come from the morphisms of
complexes defining the differentials in R®.

The associated total complex Tot*(D*®®) has a natural augmentation a :
Tot®*(D**) — €D, Ba; arising from the multiplication maps B;;; ® Bi—; — Ba;
and corresponding to the augmentation R®* — OAa.

Claim: a is a quasi-isomorphism. For this note that D®® is the direct sum over
1 of double complexes

o— Bita®Bi_g

|

AV @Bt @B — Bit1 ®Bi—1
S A¥®Bi®8i_2 — AY®31®Bi_1 — B, ®B5;

which are bounded (B is positively graded) and whose rows are just Priddy’s
resolution P*® in various degrees and thus the total complex of the above direct
summand of D*® is quasi-isomorphic to Ay ® Ba; ® By = Ba;. Thus Tot®(D*®*)
is quasi-isomorphic to €, Ba;. O

The next step is to identify the kernel of the map ¥, _os X O(—r+2) — ¥, 35X
O(—r + 3). For this we have to talk in more detail about spinor bundles.

Let Cliff(£) = A/(h — 1)A be the Clifford bundle of the orthogonal vector
bundle £. This is just Cliff (£) := T*® £/I(E) where I(£) is the bundle of ideals
whose fibre at € X is the two-sided ideal I(E(x)) in T*(E(x)) generated
by the elements e ® e — g(e)l for e € E(x). Cliff(£) inherits a Z/2-grading,
Cliff (£) = ClLiff***(£) @ ClLiff°*d4(€).

For | r 4+ 1 odd | we will now make the following assumption (A):

There exists a bundle of irreducible Cliff ***"(€)-modules S(£),
self-dual up to twist by a line bundle L on X, i.e.
SEV ~SE)®L,
together with an isomorphism of sheaves of algebras on X
Cliff (€) ~ End(S(E)) ® End(S(E))
such that
ClLff*v*"™ (&) ~ End(S(£)).

For we assume (A’):
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There exist bundles of irreducible Cliff***"(£)-modules

St(€), S7(&), which for m satisfy
SHEW ~ST(E)® L
ST(EYW =S ()L
and for satisfy
STE)NW ~S ()@ L
ST(E)Y =~ ST(£) ® L, L aline bundle on X,
together with an isomorphism of sheaves on algebras on X
Cliff(£) ~ End(ST(E) ® S~ (&)
such that
ClLiff*"*" () ~ End(S™(€)) & End(S~(E)).
We will summarize this situation by saying that the orthogonal vector bundle
& admits spinor bundles S(€) resp. ST(E), S~(E).
Conditions (A) resp. (A’) will be automatically satisfied in the applications in
subsection 3.4.

Then for

M =S (E)dSTE)dS (E)®...

and
Mt =5t eSS (E)aeSTE) ...

are graded left A-modules (the grading starting from 0); one defines bundles
¥, ¥~ on Q by the requirement that

0— (2%)Y — L*(M?*) for ‘r + 1 =0(mod 4)

)

0— (2F)Y = L*(M*) for ’r +1=2(mod4) ‘

be exact.
For |7+ 1 odd |let M be the graded left A- module (grading starting from 0)

M=SE)dSEdSE ...
and define the bundle ¥ on Q by the requirement that
0—(X)" — L*(M)

be exact.
From the definition

St = S (Og(~1)H /0o (~1)) resp. = £(Og(~1)* /Og(~1))
are spinor bundles for the orthogonal vector bundle Og(—1)+/Og(~1) on Q.
LEMMA 3.2.4. The kernel
ker(U, oK O(—r+2) — ¥, 3XO(—r+ 3))

s equal to
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(i) for odd:

E(-Der LTHRS(-r+1)

(i) for ‘ r+1=2(mod4) ‘

(EF(-Der YRS (—r+1)e (S (-1)@r" LTHRE ™ (—r+1))

(iii) and for ‘ r 4+ 1 =0(mod4) ‘

(EF(-Der LTHYRE (—r+1)e (B (-)er LTHRI (—r+1))

3 mult(h) . . .
Proof. For i >r A;  — A;12 is an isomorphism because (e;; - ... e; h™),

1<i <...<ip <r+1,meNis alocal frame for A if (e1,...,e,41) is one
for £, and the map A; — CLiff?*" ) (€) induced by A — A/(h—1)A is then an
isomorphism where

(i) = even, ¢ = 0(mod?2)
P =1 odd, i= 1(mod 2)

Because L*(AY) is exact, ¥; is also the cokernel of
(1) oo T AY 5 © Og(—3) = 1AV, ® Oa(=2) — " AY,, © Og(~1)
Since ker(V,_o X O(—r +2) — U,._3 X O(—r + 3)) = coker(¥, K O(-r) —

V,_1 K O(—r + 1)) we conclude that a left resolution of the kernel in lemma
3.2.4 is given by Tot®(E*®®) where E**® is the following double complex:

| |

oo (CLfFPA I EV (L) R O(—r) —— (r*CLffP (D eV (—2)) K O(—r + 1)

| l

oo (T CNfFPA D EY (L) R O(—r) —— (" CLffP (M EY(=1)) K O(—r + 1)

Here the columns (starting from the right) are the left resolutions (*) of ¥,_; K
O(—r+1), ¥,KXO(—r), etc. and the rows are defined through the morphisms of
complexes defining the differentials ¥,_1 KO(—r+1) — ¥, KO(—r) etc. in the
resolution R®. For odd 7+ 1 we have CLiff*¥ (&) ~ CLff***" (&) ~ End(S(£)) ~
S(€)Y ® S(€) whence our double complex becomes
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| |

L TSE)V(-2)RTSE)(~r) — 7 SE)V(~2) R S(E)(—r + 1)

l |

o TSEV ()R TSE)(—r)  — 7 SE)Y (1) B S(E)(—r + 1)

and is thus isomorphic as a double complex to L*(M)Y(=1) X (L*(M)V(—r +
Ner* L™t ~ (L*(M)Y(-1)@r* L~ )RL*(M)Y(—r+1), i.e. quasi-isomorphic
to (X(=1) ® 7*L~!) X X(—r + 1). The cases for even r + 1 are considered
similarly. O
LEMMA 3.2.5. Consider the following two ordered sets of sheaves on Q:

S={2(—r+4+1)<0g(—1+2)<... < 0g(-1) < Og} (r+1o0dd),
S ={Zt(—r+1)<S(—r+1)<... < 0g(-1) < Og} (r+1even).

IfV, Vi, Vo € & (resp.: € &) with V1 < Va, V1 # Vo, we have the following
identities

R, (VoVY)=0, Vi#0,
R,V @V))=0VicZ, Ra.Vo@V))=0Vi#0.

and the canonical morphism ROm.(V @ VV) — Ox is an isomorphism.

Proof. In the absolute case (where the base X is a point) this is a calculation
in [Ka3] , prop. 4.9., based on Bott’s theorem. The general assertion follows
from this by the base change formula because the question is local on X and
we can check this on open sets U C X which cover X and over which O is
trivial. O

As in subsection 3.1, for V € & (resp. € &'), we can talk about subcategories
DY(X) ® V of D¥(Q) as the images of D*(X) in D%(Q) under the functor
(=) V.

PROPOSITION 3.2.6. Let V, V1,Vs be as in lemma 3.2.5. The subcategories
D*(X) ®V of D*(Q) are all admissible subcategories. Moreover, for A €
0bj(D(X) ® Vs), B € obj(D*(X) ® V1) we have RHom(A, B) = 0.

Proof. Let A = 1*A’'®Vs, B = 7*B'®V);. Using lemma 3.2.5 and the projection
formula we compute

R'Hom(r*A' @ Vo, "B’ @ V1) ~ R Hom(r* A", n*B' @ V; @ V)
~ R'Hom(A', B’ ® Rm.(V1 ® Vy)) ~ 0.
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If we repeat the same calculation with V' instead of V; and V, we find that
R'Hom(7* A’ @ V,7* B’ ® V) ~ R'Hom(A’, B'). This shows that the categories
D(X)®V are all equivalent to D(X) as triangulated subcategories of D®(Q).
It follows from [BoKa] , prop. 2.6 and thm. 2.14, together with lemma 3.2.1
that the D?(X) ® V are admissible subcategories of D®(Q). O

THEOREM 3.2.7. Let X be a smooth projective variety, £ an orthogonal vector
bundle on X, Q C P(E) the associated quadric bundle, and let assumptions (A)
resp. (A’) above be satisfied.

