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Abstract. Let G be a topological group such that its homol-
ogy H(G) with coefficients in a principal ideal domain R is an ex-
terior algebra, generated in odd degrees. We show that the singu-
lar cochain functor carries the duality between G-spaces and spaces
over BG to the Koszul duality between modules up to homotopy
over H(G) and H∗(BG). This gives in particular a Cartan-type
model for the equivariant cohomology of a G-space with coeffi-
cients in R. As another corollary, we obtain a multiplicative quasi-
isomorphism C∗(BG) → H∗(BG). A key step in the proof is to show
that a differential Hopf algebra is formal in the category of A∞ al-
gebras provided that it is free over R and its homology an exterior
algebra.
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ondary 16E45, 55N10

1. Introduction

Let G be a topological group. A space over the classifying space BG of G is a
map Y → BG. There are canonical ways to pass from left G-spaces to spaces
over BG and back: The Borel construction tX = EG ×G X is a functor

t : G-Space → Space-BG,

and pulling back the universal right G-bundle EG → BG along Y → BG and
passing to a left action gives a functor in the other direction,

h : Space-BG → G-Space.

These functors are essentially inverse to each other in the sense that
htX and thY are homotopy-equivalent in the category of spaces to X and Y ,
respectively, cf. [3].
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Goresky–Kottwitz–MacPherson [8] have related this to an algebraic phenom-
enon called Koszul duality (see also Alekseev–Meinrenken [1] and Allday–
Puppe [2]). Let Λ be an exterior algebra over some ring R with genera-
tors x1, . . . , xr of odd degrees, and S

∗ the symmetric R-algebra with gen-
erators ξ1, . . . , ξr dual to the xi and with degrees shifted by 1. We will denote
the categories of bounded below differential graded modules over Λ and S

∗ by
Λ-Mod and S

∗-Mod, respectively. The Koszul functors

t : Λ-Mod → S
∗-Mod and h : S

∗-Mod → Λ-Mod

are defined by

tN = S
∗ ⊗ N, d(σ ⊗ n) = σ ⊗ dn +

r
∑

i=1

ξiσ ⊗ xin(1.1)

and

hM = Λ
∗ ⊗ M, d(α ⊗ m) = (−1)|α|α ⊗ dm −

r
∑

i=1

xi · α ⊗ ξim.(1.2)

Here Λ acts on Λ
∗ by contraction. Koszul duality refers to the fact that htN

and thM are homotopy-equivalent in the category of R-modules to N and M ,
respectively.
Now let Λ = H(G) be the homology of the compact connected Lie group G
(with the Pontryagin product induced from the group multiplication) and
S
∗ = H∗(BG) the cohomology of its classifying space BG. We take real

coefficients, so that Λ and S
∗ are of the form described above. Goresky–

Kottwitz–MacPherson and Alekseev-Meinrenken have shown that for certain
G-spaces X, for instance for G-manifolds, tΩ∗(X)G computes the equivariant
cohomology of X as S

∗-module, and hΩ∗(tX) the ordinary cohomology of X
as Λ-module. Here Ω∗(X)G denotes the G-invariant differential forms on X,
and Ω∗(tX) the (suitably defined) differential forms on the Borel construction
of X.
For the case of torus actions, the author has shown in [5] how to generalise this
to arbitrary spaces and, more importantly, to an arbitrary coefficient ring R
instead of R. Differential forms are thereby replaced by singular cochains.
The main problem one has to face is that the action of S

∗ on H∗(Y ), Y a
space over BG, does not lift to an action on C∗(Y ) because the cup product of
cochains is not commutative – unlike that of differential forms. The solution
comes in form of“modules up to homotopy”. Although modules up to homotopy
– or weak modules, as we will call them – have a long history in Differential
Homological Algebra (cf. for instance [17] or [18]), they are not familiar to many
mathematicians in other areas. They will be defined precisely in Section 2; in
the following paragraphs we just explain their main features and why they are
useful for us.
A weak S

∗-module is a bounded below differential graded module over a differ-
ential graded R-algebra A together with elements aπ ∈ A, ∅ 6= π ⊂ {1, . . . , r},
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such that

(1.3) d(α ⊗ m) = (−1)|α|α ⊗ dm +
∑

π 6=∅

(−1)|xπ|xπ · α ⊗ aπm

is a differential on Λ
∗ ⊗ M . Here (xπ) denotes the canonical R-basis of Λ

consisting of the monomials in the xi. If A = S
∗, one can simply set ai = ξi

and all higher elements equal to zero. This shows that any S
∗-module is also

a weak S
∗-module. In general, equation (1.3) puts certain conditions on the

elements aπ. For instance, the element a12 must satisfy the relation

(1.4) (da12)m = (a1a2 − a2a1)m for all m ∈ M.

