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Abstract. In an Euclideand-space, the container problem asks to pack
n equally sized spheres into a minimal dilate of a fixed container. If the
container is a smooth convex body andd ≥ 2 we show that solutions to the
container problem can not have a “simple structure” for largen. By this we
in particular find that there exist arbitrary smallr > 0, such that packings in
a smooth,3-dimensional convex body, with a maximum number of spheres
of radiusr, are necessarily not hexagonal close packings. This contradicts
Kepler’s famous statement that the cubic or hexagonal closepacking “will
be the tightest possible, so that in no other arrangement more spheres could
be packed into the same container”.
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1 Introduction

How many equally sized spheres can be packed into a given container? In 1611,
KEPLER discussed this question in his booklet [Kep11] and came to the following
conclusion:

“Coaptatio fiet arctissima, ut nullo praeterea ordine plures globuli
in idem vascompingi queant.”

“The (cubic or hexagonal close) packing will be the tightestpossi-
ble, so that in no other arrangement more spherescould be packed
into the same container.”
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394 Achill Schürmann

In this note we want to show that Kepler’s assertion is false for many containers (see
Section 5, Corollary 2). Even more general we show, roughly speaking, that the set of
solutions to the finite container problem (see below) in an Euclidean space of dimen-
siond ≥ 2 has no “simple structure” (see Definition 1).
To make this precise, we consider the Euclideand-spaceRd endowed with inner prod-
uct 〈·, ·〉 and norm| · |. Let Bd = {x ∈ R

d : |x| ≤ 1} denote the (solid) unit sphere
andSd−1 = {x ∈ R

d : |x| = 1} its boundary. Then a discrete setX ⊂ R
d is a

packing setand defines asphere packingX + 1

2
Bd = {x + 1

2
y : x ∈ X,y ∈ Bd},

if distinct elementsx andx′ of X have distance|x − x′| ≥ 1. The sphere packing is
calledfinite if X is of finite cardinality|X|. Here we consider finite sphere packings
contained in a convex body (container) C, that is, a compact, convex subset ofR

d

with nonempty interior. Thefinite container problemmay be stated as follows.

Problem. Givend ≥ 2, n ∈ N and a convex bodyC ⊂ R
d, determine

λ(C, n) = min{λ > 0 : λC ⊃ X + 1

2
Bd a packing,X ⊂ R

d with |X| = n }
and packing setsX attaining the minimum.

Many specific instances of this container problem have been considered (see for exam-
ple [Bez87], [BW04], [Fod99], [Mel97], [N̈O97],[Spe04], [SMC+06]). Independent
of the particular choice of the containerC, solutions tend to densest infinite packing
arrangements for growingn (see Section 5, cf. [CS95]). In dimension2 these pack-
ings are known to be arranged hexagonally. Nevertheless, although close, solutions
to the container problem are not hexagonally arranged for all sufficiently largen and
various convex disksC, as shown by the author in [Sch02], Theorem 9 (cf. [LG97]
for corresponding computer experiments). Here we show thata similar phenomenon
is true in arbitrary Euclidean spaces of dimensiond ≥ 2.
We restrict ourselves tosmooth convex bodiesC as containers. That is, we assume
the support functionhC(u) = sup{〈x,u〉 : x ∈ C} of C is differentiable at all
u ∈ R

d \ {0}, or equivalently, we require thatC has a uniquesupporting hyperplane
through each boundary point (see [Sch93], Chapter 1.7).
Our main result shows that families of packing sets with a “simple structure” can
not be solutions to the container problem ifC is smooth andn sufficiently large.
This applies for example to the family of solutions to thelattice restricted container
problem. In it, we only consider packing sets which are isometric to asubset of some
lattice (a discrete subgroup ofRd).

Theorem 1. Let d ≥ 2 andC ⊂ R
d a smooth convex body. Then there exists an

n0 ∈ N, depending onC, such thatλ(C, n) is not attained by any lattice packing set
for n ≥ n0.

2 Packing families of limited complexity

The result of Theorem 1 can be extended to a more general classof packing sets.

Definition 1. A familyF of packing sets inRd is of limited complexity(an lc-
family), if
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On Packing Spheres into Containers 395

(i) there exist isometriesIX , for eachX ∈ F , such that

{x − y : x,y ∈ IX(X) andX ∈ F} (1)

has only finitely many accumulation points in any bounded region.