Then there is a semiorthogonal decomposition

D*(Q) =(D"(X) @ X(—r +1),D*(X) ® Og(~7 +2),
..., DM(X)® Og(~1), D"(X))
forr+1 odd and
D*(Q) = (D"(X) @ X (—r +1),D*(X) @ B~ (=r + 1),
DY(X)® Og(—r +2),...,D"(X) ® Og(—1), D*(X))
forr+1 even.

Proof. By proposition 3.2.6 the categories in question are semiorthogonal and it
remains to see that they generate D®(Q). For ease of notation we will consider
the case of odd r + 1, the case of even r 4+ 1 being entirely similar.

From lemmas 3.2.3 and 3.2.4 we know that in the situation of the fibre product

ACQxxQ —— Q
R
Q LN e
we have a resolution

0— (- L HRE(—r+1) =¥, ,KOg(—r+2) — ...
Lo U RO(-1) = Ogxyo — Oa — 0

and tensoring this with p{F (F a coherent sheaf on Q)

0= S~ L '@F)RE(—r+1) = (V,_ s @ F) R Og(—r+2) — ...
o= (U F)XO(-1) > FROg — piFla — 0

and applying Rp,, we obtain a spectral sequence

EV =Rips (V_; @ F)ROg(j)) —r+2<j<0
=Rpp(B(-1)@m L '@ F)RE(—r+1)) j=-r+1

=0 otherwise
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and EY = Ritip,,(piF|a) which is = F for i +j = 0 and = 0 otherwise.
But since cohomology commutes with flat base extension (cf. [EGA], III, §1,
prop. 1.4.15), we have Rip, «DiG ~ 7 R'm,.G for any coherent G on Q. This
together with the projection formula shows that all E}’ belong to one of the
admissible subcategories in the statement of theorem 3.2.7. This finishes the
proof because D’(Q) is generated by the subcategory Coh(Q). O

COROLLARY 3.2.8. If DY(X) is generated by a complete exceptional sequence
(E1,...,E,),
then D*(Q) is generated by the complete exceptional sequence
(T"Ey @X(=r+1),...,7"E, @ 2(—r+ 1), 7"FE1 ® Og(-r+2),...,7"E,)
forr+1 odd and

(T*Ey @St (—r+1),..., 7" E, @S (—r+1),..., 7" By @ (-1 + 1),
ey T E, @Y7 (—r+1),7"Ey @ Og(—r+2),...,7°Ey, ... ,W*En)

forr+1 even.

Proof. Using lemma 3.2.5, one proves this analogously to corollary 3.1.2; we
omit the details. O

3.3 APPLICATION TO VARIETIES OF ISOTROPIC FLAGS IN A SYMPLECTIC
VECTOR SPACE

We first fix some notation: Let V be a C-vector space of even dimension 2n
with a nondegenerate skew symmetric bilinear form (-,-). For 1 <k; < ... <
ky < n we denote IFlag(ky,...,ky; V) == {(Lky,.--,Lg,) | L, C ... Ly, CV
isotropic subspaces of V' with dim Ly, = k;, 1 < j < t} the (partial) flag
variety of isotropic flags of type (ki,...,k:) in V; moreover, for 1 < k < n, put
IGrass(k, V) := IFlag(k; V), the Grassmann manifold of isotropic k-planes in
V. As usual, we have the tautological flag of subbundles Ry, C ... C R, C
V' @ Orptag(ky ..., ke;v) o0 IFlag(ki, ..., ke V) and the tautological subbundle R
on IGrass(k, V).

Remark 3.3.1. Via the projection IFlag(ky,...,kt; V) — IGrass(k:, V), the
variety IFlag(k1, ..., ki; V) identifies with Flaggyase(, vy (K1, -+, ki—1; R), the
relative variety of flags of type (ki,...,ki—1) in the fibres of the tautological
subbundle R on IGrass(k:, V). Therefore, by theorem 3.1.5, if we want to
exhibit complete exceptional sequences in the derived categories of coherent
sheaves on all possible varieties of (partial) isotropic flags in V', we can reduce
to finding them on isotropic Grassmannians. Thus we will focus on the latter
in the sequel.

Now look at the following diagram (the notation will be explained below)
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IFlag(1,2,...,k— 1,k V) = P(Ep_1) =~ FlagIGraSS(k)v)(l, 2,...,ksR)

Tk—1
IFlag(1,2,...,k — 1; V) ~ P(&;_2)

Tk—2

T2
IFlag(1,2; V) ~ P(&)

1

IFlag(1; V) ~ P(V) IGrass(k, V)

Since for 1 < i < j < k — 1 the i-dimensional tautological subbundle on
IFlag(1,2,...,4; V) pulls back to the i-dimensional tautological subbundle on
IFlag(1,2,...,7 + 1;V) under 7;, we denote all of them by the same symbol
R; regardless of which space they live on, if no confusion can arise.

Since any line in V' is isotropic, the choice of a 1-dimensional isotropic L; C V
comes down to picking a point in P(V') whence the identification IFlag(1; V) ~
P(V') above; the space Li-/L; is again a symplectic vector space with skew form
induced from (-, -) on V, and finding an isotropic plane containing L; amounts
to choosing a line Ly/Ly in Li-/L;. Thus IFlag(1,2;V) is a projective bundle
P(&;) over IFlag(1; V) with & = R{/Ri, and on P(&;) ~ IFlag(1,2;V) we
have Og, (—1) ~ R2/R1. Of course, tk & = 2n — 2.

Continuing this way, we successively build the whole tower of projective bundles
over P(V) in the above diagram where

E~Ry/R;, j=1,...,k—1, 1k& =2n—2j
and Ogj(—l) ~ Rj+1/Rj .

Moreover, IFlag(1,2,...,k—1,k; V) is just Flagigass(,v)(1, - - - k3 R), the rel-
ative variety of complete flags in the fibres of the tautological subbundle R
on IGrass(k,V); the flag of tautological subbundles in V' ® Orpiag(1,....k;v) ON
IFlag(1,...,k; V) and the flag of relative tautological subbundles in 7*R on
Flagicrass(k,v) (1,2, - - ., k3 R) correspond to each other under this isomorphism,
and we do not distinguish them notationally.

For A = (A1,...,As) € ZF define the line bundle £()\) on the variety

FlagIGraSS(k‘,V)(l’ ceey k, R) by
L(N) = (R1)®(—/\1) ® (RQ/R1)®(_A2) ®...® (W*R/Rk_1)®(_’\k) .

(This notation is consistent with that of £(x) in subsection 2.2 which will
be further explained in the comment after the proof of lemma 3.3.2 below).
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Repeatedly applying corollary 3.1.2 to the above tower of projective bundles,
we find that the following sheaves constitute a complete exceptional sequence
in D*(Coh (Flagigrass(e,v) (L -+ - k3 R))):

(L(A)) with —2n+4+1<X) <0,
(1) — M +3< A <0,

—2n+2k—1< )\, <0.

Here L(\) precedes L(u) according to the ordering of the exceptional sequence
it (Mg, Ak—1,---, A1) < (Wi, k—1,- - -, 1) where < is the lexicographic order
on Z*.

Let us record here the simple

LEMMA 3.3.2. The set of full direct images Rm.L(X\), as L(N) varies among
the bundles (1), generates the derived category D?(Coh(IGrass(k,V))).

Proof. As in lemma 3.2.1, RF*OFla‘gIGrass(k,V)(17"'!’6;7?‘) =~ OiGrass(k,v), and
Rm, o m* is isomorphic to the identity functor on D®(Coh(IGrass(k,V))) by
the projection formula. Thus, since the bundles in () generate the derived
category upstairs, if £ is an object in D?(Coh(IGrass(k,V))), 7*E will be
isomorphic to an object in the smallest full triangulated subcategory contain-
ing the objects (), i.e. starting from the set () and repeatedly enlarging it
by taking finite direct sums, shifting in cohomological degree and completing
distinguished triangles by taking a mapping cone, we can reach an object iso-
morphic to 7*E. Hence it is clear that the objects Rm,.L(\) will generate the
derived category downstairs because Rm,m*FE ~ FE. O

Now the fibre of Flagigass(k,1)(1,- ..,k R) over a point x € IGrass(k, V) is
just the full flag variety Flag(1l,...,k; R(x)) which is a quotient of GL;C by
a Borel subgroup B; the A € Z* can be identified with weights or characters
of a maximal torus H C B and the restriction of £(A) to the fibre over z
is just the line bundle associated to the character A, i.e. GLyC xp C_j,,
where C_) is the one-dimensional B-module in which the torus H acts via
the character —A and the unipotent radical R,(B) of B acts trivially, and
GLixC x5 C_y = GLxC x C_»/{(g,v) ~ (gb=1,bv), b € B}. Thus we can
calculate the Rm,L(\) by the following (relative) version of Bott’s theorem (cf.
[Wey], thm. 4.1.4 or [Akh], §4.3 for a full statement):

Let 0 := (k—1,k—2,...,0) (the half sum of the positive roots) and let W = &,
the symmetric group on k letters (the Weyl group), act on Z* by permutation
of entries:

O'(()\l, ceey )\k)) = (/\5(1), ey )\a(k)) .
The dotted action of &, on ZF is defined by

o*(A) i =c(A+0) —o.
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Then the theorem of Bott asserts in our case:

e EITHER there exists 0 € &y, o # id, such that o®(A) = A. Then
Rim . L(N\) =0Vi€ Z;

e OR there exists a unique o € &, such that o®(\) =: g is non-increasing
(i.e., p is a dominant weight). Then

Rm,L(N) =0 for i#I1(0),
RO, L(\) =RV,

where [(0) is the length of the permutation o (the smallest number of
transpositions the composition of which gives o) and X* is the Schur
functor.