In other words, it compensates for the lack of commutativity between a1 and a2.
Gugenheim–May [10] have shown how to construct suitable elements aπ ∈ A =
C∗(BG) starting from representatives ai of the ξi ∈ S

∗. As a consequence, the
cochains on any space Y over BG admit the structure of a weak S

∗-module.
One then defines the Koszul dual of the weak S

∗-module C∗(Y ) to be the Λ-
module Λ

∗⊗C∗(Y ) with differential (1.3), and in [5] it was shown that for tori
this computes the cohomology of hY as Λ-module. (That this complex gives
the right cohomology as R-module appears already in Gugenheim–May [10].)
A fancier way to define a weak S

∗-module is to say that it is an A-module as
above together with a so-called twisting cochain u : Λ

∗ → A. The elements aπ

then are the images under u of the R-basis of Λ
∗ dual to the basis (xπ). It

follows from equation (1.4) that the cohomology of a weak S
∗-module admits

itself a (strict) S
∗-action. Similarly, a weak Λ-module is a module N over

some algebra A together with a twisting cochain S → A, where S denotes the
coalgebra dual to S

∗. Its cohomology is canonically a Λ-module.
For torus actions there is no need to consider weak Λ-modules because the
Λ-action on cohomology can be lifted to an honest action on cochains. In
fact, since C(G) is graded commutative in this case, it suffices to choose rep-
resentatives ci ∈ C(G) of the generators xi ∈ Λ in order to construct a quasi-
isomorphism of algebras Λ → C(G). In [8, Sec. 12] it is claimed that a lifting
is possible for any compact connected Lie group, but the proof given there is
wrong. The mistake is that it is not possible in general to find conjugation-
invariant representatives of the generators xi because all singular simplices ap-
pearing in a conjugation-invariant chain ci necessarily map to the centre of G.
The example G = SU(3) shows that passing to subanalytic chains (which are
also used in [8]) is of no help: apart from the finite centre, all conjugation classes
of SU(3) have dimension 4 or 6. Hence, there can be no conjugation-invariant
subanalytic set supporting a representative of the 3-dimensional generator.
In the present paper, we extend the approach of [5] to non-commutative topo-
logical groups G by constructing a weak Λ-structure on the cochain complex of
a G-space X. We then show that the normalised singular cochain functor C∗

transforms the topological equivalence between G-spaces and spaces over BG,
up to quasi-isomorphism, to the Koszul duality between modules up to homo-
topy over the homology Λ = H(G) and the cohomology S

∗ = H∗(BG). The
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only assumptions are that coefficients are in a principal ideal domain R and
that H(G) is an exterior algebra on finitely many generators of odd degrees or,
equivalently, that H∗(BG) a symmetric algebra on finitely many generators of
even degrees.
A priori, the isomorphism H(G) ∼=

∧

(x1, . . . , xr) must be one of Hopf algebras1

with primitive generators xi. But the Samelson–Leray theorem asserts that in
our situation any isomorphism of algebras (or coalgebras) can be replaced by
one which is Hopf. In characteristic 0 it suffices by Hopf’s theorem to check that
G is connected and H(G) free of finite rank over R. In particular, the condition
is satisfied for U(n), SU(n) and Sp(n) and arbitrary R, and for an arbitrary
compact connected Lie group if the order of the Weyl group is invertible in R.
Under the assumptions on H(G) and H∗(BG) mentioned above, we prove the
following:

Proposition 1.1. There are twisting cochains v : S → C(G) and u : Λ
∗ →

C∗(BG) such that the Λ-action on the homology of a C(G)-module, viewed as
weak Λ-module, is the canonical one over H(G) = Λ, and analogously for u.

The cochains on a G-space are canonically a C(G)-module and the cochains on a
space over BG a C∗(BG)-module. Hence we may consider C∗ as a functor from
G-spaces to weak Λ-modules, and from spaces over BG to weak S

∗-modules.
We say that two functors to a category of complexes are quasi-isomorphic if they
are related by a zig-zag of natural transformations which become isomorphisms
after passing to homology.

Theorem 1.2. The functors C∗◦t and t◦C∗ from G-spaces to weak S
∗-modules

are quasi-isomorphic, as are the functors C∗◦h and h◦C∗ from spaces over BG
to weak Λ-modules.

Hence, the equivariant cohomology H∗
G(X) of a G-space X is naturally isomor-

phic, as S
∗-module, to the homology of the “singular Cartan model”

(1.5a) tC∗(X) = S
∗ ⊗ C∗(X)

with differential

(1.5b) d(σ ⊗ γ) = σ ⊗ dγ +

r
∑

i=1

ξiσ ⊗ ci · γ +
∑

i≤j

ξiξjσ ⊗ cij · γ + · · · ,

where the ξi are generators of the symmetric algebra S
∗ and the ci ∈ C(G)

representatives of the generators xi ∈ Λ. They are, like the higher order
terms cij etc., encoded in the twisting cochain v. The sum, which runs over all
non-constant monomials of S

∗, is well-defined for degree reasons.
Similarly, the cohomology of the pull back of EG along Y → BG is isomorphic
to the homology of the Λ-module hC∗(Y ) = Λ

∗ ⊗C∗(Y ), again with a twisted
differential. (See Section 3 for precise formulas for the differentials.) That the
complex hC∗(Y ) gives the right cohomology as R-module is already due to
Gugenheim–May [10]. The correctness of the Λ-action is new.

1Note that H(G) has a well-defined diagonal because it is free over R.
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Along the way, we obtain the following result, which was previously only known
for tori, and for other Eilenberg–MacLane spaces if R = Z2 (Gugenheim–
May [10, §4]):

Proposition 1.3. There exists a quasi-isomorphism of algebras C∗(BG) →
H∗(BG) between the cochains and the cohomology of the simplicial construction
of the classifying space of G.