(ii) there exists a̺ > 0, such that for allx ∈ X with X ∈ F , every affine subspace
spanned by some elements of

{y ∈ X : |x − y| = 1}

either containsx or its distance tox is larger than̺.

Condition (i) shows that point configurations within an arbitrarily large radius around
a point are (up to isometries ofX and up to finitely many exceptions) arbitrarily close
to one out of finitely many possibilities. Condition (ii) limits the possibilities for points
at minimum distance further. Note that the existence of a̺ > 0 in (ii) follows if (1) in
(i) is finite within Sd−1.
An example of an lc-family in which isometries can be chosen so that (1) is finite
in any bounded region, is the family ofhexagonal packing sets. These are isometric
copies of subsets of ahexagonal lattice, in which every point in the plane is at mini-
mum distance1 to six others. For the hexagonal packing sets, condition (ii) is satisfied
for all ̺ < 1

2
. More general, isometric copies of subsets of a fixed latticegive finite

sets (1) in any bounded region and satisfy (ii) for suitable small ̺ > 0. Similar is
true for more general families of packing sets, as for example for thehexagonal close
configurationsin dimension3 (see Section 5).
An example of an lc-family, in which the sets (1) are not necessarily finite in any
bounded region, are the solutions to the lattice restrictedcontainer problem. As shown
at the end of Section 3, condition (ii) in Definition 1 is nevertheless satisfied. Thus we
are able to derive Theorem 1 from the following, more generalresult.

Theorem 2. Let d ≥ 2, C ⊂ R
d a smooth convex body andF an lc-family of

packing sets inRd. Then there exists ann0 ∈ N, depending onF andC, such that
λ(C, n) is not attained by any packing set inF for n ≥ n0.

Proofs are given in the next section. In Section 4 we briefly mention some possible ex-
tensions of Theorem 2. In Section 5 we discuss consequences for the quoted assertion
of Kepler, if interpreted as a container problem (see Corollary 2).

3 Proofs

Idea. The proof of Theorem 2 is subdivided into four preparatory steps and corre-
sponding propositions. These technical ingredients are brought together at the end of
this section. Given an lc-familyF of packing sets, the idea is the following: We show
that packing setsX ∈ F , with |X| sufficiently large, allow the construction of packing
setsX ′ with |X ′| = |X| and withX ′+ 1

2
Bd fitting into a smaller dilate ofC. Roughly

speaking, this is accomplished in two steps. First we show that “rearrangements” of
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396 Achill Schürmann

spheres near the boundary ofC are possible for sufficiently largen. This allows us to
obtain arbitrarily large regions in which spheres have no contact, respectively in which
points ofX ′ have distance greater than1 to all other points (Proposition 2, depending
on property (i) of Definition 1). Such an initial modificationthen allows rearrange-
ments of all spheres (Proposition 3 and 4, depending on property (ii) of Definition 1),
so that the resulting packing fits into a smaller dilate ofC. For example, consider a
hexagonal packing in the plane: It is sufficient to initiallyrearrange (or remove) two
disks in order to subsequently rearrange all other disks, sothat no disk is in contact
with others afterwards (see Figure 1, cf. [Sch02]).

Figure 1: Local rearrangements in a hexagonal circle packing.

How do we know that the new sphere packingsX ′ + 1

2
Bd fit into a smaller dilate of

C? Consider

λ(C,X) = min{λ > 0 : λC ⊃ t + X + 1

2
Bd for somet ∈ R

d}

for a fixed finite packing setX. Here and in the sequel we uset + X to abbreviate
{t} + X. Clearly

λ(C, n) = min{λ(C,X) : X is a packing set with|X| = n },

andλ(C,X ′) < λ(C,X) whenever theconvex hullconv X ′ of X ′ (and henceX ′

itself) is contained in the interiorint conv X of the convex hull ofX. Thus in order
to prove thatX does not attainλ(C, |X|) for any convex containerC, it is sufficient
to describe a way of attaining a packing setX ′ with |X ′| = |X| and

X ′ ⊂ int conv X. (2)

I. Let us first consider the “shapes” of packing setsXn attainingλ(C, n). Here and
in what follows,Xn denotes a packing set with|Xn| = n.
In order to define the “shape”, let