As a first consequence, note that the objects Rm.L()\) all belong -up to shift
in cohomological degree- to the abelian subcategory of D(Coh(IGrass(k,V)))
consisting of coherent sheaves. We would like to determine the homogeneous
bundles that arise as direct images of the bundles (#) in this way. The following
theorem gives us some information (though it is not optimal).

THEOREM 3.3.3. The derived category D®(Coh(IGrass(k,V))) is generated by
the bundles ¥R, where v runs over Young diagrams Y which satisfy

(number of columns of V) < 2n — k&,
k > (number of rows of Y') > (number of columns of V') — 2(n — k).

Proof. Note that if A satisfies the inequalities in (), then for 6 := X\ + o we
have

—(2n—k) <6 <k-1,
(£8) —@2n—k-1)<dH<k-2,

—(2n—2k+1) <8, <0.

First of all one remarks that for 6®*(\) = 0(d) — ¢ to be non-increasing, it is
necessary and sufficient that o(d) be strictly decreasing. We assume this to
be the case in the following. Since the maximum possible value for o(§); is
k — 1, and the minimum possible value for o(d)x is —(2n — k), we find that for
o*(A\) =:pu

0>p1>..>pp > —(2n—k);

putting v = (v1,...,v%) := (—ptg, —fg—1,-- -, —p¢1) and noticing that LHRY ~
Y¥R, we find that the direct images R'm.L()), i € Z, L(A) as in (), will form
a subset of the set of bundles ¥R on IGrass(k, V') where v runs over the set of
Young diagrams with no more than 2n — k columns and no more than k rows.
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But in fact we are only dealing with a proper subset of the latter: Suppose
that
od)r=—2n—-k—a+1), 1<a<k-1.

Then the maximum possible value for o(d), is kK — a — 1. For in any case an
upper bound for o(d), is k — a because o(d); can be at most k — 1 and the
sequence o(9) is strictly decreasing. But in case this upper bound for o (d), is
attained, the sequence o(J) must start with

o(d)1=k—-1,06)2=k—-2,..., 000)a=k—a,
in other words, we can only have
0'(5)1 :51,..., U((S)a:(sa.

But this is impossible since dq41, . . ., 0 are all > —(2n—k—a) > —(2n—k—a+1)

and thus we could not have o(§);, = —(2n —k —a+ 1). Hence o(d), is at most
k—a—1, that is to say in 0®*(\) = 0(d) — 0 = p we have u, = 0(§)s— (k—a) < 0;
or in terms of v = (—pug, ..., —p1) we can say that if the Young diagram Y (v)

of v has 2n — k —a+ 1 columns, 1 < a < k — 1, it must have at least k —a + 1
rows; or that the Young diagram Y (v) satisfies

(number of rows of Y (v)) > (number of columns of Y'(v)) — 2(n — k)

where the inequality is meaningless if the number on the right is < 0. Thus by
lemma 3.3.2 this concludes the proof of theorem 3.3.3. O

Remark 3.3.4. By thm. 222, in D’(Coh(Grass(k,V))) there is a com-
plete exceptional sequence consisting of the %¥ R where R is the tautologi-
cal subbundle on Grass(k,V) and © runs over Young diagrams with at most
2n — k columns and at most k rows. Looking at IGrass(k, V') as a subvariety
IGrass(k, V) C Grass(k,V) we see that the bundles in theorem 3.3.3 form a
proper subset of the restrictions of the $”R to IGrass(k, V).

Before making the next remark we have to recall two ingredients in order to
render the following computations transparent:

The first is the Littlewood-Richardson rule to decompose ¥* ® ©* into irre-
ducible factors where A, p are Young diagrams (cf. [FuHal, §A.1). It says the
following: Label each box of 1 with the number of the row it belongs to. Then
expand the Young diagram A\ by adding the boxes of u to the rows of A subject
to the following rules:

(a) The boxes with labels < i of u together with the boxes of A form again a
Young diagram;

(b) No column contains boxes of  with equal labels.

(¢) When the integers in the boxes added are listed from right to left and
from top down, then, for any 0 < s < (number of boxes of u), the first s
entries of the list satisfy: Each label [ (1 <[ < (number of rows of u)—1
) occurs at least as many times as the label [ 4 1.
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Then the multiplicity of ¥ in ¥} ® X# is the number of times the Young
diagram v can be obtained by expanding A by p according to the above rules,
forgetting the labels.

The second point is the calculation of the cohomology of the bundles YR
on the variety IGrass(k,V), V a 2n-dimensional symplectic vector space (cf.
[Wey], cor. 4.3.4). Bott’s theorem gives the following prescription:

Look at the sequence

,u:(—)\k,—)\k,17...7—)\1,0,...,0) ezZ"

considered as a weight of the root system of type C,,. Let W be the Weyl
group of this root system which is a semi-direct product of (Z/2Z)™ with the
symmetric group &,, and acts on weights by permutation and sign changes of
entries. Let o := (n,n — 1,...,1) be the half sum of the positive roots for
type C,. The dotted action of W on weights is defined as above by o®(u) :=
o(p+ o) — 0. Then

e cither there is 0 € W, o # id, such that 0®(u) = p. then all cohomology
groups
H*(IGrass(k,V),2*R) = 0.

e or there is a unique ¢ € W such that ¢*(u) =: v is dominant (a non-
increasing sequence of non-negative integers). Then the only non-zero
cohomology group is

H') (1Grass(k, V), 2*R) = V,,,
where (o) is the length of the Weyl group element ¢ and V,, is the space
of the irreducible representation of Sp,,,C with highest weight v.

Remark 3.3.5. The R'm.L()\), i € Z, L(\) as in (f), are not in general
exceptional: For example, take & = n = 3, so that we are dealing with
IGrass(3,V), the Lagrangian Grassmannian of maximal isotropic subspaces
in a 6-dimensional symplectic space V. Then L£((0,—3,0)) is in (). Adding
0= (2,1,0) to (0,—3,0) we get (2,—2,0) and interchanging the last two en-
tries and subtracting ¢ again, we arrive at (0, —1, —2) which is non-increasing

whence
R'7,.L£((0,-3,0)) = 2210R

all other direct images being 0. To calculate

Ext® (8*1OR, £*1OR) = H* (IGrass(3,V), £ 'R @ 071 2R)
3 ®2
= H* (IGrass(?), V), 2?2 HR @ 22 IR ® (/\ RV> )

we use the Littlewood-Richardson rule and Bott’s theorem as recalled above:
One gets that

EQ,l,OR ® EO,—I,—ZR — EQ,O,—ZR &) ZQ,—I,—lR & ELL_QR
@(21,0,—1R)@2 ey EO’O’OR

DOCUMENTA MATHEMATICA 11 (2006) 261-331



308 CHRISTIAN BOHNING

in view of the fact that if we expand A = (2,1,0) by pu = (2,1,0) we get the
following Young diagrams according to the Littlewood-Richardson rule:

1]1] [1]1] 1 1]
P 12 T

1] 1] 1]
2] 2]

Thus calculating the cohomology of ¥210R ® £%~L=2R by the version of
Bott’s theorem recalled above one finds that

Hom (3*1OR,5>10R) =C  Ext' (Z*MOR, 8> OR) = V1,10 @ Va0 #0

the other Ext groups being 0.

Next we want to show by some examples that, despite the fact that theorem
3.3.3 does not give a complete exceptional sequence on IGrass(k, V), it is some-
times -for small values of k£ and n- not so hard to find one with its help.