Any such map has an A∞ map as homotopy inverse (cf. Lemma 4.1). So we
get as another corollary the well-known existence of an A∞ quasi-isomorphism
H∗(BG) ⇒ C∗(BG). The original proof (Stasheff–Halperin [22]) uses the
homotopy-commutativity of the cup product and the fact that H∗(BG) is free
commutative. Here it is based, like most of the paper, on the following result,
which is of independent interest and should be considered as dual to the theorem
of Stasheff and Halperin.

Theorem 1.4. Let A be a differential N-graded Hopf algebra, free over R and
such that its homology is an exterior algebra on finitely many generators of odd
degrees. Then there are A∞ quasi-isomorphisms A ⇒ H(A) and H(A) ⇒ A.

It is essentially in order to use Theorem 1.4 (and a similar argument in Sec-
tion 7) that we assume R to be a principal ideal domain. A look at the proofs
will show that once Proposition 1.1, Theorem 1.2 and Proposition 1.3 are es-
tablished for such an R, they follow by extension of scalars for any commutative
R-algebra R′ instead of R.
Johannes Huebschmann has informed the author that he has been aware of the
singular Cartan model and of Theorem 1.4 since the 1980’s, cf. [14]. Instead
of adapting arguments from his habilitation thesis [13, Sec. 4.8], we shall base
the proof of Theorem 1.4 on an observation due to Stasheff [21].

The paper is organised as follows: Notation and terminology is fixed in Sec-
tion 2. Section 3 contains a review of Koszul duality between modules up to
homotopy over symmetric and exterior algebras. Theorem 1.4 is proved in
Section 4. The proofs of the other results stated in the introduction appear
in Sections 5 to 7. In Section 8 we discuss equivariantly formal spaces and in
Section 9 the relation between the singular Cartan model and other models, in
particular the classical Cartan model. In an appendix we prove the versions of
the theorems of Samelson–Leray and Hopf mentioned above because they are
not readily available in the literature.

Acknowledgements. The author thanks Stéphane Guillermou, Johannes
Huebschmann, Tomasz Maszczyk and Andrzej Weber for stimulating dis-
cussions and comments.

2. Preliminaries

Throughout this paper, the letter R denotes a principal ideal domain. All com-
plexes are over R. Differentials always lower degree, hence cochain complexes
and cohomology are negatively graded. All (co)algebras and (co)modules are
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graded and have differentials (which might be trivial). Let A and B be com-
plexes. The dual f∗ ∈ Hom(B∗, A∗) of a map f ∈ Hom(A,B) is defined by

f∗(β)(a) = (−1)|f ||β| β(f(a)).

Algebras will be associative and coalgebras coassociative, and both have units
and counits (augmentations). Morphisms of (co)algebras preserve these struc-
tures. We denote the augmentation ideal of an algebra A by Ā. An N-graded
algebra A is called connected if Ā0 = 0, and an N-graded coalgebra C simply
connected if C0 = R and C1 = 0. Hopf algebras are algebras which are also
coalgebras with a multiplicative diagonal, cf. [18, Def. 4.39]. (Note that we do
not require the existence of an antipode, though there will always be one for
our examples.)
Let C be a coalgebra, A an algebra and t : C → A a twisting cochain. For
a right C-comodule M and a left A-module N , we define the twisted tensor
product M ⊗t N with differential

dt = d ⊗ 1 + 1 ⊗ d + (1 ⊗ µN )(1 ⊗ t ⊗ 1)(∆M ⊗ 1).

Here ∆M : M → M ⊗ C and µN : A ⊗ N → N denote the structure maps of
M and N , respectively. Readers unfamiliar with twisting cochains can take the
fact that d is a well-defined differential (say, on C ⊗t A) as the definition of a
twisting cochain, plus the normalisation conditions tιC = 0 and εAt = 0, where
ιC is the unit of C and εA the augmentation of A. Suppose that C and A are N-
graded. We will regularly use the fact that twisting cochains C → A correspond
bijectively to coalgebra maps C → BA and to algebra maps ΩC → A. Here
BA denotes the normalised bar construction of A and ΩC the normalised cobar
construction of C. In particular, the functors Ω and B are adjoint. (See
for instance [15, Sec. II] for more about twisting cochains and the (co)bar
construction.)
We agree that an exterior algebra is one on finitely many generators of odd
positive degrees. Let A be an N-graded algebra such that Λ = H(A) =
∧

(x1, . . . , xr) is an exterior algebra. Then H(BA) = H(BΛ) = S is a symmet-
ric coalgebra on finitely many cogenerators yi of even degrees |yi| = |xi| + 1,
cf. [18, Thm. 7.30]. (The converse is true as well.) We assume that the yi are
chosen such that they can be represented by the cycles [xi] ∈ BΛ and [ci] ∈ BA,
where the ci ∈ A are any representatives of the generators xi ∈ Λ. We denote
by xπ, π ⊂ {1, . . . , r}, the canonical R-basis of Λ generated by the xi, and the
dual basis of Λ