R(M) = min{R ≥ 0 : M ⊂ t + RBd for somet ∈ R
d}

denote the circumradius of a compact setM ⊂ R
d and letc(M) denote the center of

its circumsphere. HenceM ⊆ c(M) + R(M)Bd. Then theshapeof M is defined by

S(M) = (conv(M) − c(M)) /R(M) ⊂ Bd.
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On Packing Spheres into Containers 397

The family of nonempty compact subsets inR
d can be turned into a metric space, for

example with theHausdorff metric(cf. [Sch93]). Shapes of packing setsXn attaining
λ(C, n) converge to the shape ofC, that is,

lim
n→∞

S (Xn) = S(C). (3)

This is seen by “reorganizing elements” in a hypothetical convergent subsequence of
{Xn}n∈N not satisfying (3).
The convergence of shapes leads for growingn to shrinking sets ofouter (unit) nor-
mals

{v ∈ Sd−1 : 〈v,x〉 ≥ 〈v,y〉 for all y ∈ conv Xn} (4)

at boundary pointsx of the center polytopeconv Xn. For general terminology and
results on convex polytopes used here and in the sequel we refer to [Zie97].
SinceC is smooth, the sets of outer normals (4) at boundary points ofconv Xn be-
come uniformly small for largen. Also, within a fixed radius around a boundary point,
the boundary ofconv Xn becomes “nearly flat” for growingn.

Proposition 1. Let d ≥ 2 and C ⊂ R
d a smooth convex body. Let{Xn} be a

sequence of packing sets inR
d attainingλ(C, n). Then

(i) for ε > 0 there exists ann1 ∈ N, depending onC and ε, such that for all
n ≥ n1, outer normalsv,v′ ∈ Sd−1 of conv Xn at x ∈ Xn satisfy

|v − v′| < ε;

(ii) for ε > 0 andr > 0 there exists ann1 ∈ N, depending onC, ε andr, such that
for all n ≥ n1, and forx,x′ ∈ bd conv Xn with |x − x′| ≤ r, outer normals
v ∈ Sd−1 of conv Xn at x satisfy

〈v,x − x′〉 > −ε.

II. In what follows we use some additional terminology. Given a packing setX, we
sayx ∈ X is in afree position, if the set

NX(x) = {y ∈ X : |x − y| = 1}

is empty. If somex ∈ X is not contained inint convNX(x), then it is possible to
obtain a packing setX ′ = X \ {x} ∪ {x′} in whichx′ is in a free position. We sayx
is moved to a free positionin this case (allowingx′ = x). We sayx is moved into or
within a setM (to a free position), ifx′ ∈ M . Note, in the resulting packing setX ′

less elements may have minimum distance1 to others, and therefore possibly further
elements can be moved to free positions.
AssumingX ∈ F attainsλ(C, |X|) with |X| sufficiently large, the following propo-
sition shows that it is possible to move elements ofX into free positions within an
arbitrarily large region, without changing the center polytopeconv X.
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398 Achill Schürmann

Proposition 2. Let d ≥ 2 andR > 0. Let C ⊂ R
d a smooth convex body and

F a family of packing sets inRd satisfying (i) of Definition 1. Then there exists an
n2 ∈ N, depending onR, F andC, such that for allX ∈ F attainingλ(C, |X|) with
|X| ≥ n2, there exists atX ∈ R

d with

(i) (tX + RBd) ⊂ conv X, and

(ii) all elements ofX ∩ int(tX + RBd) can be moved to free positions by subse-
quently moving elements ofX ∩ int conv X to free positions withinint conv X.

Proof. Preparations. By applying suitable isometries to the packing sets inF we
may assume that

{y : y ∈ X − x with |y| < r for x ∈ X andX ∈ F} (5)

has only finitely many accumulation points for everyr > 1. For eachX, the container
C is transformed to possibly different isometric copies. This is not a problem though,
since the container is not used aside of Proposition 1, whichis independent of the
chosen isometries. Note that the smoothness ofC is implicitly used here.
We sayx ∈ X is moved in directionv ∈ Sd−1, if it is replaced by anx′ on the ray
{x + λv : λ ∈ R>0}. Note that it is possible to movex in directionv ∈ Sd−1 to a
free position, if

NX(x,v) = {w ∈ NX(x) − x : 〈v,w〉 > 0} (6)

is empty. If we want a fixedx ∈ X to be moved to a free position, in direction
v ∈ Sd−1 say, we have to move the elementsy ∈ x + NX(x,v) first. In order to do
so, we move the elements ofy + NX(y,v) to free positions, and so on. By this we
are lead to the definition of theaccess cone

accF,n(v) = pos{NX(x,v) : x ∈ X for X ∈ F with |X| ≥ n} (7)

of F andn in directionv ∈ Sd−1. Here,

pos(M) = {
m

∑

i=1

λixi : m ∈ N, λi ≥ 0 andxi ∈ M for i = 1, . . . ,m }

denotes thepositive hullof a setM ⊂ R
d, which is by definition a convex cone.