ExXAMPLE 3.3.6. Choose k = n = 2, i.e. look at IGrass(2,V), dimV = 4.
Remarking that O(1) on IGrass(2, V) in the Pliicker embedding equals A\"® RY
and applying theorem 3.3.3 one finds that the following five sheaves generate
DP(Coh(IGrass(2,V))):

2
0, R, \ R=0(-1), 3*'R =R(-1), O(-2);
The real extra credit that one receives from working on the Lagrangian Grass-

mannian [Grass(2,V) is that R = R+ and the tautological factor bundle can
be identified with RY ~ R(1), i.e. one has an exact sequence

0 R Ve —— R(1) —— 0.

Twisting by O(—1) in this sequence shows that of the above five sheaves, R(—1)
is in the full triangulated subcategory generated by the remaining four; more-
over, it is a straightforward computation with Bott’s theorem that

(O(—2), 0(71)7 R? O)

is a strong exceptional sequence in D®(Coh(IGrass(2,V))); but this is also com-
plete, i.e., it generates this derived category by the preceding considerations. In
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fact, this does not come as a surprise. IGrass(2, V) is isomorphic to a quadric
hypersurface in P*, more precisely it is a hyperplane section of the Pliicker
quadric Grass(2,V) C P5. By [Ott], thm. 1.4 and ex. 1.5, the spinor bun-
dles on the Pliicker quadric are the dual of the tautological subbundle and the
tautological factor bundle on Grass(2,V’) and these both restrict to the spinor
bundle RY on IGrass(2, V) C P* (let us renew here the warning from subsection
2.2 that the spinor bundles in [Ott] are the duals of the bundles that we choose
to call spinor bundles in this work). We thus recover the result of [Ka3], §4, in a
special case. Note that the identification of IGrass(2, V') with a quadric hyper-
surface in P* also follows more conceptually from the isomorphism of marked
Dynkin diagrams

(651 (%) (0%} (0%))

O——0

Cs By

ﬂ

corresponding to the isomorphism Sp,C/P(a2) ~ SpinsC/P(aj) (cf. [Stei],
prop. p. 16 and [FuHal, §23.3). Recalling the one-to-one correspondence
between conjugacy classes of parabolic subgroups of a simple complex Lie group
G and subsets of the set of simple roots, the notations P(az) resp. P(a}) are
self-explanatory.

ExaMPLE 3.3.7. Along the same lines which are here exposed in general, A.
V. Samokhin treated in [Sa] the particular case of IGrass(3,V), dimV = 6,
and using the identification of the tautological factor bundle with RY on this
Lagrangian Grassmannian and the exact sequence

0 R Veo RY 0.

together with its symmetric and exterior powers found the following strong
complete exceptional sequence for D*(Coh(IGrass(3,V))):

(R(73)7 0(73)7 R(72)7 0(72% R(il)a 0(71)7 Ra O)
and we refer to [Sa] for details of the computation.

In general I conjecture that on any Lagrangian Grassmannian IGrass(n,V),
dimV = 2n, every “relation” between the bundles in theorem 3.3.3 in the
derived category D?(CohIGrass(n,V)) (that is to say that one of these bundles
is in the full triangulated subcategory generated by the remaining ones) should
follow using the Schur complexes (cf. [Wey], section 2.4) derived from the exact
sequence 0 > R — V ® O — RY — 0 (and the Littlewood-Richardson rule).
Let us conclude this subsection by giving an example which, though we do not
find a complete exceptional sequence in the end, may help to convey the sort
of combinatorial difficulties that one encounters in general.
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EXAMPLE 3.3.8. For a case of a non-Lagrangian isotropic Grassmannian, look
at IGrass(2,V), dimV = 6. Theorem 3.3.3 says that D°(CohIGrass(2,V)) is
generated by the following 14 bundles:

(%) Sym*R(-b), 0<a<3, 0<b<4-—a.

By corollary 2.3.7, the number of terms in a complete exceptional sequence must
be 12 in this case (in general for IGrass(k, V') = Sp,,, C/P(ay), dim V' = 2n, one
has that WP(@%)  the set of minimal representatives of the quotient W/Wp(an)
can be identified with k-tuples of integers (as,...,ax) such that

1<a1 <ag<...<ap<2nand
for1<i<2n,ifie{ay,...,ar} then2n+1—1i¢ {as,...,ar}

(see [BiLa], §3.3) and these are
n(2n—2)...(2n —2(k —1)) _ ok <n)

1.2k k

in number). Without computation, we know by a theorem of Ramanan (cf.
[Ot2], thm 12.3) that the bundles in (x) are all simple since they are associated
to irreducible representations of the subgroup P(ag) C Spg C.

Moreover the bundles

2R and M ER with0< ey <e; <3, 0<dy <dy <3

have no higher extension groups between each other: By the Littlewood-
Richardson rule, every irreducible summand ¥°°*R occurring in the decom-
position of Y92 R @ L2 RY satisfies —3 < ey < e; < 3 and hence for
p = (—ez, —e1,0) € Z% and ¢ = (3,2, 1) we find that p+ g is either a strictly de-
creasing sequence of positive integers or two entries in 4 o are equal up to sign
or one entry in p+pis 0. In each of these cases, Bott’s theorem as recalled before
remark 3.3.5 tells us that H'(IGrass(2,V),X¢:¢2R) = 0 Vi > 0. Combining
this remark with the trivial observation that for Sym®R(—b), Sym°R(—d) in
the set (*) with b,d > 1 we have

Ext’(Sym®R(—b), Sym°R(—d)) = Ext'(Sym*R(—b + 1), Sym°R(—d + 1)) Vi
we infer that for A, B bundles in the set (%) we can only have
Ext?(A,B) #0, some j >0
if A occurs in the set
S1:= {O(—4), R(=3), Sym*R(-2), Sym*R(~1)}

and B is in the set
Sy :={0, R, Sym*’R, Sym*R}
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or vice versa. By explicit calculation (which amounts to applying Bott’s theo-
rem another 32 more times) we find that the only non-vanishing higher exten-
sion groups between two bundles in (x) are the following:

Ext!(Sym®*R, R(-3)) = C, Ext'(Sym?R,Sym?R(—2))
Ext'(Sym®R, Sym?R(—-2)) =V, Ext'(R,Sym*R(-1))
Ext!(Sym?R, Sym®*R(—1)) = V, Ext'(Sym®R,Sym*R(—1)) = Va,0.

=C
=C

Thus in this case the set of bundles (%) does not contain a strong complete
exceptional sequence. It does not contain a complete exceptional sequence,
either, since

Hom(R(—3),Sym*R) # 0, Hom(Sym*R(—2),Sym?*R) # 0
Hom(Sym?R(—2), Sym®*R) # 0, Hom(Sym®*R(-1),R) # 0
Hom(Sym®*R(—1),Sym?R) # 0, Hom(Sym®*R(—1),Sym®*R) # 0.

On the other hand one has on IGrass(2, V') the following exact sequences of
vector bundles:

0-Rt=VRO-RY =0 (1)
0—-R—-R—=R/R 0. (2)

The second exterior power of the two term complex 0 — R — Rt gives an
acyclic complex resolving /\Z(RJ- /R) which is isomorphic to Oigrass(2,v) Via
the mapping induced by the symplectic form (-,-). Thus we get the exact
sequence

2
O—>Sym2R—>R®RL—>/\ Rt -0 =0 (3)

The second symmetric power of the two term complex 0 — R+ — V ® O yields
the exact sequence

2
0—>/\ R =RV - Sym?V ® O — Sym? RY — 0. (4)

Note also that RV ~ R(1) and Sym?RY ~ Sym?R(2). Since R ® R(—1) ~
Sym? R(—1) ® O(—2) sequence (1) gives

0—-REOR(-2) = VOR(-2) — Sym*R(-1) @ O(-2) -0  (5)

and
0—RH-2) - V®0O(-2) = R(~1) — 0. (6)

Moreover twisting by O(—2) in (3) and (4) yields
2
0 — Sym*R(-2) - R@R*(-2) » \ R (-2) - O(-2) -0 ()

0— /\2 RE(-2) = RT@V(-2) - Sym?’ V @ O(-2) — Sym?* R — 0.  (8)
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What (5), (6), (7), (8) tell us is that Sym? R(—2) is in the full triangulated sub-
category generated by O(—2), Sym?R(—1), R(-2), Sym®’R, R(—1). Thus
the derived category D?(CohIGrass(2,V)) is generated by the bundles in (x)
without Sym? R(—2), which makes a total of 13 bundles.

But even in this simple case I do not know how to pass on to a complete ex-
ceptional sequence because there is no method at this point to decide which
bundles in (%) should be thrown away and what extra bundles should be let in
to obtain a complete exceptional sequence.