∗ by ξπ. The R-basis of S induced by the yi is written as yα,
α ∈ N

r. The dual S
∗ of S is a symmetric algebra on generators ξi dual to

the yi.
We work in the simplicial category. We denote by C(X) the normalised chain
complex of the simplicial set X. (If X comes from a topological space, then
C(X) is the complex of normalised singular chains.) The (negatively graded)
dual complex of normalised cochains is denoted by C∗(X). If G is a connected
(topological or simplicial) group, then the inclusion of the simplicial subgroup
consisting of the simplices with all vertices at 1 ∈ G is a quasi-isomorphism. We
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may therefore assume that G has only one vertex. Then C(G) is a connected
Hopf algebra and C(BG) a simply connected coalgebra. In both cases, the
diagonal is the Alexander–Whitney map, and the Pontryagin product of C(G)
is the composition of the shuffle map C(G) ⊗ C(G) → C(G × G) with the
map C(G × G) → C(G) induced by the multiplication of G. Analogously,
C(X) is a left C(G)-module if X is a left G-space. The left C(G)-action on
cochains is defined by

(2.1) (a · γ)(c) = (−1)|a||γ| γ(λ∗(a) · c)

where λ : G → G denotes the group inversion. If p : Y → BG is a space
over BG, then C∗(Y ) is a left C∗(BG)-module by β · γ = p∗(β) ∪ γ.

3. Koszul duality

Koszul duality is most elegantly expressed as a duality between Λ-modules and
comodules over the symmetric coalgebra S dual to S

∗, see [5, Sec. 2]. It hinges
on the fact that the Koszul complex S ⊗w Λ is acyclic, where w : S → Λ is
the canonical twisting cochain which sends each yi to xi and annihilates all
other yα. In this paper, though, we adopt a cohomological viewpoint. This
makes definitions look rather ad hoc, but it is better suited to our discussion
of equivariant cohomology in Section 8.
We denote the categories of bounded above weak modules over Λ and S

∗ by
Λ-Mod and S

∗-Mod, respectively. (Recall that we grade cochain complexes
negatively.) Note that any (strict) module over Λ or S

∗ is also a weak module
because of the canonical twisting cochain w and its dual w∗ : Λ

∗ → S
∗. The

homology of a weak Λ-module (N, v) is a Λ-module by setting xi·[n] = [v(yi)·n],
and S

∗ acts on the homology of a weak S
∗-module (M,u) by ξi ·[m] = [u(ξi)·m].

Before describing morphisms of weak modules, we say how the Koszul functors
act on objects.
The Koszul dual of (N, v) ∈ Λ-Mod is defined as the bounded above S

∗-module
tN = S

∗ ⊗ N with differential

(3.1) d(σ ⊗ n) = σ ⊗ dn +
∑

α>0

ξασ ⊗ v(yα) · n.

(This is well-defined because N is bounded above.)
The Koszul dual of (M,u) ∈ S

∗-Mod is the bounded above Λ-module hM =
Λ
∗ ⊗ M with differential

(3.2) d(α ⊗ m) = (−1)|α|α ⊗ dm +
∑

π 6=∅

(−1)|xπ|xπ · α ⊗ u(ξπ) · m

and Λ-action coming from that on Λ
∗, which is defined similarly to (2.1),

(a · α)(a′) = (−1)|a|(|α|+1)α(a ∧ a′).

A morphism f between two weak Λ-modules N and N ′ is a morphism of (strict)
S
∗-modules tN → tN ′. Its “base-component”

N = 1 ⊗ N →֒ S
∗ ⊗ N

f
−→ S

∗ ⊗ N ′ →→ 1 ⊗ N ′ = N ′
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is a chain map inducing a Λ-equivariant map in homology. If the latter is an
isomorphism, we say that f is a quasi-isomorphism. The definitions for weak
S
∗-modules are analogous. The Koszul dual of a morphism of weak modules is

what one expects.
The Koszul functors preserve quasi-isomorphisms and are quasi-inverse to each
other, cf. [5, Sec. 2.6]. Note that our (left) weak S

∗-modules correspond to left
weak S-comodules and not to right ones as used in [5]. This detail, which is
crucial for the present paper, does not affect Koszul duality.

In the rest of this section we generalise results of [8, Sec. 9] to weak modules.

Following [8], we call a weak S
∗-module M is called split and extended if it is

quasi-isomorphic to its homology and if the latter is of the form S
∗ ⊗ L for

some graded R-module L. If M it is quasi-isomorphic to its homology and if
the S

∗-action on H(M) is trivial, we say that M is split and trivial. Similar
definitions apply to weak Λ-modules. (Note that it does not make a difference
whether we require the homology of a split and free Λ-module to be isomorphic
to Λ ⊗ L or to Λ

∗ ⊗ L.)

Proposition 3.1. Under Koszul duality, split and trivial weak modules corre-
spond to split and extended ones.

Proof. That the Koszul functors carry split and trivial weak modules to split
and extended ones is almost a tautology. The other direction follows from
the fact that the Koszul functors are quasi-inverse to each other and preserve
quasi-isomorphisms because a split and extended weak module is by definition
quasi-isomorphic to the Koszul dual of a module with zero differential and
trivial action. ¤

Proposition 3.2. Let M be in S
∗-Mod. If H(M) is extended, then M is split

and extended.

Proof. We may assume that M has a strict S
∗-action because any weak S

∗-
module M is quasi-isomorphic to a strict one (for instance, to thM). By
assumption, H(M) ∼= S

∗⊗L for some graded R-module L. Since we work over
a principal ideal domain, there exists a free resolution

0 ←− L ←− P 0 ←− P 1 ←− 0

of L with P 0, P 1 bounded above. Tensoring it with S
∗ gives a free reso-

lution of the S
∗-module H(M) and therefore the (not uniquely determined)

S
∗-equivariant vertical maps in the following commutative diagram with exact

rows:

0 ¾ S
∗ ⊗ L ¾ S

∗ ⊗ P 0 ¾ S
∗ ⊗ P 1 ¾ 0

0 ¾ H(M)

∼=

?