Note that accF,n(v) is contained in the halfspace{x ∈ R
d : 〈v,x〉 ≥ 0} and that

accF,n(v) ⊆ accF,n′(v) whenevern ≥ n′.
By the assumption that (5) has only finitely many accumulation points forr > 1, there
exist only finitely many limitslimn→∞

(

accF,n(v) ∩ Bd
)

. Here, limits are defined
using the Hausdorff metric on the set of nonempty compact subsets ofRd again.

Strategy. We choose av ∈ Sd−1 such that there exists anε > 0 with

lim
n→∞

(

accF,n(v) ∩ Bd
)

= lim
n→∞

(

accF,n(v′) ∩ Bd
)

,

for all v′ in theε-neighborhoodSε(v) = Sd−1 ∩ (v + εBd) of v ∈ Sd−1.
In order to prove the proposition, we show the following for every X ∈ F , attaining
λ(C, |X|) with |X| sufficiently large: There exists atX ∈ R

d such that
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On Packing Spheres into Containers 399

(i’) (tX + RBd) + accF,n(v) does not intersectX ∩ bd conv X, while

(ii’) (tX + RBd) ⊂ conv X.

It follows thatbd conv X has to intersect the unbounded set

(tX + RBd) + accF,n(v) (8)

and by the definition of the access cone it is possible to move the elements inX ∩
int(tX + RBd) to free positions as asserted. For example, after choosing adirection
v′ ∈ Sε(v), we may subsequently pick non-free elementsx in (8) with maximal
〈x,v′〉. These elements can be moved to a free position withinint conv X, since
NX(x,v′) is empty by the definition of the access cone.

Bounding the boundary intersection.We first estimate the size of the intersection of
(8) with bd conv X. Forv′ ∈ Sε(v) andn ∈ N, we consider the sets

M(v′, n) = {x ∈ RBd + accF,n(v) : 〈x,v′〉 = R}.

By the definition of the access cones (7),M(v′, n) ⊆ M(v′, n′) for n ≥ n′. We
choose

r > sup{|x − y| : x,y ∈ M(v′, n) with v′ ∈ Sε(v)},
as a common upper bound on the diameter of the setsM(v′, n) with n sufficiently
large, sayn ≥ n′. Note thatR as well asF , v andε have an influence on the size of
r andn′.
By Proposition 1 (ii) we can choosen′ possibly larger to ensure the following for all
X ∈ F attainingλ(C, |X|) with |X| ≥ n′: The intersection of(8) with bd conv X
has a diameter less thanr, no matter whichtX ∈ conv X at distanceR to bd conv X
we choose. Moreover,(tX + RBd) ⊂ conv X.

Ensuring an empty intersection. It remains to show that forX ∈ F , attaining
λ(C, |X|) with |X| sufficiently large,tX can be chosen such that (8) does not intersect
X ∩bd conv X. For this we prove the following claim:There exists ann′′, depending
on r, v and ε, such that for allX ∈ F with |X| ≥ n′′, there exists a vertexx of
conv X with outer normalv′ ∈ Sε(v) and

{x} = X ∩ (bd conv X) ∩ (x + rBd). (9)

Thus these verticesx have a distance larger thanr to any other element ofX ∩
bd conv X. Therefore, by choosingn2 ≥ max{n′, n′′}, we can ensure that there
exists atX ∈ R

d at distanceR to bd conv X such that (i’) and (ii’) are satisfied for all
X ∈ F attainingλ(C, |X|) with |X| ≥ n2. Note thatn′, n′′, and hencen2, depend
on the choice ofv andε. But we may choosev andε, depending onF , so thatn2 can
be chosen as small as possible. In this way we get ann2 which solely depends onR,
F andC.
It remains to prove the claim. Since (5) has only finitely manyaccumulation points, the
set of normalsv′ ∈ Sd−1 with hyperplane{y ∈ R