3.4 CALCULATION FOR THE GRASSMANNIAN OF ISOTROPIC 3-PLANES IN A
7-DIMENSIONAL ORTHOGONAL VECTOR SPACE

In this section we want to show how the method of subsection 3.3 can be
adapted -using theorem 3.2.7 on quadric bundles- to produce sets of vector
bundles that generate the derived categories of coherent sheaves on orthogonal
Grassmannians (with the ultimate goal to obtain (strong) complete exceptional
sequences on them by appropriately modifying these sets of bundles). Since the
computations are more involved than in the symplectic case, we will restrict
ourselves to illustrating the method by means of a specific example:

Let V be a 7-dimensional complex vector space equipped with a non-degenerate
symmetric bilinear form (-,-). IFlag(ki,...,k:; V) denotes the flag variety of
isotropic flags of type (k1,..., k), 1 <k <--- <kt <3,in V and IGrass(k, V),
1 < k < 3, the Grassmannian of isotropic k-planes in V; again in this setting
we have the tautological flag of subbundles

Rk, C - CRi, CV @ Orprag(ka,... ke;V)

on IFlag(ky, ..., k:; V) and the tautological subbundle R on IGrass(k, V).
Now consider IGrass(3, V') which sits in the diagram (D)

P(&) D Q2 ~IFlag(1,2,3; V) ~ Flagigrass(s, vy (1, 2, 3; R)

P
P(&1) D Q1 ~ IFlag(1,2;V) ™ (D)
/-
PS5 5> Q ~ IFlag(1;V) IGrass(3,V)

The rank i tautological subbundle on IFlag(1,...,5; V) pulls back to the rank
i tautological subbundle on IFlag(1,...,5+1;V) under m;, 1 <4 < j <2, and
for ease of notation it will be denoted by R; with the respective base spaces
being tacitly understood in each case.

The choice of an isotropic line L; in V amounts to picking a point in the
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quadric hypersurface Q = {[v] € P(V) | (v,v) = 0} C PS. An isotropic plane Lo
containing L; is nothing but an isotropic line Ly/L; in the orthogonal vector
space Li/Ly. Thus IFlag(1,2;V) is a quadric bundle Q; over IFlag(1; V) in-
side the projective bundle P(&;) of the orthogonal vector bundle & = Ri /R,
on IFlag(1; V). Similarly, IFlag(1,2,3; V) is a quadric bundle Qy C P(&5) over
IFlag(1,2; V) where & = Ry /Ra, and at the same time IFlag(1,2,3;V) is
isomorphic to the relative variety of complete flags Flagi assr,v) (152, 3; R) in
the fibres of the tautological subbundle R on IGrass(3, V).

Moreover, Og(—1) ~ R1, Og,(—1) ~ Ra/R1, Og,(—1) ~ R3/R2. We want
to switch to a more representation-theoretic picture. For this, put G := Spin, C
and turning to the notation and set-up introduced at the beginning of subsec-
tion 2.2, rewrite diagram (D) as

G/P(Oél,ag,ag) = G/B

| =

G/P(a1,as) T (D)

| =

G/P(a1) G/P(as)

The orthogonal vector bundles R{/R; on Q = G/P(ay) resp. Ry /R2 on
IFlag(1,2; V) = G/P (a1, az) admit spinor bundles in the sense of assumption
(A) in subsection 3.2:

In fact, on G/P(a1) we will use the homogeneous vector bundle S(Ri/R1)
which is associated to the irreducible representation r; of P(a;) with highest
weight the fundamental weight ws, and on G/P(a1, az) we will use the homo-
geneous vector bundle S(R5 /R2) which is the pull-back under the projection
G/P(a1,a2) — G/P(a2) of the homogeneous vector bundle defined by the
irreducible representation o of P(asg) with highest weight ws.

Therefore we can apply theorem 3.2.7 (or rather its corollary 3.2.8) iteratively
to obtain the following assertion:

The bundles on IFlag(1,2,3; V)

@) AB&C
where A runs through the set
A= {2(Ri/R1) @ RY®, RYY, RY?, RY?, Ry, O}
and B runs through

B :={%(Ry/R2) ® (R2/R1)®?, (R2/R1)¥?, Ry/Ry, O}
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and C runs through
C = {Z(R3/Rs) ® (Rs/R2), O}

generate D*(CohIFlag(1,2,3;V)), and in fact form a complete exceptional se-
quence when appropriately ordered.

Here X(Ri/Ri), i = 1, 2, 3, denote the bundles on IFlag(1,2,3; V') which are
the pull-backs under the projections G/B — G/P(«;) of the vector bundles on
G/P(w;) which are the duals of the homogeneous vector bundles associated to
the irreducible representations r; of P(«a;) with highest weight the fundamental
weight ws.

We know that the full direct images under 7 of the bundles in (V) will generate
D®(Coh1Grass(3,V)) downstairs. When one wants to apply Bott’s theorem to
calculate direct images the trouble is that X(R{/R1) and ¥(R5 /R2), though
homogeneous vector bundles on IFlag(1,2,3; V) = Spin,C/B, are not defined
by irreducible representations, i.e. characters of, the Borel subgroup B. There-
fore, one has to find Jordan-Hoélder series for these, i.e. filtrations

OZVOCV1CVQC"'CVM:Z(RIL/RI)

and
0=WyCW, C---C Wy =%(R5/Ro)

by homogeneous vector subbundles V; resp. W; such that the quotients
Vig1/Vi, 1 =0,...,M — 1, resp. Wj11/W,, j=0,...,N —1, are line bundles
defined by characters of B.

Recall that in terms of an orthonormal basis €1,...,¢. of h* we can write
the fundamental weights for s09,11C as w; = € + ...¢;, 1 < @ < 7,
wr = (1/2)(e1 + -+ + &), and simple roots as a; = € — €41, 1 < i < 7,
o, = €, and that (cf. [FuHal, §20.1) the weights of the spin representation of
509,41 C are just given by

1
5(:|:elzlz~--:te,«)

(all possible 2" sign combinations).
Therefore, on the level of Lie algebras, the weights of dry, drs, and drs are
given by:

1 1
dry §(€1i€2i63), dry E(el—i—egie?,),

1
drs : 5(61 + €2 + €3).
(Indeed, if v, is a highest weight vector in the irreducible G-module of highest
weight ws, then the span of P(«;) - vy, ¢ = 1,...,3, is the irreducible P(«;)-
module of highest weights w3, and its weights are therefore those weights of the
ambient irreducible G-module wich can be written as w3 — Zj# cjaj, c; €LT).
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Therefore, the spinor bundle $(R3 /R3) on G/B is just the line bundle £(w3) =
£(1/2,1/2,1/2) associated to w3 (viewed as a character of B), ¥(R3 /R2) has
a Jordan-Holder filtration of length 2 with quotients

£(1/2,1/2,41/2), and B(R{/R1) has a Jordan-Hélder filtration of length 4
with quotients the line bundles £(1/2,+1/2,+1/2).

In conclusion we get that D®(Coh G/B) is generated by the line bundles

@)y AeoB el

where A’ runs through the set

;o 1 1 1 111 _
JE 1>®£< 5,0,0), £<1 L1y g £(=5,0,0), £(~4,0,0),

2 272 2°27 2
£(-3,0,0), £(—2,0,0), £(—1,0,0), £(0,0,0)}

and B’ runs through
B = {E( ) ® L(0,-3,0), L(

) ® L£(0,—3,0),

,0)}

1
2

DN | =

1
’27
£(0,-2,0), £(0,—1,0),

N =

11
22
L(0,

and C’ runs through

| =

o 11 -
¢ = {‘C(2a 2a 2) ®‘C(O707 1)7 ‘6(07070) :

Then we can calculate Rm. (A’ ® B’ @ C’') by applying the relative version of
Bott’s theorem as explained in subsection 3.3 to each of the 90 bundles A’ ®
B’ @ C’; here of course one takes into account that £(1/2,1/2,1/2) = 7*L,
where for simplicity we denote by L the line bundle on G/P(a3) defined by
the one-dimensional representation of P(ag3) with weight —w3 and one uses the
projection formula. After a lengthy calculation one thus arrives at the following

THEOREM 3.4.1. The derived category D?(CohIGrass(3,V)) is generated as
triangulated category by the following 22 vector bundles:

/\2 R(-1), O(=2), R(-=2) ® L, Sym’R(-1) ® L, O(-3) @ L,

/\2R @ L, SPR(—1) @ L, R(—1), O(=2) ® L, O(—1),
)®L, /\ R(-1)® L, ¥*'R® L, Sym*RY (-2) ® L, /\272 o,
22’172, Sym?*RY(-2), O(-1) ® L, Sym*R" (- /\ R®L, R® L.