¾ Z(M)
?

¾
d

M.
?
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This implies that the total complex S
∗ ⊗ P is quasi-isomorphic to both

H(M) and M . ¤

4. Proof of Theorem 1.4

In this section all algebras are N-graded and connected unless otherwise stated.
Recall that an A∞ map f : A ⇒ A′ between two algebras is a map of coal-
gebras BA → BA′, see [18, Sec. 8.1] or [17] for example. It is called strict
if it is induced from an algebra map A → A′. If f : A ⇒ A′ is A∞, then its
base component f1 : B1A → B1A

′ between the elements of external degree 1 is
a chain map, multiplicative up to homotopy. We denote the induced algebra
map in homology by H(f) : H(A) → H(A′). If it is an isomorphism, we call f
an A∞ quasi-isomorphism.
In order to prove Theorem 1.4, it is sufficient to construct an A∞ quasi-iso-
morphism A ⇒ H(A) =

∧

(x1, . . . , xr) = Λ, due to the following result:

Lemma 4.1. Let A be an algebra with A and H(A) free over R, and let
f : A ⇒ H(A) be an A∞ map inducing the identity in homology. Then f has
an A∞ quasi-inverse, i. e., there is an A∞ map g : H(A) ⇒ A also inducing
the identity in homology.

(At least over fields one can do better: there any A∞ quasi-isomorphism be-
tween two algebras – even A∞ algebras – is an A∞ homotopy equivalence,
cf. [20] or [17, Sec. 3.7].)

Proof. According to [19, Prop. 2.2], the claim is true if f is strict. (Here we
use that over a principal ideal domain any quasi-isomorphism A → H(A) of
free modules comes from a “trivialised extension” in the sense of [19, §2.1].)
To reduce the general case to this, we consider the cobar construction ΩBA
of BA. Coalgebra maps h : BA → BA′ correspond bijectively to algebra
maps h̃ : ΩBA → A′. For h, the identity of A, the map h̃ is a quasi-isomorphism
[15, Thm II.4.4] with quasi-inverse (in the category of complexes), the canonical

inclusion A →֒ ΩBA. The composition of this map with f̃ : ΩBA → H(A) is

essentially f1, which is a quasi-isomorphism by hypothesis. Hence f̃ is so, too.
Now compose any A∞ quasi-inverse of it with the projection ΩBA → A. ¤

Recall that for any complex C a cycle in Cq = Hom−q(C,R) is the same as
a chain map C → R[−q]. (Here R[−q] denotes the complex R, shifted to de-
gree q.) The crucial observation, made in a topological context by Stasheff [21,
Thm. 5.1], is the following:

Lemma 4.2. A∞ maps A ⇒
∧

(x), |x| = q > 0, correspond bijectively to
cocycles in (BA)q+1.

Proof. Note that the augmentation ideal of
∧

(x) is R[−q] (with vanishing prod-
uct). An A∞ map f : A ⇒

∧

(x) is given by components fp : Ā⊗p → R[−q] of
degree p − 1 such that for all [a1, . . . , ap] ∈ Bp(A),

fp(d[a1, . . . , ap]) = −fp−1(δ[a1, . . . , ap]),
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where d : Bp(A) → Bp(A) denotes the “internal” differential and δ : Bp(A) →
Bp−1(A) the “external” one, cf. [18, Thm. 8.18]. In other words, d(fp) =
−δ(fp−1), where δ and d now denote the dual differentials. But this is the
condition for a cycle in the double complex ((BA)∗, d, δ) dual to BA. ¤

By our assumptions, H∗(BA) = S
∗ is a (negatively graded) polynomial algebra.

Taking representatives of the generators ξi gives A∞ maps f (i) : A ⇒
∧

(xi).
By [19, Prop. 3.3 & 3.7], they assemble into an A∞ map

f (1) ⊗ · · · ⊗ f (r) : A⊗r ⇒
∧

(x1) ⊗ · · · ⊗
∧

(xr) = Λ

whose base component is the tensor product of the base components f
(i)
1 . Since

A is a Hopf algebra, the r-fold diagonal ∆(r) : A → A⊗r is a morphism of
algebras. A test on the generators xi reveals that the composition (f (1) ⊗
· · · ⊗ f (r))∆(r) : A ⇒ Λ induces an isomorphism in homology, hence is the
A∞ quasi-isomorphism we are looking for.

Remark 4.3. Since we have not really used the coassociativity of ∆, Theo-
rem 1.4 holds even for quasi-Hopf algebras in the sense of [15, §IV.5].

5. The twisting cochain v : S → C(G)

This is now easy: Compose the map S → BΛ determined by the canonical
twisting cochain w : S → Λ with the map BΛ → BC(G). This corresponds to
a twisting cochain S → C(G) mapping each cogenerator yi ∈ S to a represen-
tative of xi ∈ Λ. Since these elements are used to define the Λ-action in the
homology of a weak Λ-module, we get the usual action of Λ = H(G) there.
Note that by dualisation we obtain a quasi-isomorphism of alge-
bras (BC(G))∗ → S

∗. This is not exactly the same as the quasi-isomorphism of
algebras C∗(BG) → S

∗ from Proposition 1.3, which we are going to construct
next.