d : 〈v′,y〉 = 0} running through
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0 and an accumulation pointy of (5) all lie in the unionUr of finitely many linear
subspaces of dimensiond − 1. Thus for anyδ > 0 the normals of these hyperplanes
all lie in Ur,δ = Ur + δBd if we choose|X| sufficiently large, depending onδ. By
choosingδ small enough, we find av′ ∈ Sε(v) with v′ 6∈ Ur,δ. Moreover, there exists
an ε′ > 0 such thatSε′(v′) ∩ Ur,δ = ∅. Since every center polytopeconv X has a
vertexx with outer normalv′, we may choose|X| sufficiently large by Proposition 1
(i) (applied to2ε′), such thatconv X has no outer normal inUr,δ atx.
Moreover, for sufficiently large|X|, faces ofconv X intersectingx + rBd can not
contain any vertex inX ∩ (x + rBd) aside ofx. Thus by construction, there exists
ann′′ such that (9) holds for allX ∈ F with |X| ≥ n′′. This proves the claim and
therefore the proposition.

Note that the proof offers the possibility to loosen the requirement onF a bit, for
the price of introducing another parameter: For suitable larger, depending onF , the
proposition holds, if instead of (i) in Definition 1 we require

(i’) there exist isometriesIX for eachX ∈ F , such that

{x − y : x,y ∈ IX(X) andX ∈ F }

has only finitely many accumulation points withinrBd.

III. For all X ∈ F attainingλ(C, |X|), with |X| sufficiently large, we are able to
obtaincontact free regions(tX + RBd) ⊂ conv X, with R as large as we want, by
Proposition 2. That is, we can modify these packing setsX by moving elements to
free positions withinint(tX + RBd). By choosingR large enough, such an initial
contact free region allows to move further elements to free positions. The following
proposition takes care of interior points.

Proposition 3. Let d ≥ 2 andF a family of packing sets inRd satisfying (ii) in
Definition 1 with̺ > 0. LetR ≥ 1

̺
, X ∈ F andx ∈ X ∩ int conv X. Let t ∈ R

d

with |t−x| ≤ R+ ̺
2

and with all elements ofX ∩ (t+RBd) in a free position. Then
x can be moved to a free position withinint conv X.

Proof. Assumex ∈ int convNX(x). By the assumption onF ,

x + ̺Bd ⊂ int convNX(x).

Thus there exists ay ∈ NX(x), such that the orthogonal projectiony′ of y onto the
line throughx andt satisfies|y′ − x| ≥ ̺ and|y′ − t| ≤ R − ̺

2
. Then

|y − t|2 = |y′ − t|2 + |y − y′|2 ≤
(

R − ̺
2

)2
+

(

1 − ̺2
)

< R2.

Thusy is in a free position by the assumptions of the proposition, which contradicts
y ∈ NX(x).
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On Packing Spheres into Containers 401

IV. After Propositions 2 and 3 it remains to take care of points inX ∩ bd conv X,
for X ∈ F attainingλ(C, |X|), and with|X| sufficiently large. It turns out that these
points can all be moved to free positions withinint conv X. As a consequence we
obtain the following.

Proposition 4. Letd ≥ 2, C ⊂ R
d a smooth convex body andF a family of pack-

ing sets inRd satisfying (ii) of Definition 1. Then there exists ann4 ∈ N, depending on
C andF , such thatX ∈ F with |X| ≥ n4 does not attainλ(C, |X|), if all elements
of X ∩ int conv X are in a free position.

Proof. Let ̺ > 0 as in (ii) of Definition 1. We choosen4 by Proposition 1 (ii),
applied toε = ̺ andr = 1. AssumeX ∈ F with |X| ≥ n4 attainsλ(C, |X|) and
all elements ofX ∩ int conv X are in a free position. We show that every element
x ∈ X ∩ bd conv X can be moved to a free position intoint conv X. This gives the
desired contradiction, because after moving (in an arbitrary order) allX ∩ bd conv X
to free positions intoint conv X, we obtain a packing setX ′ with |X ′| = |X| and
X ′ ⊂ int conv X.
It is possible to move a givenx ∈ X ∩bd conv X to a free positionx′ = x+ δv for a
(sufficiently small)δ > 0, if v ∈ Sd−1 is contained in the non-empty polyhedral cone

Cx =
{

v ∈ R
d : 〈v,y − x〉 ≤ 0 for all y ∈ NX(x)

}

.