One should remark that the expected number of vector bundles in a complete
exceptional sequence is 8 in this case since there are 8 Schubert varieties in
IGrass(3,V) (cf. [BiLa], §3).
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4  DEGENERATION TECHNIQUES

Whereas in the preceding section a strategy for proving existence of complete
exceptional sequences on rational homogeneous varieties was exposed which
was based on the method of fibering them into simpler ones of the same type,
here we propose to explain an idea for a possibly alternative approach to
tackle this problem. It relies on a theorem due to M. Brion that provides a
degeneration of the diagonal A C X x X, X rational homogeneous, into a
union (over the Schubert varieties in X) of the products of a Schubert variety
with its opposite Schubert variety.

We will exclusively consider the example of P and the main goal will be to
compare resolutions of the structure sheaves of the diagonal and its degener-
ation product in this case. This gives a way of proving Beilinson’s theorem
on P™ without using a resolution of Oa but only of the structure sheaf of the
degeneration.

4.1 A THEOREM OF BRION

The notation concerning rational homogeneous varieties introduced at the be-
ginning of subsection 2.2 is retained.
The following theorem was proven by M. Brion (cf. [Bri], thm. 2).

THEOREM 4.1.1. Regard the simple roots ay, ..., as characters of the max-
imal torus H and put

X := closure of {(hz, z, a1(h),...,an(h))|r € X =G/P, h € H}
inX x X xA"

with its projection X —— A". If H acts on X via its action on the ambient
X x X x A" given by

h-(x1, wa, t1,...,t;) := (hxy, 22, ar(h)t1, ..., an(h)t,)

and acts in A" with weights aq,...,a,, then m is equivariant, surjective, flat
with reduced fibres such that

Xo=m"((0,...,0) ~ |J XuxX",
weWP

and is a trivial fibration over H - (1,...,1), the complement of the union of all
coordinate hyperplanes, with fibre the diagonal A = Ax C X x X.

Now the idea to use this result for our purpose is as follows: In [Bei], Beilinson
proved his theorem using an explicit resolution of On,,,. However, on a general
rational homogeneous variety X a resolution of the structure sheaf of the diag-
onal is hard to come up with. The hope may be therefore that a resolution of
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X is easier to manufacture (by combinatorial methods) than one for Oa, and
that one could afterwards lift the resolution of Ox, to one of Oa by flatness.
If we denote by p; resp. po the projections of X x X to the first resp. second
factor, the preceding hope is closely connected to the problem of comparing
the functors Rpa.(pi(—) ®* Ox,) and Rpa.(pi(—) ®F Oa) ~ idpe(con x)- In
the next subsection we will present the computations to clarify these issues for
projective space.

4.2 ANALYSIS OF THE DEGENERATION OF THE BEILINSON FUNCTOR ON P

Look at two copies of P", one with homogeneous coordinates xg, ..., z,, the
other with homogeneous coordinates yo, ..., y,. In this case Xg = [J;_, P x
P77, and X, is defined by the ideal J = (z;y;)o<i<j<n and the diagonal by
the ideal I = (xlyj - xjyi)0§i<j§n~

Consider the case of P!. The first point that should be noticed is that
Rpa.(pi(—) ®L Ox,) is no longer isomorphic to the identity: By Orlov’s
representability theorem (cf. [Or2], thm. 3.2.1) the identity functor is rep-
resented uniquely by the structure sheaf of the diagonal on the product
(this is valid for any smooth projective variety and not only for P!). Here
one can also see this in an easier way as follows. For d >> 0 the sheaf
p1O(d) ® Ox, is pas-acyclic and p. commutes with base extension whence
dimg (p2«(p10(d) ® Ox,) ® Cp) = d+ 1 if P is the point {y3 = 0} and = 1
otherwise:

]P)l X Pl P1

Xo

¢{zo =0}

Pl

lp2

{yn =0}

IPl

Thus pa. (p;O(d) ® Ox,) = Rpa.(p;O(d) @* Ox,) is not locally free in this case.
We will give a complete description of the functor Rpa.(pi(—) @ Ox,) below
for P". If one compares the resolutions of Oy, and Oa on P:

(zoy1)9 OIPlXPI — O%O ? 0

0 —— O(-1,-1)

0 —— O(—1,-1) L=t o, Oa 0
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and on P?:
0—0(-2,-1) B 0(-1,-2) 25 0(-1,-1)% L%, Opa e — O, — 0

0— 0(-2,-1) & O(—1,-2) 2 0(=1,-1)%% £ Opaype — Ox — 0

where
To Yo g 0
A= 1 Y A= 1 Y
T2 Yo 0

B = ($2y1 — T1Y2, ToY2 — X2Yo, T1Yo — $oyl) B = (*3012/2, ZolY2, *»Toyl)

(these being Hilbert-Burch type resolutions; here Xg is no longer a local com-
plete intersection!) one may wonder if on P™ there exist resolutions of Ox, and
O displaying an analogous similarity. This is indeed the case, but will require

some work.
o ... e
Yo -+ Yn

Consider the matrix

as giving rise to a map between free bigraded modules F' and G over

Clzo, -+ Tn; Yo, - - -, Yn) of rank n+ 1 and 2 respectively. Put Kp, := /\th2 F®
Symh GY for h = 0,...,n — 1. Choose bases fo,..., fn, resp. &, n for F resp.
GV. Define maps dy, : K, — Kj_1, h=1,...,n—1 by

h+2

di (Fjs A== A fine @ €2 ) =) (=1 g iy Ao A fj A A fi
=1
h+2

RENE )+ Y (D) Ty fi A Afi A A f, @€ )
=1

where 0 < j; < -++ < jhyo < n, p1 + g2 = h and the homomorphism £~ (resp.
n~1) is defined by

O i >1
=1 epq 0t o 5” ui 1 25 =
¢ (51”2)'_{ 0 it =0

(resp. analogously for 71). Then

dn71 d1

0 K1 Ko I 0

is a resolution of I which is the Eagon-Northcott complex in our special case
(cf. [Nor], appendix C).

PROPOSITION 4.2.1. The ideal J has a resolution

dy,_y dy

Ko J 0

0 —— Kn
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where the differential d}, : K, — Kp_1 is defined by

h—p2+1
;L (fj1 ARERNAN fjh+2 & 5’“77“2) = Z (*1)l+llefj1 ARERNAN sz ARERRA fjh+2
=1
h+2
®£71(€H177”2) + Z (71)l+1yjzfj1 TARERRA fjl ARERRA fjh+2 & 7771(5’“77“2) .
l=p1+2

Intuitively the differentials dj, are gotten by degenerating the differentials dj,.
To prove proposition 4.2.1 we will use the fact that J is a monomial ideal.
There is a combinatorial method for sometimes writing down resolutions for
these by looking at simplicial or more general cell complexes from topology.
The method can be found in [B-S]. We will recall the results we need in the
following. Unfortunately the resolution of proposition 4.2.1 is not supported
on a simplicial complex, one needs a more general cell complex.

Let X be a finite regular cell complex. This is a non-empty topological space
X with a finite set T' of subsets of X (the cells of X) such that

(@) X=Ue,

ecl
(b) the e € T" are pairwise disjoint,
(c) D el,

(d) for each non-empty e € T' there is a homeomorphism between a closed
i-dimensional ball and the closure € which maps the interior of the ball
onto e (i.e. e is an open i-cell).

We will also call the e € T' faces. We will say that ¢/ € T is a face of e € T,
e # €', or that e contains €’ if ¢ C €. The maximal faces of e under containment
are called its facets. 0- and 1-dimensional faces will be called vertices and edges
respectively. The set of vertices is denoted . A subset IV C I' such that for
each e € I all the faces of e are in I determines a subcompler Xr» = J €
of X. Moreover we assume in addition

(e) If ¢ is a codimension 2 face of e there are exactly two facets ey, es of e
containing e’.