6. Proof of Theorem 1.2 (first part) and of Proposition 1.3

In this section we construct maps

ΨX : S ⊗v C(X) → C(EG ×
G

X) = C(tX),

natural in X ∈ G-Space. We will show that ψ := Ψpt : S → C(BG) is a quasi-
isomorphism of coalgebras and that ΨX , which maps from an S-comodule to
a C(BG)–comodule, is a ψ-equivariant quasi-isomorphism. Taking duals then
gives Proposition 1.3 and the first half of Theorem 1.2.
Recall that the differential on S ⊗v C(X) is

d(yα ⊗ c) = yα ⊗ dc +
∑

β<α

yβ ⊗ cα−β · c,

where we have abbreviated v(yα−β) to cα−β . The summation runs over all β
strictly smaller than α in the canonical partial ordering of N

r.
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To begin with, we define a map

f : S ⊗v C(G) → C(EG)

by recursively setting

f(1 ⊗ a) = e0 · a,

f(yα ⊗ a) =
(

Sf
(

d(yα ⊗ 1)
)

)

· a

for α > 0. Here e0 is the canonical base point of the simplicial construction of
the right G-space EG and S its canonical contracting homotopy, cf. [5, Sec. 3.7].

Lemma 6.1. This f is a quasi-morphism of right C(G)-modules.

Proof. The map is equivariant by construction. By induction, one has for α > 0

d f(yα⊗1) = dSf
(

d(yα⊗1)
)

= f
(

d(yα⊗1)
)

−S d f
(

d(yα⊗1)
)

= f
(

d(yα⊗1)
)

,

which shows that it is a chain map. That it induces an isomorphism in homology
follows from the acyclicity of S ⊗v C(G): Filter the complex according to the
number of factors ξi appearing in an element ξα⊗a, i. e., by α1+ · · ·+αr. Then
the E1 term of the corresponding spectral sequence is the Koszul complex S⊗w

Λ, hence acyclic. ¤

We will also need the following result:

Lemma 6.2. The image of f(yα ⊗ 1), α ∈ N
r, under the diagonal ∆ of the

coalgebra C(EG) is

∆f(yα ⊗ 1) ≡
∑

β+γ=α

f(yβ ⊗ 1) ⊗ f(yγ ⊗ 1),

up to terms of the form c · a ⊗ c′ with c, c′ ∈ C(EG) and a ∈ C(G), |a| > 0.

Proof. We proceed by induction, the case α = 0 being trivial. For α > 0 we
have

∆f(yα ⊗ 1) = ∆Sf
(

d (yα ⊗ 1)
)

=
∑

β<α

∆S
(

f(yβ ⊗ 1) · cα−β

)

We now use the identity ∆S(c) = Sc⊗ 1+(1⊗S)AW (c) [5, Prop. 3.8] and the
C(G)-equivariance of the Alexander–Whitney map to get

= f(yα ⊗ 1) ⊗ 1 + (1 ⊗ S)
∑

β<α

∆f(yβ ⊗ 1) · ∆cα−β ,

where the second diagonal is of course that of C(G). By induction and the fact
that ∆cα−β ≡ 1 ⊗ cα−β up to terms a ⊗ a′ with |a| > 0, we find

≡ f(yα ⊗ 1) ⊗ 1 + (1 ⊗ S)
∑

β+γ<α

f(yβ ⊗ 1) ⊗ f(yγ ⊗ 1) · cα−(β+γ)

= f(yα ⊗ 1) ⊗ 1 +
∑

β<α
γ<α−β

f(yβ ⊗ 1) ⊗ Sf(yγ ⊗ c(α−β)−γ),
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which simplifies by the definition of f to

= f(yα ⊗ 1) ⊗ 1 +
∑

β<α

f(yβ ⊗ 1) ⊗ f(yα−β ⊗ 1),

as was to be shown. ¤

For a G-space X we define the map

ΨX : tC(X) = S ⊗v C(X) → C(EG ×
G

X) = C(tX)

as the bottom row of the commutative diagram

S ⊗v C(G) ⊗ C(X)
f ⊗ 1

- C(EG) ⊗ C(X)
∇
- C(EG × X)

S ⊗v C(X) == S ⊗v C(G) ⊗
C(G)

C(X)
?

- C(EG) ⊗
C(G)

C(X)
?

- C(EG ×
G

X),
?

where ∇ denotes the shuffle map. ΨX is obviously natural in X.
It follows from the preceding lemma that ψ = Ψpt : S → C(BG) is a morphism
of coalgebras because terms of the form c · a with |a| > 0 are annihilated by
the projection C(EG) → C(BG). (We are working with normalised chains!)
Using naturality and the commutativity of the diagram

C(EG) ⊗ C(X)
∇

- C(EG × X)

C(BG) ⊗ C(EG) ⊗ C(X)

∆C(EG) ⊗ 1

?

1 ⊗∇
- C(BG) ⊗ C(EG × X),

∆C(EG×X)

?

one proves similarly that ΨX is a ψ-equivariant morphism of comodules. To
see that it induces an isomorphism in homology, consider the diagram

TorC(G)
(

S ⊗v C(G), C(X)
)

- H
(

S ⊗v C(G) ⊗
C(G)

C(X)
)

== H(S ⊗v C(X))

TorC(G)
(

C(EG), C(X)
)

Torid(f, id)

?