If v ∈ Cx can be chosen, so thatx′ ∈ int conv X, the assertion follows. Otherwise,
becauseCx andconv X are convex, there exists a hyperplane throughx, with normal
w ∈ Sd−1, which separatesconv X andx + Cx. That is, we may assume that

w ∈ pos {y − x : y ∈ NX(x)}

and−w is an outer normal ofconv X atx.
Then for someδ > 0, there exists a pointz = x + δw ∈ bd convNX(x), which is a
convex combination of somey

1
, . . . ,yk ∈ NX(x). That is, there existαi ≥ 0 with

∑k

i=1
αi = 1 andz =

∑k

i=1
αiyi . Therefore

δ = 〈z − x,w〉 =
k

∑

i=1

αi〈yi − x,w〉 < ̺,

because〈yi − x,w〉 < ̺ due to|X| ≥ n4 andyi ∈ bd conv X. This contradicts the
assumption onF with respect to̺ though.

Finish. The proof of Theorem 2 reduces to the application of Propositions 1, 2,
3 and 4. LetF be an lc-family of packing sets inRd, with a ̺ > 0 as in (ii) of
Definition 1. We chooseR ≥ 1/̺ andn2 andn4 according to Propositions 2 and
4. By Proposition 1 (ii), we choosen1 such that packing setsX attainingλ(C, |X|)
with |X| ≥ n1 satisfy the following: For eachx ∈ X, there exists at ∈ R

d with
|x − t| = R + ̺

2
andt + RBd ⊂ conv X.

We choosen0 ≥ max{n1, n2, n4} and assume thatX ∈ F with |X| ≥ n0 attains
λ(C, |X|). By Proposition 2 we can modify the packing setX to obtain a new packing
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set X ′ with a contact free region(tX + RBd) ⊂ int conv X, and with the same
pointsX ′ ∩ bd conv X ′ = X ∩ bd conv X on the boundary of the center polytope
conv X ′ = conv X.
The following gives a possible order, in which we may subsequently move non-free
elementsx ∈ X ∩ int conv X to free positions: By the choice ofn0 we can guarantee
that for eachx ∈ X ∩ int conv X, there exists at with |x − t| ≤ R + ̺

2
andt +

RBd ⊂ conv X. Let tx be thet at minimal distance totX . Then among the non-free
x ∈ int conv X, the one with minimal distance|tx − tX | satisfies the assumptions
of Proposition 3, because a non-free elementy ∈ X ∩ (tx + Bd) would satisfy
|ty − tX | < |tx − tX | due toconv{tx, tX} + Bd ⊂ conv X.
Thus by Proposition 3 we can subsequently move the non-free elements withinX ∩
int conv X to free positions. By this we obtain a contradiction to Proposition 4, which
proves the theorem.

The lattice packing case. We end this section with the proof of Theorem
1. We may apply Theorem 2 after showing that the family of solutions to the lattice
restricted container problem is of limited complexity. Thespace of lattices can be
turned into a topological space (see [GL87]). The convergence of a sequence{Λn}
of lattices to a latticeΛ in particular involves that sets of lattice points within radiusr
around a lattice point tend to translates ofΛ∩rBd for growingn. As a consequence, a
convergent sequence of packing lattices, as well as subsetsof them, form an lc-family.
Solutions to the lattice restricted container problem tendfor growingn towards subsets
of translates ofdensest packing lattices(see [Zon99]). These lattices are the solutions
of the lattice (sphere) packing problem. Up to isometries, there exist only finitely
many of these lattices in each dimension (see [Zon99]). Thusthe assertion follows,
since a finite union of lc-families is an lc-family.

4 Extensions

Let us briefly mention some possible extensions of Theorem 2.These have been
treated in [Sch02] for the2-dimensional case and could be directions for further re-
search.

Packings of other convex bodies.Instead of sphere packings, we may consider pack-
ings X + K for other convex bodiesK. If the difference bodyDK = K − K
is strictly convex, then the proofs can be applied after somemodifications: In-
stead of measuring distances with the norm| · | given by Bd, we use the norm
|x|DK = min{λ > 0 : λx ∈ DK} given byDK. The strict convexity ofDK
is then used for the key fact, that elementsx of a packing setX can be moved to a
free position, whenever they are not contained inint convNX(x) (seeII in Section
3). Note though that the sets in (6) and depending definitionshave to be adapted for
general convex bodies.