The prototypical example of a finite regular cell complex is the set of faces of
a convex polytope for which property (e) is fulfilled. In general (e) is added as
a kind of regularity assumption.
Choose an incidence function €(e,e’) on pairs of faces of e, ¢/. This means that
e takes values in {0,+1, —1}, e(e,€’) = 0 unless ¢’ is a facet of e, €(v, ) = 1 for
all vertices v € U and moreover

e(e,e1)e(er, e’) + e(e, e2)e(ez, ') =0

DOCUMENTA MATHEMATICA 11 (2006) 261-331



320 CHRISTIAN BOHNING

for e, e1, €9, € as in (e).
Let now M = (m,)yeqp be a monomial ideal (m, monomials) in the polynomial

ring k[T1,...,Tx], k some field. For multi-indices a, b € Z" we write a < b to
denote a; < b; for all i =1,...,N. T2 denotes T} - --- - TN

The oriented chain complex C(X, k) = D.cr
given by dimension of faces) with differential

ke (the homological grading is

de := Z e(e,e’)e

e'el’

computes the reduced cellular homology groups H' (X, k) of X.

Think of the vertices v € U as labelled by the corresponding monomials m,,.
Each non-empty face e € I" will be identified with its set of vertices and will
be labelled by the least common multiple m, of its vertex labels. The cellular
complex Fx s associated to (X, M) is the ZN-graded k[T1, ..., Ty]-module
®6€F,675@ E[Ty,...,Tn]e with differential

(where again the homological grading is given by the dimension of the faces).
For each multi-index b € Z" let X<}, be the subcomplex of X consisting of all
the faces e whose labels m, divide T%. We have

PROPOSITION 4.2.2. Fx ar is a free resolution of M if and only if X< is acyclic
over k for allb € ZN (i.e.H;( X<y, k) = 0 for all i).

We refer to [B-S], prop. 1.2, for a proof.

Next we will construct appropriate cell complexes Y, n =1, 2,..., that via
the procedure described above give resolutions of J = (xiyj)ogiqgn. We will
apply proposition 4.2.2 by showing that for all b € Z2"*+2 the subcomplexes
Y2, are contractible.

It is instructive to look at the pictures of Y, Y2, Y3, Y* with their labellings
first:
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T T
V1. . Toy1 V2. oY1 1Y2
ZoY2
ZoY1 ToY1 T3Y4
3. 4.
Y°: Y=: Toya
ToY3
ZoY2 ToY2 ToYs
T2Y4
213
T2Y3
T1Ya
T1Y2 Z1Ys3 T1Y2 T1Ys

The general procedure for constructing Y™ geometrically is as follows: In R*~!
take the standard (n — 1)-simplex P! on the vertex set {xoy1, Zoyz, ..., ToYn}-
Then take an (n — 2)-simplex on the vertex set {z1y2,...,21yn}, viewed as
embedded in the same R™~!, and join the vertices z1ya, . .., T1Yn, respectively,
to the vertices xoys,...,%oYn,, respectively, of P! by drawing an edge be-
tween zgy; and x1y; for ¢ = 2,...,n. This describes the process of attaching
a new (n — 1)-dimensional polytope P? to the facet of P! on the vertex set
{moya, ..., Toyn}-

Assume that we have constructed inductively the (n — 1)-dimensional polytope

P, 2 <i<n—1, with one facet on the vertex set {z,yv} 0<p<io1 . Then take
i+1<v<n

an (n—i—1)-simplex on the vertex set {z;yit1,. .., Z;iyn}, viewed as embedded
in the same R"~!, and for every a with 1 < a < n — i join the vertex z;¥; q
of this simplex to the vertices z,¥ita, 0 < p < i —1, of P* by an edge. This
corresponds to attaching a new (n — 1)-dimensional polytope P**! to the facet
of Pt on the vertex set {zuyv} ocpzios -

i+1<v<n
In the end we get (n — 1)-dimensional polytopes Py, ..., P, in R"~! where P,
and Pjy1, j=1,...,n — 1, are glued along a common facet. These will make
up our labelled cell complex Y.
The h-dimensional faces of Y™ will be called h-faces for short. We need a more
convenient description for them:

LEMMA 4.2.3. There are natural bijections between the following sets:
(i) {h-faces of Y™}
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(i) matrices

LigYip, 4o e Ti1 Yinyo
Lipgt1¥Yipyv2 7 LTig 1 Yingo
with vertex labels of Y™ as entries, where 0 < i1 < ig < ... < iy41 <

tpit2 < ... <ipp2 <nand 0 < py < h are integers. The (k, \)-entry of

the above matriz is thus x; Yi, .\ -

(1ii) standard basis vectors

fil /\"'/\fim-pl Afi,4,1+2 /\"'/\fih+2 ®f’“ﬂ“2, 0< H1 < h»
0< <ig <. <41 <fp42<...<ipi2 <M

Of /\h+2 F ® Symh G\/.

Proof. The bijection between the sets in (éi) and (#i¢) is obvious: To f;; A... A
Jings ®EHNH2 in A" F @ Sym" GV one associates the matrix

LigYip, 4o T Ti1 Yinyo

Lip 1Yy 12 7 Tig 11 Yingo

To set up a bijection between the sets under (i) and (ii) the idea is to identify
an h-face e of Y™ with its vertex labels and collect the vertex labels in a matrix
of the form given in (ii). We will prove by induction on j that the h-faces
e contained in the polytopes Pi,..., P; are exactly those whose vertex labels
may be collected in a matrix of the form written in (ii) satisfying the additional
property i,,+1 < j — 1. This will prove the lemma.

Py is an (n — 1)-simplex on the vertex set {zgy1,...,Zoy,} and its h-faces e
can be identified with the subsets of cardinality h + 1 of {xoy1,...,Zoyn}. We
can write such a subset in matrix form

(xoyiz ToYiz - moy’ih,+2)

with 0 <5 < i3 < ... <ipyo < n. This shows that the preceding claim is true
for j = 1.

For the induction step assume that the h-faces of Y™ contained in P, ..., P;
are exactly those whose vertex labels may be collected in a matrix as in (ii)
with 4,, 11 < j — 1. Look at the h-faces e contained in Pi,...,Pj41. If e is
contained in Pi,. .., P; (which is equivalent to saying that none of the vertex
labels of e involves the indeterminate x;) then there is nothing to show. Now
there are two types of h-faces contained in Py, ..., Pj41 but not in Py,..., P;:
The first type corresponds to h-faces e entirely contained in the simplex on the
vertex set {z;y;+1,...,%;Yn}. These correspond to matrices
(Ti%is =" Tj¥insa) »
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0 <y <ig < ... < ipy2 < n, of the form given in (ii) which involve the
indeterminate x; and have only one row.
The second type of h-faces e is obtained as follows: We take an (h — 1)-face

€’ contained in the facet on the vertex set {z,yp} o<u<;—1 which P; and Pjq;
J+1<b<n
have in common; by induction €’ corresponds to a matrix

LigYip, 4o e Ti1Yinir

Lip1Yipir2 7 TigaYing
with 0 < i1 <9 < ... <iﬂ1+1 Sj—land]—|—1 Silil+2 < ... <ipy1 <,
0 < p1 < h—1. Then by construction of Pj;; there is a unique h-face e in
Pi,...,Pj41, but not in Py,..., P;, which contains the (h — 1)-face €’: It is
the h-face whose vertex labels are the entries of the preceding matrix together

with {Z;Yi, (s> ¥, ys5--+> Ti¥i,,, }- Thus e corresponds to the matrix
TivYip, 42 e LirYini1
LipgsrYipgve 0 TiggpaYinga
LiYiy vo U LiYinir
This proves the lemma. ]

Now we want to define an incidence function e(e, e’) on pairs of faces e, e’ of
Y™. Of course if €' is not a facet of e , we put e(e,e’) = 0 and likewise put
€(v,0) := 1 for all vertices v of Y. Let now e be an h-face. Using lemma 4.2.3
it corresponds to a matrix

LigYip, 42 e TiyYipyo
M(e) =
Tipgt1¥ipyv2 7 LTigg 1 ¥ings
A facet ¢’ of e corresponds to a submatrix M (e’) of M(e) obtained from M (e)
by erasing either a row or a column. We define e(e,e’) := (—1)! if M(¢') is

obtained from M (e) by erasing the Ith row; we define e(e,e’) := (—1)*1 17 if
M (€') is obtained from M (e) by erasing the jth column.

One must check that then e(e, e1)e(er, e”) +€(e, e2)e(ea, e”) = 0 for a codimen-
sion 2 face €’ of e and e1, ey the two facets of e containing €. This is now a
straightforward computation. There are 3 cases: The matrix M (e”) is obtained
from M (e) by (i) deleting two rows, (ii) deleting two columns, (iii) erasing one
row and one column:

(i) Let l; < lp and assume that M(e;) is M(e) with l1th row erased and
M(ez) is M(e) with lath row erased. Then

ele;er) = (-1)", eleea) = (1), eler,e”) = (-1)=
e(eg, ) = (—=1)h.
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(ii) This is the same computation as for (i) with the roles of rows and columns
interchanged.