- H
(

C(EG) ⊗
C(G)

C(X)
)

?

- H(EG ×
G

X).

H(ΨX)

?

The composition along the bottom row is an isomorphism by Moore’s theo-
rem [18, Thm. 7.27],2 and the top row is so because S ⊗v C(G) is C(G)-flat.

Since Torid(f, id) is an isomorphism by Lemma 6.1, H(ΨX) is so, too.

2In fact, each single arrow is an isomorphism. This follows from the twisted Eilenberg–

Zilber theorem, see [9] for example.
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7. The twisting cochain u : Λ
∗ → C∗(BG)

and the end of the proof of Theorem 1.2

The map ψ : S → C(BG) is a quasi-isomorphism of simply connected coal-
gebras. Similar to the first step in the proof of Lemma 4.1, it comes from
a trivialised extension (or “Eilenberg–Zilber data” in the terminology of [11]).
By [11, Thm. 4.1∗], there is an algebra map F : ΩC(BG) → ΩS whose base
component F−1 : Ω−1C(BG) → Ω−1S is essentially the chosen homotopy in-
verse to ψ. Composing such an F with the canonical map g : ΩS → Λ, we get
a twisting cochain ũ : C(BG) → Λ. Write

(7.1) ũ =
∑

∅6=π⊂{1,...,r}

xπ ⊗ γπ ∈ Λ ⊗ C∗(BG) = Hom(C(BG),Λ).

Then γi is a representative of the generator ξi ∈ S
∗ because it is a cocycle

(cf. [5, eq. (2.12)]) and

ũ(ψ(yi)) = g(F ([ψ(yi)])) = g(yi) = xi.

The dual u = ũ∗ : Λ
∗ → C∗(BG) is again a cochain, which corresponds under

the isomorphism Hom(Λ∗, C∗(BG)) = C∗(BG) ⊗ Λ to the transposition of
factors of (7.1). Therefore, the induced action of S

∗ on a C∗(BG)-module,
considered as weak S

∗-module, is given by ξi · [m] = [γi · m], as desired.

For a given G-space X, we now look at the map Ψ∗
X as a quasi-isomorphism

of C∗(BG)-modules, where the module structure of tC∗(X) is induced by ψ∗.
By naturality, it is a morphism of weak S

∗-modules. This new weak S
∗-action

on tC∗(X) coincides with the (strict) old one because the composition

(ΩS)∗
F∗

−→ (ΩC(BG))∗
ψ∗

−→ (ΩS)∗

is the identity. This proves that Ψ∗
X is a quasi-isomorphism of weak S

∗-modules,
hence that the functors C∗ ◦ t and t ◦ C∗ are quasi-isomorphic.
The corresponding result for the functors h and h is a formal consequence of
this because they are quasi-inverse to t and t, respectively. This finishes the
proof of Theorem 1.2.

Remark 7.1. For G = (S1)r a torus (and a reasonable choice of v) one may
also take the twisting cochain Λ

∗ → C∗(BG) of Gugenheim–May [10, Ex-
ample 2.2], which is defined using iterated cup1 products of (any choice of)
representatives γi ∈ C∗(BG) of the ξi ∈ S

∗. (This follows for example from [5,
Cor. 4.4].) It would be interesting to know whether this remains true in general
if one chooses the γi carefully enough.

8. Equivariantly formal spaces

An important class of G-spaces are the equivariantly formal ones. Their equi-
variant cohomology is particularly simple, which is often exploited in algebraic
or symplectic geometry or combinatorics.
We say that X is R-equivariantly formal if the following conditions hold.
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Proposition 8.1. For a G-space X, the following are equivalent:

(1) H∗
G(X) is extended.

(2) C∗(XG) is split and extended.
(3) C∗(X) is split and trivial.
(4) The canonical map H∗

G(X) → H∗(X) admits a section of graded R-
modules.

(5) H∗
G(X) is isomorphic, as S

∗-module, to the E2 term S
∗⊗H∗(X) of the

Leray–Serre spectral sequence for XG (which therefore degenerates).

Note that if R is a field, condition (1) means that H∗
G(X) is free over S

∗, and
condition (4) that H∗

G(X) → H∗(X) is surjective. A space X with the latter
property is traditionally called “totally non-homologous to zero in XG with
respect to R”. We stress the fact that for some of the above conditions we
really need the assumption that R is a principal ideal domain.
In [6] (see also [7]) it is shown that a compact symplectic manifold X with
a Hamiltonian torus action is Z-equivariantly formal if XT = XTp for each
prime p that kills elements in H∗(XT ). Here Tp

∼= Z
r
p denotes the maximal

p-torus contained in the torus T . In particular, a compact Hamiltonian T -
manifold is Z-equivariantly formal if the isotropy group of each non-fixed point
is contained in a proper subtorus.

Proof. (5) ⇒ (1) is trivial. (1) ⇒ (2) follows from Proposition 3.2, and
(2) ⇒ (3) from Proposition 3.1 because C∗(X) and C∗(XG) are Koszul dual
by Theorem 1.2. (4) ⇒ (5) is the Leray–Hirsch theorem. (Note that it holds
here for arbitrary X because H∗(BG) = S

∗ is of finite type.)
(3) ⇒ (4): The (in the simplicial setting canonical) map C∗(XG) → C∗(X)
is the composition of Ψ∗

X with the canonical projection tC∗(X) → C∗(X).
Since C∗(X) is split, we can pass from C∗(X) to H∗(X) by a sequence of
commutative diagrams

tN - N

tN ′
?