Packings in other containers.The restriction to smooth convex containers simplifies
the proof, but we strongly believe that Theorem 2 is valid forother containers as
well, e.g. certain polytopes. On the other hand there might exist containers for which
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Theorem 2 is not true. In particular in dimension3 it seems very likely that Theorem
2 is not true for polytopal containersC with all their facets lying in planes containing
hexagonal sublattices of thefcc lattice (see Section 5). That is, for these polytopal
containersC we conjecture the existence of infinitely manyn, for which subsets of
the fcc latticeattainλ(C, n). An example for at least “local optimality” of sphere
packings (with respect to differential perturbations) in suitable sized, but arbitrarily
large tetrahedra was given by Dauenhauer and Zassenhaus [DZ87]. A proof of “global
optimality” seems extremely difficult though, as it would provide a new proof of the
sphere packing problem (“Kepler conjecture”, see Section 5).

Other finite packing problems.Similar “phenomena” occur for other packing prob-
lems. For example, if we consider finite packing setsX with minimum diameter or
surface area ofconv X, or maximum parametric density with large parameter (cf.
[FCG91], [BHW94], [Bör04], [BP05]). This is due to the fact that the shapes of solu-
tions tend to certain convex bodies, e.g. a sphere.

5 Kepler’s assertion

Kepler’s statement, quoted in the introduction, was later referred to as the origin of the
famous sphere packing problem known as theKepler conjecture(cf. e.g. [Hal02] p.5,
[Hsi01] p.4). In contrast to the original statement, this problem asks for the maximum
sphere packing density (see (10) below) of an infinite arrangement of spheres, where
the “container” is the whole Euclidean space. As a part of Hilbert’s famous problems
[Hil01], it attracted many researchers in the past. Its proof by Hales with contributions
of Ferguson (see [Hal02], [Hal05], [Hal06]), although widely accepted, had been a
matter of discussion (cf. [Lag02], [Szp03], [FL06]).

Following Kepler [Kep11], thecubic or hexagonal
close packingsin R

3 can be described via two dimen-
sional layers of spheres, in which every sphere center
belongs to a planar square grid, say with minimum
distance1. These layers are stacked (in a unique way)
such that each sphere in a layer touches exactly four
spheres of the layer above and four of the layer below.
The packing attained in this way is the well knownface centered cubic (fcc) lattice
packing. We can build up the fcc lattice by planar hexagonal layers aswell, but then
there are two choices for each new layer to be placed, and onlyone of them yields an
fcc lattice packing. All of them, including the uncountablymany non-lattice packings,
are referred to ashexagonal close packings (hc-packings). Note that the family of hc-
packings is of limited complexity, because up to isometriesthey can be built from a
fixed hexagonal layer.
Let

n(C) = max{|X| : C ⊃ X + 1

2
Bd is a packing}.

Then in our terminology Kepler asserts that, inR
3, n(C) is attained by hc-packings.

His assertion, if true, would imply an “answer” to the spherepacking problem (Kepler
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conjecture), namely that the density of the densest infinitesphere packing

δd = lim sup
λ→∞

n(λC) · vol(1

2
Bd)

vol(λC)
(10)

is attained by hc-packings ford = 3; henceδ3 = π/
√

18. Note that this definition of
density is independent of the chosen convex containerC (see [Hla49] or [GL87]).
As a consequence of Theorem 2, Kepler’s assertion turns out to be false though, even if
we think of arbitrarily large containers. Consider for example the containersλ(C, n)C
for n ≥ n0.

Corollary 1. Let d ≥ 2, C ⊂ R
d a smooth convex body andF an lc-family of

packing sets inRd. Then there exist arbitrarily largeλ such thatn(λC) is not attained
by packing sets inF .

We may as well think of arbitrarily small spheres packed intoa fixed containerC. For
r > 0, we callX + rBd a sphere packing if distinct elementsx andx′ of X have
distance|x − x′| ≥ 2r. Specializing toR3, the following corollary of Theorem 2
refers directly to Kepler’s assertion.

Corollary 2. LetC ⊂ R
3 a smooth convex body. Then there exist arbitrarily small

r > 0, such that
max{|X| : C ⊃ X + rBd is a packing}

is not attained by fcc or hexagonal close packing sets.
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