(iii) Assume that M(eq) is M(e) with ith row erased and M (es) is M (e) with
jth column erased. Then
e(e,e1) = (_1)1’ €(e,e2) = (_1)u1+j7 6(6176//) = (_l)m_H—j

e(eg,e”’) = (=1)L.

Thus € is an incidence function on Y. Now one has to compute the cellular
complex Fyn j: Indeed by lemma 4.2.3 we know that its term in homological

degree h identifies with /\h+2 F ® Sym" GV. If e is an h-face recall that the
differential 0 of Fyn ; is given by

de = Z e(e,e’) Me

m./
e’ a facet of e, e’#() ¢

and if e corresponds to fi, A... A f;, , @ EFInH2 € /\th2 F ® Sym" GV we find

h—p2+1

9 (fj1 A A fjh+2 ® 51“77#2) = Z (_1)l+1szfj1 ARERRA sz ARERRA fjh+2
=1
h+2

®£_1(§M177#2) + Z (_1)l+1yjzfj1 A A sz ARERNA fjh+2 ® 77_1(5#177#2) :
l=p1+2

Thus the complex Fyn ; is nothing but the complex in proposition 4.2.1. Thus
to prove proposition 4.2.1 it is sufficient in view of proposition 4.2.2 to prove
the following

LEMMA 4.2.4. For all b € Z*"*2 the subcomplexes Yz, of Y™ are contractible.

Proof. Notice that it suffices to prove the following: If
Tiy o T Yjy - Yjy 0<i1<...t6:.<n, 0< 1 <---<5<n

is a monomial that is the least common multiple of some subset of the vertex
labels of Y™ then the subcomplex Y™ of Y™ that consists of all the faces e
whose label divides x;, ...x;,9;, ...y; is contractible. This can be done as
follows:

Put x(iq) == min{t : j; > iq} for d = 1,..., k. Note that we have r(i;) = 1
and k(i1) < k(ig) < --- < k(ig). Choose a retraction of the face e of Y™
corresponding to the matrix

Tirljeiyy -+ Ta¥sn

LirYjuiy -+ TieYi
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onto its facet ¢ corresponding to

LirYiniip) s Liy Y5,

"I’.ik—lyjn(ik) e T Yg

1

Then choose a retraction of the face e* corresponding to

TirYjuciy,_1) s Li Y5

TiemaYinci_ypy o Tie-1Yn
. ’ .
onto its facet e’ corresponding to

xilyjn(ik,l) e Tiy Yj

Tig_oYjuci_y -+ Tin—2Y5

Notice that € is contained in el. Continuing this pattern, one can finally

retract the face corresponding to

( YirlYjieiyy Tir¥ieap+r -+ Ta¥hn ) ,

i.e. a simplex, onto one of its vertices. Composing these retractions, one gets
a retraction of Y™ onto a point. O

In conclusion what we get from proposition 4.2.1 is that on P x P™ the sheaf
Ox, has a resolution

d
() 0 —— @iy 10(=i=1,—j—1) —— ...
0,>0
/ o(rts)
d h+42 ’
— (EB,»,ﬂ-hO(z‘ 1,—j— 1)> o,
i,5>0
01,120 Opnpn Ox, 0

where the differentials can be identified with the differentials in the complex of
proposition 4.2.1, and Oa has a resolution

(**) 0 —— @i#»j:nfl O(_'L - 1a _j - 1) h)

4,j20
o(i 1)
i’ (®i+jh O(*Z* 1,7] - 1)> L e
4,720
=2 0(-1,-1)°0) —— Opnpn Oa 0
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which is an Eagon-Northcott complex.

The next theorem gives a complete description of the functor Rpa.(p}(—) @F
Ox,) : D*(CohP") — D’(CohPm™) (recall that in D’(CohP™) one has the
strong complete exceptional sequence (O, O(1),..., O(n)) ).

THEOREM 4.2.5. Let {pt} = Lo C Ly C --- C L, = P" be a full flag of
projective linear subspaces of P (the Schubert varieties in P") and let LY =
P™ > ... D L™ = {pt} form a complete flag in general position with respect to
the L; ("L7 is the Schubert variety opposite to L;”).

For d > 0 one has in D*(CohP")

Rpo. (p7 (O(d)) ®" Ox,) = P Or, © H(L/, 0(d))" /H (L', 0(d))” .
j=0

In terms of the coordinates g, ..., Tn, Yo,---,Yn introduced above:

Rpo. (9}(0(d)) & Ox,) = 0 & (O/ (1)) ** & (O/ (g, yn 1) %

d+n71)

@ (O/(yn, - - ,ynii))@(jﬁ) ©--®(0)(yn,- - 7yl))®( o

Moreover for the map O(e) % O(e+1) (e >0, 0 < k < n) one can describe
the induced map Rpa.(pi(-zr) @ Ox,) as follows:

For each d > 0 and each i = —1,...,n — 1 choose a bijection between
the set of monomials Mid in the variables xp_1_;, Tp—i,-.., Ty of the form
xgl_i_lxzz_i...z%i“ with . > 0 and Y o = d, and the set of copies of

O/ (Yns - - Yn—i) occuring in the above expression for Rpa.(pi(O(d)) @1 Ox,).
Then the copy of O/ (Yn,--.,Yn—i) corresponding to a monomial m € M is
mapped under Rpa. (p}(-xx) @L Ox,) identically to the copy of O/ (Yn, - -+, Yn—i)
corresponding to the monomial xpm iff xp occurs in m. If x does not occur in
m then the copy of O/ (Yn, ..., Yn—i) corresponding to the monomial m € MF is
mapped to the copy of O/(yn,.-.,yk+1) corresponding to xixm via the natural
surjection

O/(yn» ceey ynfi) - O/(yna cee 7yk+1)o

Proof. For d > 0 one tensors the resolution (x) of Ox, by p;O(d) and notes
that then all the bundles occuring in the terms of (x)®p;O(d) are pa.-acyclic
whence Rpa.(p;(O(d)) @ Ox,) is (as a complex concentrated in degree 0) the
cokernel of the map

o : (HOP",0(d 1)) ® 0(-1)°*) — 5@ 0(d) © O

which on the various summands H°(P", O(d — 1)) ® O(—1) of the domain is
given by the maps

HY(P",0(d - 1)) ® O(—1) — H(P",0(d)) ® O

meo—rmEy;o
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for 0 < i< j<n Fori=—1,....,n—11let M? be as above the set of
monomials in Zy,—1—i, Tn—i, . . . , Tp, of the form 20, 1 2%% ... 20 withay > 0

and ) o = d. Then we have the identification

HO(P",O(d))@wz@ P o];

i=—1 \meM¢

For given m € M write cont(m) for the subset of the variables g, ..., , that
occur in m. Then the map ® above is the direct sum of maps

b P o-1)—-0 vi=-1,...n—1Vme M

x; Econt(m) n>j5>1

which on the summand O(—1) on the left side of the arrow corresponding to
z;, € cont(m) and jo > i are multiplication by y;,. Since M has cardinality

d+i\ (d+i+1 B d+1i
d—1) d d
one finds that the cokernel of ® is indeed
d+1i

Oo (O/(yn))ﬂad @ ®(O/(Yn,--- ’yn_i))@(d—l)@

d+n71)

@ (Of (Y- )

as claimed.

The second statement of the theorem is now clear because Rpa. (p; (-21)®@L Ox,)
is induced by the map H°(P",O(e)) @ O — H°(P",O(e + 1)) ® O which is
multiplication by xg. O

Remark 4.2.6. It is possible to prove Beilinson’s theorem on P™ using only
knowledge of the resolution (x) of Ox,: Indeed by theorem 4.1.1 one knows a
priori that one can lift the resolution () of Oz, to a resolution of Oa of the
form (xx) by flatness (cf. e.g. [Ar], part I, rem. 3.1). Since the terms in the
resolution (x) are direct sums of bundles O(—k, —1), 0 < k, ! < n, we find by the
standard argument from [Bei](i.e., the decomposition id ~ Rpa.(p;(—) @7 On))
that D®(CohP™) is generated by (O(—n),...,O).

Finally it would be interesting to know if one could find a resolution of Ox, on
X x X for any rational homogeneous X = G/P along the same lines as in this
subsection, i.e. by first finding a “monomial description” of X inside X x X
(e.g. using standard monomial theory, cf. [BiLa]) and then using the method
of cellular resolutions from [B-S]. Thereafter it would be even more important
to see if one could obtain valuable information about D?(Coh X) by lifting the
resolution of Ox, to one of Oa.
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