- N ′
?

where the vertical arrow on the right is the base component of the quasi-
isomorphism of weak Λ-modules given on the left. But for the projection S

∗ ⊗
H∗(X) → H∗(X) the assertion is obvious because Λ acts trivially on H∗(X),
which means that there are no differentials any more. ¤

9. Relation to the Cartan model

In differential geometry and differential homological algebra many different
complexes (“models”) are known that compute the equivariant cohomology of
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a space. We content ourselves with indicating the relation between our con-
struction and the probably best-known one, the so-called Cartan model. We
use real or complex coefficients.
Let G be a compact connected Lie group and X a G-manifold. The Cartan
model of X is the complex

(9.1a)
(

Sym(g∗) ⊗ Ω(X)
)G

of G-invariants with differential

(9.1b) d(σ ⊗ ω) = σ ⊗ dω +

s
∑

j=1

ζjσ ⊗ zj · ω.

Here Sym(g∗) denotes the (evenly graded) polynomial functions on the Lie
algebra g of G, (zj) a basis of g with dual basis (ζj), and zj ·ω the contraction
of the form ω with the generating vector field associated with zj . The Cartan
model computes H∗

G(X) as algebra and as S
∗-module, cf. [12].

As mentioned in the introduction, Goresky, Kottwitz and MacPherson [8] have
found an even smaller complex giving the S

∗-module H∗
G(X), namely tΩ(X)G,

or explicitly

(9.2a) Sym(g∗)G ⊗ Ω(X)G,

where Ω(X)G denotes the complex of G-invariant differential forms on X. The
differential

(9.2b) d(σ ⊗ ω) = σ ⊗ dω +

r
∑

i=1

ξiσ ⊗ xi · ω

is similar to (9.1b), but the summation now runs over a system of generators
of S

∗ = H∗(BG) = Sym(g∗)G. (This is of course differential (3.1) for strict
Λ-modules.) Alekseev and Meinrenken [1] have proved that the complexes
(9.1) and (9.2) are quasi-isomorphic as S

∗-modules.
For the case of torus actions (where (9.1) and (9.2) coincide), Goresky–
Kottwitz–MacPherson [8, Sec. 12] have shown that one may replace Ω(X)T

by singular cochains together with the “sweep action”, which is defined by re-
stricting the action of C(T ) along a quasi-isomorphism of algebras Λ = H(T ) →
C(T ). The latter is easy to construct, as explained in the introduction. Now all
ingredients are defined for an arbitrary topological T -space X and an arbitrary
coefficient ring R, and the resulting complex does indeed compute H∗

T (X) as
algebra and as S

∗-module in this generality, see Félix–Halperin–Thomas [4,
Sec. 7.3].

Appendix: The theorems of Samelson–Leray and Hopf

All differentials are zero in this section. Recall that an element a of a Hopf
algebra A is called primitive if ∆a = a ⊗ 1 + 1 ⊗ a or, equivalently, if the
projection of ∆a to Ā ⊗ Ā is zero.
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Let A be a Hopf algebra over a field, isomorphic as algebra to an exterior alge-
bra. Then A is primitively generated (Samelson–Leray). If R is a field of char-
acteristic 0 and A a connected commutative Hopf algebra, finite-dimensional
over R, then multiplicatively it is an exterior algebra (Hopf), hence also prim-
itively generated. (A good reference for our purposes is [16, §§1, 2].)
We now show that the analogous statements hold over any principal ideal do-
main. Denote for a Hopf algebra A over R the extension of coefficients to the
quotient field of R by A(0).

Proposition 9.1. Let A be a Hopf algebra, free over R and such that A(0)

is a primitively generated exterior algebra. Then A is a primitively generated
exterior algebra.

Proof. Let A′ be the sub Hopf algebra generated by the free submodule of
primitive elements of A. Then A′

(0) = A(0) (Samelson–Leray), hence A′ is a

primitively generated exterior algebra and A/A′ is R-torsion. Take an a ∈ A\A′

of smallest degree. Then ka ∈ A′ for some 0 6= k ∈ R, and the image of ∆a
in Ā ⊗ Ā already lies in Ā′ ⊗ Ā′. Write ka = a1 + a2 with a1 ∈ A′ primitive
and a2 ∈ Ā′ · Ā′. Note that the image of ∆a2 in Ā′ ⊗ Ā′ is divisible by k.
This implies that a2 is divisible by k in A′. (Look at how the various products
of the generators of a primitively generated exterior algebra behave under the
diagonal.) Since a− a2/k is primitive, it lies in A′, hence a as well. Therefore,
A = A′. ¤

Added in proof. Suppose that G is a compact connected Lie group and let
T ⊂ G be a maximal torus. In their recent preprint“Torsion and abelianization
in equivariant cohomology”(math.AT/0607069), T. Holm and R. Sjamaar show
that in this situation H∗

G(X) consists of the Weyl group invariants of H∗
T (X).

Their assumption on the coefficient ring R is essentially the same as ours.
Together with the explicit Cartan model for torus actions [5], this gives another
model for H∗

G(X).
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